Powered by Deep Web Technologies
Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Boulder Atmospheric Observatory  

Science Journals Connector (OSTI)

The Boulder Atmospheric Observatory (BAO) is a unique research facility for studying the planetary boundary layer and for testing and calibrating atmospheric sensors. The facility includes a 300 m tower instrumented with fast- and slow-response ...

J. C. Kaimal; J. E. Gaynor

1983-05-01T23:59:59.000Z

2

University of Colorado-Boulder Researches Solar-Thermochemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

University of Colorado-Boulder Researches Solar-Thermochemical Hydrogen Production University of Colorado-Boulder Researches Solar-Thermochemical Hydrogen Production July 26, 2013...

3

Research Article Using NHDPlus as the Land Base for the  

E-Print Network [OSTI]

Laboratory National Center for Atmospheric Research, Boulder, Colorado David R Maidment Center for Research for Atmospheric Research, Boulder, Colorado David N Yates Research Applications Laboratory National Center for Atmospheric Research Boulder, Colorado Zong-Liang Yang Department of Geological Sciences John A. and Katherine

Yang, Zong-Liang

4

BNL | Atmospheric Systems Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric System Research is a DOE observation-based research program Atmospheric System Research is a DOE observation-based research program created to advance process-level understanding of the key interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics, with the ultimate goal of reducing the uncertainty in global and regional climate simulations and projections. General areas of research at BNL under this program include studies of aerosol and cloud lifecycles, and cloud-aerosol-precipitation interactions. Contact Robert McGraw, 631.344.3086 aerosols Aerosol Life Cycle The strategic focus of the Aerosol Life Cycle research is observation-based process science-examining the properties and evolution of atmospheric aerosols. Observations come from both long-term studies conducted by the

5

Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research  

E-Print Network [OSTI]

Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research www in modeling of the associated multiphase processes. Iron redox species are important pollutants. The oxidative capacity of the atmospheric cloud water decreases when dissolution is included

Boyer, Edmond

6

CIRES/CSD Research Associate Atmospheric/Physical Research Scientist  

E-Print Network [OSTI]

to address atmospheric problems of contemporary interest. A background in atmospheric science is not required or field environment. Experience with optics and optical sensors is highly desirable. Experience by contacting the ADA Coordinator at hr-ada@colorado.edu. The University of Colorado Boulder conducts background

Colorado at Boulder, University of

7

ORISE: Climate and Atmospheric Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate and Atmospheric Research Climate and Atmospheric Research Capabilities Overview U.S. Climate Reference Network U.S. Historical Climate Network Contact Us Oak Ridge Institute for Science Education Climate and Atmospheric Research The Oak Ridge Institute for Science and Education (ORISE) partners with the National Oceanic and Atmospheric Administration's Atmospheric Turbulence and Diffusion Division (ATDD) to conduct climate research focused on issues of national and global importance. Research is performed with personnel support from ORISE's Independent Environmental Assessment and Verification (IEAV) programs, as well as in collaboration with scientists and engineers from Oak Ridge National Laboratory (ORNL), and numerous other organizations, government agencies, universities and private research institutions.

8

CIRES/ Western Water Assessment Research Associate The Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado-Boulder and the Western Water  

E-Print Network [OSTI]

in Environmental Sciences (CIRES) at the University of Colorado-Boulder and the Western Water Assessment (WWACIRES/ Western Water Assessment Research Associate The Cooperative Institute for Research to: Eric Gordon esgordon@colorado.edu To Apply You must use www.jobsatcu.com to formally apply

Colorado at Boulder, University of

9

Chaotic dynamics in accelerator physics. [Dept. of Astrophysical, Planetary, and Atmospheric Sciences, Univ. of Colorado, Boulder  

SciTech Connect (OSTI)

Substantial progress was in several areas of accelerator dynamics. For developing understanding of longitudinal adiabatic dynamics, and for creating efficiency enhancements of recirculating free-electron lasers, was substantially completed. A computer code for analyzing the critical KAM tori that bound the dynamic aperture in circular machines was developed. Studies of modes that arise due to the interaction of coating beams with a narrow-spectrum impedance have begun. During this research educational and research ties with the accelerator community at large have been strengthened.

Cary, J.R.

1992-11-30T23:59:59.000Z

10

DOE research on atmospheric aerosols  

SciTech Connect (OSTI)

Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

Schwartz, S.E.

1995-11-01T23:59:59.000Z

11

ATMOSPHERIC ELSEVIER AtmosphericResearch40 (1996) 223-259  

E-Print Network [OSTI]

of atmospheric aerosol particles and cloud hydrometeors (water drops, ice particles, and, particularlyATMOSPHERIC RESEARCH ELSEVIER AtmosphericResearch40 (1996) 223-259 Simulations of drop fall turbulence. The model permits us to generate different realizations of the random velocity field component

Mark, Pinsky

12

Boulder County Data Dashboard  

Broader source: Energy.gov [DOE]

The data dashboard of Boulder County, a partner in the U.S. Department of Energy's Better Buildings Neighborhood Program.

13

Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Radiation Measurement (ARM) Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

14

Boulder Wind Power Advanced Gearless Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-12-00463  

SciTech Connect (OSTI)

The Boulder Wind Power (BWP) Advanced Gearless Drivetrain Project explored the application of BWP's innovative, axial-gap, air-core, permanent-magnet direct-drive generator in offshore wind turbines. The objective of this CRADA is to assess the benefits that result from reduced towerhead mass of BWP's technology when used in 6 MW offshore turbines installed on a monopile or a floating spar foundation.

Cotrell, J.

2013-04-01T23:59:59.000Z

15

AFFILIATIONS: Kucera--National Center for Atmospheric Research, Boulder, Colorado; ebert--Centre for Australian  

E-Print Network [OSTI]

K--Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California; Levizzani. PRECIPITATION FROM SPACE Advancing Earth System Science by pauL a. Kucera, eLizabeth e. ebert, F. Joseph tur-real-time data, for tropi- cal cyclone warnings (Hawkins et al. 2001). To overcome the intermittently spaced

Ebert, Beth

16

Summary of Breakout Sessions D. A. Randall National Center for Atmospheric Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Breakout Sessions Breakout Sessions D. A. Randall National Center for Atmospheric Research Boulder CO 80307-3000 J. T. Kiehl Department of Atmospheric Science Colorado State University Ft. Collins, CO 80523 M. Bradley Lawrence Livermore National. Laboratory Livermore, CA 94550 Discussion of Intensive Operation Periods (lOPs) The group made several recommendations for lOPs in general. One of the main points was that members of the Atmospheric Radiation Measurement (ARM) Science Team should be given as much advance notification as possible of planned or potential lOPs. The group also recommended that a lead scientist be appointed for each lOP. This scientist should have expertise in the topic of primary focus of the lOP. The lead scientist's main responsibility would be to make sure that the operations carried out in the lOP

17

Workshop review: Management of data collected in GRAMP (Gulf Region Atmospheric Measurement Program). Held in Boulder, Colorado on July 22-24, 1991. Technical note  

SciTech Connect (OSTI)

The demolition and subsequent burning of the Kuwait oil fires was a senseless act of destruction that has threatened public health, damaged the environment, and may possibly cause short or longer term changes in regional and global climate. Many nations responded to this disaster by offering aid and by rushing teams into the affected area to make measurements that would assess the impact of the fires. The following report summarizes a workshop that was held July 24-26, 1991 at the National Center for Atmospheric Research (NCAR) to discuss a plan to gather all the atmospheric measurements that are being made in the Gulf region and make them available for general dissemination. The workshop was initiated by the World Meteorological Organization and co-sponsored by the National Oceanic and Atmospheric Organization.

Baumgardner, D.; Friesen, R.

1991-08-01T23:59:59.000Z

18

Synopsis of Atmospheric Research under MAGS  

Science Journals Connector (OSTI)

Cold regions present a challenge to atmospheric and hydrologic research. Their low temperatures test the endurance of field workers and their instruments; their distance from large urban centers raises the cos...

Ming-ko Woo

2008-01-01T23:59:59.000Z

19

JournalofGeophysicalResearch: Atmospheres RESEARCH ARTICLE  

E-Print Network [OSTI]

National Institute of Polar Research, Tachikawa, Japan, 5Physics and Astronomy, Ohio Wesleyan University

Vadas, Sharon

20

Atmospheric Radiation Measurement Climate Research Facility | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Radiation Measurement Climate Research Facility Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists study clouds and their influence on the sun's radiant energy, which heats our planet. Above is one of the purchases: the Vaisala Present Weather Detector. It optically measures visibility, present weather, precipitation intensity, and precipitation type. It provides a measure of current weather conditions by combining measurements from three

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cooperative Institute for Research in the Atmosphere  

E-Print Network [OSTI]

#12;2 Cooperative Institute for Research in the Atmosphere Contents 3 Heavy Snowfall regulations designed to elimi- nate human-caused haze in Big Bend and 155 other National Parks), and the Electric Power Research Institute (EPRI), among others. In support of BRAVO, NPS and CIRA scientists

Collett Jr., Jeffrey L.

22

Fermilab Today | University of Colorado at Boulder  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Colorado at Boulder Jan. 2, 2013 NAME: University of Colorado at Boulder HOME TOWN: Boulder, Colo. MASCOT: Buffaloes COLORS: Silver and gold COLLABORATING AT FERMILAB SINCE:...

23

University of Colorado Boulder Colorado Springs Denver  

E-Print Network [OSTI]

University of Colorado Boulder · Colorado Springs · Denver Office of the Vice President for Academic Affairs and Research 1800 Grant Street, Suite 800 35 UCA Denver, Colorado 80203-1185 (303) 860 Diversity Report Prepared by the University of Colorado System Office of Institutional Research April 2009

Stowell, Michael

24

A Characterization of Tropical Transient Activity in the CAM3 Atmospheric Hydrologic Cycle  

E-Print Network [OSTI]

. BOVILLE,* BRIAN EATON,* AND JAMES J. HACK* *National Center for Atmospheric Research,& Boulder, Colorado. Longer time-scale features are discussed in Boville et al. (2006) and Hack et al. (2006b). The shorter

Dai, Aiguo

25

University of Colorado University of Colorado Boulder  

E-Print Network [OSTI]

University of Colorado Boulder University of Colorado Boulder University of Colorado Boulder University of Colorado Boulder University of Colorado Boulder Catalog 2012­13 Redefining Teaching & Learning­13 UNIVERSITY OF COLORADO BOULDER CATALOG contains a summary of campus offerings, policies, and requirements

Mojzsis, Stephen J.

26

UNIVERSITY OF COLORADO SYSTEM Boulder Colorado Springs Denver  

E-Print Network [OSTI]

UNIVERSITY OF COLORADO SYSTEM Boulder · Colorado Springs · Denver Office of the Vice President for Academic Affairs and Research University of Colorado 2008 Diversity Report Boulder Campus Prepared by the University of Colorado System Office of Information & Analysis February 2008 http://www.colorado

Stowell, Michael

27

UNIVERSITY OF COLORADO SYSTEM Boulder Colorado Springs Denver  

E-Print Network [OSTI]

UNIVERSITY OF COLORADO SYSTEM Boulder · Colorado Springs · Denver Office of the Vice President for Academic Affairs and Research University of Colorado 2007 Diversity Report Update Boulder Campus Prepared by the University of Colorado System Office of Information & Analysis November 2007 http://www.colorado

Stowell, Michael

28

2011 8 2012 5 / University of Colorado, Boulder  

E-Print Network [OSTI]

/ 9955547 2011 8 2012 5 / University of Colorado, Boulder 2011 University of Colorado, Boulder 2011 8 Boulder (Embedded System Design) (Advanced Operating Systems) CU Boulder reading lab) Thanksgiving CU Boulder - Thanksgiving Party Colorado Boulder - Colorado

Shieh, Shiuhpyng Winston

29

Category:Boulder, CO | Open Energy Information  

Open Energy Info (EERE)

CO CO Jump to: navigation, search Go Back to PV Economics By Location Media in category "Boulder, CO" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Boulder CO Public Service Co of Colorado.png SVFullServiceRestauran... 61 KB SVQuickServiceRestaurant Boulder CO Public Service Co of Colorado.png SVQuickServiceRestaura... 61 KB SVHospital Boulder CO Public Service Co of Colorado.png SVHospital Boulder CO ... 60 KB SVLargeHotel Boulder CO Public Service Co of Colorado.png SVLargeHotel Boulder C... 63 KB SVLargeOffice Boulder CO Public Service Co of Colorado.png SVLargeOffice Boulder ... 65 KB SVMediumOffice Boulder CO Public Service Co of Colorado.png SVMediumOffice Boulder... 67 KB SVMidriseApartment Boulder CO Public Service Co of Colorado.png

30

UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH NATIONAL CENTER FOR ATMOSPHERIC RESEARCH UCAR Community Programs  

E-Print Network [OSTI]

Community Programs PO Box 3000, Boulder, CO 80307-3000 RICHARD A. ANTHES UCAR President 303 497-1652 ANTHES communities in Missouri and Alabama, and record flooding along the Mississippi watershed inundated farms to weather and climate events such as hurricanes, tornadoes, forest fires, flooding, heavy snows, and drought

31

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science-1008-06 Michael Buettner University of Colorado Boulder Gary Yee University of Colorado Boulder Eric Anderson University of Colorado Boulder Richard Han University of Colorado Boulder Follow

Han, Richard Y.

32

University of Colorado at Boulder Department of Environmental Health and Safety  

E-Print Network [OSTI]

to be immediately dangerous to life and health (IDLH) due to hazardous atmospheres, the possibility of engulfmentUniversity of Colorado at Boulder Department of Environmental Health and Safety Department of Environmental Health and Safety 1000 Regent Drive 413 UCB University of Colorado Boulder, Colorado 80309

Stowell, Michael

33

Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Style Guide Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research March 2013 ii Contents 1.0 Introduction .......................................................................................................................................... 1 2.0 Acronyms and Abbreviations ............................................................................................................... 1 2.1 Usage ............................................................................................................................................ 1

34

Integrated Water, Atmosphere, Ecosystems, Education and Research Program  

E-Print Network [OSTI]

I-WATER Integrated Water, Atmosphere, Ecosystems, Education and Research Program #12;I-WATER management decisions? II--WATERWATER Integrated Water, Atmosphere,Integrated Water, Atmosphere, Ecosystems resource issues. #12;I-WATER: Vision and Goals ¤ I-WATER will provide a new generation of Ph.D. students

35

JGR-Atmospheres Papers from the RADAGAST Research Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JGR-Atmospheres Papers from the RADAGAST Research Team JGR-Atmospheres Papers from the RADAGAST Research Team Bharmal, N.A., A. Slingo, G.J. Robinson, and J.J. Settle, 2009: Simulation of surface and top of atmosphere thermal fluxes and radiances from the RADAGAST experiment. Journal of Geophysical Research-Atmospheres, 114, doi:10.1029/2008JD010504, in press. Kollias, P., M.A. Miller, K.L. Johnson, M.P. Jensen, and D.T. Troyan, 2009: Cloud, thermodynamic, and precipitation observations in West Africa during 2006. Journal of Geophysical Research- Atmospheres, 114, doi: 10.1029/2008JD010641, in press. McFarlane, S.A., E.I. Kassianov, J. Barnard, C. Flynn, and T. Ackerman, 2009: Surface shortwave aerosol forcing during the ARM Mobile Facility deployment in Niamey, Niger. Journal of Geophysical Research-Atmospheres, 114, doi: 10.1029/2008JD010491, 17 pages.

36

Boulder Valley School District (Colorado) Power Purchase Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School...

37

Atmospheric Science and Climate Research [EVS Program Area]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Science and Climate Research Atmospheric Science and Climate Research EVS research, combined with portable, high-performance climate and weather applications, offers a unique look at the complexities of a dynamic planet. In an ever-changing, dynamic climate, we measure, model, and analyze atmospheric processes that are vital to understanding our planet. Our measurement capabilities range from remote sensing and surface meteorology instruments to instrumentation designed to quantify the land-atmosphere exchange of energy, water, and greenhouse gases. Modeling capabilities begin with regional-scale climate, air quality, and aerosol modeling and extend to global chemical transport models, general circulation models of the atmosphere, models of the biosphere, and coupled Earth system models.

38

BOULDER COUNTY CUSTOMERS GET ENERGYSMART AND SAVE  

Broader source: Energy.gov [DOE]

Of the $25 million grant that Boulder County, Colorado, received through the U.S. Department of Energy (DOE), funding was allocated to three different entities: Boulder County, Garfield County, and...

39

Introducing Research College of Oceanic & Atmospheric Sciences  

E-Print Network [OSTI]

.coas.oregonstate.edu WECOMA WECOMA Coll ege of Oceanic & Atmospheric Scie nces OREGON STATE UNIVERSITY in the O cean currents, to the south in summer and generally to the north in winter, create ocean currents. The strong summertime and the topography of the ocean floor influence the east-west cross-shelf currents. Understanding and being able

Pierce, Stephen

40

Introducing Research College of Oceanic & Atmospheric Sciences  

E-Print Network [OSTI]

WECOMA Coll ege of Oceanic & Atmospheric Scie nces OREGON STATE UNIVERSITY in the O cean currents introduced by man (e.g., pollutants). Knowledge of upper-ocean currents is important for navigation and for search and rescue. The ocean currents off Oregon vary seasonally and can also vary from year to year

Barth, Jack

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

University of Colorado Boulder Redefining Teaching  

E-Print Network [OSTI]

University of Colorado Boulder Boulder Catalog 2013­14 Redefining Teaching & Learning #12;Updated 2013 Flood Resources and FAQs Now Available More » CU: Home · A to Z · Campus Map General Information Programs of Study Colleges & Schools Undergraduate Admission Graduate Admission Courses Welcome to the CU-Boulder

Mojzsis, Stephen J.

42

ORISE: Capabilities in Climate and Atmospheric Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities Capabilities ORISE partners with NOAA to operate climate monitoring network U.S. Climate Reference Network (CRN) station in Hawaii The U.S. Climate Reference Network (CRN) consists of 121 stations throughout the continental U.S., Alaska, Hawaii and Canada. The stations use highly accurate and reliable sensors and gauges to measure temperature, wind speed and precipitation. The network allows scientists to study the climate of an area over sustained periods, from 50 to 100 years. Pictured here is a CRN station at the Mauna Loa Slope Observatory in Hawaii. The Oak Ridge Institute for Science and Education (ORISE) works closely with the National Oceanic and Atmospheric Administration's (NOAA) Atmospheric Turbulence and Diffusion Division (ATDD) to perform lower

43

UNIVERSITY OF COLORADO BOULDER Light from the Sun is the largest source of energy  

E-Print Network [OSTI]

's atmosphere. The Solar Influences group at LASP studies the light from the Sun and how it interacts · How solar light affects Earth's climate and atmosphere · The ways solar light affects space weatherUNIVERSITY OF COLORADO BOULDER Light from the Sun is the largest source of energy for Earth

Mojzsis, Stephen J.

44

Clear Skies S. A. Clough Atmospheric and Environmental Research, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S. A. Clough S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, MA 02139 The objective of this research effort is to develop radiative transfer models that are consistent with Atmospheric Radiation Measurement (ARM) Program spectral radiance measurements for clear and cloudy atmospheres. Our approach is to develop the model physics and related databases with a line-by-line model in the context of available spectral radiance measurements. The line-by- line mode! then functions as an intermediate standard to both develop and validate rapid radiative transfer models appropriate to GCM applications. consistent with downlooking data taken with the high spectral resolution interferometer sounder (HIS) (Smith et al. 1983) from 20 km and with simultaneous data taken

45

Boulder County Summary of Reported Data  

Broader source: Energy.gov [DOE]

Summary of Reported Data for Boulder County, a partner in the U.S. Department of Energy's Better Buildings Neighborhood Program.

46

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science- CS-1054-09 Aaron Beach University of Colorado Boulder Mike Gartrell University of Colorado Boulder Baishakhi Ray University of Colorado Boulder Richard Han University of Colorado Boulder Follow

Han, Richard Y.

47

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science Fall of Colorado Boulder John Black University of Colorado Boulder Richard Han University of Colorado Boulder Shivakant Mishra University of Colorado Boulder Follow this and additional works at: http://scholar.colorado

Han, Richard Y.

48

C.3 SOLAR SYSTEM WORKINGS The Solar System Workings program element supports research into atmospheric, climatological,  

E-Print Network [OSTI]

into atmospheric, climatological, dynamical, geologic, geophysical, and geochemical processes occurring proposals for innovative scientific research related to understanding the atmospheric, climatological

Rathbun, Julie A.

49

Atmospheric Sciences Program summaries of research in FY 1993  

SciTech Connect (OSTI)

This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

Not Available

1993-11-01T23:59:59.000Z

50

University of Colorado at Boulder Catalog  

E-Print Network [OSTI]

University of Colorado at Boulder Catalog 2007­08 #12;The Catalog The 2007­08 University of Colorado at Boulder Catalog contains a summary of campus facilities, programs, and services; descriptions (plus.colorado.edu/ planner) and the catalog website (www.colorado.edu/catalog), and reviewing

Mojzsis, Stephen J.

51

University of Colorado at Boulder Catalog  

E-Print Network [OSTI]

University of Colorado at Boulder Catalog 2006­07 Engage your mind / Elevate your world #12;The Catalog The 2006­07 University of Colorado at Boulder Catalog contains a summary of campus facilities bulletin boards, visiting the online Schedule Planner (www.colorado.edu/ plus/planner) and the catalog web

Mojzsis, Stephen J.

52

Evolving research directions in Surface OceanLower Atmosphere (SOLAS) science  

E-Print Network [OSTI]

Evolving research directions in Surface Ocean­Lower Atmosphere (SOLAS) science Cliff S. Law. Understanding the exchange of energy, gases and particles at the ocean­atmosphere interface is critical­Lower Atmosphere Study (SOLAS) coordinates multi-disciplinary ocean­ atmosphere research projects that quantify

53

University of Colorado Boulder | University Libraries | Science Library | BURST/UROP: Fall 2011 2011nov03 1  

E-Print Network [OSTI]

University of Colorado Boulder | University Libraries | Science Library | BURST/UROP: Fall 2011 Science Library: 303-492-1859 / Email: barbara.losoff@colorado.edu Norlin Research Desk: 303-492-7521 / Email: reflib@colorado.edu Chinook is CU Boulder's on-line catalog and electronic resources access: http://libraries.colorado

Stowell, Michael

54

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect (OSTI)

The Importance of Clouds and Radiation for Climate Change: The Earths surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earths energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01T23:59:59.000Z

55

Z .Atmospheric Research 4748 1998 6986 Some effects of cloud turbulence on waterice and  

E-Print Network [OSTI]

investi- Z Z .gators' attention see a special issue of Atmospheric Research, 40 1996 and an . Zoverview

Mark, Pinsky

56

CLIMATE RESEARCH Vol. 50: 203214, 2011  

E-Print Network [OSTI]

, PR China 2 National Center for Atmospheric Research, Boulder, Colorado 80307, USA 3 Jiangmen flood and north drought' (SF/ND) phase of EOF 2, the western Pacific subtropical high (WPSH Asian summer monsoon. Variations in Meiyu rainfall often lead to summer floods and drought over East

Dai, Aiguo

57

Atmospheric Science Program. Summaries of research in FY 1994  

SciTech Connect (OSTI)

This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

NONE

1995-06-01T23:59:59.000Z

58

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science-04 Jing Deng University of Colorado Boulder Richard Han University of Colorado Boulder Shivakant Mishra University of Colorado Boulder Follow this and additional works at: http://scholar.colorado

Han, Richard Y.

59

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science in Wildland Fire Environments ; CU-CS-999-05 Carl Hartung University of Colorado Boulder Carl Seielstad University of Colorado Boulder Saxon Holbrook University of Colorado Boulder Richard Han University

Han, Richard Y.

60

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science of Colorado Boulder Mike Gartrell University of Colorado Boulder Richard Han University of Colorado Boulder Follow this and additional works at: http://scholar.colorado.edu/csci_techreports This Technical Report

Han, Richard Y.

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

E-Print Network 3.0 - atmospheric research community Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THEODORE KIEHL DATE AND PLACE OF BIRTH: 10 June 1952 Summary: University of New York, Albany (Atmospheric Science) RESEARCH POSITIONS: 1975 - 1977 Research Assistant, High......

62

Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Boulder Commits to Boulder Commits to Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on AddThis.com... June 8, 2012 Boulder Commits to Alternative Fuel Vehicles L earn how the City of Boulder has put nearly 200 alt-fuel vehicles into

63

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

64

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

65

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

66

Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

» Atmospheric System Research (ASR) » Atmospheric System Research (ASR) Program Biological and Environmental Research (BER) BER Home About Research Research Abstracts Searchable Archive of BER Highlights External link Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface Biogeochemical Research Terrestrial Carbon Sequestration External link Terrestrial Ecosystem Science Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC)

67

GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 17, PAGES 3367-3370, SEPTEMBER 1, 1998 Global Variations in Droughts and Wet Spells  

E-Print Network [OSTI]

Research, Boulder, Colorado Thomas R. Karl NOAA National Climatic Data Center, Asheville, North Carolina in the atmosphere. Introduction Extreme climate events, such as droughts and floods, by their very nature are rare of increased atmospheric moisture, pre- cipitation events may become more intense, leading to more flooding

Dai, Aiguo

68

68 Current projects Atmospheric Research The research of the Division focuses on land-  

E-Print Network [OSTI]

scintillometer remote sensing device), and airplane and satellite observations. Airplane based sensible heat flux Research. This national observatory accommodates numerous remote sensing and in-situ instruments brought of the atmosphere landsurface exchange budgets of relevant constituents (heat, moisture, carbon dioxide) can

Haak, Hein

69

CleanTech Boulder | Open Energy Information  

Open Energy Info (EERE)

Boulder Boulder Jump to: navigation, search Name CleanTech Boulder Address 2440 Pearl Street Place Boulder, Colorado Zip 80303 Region Rockies Area Number of employees 1-10 Year founded 2008 Phone number 303-442-1044 xt 122 Website http://www.boulderchamber.com/ Notes A Boulder Chamber-led industry cluster focused on clean technology-oriented businesses Coordinates 40.02095°, -105.263474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.02095,"lon":-105.263474,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007  

SciTech Connect (OSTI)

This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

LR Roeder

2007-12-01T23:59:59.000Z

71

Boulder Wind Power | Open Energy Information  

Open Energy Info (EERE)

Boulder Wind Power Boulder Wind Power Address 2845 Wilderness Place Suite 201 Place Boulder, CO Zip 80301 Sector Wind energy Website http://www.boulderwindpower.co Coordinates 40.0406506°, -105.2077798° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0406506,"lon":-105.2077798,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

72

Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere  

SciTech Connect (OSTI)

This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

Tooman, T.P. [ed.] [Sandia National Labs., Livermore, CA (United States). Exploratory Systems Technology Dept.

1997-01-01T23:59:59.000Z

73

Boulder County Summary of Reported Data | Department of Energy  

Energy Savers [EERE]

Summary of Reported Data Boulder County Summary of Reported Data Summary of Reported Data for Boulder County, a partner in the U.S. Department of Energy's Better Buildings...

74

DOE Zero Energy Ready Home Case Study: Boulder ZED Design Build...  

Energy Savers [EERE]

Study: Boulder ZED Design Build - Boulder, Colorado DOE Zero Energy Ready Home Case Study: Boulder ZED Design Build - Boulder, Colorado Case study of a DOE Zero Energy Ready Home...

75

EIS-0490: Boulder City/U.S. 93 Corridor Transportation Improvements, Boulder City, Nevada  

Broader source: Energy.gov [DOE]

The Federal Highway Administration and the Nevada Department of Transportation prepared an EIS to evaluate the potential environmental impacts of the proposed Boulder City/U.S. 93 Bypass Project in...

76

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science-CS-1068-10 Xinyu Xing University of Colorado Boulder Jianxun Dang McGill University Richard Han University of Colorado Boulder Xue Liu McGill University Follow this and additional works at: http://scholar.colorado

Han, Richard Y.

77

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science-04 Anmol Sheth University of Colorado Boulder Richard Han University of Colorado Boulder Follow this and additional works at: http://scholar.colorado.edu/csci_techreports This Technical Report is brought to you

Han, Richard Y.

78

Office of Parent Relations UNIVERSITY OF COLORADO BOULDER  

E-Print Network [OSTI]

this afternoon and aerial photography showed that a lot of the flooding has receded and Boulder Creek isn). · Boulder and the campus are still under a flood warning (less serious and different than a Flash FloodOffice of Parent Relations UNIVERSITY OF COLORADO BOULDER Parent Update (13 September 2013 at 01930

Stowell, Michael

79

Deciphering boulder mobility and erosion from cosmogenic nuclide exposure dating  

E-Print Network [OSTI]

et al., 2004]. When mobilized by floods or debris flows, boulders can present a major hazardDeciphering boulder mobility and erosion from cosmogenic nuclide exposure dating Benjamin H. Mackey; published 6 March 2013. [1] Large boulders are prominent features in many geomorphic systems

80

City of Boulder - Green Points Building Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of Boulder - Green Points Building Program City of Boulder - Green Points Building Program City of Boulder - Green Points Building Program < Back Eligibility Commercial Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Solar Heating Buying & Making Electricity Water Heating Program Info State Colorado Program Type Building Energy Code Provider City of Boulder The Boulder Green Points Building Program is a mandatory residential green building program that requires a builder or homeowner to include a variety of sustainable building components based on the size of the proposed structure. Similar to the US Green Building Council's LEED program, the

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

City of Boulder - Green Power Purchasing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of Boulder - Green Power Purchasing City of Boulder - Green Power Purchasing City of Boulder - Green Power Purchasing < Back Eligibility Local Government Savings Category Wind Buying & Making Electricity Program Info State Colorado Program Type Green Power Purchasing Provider City of Boulder The City of Boulder purchases a portion of its electricity supply from wind power through Xcel Energy's Windsource program and Renewable Choice Energy, headquartered in Colorado. Boulder purchases approximately 470,000 kWh annually to provide clean power for its municipal buildings. Boulder also installed a solar water heating system with 128 thermal panels on one of its city-owned pools. The city now has 1,955 kilowatts (kW) of photovoltaics installed with an additional 349 kW planned. These efforts

82

Boulder Innovation Center | Open Energy Information  

Open Energy Info (EERE)

Center Center Jump to: navigation, search Name Boulder Innovation Center Address 1900 15th Street Place Boulder, Colorado Zip 80302 Region Rockies Area Number of employees 1-10 Year founded 2005 Phone number 303-444-2111 Website [www.boulderinnovationcenter.com www.boulderinnovationcenter.co ] Coordinates 40.0179992°, -105.2756514° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0179992,"lon":-105.2756514,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

University of Colorado Boulder | University Libraries | Science Library | IPHY2420: Fall 2011 2011nov10 1  

E-Print Network [OSTI]

University of Colorado Boulder | University Libraries | Science Library | IPHY2420: Fall 2011 2011-492-1859 / Email: barbara.losoff@colorado.edu Norlin Research Desk: 303-492-7521 / Email: reflib@colorado.edu What do the CU Libraries own? Find all journals and books through the CU Libraries catalog---Chinook http://libraries.colorado

Stowell, Michael

84

Archive Reference Buildings by Climate Zone: 5B Boulder, Colorado |  

Broader source: Energy.gov (indexed) [DOE]

B Boulder, Colorado B Boulder, Colorado Archive Reference Buildings by Climate Zone: 5B Boulder, Colorado Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-5b_co_boulder.zip benchmark-v1.1_3.1-5b_usa_co_boulder.zip benchmark-new-v1.2_4.0-5b_usa_co_boulder.zip More Documents & Publications

85

The Campaign on atmospheric Aerosol REsearch network of China: CARE-China  

Science Journals Connector (OSTI)

Based on a network of field stations belonging to the Chinese Academy of Sciences (CAS), the Campaign on atmospheric Aerosol REsearch network of China (CARE-China) was recently established as the country's first monitoring network for the study ...

Yuesi Wang; Jinyuan Xin; Yuepeng Pan; Dongsheng Ji; Zirui Liu; Tianxue Wen; Yinghong Wang; Xingru Li; Yang Sun; Jie Sun; Pucai Wang; Gehui Wang; Xinming Wang; Zhiyuan Cong; Tao Song; Bo Hu; Lili Wang; Guiqian Tang; Wenkang Gao; Yuhong Guo; Hongyan Miao; Shili Tian; Lu Wang

86

ARCADE - Atmospheric Research for Climate and Astroparticle DEtection  

E-Print Network [OSTI]

The characterization of the optical properties of the atmosphere in the near UV, in particular the tropospheric aerosol stratification, clouds optical depth and spatial distribution are common in the field of atmospheric physics, due to aerosol effect on climate, and also in cosmic rays physics, for a correct reconstruction of energy and longitudinal development of showers. The goal of the ARCADE project is the comparison of the aerosol attenuation measurements obtained with the typical techniques used in cosmic ray experiments (side-scattering measurement, elastic LIDAR and Raman LIDAR) in order to assess the systematic errors affecting each method providing simultaneous observations of the same air mass with different techniques. For this purpose we projected a LIDAR that is now under construction: it will use a 355 nm Nd:YAG laser and will collect the elastic and the N2 Raman back-scattered light. For the side-scattering measurement we will use the Atmospheric Monitoring Telescope, a facility owned by the ...

Buscemi, M; Cilmo, M; Coco, M; Ferrarese, S; Guarino, F; Tonachini, A S; Valore, L; Wiencke, L

2014-01-01T23:59:59.000Z

87

An Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Update on Radiative Transfer Model Development at Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc. J. S. Delamere, S. A. Clough, E. J. Mlawer, Sid-Ahmed Boukabara, K. Cady-Pereira, and M. Shepard Atmospheric and Environmental Research, Inc. Lexington, Maine Introduction Over the last decade, a suite of radiative transfer models has been developed at Atmospheric and Environmental Research, Inc. (AER) with support from the Atmospheric and Radiation Measurement (ARM) Program. These models span the full spectral regime from the microwave to the ultraviolet, and range from monochromatic to band calculations. Each model combines the latest spectroscopic advancements with radiative transfer algorithms to efficiently compute radiances, fluxes, and cooling

88

JOURNAL OF GEOPHYSICAL RESEARCH,VOL. 91,NO. A4,PAGES4126-4132,APRIL 1, 1986 Viscosity in the Solar Wind  

E-Print Network [OSTI]

,we reconsiderthe effectsof viscosity on solar wind momentum and energy balance,but devote little attentionto Wind THOMAS E. HOLZER High AltitudeObservatory,National Centerfor AtmosphericResearch,Boulder,Colorado EGIL LEER TheAuroralObservatory,InstituteofMathematicalandPhysicalSciences,Universityof Tromsf5,Norway

Zhao, Xuepu

89

The global change research center atmospheric chemistry model  

SciTech Connect (OSTI)

This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the O{sub x}, HO{sub x}, NO{sub x}, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.

Moraes, F.P. Jr.

1995-01-01T23:59:59.000Z

90

Office of Parent Relations UNIVERSITY OF COLORADO BOULDER  

E-Print Network [OSTI]

in some questionable activity like trying to get close and view the flooding near Boulder Creek, "tubingOffice of Parent Relations UNIVERSITY OF COLORADO BOULDER Parent Update (13 September, 0900): Good flooding in their rooms--less than 30--have been relocated to permanent housing on campus. One

Stowell, Michael

91

Office of Parent Relations UNIVERSITY OF COLORADO BOULDER  

E-Print Network [OSTI]

Office of Parent Relations UNIVERSITY OF COLORADO BOULDER CU Parent E-Connection (October 9, 2013 to give you a buzz! As far as flood recovery is concerned, the primary focus remains on supporting those great progress in Boulder and in the surrounding communities. Many damaged roads have been reopened

Stowell, Michael

92

Office of Parent Relations UNIVERSITY OF COLORADO BOULDER  

E-Print Network [OSTI]

Office of Parent Relations UNIVERSITY OF COLORADO BOULDER Parent Update (16 September 2013 and in Boulder. While we may get a thunderstorm this afternoon (keep your fingers crossed we don't), the sun impacted by the flood. We are working aggressively to both identify and provide support to those needing

Stowell, Michael

93

Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JW Voyles

2008-01-30T23:59:59.000Z

94

City of Boulder - Climate Action Plan Fund | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of Boulder - Climate Action Plan Fund City of Boulder - Climate Action Plan Fund City of Boulder - Climate Action Plan Fund < Back Eligibility Commercial Industrial Residential Program Info State Colorado Program Type Public Benefits Fund Provider City of Boulder In November 2006, citizens of Boulder, Colorado, voted to approve Ballot Issue No. 202, authorizing the city council to levy and collect an excise tax from residential, commercial and industrial electricity customers for the purpose of funding a [http://www.bouldercolorado.gov/files/Environmental%20Affairs/climate%20a... climate action plan] to reduce greenhouse gas emissions. The plan outlines programs to increase energy efficiency, increase renewable energy use, reduce emissions from motor vehicles, and take other steps toward the goal

95

Boulder, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Colorado: Energy Resources Colorado: Energy Resources (Redirected from Boulder, CO) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0149856°, -105.2705456° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0149856,"lon":-105.2705456,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Atmospheric Radiation Measurement Climate Research Facility - annual report 2004  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ER-ARM-0403 ER-ARM-0403 3 Table of Contents Program Overview ............................................................................................................................................................ 4 The Role of Clouds in Climate .................................................................................................................................... 4 ARM Science Goals ..................................................................................................................................................... 4 ARM Climate Research Facility: Successful Science Program Leads to User Facility Designation ................................ 5 Sites Around the World Enable Real Observations .......................................................................................................

97

Boulder County - Elevations Energy Loans Program (Colorado) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Boulder County - Elevations Energy Loans Program (Colorado) Boulder County - Elevations Energy Loans Program (Colorado) Boulder County - Elevations Energy Loans Program (Colorado) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heating Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Windows, Doors, & Skylights Solar Buying & Making Electricity Program Info State Colorado Program Type Local Loan Program Rebate Amount Residential: $500 - $25,000 Commercial: $1,000 - $150,000 Provider Elevations Credit Union The Elevations Energy Loan can be used to finance a wide variety of efficiency and renewable energy projects in homes and businesses. Homes and

98

Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences  

SciTech Connect (OSTI)

The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

Elderkin, C.E.

1986-02-01T23:59:59.000Z

99

5-Year Research Plan on Fine Particulate Matter in the Atmosphere  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Technology Laboratory Five Year Research Plan on Fine Particulate Matter in the Atmosphere FY2001-FY2005 NETL PM Research Program Ambient Sampling & Analysis Control Technology R&D Source Characterization Predictive Modeling -iii- TABLE OF CONTENTS Page I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Outlook for PM and the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II. OVERVIEW OF THE PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 A. Program Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 B. Current Program Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1. The Upper Ohio River Valley Project (UORVP) . . . . . . . . . . . . . . . . . . 13

100

Better Buildings Partners: Boulder, Garfield, and Denver Counties, Colorado  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boulder, Garfield, and Denver Counties, Colorado Boulder, Garfield, and Denver Counties, Colorado Boulder County, Colorado Customized Programs Help Energy Efficiency Rise in Three Colorado Counties Photo of buildings spread across a landscape with mountains in the background. An image of a map of the United States with the state for this page highlighted. Progress Within 24 Months of Program Launch* 5,868 residential evaluations completed 6,070 residential energy upgrades completed 51 residential loans provided (for a total of more than $463,000) 2,140 commercial evaluations completed 24.3 million square feet of commercial space covered by upgrades *Progress is reported through December 2012. EnergySmart Location: Boulder, Denver, and Garfield Counties, Colorado Seed Funding: $25 million Target Building Type: Residential and commercial

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

University of Colorado Boulder | University Libraries | Science Library | FARR 2820: Spring 2012 2011oct27, rev 2012mar02 1  

E-Print Network [OSTI]

University of Colorado Boulder | University Libraries | Science Library | FARR 2820: Spring 2012 Losoff Barbara.Losoff@colorado.edu / 303-492-1859 Norlin Research Desk: 303-492-7521 What do the CU Libraries own? Find all journals and books through the CU Libraries catalog -- Chinook http://libraries.colorado

Stowell, Michael

102

University of Colorado at Boulder | University Libraries | Science Library | WRTG 3020 Biomedical Ethics: Spring 2013 2013feb01 1  

E-Print Network [OSTI]

University of Colorado at Boulder | University Libraries | Science Library | WRTG 3020 Biomedical in Science and Society Barb Losoff / Science Library: 303-492-1859 / Email: Barbara.Losoff@colorado.edu Norlin Research Desk: 303-492-7521 / Email: RefLib@colorado.edu / Chat: http://ucblibraries.colorado

Stowell, Michael

103

Proceedings of the International Energy Agency Conference on Pyranometer Measurements: Final Report; 16 - 20 March 1981, Boulder, Colorado  

SciTech Connect (OSTI)

A conference of pyranometry measurement experts from seven nations was held 16-20 March 1981 in Boulder, Colorado, USA, under the auspices of the International Energy Agency, the United States Department of Energy, and the Solar Energy Research Institute. This report documents the technical presentations, background, and the results and recommendations of the conference.

Riches, M. R.; Stoffel, T. L.; Wells, C. V.

1982-10-01T23:59:59.000Z

104

Science DMZ National Oceanic and Atmospheric Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOAA NOAA About ESnet Overview ESnet Staff Governance Our Network Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ CU Science DMZ Penn State & VTTI Science DMZ NOAA Science DMZ NERSC Science DMZ ALS Multi-facility Workflow LCLS ESnet Strategic Plan ESnet Organizational Chart ESnet History Science Requirements Careers Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ National Oceanic and Atmospheric Administration The National Oceanic and Atmospheric Administration (NOAA) in Boulder houses the Earth System Research Lab, which supports a "reforecasting" project. The initiative involves running several decades of historical

105

Technical Sessions Principal Investigator: S. A. Clough Atmospheric and Environmental Research, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Principal Investigator: S. A. Clough Principal Investigator: S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, MA 02139 Introduction The availability of a rapid highly accurate multiple scattering radiative transfer model is essential to meet the objectives of the Atmospheric Radiation Measurement (ARM) Program. The model must be capable of computing radiance at spectral intervals consistent with the monochromatic spectral variation of the atmospheric molecular absorption. The resolution of the spectrometers to be deployed at the ARM sites, 0.1 cm-1 and less, will provide an important assessment of our capability to perform radiative transfer calculations in the multiply scattered environment. A second important application forthe high-accuracy high-resolution model is to provide parameterizations and validations for

106

Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 3. Atmospheric sciences  

SciTech Connect (OSTI)

The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to assess, describe, and predict the nature and fate of atmospheric contaminants and to study the impacts of contaminants on local, regional, and global climates. The contaminants being investigated are those resulting from the development and use of conventional resources (coal, gas, oil, and nuclear power) as well as alternative energy sources. The description of the research is organized into 3 sections: (1) Atmospheric Studies in Complex Terrain (ASCOT); (2) Boundary Layer Meteorology; and (3) Dispersion, Deposition, and Resuspension of Atmospheric Contaminants. Separate analytics have been done for each of the sections and are indexed and contained in the EDB. (MDF)

Elderkin, C.E.

1985-02-01T23:59:59.000Z

107

EIS-0490: Boulder City/U.S. 93 Corridor Transportation Improvements,  

Broader source: Energy.gov (indexed) [DOE]

490: Boulder City/U.S. 93 Corridor Transportation 490: Boulder City/U.S. 93 Corridor Transportation Improvements, Boulder County, Nevada EIS-0490: Boulder City/U.S. 93 Corridor Transportation Improvements, Boulder County, Nevada SUMMARY The Federal Highway Administration and the Nevada Department of Transportation prepared an EIS to evaluate the potential environmental impacts of the proposed Boulder City/U.S. 93 Bypass Project in Boulder County, Nevada. DOE's Western Area Power Administration, a cooperating agency, adopted the Final EIS and issued a Record of Decision to modify Western's transmission system and facilities to accommodate the construction of the project. The project website is http://www.nevadadot.com/Micro-Sites/BoulderCityBypass/The_Boulder_City_Bypass.aspx. PUBLIC COMMENT OPPORTUNITIES

108

Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ames: Phil Russell, Jens Redemann, NASA Ames: Phil Russell, Jens Redemann, Ames: Phil Russell, Jens Redemann, NASA Ames: Phil Russell, Jens Redemann, Steve Dunagan, Roy Johnson: Steve Dunagan, Roy Johnson: Battelle PND: Connor Flynn, Beat Schmid, Battelle PND: Connor Flynn, Beat Schmid, Evgueni Kassianov Evgueni Kassianov NASA GSFC: Alexander Sinyuk, Brent NASA GSFC: Alexander Sinyuk, Brent Holben Holben , , & AERONET Team & AERONET Team Collaboration involving: Collaboration involving: NASA Ames, Battelle PND, NASA GSFC NASA Ames, Battelle PND, NASA GSFC 4S 4S TAR TAR : : S S pectrometer for pectrometer for S S ky ky - - S S canning, canning, S S un un - - T T racking racking A A tmospheric tmospheric R R esearch esearch 4STAR: 4STAR: Spectrometer Spectrometer for for Sky Sky - - Scanning Scanning , , Sun Sun - - Tracking Tracking Atmospheric Research Atmospheric Research

109

University of Colorado at Boulder Renewable and Sustainable Energy  

Open Energy Info (EERE)

at Boulder Renewable and Sustainable Energy at Boulder Renewable and Sustainable Energy Institute Jump to: navigation, search Logo: CU-Boulder Renewable and Sustainable Energy Institute Name CU-Boulder Renewable and Sustainable Energy Institute Address 1610 Pleasant Street Place Boulder, Colorado Zip 80309 Region Rockies Area Year founded 2009 Phone number 303-492-8530 Coordinates 40.0094112°, -105.2735513° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0094112,"lon":-105.2735513,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Boulder Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Space Heating Low Temperature Geothermal Facility Facility Boulder Hot Springs Sector Geothermal energy Type Space Heating Location Boulder, Montana Coordinates 46.2365947°, -112.1208336° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

111

City of Boulder - Solar Access Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Access Ordinance Access Ordinance City of Boulder - Solar Access Ordinance < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Program Info State Colorado Program Type Solar/Wind Access Policy Provider City of Boulder The City of Boulder's solar access ordinance guarantees access, or "solar fences," to sunlight for homeowners and renters in the city. This is done by setting limits on the amount of permitted shading by new construction. A solar access permit is available to those who have installed or who plan to install a solar energy system and need more protection than is provided by the ordinance. For new developments, all units which are not planned to

112

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mixed-Phase Cloud Radiative Properties from M-PACE Microphysical Retrievals Mixed-Phase Cloud Radiative Properties from M-PACE Microphysical Retrievals Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: de Boer G, WD Collins, S Menon, and CN Long. 2011. "Using surface remote sensors to derive radiative characteristics of mixed-phase clouds: An example from M-PACE." Atmospheric Chemistry and Physics, 11, doi: 10.5194/acp-11-11937-2011. Measured and retrieved cloud properties on 10 October 2004. Included are (top to bottom) AHSRL bacscatter cross-section, AHSRL depolarization ratio, MMCR reflectivity, and profiles of liquid water content (LWC), ice water content (IWC), and liquid (r_{e,liq}) and ice (r$_{e,ice}$) effective

113

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ground-Based Cloud Measurements Utilized to Evaluate the Simulation of Ground-Based Cloud Measurements Utilized to Evaluate the Simulation of Arctic Clouds in CCSM4 Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: de Boer G, W Chapman, JE Kay, B Medeiros, MD Shupe, S Vavrus, and JE Walsh. 2011. "A characterization of the present-day Arctic atmosphere in CCSM4." Journal of Climate, 25(8), doi:10.1175/JCLI-D-11-00228.1. Time-height cross-sections of simulated (top) and observed (second row) cloud phase at Barrow, Alaska. The difference between the frequencies of occurrence of each phase is indicated in the third row. Monthly distributions of liquid (dark) and ice (light) water paths at

114

National Center for Atmospheric Research annual report, fiscal year 1991. Report for 1 October 1990-30 September 1991  

SciTech Connect (OSTI)

The National Center for Atmospheric Research (NCAR) annual report for fiscal year 1991 is presented. NCAR's projects for the period included investigations of air pollution from the oil well fires in Kuwait, a solar eclipse, thunderstorms in central Florida, the El Nino current, greenhouse processes, and upper atmosphere phenomena.

Warner, L.

1992-06-01T23:59:59.000Z

115

Single-Column Modeling C. J. Walcek Atmospheric Sciences Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C. J. Walcek C. J. Walcek Atmospheric Sciences Research Center State University of New York Albany, New York Introduction intense mid latitude cyclone developed and traversed this domain, allowing one to investigate cloud cover under a wide variety of meteorological environments. Large-scale numerical models of the atmosphere approximate the heterogeneous or subgrid-scale nature of cloudiness by assuming that a fraction of each grid area is occupied by clouds. This cloud cover fraction is used to apportion cloud effects into a "grid-averaged" forcing within areas that contain a mixture of clear and cloudy regions. Most models of tropospheric dynamics assume that the fractional cloud coverage is determined by the grid- averaged relative humidity, stability, or resolvable-scale

116

Four-Dimensional Data Assimilation J.-F. Louis Atmospheric and Environmental Research, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

J.-F. Louis J.-F. Louis Atmospheric and Environmental Research, Inc. Cambridge, MA 02139 The main purpose of the ARM program is to provide the necessary data to develop, test and validate the parameterization of clouds and of their interactions with the radiation field, and the computation of radiative transfer in climate models. For the most part, however, the ARM observations will be imperfect, incomplete, redundant, indirect, and unrepresentative. This is unavoidable, despite the best efforts at equipping the Cloud and Radiation Testbed (CART) site with the best instruments. To understand these limitations, we must consider the structure of a climate model and the observation constraints. The basic prognostic variables of any climate mode! are atmospheric temperature, horizontal wind components

117

Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology  

SciTech Connect (OSTI)

The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

2013-08-06T23:59:59.000Z

118

JILA & the Department of Chemistry & Biochemistry University of Colorado, Boulder, Colorado  

E-Print Network [OSTI]

JILA & the Department of Chemistry & Biochemistry University of Colorado, Boulder, Colorado:50 40 Years of Ion Chemistry ­ Boulder, Colorado ­ Or, how we came to know Carl Lineberger, his giant

Lineberger, W. Carl

119

University of Colorado Boulder journalism.colorado.edu Journalists  

E-Print Network [OSTI]

PAGE 1 Colorado University of Colorado Boulder journalism.colorado.edu Journalists of the Future of Colorado photographer Glenn Asakawa ('86), who explains how he came up with the idea: The cover CU Journalism & Mass Communication Cover photo by Glenn Asakawa ('86) University of Colorado

Mulligan, Jane

120

University of Colorado Boulder Colorado Springs Denver Anschutz Medical Campus  

E-Print Network [OSTI]

University of Colorado Boulder · Colorado Springs · Denver · Anschutz Medical Campus Michael Carrigan, Regent 555 Seventeenth Street, Suite 3200 Denver, Colorado 80202 Phone (303) 295-8314 TO: Steve SUBJECT: Restatement of the University of Colorado's Nondiscrimination Statement Regarding Sexual

Stowell, Michael

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

~ University of Colorado at Boulder Department of Computer Science  

E-Print Network [OSTI]

~ University of Colorado at Boulder Department of Computer Science ECOT 7-7 Engineering Center Contextualized Learning Gerhard Fischer and Andreas Lemke Department of Computer Science and Institute by grants No. OCR-8420944 and No. IRI-8722792 from the National Science Foundation, grant No, MDA903-86-C

Fischer, Gerhard

122

Office of Parent Relations UNIVERSITY OF COLORADO BOULDER  

E-Print Network [OSTI]

Office of Parent Relations UNIVERSITY OF COLORADO BOULDER Parent Update (15 September 2013 the potential consequences, including additional flooding, of the rain today. Despite the rain that we experienced today, the flood waters should continue to recede and clean- up will progress. The situation

Stowell, Michael

123

Office of Parent Relations UNIVERSITY OF COLORADO BOULDER  

E-Print Network [OSTI]

Office of Parent Relations UNIVERSITY OF COLORADO BOULDER CU Parent E-Connection (20 September 2013 close the week with a quick update on the flood situation as well as some information on other things going on! By the way, there was "a touch of autumn" in the air this morning. Flood Update: First

Stowell, Michael

124

Bedrock Control of a Boulder-Filled Valley Under the World Trade Center Site  

E-Print Network [OSTI]

west, showing a ledge in the bedrock above a valley filled with boulders. Bottom - A contour map based on old borings shows where the boulder filled valley cuts across the SE corner of the West Bathtub slurryBedrock Control of a Boulder-Filled Valley Under the World Trade Center Site Cheryl J. Moss, Mueser

Merguerian, Charles

125

Modeling forced poolriffle hydraulics in a boulder-bed stream, southern California  

E-Print Network [OSTI]

Modeling forced pool­riffle hydraulics in a boulder-bed stream, southern California Lee R. Harrison in boulder-bed channels. Here, we use a high-resolution two-dimensional flow model to investigate­riffle sequence in a boulder-bed stream. Model output indicates that at low discharge, a peak zone of shear stress

Keller, Ed

126

Calculating bed load transport in steep boulder bed channels E. M. Yager,1,2  

E-Print Network [OSTI]

Calculating bed load transport in steep boulder bed channels E. M. Yager,1,2 J. W. Kirchner,1 and W: Yager, E. M., J. W. Kirchner, and W. E. Dietrich (2007), Calculating bed load transport in steep boulder, more mobile sediment and large, relatively immobile boulders that are often arranged into cascades

Kirchner, James W.

127

DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20 20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

128

DOE/SC-ARM-12-021 Atmospheric Radiation Measurement Climate Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

129

DOE/SC-ARM-13-020 Atmospheric Radiation Measurement Climate Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

130

NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

Jager, D.; Andreas, A.

131

Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado  

SciTech Connect (OSTI)

To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

Arena, L.; Williamson, J.

2013-11-01T23:59:59.000Z

132

Presented at the American Meteorological Society Summer Community Meeting Boulder, Colorado August 8 11, 2011 Meteorology and  

E-Print Network [OSTI]

a direct line of communication through the Boulder WebEOC (Emergency Operation Center) for emergency

Colorado at Boulder, University of

133

Boulder County - EnergySmart Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

EnergySmart Commercial Energy Efficiency Rebate EnergySmart Commercial Energy Efficiency Rebate Program (Colorado) Boulder County - EnergySmart Commercial Energy Efficiency Rebate Program (Colorado) < Back Eligibility Commercial Institutional Multi-Family Residential Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Appliances & Electronics Commercial Lighting Lighting Other Energy Sources Buying & Making Electricity Solar Maximum Rebate Varies --- see below Program Info State Colorado Program Type Local Rebate Program Rebate Amount Varies by project / technology Provider Boulder County EnergySmart offers a full suite of energy efficiency services. EnergySmart helps businesses (and homes) identify and implement energy improvements. The "One Stop Shop" aims to reduce the hassles and hurdles associated

134

City of Boulder - Solar Grant Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Grant Program Grant Program City of Boulder - Solar Grant Program < Back Eligibility Low-Income Residential Multi-Family Residential Nonprofit Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Colorado Program Type Local Grant Program Provider City of Boulder '''''Note: There are two grant cycles each year. Submissions (mailed or emailed) must be received by 5 p.m. on April 30 or October 31. ''''' The Solar Grant Program provides grants for PV and solar water heating installations on housing enrolled in the city's affordable housing program, site-based non-profit organizations, and low- to moderate-income housing owned and/or developed by a non-profit organization. Individual grant amounts are determined on a case-by-case basis but generally will not

135

Boulder City, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Boulder City, Nevada: Energy Resources Boulder City, Nevada: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9785911°, -114.8324851° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9785911,"lon":-114.8324851,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

NOTE: Eclipse Spectroscopy of Io's Atmosphere Antonin H. Bouchez and Michael E. Brown  

E-Print Network [OSTI]

for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309 ABSTRACT High resolution responsi­ ble. To resolve this ambiguity, we used the High Resolution Echelle Spectrometer (HIRES) (Vogt et

Brown, Michael E.

137

Boulder Valley School District (Colorado) Power Purchase Agreement Case Study  

Broader source: Energy.gov [DOE]

Boulder Valley School District completed a power purchase agreement to install 1.4 MW of solar PV that are expected to reduce electricity bills in 14 schools by about 10% over the 20 year life of the agreement. Case study is excerpted from Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements. Author: Merrian Borgeson and Mark Zimring

138

Technical Sessions J.-F. Louis Atmospheric and Environment Research, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-F. Louis -F. Louis Atmospheric and Environment Research, Inc. Cambridge, MA 02139 curve fitting and statistical interpolation.lrl fitting techniques, the fields are represented locally by analytical spline functions whose coefficients are determined by a least square method. Somewhat simpler malthematically, and more often used, statistical interpolation defines the value of the field at each grid point as the weighted average of nearby data. The Cressman and the Barnes techniques are two examples of statistical interpolation, which differ mainly by the shape of the weighting ful1ction. Generally, several passes through thedataare performed with different weighting functions, making successive corrections to the field to get as much information as possible out of the data.

139

Overview of the National Atmospheric Release Advisory Center's urban research and development activities  

SciTech Connect (OSTI)

This presentation describes the tools and services provided by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL) for modeling the impacts of airborne hazardous materials. NARAC provides atmospheric plume modeling tools and services for chemical, biological, radiological, and nuclear airborne hazards. NARAC can simulate downwind effects from a variety of scenarios, including fires, industrial and transportation accidents, radiation dispersal device explosions, hazardous material spills, sprayers, nuclear power plant accidents, and nuclear detonations. NARAC collaborates on radiological dispersion source terms and effects models with Sandia National Laboratories and the U.S. Nuclear Regulatory Commission. NARAC was designated the interim provider of capabilities for the Department of Homeland Security's Interagency Modeling and Atmospheric Assessment Center by the Homeland Security Council in April 2004. The NARAC suite of software tools include simple stand-alone, local-scale plume modeling tools for end-user's computers, and Web- and Internet-based software to access advanced modeling tools and expert analyses from the national center at LLNL. Initial automated, 3-D predictions of plume exposure limits and protective action guidelines for emergency responders and managers are available from the center in 5-10 minutes. These can be followed immediately by quality-assured, refined analyses by 24 x 7 on-duty or on-call NARAC staff. NARAC continues to refine calculations using updated on-scene information, including measurements, until all airborne releases have stopped and the hazardous threats are mapped and impacts assessed. Model predictions include the 3-D spatial and time-varying effects of weather, land use, and terrain, on scales from the local to regional to global. Real-time meteorological data and forecasts are provided by redundant communications links to the U.S. National Oceanic and Atmospheric Administration (NOAA), U.S. Navy, and U.S. Air Force, as well as an in-house mesoscale numerical weather prediction model. NARAC provides an easy-to-use Geographical Information System (GIS) for display of plume predictions with affected population counts and detailed maps, and the ability to export plume predictions to other standard GIS capabilities. Data collection and product distribution is provided through a variety of communication methods, including dial-up, satellite, and wired and wireless networks. Ongoing research and development activities will be highlighted. The NARAC scientific support team is developing urban parameterizations for use in a regional dispersion model (see companion paper by Delle Monache). Modifications to the numerical weather prediction model WRF to account for characteristics of urban dynamics are also in progress, as is boundary-layer turbulence model development for simulations with resolutions greater than 1km. The NARAC building-resolving computational fluid dynamics capability, FEM3MP, enjoys ongoing development activities such as the expansion of its ability to model releases of dense gases. Other research activities include sensor-data fusion, such as the reconstruction of unknown source terms from sparse and disparate observations.

Lundquist, J K; Sugiyama, G A; Nasstrom, J

2007-09-05T23:59:59.000Z

140

City of Boulder - Solar Sales and Use Tax Rebate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of Boulder - Solar Sales and Use Tax Rebate City of Boulder - Solar Sales and Use Tax Rebate City of Boulder - Solar Sales and Use Tax Rebate < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Program Info State Colorado Program Type Sales Tax Incentive Rebate Amount ~15% refund on sales and use tax for the solar installation Provider City of Boulder In 2006, the City of Boulder established a solar sales and use tax rebate for photovoltaic (PV) and solar water heating installations. Solar system owners may receive a rebate (essentially a tax refund) drawn from the unrestricted tax revenues collected from solar energy sales. Out of the sales and use taxes paid to the City of Boulder for solar projects, approximately 55% of revenues go to restricted funds. Within one

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project  

SciTech Connect (OSTI)

The Boulder Canyon Hydroelectric Project (BCH) was purchased by the City of Boulder, CO (the city) in 2001. Project facilities were originally constructed in 1910 and upgraded in the 1930s and 1940s. By 2009, the two 10 MW turbine/generators had reached or were nearing the end of their useful lives. One generator had grounded out and was beyond repair, reducing plant capacity to 10 MW. The remaining 10 MW unit was expected to fail at any time. When the BCH power plant was originally constructed, a sizeable water supply was available for the sole purpose of hydroelectric power generation. Between 1950 and 2001, that water supply had gradually been converted to municipal water supply by the city. By 2001, the water available for hydroelectric power generation at BCH could not support even one 10 MW unit. Boulder lacked the financial resources to modernize the facilities, and Boulder anticipated that when the single, operational historical unit failed, the project would cease operation. In 2009, the City of Boulder applied for and received a U.S. Department of Energy (DOE) grant for $1.18 million toward a total estimated project cost of $5.155 million to modernize BCH. The federal funding allowed Boulder to move forward with plant modifications that would ensure BCH would continue operation. Federal funding was made available through the American Recovery and Reinvestment Act (ARRA) of 2009. Boulder determined that a single 5 MW turbine/generator would be the most appropriate capacity, given the reduced water supply to the plant. Average annual BCH generation with the old 10 MW unit had been about 8,500 MW-hr, whereas annual generation with a new, efficient turbine could average 11,000 to 12,000 MW-hr. The incremental change in annual generation represents a 30% increase in generation over pre-project conditions. The old turbine/generator was a single nozzle Pelton turbine with a 5-to-1 flow turndown and a maximum turbine/generator efficiency of 82%. The new unit is a double nozzle Pelton turbine with a 10-to-1 flow turndown and a maximum turbine/generator efficiency of 88%. This alone represents a 6% increase in overall efficiency. The old turbine operated at low efficiencies due to age and non-optimal sizing of the turbine for the water flow available to the unit. It was shut down whenever water flow dropped to less than 4-5 cfs, and at that flow, efficiency was 55 to 60%. The new turbine will operate in the range of 70 to 88% efficiency through a large portion of the existing flow range and would only have to be shut down at flow rates less than 3.7 cfs. Efficiency is expected to increase by 15-30%, depending on flow. In addition to the installation of new equipment, other goals for the project included: ?¢???¢ Increasing safety at Boulder Canyon Hydro ?¢???¢ Increasing protection of the Boulder Creek environment ?¢???¢ Modernizing and integrating control equipment into Boulder?¢????s municipal water supply system, and ?¢???¢ Preserving significant historical engineering information prior to power plant modernization. From January 1, 2010 through December 31, 2012, combined consultant and contractor personnel hours paid for by both the city and the federal government have totaled approximately 40,000. This equates roughly to seven people working full time on the project from January 2010 through December 2012. This project also involved considerable material expense (steel pipe, a variety of valves, electrical equipment, and the various components of the turbine and generator), which were not accounted for in terms of hours spent on the project. However, the material expense related to this project did help to create or preserve manufacturing/industrial jobs throughout the United States. As required by ARRA, the various components of the hydroelectric project were manufactured or substantially transformed in the U.S. BCH is eligible for nomination to

Joe Taddeucci, P E

2013-03-29T23:59:59.000Z

142

E-Print Network 3.0 - arroyo mocho boulder Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Units Calwater Subbasins ---(Planning Watersheds) 88,763 Acres 18060001 3304120101 Kings Creek (7770 Acres) Summary: Field Calwater 3304120203 Boulder Creek (7342 Acres)...

143

COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT  

SciTech Connect (OSTI)

This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the demonstrated range of validity of soundproof models, showing that they are more broadly applicable than some had previously thought. Substantial testing of EULAG included application and extension of the Jablonowski-Williamson baroclinic wave test - an archetype of planetary weather - and further analysis of multi-scale interactions arising from collapse of temperature fronts in both the baroclinic wave test and simulations of the Held-Suarez idealized climate. These analyses revealed properties of atmospheric gravity waves not seen in previous work and further demonstrated the ability of EULAG to simulate realistic behavior over several orders of magnitude of length scales. Additional collaborative work enhanced capability for modeling atmospheric flows with adaptive moving meshes and demonstrated the ability of EULAG to move into petascale computing. 3b. CAM-EULAG Advances We have developed CAM-EULAG in collaboration with former project postdoc, now University of Cape Town Assistant Professor, Babatunde Abiodun. Initial study documented good model performance in aqua-planet simulations. In particular, we showed that the grid adaptivity (stretching) implemented in CAM-EULAG allows higher resolution in selected regions without causing anomalous behavior such as spurious wave reflection. We then used the stretched-grid version to analyze simulated extreme precipitation events in West Africa, comparing the precipitation and event environment with observed behavior. The model simulates fairly well the spatial scale and the interannual and intraseasonal variability of the extreme events, although its extreme precipitation intensity is weaker than observed. In addition, both observations and the simulations show possible forcing of extreme events by African easterly waves. 3c. Other Contributions Through our collaborations, we have made contributions to a wide range of outcomes. For research focused on terrestrial behavior, these have included (1) upwind schemes for gas dynamics, (2) a nonlinear perspective on the dynamics of the Madden-Julian Oscillation, (3) numerical realism of thermal co

Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

2012-05-08T23:59:59.000Z

144

E-Print Network 3.0 - atmospheric processes research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Roundtable Summary: , Center for Multiscale Modeling of Atmospheric Processes Colorado State University John Dunne, Ph... Exler Director, Office of Communications for...

145

City of Boulder, Nevada (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Nevada (Utility Company) Nevada (Utility Company) Jump to: navigation, search Name City of Boulder Place Nevada Utility Id 2008 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Rates Residential Average Rates Residential: $0.0823/kWh Commercial: $0.1070/kWh The following table contains monthly sales and revenue data for City of Boulder (Nevada). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

146

NOAA federal/state cooperative program in atmospheric modification research. Collected publication titles and abstracts. Technical memo  

SciTech Connect (OSTI)

The volume contains the titles and abstracts of technical publications through fiscal year 1992 that are the products of the NOAA Federal/State Cooperative Program in Atmospheric Modification Research. The program is focused on the very interdisciplinary science of purposeful cloud modification for precipitation enhancement and hail suppression, and unintentional modification of clouds and precipitation. The audience includes, for example, water managers, policy makers, scientists, practitioners in the field, and the interested public. Listed are publications on topics including but not limited to: cloud and precipitation processes, numerical cloud and atmospheric mesoscale modeling, atmospheric and storm monitoring instrumentation and technologies, aerosol transport and dispersion in clouds and over complex terrain, cloud seeding technologies and effects, agricultural responses to cloud modification, weather economics and societal aspects of cloud modification, unintentional weather and climate modification, and precipitation and hydrological assessment and forecasting.

Reinking, R.F.

1993-04-01T23:59:59.000Z

147

MESOSCALE SIMULATION OF ATMOSPHERIC RESPONSE TO CHAOS TERRAIN FORMATION. , S.C.R. Rafkin2  

E-Print Network [OSTI]

(kite@berkeley.edu), 2 Department of Space Studies, Southwest Research Institute, Boulder, Colorado associated with chaos terrain formation may mobilize sand and perhaps gravel, but not boulders. Model, momentum and moisture are parameter- ized using a Monin-Obukhov scheme. Boundary conditions: We flooded

Kite, Edwin

148

Asb policy FINAL062700 1 of 8 University of ColoradoatBoulder  

E-Print Network [OSTI]

Asb policy FINAL062700 1 of 8 University of ColoradoatBoulder Department of Public Safety Division of Environmental Health and Safety Stadium 180, Campus Box 375 Boulder, Colorado 80309-0375 (303) 492-6025, FAX. Wergin, Director, Environmental Health and Safety Author:Michael Yanker, Asbestos Program Manager

Stowell, Michael

149

58 Current projects Atmospheric Composition Research driven by the outcome of data validation. The  

E-Print Network [OSTI]

missions. Paramaribo Station In 1999 KNMI and the Meteorological Service of Surinam (MDS) have started an atmospheric observation programme in Paramaribo, Surinam (South America, 5.8° N, 55.2° W). Initially

Haak, Hein

150

Environmental Research 95 (2004) 247265 Modeling the atmospheric transport and deposition of mercury  

E-Print Network [OSTI]

, atmospheric deposition is now believed to be a more significant loading pathway for these lakes. Mass balance calculations for Lake Michigan (Mason and Sullivan, 1997) and Lake Superior (Dolan et al., 1993) indicate

151

Historical Research in the Atmospheric Sciences: The Value of Literature Reviews, Libraries, and Librarians  

Science Journals Connector (OSTI)

Based on a talk given at the sixth annual meeting of the Atmospheric Science Librarians International, this paper explores the author's experiences performing reviews of the scientific literature as a tool to advancing meteorology and studying ...

David M. Schultz

2004-07-01T23:59:59.000Z

152

Parent Fund Donors, I am pleased to present the CU-Boulder Parent Fund Annual Report for Fiscal Year 2014.  

E-Print Network [OSTI]

and initiatives, the Parent Fund also served as a crucial resource in September during the Boulder flood. I canParent Fund Donors, I am pleased to present the CU-Boulder Parent Fund Annual Report for Fiscal the campus with a renewed strategic focus on student success. He has challenged CU-Boulder to increase

Stowell, Michael

153

Atmospheric tritium  

SciTech Connect (OSTI)

Research progress for the year 1979 to 1980 are reported. Concentrations of tritiated water vapor, tritium gas and tritiated hydrocarbons in the atmosphere at selected sampling points are presented. (ACR)

Oestlund, H.G.; Mason, A.S.

1980-01-01T23:59:59.000Z

154

CIRRICULUM VITAE: TOM BREIDER Atmospheric Chemistry Post-Doctoral Research Fellow  

E-Print Network [OSTI]

to changing anthropogenic and dynamic biogenic emissions of trace gases and aerosols. These chemistry and trace gas factors affecting the number concentration of atmospheric Aitken (Dp=50 nm) particles. Discuss., 3, 1185-1221, 2010 4) Hossani, R., M. P. Chipperfield, W. Feng, T. J. Breider, E. Atlas, S. A

Jacob, Daniel J.

155

CIRA ANNUAL REPORT FY 2012/2013 COOPERATIVE INSTITUTE FOR RESEARCH IN THE ATMOSPHERE  

E-Print Network [OSTI]

in the Atmosphere (CIRA) at Colorado State University (CSU) is one of a number of cooperative institutes (CIs, data assimilation, and data distribution technology make CIRA a valuable asset to NOAA. As the Director applications in areas as diverse as air quality, solar energy forecasts or quantitative precipitation

Collett Jr., Jeffrey L.

156

CIRA ANNUAL REPORT FY 2013/2014 COOPERATIVE INSTITUTE FOR RESEARCH IN THE ATMOSPHERE  

E-Print Network [OSTI]

in the Atmosphere (CIRA) at Colorado State University (CSU) is one of a number of cooperative institutes (CIs, and data distribution technology make CIRA a valuable asset to NOAA. As the Director of CIRA, I have tried into contemporary applications in areas as diverse as air quality, solar energy forecasts or quantitative

Schumacher, Russ

157

DOE Zero Energy Ready Home Case Study 2014: Boulder ZED Design...  

Energy Savers [EERE]

Savings: with PV -292.9 MMBtu DOE ZERO ENERGY READY HOME Boulder ZED Design Build 2 polyethylene vapor barrier, then spray foams the foundation walls with 3 inches of open-cell...

158

ClimateSmart Loan Program: Proposal to Boulder County Board of Commissioners  

Broader source: Energy.gov [DOE]

Boulder County's proposal to its Board of Commissioners contains information about the background of the ClimateSmart Loan Program, outlines key elements of the program, and requests direction from the board on specific program design features.

159

Boulder Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Geothermal Area Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Boulder Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.198918,"lon":-112.094789,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet)  

SciTech Connect (OSTI)

In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent an energy retrofit to comply with Boulder SmartRegs Ordinance, a mandate that requires all rental properties to meet certain energy efficiency standards by 2018. The Consortium of Advanced Residential Buildings (CARB), a U.S. Department of Energy Building America team, worked with city planners and building owners to evaluate this program and recently completed a case study evaluating the effectiveness of a collection of retrofit measures.

Not Available

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE/SC-ARM-13-007 Atmospheric Radiation Measurement Climate Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2013 DISCLAIMER This report was prepared as an account of work sponsored by the...

162

UNIVERSITY OF COLORADO BOULDER The Earth's atmosphere, a layered sphere of gas  

E-Print Network [OSTI]

-duration stratospheric balloons · Investigations of wintertime cloud formation and the relationship between cloud

Mojzsis, Stephen J.

163

COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT  

SciTech Connect (OSTI)

This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAGâ??s advanced dynamics core with the â??physicsâ? of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

Prusa, Joseph

2012-05-08T23:59:59.000Z

164

SURFRADA National Surface Radiation Budget Network for Atmospheric Research  

Science Journals Connector (OSTI)

A surface radiation budget observing network (SURFRAD) has been established for the United States to support satellite retrieval validation, modeling, and climate, hydrology, and weather research. The primary measurements are the downwelling ...

John A. Augustine; John J. DeLuisi; Charles N. Long

2000-10-01T23:59:59.000Z

165

Air Resources Laboratory The Air Resources Laboratory (ARL) is a research laboratory within the National Oceanic and Atmospheric Administration  

E-Print Network [OSTI]

and the atmospheric transport, transformation and fate of air pollutants. To support air quality decision makers, ARL the interaction of air pollutants in the atmosphere and between the atmosphere and the underlying land and water the National Oceanic and Atmospheric Administration (NOAA). ARL is headquartered at the NOAA Center for Weather

166

Nature: Earth's Atmosphere and Beyond  

Science Journals Connector (OSTI)

Nature: Earth's Atmosphere and Beyond ... The column summarizes research articles from Nature that report on anthropogenic activities and natural phenomena that influence the chemical composition of Earth's atmosphere. ...

Sabine Heinhorst; Gordon Cannon

2003-10-01T23:59:59.000Z

167

Boulder, Colorados SmartRegs: Minimum Performance Standards for Residential Rental Housing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income Single Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income Single Family Households." For the full report and other resources visit: http://middleincome.lbl.gov March 20, 2012 Boulder, Colorado's SmartRegs: Minimum Performance Standards for Residential Rental Housing The Case for Performance Standards The City of Boulder's Climate Action Plan calls for greenhouse gas emissions reductions across all sectors of the community (e.g., buildings, transportation and industry). Energy conservation in new and existing buildings plays a key role in the plan's ambitious goals. In 2006, Boulder residents overwhelmingly approved a Climate Action Tax to fund Climate Action Plan efforts. For more than a decade the city has been incrementally strengthening minimum energy efficiency standards for residential

168

Boulder Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Boulder Hot Springs Sector Geothermal energy Type Pool and Spa Location Boulder, Montana Coordinates 46.2365947°, -112.1208336° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

169

Pacific Northwest Laboratory annual report for 1982 to the DOE Office of Energy Research. Part 3. Atmospheric sciences  

SciTech Connect (OSTI)

This report is organized in terms of generic studies: theoretical studies of atmospheric processes; pollutant characterizations and transformation; boundary layer meteorology; and dispersion, deposition and resuspension of atmospheric pollutants.

Elderkin, C.E.

1983-02-01T23:59:59.000Z

170

Atmos. Chem. Phys., 10, 53155341, 2010 www.atmos-chem-phys.net/10/5315/2010/  

E-Print Network [OSTI]

. Querol16, and J. L. Jimenez1,2 1Department of Chemistry and Biochemistry, University of Colorado, Boulder of Colorado, Boulder, CO, USA 3Saint Louis University, St. Louis, MO, USA 4National Center for Atmospheric Research, Boulder, CO, USA 5Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder

Meskhidze, Nicholas

171

University of Colorado at Boulder | University Libraries | Science Library Chinook On-Line Catalog and e-Resources  

E-Print Network [OSTI]

University of Colorado at Boulder | University Libraries | Science Library 1 Chinook On: barbara.losoff@colorado.edu Reference Desk | 303-492-7521 | Email & Chat: http://ucblibraries.colorado.edu/askus.htm Chinook is CU Boulder's on-line catalog and e-Resources access: http://libraries.colorado.edu/ To retrieve

Stowell, Michael

172

University of Colorado at Boulder | University Libraries | Science Library | EBIO 3190 Tropical Marine Ecology: Fall 2011 2011sep01 1  

E-Print Network [OSTI]

University of Colorado at Boulder | University Libraries | Science Library | EBIO 3190 Tropical Barb Losoff Barbara.Losoff@colorado.edu / 303-492-1859 Reference Desk: 303-492-7521 Email or Chat Reference: http://ucblibraries.colorado.edu/askus.cfm Chinook is CU Boulder's on-line catalog and e

Stowell, Michael

173

Influence of large woody debris on channel morphology and dynamics in steep, boulder-rich mountain streams, western  

E-Print Network [OSTI]

Influence of large woody debris on channel morphology and dynamics in steep, boulder-rich mountain (LWD) on channel morphology, channel stability, and sediment dynamics in a steep, boulder-rich mountain in the lower reach, we calculated areas of scour and fill in response to the two largest floods in the record

Campana, Michael E.

174

1150 VOLUME 131M O N T H L Y W E A T H E R R E V I E W 2003 American Meteorological Society  

E-Print Network [OSTI]

Center for Atmospheric Research, Boulder, Colorado KAI-HON LAU Center for Coastal and Atmospheric for Atmospheric Research, Boulder, Colorado SHOU-JUN CHEN Laboratory for Severe Storm Research, Department, MPG/ MMM/FL3, NCAR, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: qzhang@ucar.edu mid-June to mid

Zhang, Qinghong

175

University of Colorado at Boulder | University Libraries | University Libraries Staff Association LIBRARY-SPEAK CHEAT SHEET  

E-Print Network [OSTI]

University of Colorado at Boulder | University Libraries | University Libraries Staff Association 1 of information resources in a dynamic, collaborative environment." http://www.ala.org/alcts/ Alliance Colorado "AMRC is a rare music repository dedicated to exploring the rich tradition of American music." http://ucblibraries.colorado

Stowell, Michael

176

Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA  

E-Print Network [OSTI]

Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA Kevin fuels to accumulate where previously frequent fires prevailed (Covington and Moore, 1994; Caprio management and mitigation is quantifying the fuel load and spatial arrangement of combustible material across

Stephens, Scott L.

177

University of Colorado Boulder | University Libraries | Science Library | EBIO 1950: Fall 2013 2013jan31 1  

E-Print Network [OSTI]

Desk: 303-492-7521 / Email: RefLib@colorado.edu Chinook is CU Boulder's on-line catalog and electronic Technology (OIT) and if you need help you can call 303-735-HELP://ucblibraries.colorado.edu/how/citationstyle.htm 4. How to create a bibliography electronically? Use RefWorks: a tool to create personalized folders

Mojzsis, Stephen J.

178

Atmospheric Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

competencies Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced...

179

Elizabeth Frank CV 1 CU-Boulder, UCB 399  

E-Print Network [OSTI]

). Lunar and Planetary Science Conference, Houston, TX. (Poster) Frank, E.A., W.D. Maier, and S.J. Mojzsis.frank @colorado.edu Education May 2014 (expected) Ph.D. in planetary geology University of Colorado May 2009 B.S. in interdisciplinary science, geology concentration Rensselaer Polytechnic Institute Research 2009-present University

Mojzsis, Stephen J.

180

Fellowship award SURF NIST Boulder awards include a  

E-Print Network [OSTI]

16, 2010. The student's university must submit a grant proposal that provides details about its (either through school or family). Students with physics, materials science, chemistry, mathematics, computer science, or engineering majors are encouraged to apply. There may be research opportunities

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists  

SciTech Connect (OSTI)

DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

Paul H. Wine

1998-11-23T23:59:59.000Z

182

DOE Solar Decathlon: University of Colorado at Boulder: Living in a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Colorado's competition-winning house integrated into the Larson home in Golden, Colorado. Colorado's competition-winning house integrated into the Larson home in Golden, Colorado. Enlarge image BASE+ has been integrated into the home of Ronal and Gretchen Larson in Golden, Colorado. (Credit: Carol Anna/U.S. Department of Energy Solar Decathlon) Who: University of Colorado at Boulder What: BASE+ House Where: Private residence Golden, CO 80401 Map This House Public tours: Call the Colorado Renewable Energy Society hotline at 303-806-5317 for information about the annual Denver-Area Solar and Green Homes Tour. Solar Decathlon 2002 University of Colorado at Boulder: Living in a Panorama The University of Colorado won the first U.S. Department of Energy Solar Decathlon with its BASE+ (Building a Sustainable Environment) house. Originally designed as an adaptable construction model, the house was later

183

Improving Societal Outcomes of Extreme Weather in a  

E-Print Network [OSTI]

, 2 Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado, University of Colorado, Boulder, Colorado 80309; email: ldilling@colorado.edu Annu. Rev. Environ. Resour- itation extremes (including floods and droughts), and storms and severe weather (including tropical

Neff, Jason

184

cohn-99.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parsons National Center for Atmospheric Research Atmospheric Technology Division Boulder, Colorado Introduction The Tropical Ocean Climate Study (TOCS) cruise took place January...

185

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Atmospheric Research Atmospheric Technology Division Boulder, Colorado K. Yoneyama Japan Marine Science and Technology Center Yokohama, Japan Introduction The National Center...

186

Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program  

SciTech Connect (OSTI)

The Earths surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earths energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

SA Edgerton; LR Roeder

2008-09-30T23:59:59.000Z

187

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Thermodynamics Affect Radiative Impact of Deep Convective Cloud Systems Submitter: Jensen, M., Brookhaven National Laboratory Area of Research: Atmospheric...

188

Scientific Final Report: COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT  

SciTech Connect (OSTI)

This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz

2012-04-09T23:59:59.000Z

189

Published in: Proceedings, 12th IEEE Symposium on Visual Languages, Boulder, Colorado, USA, Sep. 36, 1996, IEEE Press, 1996, in press.  

E-Print Network [OSTI]

Published in: Proceedings, 12th IEEE Symposium on Visual Languages, Boulder, Colorado, USA, Sep. 3, Vogt­K?olln­Str. 30, 22527 Hamburg, Germany http

Haarslev, Volker

190

Published in: Proceedings, 12th IEEE Symposium on Visual Languages, Boulder, Colorado, USA, Sep. 3 6, 1996, IEEE Press, 1996, in press.  

E-Print Network [OSTI]

Published in: Proceedings, 12th IEEE Symposium on Visual Languages, Boulder, Colorado, USA, Sep. 3 Department, Vogt-K¨olln-Str. 30, 22527 Hamburg, Germany http

Hamburg,.Universität

191

The atmosphere of Venus  

Science Journals Connector (OSTI)

The investigations of Venus take a special position in planetary researches. It was just the atmosphere of Venus where first measurements in situ were carried out by means of the equipment delivered by a space pr...

V. I. Moroz

1981-01-01T23:59:59.000Z

192

Matthew Woelfle1, Farren Herron-Thorpe2, and Joe Vaughan2 Washington State University Laboratory for Atmospheric Research  

E-Print Network [OSTI]

the Weather Research Forecasting (WRF), Community Multiscale Air Quality (CMAQ), and Sparse Matrix Operating by the National Science Foundation's REU program under grant number 0754990. This research was also made possible Serena Chung for her assistance with this work. AIRPACT and MODIS AOD had low correlation, 0

Collins, Gary S.

193

Musical Atmospherics  

Science Journals Connector (OSTI)

... THE characteristics of audio musical atmospherics which are obtained when an ... musical atmospherics which are obtained when an audio amplifier is placed in a long line or aerial have been discussed from time to ...

T. L. ECKERSLEY

1935-01-19T23:59:59.000Z

194

University of Colorado at Boulder | University Libraries | Science Library | Audiology: Fall 2011 2011sep16rev 1  

E-Print Network [OSTI]

University of Colorado at Boulder | University Libraries | Science Library | Audiology: Fall 2011 Pathology (SLP) Students Barb Losoff ­ Life Science Librarian Barbara.Losoff@colorado.edu / 303-492-1859 Reference Desk: 303-492-7521 Email or Chat Reference: http://ucblibraries.colorado.edu/askus.cfm Chinook

Stowell, Michael

195

Biogeochemisiry of Seasonally Snow-Covered Catchments (Proceedings of a Boulder Symposium July 1995). IAHSPubl. no. 228, 1995. 303  

E-Print Network [OSTI]

Biogeochemisiry of Seasonally Snow-Covered Catchments (Proceedings of a Boulder Symposium July 1995 Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22903, USA KENNETH E is predominantly through the lower soil horizons, due to such processes as microbial degradation of annual litter

196

SIMULTANEOUS AND COMMON-VOLUME LIDAR OBSERVATIONS OF THE MESOSPHERIC FE AND NA LAYERS AT BOULDER (40N, 105W)  

E-Print Network [OSTI]

inputs can reproduce some large-scale characteristics but are challenged in simulating small- scale the general structures more precisely as well as simulating the challenging small scale features. In Aug. The Fe Boltzmann temperature lidar was under upgrading and validating at Boulder before its deployment

Chu, Xinzhao

197

Paleoclimate History of the Arctic G H Miller, University of Colorado, Boulder, CO, USA; University of Iceland, Reykjavik, Iceland  

E-Print Network [OSTI]

Paleoclimate History of the Arctic G H Miller, University of Colorado, Boulder, CO, USA; University of Iceland, Reykjavik, Iceland J Brigham-Grette, University of Massachusetts, Amherst, MA, USA R B Alley, Pennsylvania State University, University Park, PA, USA L Anderson, US Geological Survey, Denver, CO, USA H

Wolfe, Alexander P.

198

Atmospheric sciences transfer between research advances and energy-policy assessments (ASTRAEA). Final report, 1 April 1996--31 December 1997  

SciTech Connect (OSTI)

Consistent with the prime goal of the ASTRAEA project, as given in its peer-reviewed proposal, this final report is an informal report to DOE managers about a perceived DOE management problem, specifically, lack of vision in DOE`s Atmospheric Chemistry Program (ACP). After presenting a review of relevant, current literature, the author suggests a framework for conceiving new visions for ACP, namely, multidisciplinary research for energy policy, tackling tough (e.g., nonlinear) problems as a team, ahead of political curves. Two example visions for ACP are then described, called herein the CITIES Project (the Comprehensive Inventory of Trace Inhalants from Energy Sources Project) and the OCEAN Project (the Ocean-Circulation Energy-Aerosol Nonlinearities Project). Finally, the author suggests methods for DOE to provide ACP with needed vision.

Slinn, W.G.N.

1997-12-10T23:59:59.000Z

199

Jacob P. Fugal, Scott Spuler Earth Observing Laboratory NCAR, Boulder, CO USA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

airborne digital holographic airborne digital holographic instrument for measuring the spatial distribution and local size distributions of cloud particles: Holographic Detector for Clouds 2 (HOLODEC 2) Jacob P. Fugal, Scott Spuler Earth Observing Laboratory NCAR, Boulder, CO USA & Raymond A. Shaw Physics Department, michigan Tech Houghton, MI USA C-130 Hercules Q HIAPER Gulfstream GV HOLODEC (Holographic Detector for Clouds) is an airborne instrument that measures the size, shape, and relative 3D position of cloud particles using digital in- line holography. Science Questions for HOLODEC 2 * How do local cloud particle size distributions vary inside cloud regions (edge, top, core, base), by cloud age, cloud type? * How are cloud particles spatially distributed on sub-cm scales due to mixing, entrainment, and

200

Operational forecasting based on a modified Weather Research and Forecasting model  

SciTech Connect (OSTI)

Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

Lundquist, J; Glascoe, L; Obrecht, J

2010-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Daytime Precipitable Water Vapor from Vaisala Radiosonde Humidity Improved Daytime Precipitable Water Vapor from Vaisala Radiosonde Humidity Sensors Download a printable PDF Submitter: Cady-Pereira, K. E., Atmospheric and Environmental Research, Inc. Mlawer, E. J., Atmospheric & Environmental Research, Inc. Turner, D. D., National Oceanic and Atmospheric Administration Shephard, M. W., Atmospheric and Environmental Research, Inc. Clough, S. A., Atmospheric and Environmental Research, Inc. Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Radiative Processes Journal Reference: Cady-Pereira, K, M Shephard, E Mlawer, D Turner, S Clough, and T Wagner. 2008. "Improved daytime column-integrated precipitable water vapor from Vaisala radiosonde humidity sensors." Journal of Atmospheric and Oceanic Technology doi: 10.1175/2007JTECHA1027.1.

202

Isocyanic acid in the atmosphere and its possible link to smoke-related health effects  

Science Journals Connector (OSTI)

...CIRES), University of Colorado, 216 UCB, 125 Regent...Biochemistry, University of Colorado, 215 UCB, 125 Regent...and heating, and from wildfires (1, 2). Extensive research...of HNCO emitted by a wildfire on the ambient air of...measured in Boulder, Colorado during the recent...

James M. Roberts; Patrick R. Veres; Anthony K. Cochran; Carsten Warneke; Ian R. Burling; Robert J. Yokelson; Brian Lerner; Jessica B. Gilman; William C. Kuster; Ray Fall; Joost de Gouw

2011-01-01T23:59:59.000Z

203

Oxygen detected in atmosphere of Saturn's moon Dione  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of...

204

Atmospheric Neutrinos  

E-Print Network [OSTI]

This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

Thomas K. Gaisser

2006-12-11T23:59:59.000Z

205

CCSM Land Model Working Group Meeting 30 March 2009  

E-Print Network [OSTI]

­ Boulder, Colorado MONDAY, 30 March ­ Damon Room 8:30 Continental breakfast 9:00 Dave Lawrence (NCAR for Atmospheric Research ­ Boulder, Colorado TUESDAY, 31 March ­ Main Seminar Room 8:30 Continental breakfast 8 Research ­ Boulder, Colorado WEDNESDAY, 1 April ­ Chapman Room 8:00 Continental breakfast Terrestrial BGC 8

206

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference:...

207

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Schween, J. H., Inst. of Geophysics and Meteorology Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference:...

208

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Xie S,...

209

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions...

210

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Maryland Sawyer, V. R., University of Maryland Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions...

211

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Xie...

212

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Insight on the Atmosphere's Tiniest Particles Download a printable PDF Submitter: Smith, J., NCAR McMurry, P. ., University of Minnesota Area of Research: Aerosol Properties...

213

Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of a Multifamily Evaluation of a Multifamily Retrofit in Climate Zone 5 Boulder, Colorado PROJECT INFORMATION Project Name: Evaluation of a Low-Rise Multifamily Retrofit in Boulder, CO Location: Boulder, CO Consortium of Advanced Residential Buildings www.carb-swa.com Building Component: Building envelope, lighting, appliances, water conservation Application: Retrofit Years Tested: 2012 Applicable Climate Zone(s): Cold, very cold PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $3,300-$6,100 per unit with total complex cost estimate of ~$150,000 Projected Energy Savings: 27%-41% depending on unit location/orientation Projected Energy Cost Savings: $154-$304 utility savings per year In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent

214

parsons-98.pdf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 A Middle Latitude Cause for Drought Periods Over the Tropical Western Pacific D. B. Parsons National Center for Atmospheric Research Boulder, Colorado K. Yoneyama Japan Marine...

215

Radiative Effects of Cloud Inhomogeneity and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiative Effects of Cloud Inhomogeneity and Geometric Association Over the Tropical Western Pacific Warm Pool X. Wu National Center for Atmospheric Research (a) Boulder, Colorado...

216

Climate-driven changes in spring plankton dynamics and the ...  

Science Journals Connector (OSTI)

leading to mild and rainy winters in the western and northern parts of Europe. ... by the National Center of Atmospheric Research, Boulder, Colorado (http://.

1910-00-71T23:59:59.000Z

217

Impact of Wildfires on Ozone Exceptional Events in the Western U.S.  

Science Journals Connector (OSTI)

Impact of Wildfires on Ozone Exceptional Events in the Western U.S. ... ? National Center for Atmospheric Research, Boulder, Colorado 80307, United States ...

Daniel A. Jaffe; Nicole Wigder; Nicole Downey; Gabriele Pfister; Anne Boynard; Stephen B. Reid

2013-08-27T23:59:59.000Z

218

Posters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

San Diego La Jolla, California H. Grassl Max Planck Institute for Meteorology Hamburg, Germany A. Heymsfield National Center for Atmospheric Research Boulder, Colorado J. Spinhirne...

219

Hierarchical Diagnosis J. T. Kiehl, M. W. Moncrieff, J. J. Hack...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

T. Kiehl, M. W. Moncrieff, J. J. Hack, and W. Grabowski National Center for Atmospheric Research Boulder, CO 80307-3000 V. Ramaswamy Geophysical Fluid Dynamics Laboratory...

220

Section 75  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W. L. Ecklund Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado K. S. Gage National Oceanic and Atmospheric Administration...

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Atmospheric Research Boulder, Colorado A. Paukkunen Vaisala Oy Helsinki, Finland Introduction The goal of this study is to improve the accuracy of relative humidity...

222

Probabilistic Evaluation of the Dynamics and Predictability of the Mesoscale Convective Vortex of 1013 June 2003  

E-Print Network [OSTI]

National Center for Atmospheric Research,* Boulder, Colorado (Manuscript received 14 September 2005 have been linked to extreme rainfall events, such as the Johnstown, Pennsylvania, flood of 1977 (Bosart

Meng, Zhiyong

223

braun-99.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Vapor Tomography System Using Low Cost L1 GPS Receivers J. Braun, C. Rocken, C. Meertens, and R. Ware University Corporation for Atmospheric Research Boulder, Colorado...

224

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 10, PAGES 1519-1522, MAY 15, 2000 The impact of rising atmospheric CO2 on simulated sea  

E-Print Network [OSTI]

Atlantic sys- tem. The presence of sea ice also impacts the heat budget through its insulation of the ocean atmospheric CO2 on simulated sea ice induced thermohaline circulation variability Marika M. Holland1 , Aaron J atmospheric CO2 lev- els on the sea ice induced low frequency variability of the North Atlantic climate

225

JournalofGeophysicalResearch: Atmospheres RESEARCH ARTICLE  

E-Print Network [OSTI]

of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada, 2Department, Canada, 4Canadian Centre for Climate Modelling and Analysis, Environment Canada, Toronto, Ontario, Canada value is offset by a commensurate reduction in solar irradiance. Compared to the preindustrial climate

Robock, Alan

226

Toward a new chemical mechanism in WRF/Chem for direct and indirect aerosol  

E-Print Network [OSTI]

, University of Colorado at Boulder, Boulder, Colorado, USA. 3 Earth System Research Laboratory, National Oceanic and Atmospheric administration, Boulder, Colorado, USA. e-mail: paolo to the coarse resolution of the inventory and by the missing of wildfire emissions. The modeled concentration

Curci, Gabriele

227

1Hadley Centre for Climate Prediction and Research Workshop on Advances in the Use of  

E-Print Network [OSTI]

1Hadley Centre for Climate Prediction and Research Workshop on Advances in the Use of Historical Marine Climate Data Boulder, CO, USA, Jan 29-Feb1 2002 Workshop Goals #12;2Hadley Centre for Climate Prediction and Research Matthew F. Maury about 1853 #12;3Hadley Centre for Climate Prediction and Research

228

DECEMBER 1997 3131B R A U N E T A L . 1997 American Meteorological Society  

E-Print Network [OSTI]

Center for Atmospheric Research, Boulder, Colorado ROBERT A. HOUZE JR. Department of Atmospheric Sciences, Boulder, Colorado, and Department of Atmospheric Science, University of Washington, Seattle, Washington, Greenbelt, MD 20771. E-mail: braun@gilbert.gsfc.nasa.gov vere weather including floods and mudslides

Houze Jr., Robert A.

229

Extremes and Atmospheric Data Eric Gilleland  

E-Print Network [OSTI]

Extremes and Atmospheric Data Eric Gilleland Research Applications Laboratory National Center for Atmospheric Research 2007-08 Program on Risk Analysis, Extreme Events and Decision Theory, opening workshop 16-19 September, North Carolina #12;Extremes · Interest in making inferences about large, rare, extreme phenomena

Gilleland, Eric

230

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. D24, PAGES 29,737-29,745, DECEMBER 26, 1997 Atmospheric aerosol and water vapor characteristics over north  

E-Print Network [OSTI]

Atmospheric aerosol and water vapor characteristics over north central Canada during BOREAS B. L. Markham, J typically0.09 and 0.34 cm, respectively.Size distributionsderivedfrom solar almucantarmeasurementsshowtheHughesSTXCorporation,Greenbelt,Maryland. 2Formerlyat HSTX/GSFC-NASA,Greenbelt,Maryland. Copyright1997by the American

231

Case studies in disaster losses and climate change Roger A. Pielke, Jr., University of Colorado, Boulder,  

E-Print Network [OSTI]

by Munich Re, U.S. NSF, the Tyndall Centre, and the GKSS Institute for Coastal Research. Part II examines.S. National Science Foundation, the Tyndall Center for Cli- mate Change Research, and the GKSS Institute

Colorado at Boulder, University of

232

LIGHTING RESEARCH PROGRAM Project 3.2 Load-Shedding Economic Analysis Report  

E-Print Network [OSTI]

Research Center 2540 Frontier Avenue, Suite 201 21 Union Street Boulder, Colorado 80301 Troy, New York For: California Energy Commission Public Interest Energy Research Program ConsultantReport Arnold Schwarzenegger, Governor October 2005 CEC-500-2005-141-A7 #12;Energy-Efficient Load-Shedding Lighting Technology

233

15th DoD HPC User Group Conference, June 2005, Nashville, TN. 1 CAP Phase II Simulations for the Air Force HEL-JTO Project: Atmospheric  

E-Print Network [OSTI]

., Boulder, CO, USA (2) Norwegian Defence Research Establishment, Kjeller, Norway (3) Meso and Microscale by the Kelvin-Helmholtz (KH) instability in a strati- fied fluid is simulated in support of the Air Force High-Energy vertical resolution is too coarse to even describe the outer scales of motion for wind-shear- and wave

Werne,Joseph

234

Monthly Weather Review EARLY ONLINE RELEASE  

E-Print Network [OSTI]

Center for Atmospheric Research,* Boulder Colorado 14 and 16 Richard H. Johnson18 Department *Corresponding author address: Andrew Newman, National Center For Atmospheric Research,38 Boulder, CO 80307. E and have been linked to severe weather and flooding in northern Mexico and the southwest United States

Johnson, Richard H.

235

Nuclear Instruments and Methods in Physics Research A 428 (1999) 593}607 Radio-controlled xenon #ashers for atmospheric monitoring  

E-Print Network [OSTI]

. Denholm , J. Gloyn , D. He , Y. Ho , M.A. Huang , C.C.H. Jui , M.J. Kidd , D.B. Kieda , B. Knapp , S. Ko #ashers for atmospheric monitoring at the HiRes cosmic ray observatory L.R. Wiencke *, T. Abu-Zayyad , M , K. Larson , E.C. Loh , E.J. Mannel , J.N. Matthews , J.R. Meyer , A. Salman , K.M. Simpson , J

236

Section 47  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparisons Among Cloud Parameter Estimates Comparisons Among Cloud Parameter Estimates Derived from Radar, Infrared-Radiometer, Lidar and Aircraft Measurements S. Y. Matrosov and J. B. Snider Cooperative Institute for Research in Environmental Studies University of Colorado at Boulder and National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado R. F. Reinking and R. A. Kropfli National Oceanic and Atmospheric Administration Environmental Technology Laboratory, Boulder, Colorado E. W. Eloranta and P. Piironen University of Wisconsin, Madison, Wisconsin R. T. Bruintjes National Center for Atmospheric Research, Boulder, Colorado Introduction Remote sensing methods to retrieve cloud microphysical and radiative parameters from measurements taken by different remote sensors are an important source of quantitative

237

COLLOQUIUM: The Alfvnic Motions of the Sun's Outer Atmosphere...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: The Alfvnic Motions of the Sun's Outer Atmosphere Scott McIntosh National Center for Atmospheric Research (NCAR)...

238

Land-atmosphere interaction and radiative-convective equilibrium  

E-Print Network [OSTI]

I present work on several topics related to land-atmosphere interaction and radiative-convective equilibrium: the first two research chapters invoke ideas related to land-atmosphere interaction to better understand ...

Cronin, Timothy (Timothy Wallace)

2014-01-01T23:59:59.000Z

239

Experimental evaluation of gamma fluence-rate predictions from Argon-41 releases to the atmosphere over a nuclear research reactor site  

Science Journals Connector (OSTI)

......radiation experimental dataset has been subsequently...reactor at the Belgium Nuclear Research Center...measurements. The dataset obtained may also...3, 4) used for nuclear emergency preparedness...radiation experimental dataset has been subsequently...RIMPUFF. | Belgian Nuclear Research Center......

Carlos Rojas-Palma; Helle Karina Aage; Poul Astrup; Kim Bargholz; Martin Drews; Hans E. Jrgensen; Uffe Korsbech; Bent Lauritzen; Torben Mikkelsen; Sren Thykier-Nielsen; Raf Van Ammel

2004-01-01T23:59:59.000Z

240

Atmospheric Pressure Photoionization Applied to Quantitation of Cyproterone Acetate in Human Plasma  

Science Journals Connector (OSTI)

......research-article Articles Atmospheric Pressure Photoionization...Acetate in Human Plasma Alberto S. Pereira...100 mg). Atmospheric pressure photoionization...acetate in human plasma. | Cyproterone...acetate in human plasma. This 513 Abstract Atmospheric Pressure Photoionization......

Alberto S. Pereira; Gustavo D. Mendes; Lina S.O.B. Oliveira; Hugo F. Valle; Gilberto De Nucci

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Atmos. Chem. Phys., 9, 83178330, 2009 www.atmos-chem-phys.net/9/8317/2009/  

E-Print Network [OSTI]

Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USA 4Jet by the incomplete combustion of fossil and bio-fuels, and by vegetation burning, CO is also produced

Meskhidze, Nicholas

242

13, 90179049, 2013 Stable atmospheric  

E-Print Network [OSTI]

ACPD 13, 9017­9049, 2013 Stable atmospheric methane in the 2000s I. Pison et al. Title Page Utrecht, Utrecht University, Utrecht, the Netherlands 3 SRON Netherlands Institute for Space Research, Utrecht, the Netherlands 4 Vrije Universiteit, Department of Systems Ecology, Amsterdam, the Netherlands 5

Paris-Sud XI, Université de

243

University of Colorado 2001 Activity Report 1  

E-Print Network [OSTI]

University of Colorado 2001 Activity Report 1 Laboratory for Atmospheric and Space Physics Activity Report 2001 University of Colorado at Boulder #12;University of Colorado 2 2001 Activity Report Cover-campus in the Research Park at 1234 Innovation Drive, Boulder, Colorado. Laboratory for Atmospheric and Space Physics

Mojzsis, Stephen J.

244

This is Your Brain on Art Metaforming Nature: Boulder Museum of Contemporary Art  

E-Print Network [OSTI]

and infinite. Likewise, Ozin's research into new nanotechnology with global ramifications on renewable energy demand for fossil fuels to spur economic growth, the fate of humankind seems tenuous at best. Ozin and purposeful ways. Following their inaugural art show Nano World at the Armory New York in March 2014

Chan, Hue Sun

245

Integrated research on mountain glaciers: Current status, priorities and future prospects  

E-Print Network [OSTI]

Institute of Arctic and Alpine Research and Department of Geological Sciences, University of Colorado, Boulder CO 80309, United States d Department of Geology, University at Buffalo, Buffalo, NY 14260, United and to predict future changes. Furthermore, glaciers can constitute hazards, including: glacier outburst floods

Briner, Jason P.

246

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterizing Clouds at Arctic Atmospheric Observatories Characterizing Clouds at Arctic Atmospheric Observatories Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, VP Walden, E Eloranta, T Uttal, JR Campbell, SM Starkweather, and M Shiobara. 2011. "Clouds at Arctic atmospheric observatories, part I: occurrence and macrophysical properties." Journal of Applied Meteorology and Climatology, 50(3), 626-644. Shupe MD. 2011. "Clouds at Arctic atmospheric observatories, part II: thermodynamic phase characteristics." Journal of Applied Meteorology and Climatology, 50(3), 645-661. Figure 1: (a) Annual cycles of monthly mean cloud occurrence fraction at six Arctic atmospheric observatories. The average cloud fraction for all

247

Flatiron-Erie 115kV transmission line project, Larimer, Weld and Boulder Counties, Colorado. Draft environmental impact statement  

SciTech Connect (OSTI)

Western Area Power Administration (Western) proposes to uprate its existing 115-kV Flatiron-Erie transmission line. The line is located in Larimer, Weld and Boulder Counties, Colorado, and passes through the City of Longmont. The line connects Flatiron Substation and several of the substations supplying Longmont. It is a single circuit 115-kV line, 31.5 miles long, and was built in 1950-51 on a 75-foot wide right-of-way (ROW) using wood H-frame structures. Western proposes to build 27 new structures along the line, to replace or modify 45 of the existing structures and to remote 11 of them. Many of these additions and changes would involve structures that are approximately 5 to 15 feet taller than the existing ones. The existing conductors and ground wires would remain in place. The purpose of these actions would be to allow the power carrying capability of the line to be increased and to replace deteriorating/structural members. Western would be the sole participant in the proposed project. This report gives an analysis of the study area environment and the development of alternative routes. An assessment is presented of the impacts of the primary alternative routes. The environmental consequences of this project are addressed.

Not Available

1993-05-01T23:59:59.000Z

248

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Downward Longwave Irradiance Uncertainty Under Arctic Atmospheres: Downward Longwave Irradiance Uncertainty Under Arctic Atmospheres: Measurements and Modeling Submitter: Marty, C., Swiss Federal Institute of Snow and Avalanche Research Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marty, C., R. Philipona, J. Delamere, E.G. Dutton, J. Michalsky, K. Stamnes, R. Storvold, T. Stoffel, S.A. Clough, and E.J. Mlawr, Downward longwave irradiance uncertainty under arctic atmospheres: Measurements and modeling, J. Geophys. Res., 108(D12), 4358, doi:10.1029/2002JD002937, 2003. IPASRC-II instruments deployed at ARM's Barrow Station. Members of 11 international institutions converged at the Atmospheric Radiation Measurement (ARM) Program's North Slope of Alaska (NSA) site in Barrow, Alaska, to conduct the Second International Pyrgeometer and

249

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Experiments to Improve the Treatment of Radiation in the Mid-to-Upper Field Experiments to Improve the Treatment of Radiation in the Mid-to-Upper Troposphere Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Turner DD and EJ Mlawer. 2010. "The Radiative Heating in Underexplored Bands Campaigns (RHUBC)." Bulletin of the American Meteorological Society, 91, doi:10.1175/2010BAMS2904.1. (a) Atmospheric transmittance at 1 cm-1 resolution in the far-infrared for three atmospheres that are representative of the ARM SGP site, NSA site, and RHUBC-II site in the Chajnantor plateau (CJC). (b) The transmittance

250

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Campaign Resource Allocation Using Statistical Decision Analysis Field Campaign Resource Allocation Using Statistical Decision Analysis Download a printable PDF Submitter: Hanlon, C., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Hanlon CJ, JB Stefik, AA Small, J Verlinde, and GS Young. 2013. "Statistical decision analysis for flight decision support: The SPartICus campaign." Journal of Geophysical Research - Atmospheres, , . ACCEPTED. In many atmospheric science field campaigns, investigators are budgeted some number of flight hours to collect data under specific, imperfectly forecastable atmospheric conditions. In such field campaigns, investigators must assess atmospheric conditions each day and make a resource-allocation decision: are conditions good enough to use some of our scarce flight hours

251

Stain Repellent-Antimicrobial Textiles via Atmospheric Plasma Finishes.  

E-Print Network [OSTI]

??This research was aimed to impart antimicrobial and stain repellent finishes to polyester fabrics using atmospheric pressure plasma-aided graft copolymerization of active monomers. The process (more)

McLean, Robert II

2008-01-01T23:59:59.000Z

252

University Corporation for Atmospheric Research Learn: Atmospheric Science Explorers  

E-Print Network [OSTI]

and Development, Washington, DC., pp. 91 - 94. In this activity, students will examine graphs of GHG emissions increasing global temperatures. The enhanced greenhouse effect has been linked to increased GHG emissions (some provided; you may want to look for other or encourage your students to do so) · City map

Mojzsis, Stephen J.

253

ELSEVIER Atmospheric Research 39 (1995) 91-111 ATMOSPHERIC  

E-Print Network [OSTI]

Geesthacht, Institutfiir Physik, Max-Planck-Strafle, D-21502 GeesthachtGermany Received 6 April 1994

Moelders, Nicole

254

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Annual Cycle of Arctic Cloud Microphysics Annual Cycle of Arctic Cloud Microphysics M. D. Shupe Science and Technology Corporation National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado T. Uttal National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado S. Y. Matrosov Cooperative Institute for Research National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction Clouds are important in determining the radiative balance of the earth's atmosphere, particularly in the Arctic where there are low temperatures, low atmospheric moisture, and highly reflective ice/snow- covered surfaces. Several studies have demonstrated the importance of specific cloud microphysical

255

Research Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Biological and Environmental Research Abstracts Database Research Highlights Summaries Research Highlights Members of ARM's science team are major contributors to radiation and cloud research. ARM investigators publish about 150 refereed journal articles per year, and ARM data are used in many studies published by other scientific organizations. These documented research efforts represent tangible evidence of ARM's contribution to advances in almost all areas of atmospheric radiation and cloud research. Below is a selection of summaries highlighting recently-published ARM research. The entire collection of ARM

256

DECEMBER 2004 1117D A I E T A L . 2004 American Meteorological Society  

E-Print Network [OSTI]

DAI, KEVIN E. TRENBERTH, AND TAOTAO QIAN National Center for Atmospheric Research,* Boulder, Colorado and produces both increased temperatures and increased drying. 1. Introduction Droughts and floods are extreme Center for At- mospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: adai

Dai, Aiguo

257

Promoting Dialogue Through Research,  

E-Print Network [OSTI]

Carolina Gilbert F. White Distinguished Professor Emeritus of Geography University of Colorado at Boulder, including flood mitigation, moderation of microclimate, filteri

Massachusetts at Amherst, University of

258

Pike Research | Open Energy Information  

Open Energy Info (EERE)

Research Research Jump to: navigation, search Name Pike Research Place Boulder, Colorado Product Market research Website http://www.pikeresearch.com/ Coordinates 40.0149856°, -105.2705456° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0149856,"lon":-105.2705456,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lord of the Wings: Elevated Particles a Rising Star Lord of the Wings: Elevated Particles a Rising Star Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, C Flynn, J Redemann, B Schmid, PB Russell, and A Sinyuk. 2012. "Initial assessment of the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)-based aerosol retrieval: Sensitivity study." Atmosphere, 3, doi:10.3390/atmos3040495. The 4STAR instrument. The 4STAR instrument (inset) is installed through the upper hull of the PNNL G-1 research aircraft, for in-flight sun-tracking and sky light-scanning. Researchers at Pacific Northwest National Laboratory, in collaboration with colleagues at NASA Ames Research Center, developed a next-generation

260

Atmospheric Transport of Radionuclides  

SciTech Connect (OSTI)

The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

Crawford, T.V.

2003-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

8, 10691088, 2008 Atmospheric  

E-Print Network [OSTI]

into the atmosphere (Molina et al., 1974; Farman et al., 1985) has led to an interna- tional effort to replace

Boyer, Edmond

262

The Upper Atmosphere Observatory  

Science Journals Connector (OSTI)

...with *the plasma frethe progress...explorcreated an even larger number of...the upper atmosphere and ionosphere...the upper atmosphere. For this...ionospheric plasma motion simul-taneously...field is large, the horizontal...resolved. The atmospheric gravity waves...simul-taneously at a large number of...two regions plasma drifts separated...

J. V. Evans

1972-05-05T23:59:59.000Z

263

The Upper Atmosphere Observatory  

Science Journals Connector (OSTI)

...DATA, JOURNAL OF ATMOSPHERIC AND TERRESTRIAL...IN NEAR-EARTH PLASMA, SPACE SCIENCE...INVESTIGATION OF WHISTLING ATMOSPHERICS, PHILOSOPHICAL...TRANSPOLAR EXOSPHERIC PLASMA .1. PLASMASPHERE...dynamics of the upper atmosphere. For this purpose...the ionospheric plasma motion simul-taneously...

J. V. Evans

1972-05-05T23:59:59.000Z

264

5, 60416076, 2005 Atmospheric  

E-Print Network [OSTI]

opportunity to examine atmospheric oxidation in a megacity that has more pollution than typical USACPD 5, 6041­6076, 2005 Atmospheric oxidation in the Mexico City Metropolitan Area T. R. Shirley et.atmos-chem-phys.org/acpd/5/6041/ SRef-ID: 1680-7375/acpd/2005-5-6041 European Geosciences Union Atmospheric Chemistry

Boyer, Edmond

265

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectrally Invariant Approximation Within Atmospheric Radiative Transfer Spectrally Invariant Approximation Within Atmospheric Radiative Transfer Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Marshak A, Y Knyazikhin, JC Chiu, and WJ Wiscombe. 2011. "Spectrally-invariant approximation within atmospheric radiative transfer." Journal of the Atmospheric Sciences, 68(12), doi:10.1175/JAS-D-11-060.1. Ratio of reflectance Rλ plus transmittance Tλ over single scattering albedo ω0λ plotted against the sum Rλ+Tλ for two cloud optical depths: 5 and 10. The aerosol optical depth at 0.55 μm is 0.2 (rural type of aerosol). Different dots correspond to different wavelengths from 0.4 to

266

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Island-Induced Cloud Plumes Influence Tropical Atmospheric Measurements, Island-Induced Cloud Plumes Influence Tropical Atmospheric Measurements, Surface Radiation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: McFarlane, S.A., Long, C.N., and Flynn, D., Nauru Island Effect Study, Fourteenth ARM Science Team Meeting, March 22 to 26, 2004, Albuquerque, New Mexico. Nauru Island, about 1,200 miles northeast of Papua New Guinea in the western South Pacific, is one of three instrumented island sites that comprise ARM's Tropical Western Pacific locale. A key objective of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program is to identify interactions between the processes that determine the radiative properties of an atmospheric column, including

267

Biological & Environmental Research Abstracts Database  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ABBREVIATION DESCRIPTION ABBREVIATION DESCRIPTION AAVP ARM Aerial Vehicles Program ACP Atmospheric Chemistry Program ACP - CE ACP - Capital Equipment AmeriFlux AmeriFlux ARM Atmospheric Radiation Measurement (ARM) ARM - CE ARM - Capital Equipment ARM – Facility Atmospheric Radiation Measurement Climate Research Facility ARM – Facility- CCRI Atmospheric Radiation Measurement Climate Research Facility (Climate Change Research Initiative) ARM - Science Atmospheric Radiation Measurement Science Program ARM-CCRI ARM-CCRI ARM-Infrastr Atmospheric Radiation Measurement-Infrastructure Artificial Retina ASP Atmospheric Science Program

268

Doctoral Programs Atmospheric, Oceanic & Space Sciences  

E-Print Network [OSTI]

University of Michigan Space Research Building 2455 Hayward Street Ann Arbor, MI 48109-2143 aoss Katherine E. White, Ann Arbor ©The Regents of the University of Michigan Research areas Atmospheric Science/Thermosphere Physics Planetary Magnetospheres Solar & Heliospheric Physics Space Weather Aeronomy For Faculty involved

Eustice, Ryan

269

School of Earth and Atmospheric Sciences Georgia Institute of Technology  

E-Print Network [OSTI]

of Earth and Atmospheric Sciences is to realize the vision through building pillars of excellence in the following three areas: · Breakthrough discoveries through research in earth and atmospheric sciences as well research to inform public policy, resource management, environmental sustainability, and economic

Weber, Rodney

270

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weather and Atmospheric Overview During Study of Natural and Urban Weather and Atmospheric Overview During Study of Natural and Urban Emissions (CARES) Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Fast JD, WI Gustafson, LK Berg, WJ Shaw, M Pekour, M Shrivastava, JC Barnard, RA Ferrare, CA Hostetler, JA Hair, M Erickson, BT Jobson, B Flowers, MK Dubey, S Springston, RB Pierce, L Dolislager, J Pederson, and RA Zaveri. 2012. "Transport and mixing patterns over central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)." Atmospheric Chemistry and Physics, 12, 1759-1783. Aircraft sampling flight patterns are shown over central California in this aerial overlay. Researchers collected and analyzed measurements from

271

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Dimming and Brightening: an Update Beyond 2000 Global Dimming and Brightening: an Update Beyond 2000 Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich Truessel, B., Institute for Atmospheric and Climate Science - ETH Zurich Ohmura, A., Swiss Federal Institute of Technology Koenig-Langlo, G., Alfred Wegener Institute Dutton, E. G., NOAA/OAR/ESRL Tsvetkov, A. V., World Radiation Data Centre Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Wild M, B Trüssel, A Ohmura, CN Long, G König-Langlo, EG Dutton, and A Tsvetkov. 2009. "Global dimming and brightening: An update beyond 2000." Journal of Geophysical Research - Atmospheres, 114, D00D13, 10.1029/2008JD011382.

272

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Downwelling Infrared Radiance Climatology for the ARM Southern Great A Downwelling Infrared Radiance Climatology for the ARM Southern Great Plains Site Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Gero, J., University of Wisconsin Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Turner DD and PJ Gero. 2011. "Downwelling infrared radiance temperature climatology for the Atmospheric Radiation Measurement Southern Great Plains site." Journal of Geophysical Research - Atmospheres, 116, D08212, doi:10.1029/2010JD015135. The distribution of downwelling 10-micron infrared radiance observed at the SGP site by the AERI from June 1996 to May 2010, separated into all-sky (all samples) and the three distinct sky classifications.

273

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Desert Dust Determines Aerial Spread of Thunderstorm Clouds Desert Dust Determines Aerial Spread of Thunderstorm Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Zeng X, W Tao, SW Powell, RA Houze, P Ciesielski, N Guy, H Pierce, and T Matsui. 2013. "A comparison of the water budgets between clouds from AMMA and TWP-ICE." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-050.1. The sun, seen through a dusty atmosphere, sets at Niamey, the capital of Niger, which is located in the African Sahara. Anvil clouds that accompany thunderstorms. Contrasts often provide unique perspectives, and scientists seize any such opportunity-when it arises. In a new research paper, published in the Journal of Atmospheric Sciences,

274

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structure of Cirrus Properties and Its Coupling with the State of the Structure of Cirrus Properties and Its Coupling with the State of the Large-Scale Atmosphere Download a printable PDF Submitter: Ivanova, K., Pennsylvania State University Ackerman, T. P., University of Washington Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Ivanova K and TP Ackerman. 2009. "Tracking nucleation-growth-sublimation in cirrus clouds using ARM millimeter wavelength radar observations." Journal of Geophysical Research - Atmospheres, , D06113, 10.1029/2008JD010271. Figure 1. Values of the drift and diffusion coefficients of the Fokker-Planck equation derived from the MMCR radar reflectivity observations. The diffusion coefficient characterizes the small scale, fast

275

Boulder Canyon Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 2015 * All work is contingent on outage availability Hoover Instrument Transformer Replacement * 6 out the 12 have been replaced * 3 of the remaining will be done in...

276

Measuring Nighttime Atmospheric Opacity Using Images From the Mars Exploration Rovers  

E-Print Network [OSTI]

of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by KERI MARIE BEAN MEASURING NIGHTTIME ATMOSPHERIC OPACITY USING IMAGES FROM THE MARS EXPLORATION ROVERS Approved by: Research Advisor: Mark...&M University Research Advisor: Dr. Mark Lemmon Department of Atmospheric Sciences Atmospheric opacity, otherwise known as optical depth, is the measurement of the amount of radiation reaching the surface through the atmosphere. The spatial and temporal...

Bean, Keri M

2012-07-11T23:59:59.000Z

277

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiative Heating Rate Forcing Using Profiles of Radiative Heating Rate Forcing Using Profiles of Retrieved Arctic Cloud Microphysics M. D. Shupe Science and Technology Corporation National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado P. Zuidema National Research Council National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado T. Uttal National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction Clouds and their radiative impacts are of primary importance to the Arctic climate and, therefore, global climate. Clouds dominate the radiation balance within the cold, dry Arctic atmosphere, and cloud- radiation feedbacks are closely linked with the snow/ice-albedo feedback. Despite the importance of

278

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Aerosol Forcing: Calculation from Direct Aerosol Forcing: Calculation from Observables and Sensitivities to Inputs A. McComiskey Cooperative Institute for Research in the Environmental Sciences University of Colorado Boulder, Colorado and Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado S.E. Schwartz and E.R. Lewis Brookhaven National Laboratory Atmospheric Sciences Division Upton, New York P. Ricchiazzi Institute for Computational Earth System Science University of California Santa Barbara, California J.A. Ogren Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado J.J. Michalsky Air Resources Laboratory National Oceanic and Atmospheric Administration

279

AtmosphericAtmospheric Composition Introduction The division investigates the atmospheric  

E-Print Network [OSTI]

development on observation side was the installation of an ozone observation station in Surinam in close co-operation with the Surinam Meteorological Service. Processes in the tropical regions are important for the global climate and the global atmospheric composition. The participation in Indoex (Indian Ocean Experiment) and this Surinam

Haak, Hein

280

Atmospheric Radiation Measurement Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan - ARM in the next 5 years ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement ARM Status - Science ARM Status - Science * Steadily increasing productivity - Poster session - over 220 posters (may need to do something about submissions next year) - Peer-reviewed articles: 2.5 to 3 per year per

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

IOP PUBLISHING ENVIRONMENTAL RESEARCH LETTERS Environ. Res. Lett. 5 (2010) 024005 (7pp) doi:10.1088/1748-9326/5/2/024005  

E-Print Network [OSTI]

.1088/1748-9326/5/2/024005 Carbon stewardship: land management decisions and the potential for carbon sequestration in Colorado, USA and Technology Policy Research, University of Colorado, Boulder, CO 80309-0488, USA E-mail: Lisa Congress' American Clean 1 Author to whom any correspondence should be addressed. Energy and Security Act

Neff, Jason

282

August 13, 2008 9:13 MICHALAKES AND VACHHARAJANI paper-ppl Parallel Processing Letters  

E-Print Network [OSTI]

Center for Atmospheric Research Boulder, Colorado MANISH VACHHARAJANI University of Colorado at Boulder present an alternative method of scaling model per- formance by exploiting emerging architectures using-performance computing, CUDA 1. Introduction Exponentially increasing processor power has fueled fifty years

Colorado at Boulder, University of

283

NOVEMBER 1997 2943D A I E T A L . 1997 American Meteorological Society  

E-Print Network [OSTI]

amount since the 1940s. Severe droughts and floods comparable to the 1988 drought and 1993 flood changes have revealed * Current affiliation: National Center for Atmospheric Research, Boulder, Colorado. Corresponding author address: Dr. Aiguo Dai, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: adai

Dai, Aiguo

284

VOLUME 18 OCTOBER 2003W E A T H E R A N D F O R E C A S T I N G 2003 American Meteorological Society 685  

E-Print Network [OSTI]

Center for Atmospheric Research, Boulder, Colorado. Corresponding author address: Crystalyne R. Pettet Department, Colorado State University, Fort Collins, Colorado (Manuscript received 5 November 2002, in final, ATD/NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: pettet@atd.ucar.edu patterns of precipitation

Johnson, Richard H.

285

Atmospheric Neutrino Fluxes  

E-Print Network [OSTI]

Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

Thomas K. Gaisser

2005-02-18T23:59:59.000Z

286

ARM - Atmospheric Heat Budget  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About...

287

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Measurements Help to Evaluate Radiation Codes Used in Global Modeling ARM Measurements Help to Evaluate Radiation Codes Used in Global Modeling Download a printable PDF Submitter: Oreopoulos, L., NASA Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Oreopoulos L, E Mlawer, J Delamere, T Shippert, J Cole, B Fomin, M Iacono, Z Jin, J Li, J Manners, P Raisanen, F Rose, Y Zhang, MJ Wilson, and WB Rossow. 2012. "The Continual Intercomparison of Radiation Codes: results from Phase I." Journal of Geophysical Research - Atmospheres, 117, doi:10.1029/2011JD016821. The total error of each participating radiation code for all LW (left) and SW (right) cases in the CIRC intercomparison. The identity of each participating code can be found in the paper; codes built due to ARM

288

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modified Climate Model Better Replicates Global Rainfall Modified Climate Model Better Replicates Global Rainfall Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Song X, GJ Zhang, and JF Li. 2012. "Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5." Journal of Climate, 25(24), doi:10.1175/JCLI-D-11-00563.1. Rainfall in the tropics. By improving an existing, sophisticated, global climate model, scientists can now simulate cloud and rainfall more accurately. Supported by the U.S. Department of Energy's Atmospheric System Research program, a research team from the Scripps Institution of Oceanography and

289

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Water Vapor Continuum Absorption and Its Impact on a GCM Improving Water Vapor Continuum Absorption and Its Impact on a GCM Simulation Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Turner DD, A Merrelli, D Vimont, and EJ Mlawer. 2012. "Impact of modifying the longwave water vapor continuum absorption model on community Earth system model simulations." Journal of Geophysical Research, 117, D04106, doi:10.1029/2011JD016440. The mean difference profiles (experiment minus control) for clear-sky longwave radiative heating (QRLC); shortwave clear-sky radiative heating (QRSC); the longwave cloud radiative forcing (QRLCF); the precipitation

290

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Program Research Improves Longwave Radiative Transfer Models ARM Program Research Improves Longwave Radiative Transfer Models Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Radiative Processes Journal Reference: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. D.D. Turner, D.C. Tobin, S.A. Clough, P.D. Brown, R.G. Ellingson, E.J. Mlawer, R.O. Knuteson, H.E. Revercomb, T.R. Shippert, and W.L. Smith. 2004. Journal of Atmospheric Science, 61, 2657-2675. Top panels: Examples of downwelling infrared radiance observed by the AERI for two different clear sky cases with different amounts of water vapor. Bottom panels: Differences between the AERI observations and calculations

291

ACARS Aerodynamic (Research Incorporated) Communication and Recording System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ix ix Acrononyms and Abbreviations Acronyms and Abbreviations ACARS Aerodynamic (Research Incorporated) Communication and Recording System ACSYS Arctic Climate System Study AER Atmospheric Environmental Research, Inc. AERI Atmospheric Emitted Radiance Interferometer AFOSR Air Force Office of Scientific Research AGARD Advisory Group for Aerospace Research and Development ALFA AER Local Forecast and Assimilation (model) AMIP Atmospheric Model Intercomparison Project ARCS Atmosphere Radiation and Cloud Stations ARCSS Arctic System Science (NSF) ARCSYM Arctic Regional Climate System Model ARINC Aerodynamic Research Incorporated Communication ARM Atmospheric Radiation Measurement program AS anvil stratus ASTER Atmosphere-Surface Turbulent Exchange Research ASTEX Altantic Stratocumulus Transition EXperiment

292

Conference on Atmospheric Pollution  

Science Journals Connector (OSTI)

... THE half-yearly Conference of representatives of local authorities and other organisations co-operating with the Department of Scientific ... of atmospheric pollution was held in the offices of the Department on May 25. The Conference received from Dr. G. M. B. Dobson, chairman of the Atmospheric Pollution ...

1936-05-30T23:59:59.000Z

293

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preferred States of the Winter Arctic Atmosphere, Surface, and Sub-Surface Preferred States of the Winter Arctic Atmosphere, Surface, and Sub-Surface Download a printable PDF Submitter: Del Genio, A. D., NASA Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Stramler K, AD Del Genio, and WB Rossow. 2011. "Synoptically driven Arctic winter states." Journal of Climate, 24(6), doi:10.1175/2010JCLI3817.1. SHEBA winter hourly surface net (down - up) longwave radiation flux versus surface temperature. Blue circles indicate times when a combined radar-lidar cloud detection indicated clear skies, and red plus signs indicate times when clouds were detected. Time series of SHEBA winter hourly temperatures at the atmospheric temperature inversion altitude (magenta), surface (black), snow-sea ice

294

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modification of the Atmospheric Boundary Layer by a Small Island: Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru Submitter: Long, C. N., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, (2007): Modification of the atmospheric boundary layer by a small island: observations from Nauru, MWR, Vol. 135, No. 3, pages 891–905. Figure 1. Illustration of daytime heating producing a thermal internal boundary layer effect over Nauru, which in turn produces cumulous clouds above the boundary layer. Figure 2. Illustration of Nauru heat-island produced by convective rolls forming cloud streets. Figure 3. Satellite images of Nauru on December 13, 2000 showing the cloud

295

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparing Global Atmospheric Model Simulations of Tropical Convection Comparing Global Atmospheric Model Simulations of Tropical Convection Download a printable PDF Submitter: Lin, Y., Geophysical Fluid Dynamics Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Mean profiles of (first column) total precipitation normalized Q1, (second column) convective precipitation normalized convective heating, (third column) stratiform heating, and (fourth column) convective mass flux for the (top) wet, (middle) dry, and (bottom) break period from models and available observational estimates. Dashed lines are fine resolution model results. Note the different x axis scale for the third and fourth columns. An intercomparison of global atmospheric model simulations of tropical

296

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Radiosonde Comparisons May Improve Past and Present Humidity Data Tropical Radiosonde Comparisons May Improve Past and Present Humidity Data Submitter: Westwater, E. R., University of Colorado Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Westwater, E.R., B.B. Stankov, D.Cimini, Y. Han, J.A. Shaw, B.M. Lesht, C.N. Long, 2003, Radiosonde Humidity Soundings and Microwave Radiometers during Nauru99, Journal of Atmospheric and Oceanic Technology, Vol. 21. ARM's Nauru99 campaign provided a rare opportunity to compare original and corrected land-based radiosonde temperature and humidity measurements with those obtained at sea. (ARM photo) Key Contributors: B. B. Stankov, D. Cimini, Y. Han, J. A Shaw, B. M. Lesht, C. N. Long Along the equator in the Central Pacific, DOE's Atmospheric Radiation

297

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Measurements of Neutral Atmospheric Cluster and 1-2 Nm Particle First Measurements of Neutral Atmospheric Cluster and 1-2 Nm Particle Number Distributions During Nucleation Events Download a printable PDF Submitter: McMurry, P. ., University of Minnesota Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Jiang J, J Zhao, M Chen, J Scheckman, BJ Williams, FL Eisele, and PH McMurry. 2011. "First measurements of neutral atmospheric cluster and 1-2 nm particle number distributions during nucleation events." Aerosol Science and Technology, 45, doi:10.1080/02786826.2010.546817. Jiang J, M Chen, C Kuang, M Attoui, and PH McMurry. 2011. "Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm."

298

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynamics and Atmospheric State on Cloud Vertical Overlap Dynamics and Atmospheric State on Cloud Vertical Overlap Download a printable PDF Submitter: Naud, C. M., Columbia University/NASA Goddard Institute for Space Studies Del Genio, A. D., NASA Mace, G., Utah State University Benson, S., Utah State University Clothiaux, E. E., Pennsylvania State University Kollias, P., McGill University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Naud, C, A Del Genio, GG Mace, S Benson, EE Clothiaux, and P Kollias. "Impact of dynamics and atmospheric state on cloud vertical overlap." Journal of Climate 218: 1758-1770. Mean overlap parameter α as a function of separation: (a,b) at SGP for all winter months of 2002-2004 and for 4 subsets of increasing 500 mb ω such

299

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Indirect Impact of Atmospheric Aerosols on an Ensemble of Deep Convective Indirect Impact of Atmospheric Aerosols on an Ensemble of Deep Convective Clouds Download a printable PDF Submitter: Grabowski, W., NCAR Morrison, H. C., NCAR Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Grabowski WW and H Morrison. 2011. "Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi-equilibrium. Part II: Double-moment microphysics." Journal of Climate, 24, 1897-1912. This paper extends the previous cloud-resolving modeling study concerning the impact of cloud microphysics on convective-radiative quasi-equilibrium (CRQE) over a surface with fixed characteristics and prescribed solar input, both mimicking the mean conditions on Earth. The current study

300

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Splitting the Solar Spectrum: Sometimes Less Is Better Than More Splitting the Solar Spectrum: Sometimes Less Is Better Than More Submitter: Pawlak, D. T., Pennsylvania State University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Pawlak, DT, EJ Clothiaux, MF Modest, and JNS Cole. 2004. Full-Spectrum Correlated-k Distribution for Shortwave Atmospheric Radiative Transfer. Journal of the Atmospheric Sciences 61: 2588-2601. Of all the physical and dynamical calculations required in numerical weather prediction and climate modeling, radiation calculations consume the most computational time. This is because the radiation transfer physics of the atmosphere involve molecular absorption that occurs in narrowly defined absorption bands of the electromagnetic spectrum. The exact location in the

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Moistening by Clouds Sustains Madden-Julian Oscillation Atmospheric Moistening by Clouds Sustains Madden-Julian Oscillation Download a printable PDF Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: N/A Outgoing longwave radiation (OLR Wm-2) signals in the tropics averaged between 10°S and 10°N from (a) a regional simulation with moisture constrained by observations and (b) NOAA-CPC satellite observations. The lines mark the eastward MJO propagation speed of 4 m/s. The constrained model is able to reproduce the key OLR features in the observations. Originating over the Indian Ocean, the Madden-Julian Oscillation (MJO) is an equatorial planetary-scale envelope of complex multi-scale cloud systems

302

E-Print Network 3.0 - atmospheric turbulence utilizing Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of atmospheric particles; Cloud turbulence... but for the dissipation rate of turbulence energy s800 cm2 sy3 . 12;( )M. Pinsky et al.rAtmospheric Research 49 1998 99... , and...

303

experiments, such as the European Space Agency's Eddington and NASA's Kepler9  

E-Print Network [OSTI]

, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, Colorado 80303, USA. e. Henry, G., Marcy, G., Butler, R. & Vogt, S. Astrophys. J. 529, L41­L44 (2000). 8. Charbonneau, D., Brown

Løw, Erik

304

Atmos. Chem. Phys., 13, 837850, 2013 www.atmos-chem-phys.net/13/837/2013/  

E-Print Network [OSTI]

. Pfister1, and J. X. Warner9 1National Center for Atmospheric Research (NCAR), Boulder, CO, USA 2Jet are incomplete com- bustion processes, including fossil fuel and biofuel burn- ing, wildfires and agricultural

Meskhidze, Nicholas

305

Renewables Test IQ of the Grid  

Science Journals Connector (OSTI)

...usually nail it, says Hawkins. The National Center for Atmospheric Research in Boulder, Colorado, recently got funding from Xcel Energy to develop an advanced wind-prediction system. Storing power underground The ideal dance partner is hydroelectric...

Dan Charles

2009-04-10T23:59:59.000Z

306

Supporting Information:1 Contributions of individual reactive biogenic volatile organic compounds to organic2  

E-Print Network [OSTI]

System Laboratory, National Center for22 Atmospheric Research, Boulder, CO USA23 Now at: Air Pollution 8 Université Lille Nord de France, Lille, France16 9 ?cole des Mines de Douai, Douai, France17 10

Meskhidze, Nicholas

307

Posters Testing of Newtonian Nudging Technique  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Posters Testing of Newtonian Nudging Technique in Data Assimilation on the Meso-Beta-Scale Y.-R. Guo and Y.-H. Kuo National Center for Atmospheric Research Boulder, Colorado...

308

EXTREMAL MODELS AND ENVIRONMENTAL APPLICATIONS Institute for Study of Society and Environment  

E-Print Network [OSTI]

and Environment National Center for Atmospheric Research Boulder, CO USA email: rwk@ucar.edu Home page: www variables -- Engineering design Estimating return level of floods (Dams, flood plain definition) Estimating

Katz, Richard

309

Remote Sens. 2013, 5, 5662-5679; doi:10.3390/rs5115662 Remote Sensing  

E-Print Network [OSTI]

.Weishampel@ucf.edu 5 University Corporation for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA; E such as harmonic resynthesis and water level time series analysis. Based on the flooded/non-flooded coastal areas

Weishampel, John F.

310

Legislative Assistant for Science Legislative Assistant for Emergency Preparedness  

E-Print Network [OSTI]

FOR ATMOSPHERIC RESEARCH PO Box 3000, Boulder, Colorado, 80307-3000 303 497-2106 Phone · 303 497-2100 Fax. Major hurricane impacts are not confined to coastal communities -- heavy rainfall and flooding often

311

Atmos. Chem. Phys., 14, 58075824, 2014 www.atmos-chem-phys.net/14/5807/2014/  

E-Print Network [OSTI]

and Atmospheric Administration, Boulder, Colorado 80305, USA 10Centre for Isotope Research, Groningen was sensitive to climate variations, with the lowest uptake in 2010 concurrent with a summer flood and autumn

Pierce, Jeffrey

312

Impact of Airborne Doppler Radar Data Assimilation on the Numerical Simulation of Intensity Changes of Hurricane Dennis near a Landfall  

E-Print Network [OSTI]

of Utah, Salt Lake City, Utah JUANZHEN SUN National Center for Atmospheric Research, Boulder, Colorado, devastate coastal regions, and cause floods and erosion inland through torrential rainfall, high winds

Pu, Zhaoxia

313

BACKGROUND ON EXTREME VALUE THEORY WITH EMPHASIS ON CLIMATE APPLICATIONS  

E-Print Network [OSTI]

) No obvious long-term trend Recent flood, 28 July 1997 (Damaged campus of Colorado State Univ.) #12;21 #12 Institute for Study of Society and Environment National Center for Atmospheric Research Boulder, CO USA

Katz, Richard

314

BACKGROUND ON EXTREME VALUE THEORY WITH EMPHASIS ON CLIMATE APPLICATIONS  

E-Print Network [OSTI]

) No obvious long-term trend Recent flood, 28 July 1997 (Damaged campus of Colorado State Univ.) #12;21 #12. Katz Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder

Katz, Richard

315

Community Earth System Modeling Tutorial 12-16 July 2010  

E-Print Network [OSTI]

Community Earth System Modeling Tutorial 12-16 July 2010 National Center for Atmospheric Research, Boulder, CO APPLICATION DEADLINE: 15 April 2010 The Community Earth System Model (CESM) project

316

Process-level controls on CO2 fluxes from a seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado  

E-Print Network [OSTI]

Research, University of Colorado, Boulder, CO, USA e-mail:of Geography, University of Colorado, Boulder, CO, USA B.Sciences, University of Colorado, Boulder, CO, USA G.

2009-01-01T23:59:59.000Z

317

Atmospheric and Climate Science | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric and Climate Science Atmospheric and Climate Science Argonne research in aerosols, micro-meteorology, remote sensing, and atmospheric chemistry combined with our scalable, portable, high-performance climate and weather applications offer a unique look at the complexities of a dynamic planet. Changes in climate can affect biodiversity, the cost of food, our health, and even whole economies. Argonne is developing computational models and tools designed to shed light on complex biological processes and their economic, social, and health effects. Research spans the molecular level to whole organisms and their interaction with climate, the ecosystem, and human activities. The goal is to improve our understanding of the world around us while increasing the accuracy of regional climate models to

318

UNIVERSITY OF COLORADO BUFFALOES / SPORTS INFORMATION SERVICE www.CUBuffs.com Fieldhouse Annex #50, 357 UCB, Boulder, CO 80309-0357 --Telephone 303/492-5626 --david.plati@colorado.edu  

E-Print Network [OSTI]

, when Colorado won all five western meets en route to the NCAA title, this winter was topsyUNIVERSITY OF COLORADO BUFFALOES / SPORTS INFORMATION SERVICE www.CUBuffs.com Fieldhouse Annex #50, 357 UCB, Boulder, CO 80309-0357 -- Telephone 303/492-5626 -- david.plati@colorado.edu David Plati

Stowell, Michael

319

Atmospheric Physics and Earth Observations  

Science Journals Connector (OSTI)

...has been used by atmospheric modelers as a vertical...Ackerman, in Atmospheric Physics from Spacelab...shut-tle allows recovery of the film, we...dry nitrogen at atmospheric pressure. To avoid water condensation on the optical...

M. HERS

1984-07-13T23:59:59.000Z

320

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Radiation Measurement Program Atmospheric Radiation Measurement Program Aerosol Observing Systems: Status and Planned Upgrades P. Sheridan, J. Ogren, E. Andrews, and A. Jefferson National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division Boulder, Colorado E. Andrews, and J. Jefferson Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado D. Collins Department of Atmospheric Sciences Texas A&M University College Station, Texas To estimate global aerosol radiative forcing and the effects of aerosols on the global climate, measurements of atmospheric aerosols are being made by Atmospheric Radiation Measurement (ARM) Program using Aerosol Observing Systems (AOS) at several locations. These include the Southern

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wind Structure in the Atmospheric Boundary Layer  

Science Journals Connector (OSTI)

13 May 1971 research-article Wind Structure in the Atmospheric Boundary Layer...semi-empirical laws for the variation of mean wind speed with height and for the statistical...provide some useful ordering of the mean wind profile characteristics in relation to...

1971-01-01T23:59:59.000Z

322

Doctoral Programs Atmospheric, Oceanic & Space Sciences  

E-Print Network [OSTI]

Professor; Recipient, Teaching Innovation Prize; Michigan Distinguished Professor of the Year Allison Mission to Comet 67P / Churyumov- Gerasimenko · Solar and Heliospheric Physics Group · STEREO Mission,OceanicandSpaceSciences Atmospheric, Oceanic & Space Sciences University of Michigan Space Research Building 2455 Hayward Street Ann

Eustice, Ryan

323

Computational Methods for Atmospheric Science, ATS607 Colorado State University  

E-Print Network [OSTI]

Computational Methods for Atmospheric Science, ATS607 Colorado State University Department of Atmospheric Science, Spring 2014 Wednesdays and Fridays @ 2:15 ­ 3:30 Room: ENGR Research Center (ERC://pierce.atmos.colostate.edu Office hours: During the lab classes or by appointment. Teaching assistant: Chris Slocum (cslocum

324

Extended Canadian middle atmosphere model: zonal-mean climatology and  

E-Print Network [OSTI]

and data assimilation; 3334 Meteorology and Atmospheric Dynamics: Middle atmosphere dynamics (0341, 0342 the Upper Atmos- phere Research Satellite (UARS), such as the Wind Imaging Interferometer (WINDII) [Shepherd and Dynamics (TIMED) satellite. These observations have provided (or will provide) a unique set of information

Wirosoetisno, Djoko

325

Eltron Research and Development | Open Energy Information  

Open Energy Info (EERE)

Eltron Research and Development Eltron Research and Development Jump to: navigation, search Logo: Eltron Research and Development Name Eltron Research and Development Address 4600 Nautilus Court South Place Boulder, Colorado Zip 80301-3241 Phone number 303-530-0263 Website http://www.eltronresearch.com/ Coordinates 40.059218°, -105.203243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.059218,"lon":-105.203243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Indirect Effect Download a printable PDF Submitter: Oreopoulos, L., NASA Platnick, S., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Platnick, S, and L Oreopoulos. 2008. "Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS." Journal of Geophysical Research doi:10.1029/2007JD009654, in press. Oreopoulos, L., and S. Platnick. 2008. Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 2. Global analysis from MODIS, J. Geophys. Res., doi:10.1029/2007JD009655, in press. Theoretical calculations with a shortwave broadband radiative transfer

327

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Fractional Sky Cover from Spectral Measurements Estimating Fractional Sky Cover from Spectral Measurements Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Min, Q., State University of New York, Albany Wang, T., State University of New York, Albany Duan, M., Institute of Atmospheric Physics/Chinese Academy of Science Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Min Q, T Wang, CN Long, and M Duan. 2008. "Estimating fractional sky cover from spectral measurements." Journal of Geophysical Research - Atmospheres, 113, D20208, doi:10.1029/2008JD010278. Retrieved and observed cloud fractions and corresponding TSI cloud imagers on 8 July 2005 at Pt. Reyes. Scatterplot of retrieved cloud fraction from spectral ratio method and SW

328

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Surprisingly Large Contribution of Small Marine Clouds to Cloud The Surprisingly Large Contribution of Small Marine Clouds to Cloud Fraction and Reflectance Download a printable PDF Submitter: Oreopoulos, L., NASA Feingold, G., NOAA - Earth System Research Laboratory Koren, I., Weizmann Institute of Science Remer, L., NASA - GSFC, Laboratory for Atmospheres Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Cloud Properties Journal Reference: Koren, I, L Oreopoulos, G Feingold, LA Remer, and O Altaratz. 2008. "How small is a small cloud?" Atmospheric Chemistry and Physics Journal, in press Cloud mask for a sparse cumulus cloud field as inferred by using the same threshold at four different spatial resolutions. The upper-left panel is for the original Landsat resolution and the lower-right panel is for a

329

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Science Applications of AERI Measurements ARM Science Applications of AERI Measurements Submitter: Smith, W. L., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: DeSlover, D. H. 1996. Analysis of Visible and Infrared Cirrus Cloud Optical Properties Using High Spectral Resolution Remote Sensing, M.S. Thesis, University of Wisconsin - Madison. Ho, S.-P. 1997. Atmospheric Profiles From Simultaneous Observations of Upwelling and Downwelling Spectral Radiance, Ph.D. Thesis, University of Wisconsin - Madison. Knuteson, R. O., F. A. Best, H. B. Howell, P. Minnett, H. E. Revercomb, W. L. Smith. 1997. "High Spectral Resolution Infrared Observations at the Ocean-Atmosphere Interface in the Tropical Western Pacific using a Marine

330

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TOA Radiation Budget of Convective Core/Stratiform Rain/Anvil Clouds from TOA Radiation Budget of Convective Core/Stratiform Rain/Anvil Clouds from Deep Convection Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, XQ Dong, BK Xi, C Schumacher, P Minnis, and M Khaiyer. 2011. "Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems." Journal of Geophysical Research - Atmospheres, 116, D23202, doi:10.1029/2011JD016451. An example of the hybrid classification process. (a) GOES IR temperature, (b) NEXRAD radar reflectivity at 2.5 km MSL, (c) cloud patch segmentation from GOES IR temperature (the color patches are identified as deep

331

Atmospheric Dynamics of Exoplanets  

E-Print Network [OSTI]

The characterization of exoplanetary atmospheres has come of age in the last decade, as astronomical techniques now allow for albedos, chemical abundances, temperature profiles and maps, rotation periods and even wind speeds to be measured. Atmospheric dynamics sets the background state of density, temperature and velocity that determines or influences the spectral and temporal appearance of an exoplanetary atmosphere. Hot exoplanets are most amenable to these characterization techniques; in the present review, we focus on highly-irradiated, large exoplanets (the "hot Jupiters"), as astronomical data begin to confront theoretical questions. We summarize the basic atmospheric quantities inferred from the astronomical observations. We review the state of the art by addressing a series of current questions and look towards the future by considering a separate set of exploratory questions. Attaining the next level of understanding will require a concerted effort of constructing multi-faceted, multi-wavelength dat...

Heng, Kevin

2014-01-01T23:59:59.000Z

332

Atmospheric Mercury Deposition during the Last 270 Years: A  

E-Print Network [OSTI]

Atmospheric Mercury Deposition during the Last 270 Years: A Glacial Ice Core Record of Natural, and U.S. Geological Survey, Wisconsin District Mercury Research Laboratory, Middleton, Wisconsin 53562 Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation

333

Dental Applications of Atmospheric-Pressure Non-Thermal Plasmas  

Science Journals Connector (OSTI)

This chapter presents a summary of selected recent research efforts devoted to the use of low-temperature (or non-thermal) atmospheric-pressure plasmas in various dental applications. Areas of application ... fun...

WeiDong Zhu; Kurt Becker; Jie Pan; Jue Zhang; Jing Fang

2014-01-01T23:59:59.000Z

334

A U. S. Department of Energy User Facility Atmospheric Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program DOESC-ARMP-07-003 Science and Research Data Products Climate Data for the World A primary objective of the U.S. Department of Energy's Atmospheric Radiation...

335

Enhancing RFID label production with atmospheric plasma treatment  

Science Journals Connector (OSTI)

RFID research and development requires technical expertise of ink and adhesive manufacturers, surface treatment and printing equipment manufacturers, package printers, and electronics firms. In this framework, a strong enhancement in production and quality ... Keywords: RFID labels, atmospheric plasma, labels, logistics

R. A. Wolf; A. Sparavigna; B. Montrucchio

2006-07-01T23:59:59.000Z

336

The Energy Budget of the Polar Atmosphere in MERRA  

Science Journals Connector (OSTI)

Components of the atmospheric energy budget from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) are evaluated in polar regions for the period 19792005 and compared with previous estimates, in situ observations, and ...

Richard I. Cullather; Michael G. Bosilovich

2012-01-01T23:59:59.000Z

337

Posters Ship-Based Measurements of Cloud Optical Properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Posters Ship-Based Measurements of Cloud Optical Properties During the Atlantic Stratocumulus Transition Experiment A. B. White Cooperative Institute for Research in Environmental Sciences University of Colorado at Boulder National Oceanic and Atmospheric Administration Boulder, Colorado C. W. Fairall National Oceanic and Atmospheric Administration Environmental Research Laboratories Environmental Technology Laboratory Boulder, Colorado Introduction The Atlantic Stratocumulus Transition Experiment (ASTEX), conducted in June 1992, was designed with the broad goal of improving the dynamical, radiative, and microphysical models of marine boundary layer (MBL) clouds. This goal was pursued by combining measurements from a number of different platforms including aircraft,

338

ARM Climate Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

banner banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings Propose a Campaign Submitting Proposals: Guidelines Featured Campaigns Campaign Data List of Campaigns Aerial Facility Eastern North Atlantic Mobile Facilities North Slope of Alaska Southern Great Plains Tropical Western Pacific Location Table Contacts Instrument Datastreams Value-Added Products PI Data Products Field Campaign Data Related Data

339

E-Print Network 3.0 - atmospheric administration national Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

national Page: << < 1 2 3 4 5 > >> 1 Madelyn Appelbaum Senior Communications Policy Advisor Summary: Communications Director Office of Oceanic & Atmospheric Research National...

340

E-Print Network 3.0 - atmospheric stability impacts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technical coupling software... linking the main model components of present-day Earth System models (ESMs), i.e. the atmosphere Source: European Centre for Research and Advanced...

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - atmospheric stability conditions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technical coupling software... linking the main model components of present-day Earth System models (ESMs), i.e. the atmosphere Source: European Centre for Research and Advanced...

342

E-Print Network 3.0 - atmosphere amap-nuuk west Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the Atmosphere AMAP- Nuuk, Westgreenland 2002-2004 NERI Technical Report, No. 547 12;Tom side 12;National... Environmental Research Institute Ministry of the Environment...

343

E-Print Network 3.0 - atmospheric multiple scattering Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in planetary atmospheres. Part II. Sunlight... , so the absorption lines in reflected solar light ... Source: Fridlind, Ann - Earth Science Division, NASA Ames Research Center...

344

E-Print Network 3.0 - atmosphere radiation budget Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the solar constant albedo Changes in atmospheric infrared opacity The "greenhouse effect" Time constants Source: Sherwood, Steven - Climate Change Research Centre,...

345

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Program Achieves Milestone in Global Cloud Properties Research ARM Program Achieves Milestone in Global Cloud Properties Research Submitter: Revercomb, H. E., University of Wisconsin, Madison Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Knuteson, R.O., Best, F.A., Dedecker, R.G., Feltz, W.F., Revercomb, H.E., and Tobin, D.C., 2004: "10 Years of AERI Data from the DOE ARM Southern Great Plains Site," In Proceedings from the Fourteenth ARM Science Team Meeting, U.S. Department of Energy,Washington, D.C. Figure 1 Figure 2 From the unassuming farmlands of north-central Oklahoma comes a milestone for the global climate research community. March 2004 marked the 10-year anniversary for an instrument that now holds the prestigious distinction of providing the longest set of continuous atmospheric interferometer data

346

Atmospheric Delta 14C Record from Wellington  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Isotopes » Carbon Isotopes » δ14C from Wellington Atmospheric δ14C Record from Wellington graphics Graphics data Data Investigators M.R. Manning, W.H. Melhuish National Institute of Water and Atmospheric Research, Ltd., Climate Division, Gracefield Road, Gracefield, P.O. Box 31-311, Lower Hutt, New Zealand Period of Record 1954-93 Methods Trays containing ~2 L of 5 normal NaOH carbonate-free solution are typically exposed for intervals of 1-2 weeks, and the atmospheric CO2 absorbed during that time is recovered by acid evolution. Considerable fractionation occurs during absorption into the NaOH solution, and the standard fractionation correction (Stuiver and Polach 1977) is used to determine a δ 14C value corrected to δ 13C = -25 per mil. Some samples reported here were taken using BaOH solution or with extended

347

Our Dusty Atmosphere | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dusty Atmosphere Dusty Atmosphere Our Dusty Atmosphere September 6, 2011 - 4:26pm Addthis A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Researchers are developing a better understanding of the effects of

348

Our Dusty Atmosphere | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Our Dusty Atmosphere Our Dusty Atmosphere Our Dusty Atmosphere September 6, 2011 - 4:26pm Addthis A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Researchers are developing a better understanding of the effects of

349

Article Atmospheric Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

© The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp © The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp *Corresponding author (email: luchunsong110@gmail.com) Article Atmospheric Science February 2013 Vol.58 No.4-5: 545  551 doi: 10.1007/s11434-012-5556-6 A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds LU ChunSong 1,2* , LIU YanGang 2 & NIU ShengJie 1 1 Key Laboratory for Atmospheric Physics and Environment of China Meteorological Administration, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 Atmospheric Sciences Division, Brookhaven National Laboratory, New York 11973, USA

350

ARM - Measurement - Atmospheric moisture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

moisture moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer

351

ARM - Measurement - Atmospheric pressure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pressure pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

352

ARM - Measurement - Atmospheric temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

353

Atmospheres of Brown Dwarfs  

E-Print Network [OSTI]

Brown Dwarfs are the coolest class of stellar objects known to date. Our present perception is that Brown Dwarfs follow the principles of star formation, and that Brown Dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes Brown Dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown Dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying Xray-activity indicators across the fully convective boundary.

Helling, Christiane

2014-01-01T23:59:59.000Z

354

Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry  

Science Journals Connector (OSTI)

...stress and links to atmospheric new particle production . Environ...National Oceanic and Atmospheric Administration...antioxidant impacting atmospheric chemistry...Research Support, Non-U.S. Gov't...TurboMatrix Automated Thermal Desorption...4) to remove plasma. Hereafter, blood...

Frithjof C. Kpper; Lucy J. Carpenter; Gordon B. McFiggans; Carl J. Palmer; Tim J. Waite; Eva-Maria Boneberg; Sonja Woitsch; Markus Weiller; Rafael Abela; Daniel Grolimund; Philippe Potin; Alison Butler; George W. Luther III; Peter M. H. Kroneck; Wolfram Meyer-Klaucke; Martin C. Feiters

2008-01-01T23:59:59.000Z

355

A white paper on Effects of Anthropogenic Pollution on the Atmospheric  

E-Print Network [OSTI]

1 A white paper on Effects of Anthropogenic Pollution on the Atmospheric Chemistry of the Tropical Brazilian Partner Organizations National Institute for Amazonian Research (INPA)1 The Large-Scale Biosphere-Atmosphere by the atmospheric oxidation of trace gases to low volatility compounds (Chen et al. 2009). These products can

356

A Community Atmosphere Model with Superparameterized Clouds  

SciTech Connect (OSTI)

In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

2013-06-18T23:59:59.000Z

357

jtechD1200146 1038..1054  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Signal Signal Postprocessing and Reflectivity Calibration of the Atmospheric Radiation Measurement Program 915-MHz Wind Profilers FR  ED  ERIC TRIDON AND ALESSANDRO BATTAGLIA Earth Observation Sciences, Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom PAVLOS KOLLIAS Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada EDWARD LUKE Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, New York CHRISTOPHER R. WILLIAMS Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado (Manuscript received 12 July 2012, in final form 4 December 2012) ABSTRACT The Department of Energy Atmospheric Radiation Measurement (ARM) Program has recently initiated

358

Oxygen detected in atmosphere of Saturn's moon Dione  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of molecular oxygen ions in the upper-most atmosphere of Dione. March 3, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

359

Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar  

E-Print Network [OSTI]

in 1970s.6) In order to explain this weakening *1 Research Institute for Sustainable Humanosphere (RISH for Sustainable Humanosphere (RISH), Kyoto Univer- sity, Uji, Kyoto 611-0011, Japan (e-mail: tsuda processes of atmospheric gravity waves was proposed.7),8) In the 1980s a notable advance was made

Takada, Shoji

360

in Parallel Supercomputing in Atmospheric Science, eds. GR. Hoff man and T. Kauranne, World Scientific, 1993, 500--513.  

E-Print Network [OSTI]

for Atmospheric Research 3 Abstract This paper is a brief overview of a parallel version of the NCAR Community, Office of Energy Research, U.S. Department of Energy under contract DE­AC05­84OR21400 with Martin Marietta Energy Systems Inc. 2 This research was supported by the Atmospheric and Climate Research Division

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Dynamics of Planetary Atmospheres  

E-Print Network [OSTI]

pressure (bars) N2 82%; Ar 12%; CH4 6%CO2 96.5%; N2 3.5%Atmospheric composition 26177Orbital inclination (1992) orbiter ­ Winds from cloud-tracking and probe drifts ­ IR temperatures, solar-fixed tides, polar-Huygens mission (from 2005) ­ Doppler wind descent profile ­ IR temperature and composition maps ­ Visible, IR

Read, Peter L.

362

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

More Like Shades of Gray: the Effects of Black Carbon in Aerosols More Like Shades of Gray: the Effects of Black Carbon in Aerosols Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Cappa CD, TB Onasch, P Massoli, DR Worsnop, TS Bates, ES Cross, P Davidovits, J Hakala, KL Hayden, BT Jobson, KR Kolesar, DA Lack, BM Lerner, SM Li, D Mellon, I Nuaaman, JS Olfert, T Petaja, PK Quinn, C Song, R Subramanian, EJ Williams, and RA Zaveri. 2012. "Radiative absorption enhancements due to the mixing state of atmospheric black carbon." Science, 337(6098), doi:10.1126/science.1223447. Black to the core: Scientists are combining field and laboratory measurements to understand more about the physical properties of aerosols

363

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Method Simulates 3D Ice Crystal Growth Within Clouds New Method Simulates 3D Ice Crystal Growth Within Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Harrington JY, K Sulia, and H Morrison. 2013. "A method for adaptive habit prediction in bulk microphysical models. Part I: theoretical development." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-040.1. Harrington JY, K Sulia, and H Morrison. 2013. "A method for adaptive habit prediction in bulk microphysical models. Part II: parcel model corroboration." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-0152.1. A close-up of ice crystals. Ever noticed the different shapes of snowflakes sticking on the windowpane

364

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dust in the Wind... and the Clouds... and the Atmosphere Dust in the Wind... and the Clouds... and the Atmosphere Submitter: Sassen, K., University of Alaska, Fairbanks Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sassen, K., P.J. DeMott, J.M. Propsero, and M.R. Poellot, Saharan Dust Storms and Indirect Aerosol Effects on Clouds: CRYSTAL-FACE Results, Geophys. Res. Ltt., 30(12), 1633, doi:10/1029/2003GL017371, 2003. PDL linear depolarization ratio (color scale on top) and relative returned power (in gray scale) of height versus time displays obtained on July 29, 2002, during the CRYSTAL-FACE experiment. Depicted are strong depolarizing upper tropospheric clouds (~10km), aerosols (δ ~.10 to .15) extending up to ~5.5km, and at lower right (scale adjusted to account for signal

365

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Observation-Based Estimates of Cloud-Free Aerosol Radiative Forcing First Observation-Based Estimates of Cloud-Free Aerosol Radiative Forcing Across China Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: N/A Mean annual shortwave aerosol radiative forcing (SWARF) averaged across China. Spatial variation of the annual mean SW aerosol radiative forcing. Heavy loading of aerosols in China is widely known, but little is known about their impact on regional radiation budgets, which is often expressed as aerosol radiative forcing (ARF). Depending on their composition, aerosols can absorb a substantial amount of solar radiation, leading to a warming of the atmosphere and cooling of the surface. Many investigations have been made to characterize atmospheric aerosols and their radiative

366

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale Shows True Weight of Aerosol Effects on Clouds Scale Shows True Weight of Aerosol Effects on Clouds Download a printable PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: McComiskey A and G Feingold. 2012. "The scale problem in quantifying aerosol indirect effects." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-1031-2012. Differing values: Values derived from aircraft and surface observations, which represent disaggregated data, differ from those derived from satellite-based data, which represent data aggregated at a range of levels. Currently, many climate change models treat the two types of data the same. Aerosols-tiny airborne particles from sources like pollution or desert

367

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Properties Journal Reference: Turner, D.D., S.A. Ackerman, B.A. Baum, H.E. Revercomb, and P. Yang, 2003: "Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA," Journal of Applied Meteorology 42(6):701-715. The SHEBA experiment in Barrow, Alaska used data collected by the ground-based radiation observations from the Atmospheric Emitted Radiance Interferometer (AERI). (Photo Credit: SHEBA Project Office) Key Contributors: S.A. Ackerman, B.A. Baum, H.E. Revercomb, P. Yang, In the frigid environs of the Acrtic, ARM scientists at the North Slope of

368

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power in the Vertical: Using Wind Profiler Data to Study Precipitation Power in the Vertical: Using Wind Profiler Data to Study Precipitation Download a printable PDF Submitter: Kollias, P., McGill University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Tridon F, A Battaglia, P Kollias, E Luke, and C Williams. 2013. "Signal post-processing and reflectivity calibration of the Atmospheric Radiation Measurement Program 915 MHz wind profilers." Journal of Atmospheric and Oceanic Technology, 30(6), doi:10.1175/JTECH-D-12-00146.1. Because ARM's wind profilers (foreground) can take vertical as well as horizontal measurements, the instruments can be used with appropriate processing and calibration to help study rainfall. For more than two decades, radar wind profilers of the U.S. Department of

369

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

When Pollution Gets a Whiff of Trees When Pollution Gets a Whiff of Trees Download a printable PDF Submitter: Shilling, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Shilling JE, RA Zaveri, JD Fast, L Kleinman, M Alexander, MR Canagaratna, E Fortner, JM Hubbe, JT Jayne, A Sedlacek, A Setyan, S Springston, DR Worsnop, and Q Zhang. 2013. "Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign." Atmospheric Chemistry and Physics, 13, doi:10.5194/acp-13-2091-2013. Organic aerosols from tree emissions increase when mixed with manmade sources, impacting the climate. It's easy to visualize particles and gases from vehicle exhaust or burning trash wafting into the atmosphere. It's harder to envision similar gases

370

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Progress Towards Climate Projections of Central U.S. Rainfall Using a Progress Towards Climate Projections of Central U.S. Rainfall Using a Global Model with Embedded Explicit Convection Download a printable PDF Submitter: Pritchard, M. S., Scripps Institution of Oceanography Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Pritchard MS, MW Moncrieff, and RC Somerville. 2011. "Orogenic propagating precipitation systems over the US in a global climate model with embedded explicit convection." Journal of the Atmospheric Sciences, 68, doi:10.1175/2011JAS3699.1. Characteristic time-longitude structure of central U.S. summer diurnal convection (35-45 N) (a) as observed in 2005 from space-borne infrared imagers, and as simulated by (b) the Community Atmosphere Model (CAM) v3.5

371

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Increased Accuracy for Sky Imager Retrievals Increased Accuracy for Sky Imager Retrievals Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Long CN. 2010. "Correcting for circumsolar and near-horizon errors in sky cover retrievals from sky images." The Open Atmospheric Science Journal, 4, doi:10.2174/1874282301004010045. Long CN, JM Sabburg, J Calbo, and D Pages. 2006. "Retrieving cloud characteristics from ground-based daytime all-sky images." Journal of Atmospheric and Oceanic Technology, 23, 633-652. Sample sky image (left) and corresponding cloud decision image (right) showing an example of the over-estimating problem. White and gray in the

372

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Looking at the Full Spectrum for Water Vapor Looking at the Full Spectrum for Water Vapor Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi: 10.1098/rsta.2011.0295. Radiative cooling across the full infrared spectrum: The far-infrared (the left half of the figure, from 15 to 1000 microns) plays a key role in heat transfer in the atmosphere, but scientists could not measure it, and model calculations were consequently very uncertain. Field observations from

373

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantifying the Number of Independent Pieces of Information in Profiles Quantifying the Number of Independent Pieces of Information in Profiles Download a printable PDF Submitter: Crewell, S., University of Cologne Loehnert, U., University of Cologne Turner, D. D., National Oceanic and Atmospheric Administration Ebell, K., University of Cologne Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Radiative Processes Journal Reference: Lohnert U, DD Turner, and S Crewell. 2009. "Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions." Journal of Applied Meteorology and Climatology, 48(5), 1017-1032. Crewell S, K Ebell, U Loehnert, and DD Turner. 2009. "Can liquid water profiles be retrieved from passive microwave zenith observations?"

374

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determining the Future of CO2 Using an Earth System Model Determining the Future of CO2 Using an Earth System Model Download a printable PDF Submitter: Keppel-Aleks, G., University of Michigan Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol Life Cycle Journal Reference: Keppel-Aleks G, JT Randerson, K Lindsay, BB Stephens, JK Moore, SC Doney, PE Thornton, NM Mahowald, FM Hoffman, C Sweeney, PP Tans, PO Wennberg, and SC Wofsy. 2013. "Atmospheric carbon dioxide variability in the Community Earth System Model: evaluation and transient dynamics during the twentieth and twenty-first centuries." Journal of Climate, 26(13), doi:10.1175/JCLI-D-12-00589.1. How models, such as the Community Earth System Model, simulate the amount of CO2 in the atmosphere will likely hold the key to monitoring climate

375

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multifractal Analysis of Radiation in Clouds: 5000km to 50cm Multifractal Analysis of Radiation in Clouds: 5000km to 50cm Submitter: Lovejoy, S., McGill University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Lovejoy, S., D. Schertzer, J. D. Stanway, 2001: "Direct Evidence of planetary scale atmospheric cascade dynamics," Phys. Rev. Lett. 86(22): 5200-5203. Left: Power spectrum of the 5 different aircraft measured liquid water data sets from the FIRE experiment (averaged over 10 equally logarithmically spaced points on the k-axis and vertically offset). The absolute slopes with Β = 1.45 is indicated (straight line on top of graph) for reference. The number of sets used to compute the average from top to bottom: 4, 3, 1, 2, 5. A constant aircraft speed of 100m/s has been assumed. Right: Ensemble

376

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data from DOE Atmospheric Radiation Measurement Program Allows Evaluation Data from DOE Atmospheric Radiation Measurement Program Allows Evaluation of Surface Models Submitter: Robock, A., Rutgers University Area of Research: Surface Properties Working Group(s): Cloud Modeling Journal Reference: Robock, A., Luo, L., Wood, E. F., Wen, F., Mitchell, K. E., Houser, P. R., Schaake, J. C., Lohmann, D., Cosgrove, B., Sheffield, J., Duan, Q., Higgins, R. W., Pinker, R. T., Tarpley, J. D., Basara, J. D., Crawford, K. C., Evaluation of the North American Land Data Assimilation System over the Southern Great Plains during the warm season, J. Geophys. Res., 108(D22), 8846, doi:10.1029/2002JD003245, 2003 An example of the model discrepancies is shown in a comparison of monthly mean diurnal cycle data from July 1999 at the ARM Southern Great Plains

377

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Simulation of Boundary Layer Clouds Improved Simulation of Boundary Layer Clouds Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1. Comparison of Boundary Layer Clouds Schemes in Climate Models with Satellite Observations Key Contributors: James McCaa, as part of his Ph.D. dissertation at University of Washington Chris Bretherton, University of Washington Dennis Hartmann, University of Washington Steven Ghan, Pacific Northwest National Laboratory Marine boundary layer clouds are among the most difficult clouds to represent in climate models. A team of atmospheric scientists from the University of Washington (UW) and the Pacific Northwest National Laboratory

378

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Comparison of Integrated Water Vapor Sensors: WVIOP-96 A Comparison of Integrated Water Vapor Sensors: WVIOP-96 Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 The 1996 Water Vapor Intensive Operations Period (WVIOP-96) was conducted at the SGP CART central facility in September in order to assess the skill of a wide variety of sensors in measuring atmospheric water vapor. Here we present a comparison of radiometric brightness temperatures (TB) and vertically-integrated or "precipitable" water vapor (PWV) amounts derived from eight collocated ARM microwave radiometers, as well as microwave radiometers from the NOAA Environmental Technology Laboratory

379

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Cloud-Resolving Model to Identify the Role of Aerosols on Clouds a Cloud-Resolving Model to Identify the Role of Aerosols on Clouds and Precipitation Download a printable PDF Submitter: Tao, W., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol, Cloud Modeling Journal Reference: Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophy. Res., (accepted). Zeng, X., W.-K. Tao, S. Lang, A. Y. Hou, M. Zhang, and J. Simpson, 2007: On the sensitivity of atmospheric ensemble states to cloud microphyics in long-term cloud-resolving model simulations. J. Meteor. Soc. Jpn., (submitted). Figure 1. Dirty environment (or high CCN) enhances precipitation in a

380

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparisons Between Radiosondes and Remote Sensors During the 2004 NSA Comparisons Between Radiosondes and Remote Sensors During the 2004 NSA Arctic Winter Radiometric Experiment Submitter: Westwater, E. R., University of Colorado Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Radiative Processes Journal Reference: Mattioli, V, ER Westwater, D Cimini, JS Liljegren, BM Lesht, SI Gutman, and FJ Schmidlin. 2007. "Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment." Journal of Atmospheric and Oceanic Technology 243: 415-431. Description of radiosondes launched during the 2004 NSA Arctic Winter Radiometric Experiment. Dual-radiosonde launch of the Vaisala RS90 and Chilled Mirror radiosondes is pictured here.

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Integrated Column Description An Integrated Column Description of the Atmosphere An Integrated Column Description of the Atmosphere Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific Northwest National Laboratory The "other" Washington ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Credits to Credits to * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Outline Outline * A little philosophy

382

Solar Technology Acceleration Center (SolarTAC): Cooperative Research and Development Final Report, CRADA Number CRD-07-259  

SciTech Connect (OSTI)

This agreement allowed NREL to serve as an advisor on SolarTAC - a collaborative effort between Xcel Energy, NREL, and the University of Colorado at Boulder. The collaboration was formed to accelerate pre-commercial and early commercial solar energy technologies to the marketplace. Through this CRADA, NREL participated in the deployment of solar energy generation technologies and related solar equipment for research, testing, validation, and demonstration purposes.

Kramer, W.

2011-10-01T23:59:59.000Z

383

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chinese Researchers Report Reliable Method for Monitoring Soil Moisture Chinese Researchers Report Reliable Method for Monitoring Soil Moisture Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Sun L, R Sun, XW Li, SL Liang, and RH Zhang. 2012. "Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information." Agricultural and Forest Meteorology, 166, doi:10.1016/j.agrformet.2012.07.015. Shown here is the SGP Central Facility, where the most comprehensive instrument suite is hosted. Moisture trapped in soil provides water necessary for vegetation and crops, but how much of that moisture makes its way into the atmosphere and influences regional meteorology? The poor understanding of the role of soil

384

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Putting the Pieces Together Putting the Pieces Together Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Fan J, S Ghan, M Ovchinnikov, X Liu, P Rasch, and A Korolev. 2011. "Representation of arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study." Journal of Geophysical Research - Atmospheres, 116, D00T07, doi:10.1029/2010JD015375. PNNL's Arctic mixed-phase cloud research was augmented with field observations from the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Northern Alaska. Photo courtesy of A. Korolev, Environment Canada. Vertical cross sections of (a) the vertical velocity (the contour lines)

385

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parameterizing the Ice Fall Speed in Climate Models: Results from TC4 and Parameterizing the Ice Fall Speed in Climate Models: Results from TC4 and ISDAC Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Mishra, S., NOAA - Coop. Inst. for Mesoscale Meteorological Studies Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mitchell DL, S Mishra, and RP Lawson. 2011. "Representing the ice fall speed in climate models: Results from Tropical Composition, Cloud and Climate Coupling (TC4) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC)." Journal of Geophysical Research - Atmospheres, 116, D00T03, doi:10.1029/2010JD015433. Relationship between De and Vm for all tropical cirrus cloud types (solid

386

Atmosphere to Electrons Initiative Takes Shape  

Broader source: Energy.gov [DOE]

Since DOE launched its Atmosphere to Electrons (A2e) Initiative last July, the A2e executive committee has been developing a comprehensive approach for working with multiple stakeholders (industry, national laboratories, international experts, and universities) over the next 5- to 7 years. In February, they held an external merit review to lay the groundwork for an A2e multi-year strategic research plan.

387

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SGPGET: AN SBDART Module for SGPGET: AN SBDART Module for Aerosol Radiative Transfer A. McComiskey Cooperative Institute for Research in the Environmental Sciences University of Colorado Boulder, Colorado and Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado P. Ricchiazzi Institute for Computational Earth System Science University of California Santa Barbara, California J.A. Ogren and E. Dutton Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado Abstract Quantification of the aerosol direct effect and climate sensitivity requires accurate estimates of optical properties as inputs to a radiative transfer model. Long-term measurements of aerosol properties at the

388

The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2004 North Slope of Alaska 2004 North Slope of Alaska Arctic Winter Radiometric Experiment E. R. Westwater, M. A. Klein, and V. Leuski Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado A. J. Gasiewski, T. Uttal, and D. A. Hazen National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado D. Cimini Remote Sensing Division, CETEMPS Universita' dell'Aquila L'Aquila, Italy V. Mattioli Dipartimento di Ingegneria Elettronica e dell'Informazione Perugia, Italy B. L. Weber and S. Dowlatshahi Science Technology Corporation Boulder, Colorado J. A. Shaw Department of Electrical and Computer Engineering

389

UC Riverside Engineering Students Receive Research  

E-Print Network [OSTI]

senior who has done worked at CE-CERT's Atmospheric Pollution Laboratory (APL), has won a highly the California Institute of technology (Caltech) to pursue her Ph.D. in atmospheric studies. As an undergraduate and environmental engineering. "Lindsay has been a top researcher in our atmospheric processes lab for four years

390

ARM - Measurement - Atmospheric turbulence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbulence turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

391

Differential atmospheric tritium sampler  

DOE Patents [OSTI]

An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

Griesbach, O.A.; Stencel, J.R.

1987-10-02T23:59:59.000Z

392

Differential atmospheric tritium sampler  

DOE Patents [OSTI]

An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

1990-01-01T23:59:59.000Z

393

E-Print Network 3.0 - atmosphere solving faint Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences, University of Colorado at Boulder Collection: Physics 2 The Faint Young Sun Piet Martens Harvard-Smithsonian Center for Summary: for a solution? Astrophysical...

394

The changing atmosphere  

SciTech Connect (OSTI)

The chemistry of the atmosphere is changing, in large measure because of gases emitted by such human activities as farming, manufacturing, and the combustion of fossil fuels. The deleterious effects are increasingly evident; they may well become worse in the years ahead. This paper discusses the pollutants and the environmental perturbations with which they are associated. The authors believe the solution to the earth's environmental problems lies in a truly global effort.

Graedel, T.E.; Crutzen, P.J.

1989-09-01T23:59:59.000Z

395

Stability and Turbulence in the Atmospheric Boundary Layer: A Comparison of Remote Sensing and Tower Observations  

SciTech Connect (OSTI)

When monitoring winds and atmospheric stability for wind energy applications, remote sensing instruments present some advantages to in-situ instrumentation such as larger vertical extent, in some cases easy installation and maintenance, measurements of vertical humidity profiles throughout the boundary layer, and no restrictions on prevailing wind directions. In this study, we compare remote sensing devices, Windcube lidar and microwave radiometer, to meteorological in-situ tower measurements to demonstrate the accuracy of these measurements and to assess the utility of the remote sensing instruments in overcoming tower limitations. We compare temperature and wind observations, as well as calculations of Brunt-Vaisala frequency and Richardson numbers for the instrument deployment period in May-June 2011 at the U.S. Department of Energy National Renewable Energy Laboratory's National Wind Technology Center near Boulder, Colorado. The study reveals that a lidar and radiometer measure wind and temperature with the same accuracy as tower instruments, while also providing advantages for monitoring stability and turbulence. We demonstrate that the atmospheric stability is determined more accurately when the liquid-water mixing ratio derived from the vertical humidity profile is considered under moist-adiabatic conditions.

Friedrich, K.; Lundquist, J. K.; Aitken, M.; Kalina, E. A.; Marshall, R. F.

2012-01-01T23:59:59.000Z

396

Atmospheric,OceanicandSpaceSciences IntroductIon  

E-Print Network [OSTI]

to understand the Earth, atmosphere, planets, solar system and space weather in a whole systemic view, rather in the University of Michigan tradition: The Leaders and The Best #12;About AoSS Concerned with Research ... Concerned with Knowledge Like the University of Michigan, AOSS combines the best of two worlds: research

Eustice, Ryan

397

Planetary, Atmospheric, and Environmental Applications of Physics Frank Mills  

E-Print Network [OSTI]

solar energy production Evaluating, forecasting, and managing suburb-scale distributed solar electricity of clouds on the production of solar energy. Most of my research is done in collaboration with other groups production My research applies physics to a range of problems in planetary, atmospheric, and environmental

Chen, Ying

398

Resampling Methods and High-Dimensional Data, Texas A&M, 3/25/2010 Analyzing and Combining Regional  

E-Print Network [OSTI]

, snowpack, etc. ­ Skiing, fire, water, crops, public health, power, etc. · Generating regional climate in to Geosciences National Center for Atmospheric Research Boulder, CO Claudia Tebaldi, Climate Central; Cari. · An atmosphere-ocean general circulation model (AOGCM or GCM) couples an atmosphere model with an ocean model

Sain, Steve

399

4, 28772914, 2007 Air-sea O2 flux  

E-Print Network [OSTI]

Variability in air-sea O2 and CO2 fluxes and its impact on atmospheric potential oxygen (APO 2 1 National Center for Atmospheric Research, Boulder, Colorado, USA 2 Dept. of Marine Chemistry-friendly Version Interactive Discussion EGU Abstract A three dimensional, time-evolving field of atmospheric

Paris-Sud XI, Université de

400

8, 83578384, 2008 Mexico City pollution  

E-Print Network [OSTI]

ACPD 8, 8357­8384, 2008 Mexico City pollution weekend effect S. Stephens et al. Title Page Abstract/8357/2008/ © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric , and R. Mu~noz4 1 Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM Site Atmospheric State Best Estimates for AIRS Validation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Atmospheric State Best Estimates Site Atmospheric State Best Estimates for AIRS Validation D. C. Tobin, H. E. Revercomb, W. F. Feltz, R. D. Knuteson, and D. D. Turner Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin B. M. Lesht Environmental Research Division Argonne National Laboratory Argonne, Illinois L. Strow University of Maryland College Park, Maryland C. Barnet Joint Center for Earth Systems Technology Baltimore, Maryland E. Fetzer National Aeronautics Space Administration Jet Propulsion Laboratory Pasadena, California Introduction The atmospheric infrared sounder (AIRS) is a high spectral resolution infrared sounder on the earth observing plan (EOS) Aqua platform. Temperature and water vapor profile retrievals from AIRS are

402

Atmospheric Pressure Deposition for Electrochromic Windows |...  

Broader source: Energy.gov (indexed) [DOE]

Atmospheric Pressure Deposition for Electrochromic Windows Atmospheric Pressure Deposition for Electrochromic Windows Emerging Technologies Project for the 2013 Building...

403

dudhia-98.pdf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Verification of June 1993 IOP Assimilation Dataset and its Verification of June 1993 IOP Assimilation Dataset and its Use in Driving a Single-Column CCM3 Model J. Dudhia Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research Boulder, Colorado D. B. Parsons Atmospheric Technology Division National Center for Atmospheric Research Boulder, Colorado J. Petch Climate and Global Dynamics Division National Center for Atmospheric Research Boulder, Colorado Overview One goal of the Atmospheric Radiation Measurement (ARM) Program is to improve general circulation models (GCMs) by obtaining detailed meteorological information in limited areas of order 200 km square and comparing GCM parameterizations with the mean radiative and convective properties in such areas. Typical GCM grid boxes are 100 km to 200 km square, but there is in reality much

404

Atmospheric Chemistry of Dichlorvos  

Science Journals Connector (OSTI)

Atmospheric Chemistry of Dichlorvos ... In the positive ion mode, protonated water hydrates (H3O+(H2O)n) generated by the corona discharge in the chamber diluent air were responsible for the protonation of analytes, and the ions that were mass analyzed were mainly protonated molecules ([M + H]+) and their protonated homo- and heterodimers. ... Methyl nitrite, 2-propyl nitrite and N2O5 were prepared and stored as described previously,(8, 10) and O3 in O2 diluent was generated using a Welsbach T-408 ozone generator. ...

Sara M. Aschmann; Ernesto C. Tuazon; William D. Long; Roger Atkinson

2011-03-15T23:59:59.000Z

405

Atmospheric Aerosol Chemistry Analyzer: Demonstration of feasibility  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to demonstrate the technical feasibility of an Atmospheric Aerosol Chemistry Analyzer (AACA) that will provide a continuous, real-time analysis of the elemental (major, minor and trace) composition of atmospheric aerosols. The AACA concept is based on sampling the atmospheric aerosol through a wet cyclone scrubber that produces an aqueous suspension of the particles. This suspension can then be analyzed for elemental composition by ICP/MS or collected for subsequent analysis by other methods. The key technical challenge was to develop a wet cyclone aerosol sampler suitable for respirable particles found in ambient aerosols. We adapted an ultrasonic nebulizer to a conventional, commercially available, cyclone aerosol sampler and completed collection efficiency tests for the unit, which was shown to efficiently collect particles as small as 0.2 microns. We have completed the necessary basic research and have demonstrated the feasibility of the AACA concept.

Mroz, E.J.; Olivares, J.; Kok, G.

1996-04-01T23:59:59.000Z

406

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Short and the Long of Storms: Tracing a Deep Convective System's Life The Short and the Long of Storms: Tracing a Deep Convective System's Life in the Midlatitude Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, X Dong, B Xi, S McFarlane, A Kennedy, B Lin, and P Minnis. 2012. "Life cycle of midlatitude deep convective systems in a Lagrangian framework." Journal of Geophysical Research - Atmospheres, 117(D23), D23201, doi:10.1029/2012JD018362. The life cycle of a convective system tracked by the automated tracking algorithm in the study domain. Time increases from the top left to the bottom right, and each image represents an hour. The colors represent regions given by the hybrid classification.

407

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hemispherical Simulations Show Impact of Aerosols on Cloud Reflectivity Hemispherical Simulations Show Impact of Aerosols on Cloud Reflectivity Submitter: Rotstayn, L., Commonwealth Scientific and Industrial Research Organization Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Rotstayn, L., and Y. Liu, Sensitivity of the First Indirect Aerosol Effect to an Increase in Cloud Droplet Spectral Dispersion with Droplet Number Concentration, Journal of Climate: Vol. 16, No. 21, pp.3476-3481, May 2003. Figure 1. Measurements of the relation between the relative dispersion of the cloud droplet spectrum and the cloud droplet number concentration (N). The lower, middle, and upper curves show the parameterizations used in the LOWER, MIDDLE, and UPPER simulations, respectively. A recent study by DOE Atmospheric Radiation Measurement (ARM) Program

408

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micropulse Lidar-Derived Aerosol Optical Depth Climatology at ARM Sites Micropulse Lidar-Derived Aerosol Optical Depth Climatology at ARM Sites Worldwide Download a printable PDF Submitter: Kafle, D. N., University of California, Riverside Coulter, R. L., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Kafle DN and RL Coulter. 2013. "Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide." Journal of Geophysical Research - Atmospheres, 118(13), 10.1002/jgrd.50536. Vertical profiles of multi-year annually averaged AOD (z) at different ARM sites: SGP, NSA, TWP, GRW, and FKB. Inset plots are the profiles of corresponding relative standard deviation, Srel (z). The corresponding 1-sigma measurement errors are given in horizontal bars.

409

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ice Heating Up Cold Clouds Ice Heating Up Cold Clouds Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, A Korolev, and J Fan. 2011. "Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud." Journal of Geophysical Research - Atmospheres, 116, D00T06, doi:10.1029/2011JD015888. The mighty cloud ice crystal appears deceptively delicate but has the power to tip the balance between ice and water in Arctic clouds. This image of an ice crystal was obtained from a Cloud Particle Imager during ISDAC. The imager was mounted on aircraft flying through clouds at a speed of 100 m/s.

410

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Critical Role of Cloud Drop Effective Radius >14 Micron Radius in Rain Critical Role of Cloud Drop Effective Radius >14 Micron Radius in Rain Initiation Download a printable PDF Submitter: Rosenfeld, D., The Hebrew University of Jerusalem Wang, H., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Rosenfeld D, H Wang, and PJ Rasch. 2012. "The roles of cloud drop effective radius and LWP in determining rain properties in marine stratocumulus." Journal of Geophysical Research - Atmospheres, 39, doi:10.1029/2012GL052028. The dependence of rain rate on cloud drop effective radius (re) near cloud top. The color scale is for the median value of column maximum rain rate in each joint bin of CWP-re (cloud liquid water path and cloud-top re).

411

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving the Treatment of Radiation in Climate Models Improving the Treatment of Radiation in Climate Models Download a printable PDF Submitter: Delamere, J. S., Tech-X Corporation Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Delamere JS, SA Clough, VH Payne, EJ Mlawer, DD Turner, and RR Gamache. 2010. "A far-infrared radiative closure study in the Arctic: Application to water vapor." Journal of Geophysical Research - Atmospheres, 115, D17106, 10.1029/2009JD012968. The mean AERI-ER radiances for a select set of cloud-free cases at NSA in 2007 are presented in the top panel. The bottom panel presents mean spectral differences between the measurements and model calculations. The red line demonstrates the differences when using the pre-RHUBC version of

412

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Probabilistic Approach Useful for Evaluating Cloud System Models Probabilistic Approach Useful for Evaluating Cloud System Models Submitter: Jakob, C., Monash University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Jakob, C., R. Pincus, C. Hannay, and K.M. Xu (2004). Use of cloud radar observations for model evaluation: A probabilistic approach, J. Geophys. Res., 109, D03202, doi:10.1029/2003JD003473. In evaluating climate models, time and space represent key challenges when extrapolating observations into simulations. Researchers supported by DOE's Atmospheric Radiation Measurement (ARM) Program have explored an alternative method based on "point series data" to arrive at model cloud predictions. Point series data are obtained over time through measurements

413

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Mixing State of Carbonaceous Aerosol Particles in Northern and Southern The Mixing State of Carbonaceous Aerosol Particles in Northern and Southern California Measured During CARES and CalNex Download a printable PDF Submitter: Zaveri, R., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Cahill JF, K Suski, JH Seinfeld, RA Zaveri, and KA Prather. 2012. "The mixing state of carbonaceous aerosol particles in Northern and Southern California measured during CARES and CalNex 2010." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-10989-2012. The CARES campaign took place in Sacramento in order to sample the city's urban plume. Photo courtesy of Jason Tomlinson. Researchers, including DOE scientists working at Pacific Northwest National

414

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development and Recent Evaluation of the MT_CKD Model of Continuum Development and Recent Evaluation of the MT_CKD Model of Continuum Absorption Download a printable PDF Submitter: Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi: 10.1098/rsta.2011.0295. For seven AERI cases with 4-6 cm PWV: (a) average AERI radiances (black) and corresponding calculations using radiation code with previous version of MT_CKD continuum model (red); (b) residuals between AERI and calculations with older model; (c) residuals after the CO2 continuum in

415

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Invisible" Giants in the Sky "Invisible" Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Daily averaged values of (a, b) the direct aerosol radiative forcing (DARF) and (c, d) aerosol radiative forcing efficiency at the top-of-atmosphere calculated for the "original" aerosol optical properties (blue) and their PM1.0 (red) and PM2.5 (green) counterparts at the CARES (left) T0 and (right) T1 sites.

416

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Method for Satellite/Surface Comparisons A New Method for Satellite/Surface Comparisons Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Properties, Radiative Processes Journal Reference: Zhang Y, CN Long, WB Rossow, and EG Dutton. 2010. "Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD." Journal of Geophysical Research - Atmospheres, 115, D00K11, 10.1029/2009JD012812. Figure 1: Scatter plot for the column aerosol optical depth (AOD) at 550 nm, measured at the surface (PSO) and used as input for the ISCCP-FD calculations (FD) at 10 ARM/SURFRAD/BSRN stations. The robust linear regression line is also shown.

417

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clouds Get in the Way: How Climate Models Calculate the Effects of Clouds Clouds Get in the Way: How Climate Models Calculate the Effects of Clouds on Earth's Warming Download a printable PDF Submitter: Qian, Y., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qian Y, CN Long, H Wang, JM Comstock, SA McFarlane, and S Xie. 2012. "Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations." Atmospheric Chemistry and Physics, 12(4), doi:10.5194/acp-12-1785-2012. Clouds get in the way of the dawn light, perfectly framing the Raman lidar instrument at the ARM Climate Research Facility Southern Great Plains site. This ground-based laser is a remote sensing instrument used for measuring

418

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Remote Sensing of Cirrus Cloud Vertical Size Profile Using MODIS Data Remote Sensing of Cirrus Cloud Vertical Size Profile Using MODIS Data Download a printable PDF Submitter: Ou, S., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Wang X, KN Liou, SS Ou, GG Mace, and M Deng. 2009. "Remote sensing of cirrus cloud vertical size profile using MODIS data." Journal of Geophysical Research - Atmospheres, 114, D09205, doi:10.1029/2008JD011327. (a) MODIS true color composite images for March 6, 2001 at 1736UTC, (b) retrieved Τc; (c) retrieved Dt for selected domain; (d) retrieved Db for selected domain; (e) scatter plot for retrieved Τc versus MODIS Τc for selected domain; (f) scatter plot for retrieved De versus MODIS De for

419

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Millimeter Wave Scattering from Ice Crystals and Their Aggregates Millimeter Wave Scattering from Ice Crystals and Their Aggregates Download a printable PDF Submitter: Botta, G., Pennsylvania State University Verlinde, J., Pennsylvania State University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Botta G, K Aydin, J Verlinde, A Avramov, A Ackerman, A Fridlind, M Wolde, and G McFarquhar. 2011. "Millimeter wave scattering from ice crystals and their aggregates: Comparing cloud model simulations with X- and Ka-band radar measurements." Journal of Geophysical Research - Atmospheres, 116, D00T04, doi:10.1029/2011JD015909. Observational data sets are needed to drive and evaluate results from cloud-resolving model (CRM) simulations in order to improve parameterizations of the physical processes. Radar is one of the few

420

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Remote Sensing of Mineral Dust Using AERI Remote Sensing of Mineral Dust Using AERI Download a printable PDF Submitter: Hansell, R. A., University of California, Los Angeles Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Hansell R, KN Liou, SC Ou, SC Tsay, Q Ji, and JS Reid. 2008. "Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study." Journal of Geophysical Research - Atmospheres, 113, D18202, doi:10.1029/2008JD010246. BT sensitivity to dust optical depth at 962 cm-1 with markers denoting locations of AERI subbands 1-17 from left to right. (a) Volz compact hexagon model spectra for four optical depths with best fit AERI spectrum. (b) Same as (a) but for a kaolinite/50% calcium carbonate mixturedust model.

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Evolution and Distribution of Water Vapor and Microphysical Properties The Evolution and Distribution of Water Vapor and Microphysical Properties in Cirrus Clouds Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Comstock JM, R Lin, DO Starr, and P Yang. 2008. "Understanding ice supersaturation, particle growth, and number concentration in cirrus clouds." Journal of Geophysical Research - Atmospheres, 113, D23211, doi:10.1029/2008JD010332. Vertical velocity (Vm) derived from millimeter cloud radar (MMCR) Doppler velocity measurements in cirrus clouds observed over the ACRF SGP site. Cloud model simulations of cirrus clouds using large-scale forcing (left panel) and cloud-scale forcing (right panel).

422

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantifying the Impact of Dust on Ice Generation in Supercooled Stratiform Quantifying the Impact of Dust on Ice Generation in Supercooled Stratiform Clouds Download a printable PDF Submitter: Wang, Z., University of Wyoming Zhang, D., University of Wyoming Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Zhang D, Z Wang, A Heymsfield, J Fan, D Liu, and M Zhao. 2012. "Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds." Journal of Geophysical Research - Atmospheres, 39, L18805, doi:10.1029/2012GL052831. An example of dusty MSSC: (a) CALIOP TAB profiles at 532nm; (b) CALIOP depolarization profiles at 532nm; (c) CloudSat CPR radar reflectivity profiles; (d) Identified dust layers and MSSC; (e) Global distribution of

423

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous Clear-Sky Longwave from Surface Measurements Continuous Clear-Sky Longwave from Surface Measurements Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and DD Turner. 2008. "A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements." Journal of Geophysical Research 113, D18206, doi:10.1029/2008JD009936. Comparison of clear-sky RT model calculations (black) and our estimates (gray) with detected LW effective clear-sky measurements from the ACRF SGP site from 1 March through 31 May 2003, showing that our LW estimates do as well as detailed model calculations in comparison with actual LW

424

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Progress in Understanding Water Vapor's Role in Models Progress in Understanding Water Vapor's Role in Models Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Time-height cross sections of water vapor mixing ratio, which is observed directly by the ARM Raman lidar at 10-min and approximately 100 m resolution, and relative humidity for 29 November through 2 December 2002. The bottom panel shows the comparison of the precipitable water vapor observed by the Raman lidar and the collocated microwave radiometer. The time-height cross sections, as well as the integrated field, show the large variability in water vapor that exists over the ARM Southern Great Plains site. After years of sustained research efforts into the accuracy of atmospheric

425

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Aerosols Affect Cloud Properties in Arctic Mixed-Phase Stratocumulus How Aerosols Affect Cloud Properties in Arctic Mixed-Phase Stratocumulus Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Jackson RC, GM McFarquhar, AV Korolev, ME Earle, PS Liu, RP Lawson, S Brooks, M Wolde, A Laskin, and M Freer. 2012. "The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE." Journal of Geophysical Research - Atmospheres, 117, D15207, doi:10.1029/2012JD017668. Cloud mean ice crystal concentration Nice(D ≥ 50 micrometers) versus mean aerosol concentration (NPCASP) above cloud for all 41 vertical profiles

426

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCN and Vertical Velocity Influences CCN and Vertical Velocity Influences Submitter: Hudson, J. G., Desert Research Institute Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Hudson JG and S Noble. 2013. "CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds." Journal of the Atmospheric Sciences, , . ACCEPTED. Figure 1. Effective cloud supersaturation (Seff) against CCN concentration at 1% S (N1%) for horizontal cloud penetrations, 50 for MASE and 34 for POST. Seff is the S for which nearby below cloud CCN spectra, NCCN(S), equals mean droplet concentration (Nc). Figure 2. One second droplet concentration, Nc, and vertical velocity

427

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosols Help Heat Up the Yangtze River Delta in China Aerosols Help Heat Up the Yangtze River Delta in China Download a printable PDF Submitter: Flynn, C. J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Liu J, Z Li, Y Zheng, C Flynn, and M Cribb. 2012. "Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China." Journal of Geophysical Research, 117, D00K38, doi:10.1029/2011JD016490. A team of scientists found that aerosols significantly alter the vertical profile of solar heating in the central Yangtze River Delta region in eastern China. Aerosols were identified from as far away as Mongolia and Siberia. These findings have considerable implications for atmospheric

428

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Invisible Giants in the Sky Invisible Giants in the Sky Download a printable PDF Submitter: Ovink, J., Pacific Northwest National Laboratory Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Photo courtesy of the U.S. National Park Service Daily averaged values of (a, b) the direct aerosol radiative forcing (DARF) and (c, d) aerosol radiative forcing efficiency at the top-of-atmosphere calculated for the "original" aerosol optical properties (blue) and

429

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climatology of Aerosol Optical Depth in North-Central Oklahoma: Climatology of Aerosol Optical Depth in North-Central Oklahoma: 1992-2008 Download a printable PDF Submitter: Michalsky, J. J., DOC/NOAA/OAR/ESRL Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Michalsky J, F Denn, C Flynn, G Hodges, P Kiedron, A Koontz, J Schlemmer, and SE Schwartz. 2010. "Climatology of aerosol optical depth in north-central Oklahoma: 1992-2008." Journal of Geophysical Research - Atmospheres, 115, D07203, doi: 10.1029/2009JD012197. Box plots of each complete year\'s daily averaged aerosol optical depth (AOD) at 500 nm. The dark horizontal line in each box plot is the median daily averaged AOD for the year; the top and bottom of the rectangular box spans the middle 50% of the data. The mean values for the year are plotted

430

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Variations of Meridional Aerosol Distribution and Solar Dimming Variations of Meridional Aerosol Distribution and Solar Dimming Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Kishcha, P., Tel-Aviv University Starobinets, B., Tel-Aviv University Kalashnikova, O., Jet Propulsion Laboratory Alpert, P., Tel-Aviv University Area of Research: Radiation Processes Working Group(s): Aerosol, Radiative Processes Journal Reference: Kishcha P, B Starobinets, O Kalashnikova, CN Long, and P Alpert. 2009. "Variations of meridional aerosol distribution and solar dimming." Journal of Geophysical Research - Atmospheres, 114, D00D14, 10.1029/2008JD010975. The distribution of four-year aerosol differences (δAOT/δFAOT) between the last four years (March 2004 - February 2008) and the first four years

431

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Ice Formation in Arctic Mixed-Phase Boundary-Layer Clouds Understanding Ice Formation in Arctic Mixed-Phase Boundary-Layer Clouds During ISDAC Download a printable PDF Submitter: Ackerman, A., NASA - Goddard Institute for Space Studies Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Avramov A, AS Ackerman, AM Fridlind, B van Diedenhoven, G Botta, K Aydin, J Verlinde, KV Alexei, W Strapp, GM McFarquhar, R Jackson, SD Brooks, A Glen, and M Wolde. 2011. "Towards ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC." Journal of Geophysical Research - Atmospheres, 116, D00T08, doi:10.1029/2011JD015910. Ice number size distributions as simulated (dendrites in red, aggregates in

432

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Broadband Albedo Observations in the Southern Great Plains Broadband Albedo Observations in the Southern Great Plains Submitter: Lamb, P. J., University of Oklahoma Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Journal of Applied Meteorology and Climatology, Vol. 45, 2006, pp. 210-235. Figure 1 Figure 2 Because surface reflection of solar radiation plays a fundamental role in the surface energy budget, knowledge of its spatial and temporal variability is important for understanding the weather and climate of a specific region. Research instrumentation at the U.S. Southern Great Plains site-one of three locales around the world managed by the U.S. Department of Energy's Atmospheric Radiation Measurement Program-continuously collects these types of data to help scientist investigate differences in

433

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Aerosol Forcing: Calculation from Observables and Sensitivities to Direct Aerosol Forcing: Calculation from Observables and Sensitivities to Inputs Download a printable PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: McComiskey, A, SE Schwartz, B Schmid, H Guan, ER Lewis, P Ricchiazzi, and JA Ogren. 2008. "Direct aerosol forcing: Calculation from observables and sensitivities to inputs." Journal of Geophysical Research 113, D09202, doi:10.1029/2007JD009170. Figure 1. The sensitivity of calculated aerosol direct radiative forcing to input parameters has been examined to determine the consequences of uncertainties in these input parameters on calculated radiative forcing and to identify areas where measurements might be most profitably improved. Input

434

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measured Radiative Cooling from Reflective Roofs in India Measured Radiative Cooling from Reflective Roofs in India Download a printable PDF Submitter: Fischer, M. L., Lawrence Berkeley National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Salamanca F, S Tonse, S Menon, V Garg, KP Singh, M Naja, and ML Fischer. 2012. "Top-of-atmosphere radiative cooling with white roofs: Experimental verification and model-based evaluation." Environmental Research Letters, 7(4), 044007, doi:10.1088/1748-9326/7/4/044007. True color image of light (PW1, PW2) and unpainted tar (PD1), and concrete (PD2) roofs at the Pantnagar, India site taken on October 21, 2011. We note that the concrete roof is considerably more reflective than the tar roof

435

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate Warming Due to Soot and Smoke? Maybe Not. Climate Warming Due to Soot and Smoke? Maybe Not. Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J.E., S.Y. Zhang, and C.C. Chuang, Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108(D21), 4657, doi:10.1029/2003JD003409, 2003. New research results from the Department of Energy's Atmospheric Radiation Measurement (ARM) Program suggest that fossil fuel soot emissions and biomass smoke may actually have a negligible warming effect and, in some cases, may even result in a net cooling effect. Black carbon is the absorbing component of smoke aerosols that result from the incomplete combustion of various fuels, the most significant sources being fossil fuel

436

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring Parameterization for Turbulent Entrainment-Mixing Processes in Exploring Parameterization for Turbulent Entrainment-Mixing Processes in Clouds Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Brookhaven National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Lu C, S Niu, S Krueger, and T Wagner. 2013. "Exploring parameterization for turbulent entrainment-mixing processes in clouds." Journal of Geophysical Research - Atmospheres, 118(1), doi:10.1029/2012JD018464. Relationships between the three microphysical measures of homogeneous mixing degree (ψ1, ψ2, ψ3) and the two transition scale numbers (NLa, NL0), respectively. The results shown here are from the EMPM simulations.

437

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, EI Kassianov, CN Long, and DL Mills. 2011. "Surface summertime radiative forcing by shallow cumuli at the ARM SGP." Journal of Geophysical Research - Atmospheres, 116, D01202, 10.1029/2010JD014593. Histogram of hourly average shortwave CRF (black) and longwave CRF (red) for all periods with shallow cumuli. (a) Hourly average shortwave CRF (circles), binned shortwave CRF (squares); (b) total number of hourly averages for each sky cover bin; and (c) the change in shortwave TED as a function of sky cover for all hours with

438

NREL Research Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Research Wind Farm II Research Wind Farm II Jump to: navigation, search Name NREL Research Wind Farm II Facility NREL Research Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer National Renewable Energy Laboratory Location South of Boulder CO Coordinates 39.90849°, -105.223278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90849,"lon":-105.223278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

NREL Research Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

NREL Research Wind Farm I NREL Research Wind Farm I Jump to: navigation, search Name NREL Research Wind Farm I Facility NREL Research Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer National Renewable Energy Laboratory Location South of Boulder CO Coordinates 39.907848°, -105.223407° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.907848,"lon":-105.223407,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Atmospheric propagation of THz radiation.  

SciTech Connect (OSTI)

In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Study of atmospheric pressure weakly ionized plasma as surface compatibilization technique for improved plastic composites loaded with cellulose based fillers .  

E-Print Network [OSTI]

??Atmospheric pressure plasmas have gained considerable interest from researchers recently for their unique prospective of engineering surfaces with plasma without the need of vacuum systems. (more)

[No author

2013-01-01T23:59:59.000Z

442

Multi-model assessment of stratospheric ozone return dates and ozone recovery in  

E-Print Network [OSTI]

for Atmospheric Research, Boulder, CO, USA 5Environment Canada, Victoria, BC, Canada 6Johns Hopkins University for Climate and Atmospheric Science, University of Leeds, UK 10Science Systems and Applications, Inc., Lanham, Department of Physics, Canada 17Meteorological Research Institute, Tsukuba, Japan 18University of Cambridge

Wirosoetisno, Djoko

443

EMSL: Science: Atmospheric Aerosol Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Aerosol Systems Atmospheric Aerosol Systems atmospheric logo Nighttime enhancement of nitrogen-containing organic compounds, or NOC Observed nighttime enhancement of nitrogen-containing organic compounds, or NOC, showed evidence of being formed by reactions that transform carbonyls into imines. The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model parameterization to improve the accuracy of climate model simulations and develop a predictive understanding of climate. By elucidating the role of natural and anthropogenic regional and global climate forcing mechanisms, EMSL can provide DOE and others with the ability to develop cost-effective strategies to monitor, control and mitigate them.

444

ARM - Evolution of the Atmosphere  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provides clues as to the composition of the early atmosphere. Volcanic emissions include nitrogen, sulfur dioxide, carbon dioxide, and trace gases such as argon. Although oxygen,...

445

NICCR - National Institute for Climate Change Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monson Abstract Monson Abstract The Response of a Subalpine Forest Ecosystem to Earlier Spring Warm-up Principle Investigator: Russell K. Monson, University of Colorado, Boulder Abstract: Recent analyses have shown widespread declines in the winter snow pack of mountain ecosystemsin the Western U.S. that are coupled to early-spring temperature anomalies. We hypothesize that early spring warm-up in western forests causes increased water stress and reduces the capacity for the forest to assimilate carbon, while at the same time accelerating the loss of carbon due to soil respiration. We will test this hypothesis using observations and modeling. Our research contains elements of three different NICCR foci, including eddy covariance measurements, modeling and manipulative experiments; however, it is principally intended to fulfill Focus 3, with an emphasis on "the use of measurements and analyses to evaluate mechanisms that might be included in climate and carbon models".

446

NREL: Electric Infrastructure Systems Research - Distributed Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Energy Resources Test Facility Distributed Energy Resources Test Facility NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility includes generation, storage, and interconnection technologies as well as electric power system equipment capable of simulating a real-world electric system. Photo of the Distributed Energy Resources Test Facility and an adjacent solar photovoltaic array. The Distributed Energy Resources Test Facility is located at the National Wind Technology Center near Boulder, Colorado. Take a virtual tour of the DERTF. Researchers at the facility can vary equipment configurations and introduce common electrical disturbances such as sags, swells, and harmonic issues on

447

Sound Waves in the Atmosphere at Infrasonic Frequencies  

Science Journals Connector (OSTI)

Various geophysical processes generate sound waves in the atmosphere. Some typical sources are auroral discharges in the upper atmosphere tornadoes and severe storms surface waves on the oceans volcanic explosions earthquakes and atmospheric oscillations arising from unstable wind flow at the tropopause. Man?made sources include powerful explosions and the shock waves from vehicles moving at supersonic speeds at altitudes below about 125 km. The components of sound?wave energy at infrasonic frequencies (oscillation periods >1.0 sec) are propagated for large distances (thousands of kilometers) over the earth's surface with very little loss of energy from absorption by viscosity and heat conduction. But the propagation depends strongly on (a) the horizontally stratified temperature structure of the atmosphere (b) the influence of gravity at oscillation periods greater than the atmospheric resonance period ?300 sec and (c) the nonuniform distribution of atmospheric winds. The microphones and electroacoustical apparatus at an infrasonics observation station e.g. the one at Washington D. C. measure (1) the amplitude and waveform of incident sound pressure (2) the direction of local propagation of the wave (3) the horizontal trace velocity and (4) the distribution of sound wave energy at various oscillation frequencies. Researches on propagation require observational data from a network of stations separated geographically by large distances coupled with theoretical analysis of sound propagation to arrive at useful results on the acoustics of the atmosphere.

Richard K. Cook

1972-01-01T23:59:59.000Z

448

Environmental research program: FY 1987, annual report  

SciTech Connect (OSTI)

This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

Not Available

1988-03-01T23:59:59.000Z

449

Mobile Climate Observatory for Atmospheric Aerosols in India  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Aerosols in India Atmospheric Aerosols in India Nainital, India, was the site chosen for deployment of a portable climate research laboratory to study how aerosols impact clouds and energy transfer in the atmosphere. The well-being of hundreds of millions of residents in northeastern India depends on the fertile land around the Ganges River, which is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Any disturbance to the monsoon rains could threaten the population. In the same region, increased industrial activities due to economic growth are releasing small aerosol particles, such as soot and dust, that absorb and scatter sunlight and thus can change cloud formation processes and the heat distribution in the atmosphere. Such changes could greatly increase or

450

The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and The ARM Atmospheric Emitted Radiance Interferometer (AERI): Status and Preliminary Assessments of Instrument Deployments in 2006 Dedecker, Ralph University of Wisconsin Demirgian, Jack Argonne National Laboratory Knuteson, Robert University Of Wisconsin Revercomb, Henry University of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Turner, David University of Wisconsin-Madison Category: Instruments One of the key operational instruments at the Atmospheric Radiation Measurement Climate Research Facility (ACRF) is the Atmospheric Emitted Radiance Interferometer (AERI). This instrument provides the ARM program with surface-based observations of infrared spectrally resolved radiance from a vertically directed cone with better than 1% accuracy. The data from

451

Space Science : Atmosphere Greenhouse Effect  

E-Print Network [OSTI]

Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate at the carbon cycle #12;However, #12;Greenhouse Effect is Complex #12;PLANETARY ENERGY BALANCE G+W fig 3-5

Johnson, Robert E.

452

The Landfall and Inland Penetration of a Flood-Producing Atmospheric River in Arizona. Part II: Sensitivity of Modeled Precipitation to Terrain Height and Atmospheric River Orientation  

Science Journals Connector (OSTI)

This manuscript documents numerical modeling experiments based on a January 2010 atmospheric river (AR) event that caused extreme precipitation in Arizona. The control experiment (CNTL), using the Weather Research and Forecasting (WRF) Model with ...

Mimi Hughes; Kelly M. Mahoney; Paul J. Neiman; Benjamin J. Moore; Michael Alexander; F. Martin Ralph

2014-10-01T23:59:59.000Z

453

Microsoft Word - Gage-KS.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intercomparisons of Cloud Observations Intercomparisons of Cloud Observations from the AL S-band Profiler and the ETL K-band Millimeter-Wave Cloud Radar on the R/V Ronald H. Brown during Nauru99 K. S. Gage and D. A. Carter National Oceanic and Atmospheric Administration Aeronomy Laboratory Boulder, Colorado P. E. Johnston and C. R. Williams Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado M. Ryan Science Technology Corporation Boulder, Colorado D. Hazen and B. W. Orr National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction Nauru99 took place in the western and central Pacific during June and July 1999. During Nauru99, a diverse suite of instruments was located on the research vessel (R/V) Ronald H. Brown to measure cloud

454

Coupling between the University of California, Davis, Advanced CanopyAtmosphereSoil Algorithm (ACASA) and MM5: Preliminary Results for July 1998 for Western North America  

Science Journals Connector (OSTI)

The University of California, Davis, Advanced CanopyAtmosphereSoil Algorithm (ACASA) is coupled to the fifth-generation Pennsylvania State UniversityNational Center for Atmospheric Research (NCAR) Mesoscale Model (MM5) as a land surface ...

R. David Pyles; Bryan C. Weare; Kyaw Tha Paw U; William Gustafson

2003-05-01T23:59:59.000Z

455

International Union of Air Pollution Prevention and Environmental Protection Associations (IUAPPA) Symposium and Korean Society for Atmospheric Environment (KOSAE) Symposium, 12th  

E-Print Network [OSTI]

of Earth Observation data for the knowledge of the atmospheric pollutants concentration fields over on pollutant distribution are presently investigated in urban atmospheric pollution researches. This multiInternational Union of Air Pollution Prevention and Environmental Protection Associations (IUAPPA

Paris-Sud XI, Université de

456

Extraction of Freshwater and Energy from Atmosphere  

E-Print Network [OSTI]

Author offers and researches a new, cheap method for the extraction of freshwater from the Earth atmosphere. The suggected method is fundamentally dictinct from all existing methods that extract freshwater from air. All other industrial methods extract water from a saline water source (in most cases from seawater). This new method may be used at any point in the Earth except Polar Zones. It does not require long-distance freshwater transportation. If seawater is not utilized for increasing its productivity, this inexpensive new method is very environment-friendly. The author method has two working versions: (1) the first variant the warm (hot) atmospheric air is lifted by the inflatable tube in a high altitude and atmospheric steam is condenced into freswater: (2) in the second version, the warm air is pumped 20-30 meters under the sea-surface. In the first version, wind and solar heating of air are used for causing air flow. In version (2) wind and propeller are used for causing air movment. The first method...

Bolonkin, Alexander

2007-01-01T23:59:59.000Z

457

Mountain Weather Research and Forecasting Chapter 12: Bridging the Gap between Operations and Research to  

E-Print Network [OSTI]

and Research to Improve Weather Prediction in Mountainous Regions W. James Steenburgh Department of Atmospheric tools, and numerical models, and inhibits researchers from fully evaluating weaknesses in current integrated collaboration to address critical challenges for weather prediction in mountainous regions

Steenburgh, Jim

458

PNNL: Atmospheric Sciences & Global Change - Fundamental & Computational  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Us About Us Our mission is to understand the atmospheric processes that drive regional and global earth systems, with a primary focus on climate, aerosol and cloud physics; global and regional scale modeling; integrated assessment; and complex regional meteorology and chemistry. In supporting this mission, our research addresses one of the key missions of the Department of Energy, namely to ensure that the nation's energy system is economically and environmentally sustainable. Because nearly all energy-related emissions enter the atmosphere, research on atmospheric processes and their impacts on human health and the environment-over a variety of temporal and geographic scales-is critical to understanding these consequences. Scientists in this division lead and contribute to programs within the

459

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulating Mixed-Phase Clouds: Sensitivity to Ice Initiation Simulating Mixed-Phase Clouds: Sensitivity to Ice Initiation Download a printable PDF Submitter: Sednev, I., Lawrence Berkeley National Laboratory Menon, S., Lawrence Berkeley National Laboratory McFarquhar, G., University of Illinois, Urbana Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: I Sednev, S Menon, and G McFarquhar. 2008. "Simulating mixed-phase Arctic stratus clouds: Sensitivity to ice initiation mechanisms." Atmospheric Chemistry and Physics Discussion 8: 11755-11819. The vertical structure and radiative properties of persistent low-level Arctic clouds depend on their microphysics, and thus, estimation of the relative significance of the microphysical processes that occur in these

460

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Radiance Assimilation" Correction Method Improves Water Vapor Radiosonde "Radiance Assimilation" Correction Method Improves Water Vapor Radiosonde Observations in the Upper Troposphere Submitter: Soden, B. J., University of Miami Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Soden, B.J., D.D. Turner, B.M. Lesht, and L.M. Miloshevich (2004), An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement Program, J. Geophys. Res., 109, D04105, doi:10/1029/2003JD003828. Time-average relative humidity profiles from both original (black) and radiance-adjusted (blue) radiosonde soundings compared to the lidar (red) retrievals from field campaigns in 1996, 1997, 1999, and 2000.

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeled Vs. Measured Direct-Normal Solar Irradiance Modeled Vs. Measured Direct-Normal Solar Irradiance Submitter: Schwartz, S. E., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Halthore R. N., Schwartz, S. E., Michalsky, J. J., Anderson, G. P., Ferrare R. A., Holben B. N., and ten Brink H. M. 1997. "Comparison of Model Estimated and Measured Direct-Normal Solar Irradiance," J. Geophys. Res. 102(D25): 29991-30002 Figure 1 Figure 2 Figure 3 Figure 4 Direct-normal solar irradiance (DNSI), the total energy in the solar spectrum incident in unit time on a unit area at the earth's surface perpendicular to the direction to the Sun, Figure 1, depends only on atmospheric extinction of solar energy without regard to the details of the

462

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Vertical Structure of Cloud Radiative Forcing at the ACRF SGP Revealed The Vertical Structure of Cloud Radiative Forcing at the ACRF SGP Revealed by 8 Years of Continuous Measurements Submitter: Mace, G., Utah State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Accepted to Journal of Climate, 2007. Figure 1. Cloud occurrence, coverage, radiative forcing, and radiation effects over a composite annual cycle that is derived by averaging all observations collected during a particular month for all years. a) cloud occurrence in 100 mb vertical bins, b) cloud coverage, c) infrared cloud radiative forcing in 100 mb vertical bins, d) solar cloud radiative forcing, e) net cloud radiative forcing, f,g,h) solar (dotted), IR (solid), and net (dashed) cloud radiative effect for TOA (f), atmosphere (g), and

463

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Characterization of Organic Aerosol Evolution Will Help Improve Models New Characterization of Organic Aerosol Evolution Will Help Improve Models Download a printable PDF Submitter: Jimenez, J., University of Colorado Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Jimenez JL and . et al. 2009. "Evolution of organic aerosols in the atmosphere." Science, 326, doi: 10.1126/science.1180353. Total mass concentration (in micrograms per cubic meter) and mass fractions of non-refractory inorganic species and organic components in submicrometer aerosols measured with the AMS at multiple surface locations in the Northern Hemisphere. Inset: Distributions of O:C for the OA components identified at the different sites. Relationship between O:C and hygroscopicity (k, or equivalently the

464

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of Anthropogenic Emissions on Organic Aerosols During CARES Impact of Anthropogenic Emissions on Organic Aerosols During CARES Submitter: Zhang, Q., University of California, Davis Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Setyan A, Q Zhang, M Merkel, WB Knighton, Y Sun, C Song, J Shilling, TB Onasch, S Herndon, D Worsnop, JD Fast, R Zaveri, LK Berg, A Wiedensohler, BA Flowers, MK Dubey, and R Subramanian. 2012. "Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: Results from CARES." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-8131-2012. High-resolution mass spectra (colored by ion category) and elemental ratios of the OA factors. Average contribution of ion categories to the total

465

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arctic Mixed-phase Clouds Persist with Little Help from the Local Surface Arctic Mixed-phase Clouds Persist with Little Help from the Local Surface Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Shupe MD, OG Persson, IM Brooks, M Tjernstrom, J Sedlar, T Mauritsen, S Sjogren, and C Leck. 2013. "Cloud and boundary layer interactions over the Arctic sea ice in late summer." Atmospheric Chemistry and Physics, 13, doi:10.5194/acp-13-9379-2013. Figure 1. Normalized profiles of (a) vertical velocity skewness and (b) variance, (c) turbulent dissipation rate, and (d) potential temperature. Black curves are all data, while red and green are for decoupled and coupled cases, respectively. Normalization is relative to the cloud top

466

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Accuracy in Liquid Water Path Retrievals Improved Accuracy in Liquid Water Path Retrievals Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Radiative Processes Journal Reference: Turner, D.D., 2007: Improved ground-based liquid water path retrievals using a combined infrared and microwave approach. J. Geophys. Res., 112, D15204, doi:10.1029/2007JD008530. Turner, D.D., A.M. Vogelmann, R. Austin, J.C. Barnard, K. Cady-Pereira, C. Chiu, S.A. Clough, C.J. Flynn, M.M. Khaiyer, J.C. Liljegren, K. Johnson, B. Lin, C.N. Long, A. Marshak, S.Y. Matrosov, S.A. McFarlane, M.A. Miller, Q. Min, P. Minnis, W. O'Hirok, Z. Wang, and W. Wiscombe, 2007: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc.,

467

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Application of Linear Programming Techniques to ARM Polarimetric Radar An Application of Linear Programming Techniques to ARM Polarimetric Radar Processing Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, R McGraw, and L Lei. 2013. "An application of linear programming to polarimetric radar differential phase processing." Journal of Atmospheric and Oceanic Technology, , . ACCEPTED. C-band scanning ARM precipitation radar fields of radar reflectivity factor Z and processed specific differential phase KDP for a section of a Midlatitude Continental Convective Clouds Experiment (MC3E) convective event as output from LP methods implemented for the ARM PyART processing suite. Detailed microphysical insights from weather radar systems are in demand

468

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Water Vapor Absorption in Microwave Radiative Transfer Models Improving Water Vapor Absorption in Microwave Radiative Transfer Models Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Loehnert, U., University of Cologne Cadeddu, M. P., Argonne National Laboratory Crewell, S., University of Cologne Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Turner DD, MP Cadeddu, U Loehnert, S Crewell, and A Vogelmann. 2009. "Modifications to the water vapor continuum in the microwave suggested by ground-based 150 GHz observations." IEEE Transactions on Geoscience and Remote Sensing, 47(10), 3326-3337. Figure 1: The top panel shows downwelling microwave brightness temperature

469

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Cloud and Rainfall Parameters in a Vertical Column Above the Estimating Cloud and Rainfall Parameters in a Vertical Column Above the ACRF SGP Site Download a printable PDF Submitter: Matrosov, S. Y., CIRES/NOAA/ESRL/University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: N/A An example of MMCR (a) and WACR (b) ARM radar measurements of a stratiform precipitating event and the corresponding estimates of mean rain rate (c) and cloud IWP and LWP (d). A comprehensive characterization of all hydrometeors in the vertical column is an important task, which is crucial for model parameterization and validation purposes. For many years, the remote sensing efforts within the Atmospheric Radiation Measurement (ARM) Program were focused primarily on either non-precipitating or only weakly-precipitating (e.g., drizzling)

470

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimal Method to Determine Orientation Average of Scattering Properties of Optimal Method to Determine Orientation Average of Scattering Properties of Ice Crystals Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Um J and GM McFarquhar. 2013. "Optimal numerical methods for determining the orientation averages of single-scattering properties of atmospheric ice crystals." Journal of Quantitative Spectroscopy & Radiative Transfer, 127, doi:10.1016/j.jqsrt.2013.05.020. Fig.1. Idealized shapes of ice crystals used in this study: (a) Gaussian random sphere (GS), (b) droxtal (DX), (c) budding Bucky ball (3B), and (d) column (COL). All models are visualized with dipoles. For (b), (c), and (d)

471

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulating the Impact of Aerosols on Tropical Deep Convection Simulating the Impact of Aerosols on Tropical Deep Convection Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Morrison H and WW Grabowski. 2011. "Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment." Atmospheric Chemistry and Physics, 11(20), doi:10.5194/acp-11-10503-201. Profiles of ensemble- and horizontally averaged a) cloud water mixing ratio, b) rain mixing ratio, c) ice mixing ratio, d) cloud droplet concentration, e) rain number concentration, and f) ice number concentration, Ni, for pristine (blue), polluted (green), and highly

472

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single-Column Modeling, GCM Parameterizations and ARM Data Single-Column Modeling, GCM Parameterizations and ARM Data Submitter: Somerville, R. C., Scripps Institution of Oceanography Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Randall, D.A., K.-M. Xu, R.C.J. Somerville, and S. Iacobellis, 1996: "Single-Column Models and Cloud Ensemble Models as Links between Observations and Climate Models," J. Climate 9(8)1683-1697. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 We have developed a Single-Column Model (SCM) to validate GCM cloud-radiation parameterizations against ARM observational data. The SCM is a computationally efficient one-dimensional representation of the atmospheric column overlying a single GCM grid cell. The SCM is integrated

473

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud-Top Humidity Inversions and the Maintenance of Arctic Mixed-Phase Cloud-Top Humidity Inversions and the Maintenance of Arctic Mixed-Phase Stratocumulus Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, MD Shupe, O Persson, and H Morrison. 2011. "Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion." Atmospheric Chemistry and Physics, 11, doi:10.5194/acp-11-10127-2011. Soundings of mid-day decoupled stratocumulus at Barrow, Alaska. (A) Measured 17:34Z 8 April 2008 at (71.33N,156.61W). (B) 50-m LES simulation 20Z 8 April 2008 at (71.33N,156.91W). Gray shading marks the extent of the

474

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Out with the Old, in with the New: McICA to Replace Traditional Cloud Out with the Old, in with the New: McICA to Replace Traditional Cloud Overlap Assumptions Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Pincus, R., R. Hemler, and S.A. Klein, 2006: Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model. Mon. Wea. Rev., 134, 3644-3656. As shown by the difference between the two panels, the standard way (AM2, top panel) of mixing solar reflection and transmission differs systematically from the Independent Column Approximation approach. Because cloud-radiation interactions depend critically on the vertical amount of clouds, different assumptions about how this alignment occurs

475

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

When It Rains, It Doesn't Always Pour When It Rains, It Doesn't Always Pour Download a printable PDF Submitter: Penide, G., Laboratoire d\\\'Optique Atmospherique Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Penide G, V Kumar, A Protat, and P May. 2013. "Statistics of drop size distribution parameters and rain rates for stratiform and convective precipitation during the North Australian wet season." Monthly Weather Review, 141(9), 10.1175 /mwr-d-12-00262.1. Measurements from the Atmospheric Radiation Measurement facility at Darwin, Australia, helped scientists determine how drop size distribution and rain rates are affected by larger-scale weather patterns. Rainfall comes in a variety of forms: mist, drizzle, showers, downpours. The type and frequency of rainfall usually depends on the season and

476

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Satellite Constraints on Cloud-Top Phase, Ice Size, and Asymmetry Parameter Satellite Constraints on Cloud-Top Phase, Ice Size, and Asymmetry Parameter over Deep Convection Download a printable PDF Submitter: van Diedenhoven, B., NASA - Goddard Institute for Space Studies Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: van Diedenhoven B, AM Fridlind, AS Ackerman, and B Cairns. 2012. "Evaluation of hydrometeor phase and ice properties in cloud-resolving model simulations of tropical deep convection using radiance and polarization measurements." Journal of the Atmospheric Sciences, 69(11), doi:10.1175/JAS-D-11-0314.1. Liquid index (LI) values are directly derived from multi-directional polarized reflectances. POLDER measurements (dashed line envelop) show

477

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Surface Albedo Data Set Enables Improved Radiative Transfer New Surface Albedo Data Set Enables Improved Radiative Transfer Calculations Download a printable PDF Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: McFarlane SA, K Gaustad, E Mlawer, C Long, and J Delamere. 2011. "Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility." Atmospheric Measurement Techniques, 4, 1713-1733. Time series of daily percent vegetation derived from MFR measurements for (top) 2001-2008 at 10-m tower, which is located over an unmanaged pasture; (middle) 2001-2004 at 25-m tower, which is located over a managed field; and (bottom) 2005-2008 at 25-m tower. The different seasonal cycles at the

478

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Roobik" Is Part of the Answer, Not a Puzzle "Roobik" Is Part of the Answer, Not a Puzzle Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A Taking place during the arid Arctic winter, the RHUBC will obtain measurements in the far-infrared (15-40 microns), when the so-called "Arctic" infrared window between 16 and 40 microns is semi-transparent. Between February and March 2007 at the ACRF North Slope of Alaska site in Barrow, high-spectral-resolution observations will be collected by three state-of-the-art Fourier Transform Spectrometers sampling at different bands in the far-infrared. The Radiative Heating in Underexplored Bands Campaign, or RHUBC (pronounced "roobik"), will make detailed observations

479

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating the Ice Crystal Enhancement Factor in the Tropics Estimating the Ice Crystal Enhancement Factor in the Tropics Download a printable PDF Submitter: Zeng, X., NASA - Goddard Space Flight Center Tao, W., NASA - Goddard Space Flight Center Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Zeng X, W Tao, T Matsui, S Xie, S Lang, M Zhang, DO Starr, and X Li. 2011. "Estimating the ice crystal enhancement factor in the tropics." Journal of the Atmospheric Sciences, 68(7), doi:10.1175/2011JAS3550.1. Figure 1. Twenty-day mean vertical profiles of IWC from the ARM-SGP observations and the three simulations using low, moderate, and high ice crystal concentrations, respectively. Figure 2. Eight-day mean vertical profiles of IWC from the TWP-ICE

480

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buffering of Ice Crystal Number Concentration to Ice Nucleus Abundance Buffering of Ice Crystal Number Concentration to Ice Nucleus Abundance Above Arctic Stratus Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies Ackerman, A., NASA - Goddard Institute for Space Studies Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Fridlind AM, B van Diedenhoven, AS Ackerman, A Avramov, A Mrowiec, H Morrison, P Zuidema, and MD Shupe. 2012. "A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary-layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes." Journal of the Atmospheric Sciences, 69(1), doi:10.1175/JAS-D-11-052.1. Observed and simulated histograms of MMCR radar reflectivity (left) and

Note: This page contains sample records for the topic "atmospheric research boulder" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Self-Regulation Strikes a Balance Between Hydrological Cycle, Radiation Self-Regulation Strikes a Balance Between Hydrological Cycle, Radiation Processes, and Intraseasonal Dynamic Variations Submitter: Stephens, G. L., Colorado State University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Stephens, Graeme L., Webster, Peter J., Johnson, Richard H., Engelen, Richard, L'Ecuyer, Tristan. 2004: Observational Evidence for the Mutual Regulation of the Tropical Hydrological Cycle and Tropical Sea Surface Temperatures. Journal of Climate: Vol. 17, No. 11, pp. 2213-2224. The "humidistat" feedback mechanism suggests that the hydrological cycle and sea surface temperatures mutually regulate each other in phases: the destabilization phase, the convective phase, and the restoring phase. These

482

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Water Vapor and Cloud Liquid Water at MCTEX Integrated Water Vapor and Cloud Liquid Water at MCTEX Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Integrated water vapor and cloud liquid water measurements were obtained during the Maritime Continent Thunderstorm Experiment (MCTEX) by Eugene Clothiaux and Tom Ackerman of Penn State University using an ARM microwave radiometer. The radiometer was deployed at Pularumpi, Melville Island (11.55 S, 130.56 E) off the north coast of Australia for November-December 1995. Time series of these results are shown in Figure 1. Time series of integrated or "precipitable" water vapor (PWV) and liquid

483

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Role of Microphysics Parameterization in Simulating Tropical Mesoscale The Role of Microphysics Parameterization in Simulating Tropical Mesoscale Convective Systems Download a printable PDF Submitter: Van Weverberg, K., Brookhaven National Laboratory Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, AM Vogelmann, W Lin, EP Luke, AT Cialella, P Minnis, MM Khaiyer, ER Boer, and MP Jensen. 2013. "The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the Tropical Western Pacific." Journal of the Atmospheric Sciences, 70(4), doi:10.1175/JAS-D-12-0104.1. The spatial distribution of cloud types at 3 UTC on 27 December 2003 as observed by GOES-9 and as simulated by the three commonly used microphysics

484

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Study Aerosol Humidity Effects Using the ARM Measurements Study Aerosol Humidity Effects Using the ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Jeong, M.-J., Z. Li, E. Andrews, and S.-C. Tsay (2007). Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site, J. Geophys. Res., 112, D10202, doi:10.1029/2006JD007176. (a)-(j) Column-mean aerosol humidification factor as functions of the weighted column mean RH, . The ambient RH at one of the ten level-legs of the In-situ Aerosol Profile (IAP) measurements is replaced with RH equals 99%. Comparison of estimated column R(RH) following six different methods (M1~M6). Gray solid lines and black dashed lines are linear fit and

485

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Observational Evidence of Changes in Water Vapor, Clouds, and Radiation Observational Evidence of Changes in Water Vapor, Clouds, and Radiation Submitter: Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Dong, X., B. Xi, and P. Minnis, 2006: Observational Evidence of Changes in Water vapor, Clouds, and Radiation at the ARM SGP site. Geophys. Res. Lett., 33, L19818,doi:10.1029/2006GL027132. Figure 1. This plot shows that atmospheric precipitable water vapor and downwelling infrared radiation decreased, but solar radiation increased at the SGP site from 1997 to 2004. The amount of water vapor, the dominant greenhouse gas, has a greater effect on infrared radiation than on solar. Figure 2. This plot shows that solar radiation at the surface increased

486

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cirrus Cloud Bimodal Size Distributions from ARM Remote Sensing Data Cirrus Cloud Bimodal Size Distributions from ARM Remote Sensing Data Download a printable PDF Submitter: Mace, G., Utah State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhao Y, GG Mace, and JM Comstock. 2011. "The occurrence of particle size distribution bimodality in midlatitude cirrus as inferred from ground-based remote sensing data." Journal of the Atmospheric Sciences, 68(6), doi:10.1175/2010JAS3354.1. Figure 1. Frequency distribution of ice water content (top), effective radius (middle), and crystal concentration (bottom) derived from 313 h of cloud property retrievals using the bimodal algorithm. The distributions are shown as a function of the layer-mean temperature shown in the legend.

487

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vertical Air Motion Measurements in Large-Scale Precipitation Vertical Air Motion Measurements in Large-Scale Precipitation Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Luke, E., Brookhaven National Laboratory Kollias, P., McGill University Area of Research: Vertical Velocity Working Group(s): Cloud Properties Journal Reference: Giangrande SE, EP Luke, and P Kollias. 2010. "Automated retrievals of precipitation parameters using non-Rayleigh scattering at 95-GHz." Journal of Atmospheric and Oceanic Technology, 27(9), 10.1175/2010JTECHA1343.1. Time-height mapping of the retrieved vertical air motion for the 1 May 2007 event at SGP. Simultaneous measurements of vertical air motion and raindrop size distribution parameters in precipitation are challenging. The ARM W-band radars (95-GHz), despite being used primarily for cloud sensing, offer

488

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Affordable, Flexible, and More Accurate Method for Computing Radiative An Affordable, Flexible, and More Accurate Method for Computing Radiative Transfer Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Pincus, R., H.W. Barker, J.J. Morcrette, A fast, flexible approximate technique for computing radiative transfer in inhomogenous cloud fields, J. Geophys. Res., Vol. 108, No. D13, 4376, doi:10.1029/2002JD003322, 2003 Key Contributors: H.W. Barker, J.J. Morcrette Cloud radiative feedback-the amount of solar radiation that is absorbed by clouds before it reaches the earth and bounces back into the atmosphere-is the single most important effect determining the magnitude of possible climate responses to human activity. However, cloud properties

489

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Technique Successful for Measuring Thickness of Broken Clouds New Technique Successful for Measuring Thickness of Broken Clouds Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Marshak, A, Y Knyazikhin, K.D. Evans, and W.J. Wiscomb, (2004): The "RED versus NIR" Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements, Journal of Atmospheric Sciences , 61, 1911-1925. In the "lookup table," vertical lines within the curves show calculated values of cloud optical depth. Observed data points show actual RED and NIR values; the cloud cover and optical depth are read from the overlaid lines. Cloud optical depth (or thickness) is a fundamental property for calculating the amount of solar radiation entering and leaving earth's

490

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Formulation for Representing Cloud-to-Rain Transition in General Formulation for Representing Cloud-to-Rain Transition in Atmospheric Models Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol, Cloud Modeling, Cloud Properties Journal Reference: Liu, Y., P. H. Daum, R. McGraw, M. Miller, and S. Niu, 2007: Theoretical formulation for autoconversion rate of cloud droplet concentration. Geophys. Res. Lett., 34, L116821, doi:10.1029/2007GL030389 Figure 1. The typical drop radius r* as a function of the volume-mean radius r3 derived from the new theoretical formulation. Note that a constant r* corresponds to the commonly used assumption that the autoconversion rate for droplet concentration is linearly proportional to

491

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement of Convective Entrainment Using Lagrangian Particles Measurement of Convective Entrainment Using Lagrangian Particles Download a printable PDF Submitter: Romps, D., University of California, Berkeley Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Yeo K and DM Romps. 2013. "Measurement of convective entrainment using Lagrangian particles." Journal of the Atmospheric Sciences, 70(1), doi:10.1175/JAS-D-12-0144.1. Trajectories of seven particles that are entrained at the cloud base and transported to the cloud top. Colors denote the mixing ratio of condensed water. Previous work by Romps (2010) found large entrainment rates of ~100% per kilometer for deep convection using a new technique for large-eddy simulations (LES) called "Eulerian direct measurement". These results

492

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using the ACRF Shortwave Spectrometer to Study the Transition Between Clear Using the ACRF Shortwave Spectrometer to Study the Transition Between Clear and Cloudy Regions Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Chiu, J., University of Reading Knyazikhin, Y., Boston University Pilewskie, P., University of Colorado Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Chiu C, A Marshak, Y Knyazikhin, P Pilewskie, and W Wiscombe. 2009. "Physical interpretation of the spectral radiative signature in the transition zone between cloud-free and cloudy regions." Atmospheric Chemistry and Physics, 9(4), 1419-1430. (a) Total sky images on 18 May 2007, and (b) plot of SWS normalized zenith radiances. In (b), arrows pointed at the time axis correspond to the times

493

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Microwave Radiometer Performance in Alaska Evaluation of Microwave Radiometer Performance in Alaska Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties, Radiative Processes Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 In order to determine the extent to which the ARM microwave radiometers would need to be modified to accommodate Arctic operations, an instrument designed for the Tropical Western Pacific was deployed at the University of Alaska at Fairbanks and continuously operated from 14 December 1995 through 20 June 1996 with the assistance of North Slope Site Scientist Knut Stamnes and Deputy Site Scientist Abdul Alkezweeny. Time series plots of the data are presented in Figure 1.

494

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Consistency Analysis of ARESE Aircraft Measurements A Consistency Analysis of ARESE Aircraft Measurements Submitter: Li, Z., University of Maryland Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Li, Z., A.P. Trishchenko, H.W. Barker, G.L. Stephens, and P. Partain, 1999: "Analyses of Atmospheric Radiation Measurement (ARM) program's Enhanced Shortwave Experiment (ARESE) multiple data sets for studying cloud absorption," J. of Geophys. Res. 104(D16):19127-19134 Figure 1. Comparisons of TOA albedos inferred from measurements made by TSBR, GOES-8, and SSP. Two sets of GOES-based estimates are shown for an aircraft along the Egrett's flight path: one for an aircraft skimming the cloud tops (dotted lines); and another for one at 14 km (thin solid lines).

495

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Simple Stochastic Model for Generating Broken Cloud Optical Depth and A Simple Stochastic Model for Generating Broken Cloud Optical Depth and Cloud Top Height Fields Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Prigarin, S, and A Marshak. 2008. "A simple stochastic model for generating broken cloud optical depth and cloud top height fields." Journal of Atmospheric Sciences, in press. Fig. 1. A 68-km by 68-km region in Brazil centered at 17o S and 42o W collected on August 9, 2001, at 1015 local time. The solar zenith angle 410; the solar azimuth angle 23o (from the top). (a) moderate-resolution imaging spectroradiometer (MODIS) true color red, green, blue (RGB) 1-km

496

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

To Rain or Not to Rain...Aerosols May Be the Answer To Rain or Not to Rain...Aerosols May Be the Answer Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Niu F and Z Li. 2012. "Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-8491-2012. Cloud-top temperature (A, C) and ice water path (B, D) as functions of AI/AOT for warm (blue dots) and cold (red dots) base mixed-phase clouds and liquid clouds (green dots) over the ocean (upper panels) and land (lower panels). The right-hand axes of (A) and (C) are for liquid clouds. Precipitation rate as a function of AI for mixed-phase (blue dots) and

497

Carbon-Specific Analysis of Humic-like Substances in Atmospheric Aerosol and Precipitation Samples  

Science Journals Connector (OSTI)

6-9 This means that HULIS have an impact on the hygroscopicity and the cloud condensation nuclei formation potential of the atmospheric aerosol and are, therefore, of climatic relevance. ... Journal of Geophysical Research, [Atmospheres] (2000), 105 (D16), 20697-20706 CODEN: JGRDE3 ISSN:. ... solvents, and recovery from spiked rain water, were included. ...

Andreas Limbeck; Markus Handler; Bernhard Neuberger; Barbara Klatzer; Hans Puxbaum

2005-10-11T23:59:59.000Z

498

Enhanced Adhesion over Aluminum Solid Substrates by Controlled Atmospheric Plasma Deposition of Amine-Rich Primers  

Science Journals Connector (OSTI)

Enhanced Adhesion over Aluminum Solid Substrates by Controlled Atmospheric Plasma Deposition of Amine-Rich Primers ... Plasma polymer allylamine (pPAAm) films were deposited using a semidynamic DBD reactor at open atmosphere described elsewhere. ... In the past decade, the use of nonthermal plasmas for selective surface modification was a rapidly growing research field. ...

Julien Petersen; Thierry Fouquet; Marc Michel; Valrie Toniazzo; Aziz Dinia; David Ruch; Joo A. S. Bomfim

2012-01-25T23:59:59.000Z

499

An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends  

E-Print Network [OSTI]

of the major chemical variables in response to changes in the atmospheric emission of pollutants; (iii) discussAn overview of atmospheric deposition chemistry over the Alps: present status and long-term trends, Switzerland 3 Department of Hydrobiology Applied to Water Pollution, CNR Water Research Institute, 20047

Mailhes, Corinne

500

Parameterization of urban sub-grid scale processes in global atmospheric chemistry models  

E-Print Network [OSTI]

-scale models. (submitted to Journal of Geophysical Research) #12;2 1. Introduction Atmospheric pollution has1 Parameterization of urban sub-grid scale processes in global atmospheric chemistry models Josep such as meteorology. Effective emissions may be ?aged? emissions of primary pollutants or actual production