Powered by Deep Web Technologies
Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites  

SciTech Connect (OSTI)

The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

Jensen, M; Jensen, K

2006-06-01T23:59:59.000Z

2

Retrieval of cloud-cleared atmospheric temperature profiles from hyperspectral infrared and microwave observations  

E-Print Network [OSTI]

This thesis addresses the problem of retrieving the temperature profile of the Earth's atmosphere from overhead infrared and microwave observations of spectral radiance in cloudy conditions. The contributions of the thesis ...

Blackwell, William Joseph, 1971-

2002-01-01T23:59:59.000Z

3

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plains Climate Study Site  

SciTech Connect (OSTI)

There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.

1997-12-31T23:59:59.000Z

4

Profiling clouds' inner life | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentationsSRS RespondsLiftPetroleumProfiling clouds' inner

5

NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES  

SciTech Connect (OSTI)

As brown dwarfs cool, a variety of species condense in their atmospheres, forming clouds. Iron and silicate clouds shape the emergent spectra of L dwarfs, but these clouds dissipate at the L/T transition. A variety of other condensates are expected to form in cooler T dwarf atmospheres. These include Cr, MnS, Na{sub 2}S, ZnS, and KCl, but the opacity of these optically thinner clouds has not been included in previous atmosphere models. Here, we examine their effect on model T and Y dwarf atmospheres. The cloud structures and opacities are calculated using the Ackerman and Marley cloud model, which is coupled to an atmosphere model to produce atmospheric pressure-temperature profiles in radiative-convective equilibrium. We generate a suite of models between T{sub eff} = 400 and 1300 K, log g = 4.0 and 5.5, and condensate sedimentation efficiencies from f{sub sed} = 2 to 5. Model spectra are compared to two red T dwarfs, Ross 458C and UGPS 0722-05; models that include clouds are found to match observed spectra significantly better than cloudless models. The emergence of sulfide clouds in cool atmospheres, particularly Na{sub 2}S, may be a more natural explanation for the 'cloudy' spectra of these objects, rather than the reemergence of silicate clouds that wane at the L-to-T transition. We find that sulfide clouds provide a mechanism to match the near- and mid-infrared colors of observed T dwarfs. Our results indicate that including the opacity of condensates in T dwarf atmospheres is necessary to accurately determine the physical characteristics of many of the observed objects.

Morley, Caroline V.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Marley, Mark S. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Visscher, Channon [Southwest Research Institute, Boulder, CO 80302 (United States); Saumon, Didier [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Leggett, S. K., E-mail: cmorley@ucolick.org [Gemini Observatory, Northern Operations Center, Hilo, HI 96720 (United States)

2012-09-10T23:59:59.000Z

6

The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory  

SciTech Connect (OSTI)

Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized in atmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta.lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the ''model to observations'' approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.

Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Wanherdrick, Y.; Morille, Y.; Protat, A.; Dudhia, J.

2005-03-18T23:59:59.000Z

7

Upper Atmospheric Density Profiles  

E-Print Network [OSTI]

· Uncertainties in aerodynamics, problems with signals from shaking solar panel, rotation of instrument about · Change in latitude per unit change in longitude along profile set by orbit inclination and latitude (not engineering) instrument, very high sensitivity, unseen part of 11-yr solar cycle · Current science

Withers, Paul

8

Atmospheric State, Cloud Microphysics and Radiative Flux  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

Mace, Gerald

9

A Community Atmosphere Model with Superparameterized Clouds  

SciTech Connect (OSTI)

In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

2013-06-18T23:59:59.000Z

10

Tropical Cloud Properties and Radiative Heating Profiles  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

Mather, James

11

Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations  

SciTech Connect (OSTI)

Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

2013-06-11T23:59:59.000Z

12

INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE  

SciTech Connect (OSTI)

We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H{sub 2} molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.

Demory, Brice-Olivier; De Wit, Julien; Lewis, Nikole; Zsom, Andras; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)] [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Fortney, Jonathan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)] [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Knutson, Heather; Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)] [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Heng, Kevin [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012, Bern (Switzerland)] [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012, Bern (Switzerland); Madhusudhan, Nikku [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06520 (United States)] [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Gillon, Michael [Institut d'Astrophysique et de Gophysique, Universit de Lige, Alle du 6 Aot, 17, Bat. B5C, B-4000 Lige 1 (Belgium)] [Institut d'Astrophysique et de Gophysique, Universit de Lige, Alle du 6 Aot, 17, Bat. B5C, B-4000 Lige 1 (Belgium); Barclay, Thomas [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States)] [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Parmentier, Vivien [Laboratoire J.-L. Lagrange, UMR 7293, Universit de Nice-Sophia Antipolis, CNRS, Observatoire de la Cte d'Azur B.P. 4229, F-06304 Nice Cedex 4 (France)] [Laboratoire J.-L. Lagrange, UMR 7293, Universit de Nice-Sophia Antipolis, CNRS, Observatoire de la Cte d'Azur B.P. 4229, F-06304 Nice Cedex 4 (France); Cowan, Nicolas B., E-mail: demory@mit.edu [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, F165, Evanston, IL 60208 (United States)

2013-10-20T23:59:59.000Z

13

atmospheric brown cloud: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I.; Burrows, Adam 2003-01-01 3 II. Black Carbon, Atmospheric Brown Clouds and Greenhouse Effect: Background CiteSeer Summary: satellite. The optical depth is a good index for...

14

atmospheric brown clouds: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I.; Burrows, Adam 2003-01-01 3 II. Black Carbon, Atmospheric Brown Clouds and Greenhouse Effect: Background CiteSeer Summary: satellite. The optical depth is a good index for...

15

ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

Cadeddu, Maria

16

Cloud Condensation Nuclei Profile Value-Added Product  

SciTech Connect (OSTI)

The cloud condensation nuclei (CCN) concentration at cloud base is the most relevant measure of the aerosol that influences droplet formation in clouds. Since the CCN concentration depends on supersaturation, a more general measure of the CCN concentration is the CCN spectrum (values at multiple supersaturations). The CCN spectrum is now measured at the surface at several fixed ARM sites and by the ARM Mobile Facility (AMF), but is not measured at the cloud base. Rather than rely on expensive aircraft measurements for all studies of aerosol effects on clouds, a way to project CCN measurements at the surface to cloud base is needed. Remote sensing of aerosol extinction provides information about the vertical profile of the aerosol, but cannot be directly related to the CCN concentration because the aerosol extinction is strongly influenced by humidification, particularly near cloud base. Ghan and Collins (2004) and Ghan et al. (2006) propose a method to remove the influence of humidification from the extinction profiles and tie the dry extinction retrieval to the surface CCN concentration, thus estimating the CCN profile. This methodology has been implemented as the CCN Profile (CCNPROF) value-added product (VAP).

McFarlane, S; Sivaraman, C; Ghan, S

2012-10-08T23:59:59.000Z

17

Atmospheric cloud water contains a diverse bacterial community  

SciTech Connect (OSTI)

Atmospheric cloud water contains an active microbial community which can impact climate, human health and ecosystem processes in terrestrial and aquatic systems. Most studies on the composition of microbial communities in clouds have been performed with orographic clouds that are typically in direct contact with the ground. We collected water samples from cumulus clouds above the upper U.S. Midwest. The cloud water was analyzed for the diversity of bacterial phylotypes by denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene amplicons. DGGE analyses of bacterial communities detected 17e21 bands per sample. Sequencing confirmed the presence of a diverse bacterial community; sequences from seven bacterial phyla were retrieved. Cloud water bacterial communities appeared to be dominated by members of the cyanobacteria, proteobacteria, actinobacteria and firmicutes.

Kourtev, P. S.; Hill, Kimberly A.; Shepson, Paul B.; Konopka, Allan

2011-06-15T23:59:59.000Z

18

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

19

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

20

JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS  

E-Print Network [OSTI]

JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS surface. In 1997-1998, a large multi-agency effort made the Surface Heat Budget of the Arctic (SHEBA with the ice pack in the Beaufort and Chukchi Seas for one year. Surface-based remote sensors generated

Shupe, Matthew

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

METR 3223: Physical Meteorology II: Cloud Physics, Atmospheric Electricity and Optics  

E-Print Network [OSTI]

METR 3223: Physical Meteorology II: Cloud Physics, Atmospheric Electricity and Optics CLASS: Monday as atmospheric electricity and optics. Specific topics that will be covered are as follows: Cloud physics: Review Observation studies Atmospheric electricity: Electrostatics Electromagnetic wave Thunderstorm charging

Droegemeier, Kelvin K.

22

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS  

E-Print Network [OSTI]

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

Sheridan, Jennifer

23

Evaluation of Hydrometeor Occurrence Profiles in the Multiscale Modeling Framework Climate Model using Atmospheric Classification  

SciTech Connect (OSTI)

Vertical profiles of hydrometeor occurrence from the Multiscale Modeling Framework (MMF) climate model are compared with profiles observed by a vertically pointing millimeter wavelength cloud-radar (located in the U.S. Southern Great Plains) as a function of the largescale atmospheric state. The atmospheric state is determined by classifying (or clustering) the large-scale (synoptic) fields produced by the MMF and a numerical weather prediction model using a neural network approach. The comparison shows that for cold frontal and post-cold frontal conditions the MMF produces profiles of hydrometeor occurrence that compare favorably with radar observations, while for warm frontal conditions the model tends to produce hydrometeor fractions that are too large with too much cloud (non-precipitating hydrometeors) above 7 km and too much precipitating hydrometeor coverage below 7 km. We also find that the MMF has difficulty capturing the formation of low clouds and that for all atmospheric states that occur during June, July, and August, the MMF produces too much high and thin cloud, especially above 10 km.

Marchand, Roger T.; Beagley, Nathaniel; Ackerman, Thomas P.

2009-09-01T23:59:59.000Z

24

Profiling-as-a-Service in Multi-Tenant Cloud Computing Environments  

E-Print Network [OSTI]

of cloud computing by collaboratively detecting and filtering unwanted traffic towards cloud instances. I networks, e.g., building normal and anomalous network behavior profiles [9], [10], detecting traffic, understand and profile network traffic at multiple layers in the multi-tenant cloud computing environment

Zhang, Junshan

25

Cloud Features and Zonal Wind Measurements of Saturn's Atmosphere as Observed by Cassini/VIMS  

E-Print Network [OSTI]

We present an analysis of data about Saturn's atmosphere from Cassini's Visual and Infrared Mapping Spectrometer (VIMS), focusing on the meteorology of the features seen in the 5-micron spectral window. We present VIMS mosaics and discuss the morphology and general characteristics of the features backlit by Saturn's thermal emission. We have also constructed a zonal wind profile from VIMS feature tracking observation sequences using an automated cloud feature tracker. Comparison with previously constructed profiles from Voyager and Cassini imaging data reveals broad similarities, suggesting minimal vertical shear of the zonal wind. However, areas of apparent wind shear are present in the VIMS zonal wind profile at jet stream cores. In particular, our analysis shows that the equatorial jet reaches speeds exceeding 450 m/s, similar to speeds obtained during the Voyager era. This suggests that recent inferences of relatively slower jet speeds of ~275-375 m/s are confined to the upper troposphere and that the dee...

Choi, David S; Brown, Robert H; 10.1029/2008JE003254

2013-01-01T23:59:59.000Z

26

METR 3223: Physical Meteorology II: Cloud Physics, Atmospheric Electricity and Optics  

E-Print Network [OSTI]

METR 3223: Physical Meteorology II: Cloud Physics, Atmospheric Electricity and Optics CLASS: Monday of the physical states and processes of clouds and precipitation as well as atmospheric electricity and optics and results Radar observation and estimation Atmospheric electricity: Electrostatics Electromagnetic wave

Droegemeier, Kelvin K.

27

VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international CLIVAR program the major goal of which is to develop and promote scientific activities leading to improved understanding of the Southeast Pacific (SEP) coupled ocean-atmosphere-land system on diurnal to inter-annual timescales. The principal program objectives are: 1) the improved understanding and regional/global model representation of aerosol indirect effects over the SEP; 2) the elimination of systematic errors in the region of coupled atmospheric-ocean general circulation models, and improved model simulations and predictions of the coupled climate in the SEP and global impacts of the system variability. VOCALS is organized into two tightly coordinated components: 1) a Regional Experiment (VOCALSREx), and 2) a Modeling Program (VOCALS-Mod). Extended observations (e.g. IMET buoy, satellites, EPIC/PACS cruises) will provide important additional contextual datasets that help to link the field and the modeling components. The coordination through VOCALS of observational and modeling efforts (Fig. 3) will accelerate the rate at which field data can be used to improve simulations and predictions of the tropical climate variability [Copied from the Vocals Program Summary of June 2007, available as a link from the VOCALS web at http://www.eol.ucar.edu/projects/vocals/]. The CLIVAR sponsored program to under which VOCALS falls is VAMOS, which stands for Variability of the American Monsoon Systems.

Wood, Robert (VOCALS-REx PI, University of Washington); Bretherton, Christopher (GEWEX/GCSS Representative, University of Washington); Huebert, Barry (SOLAS Representative, University of Hawaii); Mechoso, Roberto C. (VOCALS Science Working Group Chair, UCLA); Weller, Robert (Woods Hole Oceanographic Institution)

28

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

29

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

30

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

31

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

32

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

33

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

34

ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

Newsom, Rob; Goldsmith, John

35

IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. III. BREAKDOWN CONDITIONS FOR MINERAL CLOUDS  

SciTech Connect (OSTI)

Electric discharges were detected directly in the cloudy atmospheres of Earth, Jupiter, and Saturn, are debatable for Venus, and indirectly inferred for Neptune and Uranus in our solar system. Sprites (and other types of transient luminous events) have been detected only on Earth, and are theoretically predicted for Jupiter, Saturn, and Venus. Cloud formation is a common phenomenon in ultra-cool atmospheres such as in brown dwarf and extrasolar planetary atmospheres. Cloud particles can be expected to carry considerable charges which may trigger discharge events via small-scale processes between individual cloud particles (intra-cloud discharges) or large-scale processes between clouds (inter-cloud discharges). We investigate electrostatic breakdown characteristics, like critical field strengths and critical charge densities per surface, to demonstrate under which conditions mineral clouds undergo electric discharge events which may trigger or be responsible for sporadic X-ray emission. We apply results from our kinetic dust cloud formation model that is part of the DRIFT-PHOENIX model atmosphere simulations. We present a first investigation of the dependence of the breakdown conditions in brown dwarf and giant gas exoplanets on the local gas-phase chemistry, the effective temperature, and primordial gas-phase metallicity. Our results suggest that different intra-cloud discharge processes dominate at different heights inside mineral clouds: local coronal (point discharges) and small-scale sparks at the bottom region of the cloud where the gas density is high, and flow discharges and large-scale sparks near, and maybe above, the cloud top. The comparison of the thermal degree of ionization and the number density of cloud particles allows us to suggest the efficiency with which discharges will occur in planetary atmospheres.

Helling, Ch.; Jardine, M.; Stark, C. [SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Diver, D., E-mail: ch@leap2010.eu [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

2013-04-20T23:59:59.000Z

36

Atmospheric Rivers Coming to a Cloud Near You  

ScienceCinema (OSTI)

Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

Leung, Ruby

2014-06-12T23:59:59.000Z

37

Atmospheric Rivers Coming to a Cloud Near You  

SciTech Connect (OSTI)

Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

Leung, Ruby

2014-03-29T23:59:59.000Z

38

A Bootstrap Technique for Testing the Relationship Between Local-Scale Radar Observations of Cloud Occurrence and Large-Scale Atmospheric Fields  

SciTech Connect (OSTI)

In this paper an atmospheric classification scheme based on fields that are resolved by global climate models (and numerical weather prediction models) is investigated as a mechanism to map the large-scale (synoptic-scale) atmospheric state to distributions of local-scale cloud properties. Using a bootstrap resampling technique, the temporal stability and distinctness of vertical profiles of cloud occurrence (obtained from a vertically pointing millimeter wavelength cloud-radar) are analyzed as a function of the atmospheric state. A stable class-based map from the large-scale to local-scale cloud properties could be of great utility in the analysis of GCM-predicted cloud properties, by providing a physical context from which to understand any differences between the model output and observations, as well as to separate differences (in total distribution) that are caused by having different weather regimes (or synoptic scale activity) rather than problems in the representation of clouds for a particular regime. Furthermore, if sufficiently robust mappings can be established, it could form the basis of a statistical GCM cloud parameterization.

Marchand, Roger T.; Beagley, Nathaniel; Thompson, Sandra E.; Ackerman, Thomas P.; Schultz, David M.

2006-11-01T23:59:59.000Z

39

Influence of clouds and diffuse radiation on ecosystem-atmosphere CO 2 and CO 18 O exchanges  

E-Print Network [OSTI]

cover, radiation, meteorological and water isotope data tohere, radiation, cloud property, and aerosol data wereData were obtained from the Atmospheric Radiation

2009-01-01T23:59:59.000Z

40

Satellite remote sensing of clouds and the atmosphere 3  

SciTech Connect (OSTI)

This volume contains the proceedings of EOS/SPIE Remote Sensing Symposium which was held September 21--23, 1998 in Barcelona, Spain. Topics of discussion include the following: cloud detection and characterization; earth radiation budget; data assimilation and retrieval methods; and aerosols, ozone, and trace gases.

Russell, J.E. [ed.] [Imperial College of Science, Technology and Medicine, London (United Kingdom)

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

atmospheric cloud physics: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scale energy generation. Selvam, A M 2000-01-01 58 Journal of Atmospheric and Solar-Terrestrial Physics 64 (2002) 19731978 www.elsevier.comlocatejastp Biology and...

42

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher

43

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher

2012-11-06T23:59:59.000Z

44

Cloud features and zonal wind measurements of Saturn's atmosphere as observed by Cassini/VIMS  

E-Print Network [OSTI]

Cloud features and zonal wind measurements of Saturn's atmosphere as observed by Cassini/VIMS D. S Cassini's Visual and Infrared Mapping Spectrometer (VIMS), focusing on the meteorology of the features seen in the 5 mm spectral window. We present VIMS mosaics and discuss the morphology and general

Choi, David S.

45

E-Print Network 3.0 - atmospheric state profiles Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 2 INVESTIGATING THERMODYNAMICS OF VERTICAL ATMOSPHERIC ENERGY TRANSPORT Summary: the Earth's radiation entropy fluxes. The vertical profiles of net...

46

Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout

47

8, 42674308, 2008 3-D retrieval of cloud  

E-Print Network [OSTI]

ACPD 8, 4267­4308, 2008 3-D retrieval of cloud particle profiles T. Zinner et al. Title Page.0 License. Atmospheric Chemistry and Physics Discussions Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles T. Zinner 1,2 , A. Marshak 1 , S

Paris-Sud XI, Université de

48

Improvements in Near-Terminator and Nocturnal Cloud Masks using Satellite Imager Data over the Atmospheric Radiation Measurement Sites  

SciTech Connect (OSTI)

Cloud detection using satellite measurements presents a big challenge near the terminator where the visible (VIS; 0.65 {micro}m) channel becomes less reliable and the reflected solar component of the solar infrared 3.9-{micro}m channel reaches very low signal-to-noise ratio levels. As a result, clouds are underestimated near the terminator and at night over land and ocean in previous Atmospheric Radiation Measurement (ARM) Program cloud retrievals using Geostationary Operational Environmental Satellite (GOES) imager data. Cloud detection near the terminator has always been a challenge. For example, comparisons between the CLAVR-x (Clouds from Advanced Very High Resolution Radiometer [AVHRR]) cloud coverage and Geoscience Laser Altimeter System (GLAS) measurements north of 60{sup o}N indicate significant amounts of missing clouds from AVHRR because this part of the world was near the day/night terminator viewed by AVHRR. Comparisons between MODIS cloud products and GLAS at the same regions also shows the same difficulty in the MODIS cloud retrieval (Pavolonis and Heidinger 2005). Consistent detection of clouds at all times of day is needed to provide reliable cloud and radiation products for ARM and other research efforts involving the modeling of clouds and their interaction with the radiation budget. To minimize inconsistencies between daytime and nighttime retrievals, this paper develops an improved twilight and nighttime cloud mask using GOES-9, 10, and 12 imager data over the ARM sites and the continental United States (CONUS).

Trepte, Q.Z.; Minnis, P.; Heck, P.W.; Palikonda, R.

2005-03-18T23:59:59.000Z

49

Observed Scaling in Clouds and Precipitation and Scale Incognizance in Regional to Global Atmospheric Models  

SciTech Connect (OSTI)

We use observations of robust scaling behavior in clouds and precipitation to derive constraints on how partitioning of precipitation should change with model resolution. Our analysis indicates that 90-99% of stratiform precipitation should occur in clouds that are resolvable by contemporary climate models (e.g., with 200 km or finer grid spacing). Furthermore, this resolved fraction of stratiform precipitation should increase sharply with resolution, such that effectively all stratiform precipitation should be resolvable above scales of ~50 km. We show that the Community Atmosphere Model (CAM) and the Weather Research and Forecasting (WRF) model also exhibit the robust cloud and precipitation scaling behavior that is present in observations, yet the resolved fraction of stratiform precipitation actually decreases with increasing model resolution. A suite of experiments with multiple dynamical cores provides strong evidence that this `scale-incognizant' behavior originates in one of the CAM4 parameterizations. An additional set of sensitivity experiments rules out both convection parameterizations, and by a process of elimination these results implicate the stratiform cloud and precipitation parameterization. Tests with the CAM5 physics package show improvements in the resolution-dependence of resolved cloud fraction and resolved stratiform precipitation fraction.

O'Brien, Travis A.; Li, Fuyu; Collins, William D.; Rauscher, Sara; Ringler, Todd; Taylor, Mark; Hagos, Samson M.; Leung, Lai-Yung R.

2013-12-01T23:59:59.000Z

50

Investigations of cloud altering effects of atmospheric aerosols using a new mixed Eulerian-Lagrangian aerosol model  

E-Print Network [OSTI]

Industry, urban development, and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn, has altered cloud ...

Steele, Henry Donnan, 1974-

2004-01-01T23:59:59.000Z

51

ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 32, JANUARY 2015, 3263 On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing,  

E-Print Network [OSTI]

of the radiative properties of ice clouds from three perspectives: light scattering simulations, remote sensingADVANCES IN ATMOSPHERIC SCIENCES, VOL. 32, JANUARY 2015, 32­63 On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing, and Radiation Parameterization Ping YANG1, Kuo-Nan LIOU2, Lei

Baum, Bryan A.

52

THE DEPENDENCE OF BROWN DWARF RADII ON ATMOSPHERIC METALLICITY AND CLOUDS: THEORY AND COMPARISON WITH OBSERVATIONS  

SciTech Connect (OSTI)

Employing realistic and consistent atmosphere boundary conditions, we have generated evolutionary models for brown dwarfs and very low mass stars (VLMs) for different atmospheric metallicities ([Fe/H]), with and without clouds. We find that the spread in radius at a given mass and age can be as large as {approx}10% to {approx}25%, with higher-metallicity, higher-cloud-thickness atmospheres resulting quite naturally in larger radii. For each 0.1 dex increase in [Fe/H], radii increase by {approx}1% to {approx}2.5%, depending upon the age and mass. We also find that, while for smaller masses and older ages brown dwarf radii decrease with increasing helium fraction (Y, as expected), for more massive brown dwarfs and a wide range of ages they increase with helium fraction. The increase in radius in going from Y = 0.25 to Y = 0.28 can be as large as {approx}0.025 R{sub J} ({approx}2.5%). Furthermore, we find that for VLMs an increase in atmospheric metallicity from 0.0 to 0.5 dex, increases radii by {approx}4%, and from -0.5 to 0.5 dex by {approx}10%. Therefore, we suggest that opacity due to higher metallicity might naturally account for the apparent radius anomalies in some eclipsing VLM systems. Ten to twenty-five percent variations in radius exceed errors stemming from uncertainties in the equation of state alone. This serves to emphasize that transit and eclipse measurements of brown dwarf radii constrain numerous effects collectively, importantly including the atmosphere and condensate cloud models, and not just the equation of state. At all times, one is testing a multi-parameter theory, and not a universal radius-mass relation.

Burrows, Adam; Nampaisarn, Thane [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Heng, Kevin, E-mail: burrows@astro.princeton.edu, E-mail: tnampais@astro.princeton.edu, E-mail: kheng@phys.ethz.ch [Institute for Advanced Study, School of Natural Sciences, 1 Einstein Drive, Princeton, NJ 08540 (United States)

2011-07-20T23:59:59.000Z

53

You are here: OUP USA Home > U.S. General Catalog > Atmospheric Science > Climatology Radiation and Cloud Processes in the Atmosphere  

E-Print Network [OSTI]

You are here: OUP USA Home > U.S. General Catalog > Atmospheric Science > Climatology Radiation and long-range levels. The author here offers a systematic discussion of the transfer of solar and thermal important topics in atmospheric radiation, cloud physics, and thermal equilibrium. Aspects

Liou, K. N.

54

Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

55

Two-moment Bulk Stratiform Cloud Microphysics in the Grid-point Atmospheric Model of IAP LASG (GAMIL)  

SciTech Connect (OSTI)

A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model capability for studying aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces reasonable representation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in-situ observations. The longwave and shortwave cloud forcing are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous freezing formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. Furthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.

Shi, Xiangjun; Wang, Bin; Liu, Xiaohong; Wang, Minghuai

2013-05-01T23:59:59.000Z

56

ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

Jensen, Mike

57

ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)  

SciTech Connect (OSTI)

A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

Jensen, Mike

2012-02-01T23:59:59.000Z

58

Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model  

SciTech Connect (OSTI)

A process-based treatment of ice supersaturation and ice-nucleation is implemented in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). The new scheme is designed to allow (1) supersaturation with respect to ice, (2) ice nucleation by aerosol particles and (3) ice cloud cover consistent with ice microphysics. The scheme is implemented with a 4-class 2 moment microphysics code and is used to evaluate ice cloud nucleation mechanisms and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud occurrence better than previous versions of the model. Simulations indicate heterogeneous freezing and contact nucleation on dust are both potentially important over remote areas of the Arctic. Cloud forcing and hence climate is sensitive to different formulations of the ice microphysics. Arctic radiative fluxes are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentially an important part of understanding cloud forcing and potential cloud feedbacks, particularly in the Arctic.

Gettelman, A.; Liu, Xiaohong; Ghan, Steven J.; Morrison, H.; Park, Sungsu; Conley, Andrew; Klein, Stephen A.; Boyle, James; Mitchell, David; Li, J-L F.

2010-09-28T23:59:59.000Z

59

New Atmospheric Profiling Instrument Added to SGP CART Suite  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007TransmissiontoSystemNewApproaches3 New

60

Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site  

SciTech Connect (OSTI)

The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains Site  

SciTech Connect (OSTI)

A 25-month database of the macrophysical, microphysical, and radiative properties of isolated and overcast low-level stratus clouds has been generated using a newly developed parameterization and surface measurements from the Atmospheric Radiation Measurement central facility in Oklahoma. The database (5-min resolution) includes two parts: measurements and retrievals. The former consist of cloud base and top heights, layer-mean temperature, cloud liquid water path, and solar transmission ratio measured by a ground-based lidar/ceilometer and radar pair, radiosondes, a microwave radiometer, and a standard Eppley precision spectral pyranometer, respectively. The retrievals include the cloud-droplet effective radius and number concentration and broadband shortwave optical depth and cloud and top-of-atmosphere albedos. Stratus without any overlying mid or high-level clouds occurred most frequently during winter and least often during summer. Mean cloud-layer altitudes and geometric thicknesses were higher and greater, respectively, in summer than in winter. Both quantities are positively correlated with the cloud-layer mean temperature. Mean cloud-droplet effective radii range from 8.1 {mu}m in winter to 9.7 {mu}m during summer, while cloud-droplet number concentrations during winter are nearly twice those in summer. Since cloud liquid water paths are almost the same in both seasons, cloud optical depth is higher during the winter, leading to greater cloud albedos and lower cloud transmittances. (c) 2000 American Geophysical Union.

Dong, Xiquan [Meteorology Department, University of Utah, Salt Lake City (United States)] [Meteorology Department, University of Utah, Salt Lake City (United States); Minnis, Patrick [NASA Langley Research Center, Hampton, Virginia (United States)] [NASA Langley Research Center, Hampton, Virginia (United States); Ackerman, Thomas P. [Pacific Northwest National Laboratory, DOE, Richland, Washington (United States)] [Pacific Northwest National Laboratory, DOE, Richland, Washington (United States); Clothiaux, Eugene E. [Department of Meteorology, Pennsylvania State University, University Park (United States)] [Department of Meteorology, Pennsylvania State University, University Park (United States); Mace, Gerald G. [Meteorology Department, University of Utah, Salt Lake City (United States)] [Meteorology Department, University of Utah, Salt Lake City (United States); Long, Charles N. [Department of Meteorology, Pennsylvania State University, University Park (United States)] [Department of Meteorology, Pennsylvania State University, University Park (United States); Liljegren, James C. [Ames Laboratory, DOE, Ames, Iowa (United States)] [Ames Laboratory, DOE, Ames, Iowa (United States)

2000-02-27T23:59:59.000Z

62

Analysis of two independent methods for retrieving liquid water profiles in spring and summer Arctic boundary clouds  

E-Print Network [OSTI]

-based remote sensing, optimal estimation, LES model with explicit microphysics, cloud liquid water algorithms Heat Budget of the Arctic Ocean (SHEBA) project. An algorithm developed by Frisch et al. [1995, 1998 matrix of the LWC profile is calculated, an optimal estimation method is applied to the SHEBA data

Shupe, Matthew

63

Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and column cloud liquid water amounts  

SciTech Connect (OSTI)

These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation.

Wu, X.; Diak, G.R.; Hayden, C.M.; Young, J.A. [Univ. of Wisconsin, Madison, WI (United States)] [Univ. of Wisconsin, Madison, WI (United States)

1995-02-01T23:59:59.000Z

64

3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations  

SciTech Connect (OSTI)

Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

Howard Barker; Jason Cole

2012-05-17T23:59:59.000Z

65

Evaluation of A New Mixed-Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model (CAM3) and ARM Observations Fourth Quarter 2007 ARM Metric Report  

SciTech Connect (OSTI)

Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as temperature dependent functions. In our previous 2007 ARM metric reports a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) was documented and implemented in the NCAR Community Atmospheric Model Version 3 (CAM3). The new scheme was tested against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the single column modeling and short-range weather forecast approaches. In this report this new parameterization is further tested with CAM3 in its climate simulations. It is shown that the predicted ice water content from CAM3 with the new parameterization is in better agreement with the ARM measurements at the Southern Great Plain (SGP) site for the mixed-phase clouds.

X Liu; SJ Ghan; S Xie; J Boyle; SA Klein

2007-09-30T23:59:59.000Z

66

Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report  

SciTech Connect (OSTI)

In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

2011-08-31T23:59:59.000Z

67

Dynamics of Planetary Atmospheres  

E-Print Network [OSTI]

pressure (bars) N2 82%; Ar 12%; CH4 6%CO2 96.5%; N2 3.5%Atmospheric composition 26177Orbital inclination (1992) orbiter ­ Winds from cloud-tracking and probe drifts ­ IR temperatures, solar-fixed tides, polar-Huygens mission (from 2005) ­ Doppler wind descent profile ­ IR temperature and composition maps ­ Visible, IR

Read, Peter L.

68

WHAT DO SPECTRAL LINE PROFILE ASYMMETRIES TELL US ABOUT THE SOLAR ATMOSPHERE?  

SciTech Connect (OSTI)

Recently, analysis of solar spectra obtained with the EUV Imaging Spectrograph (EIS) onboard the Hinode satellite has revealed the ubiquitous presence of asymmetries in transition region (TR) and coronal spectral line profiles. These asymmetries have been observed especially at the footpoints of coronal loops and have been associated with strong upflows that may play a significant role in providing the corona with hot plasma. Here, we perform a detailed study of the various processes that can lead to spectral line asymmetries, using both simple forward models and state-of-the-art three-dimensional radiative MHD simulations of the solar atmosphere using the Bifrost code. We describe a novel technique to determine the presence and properties of faint secondary components in the wings of spectral line profiles. This method is based on least-squares fitting of observed so-called R(ed)B(lue) asymmetry profiles with pre-calculated RB asymmetry profiles for a wide variety of secondary component properties. We illustrate how this method could be used to perform reliable double Gaussian fits that are not over- or under-constrained. We also find that spectral line asymmetries appear in TR and coronal lines that are synthesized from our three-dimensional MHD simulations. Our models show that the spectral asymmetries are a sensitive measure of the velocity gradient with height in the TR of coronal loops. The modeled TR shows a large gradient of velocity that increases with height: this occurs as a consequence of ubiquitous, episodic heating at low heights in the model atmosphere. We show that the contribution function of spectral lines as a function of temperature is critical for sensitivity to velocity gradients and thus line asymmetries: lines that are formed over a temperature range that includes most of the TR are the most sensitive. As a result, lines from lithium-like ions (e.g., O VI) are found to be the most sensitive to line asymmetries. We compare the simulated line profiles directly with line profiles observed in the quiet Sun with SOHO/SUMER and Hinode/EIS and find that the shape of the profiles is very similar. In addition, the simulated profiles with the strongest blueward asymmetry occur in footpoint regions of coronal loops, which is similar to what we observe with SUMER and EIS. There is however a significant discrepancy between the simulations and observations: the simulated RB asymmetries are an order of magnitude smaller than the observations. We discuss the possible reasons for this discrepancy. In summary, our analysis shows that observations of spectral line asymmetries can provide a powerful new diagnostic to help constrain coronal heating models.

MartInez-Sykora, Juan; De Pontieu, Bart [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Hansteen, Viggo [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); McIntosh, Scott W., E-mail: j.m.sykora@astro.uio.no [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307 (United States)

2011-05-10T23:59:59.000Z

69

Fundamental to the Cloud Land Surface Interaction Campaign (CLASIC) is understanding the relationships of the atmosphere and the land surface  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big Sky Learning| EMSL007 Cloud Land

70

Use of airs and modis thermal infrared channels to retrieve ice cloud properties  

E-Print Network [OSTI]

In this study, we use thermal infrared channels to retrieve the optical thickness and effective particle radius of ice clouds. A physical model is used in conjunction with Atmospheric Infrared Sounder (AIRS) temperature and water vapor profiles...

Yost, Christopher Rogers

2007-04-25T23:59:59.000Z

71

Validation of Surface Retrieved Cloud Optical Properties with in situ Measurements at the Atmospheric Radiation Measurement Program (ARM) South Great Plains Site  

SciTech Connect (OSTI)

The surface inferred cloud optical properties from a multifilter rotating shadowband radiometer have been validated against the in situ measurements during the second ARM Enhanced Shortwave Experiment (ARESE II) field campaign at the ARM South Great Plains (SGP) site. On the basis of eight effective radius profiles measured by the in situ Forward Spectra Scattering Probe (FSSP), our retrieved cloud effective radii for single-layer warm water clouds agree well with in situ measurements, within 5.5%. The sensitivity study also illustrates that for this case a 13% uncertainty in observed liquid water path (LWP, 20 g/m2) results in 1.5% difference in retrieved cloud optical depth and 12.7% difference in referred cloud effective radius, on average. The uncertainty of the LWP measured by the microwave radiometer (MWR) is the major contributor to the uncertainty of retrieved cloud effective radius. Further, we conclude that the uncertainty of our inferred cloud optical properties is better than 5% for warm water clouds based on a surface closure study, in which cloud optical properties inferred from narrowband irradiances are applied to a shortwave model and the modeled broadband fluxes are compared to a surface pyranometer.

Min, Qilong; Duan, M.; Marchand, Roger T.

2003-09-11T23:59:59.000Z

72

SURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE VARIATION  

E-Print Network [OSTI]

SURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE/Atmospheric Sciences Division Brookhaven National Laboratory P.O. Box, Upton, NY www.bnl.gov ABSTRACT Cloud-induced climate change. Cloud-radiative forcing, cloud fraction, and cloud albedo are three key quantities

73

Retrieval of optical and microphysical properties of ice clouds using Atmospheric Radiation Measurement (ARM) data  

E-Print Network [OSTI]

is based on a method proposed by Yang et al. (2005). The research examines single-layer ice clouds in the midlatitude and polar regions. The retrieved information in the midlatitudes is then verified using retrievals from the Moderate-resolution Imaging...

Kinney, Jacqueline Anne

2005-11-01T23:59:59.000Z

74

Atmospheric Environment 42 (2008) 30763086 Scavenging of soluble gases by evaporating and growing cloud  

E-Print Network [OSTI]

and condensation of a cloud droplet in the presence of soluble gases. It is assumed that gas absorption we performed numerical analysis of simultaneous heat and mass transfer during evaporation into account thermal effect of gas absorption. It was shown that nonlinear behavior of different parameters

Elperin, Tov

75

The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations  

SciTech Connect (OSTI)

The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted.

Wood, R.; Springston, S.; Mechoso, C. R.; Bretherton, C. S.; A.Weller, R.; Huebert, B.; Straneo, F.; Albrecht, B. A.; Coe, H.; Allen, G.; Vaughan, G.; Daum, P.; Fairall, C.; Chand, D.; Klenner, L. G.; Garreaud, R.; Grados, C.; Covert, D. S.; Bates, T. S.; Krejci, R.; Russell, L. M.; Szoeke, S. d.; Brewer, A.; Yuter, S. E.; Chaigneau, A.; Toniazzo, T.; Minnis, P.; Palikonda, R.; Abel, S. J.; Brown, W. O. J.; Williams, S.; Fochesatto, J.; Brioude, J.; Bower, K. N

2011-01-21T23:59:59.000Z

76

Work output of planetary atmospheric engines: dissipation in clouds and rain  

E-Print Network [OSTI]

not provide enough work to lift the condensate against gravity. INDEX TERMS: 0343 Atmospheric Composition as the original function of steam engines was to lift water, a principal output of the atmospheric heat engine (the average surface temperature of 288K) and ÁT $38K, the difference between T and the effective

Lorenz, Ralph D.

77

Uranus at equinox: Cloud morphology and dynamics  

E-Print Network [OSTI]

As the 7 December 2007 equinox of Uranus approached, ring and atmosphere observers produced a substantial collection of observations using the 10-m Keck telescope and the Hubble Space Telescope. Those spanning the period from 7 June 2007 through 9 September 2007 we used to identify and track cloud features, determine atmospheric motions, characterize cloud morphology and dynamics, and define changes in atmospheric band structure. We confirmed the existence of the suspected northern hemisphere prograde jet, locating its peak near 58 N, and extended wind speed measurements to 73 N. For 28 cloud features we obtained extremely high wind-speed accuracy through extended tracking times. The new results confirm a small N-S asymmetry in the zonal wind profile, and the lack of any change in the southern hemisphere between 1986 (near solstice) and 2007 (near equinox) suggests that the asymmetry may be permanent rather than seasonally reversing. In the 2007 images we found two prominent groups of discrete cloud features ...

Sromovsky, Lawrence; Hammel, Heidi; Ahue, William; de Pater, Imke; Rages, Kathy; Showalter, Mark; van Dam, Marcos

2015-01-01T23:59:59.000Z

78

A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5  

SciTech Connect (OSTI)

In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model uncertainty via calibration of uncertain model parameters with the largest sensitivity.

Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

2013-11-08T23:59:59.000Z

79

Toward a Diurnal Climatology of Cold-Season Turbulence Statistics in Continental Stratocumulus as Observed by the Atmospheric Radiation Millimeter- Wavelength Cloud Radars  

SciTech Connect (OSTI)

Numerous observational studies of marine stratocumulus have demonstrated a pronounced diurnal cycle. At night, longwave flux divergence at the top of the cloud drives negatively buoyant eddies that tend to keep the boundary layer well mixed. During the day, solar absorption by the cloud tends to reduce the turbulent intensity and often decouples the planetary boundary layer (PBL) into cloud- and sub-cloud circulations. The delicate balance between turbulent intensity, entrainment, and fluxes dictates cloud geometry and persistence, which can significantly impact the shortwave radiation budget. Millimeter-wavelength cloud radars (MMCRs) have been used to study the turbulent structure of boundary layer stratocumulus (e.g. Frisch et al. 1995; Kollias and Albrecht 2000). Analysis is confined to nondrizzling or lightly drizzling cloud systems for which precipitation contamination is negligible. Under such assumptions the Doppler velocity field becomes a proxy for vertical velocity. Prior research has mainly consisted of a few case studies of specific cloud systems using radar scan strategies optimized for this particular cloud type. The MMCR operating at the Southern Great Plains Atmospheric Radiation Measurement Climate Research Facility is broadly configured to be able to detect many different cloud types over a broad range of reflectivities and altitudes, so it is not specifically optimized for PBL clouds. Being in more-or-less continuous operation since the end of 1996, it does, however, have the advantage of long data coverage, which suggests that statistically significant measures of the diurnal cycle of turbulence should be attainable. This abstract summarizes the first few steps toward this goal, using 7 months of cold season MMCR data.

Mechem, D.B.; Kogan, Y.L.; Childers, M.E.; Donner, K.M.

2005-03-18T23:59:59.000Z

80

Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation  

SciTech Connect (OSTI)

The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring.

McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

2005-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Heterogeneous chemistry of atmospheric mineral dust particles and their resulting cloud-nucleation properties  

E-Print Network [OSTI]

Aerosol size distribution The size of an aerosol particle is an important parameter that controls the rates of diffusion, coagulation,coagulation into the larger ultrafine and accumulation Figure 1.1. Typical size distribution of atmospheric aerosols and

Sullivan, Ryan Christopher

2008-01-01T23:59:59.000Z

82

Cloud Controlling Factors --Low Clouds BJORN STEVENS,  

E-Print Network [OSTI]

Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic) clouds is reviewed, with an emphasis on factors that may be expected to change in a changing climate of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

Stevens, Bjorn

83

Cloud Controlling Factors --Low Clouds BJORN STEVENS,  

E-Print Network [OSTI]

Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic conspire to determine the statistics and cli- matology of layers of shallow (boundary layer) clouds of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

Stevens, Bjorn

84

Comparison of Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement (ARM) Si...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity Involvement and MakingYersiniae.Shewanellaby

85

Cloud climatology at the Southern Great Plains and the layer structure, drizzle, and atmospheric modes of continental stratus  

E-Print Network [OSTI]

with other data sets, climate-scale relation- ships between cloud properties and dynamical or micro- physical of cloud layers, an issue that is important in calculating both the radiative and the hydro- logic effects

86

Cloud Services Cloud Services  

E-Print Network [OSTI]

Cloud Services Cloud Services In 2012 UCD IT Services launched an exciting new set of cloud solutions called CloudEdu, which includes cloud servers, cloud storage, cloud hosting and cloud network. The CloudEdu package includes a consultancy service in design, deployment, management and utilisation

87

Modification and Application of a New Method for Retrieving Water-Cloud Microphysics Vertical Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification and Application of a New Method for Retrieving

88

DOE/SC-ARM/TR-103 Cloud Condensation Nuclei Profile Value-Added  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1SC60993593803

89

An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar  

SciTech Connect (OSTI)

The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when ? approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

Lo, C; Comstock, JM; Flynn, C

2006-10-01T23:59:59.000Z

90

Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies  

E-Print Network [OSTI]

Owing to their wavelengths dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. Especially, the potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf the CO2 ice particles show no strong effective scattering greenhouse eff...

Kitzmann, D; Rauer, H

2013-01-01T23:59:59.000Z

91

Source profiles for nonmethane organic compounds in the atmosphere of Cairo, Egypt.  

SciTech Connect (OSTI)

Profiles of the sources of nonmethane organic compounds (NMOCs) were developed for emissions from vehicles, petroleum fuels (gasoline, liquefied petroleum gas (LPG), and natural gas), a petroleum refinery, a smelter, and a cast iron factory in Cairo, Egypt. More than 100 hydrocarbons and oxygenated hydrocarbons were tentatively identified and quantified. Gasoline-vapor and whole-gasoline profiles could be distinguished from the other profiles by high concentrations of the C{sub 5} and C{sub 6} saturated hydrocarbons. The vehicle emission profile was similar to the whole-gasoline profile, with the exception of the unsaturated and aromatic hydrocarbons, which were present at higher concentrations in the vehicle emission profile. High levels of the C{sub 2}-C{sub 4} saturated hydrocarbons, particularly n-butane, were characteristic features of the petroleum refinery emissions. The smelter and cast iron factory emissions were similar to the refinery emissions; however, the levels of benzene and toluene were greater in the former two sources. The LPG and natural gas emissions contained high concentrations of n-butane and ethane, respectively. The NMOC source profiles for Cairo were distinctly different from profiles for U.S. sources, indicating that NMOC source profiles are sensitive to the particular composition of petroleum fuels that are used in a location.

Doskey, P. V.; Fukui, Y.; Sultan, M.; Maghraby, A. A.; Taher, A.; Environmental Research; Cairo Univ.

1999-07-01T23:59:59.000Z

92

GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model  

SciTech Connect (OSTI)

This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

2010-06-17T23:59:59.000Z

93

Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

94

Headspace profiles of modified atmosphere packaged fresh red snapper (Lutjanus campechanus) by gas liquid chromatography  

E-Print Network [OSTI]

activity. Typical components found in the headspace were, butanal, ethanol, hexanal, dimethylamine and trimethylamine. During storage at 4 C, the microbial population within the packages containing C02 tended to shift from an initial gram negative... dioxide (CO2) enriched atmospheres and vacuum packaging have become important new technologies that will improve the quality and shelf-life of fresh seafood products. This type of packaging not only extends the shelf-life of seafoods, it also makes...

Scorah, Craig Darrell Allen

1988-01-01T23:59:59.000Z

95

Changes in Cloud Cover and Cloud Types Over the Ocean from Surface  

E-Print Network [OSTI]

atmosphere) #12;Clouds, Radiation, and SST Low Clouds - Cool the ocean surface High Clouds - WarmingChanges in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, 1954-2008 Ryan Eastman Stephen G. Warren Carole J. Hahn #12;Clouds Over the Ocean The ocean is cloudy, more-so than land

Hochberg, Michael

96

DIRSIG Cloud Modeling Capabilities; A Parametric Study  

E-Print Network [OSTI]

1 DIRSIG Cloud Modeling Capabilities; A Parametric Study Kristen Powers powers:................................................................................................................... 13 Calculation of Sensor Reaching Radiance Truth Values for Cloudless & Stratus Cloud Scenes and Atmospheric Database Creation for Stratus Cloud Scene & Calculation of Associated Sensor Reaching Radiance

Salvaggio, Carl

97

E-Print Network 3.0 - atmospheric physics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: atmospheric physics Page: << < 1 2 3 4 5 > >> 1 Cloud Physics and Atmospheric Chemistry http:cpac.pku.edu.cn Summary: Cloud Physics and Atmospheric Chemistry http:...

98

Atmospheric chemistry of a 3334 hour old volcanic cloud from Hekla Volcano (Iceland): Insights from direct sampling  

E-Print Network [OSTI]

Geological Engineering and Sciences, Michigan Technological University, Houghton, Michigan, USA. 2 Department and nitric acid promoted polar stratospheric cloud (PSC) formation at 201203 K, yielding ice, nitric acid) particles. We show that these volcanically induced PSCs, especially the ice and NAT particles, activated

Rose, William I.

99

Journal of Atmospheric and Solar-Terrestrial Physics 68 (2006) 21642172 Correlation between clouds at different altitudes and solar  

E-Print Network [OSTI]

to the vertical current system induced by solar wind interaction with the magnetosphere (Tinsley, 1996.g., Dickinson, 1975; Tinsley et al., 1989). Recent results have suggested that the low-cloud amount (LCA) has averaged LCA in 1984­1994 and CR recorded by a neutron monitor and found that the two quantities are highly

Usoskin, Ilya G.

100

Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra  

SciTech Connect (OSTI)

A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

Stiller, G.P.; Gunson, M.R.; Lowes, L.L.; Abrams, M.C.; Raper, O.F.; Farmer, C.B.; Zander, R.; Rinsland, C.P. [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany)] [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany); [Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA (United States); [Liege Univ., Liege (Belgium); [NASA, Langley Research Center, Hampton, VA (United States)

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Climatology of the Martian Polar Regions: Three Mars Years of CRISM/MARCI Observations of Atmospheric Clouds and Dust  

E-Print Network [OSTI]

We present the synthesis of CRISM EPF and MARCI data to examine the evolution of atmospheric water ice and dust opacity at both poles for MY 28-30.

Brown, Adrian J

2013-01-01T23:59:59.000Z

102

Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll  

SciTech Connect (OSTI)

To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

2014-05-16T23:59:59.000Z

103

Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo  

SciTech Connect (OSTI)

This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997-2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

Liu, Y.; Wu, W.; Jensen, M. P.; Toto, T.

2011-07-21T23:59:59.000Z

104

Jellylike atmospheric particles resist chemical aging Findings will affect scientific models of cloud formation and light absorption  

E-Print Network [OSTI]

sulfuric acid, helping prevent acid rain, but its nitrogen component can also fertilize open bodies of pinene SOM and adipic acid, have shown that a drop in humidity can send these common aerosols, pinene and adipic acid, are common in the Earth's atmosphere; pinene is essentially a scent released

105

Evaluating cloud retrieval algorithms with the ARM BBHRP framework  

SciTech Connect (OSTI)

Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analyses has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.

Mlawer,E.; Dunn,M.; Mlawer, E.; Shippert, T.; Troyan, D.; Johnson, K. L.; Miller, M. A.; Delamere, J.; Turner, D. D.; Jensen, M. P.; Flynn, C.; Shupe, M.; Comstock, J.; Long, C. N.; Clough, S. T.; Sivaraman, C.; Khaiyer, M.; Xie, S.; Rutan, D.; Minnis, P.

2008-03-10T23:59:59.000Z

106

Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere  

SciTech Connect (OSTI)

This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

Tooman, T.P. [ed.] [Sandia National Labs., Livermore, CA (United States). Exploratory Systems Technology Dept.

1997-01-01T23:59:59.000Z

107

Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research  

E-Print Network [OSTI]

Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research www in modeling of the associated multiphase processes. Iron redox species are important pollutants. The oxidative capacity of the atmospheric cloud water decreases when dissolution is included

Boyer, Edmond

108

Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites  

SciTech Connect (OSTI)

Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

2013-09-11T23:59:59.000Z

109

Analysis of global radiation budgets and cloud forcing using three-dimensional cloud nephanalysis data base. Master's thesis  

SciTech Connect (OSTI)

A one-dimensional radiative transfer model was used to compute the global radiative budget at the top of the atmosphere (TOA) and the surface for January and July. 1979. The model was also used to determine the global cloud radiative forcing for all clouds and for high and low cloud layers. In the computations. the authors used the monthly cloud data derived from the Air Force Three-Dimensional Cloud Nephanalysis (3DNEPH). These data were used in conjunction with conventional temperature and humidity profiles analyzed during the 1979 First GARP (Global Atmospheric Research Program) Global Experiment (FGGE) year. Global surface albedos were computed from available data and were included in the radiative transfer analysis. Comparisons of the model-produced outgoing solar and infrared fluxes with those derived from Nimbus 7 Earth Radiation Budget (ERS) data were made to validate the radiative model and cloud cover. For reflected solar and emitted infrared (IR) flux, differences within 20 w/sq m meters were shown.

Mitchell, B.

1990-12-01T23:59:59.000Z

110

The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at the  

E-Print Network [OSTI]

to produce too much solid water (ice and snow) and not enough liquid water. 1. Introduction Ice clouds playThe Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured­NCAR Mesoscale Model (MM5) to simulate midlatitude ice clouds is evaluated. Model outputs are compared to long

Protat, Alain

111

7, 1711717146, 2007 Dependence of cloud  

E-Print Network [OSTI]

ACPD 7, 17117­17146, 2007 Dependence of cloud fraction and cloud height on temperature T. Wagner et a Creative Commons License. Atmospheric Chemistry and Physics Discussions Dependence of cloud fraction and cloud top height on surface temperature derived from spectrally resolved UV/vis satellite observations T

Paris-Sud XI, Université de

112

AAI Absorbing Aerosol Index ADAGUC Atmospheric Data Access for the Geospatial User Community  

E-Print Network [OSTI]

Change IPT Integrated Profiling Technique IR Infrared IsA International standard Atmosphere (recommended by WMO) IsCCP International satellite Cloud Climatology Project IsO International Organization in Europe (EU project) IPC International Pyrheliometer Comparison IPCC Intergovernmental Panel on Climate

Haak, Hein

113

Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications  

E-Print Network [OSTI]

Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloudscale. Profiling, millimeterwavelength (cloud) radars can provide such observations. In particular, the first three

114

Millimeter Wave Cloud Radar (MMCR) Handbook  

SciTech Connect (OSTI)

The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

KB Widener; K Johnson

2005-01-30T23:59:59.000Z

115

UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS  

SciTech Connect (OSTI)

Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric albedo.

Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Demory, Brice-Olivier, E-mail: kevin.heng@csh.unibe.ch, E-mail: demory@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

2013-11-10T23:59:59.000Z

116

Using Surface Remote Sensors to Derive Radiative Characteristics of Mixed-Phase Clouds: An Example from M-PACE  

SciTech Connect (OSTI)

Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0-366.4 (0.5-114.1) gm-2, and cloud physical thicknesses fall between 286-2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm-2.

de Boer, Gijs; Collins, William D.; Menon, Surabi; Long, Charles N.

2011-12-02T23:59:59.000Z

117

Lidar determination of altitude profile of the refraction index in electro-optical monitoring of the Earths atmosphere  

E-Print Network [OSTI]

generated data 1. Introduction Control of atmosphere pollution is a complex problem of environmental of the reconstruction of the individual contributions and the overall altitude pro- file of the refraction index of air the pollutants and obtain detailed information about the distri- bution of the substances both in altitude

118

The Microbase Value-Added Product: A Baseline Retrieval of Cloud Microphysical Properties  

SciTech Connect (OSTI)

This report describes the Atmospheric Radiation Measurement (ARM) Climate Research Facility baseline cloud microphysical properties (MICROBASE) value-added product (VAP). MICROBASE uses a combination of millimeter-wavelength cloud radar, microwave radiometer, and radiosonde observations to estimate the vertical profiles of the primary microphysical parameters of clouds including the liquid/ice water content and liquid/ice cloud particle effective radius. MICROBASE is a baseline algorithm designed to apply to most conditions and locations using a single set of parameterizations and a simple determination of water phase based on temperature. This document provides the user of this product with guidelines to assist in determining the accuracy of the product under certain conditions. Quality control flags are designed to identify outliers and indicate instances where the retrieval assumptions may not be met. The overall methodology is described in this report through a detailed description of the input variables, algorithms, and output products.

Dunn, M; Johnson, K; Jensen, M

2011-05-31T23:59:59.000Z

119

E-Print Network 3.0 - asian brown cloud Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

brown cloud Search Powered by Explorit Topic List Advanced Search Sample search results for: asian brown cloud Page: << < 1 2 3 4 5 > >> 1 ANNOUNCEMENT Project Atmospheric Brown...

120

Interactive physically-based cloud simulation  

E-Print Network [OSTI]

of digital artistic media. Previous methods for modeling the growth of clouds do not account for the fluid interactions that are responsible for cloud formation in the physical atmosphere. We propose a model for simulating cloud formation based on a basic...

Overby, Derek Robert

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Atmospheric Pb deposition since the Industrial Revolution recorded by five Swiss peat profiles: Enrichment factors, fluxes, isotopic composition, and sources  

SciTech Connect (OSTI)

Atmospheric Pb deposition since the Industrial Revolution was studied in western, central, and southern Switzerland using five rural peat bogs. Similar temporal patterns were found in western and central Switzerland, with two distinct periods of Pb enrichment relative to the natural background: between 1880 and 1920 with enrichments ranging from 40 to 80 times, and between 1960 and 1980 with enrichments ranging from 80 to 100 times. The fluxes also were generally elevated in those time periods: in western Switzerland between 1.16 and 1.55 {micro}g cm{sup {minus}2} y{sup {minus}1} during the second period. Between the Industrial Revolution and 1985, nonradiogenic Pb became increasingly important in all five cores because of the replacement of coal by oil after ca. 1920, the use of Australian Pb in industry, and the extensive combustion of leaded gasoline after 1950. The introduction of unleaded gasoline in 1985 had a pronounced effect on the Pb deposition in all five cores. Enrichments dropped sharply, and the isotopic ratios reverted back toward natural values. The cores from western and central Switzerland showed very similar isotopic trends throughout the time period studied, implying that these sites were influenced contemporaneously by similar pollution sources and atmospheric pathways. Southern Switzerland revealed a different record with respect to the Pb pollution: it was dominated by a single massive Pb enrichment dated between 1930 and 1950.

Weiss, D.; Shotyk, W.; Kramers, J.D. [Univ. of Bern (Switzerland)] [Univ. of Bern (Switzerland); Appleby, P.G. [Univ. of Liverpool (United Kingdom). Dept. of Mathematical Sciences] [Univ. of Liverpool (United Kingdom). Dept. of Mathematical Sciences; Cheburkin, A.K. [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. of Geological Sciences] [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. of Geological Sciences

1999-05-01T23:59:59.000Z

122

Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites  

SciTech Connect (OSTI)

Statistics of ice cloud macrophysical and optical properties from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite are compared with those from ground-based lidar observations over a 31 month period. Ground-based lidar observations are taken from the micropulse lidars (MPL) at the three Department of Energy Atmospheric Radiation Measurement (ARM) tropical western pacific (TWP) sites: Manus, Nauru and Darwin. CALIPSO observations show a larger cloud fraction at high altitudes while the ground-based MPLs show a larger cloud fraction at low altitudes. The difference in mean ice cloud top and base heights at the Manus and Nauru sites are all within 0.51 km, although differences are statistically significant. Mean ice cloud geometrical thickness agree to within 0.05 km at the Manus and Nauru sites. Larger differences exist at Darwin due to excessive degradation of the MPL output power during our sampling period. Both sets of observations show thicker clouds during the nighttime which may be real but could also be partially an artifact of the decreased signal-to-noise ratio during the daytime. The number of ice cloud layers per profile are also shown to be consistent after accounting for the difference in spatial resolution. For cloud optical depths, four different retrieval methods are compared, two for each set of observations. All products show that the majority of ice cloud optical depths ({approx}60%) fall below an optical depth of 0.2. For most comparisons all four retrievals agree to within the uncertainty intervals. We find that both CALIPSO retrievals agree best to ground-based optical depths when the lidar ratio in the latter is retrieved instead of set to a fixed value. Also thoroughly compared is the cloud properties for the subset of ice clouds which reside in the tropical tropopause layer (TTL).

Thorsen, Tyler J.; Fu, Q.; Comstock, Jennifer M.

2011-11-10T23:59:59.000Z

123

Feel free to contact the authors either here at the conference or at zadelhof@knmi.nl resp. donovan@knmi.nl Towards vertical cloud profile retrieval from  

E-Print Network [OSTI]

to the parameterizations of clouds used. To provide better and more reliable predictions the parameterization schemes have to be measured and related to their liquid water content (LWC), ice water content (IWC regime of the radar. R ¨ ¥ ¦ can be related to R¥ ¦ through assumptions of the type of ice

Zadelhoff, Gerd-Jan van

124

Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation  

SciTech Connect (OSTI)

Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day?km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.

Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

2013-01-31T23:59:59.000Z

125

Investigating the Radiative Impact Clouds Using Retrieved Properties to Classify Cloud Type  

E-Print Network [OSTI]

of Reading, RG6 6AL, UK Abstract. Active remote sensing allows cloud properties such as ice and liquid water remote sensing, Cloud categorization, Cloud properties, Radiative impact. PACS: 92.60. Vb. INTRODUCTION in a radiation scheme which can simulate the radiation budget and heating rates throughout the atmospheric

Hogan, Robin

126

Cloud Computing  

SciTech Connect (OSTI)

Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

Pete Beckman and Ian Foster

2009-12-04T23:59:59.000Z

127

Macrophysical Properties of Tropical Cirrus Clouds from the CALIPSO Satellite and from Ground-based Micropulse and Raman Lidars  

SciTech Connect (OSTI)

Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia site are compared from the Cloud-Aerosol Lidar and In- frared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while the MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cy- cle is significantly different than zero only below about 11 km; where it is the opposite sign (i.e. more clouds during the daytime). For cirrus geomet- rical thickness, the MPL and CALIPSO observations agree well and both datasets have signficantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the vast im- provement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds as well as a valuable ground-based lidar dataset for the validation of CALIPSO observations and to help im- prove our understanding of tropical cirrus clouds.

Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.; Sivaraman, Chitra; Vaughan, Mark A.; Winker, D.; Turner, David D.

2013-08-27T23:59:59.000Z

128

Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations  

SciTech Connect (OSTI)

The works supported by this ASR project lay the solid foundation for improving the parameterization of convection and clouds in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and ARM observations to produce thermodynamically and dynamically consistent multi-year cloud and radiative properties; improve the GCM simulations of convection, clouds and radiative heating rate and fluxes using the ARM observations and CRM simulations; and understand the seasonal and annual variation of cloud systems and their impacts on climate mean state and variability. We conducted multi-year simulations over the ARM SGP site using the CRM with multi-year ARM forcing data. The statistics of cloud and radiative properties from the long-term CRM simulations were compared and validated with the ARM measurements and value added products (VAP). We evaluated the multi-year climate simulations produced by the GCM with the modified convection scheme. We used multi-year ARM observations and CRM simulations to validate and further improve the trigger condition and revised closure assumption in NCAR GCM simulations that demonstrate the improvement of climate mean state and variability. We combined the improved convection scheme with the mosaic treatment of subgrid cloud distributions in the radiation scheme of the GCM. The mosaic treatment of cloud distributions has been implemented in the GCM with the original convection scheme and enables the use of more realistic cloud amounts as well as cloud water contents in producing net radiative fluxes closer to observations. A physics-based latent heat (LH) retrieval algorithm was developed by parameterizing the physical linkages of observed hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water.

Wu, Xiaoqing

2014-02-25T23:59:59.000Z

129

Study of ice cloud properties using infrared spectral data  

E-Print Network [OSTI]

The research presented in this thesis involves the study of ice cloud microphysical and optical properties using both hyperspectral and narrowband infrared spectral data. First, ice cloud models are developed for the Infrared Atmospheric Sounding...

Garrett, Kevin James

2009-05-15T23:59:59.000Z

130

Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model  

SciTech Connect (OSTI)

Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or breakup of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared with numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.

Yue, Qing; Kahn, Brian; Xiao, Heng; Schreier, Mathias; Fetzer, E. J.; Teixeira, J.; Suselj, Kay

2013-08-16T23:59:59.000Z

131

Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations  

SciTech Connect (OSTI)

Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

2014-10-01T23:59:59.000Z

132

SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms  

SciTech Connect (OSTI)

The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energys Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

2007-06-01T23:59:59.000Z

133

Solar Absorption by Mie Resonances in Cloud Droplets Charles S. Zender  

E-Print Network [OSTI]

by cloud droplets may consti- tute a significant and unaccounted-for solar energy sink in the atmosphere

Zender, Charles

134

Aircraft Observations of Sub-cloud Aerosol and Convective Cloud Physical Properties  

E-Print Network [OSTI]

of Department, Kenneth Bowman December 2009 Major Subject: Atmospheric Sciences iii iii ABSTRACT Aircraft Observations of Sub-Cloud Aerosol and Convective Cloud Physical Properties. (December 2009) Duncan Axisa, B.Ed., University of Malta; B... but for vertical velocity (ms-1). Negative values are updraft and positive values are downdraft ........................................... 30 18 Cloud droplet size distribution (dN/dlogD, cm-3) for 1Hz cloud penetration data...

Axisa, Duncan

2011-02-22T23:59:59.000Z

135

SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan  

SciTech Connect (OSTI)

The Cloud and Land Surface Interaction Campaign is a field experiment designed to collect a comprehensive data set that can be used to quantify the interactions that occur between the atmosphere, biosphere, land surface, and subsurface. A particular focus will be on how these interactions modulate the abundance and characteristics of small and medium size cumuliform clouds that are generated by local convection. These interactions are not well understood and are responsible for large uncertainties in global climate models, which are used to forecast future climate states. The campaign will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energys Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of Cloud and Land Surface Interaction Campaign includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations.

MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; T Jackson; B.Kustas; PJ Lamb; GM McFarquhar; Q Min; B Schmid; MS Torn; DD Turner

2007-06-30T23:59:59.000Z

136

Cloud Computing.  

E-Print Network [OSTI]

?? Cloud computing has been given a great deal of attention during recent years. Almost all the technology market leaders and leading hosting service providers (more)

Siddiqui, Muhammad Anas

2013-01-01T23:59:59.000Z

137

Exploiting weather forecast data for cloud detection  

E-Print Network [OSTI]

Accurate, fast detection of clouds in satellite imagery has many applications, for example Numerical Weather Prediction (NWP) and climate studies of both the atmosphere and of the Earths surface temperature. Most ...

Mackie, Shona

2009-01-01T23:59:59.000Z

138

Raman lidar profiling of water vapor and aerosols over the ARM SGP Site  

SciTech Connect (OSTI)

The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

Ferrare, R.A.

2000-01-09T23:59:59.000Z

139

RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.  

SciTech Connect (OSTI)

We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

FERRARE,R.A.

2000-01-09T23:59:59.000Z

140

ATS 620: Thermodynamics and Cloud Physics Dr. Sonia Kreidenweis  

E-Print Network [OSTI]

ATS 620: Thermodynamics and Cloud Physics Fall 2013 Dr. Sonia Kreidenweis Dr. Susan van den Heever graduate students to key concepts in cloud physics and thermodynamics as applied to the atmosphere. These concepts include energy variables and energy calculations, thermodynamic diagrams, phase changes, and cloud

van den Heever, Susan C.

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

142

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

143

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

144

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

145

FY 2010 Second Quarter Report Evaluation of the Liu-Daum-McGraw (LDM) Drizzle Threshold Parameterization using Measurements from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign  

SciTech Connect (OSTI)

Metric for Quarter 2: Evaluate LDM (Liu, Daum, McGraw) drizzle threshold parameterization for a range of cloud conditions by comparing the threshold function computed using measurements of cloud droplet number concentration and cloud liquid water content to measurements of drizzle droplet number concentrations and/or drizzle water content.

McGraw, R; Kleinman, LI; Springston, SR; Daum, PH; Senum, G; Wang, J

2011-04-04T23:59:59.000Z

146

E-Print Network 3.0 - atmospheric chemistry Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric chemistry Page: << < 1 2 3 4 5 > >> 1 Cloud Physics and Atmospheric Chemistry http:...

147

E-Print Network 3.0 - atmospheric chemistry programme Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric chemistry programme Page: << < 1 2 3 4 5 > >> 1 Cloud Physics and Atmospheric Chemistry http:...

148

E-Print Network 3.0 - atmospheric chemistry simulations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric chemistry simulations Page: << < 1 2 3 4 5 > >> 1 Cloud Physics and Atmospheric Chemistry...

149

E-Print Network 3.0 - atmospheric chemistry project Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric chemistry project Page: << < 1 2 3 4 5 > >> 1 Cloud Physics and Atmospheric Chemistry http:...

150

Dynamic Cloud Infrastructure.  

E-Print Network [OSTI]

??This thesis will explore and investigate the possibility of implementing nested clouds to increase flexibility. A nested cloud is a private cloud running inside another (more)

Gundersen, Espen

2012-01-01T23:59:59.000Z

151

Securing Cloud Storage Service.  

E-Print Network [OSTI]

?? Cloud computing brought flexibility, scalability, and capital cost savings to the IT industry. As more companies turn to cloud solutions, securing cloud based services (more)

Zapolskas, Vytautas

2012-01-01T23:59:59.000Z

152

ATMOSPHERIC ELSEVIER AtmosphericResearch 44 (1997) 231-241  

E-Print Network [OSTI]

ATMOSPHERIC RESEARCH ELSEVIER AtmosphericResearch 44 (1997) 231-241 Error analysis of backscatter;accepted 14 February 1997 Abstract Ice sphere backscatter has been calculated using both Mie theory as a reasonable approximation for rv 1997 Elsevier Science B.V. 1. Introduction Cirrus clouds play

Reading, University of

153

Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements  

SciTech Connect (OSTI)

Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

2014-07-27T23:59:59.000Z

154

Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds Applied to ARM Data and Climate Models  

SciTech Connect (OSTI)

OAK-B135 (a) We developed a 3D radiative transfer model to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilized a diffusion approximation approach (four-term expansion in the intensity) employing Cartesian coordinates. The required single-scattering parameters, including the extinction coefficient, single-scattering albedo, and asymmetry factor, for input to the model, were parameterized in terms of the ice water content and mean effective ice crystal size. The incorporation of gaseous absorption in multiple scattering atmospheres was accomplished by means of the correlated k-distribution approach. In addition, the strong forward diffraction nature in the phase function was accounted for in each predivided spatial grid based on a delta-function adjustment. The radiation parameterization developed herein is applied to potential cloud configurations generated from GCMs to investigate broken clouds and cloud-overlapping effects on the domain-averaged heating rate. Cloud inhomogeneity plays an important role in the determination of flux and heating rate distributions. Clouds with maximum overlap tend to produce less heating than those with random overlap. Broken clouds show more solar heating as well as more IR cooling as compared to a continuous cloud field (Gu and Liou, 2001). (b) We incorporated a contemporary radiation parameterization scheme in the UCLA atmospheric GCM in collaboration with the UCLA GCM group. In conjunction with the cloud/radiation process studies, we developed a physically-based cloud cover formation scheme in association with radiation calculations. The model clouds were first vertically grouped in terms of low, middle, and high types. Maximum overlap was then used for each cloud type, followed by random overlap among the three cloud types. Fu and Liou's 1D radiation code with modification was subsequently employed for pixel-by-pixel radiation calculations in the UCLA GCM. We showed that the simulated cloud cover and OLR fields without special tuning are comparable to those of ISCCP dataset and the results derived from radiation budget experiments. Use of the new radiation and cloud schemes enhances the radiative warming in the middle to upper tropical troposphere and alleviates the cold bias in the UCLA atmospheric GCM. We also illustrated that ice crystal size and cloud inhomogeneous are significant factors affecting the radiation budgets at the top of the atmosphere and the surface (Gu et al. 2003). (c) An innovative approach has been developed to construct a 3D field of inhomogeneous clouds in general and cirrus in particular in terms of liquid/ice water content and particle size on the basis of a unification of satellite and ground-based cloud radar data. Satellite remote sensing employing the current narrow-band spectro-radiometers has limitation and only the vertically integrated cloud parameters (optical depth and mean particle size) can be determined. However, by combining the horizontal cloud mapping inferred from satellites with the vertical structure derived from the profiling Doppler cloud radar, a 3D cloud field can be constructed. This represents a new conceptual approach to 3D remote sensing and imaging and offers a new perspective in observing the cloud structure. We applied this novel technique to AVHRR/NOAA satellite and mm-wave cloud radar data obtained from the ARM achieve and assessed the 3D cirrus cloud field with the ice crystal size distributions independently derived from optical probe measurements aboard the University of North Dakota Citation. The retrieved 3D ice water content and mean effective ice crystal size involving an impressive cirrus cloud occurring on April 18, 1997, are shown to be comparable to those derived from the analysis of collocated and coincident in situ aircraft measurements (Liou et al. 2002). (d) Detection of thin cirrus with optical depths less than 0.5, particularly those occurring i n the tropics remains a fundamental problem in remote sensing. We developed a new detection scheme for the

Kuo-Nan Liou

2003-12-29T23:59:59.000Z

155

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

SciTech Connect (OSTI)

The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

Turner, David, D.; Ferrare, Richard, A.

2011-07-06T23:59:59.000Z

156

X-1 ROEBELING ET AL.: SEVIRI & AVHRR CLOUD PROPERTY RETRIEVALS Cloud property retrievals for climate monitoring  

E-Print Network [OSTI]

Generation (METEOSAT-8) and the Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oceanic a consistent and high quality dataset of SEVIRI and AVHRR retrieved cloud properties for climate research studies. Clouds strongly modulate the energy balance of the Earth and its atmosphere through

Stoffelen, Ad

157

CloneCloud: Boosting Mobile Device Applications Through Cloud Clone Execution  

E-Print Network [OSTI]

Mobile applications are becoming increasingly ubiquitous and provide ever richer functionality on mobile devices. At the same time, such devices often enjoy strong connectivity with more powerful machines ranging from laptops and desktops to commercial clouds. This paper presents the design and implementation of CloneCloud, a system that automatically transforms mobile applications to benefit from the cloud. The system is a flexible application partitioner and execution runtime that enables unmodified mobile applications running in an application-level virtual machine to seamlessly off-load part of their execution from mobile devices onto device clones operating in a computational cloud. CloneCloud uses a combination of static analysis and dynamic profiling to optimally and automatically partition an application so that it migrates, executes in the cloud, and re-integrates computation in a fine-grained manner that makes efficient use of resources. Our evaluation shows that CloneCloud can achieve up to 21.2x s...

Chun, Byung-Gon; Maniatis, Petros; Naik, Mayur

2010-01-01T23:59:59.000Z

158

Micropulse Lidar Cloud Mask Value-Added Product Technical Report  

SciTech Connect (OSTI)

Lidar backscattered signal is a useful tool for identifying vertical cloud structure in the atmosphere in optically thin clouds. Cloud boundaries derived from lidar signals are a necessary input for popular ARM data products, such as the Active Remote Sensing of Clouds (ARSCL) product. An operational cloud boundary algorithm (Wang and Sassen 2001) has been implemented for use with the ARM Micropulse Lidar (MPL) systems. In addition to retrieving cloud boundaries above 500 m, the value-added product (VAP) named Micropulse Lidar Cloud Mask (MPLCMASK) applies lidar-specific corrections (i.e., range-square, background, deadtime, and overlap) as described in Campbell et al. (2002) to the measured backscattered lidar. Depolarization ratio is computed using the methodology developed by Flynn et al. (2007) for polarization-capable MPL systems. The cloud boundaries output from MPLCMASK will be the primary lidar cloud mask for input to the ARSCL product and will be applied to all MPL systems, including historical data sets.

Sivaraman, C; Comstock, J

2011-07-25T23:59:59.000Z

159

Microphysical Properties of Clouds with Low Liquid Water Paths: An Update from Clouds with Low Optical (Water) Depth  

SciTech Connect (OSTI)

Clouds play a critical role in the modulation of the radiative transfer in the atmosphere, and how clouds interact with radiation is one of the primary uncertainties in global climate models (GCMs). To reduce this uncertainty, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program collects an immense amount of data from its Climate Research Facilities (CRFs); these data include observations of radiative fluxes, cloud properties from active and passive remote sensors, upper atmospheric soundings, and other observations. The program's goal is to use these coincident, longterm observations to improve the parameterization of radiative transfer in clear and cloudy atmospheres in GCMs.

Turner, D.D.; Flynn, C.; Long, C.; McFarlane, S.; Vogelmann, A.; Johnson, K.; Miller, M.; Chiu, C.; Marshak, A.; Wiscombe, W.; Clough, S.A.; Heck, P.; Minnis, P.; Liljegren, J.; Min, Q.; O'Hirok, W.; Wang, Z.

2005-03-18T23:59:59.000Z

160

atmospheric aerosol characteristics: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Size Distribution Physics (arXiv) Summary: Atmospheric flows exhibit selfsimilar fractal spacetime fluctuations manifested as the fractal geometry to global cloud cover...

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

atmospheric aerosol processes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Size Distribution Physics (arXiv) Summary: Atmospheric flows exhibit selfsimilar fractal spacetime fluctuations manifested as the fractal geometry to global cloud cover...

162

atmospheric aerosols apports: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Size Distribution Physics (arXiv) Summary: Atmospheric flows exhibit selfsimilar fractal spacetime fluctuations manifested as the fractal geometry to global cloud cover...

163

atmospheric aerosol samples: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Size Distribution Physics (arXiv) Summary: Atmospheric flows exhibit selfsimilar fractal spacetime fluctuations manifested as the fractal geometry to global cloud cover...

164

Cloud Computing Adam Barker  

E-Print Network [OSTI]

Cloud Computing 1 Adam Barker #12;Overview · Introduction to Cloud computing · Enabling technologies · Di erent types of cloud: IaaS, PaaS and SaaS · Cloud terminology · Interacting with a cloud: management consoles · Launching an instance · Connecting to an instance · Running your application · Clouds

St Andrews, University of

165

On the Microphysical Properties of Ice Clouds as Inferred from the Polarization of Electromagnetic Waves  

E-Print Network [OSTI]

Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth...

Cole, Benjamin

2012-10-19T23:59:59.000Z

166

Shipboard measurements of the cloud-capped marine boundary layer during FIRE/ASTEX  

SciTech Connect (OSTI)

Results are reported on measurements of the cloud-capped marine boundary layer during FIRE/ASTEX. A method was developed from the ASTEX dataset for measuring profiles of liquid water content, droplet size and concentration from cloud radar/microwave radiometer data in marine boundary layer clouds. Profiles were also determined from the first three moments of the Doppler spectrum measured in drizzle with the ETL cloud radar during ASTEX.

NONE

1997-09-01T23:59:59.000Z

167

Cloud Tracking in Cloud-Resolving Models  

E-Print Network [OSTI]

Cloud Tracking in Cloud-Resolving Models RMetS Conference 4th September 2007 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations What is the distribution of cloud lifetimes? What factors determine the lifetime of an individual

Plant, Robert

168

Cloud Computing: Rain-Clouds System  

E-Print Network [OSTI]

Abstract Cloud Computing is the on demand service can be provided to the users at any time. It delivers the software, data access, computing as a service rather than the product. The Cloud application simplifies the computing technology by providing pay-per-use customer relationship. It is the theory that familiar to cheaper devices with low processing power, lower storage capacities, great flexibility and many more things. The security of cloud computing is a major factor as users store sensitive and confidential information with cloud storage providers. The range of these providers may be un trusted and harmful. The purpose of adopting cloud computing in an organization is to decide between a public cloud ? and private cloud ? by means of privacy. Public clouds often known as provider clouds are administrated by third parties and services are offered on pay-per-use basis. Private clouds or internal clouds are owned by the single firm but it has some metrics such as lacking of availability of services (such as memory, server) and network resources which leads it to down. Due to this, technology moves toward the concept of Multi clouds or Rain Clouds. This paper displays the use of multi-clouds or rain clouds due to its ability to handle the huge amount of data traffic that affect the cloud computing user.

Harinder Kaur

169

Cloud Security by Max Garvey  

E-Print Network [OSTI]

Cloud Security Survey by Max Garvey #12;Cloudy Cloud is Cloudy What is the cloud? On Demand Service Network access Resource pooling Elasticity of Resources Measured Service #12;Cloud Types/Variants Iaa Cloud Public Cloud Hybrid Cloud combination. Private cloud with overflow going to public cloud. #12

Tolmach, Andrew

170

Cloud chamber visualization of primary cosmic rays  

SciTech Connect (OSTI)

From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

Earl, James A. [Department of Astronomy, University of Maryland, College Park MD (United States)

2013-02-07T23:59:59.000Z

171

Cloud Computing For Bioinformatics  

E-Print Network [OSTI]

Cloud Computing For Bioinformatics #12;Cloud Computing: what is it? · Cloud Computing is a distributed infrastructure where resources, software, and data are provided in an on-demand fashion. · Cloud Computing abstracts infrastructure from application. · Cloud Computing should save you time the way software

Ferrara, Katherine W.

172

Scanning ARM Cloud Radars Part II: Data Quality Control and Processing  

SciTech Connect (OSTI)

The Scanning ARM Cloud Radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the Hemispherical Sky Range Height Indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen; Clothiaux, Eugene E.

2014-03-01T23:59:59.000Z

173

TROPICAL CLOUD LIFE CYCLE AND OVERLAP STRUCTURE A. M. Vogelmann, M. P. Jensen, P. Kollias, and E. Luke  

E-Print Network [OSTI]

TROPICAL CLOUD LIFE CYCLE AND OVERLAP STRUCTURE A. M. Vogelmann, M. P. Jensen, P. Kollias, and E.bnl.gov ABSTRACT The profile of cloud microphysical properties and how the clouds are overlapped within a vertical simulations. We will present how cloud microphysical properties and overlap structure retrieved at the ARM

174

Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated aircraft measurements  

E-Print Network [OSTI]

Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated%) of this enhanced cloud absorption occurs at wavelengths 680 nm, and that the observed cloud absorption does stated, the purpose of ARESE was to address the issue of cloud shortwave (SW) absorption. Do clouds

Zender, Charles

175

Atmosphere and Ocean: Earth's Heat Engine: GFD Lab notes  

E-Print Network [OSTI]

Atmosphere and Ocean: Earth's Heat Engine: GFD Lab notes 18 May 2012 UW Hon220c Energy' of water vapor, CO2 and cloud, makes us much warmer than a Marsian (almost no atmosphere. -550C average 2002 clouds, snow, ice, deserts are bright absorbing areas are dark

176

Cloud Computing og availability  

E-Print Network [OSTI]

Cloud Computing og availability Projekt i pålidelighed Henrik Lavdal - 20010210 Søren Bardino Kaa - 20011654 Gruppe 8 19-03-2010 #12;Cloud Computing og availability Side 2 af 28 Indholdsfortegnelse ...........................................................................................5 Cloud computing

Christensen, Henrik Bærbak

177

A General Systems Theory for Rain Formation in Warm Clouds  

E-Print Network [OSTI]

A cumulus cloud model which can explain the observed characteristics of warm rain formation in monsoon clouds is presented. The model is based on classical statistical physical concepts and satisfies the principle of maximum entropy production. Atmospheric flows exhibit selfsimilar fractal fluctuations that are ubiquitous to all dynamical systems in nature, such as physical, chemical, social, etc and are characterized by inverse power law form for power (eddy energy) spectrum signifying long-range space-time correlations. A general systems theory model for atmospheric flows developed by the author is based on the concept that the large eddy energy is the integrated mean of enclosed turbulent (small scale) eddies. This model gives scale-free universal governing equations for cloud growth processes. The model predicted cloud parameters are in agreement with reported observations, in particular, the cloud dropsize distribution. Rain formation can occur in warm clouds within 30minutes lifetime under favourable conditions of moisture supply in the environment.

A. M. Selvam

2014-08-15T23:59:59.000Z

178

ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program  

SciTech Connect (OSTI)

Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative transfer calculations, will be acquired using the aircraft and surface facilities available to ARESE. This document outlines the scientific approach and measurement requirements of the project.

Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

1995-09-27T23:59:59.000Z

179

Retrieval of Cloud Phase and Ice Crystal Habit from Satellite Data  

SciTech Connect (OSTI)

Knowledge of cloud phase (liquid or ice) and crystal habit are of fundamental importance to both remote sensing and climate simulations. Using water droplets instead of ice crystals in retrieving cloud properties from satellite data can lead to errors in the retrieval of cloud height, optical thickness, and microphysical properties. Satellite retrievals of microphysical properties are also influenced by the crystal habit used in the retrieval, either indirectly via an assumed phase function or directly via assumed profiles of ice crystal habits. Realistic treatment of ice cloud radiative and microphysical properties, which depend on crystal habit, is important in climate simulations, especially in tropical anvil regions. In this work, we present a method for retrieving cloud phase and the dominant ice crystal habit from radiances measured by the Multi-angle Imaging Spectro-Radiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS). The shape of an atmospheric particle affects the scattering of light such that water droplets and ice crystals of various habits have somewhat different phase functions. Consequently the radiances measured by the MISR instrument, which observes light scattered from the same cloud at nine different viewing angles, are functions of the crystal shape. In principle, the measured angular radiance pattern can be used to infer the crystal shape. In this work, we present initial results from a cloud phase and ice crystal habit retrieval based on combining the MISR multi-angular visible wavelength measurements with MODIS shortwave infrared measurements. The nine angular measurements provided by the MISR cameras allow a wide range of scattering angles to be viewed in a single scene, which provides sensitivity to particle habit. The presence of the MODIS instrument on the same satellite allows additional information on particle size to be incorporated into the retrievals. Results of the retrieval method are presented for several case studies over the continental United States. Cloud phase can be determined from the MISR angular measurements alone, due to the large differences in the phase functions of water droplets and ice crystals. By combining the MISR and MODIS measurements, crystal habit, effective radius, and optical depth can be inferred simultaneously for ice clouds. Comparisons with ground-based retrieval methods and semi-coincident in situ data illustrate that the retrieved crystal habits and sizes are reasonable.

McFarlane, Sally A.; Marchand, Roger T.; Ackerman, Thomas P.

2004-07-19T23:59:59.000Z

180

Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

182

On Demand Surveillance Service in Vehicular Cloud  

E-Print Network [OSTI]

Toward Vehicular Service Cloud . . . . . . . . . . . . . . .4.2 Open Mobile Cloud Requirement . . . . .3.1 Mobile Cloud

Weng, Jui-Ting

2013-01-01T23:59:59.000Z

183

Aerosol-Cloud interactions : a new perspective in precipitation enhancement  

E-Print Network [OSTI]

Increased industrialization and human activity modified the atmospheric aerosol composition and size-distribution during the last several decades. This has affected the structure and evolution of clouds, and precipitation ...

Gunturu, Udaya Bhaskar

2010-01-01T23:59:59.000Z

184

MAGIC: Marine ARM GPCI Investigation of Clouds  

SciTech Connect (OSTI)

The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

2012-10-03T23:59:59.000Z

185

THE THIRD CLOUD RETRIEVAL EVALUATION WORKSHOP What: A joint European/United States workshop  

E-Print Network [OSTI]

THE THIRD CLOUD RETRIEVAL EVALUATION WORKSHOP What: A joint European/United States workshop louds strongly modulate the energy balance of Earth and its atmosphere through their interaction- based cloud retrieval teams to share their experience with state-of-the-art cloud parameter retrievals

Baum, Bryan A.

186

VALIDATION OF CLOUD LIQUID WATER PATH RETRIEVALS FROM SEVIRI ON METEOSAT-8 USING CLOUDNET OBSERVATIONS  

E-Print Network [OSTI]

of the Earth and its atmosphere through their interaction with solar and thermal radiation (King and Tsay, 1997 forecast models. The Intergovernmental Panel on Climate Change calls for more measurements on cloud forecast models. The radiative behavior of clouds depends predominantly on cloud properties

Haak, Hein

187

Cloud Computing For Bioinformatics  

E-Print Network [OSTI]

Cloud Computing For Bioinformatics EC2 and AMIs #12;Quick-starting an EC2 instance (let's get our feet wet!) Cloud Computing #12;Cloud Computing: EC2 instance Quick Start · On EC2 console, we can click on Launch Instance · This will let us get up and going quickly #12;Cloud Computing: EC2 instance

Ferrara, Katherine W.

188

Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction  

SciTech Connect (OSTI)

This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS high sampling resolution to study the twilight zone around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARMs 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARMs operational data processing.

Chiu, Jui-Yuan Christine [University of Reading] [University of Reading

2014-04-10T23:59:59.000Z

189

The Atmospheric Monitoring System of the JEM-EUSO Space Mission  

E-Print Network [OSTI]

An Atmospheric Monitoring System (AMS) is a mandatory and key device of a space-based mission which aims to detect Ultra-High Energy Cosmic Rays (UHECR) and Extremely-High Energy Cosmic Rays (EHECR) from Space. JEM-EUSO has a dedicated atmospheric monitoring system that plays a fundamental role in our understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. Our AMS consists of a very challenging space infrared camera and a LIDAR device, that are being fully designed with space qualification to fulfil the scientific requirements of this space mission. The AMS will provide information of the cloud cover in the FoV of JEM-EUSO, as well as measurements of the cloud top altitudes with an accuracy of 500 m and the optical depth profile of the atmosphere transmittance in the direction of each air shower with an accuracy of 0.15 degree and a resolution of 500 m. This will ensure that the energy of the primary UHECR and the depth of maximum development of the EAS ( Extensive Air Shower)...

Frias, M D Rodriguez; Bozzo, E; del Peral, L; Neronov, A; Wada, S

2015-01-01T23:59:59.000Z

190

Doctoral Programs Atmospheric, Oceanic & Space Sciences  

E-Print Network [OSTI]

University of Michigan Space Research Building 2455 Hayward Street Ann Arbor, MI 48109-2143 aoss Katherine E. White, Ann Arbor The Regents of the University of Michigan Research areas Atmospheric Science Atmospheric Dynamics Climate, Climate Modeling & Climate Change Clouds & Precipitation Paleoclimate, Ice

Eustice, Ryan

191

ARM Cloud Retrieval Ensemble Data Set (ACRED)  

SciTech Connect (OSTI)

This document describes a new Atmospheric Radiation Measurement (ARM) data set, the ARM Cloud Retrieval Ensemble Data Set (ACRED), which is created by assembling nine existing ground-based cloud retrievals of ARM measurements from different cloud retrieval algorithms. The current version of ACRED includes an hourly average of nine ground-based retrievals with vertical resolution of 45 m for 512 layers. The techniques used for the nine cloud retrievals are briefly described in this document. This document also outlines the ACRED data availability, variables, and the nine retrieval products. Technical details about the generation of ACRED, such as the methods used for time average and vertical re-grid, are also provided.

Zhao, C; Xie, S; Klein, SA; McCoy, R; Comstock, JM; Delano, J; Deng, M; Dunn, M; Hogan, RJ; Jensen, MP; Mace, GG; McFarlane, SA; OConnor, EJ; Protat, A; Shupe, MD; Turner, D; Wang, Z

2011-09-12T23:59:59.000Z

192

Laser transmissionbackscattering through inhomogeneous cirrus clouds  

E-Print Network [OSTI]

Laser transmission­backscattering through inhomogeneous cirrus clouds Szu-Cheng Ou, Yoshihide of the transmission and backscattering of high-energy laser beams. The 2D extinction-coefficient and mean effective and backscattering of high-energy laser beams in realistic atmospheres. The results of laser direct transmission

Takano, Yoshihide

193

Accretion onto a black hole in a string cloud background  

E-Print Network [OSTI]

We examine the accretion process onto the black hole with a string cloud background, where the horizon of the black hole has an enlarged radius $r_H=2 M/(1-\\alpha)$, due to the string cloud parameter $\\alpha\\; (0 \\leq \\alpha cloud parameter $\\alpha$. We also find the gas compression ratios and temperature profiles below the accretion radius and at the event horizon. It is shown that the mass accretion rate, for both the relativistic and the non-relativistic fluid by a black hole in the string cloud model, increases with increase in $\\alpha$.

Apratim Ganguly; Sushant G. Ghosh; Sunil D. Maharaj

2014-09-28T23:59:59.000Z

194

Precipitating clouds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point ofPowerSaver Exemplary Student -A

195

Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia  

SciTech Connect (OSTI)

Ground-based radar and lidar observations obtained at the Department of Energys Atmospheric Radiation Measurement Programs Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on the cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.

Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.; Delanoe, Julien; Deng, Min

2013-05-22T23:59:59.000Z

196

QUANTIFYING HYDROMETEOR ADVECTION AND THE VERTICAL DISTRIBUTION OF CLOUD FRACTION OVER THE SGP CART SITE  

SciTech Connect (OSTI)

A single column model (SCM) is, in essence, an isolated grid column of a general circulation model (GCM). Hence, SCMs have rather demanding input data requirements, but do not suffer from problems associated with balance of a GCM. Among the initial conditions that must be used to describe the initial state of the SCM column are the vertical profile of the horizontal wind components and the vertical profiles of cloud water and ice. In addition, the large-scale divergence and advective tendencies of cloud water and ice must be supplied as external parameters. Finally, the liquid and ice cloud amount as a function of height within the SCM column are required for model evaluation. The scale of the SCM column over which the initial conditions, external parameters, and model evaluation fields must apply is relatively large ({approximately}300 km). To quantify atmospheric structure on this scale, the ARM SGP CART site is located within the NOAA wind profiler network and has boundary and extended measurement facilities in an area compatible with the scale requirements of SCMs. Over an area this size, however, there is often rich mesoscale structure. This mesoscale variability creates a sampling problem that can thwart even the most sophisticated attempts to quantify the initial conditions and external parameters, and to evaluate model performance. There are two approaches that can be used to quantify the time varying quantities required for SCMs: objective analysis and data assimilation. The latter relies on products produced for operational forecasting, while the former involves methods that can be used to combine measurements from various sources to produce synoptic descriptions of the large-scale dynamical and thermodynamic fields. Since data assimilation from operational models introduces the uncertainty of the parameterizations used in the models, most of the focus in the SCM effort has been on developing objective analysis techniques.

MILLER,M.; VERLINDE,J.

1998-03-23T23:59:59.000Z

197

Development and Testing of a Life Cycle Model and a Parameterization of Thin Mid-level Stratiform Clouds  

SciTech Connect (OSTI)

We used a cloud-resolving model (a detailed computer model of cloud systems) to evaluate and improve the representation of clouds in global atmospheric models used for numerical weather prediction and climate modeling. We also used observations of the atmospheric state, including clouds, made at DOE's Atmospheric Radiation Measurement (ARM) Program's Climate Research Facility located in the Southern Great Plains (Kansas and Oklahoma) during Intensive Observation Periods to evaluate our detailed computer model as well as a single-column version of a global atmospheric model used for numerical weather prediction (the Global Forecast System of the NOAA National Centers for Environmental Prediction). This so-called Single-Column Modeling approach has proved to be a very effective method for testing the representation of clouds in global atmospheric models. The method relies on detailed observations of the atmospheric state, including clouds, in an atmospheric column comparable in size to a grid column used in a global atmospheric model. The required observations are made by a combination of in situ and remote sensing instruments. One of the greatest problems facing mankind at the present is climate change. Part of the problem is our limited ability to predict the regional patterns of climate change. In order to increase this ability, uncertainties in climate models must be reduced. One of the greatest of these uncertainties is the representation of clouds and cloud processes. This project, and ARM taken as a whole, has helped to improve the representation of clouds in global atmospheric models.

Krueger, Steven K.

2008-03-03T23:59:59.000Z

198

E-Print Network 3.0 - atmospheric surface layer Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

determining albedo and opacity Clouds Snow and ice Aerosols Time... Horizontal transport in the atmosphere Dry and moist static energy Eddy ... Source: Sherwood, Steven -...

199

E-Print Network 3.0 - atmospheric chemistry experiment Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Sc) (Ns) 18 Cloud Physics and Atmospheric ... Source: Collection: Geosciences 2 Curriculum Vitae Hiroshi Tanimoto, Ph.D. Summary: : National Institute for Environmental Studies,...

200

E-Print Network 3.0 - atmospheric physical chemistry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physical chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric physical chemistry Page: << < 1 2 3 4 5 > >> 1 Cloud Physics and...

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

E-Print Network 3.0 - aerosols influencing atmospheric Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and... influencing cloud reflectance and precipitation formation. The...

202

Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated aircraft measurements  

E-Print Network [OSTI]

J. Vitko Jr. , Absorption of solar radiation by the cloudyet al. , Absorption of solar radiation by clouds: Observa-1999 Absorption of solar radiation by the cloudy atmosphere:

1999-01-01T23:59:59.000Z

203

Cloud Properties and Radiative Heating Rates for TWP  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

204

Cloud Properties and Radiative Heating Rates for TWP  

SciTech Connect (OSTI)

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

2013-11-07T23:59:59.000Z

205

Retrieval of Cloud Phase Using the Moderate Resolution Imaging Spectroradiometer Data during the Mixed-Phase Arctic Cloud Experiment  

SciTech Connect (OSTI)

Improving climate model predictions over Earth's polar regions requires a comprehensive knowledge of polar cloud microphysics. Over the Arctic, there is minimal contrast between the clouds and background snow surface, making it difficult to detect clouds and retrieve their phase from space. Snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds make it even more difficult to determine cloud phase. Also, since determining cloud phase is the first step toward analyzing cloud optical depth, particle size, and water content, it is vital that the phase be correct in order to obtain accurate microphysical and bulk properties. Changes in these cloud properties will, in turn, affect the Arctic climate since clouds are expected to play a critical role in the sea ice albedo feedback. In this paper, the IR trispectral technique (IRTST) is used as a starting point for a WV and 11-{micro}m brightness temperature (T11) parameterization (WVT11P) of cloud phase using MODIS data. In addition to its ability to detect mixed-phase clouds, the WVT11P also has the capability to identify thin cirrus clouds overlying mixed or liquid phase clouds (multiphase ice). Results from the Atmospheric Radiation Measurement (ARM) MODIS phase model (AMPHM) are compared to the surface-based cloud phase retrievals over the ARM North Slope of Alaska (NSA) Barrow site and to in-situ data taken from University of North Dakota Citation (CIT) aircraft which flew during the Mixed-Phase Arctic Cloud Experiment (MPACE). It will be shown that the IRTST and WVT11P combined to form the AMPHM can achieve a relative high accuracy of phase discrimination compared to the surface-based retrievals. Since it only uses MODIS WV and IR channels, the AMPHM is robust in the sense that it can be applied to daytime, twilight, and nighttime scenes with no discontinuities in the output phase.

Spangenberg, D.; Minnis, P.; Shupe, M.; Uttal, T.; Poellot, M.

2005-03-18T23:59:59.000Z

206

Parameterization and analysis of 3-D radiative transfer in clouds  

SciTech Connect (OSTI)

This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models donâ??t consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and found that local effects were often much larger than the overall values mentioned above, and were especially large for high sun and near convective clouds such as cumulus. The study also found that statistical methods such as neural networks appear promising for enabling cloud models to consider radiative interactions between nearby atmospheric columns. Finally, through collaboration with German scientists, the project found that new methods (especially one called â??stepwise krigingâ?) show great promise in filling gaps between cloud radar scans. If applied to data from the new DOE scanning cloud radars, these methods can yield large, continuous three-dimensional cloud structures for future radiative simulations.

Varnai, Tamas

2012-03-16T23:59:59.000Z

207

Cloudbus Toolkit for Market-Oriented Cloud Computing  

E-Print Network [OSTI]

This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building...

Buyya, Rajkumar; Vecchiola, Christian

2009-01-01T23:59:59.000Z

208

Comparing Clouds Using Cloud Radar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity Involvement and MakingYersiniae.Shewanella genus .How To

209

From clusters to clouds | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom clusters to clouds From

210

Development of advanced cloud parameterizations to examine air quality, cloud properties, and cloud-radiation feedback in mesoscale models  

SciTech Connect (OSTI)

The distribution of atmospheric pollutants is governed by dynamic processes that create the general conditions for transport and mixing, by microphysical processes that control the evolution of aerosol and cloud particles, and by chemical processes that transform chemical species and form aerosols. Pollutants emitted into the air can undergo homogeneous gas reactions to create a suitable environment for the production by heterogeneous nucleation of embryos composed of a few molecules. The physicochemical properties of preexisting aerosols interact with newly produced embryos to evolve by heteromolecular diffusion and coagulation. Hygroscopic particles wig serve as effective cloud condensation nuclei (CCN), while hydrophobic particles will serve as effective ice-forming nuclei. Clouds form initially by condensation of water vapor on CCN and evolve in a vapor-liquid-solid system by deposition, sublimation, freezing, melting, coagulation, and breakup. Gases and aerosols that enter the clouds undergo aqueous chemical processes and may acidity hydrometer particles. Calculations for solar and longwave radiation fluxes depend on how the respective spectra are modified by absorbers such as H{sub 2}O, CO{sub 2}, O{sub 3}, CH{sub 4}, N{sub 2}O, chlorofruorocarbons, and aerosols. However, the flux calculations are more complicated for cloudy skies, because the cloud optical properties are not well defined. In this paper, key processes such as tropospheric chemistry, cloud microphysics parameterizations, and radiation schemes are reviewed in terms of physicochemical processes occurring, and recommendations are made for the development of advanced modules applicable to mesoscale models.

Lee, In Young

1993-09-01T23:59:59.000Z

211

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

SciTech Connect (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

212

Intercomparison of the Cloud Water Phase among Global Climate Models  

SciTech Connect (OSTI)

Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earths atmosphere and influence the Earths energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

2014-03-27T23:59:59.000Z

213

XSEDE Cloud Survey Report  

E-Print Network [OSTI]

XSEDE Cloud Survey Report David Lifka, Cornell Center for Advanced Computing Ian Foster, ANL, ANL and The University of Chicago A National Science Foundation-sponsored cloud user survey was conducted from September 2012 to April 2013 by the XSEDE Cloud Integration Investigation Team to better

Walter, M.Todd

214

Research Cloud Computing Recommendations  

E-Print Network [OSTI]

Research Cloud Computing Recommendations SRCPAC December 3, 2014 #12;Mandate and Membership SRCPAC convened this committee in Sept 2014 to investigate the role that cloud computing should play in our & Academic Affairs (Social Work) #12;Questions discussed · What cloud resources are available? · Which kinds

Qian, Ning

215

ARM - Midlatitude Continental Convective Clouds  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

216

Scanning ARM Cloud Radar Handbook  

SciTech Connect (OSTI)

The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

Widener, K; Bharadwaj, N; Johnson, K

2012-06-18T23:59:59.000Z

217

E-Print Network 3.0 - atmospheric turbulence utilizing Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of atmospheric particles; Cloud turbulence... but for the dissipation rate of turbulence energy s800 cm2 sy3 . 12;( )M. Pinsky et al.rAtmospheric Research 49 1998 99... , and...

218

Measuring Nighttime Atmospheric Opacity Using Images From the Mars Exploration Rovers  

E-Print Network [OSTI]

Atmospheric opacity, otherwise known as optical depth, is the measurement of the amount of radiation reaching the surface through the atmosphere. The spatial and temporal patterns in optical depth tell us about the aerosol and cloud cycles...

Bean, Keri M

2012-07-11T23:59:59.000Z

219

Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models  

E-Print Network [OSTI]

. Mihalka a a Department of Atmospheric, Oceanic, and Space Science, University of Michigan, Ann Arbor, MI 48109-2143, USA b Astronomy Department, University of California, Berkeley, CA 97420-3411, USA c NASA clouds com- posed of ammonia ice, ammonium hydrosulfide or other com- pounds formed by NH3 and H2S, water

Atreya, Sushil

220

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichigan Electricity Profile

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FINAL REPORT: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds  

SciTech Connect (OSTI)

This final report summarizes the major accomplishments and products resulting from a three-year grant funded by the DOE, Office of Science, Atmospheric Radiation Measurement Program titled: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds. Accomplishments are listed under the following subcategories: Mixed-phase cloud retrieval method development; Mixed-phase cloud characterization; ARM mixed-phase cloud retrieval review; and New ARM MICROBASE product. In addition, lists are provided of service to the Atmospheric Radiation Measurement Program, data products provided to the broader research community, and publications resulting from this grant.

Shupe, Matthew D

2007-10-01T23:59:59.000Z

222

Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data  

SciTech Connect (OSTI)

The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

Zhang, Y; Klein, S; Boyle, J; Mace, G G

2008-11-20T23:59:59.000Z

223

Cloud Model Evaluation Using Radiometric Measurements from the Airborne Multiangle Imaging Spectroradiometer (AirMISR)  

SciTech Connect (OSTI)

Detailed information on cloud properties is needed to vigorously test retrieval algorithms for satellite and ground-based remote sensors. The inherent complexity of clouds makes this information difficult to obtain from observations alone and cloud resolving models are often used to generating synthetic datasets that can be used as proxies for real data. We test the ability of a cloud resolving model to reproduce cloud structure in a case study of low-level clouds observed by the Earth Observing System (EOS) validation program in north central Oklahoma on March 3, 2000. A three-dimensional radiative transfer model is applied to synthetic cloud properties generated by a high-resolution three-dimensional cloud model in order to simulate the top of atmosphere radiances. These synthetic radiances are then compared with observations from the airborne Multiangle Imaging SpectroRadiometer (AirMISR), flown on the NASA ER-2 high-altitude aircraft.

Ovtchinnikov, Mikhail; Marchand, Roger T.

2007-03-01T23:59:59.000Z

224

Dynamic Cloud Resource Reservation via Cloud Brokerage  

E-Print Network [OSTI]

Department of Electrical and Computer Engineering, University of Toronto Department of Electrical@eecg.toronto.edu, liang@utoronto.ca Abstract--Infrastructure-as-a-Service clouds offer diverse pric- ing options

Li, Baochun

225

Is the Broad-Line Region Clumped or Smooth? Constraints from the H alpha Profile in NGC 4395, the Least Luminous Seyfert 1 Galaxy  

E-Print Network [OSTI]

The origin and configuration of the gas which emits broad lines in Type I active galactic nuclei is not established yet. The lack of small-scale structure in the broad emission-line profiles is consistent with a smooth gas flow, or a clumped flow with many small clouds. An attractive possibility for the origin of many small clouds is the atmospheres of bloated stars, an origin which also provides a natural mechanism for the cloud confinement. Earlier studies of the broad-line profiles have already put strong lower limits on the minimum number of such stars, but these limits are sensitive to the assumed width of the lines produced by each cloud. Here we revisit this problem using high-resolution Keck spectra of the H alpha line in NGC 4395, which has the smallest known broad-line region (~10^14 cm). Only a handful of the required bloated stars (each having r~10^14 cm) could fit into the broad-line region of NGC 4395, yet the observed smoothness of the H alpha line implies a lower limit of ~10^4-10^5 on the number of discrete clouds. This rules out conclusively the bloated-stars scenario, regardless of any plausible line-broadening mechanisms. The upper limit on the size of the clouds is ~10^12 cm, which is comparable to the size implied by photoionization models. This strongly suggests that gas in the broad-line region is structured as a smooth rather than a clumped flow, most likely in a rotationally dominated thick disk-like configuration. However, it remains to be clarified why such a smooth, gravity-dominated flow generates double-peaked emission lines only in a small fraction of active galactic nuclei.

Ari Laor; Aaron J. Barth; Luis C. Ho; Alexei V. Filippenko

2005-09-07T23:59:59.000Z

226

Experiment to Characterize Tropical Cloud Systems  

SciTech Connect (OSTI)

A major experiment to study tropical convective cloud systems and their impacts will take place around Darwin, Northern Australia in early 2006. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) is a collaboration including the DOE ARM (Atmospheric Radiation Measurement) and ARM-UAV programs, NASA centers, the Australian Bureau of Meteorology, CSIRO, and universities in the USA, Australia, Japan, the UK, and Canada. TWP-ICE will be preceded in November/December 2004 by a collaborating European aircraft campaign involving the EU SCOUT-O3 and UK NERC ACTIVE projects. Detailed atmospheric measurements will be made in the Darwin area through the whole Austral summer, giving unprecedented coverage through the pre-monsoon and monsoon periods.

May, Peter T.; Mather, Jim H.; Jakob, Christian

2005-08-02T23:59:59.000Z

227

W-band ARM Cloud Radar (WACR) Handbook  

SciTech Connect (OSTI)

The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at 95.04 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar reports estimates for the first three spectra moments for each range gate up to 15 km. The 0th moment is reflectivity, the 1st moment is radial velocity, and the 2nd moment is spectral width. Also available are the raw spectra files. Unlike the millimeter wavelength cloud radar (MMCR), the WACR does not use pulse coding and operates in only copolarization and cross-polarization modes.

Widener, KB; Johnson, K

2005-01-05T23:59:59.000Z

228

Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing  

SciTech Connect (OSTI)

Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

Ghan, Steven J.

2013-10-09T23:59:59.000Z

229

LES Simulations of Roll Clouds Observed During Mixed- Phase Arctic Cloud Experiment  

SciTech Connect (OSTI)

Roll clouds, and associated roll convection, are fairly common features of the atmospheric boundary layer. While these organized cumuliform clouds are found over many regions of the planet, they are quite ubiquitous near the edge of the polar ice sheets. In particular, during periods of off-ice flow, when cold polar air flows from the ice pack over the relatively warm ocean water, strong boundary layer convection develops along with frequent rolls. According to Bruemmer and Pohlman (2000), most of the total cloud cover in the Arctic is due to roll clouds. In an effort to examine the influences of mixed-phase microphysics on the boundary layer evolution of roll clouds during off-ice flow, Olsson and Harrington (2000) used a 2D mesoscale model coupled to a bulk microphysical scheme (see Section 2). Their results showed that mixed-phase clouds produced more shallow boundary layers with weaker turbulence than liquid-phase cases. Furthermore, their results showed that because of th e reduced turbulent drag on the atmosphere in the mixed-phase case, regions of mesoscale divergence in the marginal ice-zone were significantly affected. A follow-up 2D study (Harrington and Olsson 2001) showed that the reduced turbulent intensity in mixed-phase cases was due to precipitation. Ice precipitation caused downdraft stabilization which fed back and caused a reduction in the surface heat fluxes. In this work, we extend the work of Olsson and Harrington (2000) and Harrington and Olsson (2001) by examining the impacts of ice microphysics on roll convection. We will present results that illustrate how microphysics alters roll cloud structure and dynamics.

Greenberg, S.D.; Harrington, J.Y.; Prenni, A.; DeMott, P.

2005-03-18T23:59:59.000Z

230

Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations  

SciTech Connect (OSTI)

Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m{sup -2}. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5 C to -40 C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

Liu X.; Lin W.; Xie, S.; Boyle, J.; Klein, S. A.; Shi, X.; Wang, Z.; Ghan, S. J.; Earle, M.; Liu, P. S. K.; Zelenyuk, A.

2011-12-24T23:59:59.000Z

231

Cloud Occurrence Frequency at the Barrow, Alaska, ARM Climate Research Facility for 2008 Third Quarter 2009 ARM and Climate Change Prediction Program Metric Report  

SciTech Connect (OSTI)

Clouds represent a critical component of the Earths atmospheric energy balance as a result of their interactions with solar and terrestrial radiation and a redistribution of heat through convective processes and latent heating. Despite their importance, clouds and the processes that control their development, evolution and lifecycle remain poorly understood. Consequently, the simulation of clouds and their associated feedbacks is a primary source of inter-model differences in equilibrium climate sensitivity. An important step in improving the representation of cloud process simulations is an improved high-resolution observational data set of the cloud systems including their time evolution. The first order quantity needed to understand the important role of clouds is the height of cloud occurrence and how it changes as a function of time. To this end, the Atmospheric Radiation Measurement (ARM) Climate Research Facilities (ACRF) suite of instrumentation has been developed to make the observations required to improve the representation of cloud systems in atmospheric models.

M Jensen; K Johnson; JH Mather

2009-07-14T23:59:59.000Z

232

Finance Idol Word Cloud  

Broader source: Energy.gov [DOE]

This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

233

Simulations of Arctic Mixed-Phase Clouds in Forecasts with CAM3 and AM2 for M-PACE  

SciTech Connect (OSTI)

Simulations of mixed-phase clouds in short-range forecasts with the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed under the DOE CCPP-ARM Parameterization Testbed (CAPT), which initializes the climate models with analysis data produced from numerical weather prediction (NWP) centers. It is shown that CAM3 significantly underestimates the observed boundary layer mixed-phase clouds and cannot realistically simulate the variations with temperature and cloud height of liquid water fraction in the total cloud condensate based an oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer clouds while its clouds contain much less cloud condensate than CAM3 and the observations. Both models underestimate the observed cloud top and base for the boundary layer clouds. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used. The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes in CAM3. It is shown that the Bergeron-Findeisen process, i.e., the ice crystal growth by vapor deposition at the expense of coexisting liquid water, is important for the models to correctly simulate the characteristics of the observed microphysical properties in mixed-phase clouds. Sensitivity tests show that these results are not sensitive to the analysis data used for model initializations. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. Ice crystal number density has large impact on the model simulated mixed-phase clouds and their microphysical properties and needs to be accurately represented in climate models.

Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven J.

2008-02-29T23:59:59.000Z

234

Atmospheric Neutrinos  

E-Print Network [OSTI]

This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

Thomas K. Gaisser

2006-12-11T23:59:59.000Z

235

Atmospheric Radiation Measurement (ARM) Data from Specific Instruments Used in the ARM Program  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ARM is known for its comprehensive set of world-class, and in some cases, unique, instruments available for use by the global scientific community. In addition to the ARM instruments, the ARM Climate Research Facility identifies and acquires a wide variety of data including model, satellite, and surface data, from "external instruments," to augment the data being generated within the program. External instruments belong to organizations that are outside of the ARM Program. Field campaign instruments are another source of data used to augment routine observations. The huge archive of ARM data can be organized by instrument categories into twelve "collections:" Aerosols, Airborne Observations, Atmospheric Carbon, Atmospheric Profiling, Cloud Properties, Derived Quantities and Models, Ocean Observations, Radiometric, Satellite Observations, Surface Meteorology, Surface/Subsurface Properties, and Other. Clicking on one of the instrument categories leads to a page that breaks that category down into sub-categories. For example, "Atmospheric Profiling" is broken down into ARM instruments (with 11 subsets), External Instruments (with 6 subsets), and Field Campaign Instruments (with 42 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading.

236

Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements  

SciTech Connect (OSTI)

The Atmospheric Radiation Measurement (ARM) Raman lidar (RL), located at the Southern Great Plains (SGP) Climate Research Facility (CRF), is a unique state-of-the-art active remote sensor that is able to measure profiles of water vapor, aerosol, and cloud properties at high temporal and vertical resolution throughout the diurnal cycle. In October 2005, the capability of the RL was extended by the addition of a new detection channel that is sensitive to the Raman scattering of liquid water. This new channel permits the system, in theory, to measure profiles of liquid water content (LWC) by the RL. To our knowledge, the ARM RL is the only operation lidar with this capability. The liquid water Raman backscattering cross-section is a relatively weak and spectrally broad feature, relative to the water vapor Raman backscatter signal. The wide bandpass required to achieve reasonable signal-to-noise in the liquid water channel essentially eliminates the ability to measure LWC profiles during the daytime in the presence of large solar background, and thus all LWC observations are nighttime only. Additionally, the wide bandpass increases the probability that other undesirable signals, such as fluorescence from aerosols, may contaminate the observation. The liquid water Raman cross-section has a small amount of overlap with the water vapor Raman cross-section, and thus there will be a small amount of cross-talk between the two signals, with water vapor contributing a small amount of signal to the LWC observation. And finally, there is significant uncertainty in the actual strength of the liquid water Raman cross-section in the literature. The calibrated LWC profiles, together with the coincident cloud backscatter observations also made by the RL, can be used to derive profiles of cloud droplet effective radius. By combining these profiles of effective radius in the lower portion of the cloud with the aerosol extinction measurements made below the cloud by the RL, the first aerosol indirect effect can be investigated using a single instrument, thereby reducing the uncertainty associated with aligning the different sampling periods and fields of view of multiple instruments. We have applied a first principles calibration to the LWC profiles. This approach requires that the relative differences in optical efficiency between the water vapor and liquid water channels be known; this relative difference is easily computed using the efficiency values of the beam splitters and interference filters in the lidar that were provided by the vendors of these components. The first principles approach then transfers the calibration from the water vapor mixing ratio to the LWC using the difference in the optical efficiency and an interpolated value of the liquid water Raman cross section from the literature, and the better established water vapor Raman cross section. After accounting for all known error sources, the vertical integral of LWC was compared against a similar value retrieved from a co-located ground-based infrared radiometer. The RL and infrared radiometer have significantly different fields of view; thus to compare the two sensors the data were averaged to 5 min intervals where only cloudy samples were included in the average of each. While there is fair scatter in the data (r=0.47), there is also a clear indication of a positive correlation between the infrared and the RL values. The value of the slope of the regression is 0.49, which indicates a tendency of the RL measurements to underestimate the total liquid amount with respect to the infrared retrieval. Research continues to investigate the source of the bias, but the most likely candidate is the large uncertainty in the liquid water Raman cross-section as there have been no direct measurements made of this parameter at the lidars laser wavelength of 355 nm. The calibrated LWC profile was then used together with the cloud backscatter coefficient profile from the RL to derive profiles of cloud droplet effective radius and cloud droplet number density. These profiles o

Turner, D.D.

2007-10-31T23:59:59.000Z

237

Atmospheric Radiation Measurement Program Science Plan  

SciTech Connect (OSTI)

The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

Ackerman, T

2004-10-31T23:59:59.000Z

238

ARM - Publications: Science Team Meeting Documents: Interpretation of cloud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication andAn AssessmentARMArcticCloud FractionsAerosolClouds

239

atmospheric infrared sounder: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Atmospheric Sounding Interferometer (IASI)Advanced Very High Resolution Radiometer (AVHRR Li, Jun 4 Ozone Profile Retrieval from an Advanced Infrared Sounder:...

240

The Mid-Latitude Continental Convective Clouds Experiment (MC3E)  

SciTech Connect (OSTI)

The Midlatitude Continental Convective Cloud Experiment (MC3E) will take place in central Oklahoma during the April-May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy Atmospheric Radition Measurement Program and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement (GPM) mission Ground Validation program. The Intensive Observation Period leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall observations over land that have never before been available. Several different components of convective processes tangible to the convective parameterization problem are targeted such as, pre-convective environment and convective initiation, updraft / downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, influence on the environment and radiation and a detailed description of the large-scale forcing. MC3E will use a new multi-scale observing strategy with the participation of a network of distributed sensors (both passive and active). The approach is to document in 3-D not only the full spectrum of precipitation rates, but also clouds, winds and moisture in an attempt to provide a holistic view of convective clouds and their feedback with the environment. A goal is to measure cloud and precipitation transitions and environmental quantities that are important for satellite retrieval algorithms, convective parameterization in large-scale models and cloud-resolving model simulations. This will be accomplished through the deployment of several different elements that complement the existing (and soon to become available) ARM facilities: a network of radiosonde stations, NASA scanning multi-frequency/parameter radar systems at three different frequencies (Ka/Ku/S), high-altitude remote sensing and in situ aircraft, wind profilers and a network of surface disdrometers. In addition to these special MC3E instruments, there will be important new instrumentation deployed by DOE at the ARM site including: 3 networked scanning X-band radar systems, a C-band scanning radar, a dual wavelength (Ka/W) scanning cloud radar, a Doppler lidar and upgraded vertically pointing millimeter cloud radar (MMCR) and micropulse lidar (MPL).To fully describe the properties of precipitating cloud systems, both in situ and remote sensing airborne observations are necessary. The NASA GPM-funded University of North Dakota (UND) Citation will provide in situ observations of precipitation-sized particles, ice freezing nuclei and aerosol concentrations. As a complement to the UND Citation's in situ observations, the NASA ER-2 will provide a high altitude satellite simulator platform that carrying a Ka/Ku band radar and passive microwave radiometers (10-183 GHZ).

Petersen,W.; Jensen,M.; Genio, A. D.; Giangrande, S.; Heymsfield, A.; Heymsfield, G.; Hou, A.; Kollias, P.; Orr, B.; Rutledge, S.; Schwaller, M.; Zipser, E.

2010-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Giant Molecular Cloud Environments of Infrared Dark Clouds  

E-Print Network [OSTI]

We study the GMC environments surrounding 10 IRDCs, based on 13CO molecular line emission from the Galactic Ring Survey. Using a range of physical scales, we measure the physical properties of the IRDCs and their surrounding molecular material extending out to radii, R, of 30pc. By comparing different methods for defining cloud boundaries and for deriving mass surface densities, Sigma, and velocity dispersions, sigma, we settled on a preferred "CE,tau,G" method of "Connected Extraction" in position-velocity space along with Gaussian fitting to opacity-corrected line profiles for velocity dispersion and mass estimation. We examine how cloud definition affects measurements of the magnitude and direction of line of sight velocity gradients and velocity dispersions, including the associated dependencies on size scale. CE,tau,G-defined IRDCs and GMCs show velocity gradient versus size relations that scale approximately as dv_0/ds~s^(-1/2) and velocity dispersion versus size relations sigma~s^(1/2), which are consi...

Hernandez, Audra K

2015-01-01T23:59:59.000Z

242

Cloud Computing: An Architectural Perspective .  

E-Print Network [OSTI]

??Cloud Computing is a term heavily used in today's world. Not even a day passes by without hearing the words "Cloud Computing". It has become (more)

Pandya, Hetalben

2013-01-01T23:59:59.000Z

243

CONTRIBUTED Green Cloud Computing  

E-Print Network [OSTI]

to manage energy consumption across the entire information and communications technology (ICT) sector. While considers both public and private clouds, and includes energy consumption in switching and transmission to energy consumption and cloud computing seems to be an alternative to office-based computing. By Jayant

Tucker, Rod

244

Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities  

SciTech Connect (OSTI)

Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMsâ?? cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10?° (latitude) x 10?° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

Liu, Guosheng

2013-03-15T23:59:59.000Z

245

JournalofGeophysicalResearch: Atmospheres RESEARCH ARTICLE  

E-Print Network [OSTI]

convection to start from more levels Simple modification of convective parameterization Correspondence to of the Community Atmosphere Model (CAM4), we show that the overall accuracy in the diurnal simulation of convective rise to diurnal cycles in cloud amount [May et al., 2012] and relative humidity [Soden, 2000] which

Folkins, Ian

246

Scanning ARM Cloud Radars Part I: Operational Sampling Strategies  

SciTech Connect (OSTI)

Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A cloud surveillance scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

2014-03-01T23:59:59.000Z

247

AEROSOL, CLOUDS, AND CLIMATE CHANGE  

SciTech Connect (OSTI)

Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

SCHWARTZ, S.E.

2005-09-01T23:59:59.000Z

248

ARM - Midlatitude Continental Convective Clouds (jensen-sonde)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment.

Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

249

ARM - Midlatitude Continental Convective Clouds (jensen-sonde)  

SciTech Connect (OSTI)

A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment.

Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

2012-01-19T23:59:59.000Z

250

The role of sodium bicarbonate in the nucleation of noctilucent clouds  

E-Print Network [OSTI]

for the sublimation of H2O to bulk ice. A 1-dimensional model of sodium chemistry was then employed to show and particles; cloud physics and chemistry; middle atmosphere ± composition and chemistry) Introduction

Boyer, Edmond

251

Investigation of the aerosol-cloud interaction using the WRF framework  

E-Print Network [OSTI]

. Simulations with various aerosol profiles demonstrate that the response of precipitation to the increase of aerosol concentrations is non-monotonic. The maximal cloud cover, core updraft, and maximal vertical velocity exhibit similar responses as precipitation...

Li, Guohui

2009-05-15T23:59:59.000Z

252

MODELLING RADIATIVELY ACTIVE WATER-ICE CLOUDS: IMPACT ON THE THERMAL STRUCTURE AND WATER CYCLE.  

E-Print Network [OSTI]

MODELLING RADIATIVELY ACTIVE WATER-ICE CLOUDS: IMPACT ON THE THERMAL STRUCTURE AND WATER CYCLE. J. The essential role of water-ice clouds in shaping the thermal structure of the martian atmosphere has been long presumed [1] but neglected in GCMs because of the lack of observations and difficulty to predict

Madeleine, Jean-Baptiste

253

Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site  

E-Print Network [OSTI]

of radar, lidar, and ceilometer data collected at the Atmospheric Radiation Measurements Southern Great [1995] and Chernykh and Eskridge [1996]. The lidar and ceilometer data yield lowest-level cloud base. These quantities are used to assess the accuracy of coincident cloud base heights obtained from radar and the two

254

VALIDATION OF CLOUD LIQUID WATER PATH RETRIEVALS FROM SEVIRI USING ONE YEAR OF  

E-Print Network [OSTI]

from microwave radiometer (MWR) measurements of two CloudNET stations in Northern Europe. The MWR retrievals from SEVIRI. The daily median LWP values from SEVIRI and MWR are highly correlated (corr. > 0 winter. 1. Introduction Clouds strongly modulate the energy balance of the Earth and its atmosphere

Haak, Hein

255

Cloud properties and associated radiative heating rates in the tropical western Pacific  

E-Print Network [OSTI]

Cloud properties and associated radiative heating rates in the tropical western Pacific James H set of atmospheric remote sensing instruments at sites around the world, including three radiative fluxes and heating rates. Maxima in cloud occurrence are found in the boundary layer and the upper

256

Water vapour in the atmosphere of a transiting extrasolar planet  

E-Print Network [OSTI]

Water is predicted to be among, if not the most abundant molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (hot-Jupiters) Several attempts have been made to detect water on an exoplanet, but have failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot-Jupiter HD189733b taken during the transit, where the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may be due to either star variability or the presence of clouds/hazes. We explain the most recent thermal infrared observations of the planet during secondary transit behind the star, reporting a non-detection of water on HD189733b, as being a consequence of the nearly isothermal vertical profile of the planet.s atmosphere. Our results show that water is detectable on extrasolar planets using the primary transit technique and that the infrared should be a better wavelength region than the visible, for such searches.

Giovanna Tinetti; Alfred Vidal-Madjar; Mao-Chang Liang; Jean-Philippe Beaulieu; Yuk Yung; Sean Carey; Robert J. Barber; Jonathan Tennyson; Ignasi Ribas; Nicole Allard; Gilda E. Ballester; David K. Sing; Franck Selsis

2007-07-20T23:59:59.000Z

257

Comparison of POLDER Apparent and Corrected Oxygen Pressure to ARM/MMCR Cloud Boundary Pressures  

SciTech Connect (OSTI)

POLDER (POLarization and Directionality of the Earths Reflectances) cloud oxygen pressures are compared to cloud boundary pressures obtained from the combination of Lidar and Millimeter Wave Cloud Radar ground measurements located at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. Without ground reflection correction, the apparent pressures are found to be closer to the mean cloud pressure than to the cloud top pressure. Nevertheless, for almost a quarter of our comparison cases the apparent pressure level is found to be below the cloud base level. This problem practically disappears applying a simple correction for the surface reflection effect. The corrected oxygen pressures are then found to be very close (12 hPa on average) to the mean cloud pressure.

Vanbauce, Claudine; Cadet, Bertrand; Marchand, Roger T.

2003-03-06T23:59:59.000Z

258

Cloud-Scale Datacenters Page 1 Cloud-Scale  

E-Print Network [OSTI]

Cloud-Scale Datacenters Page 1 Cloud-Scale Datacenters #12;Cloud-Scale Datacenters Page 2, and operating datacenters. When software applications are built as distributed systems, every aspect brief will explore how cloud workloads have changed the way datacenters are designed and operated

Chaudhuri, Surajit

259

Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations  

SciTech Connect (OSTI)

Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic Spring and Fall seasons performed under the Cloud- Associated Parameterizations Testbed (CAPT) framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates the observed cloud liquid water content in both seasons and cloud fraction in the Spring season. As a result, CAM5 significantly underestimates the surface downward longwave (LW) radiative fluxes by 20-40 W m-2. The model with a new ice nucleation parameterization moderately improves the model simulations by increasing cloud liquid water content in mixed-phase clouds through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron- Findeisen (WBF) process. The CAM5 single column model testing shows that change in the homogeneous freezing temperature of rain to form snow from -5 C to -40 C has a substantial impact on the modeled liquid water content through the slowing-down of liquid and rain-related processes. In contrast, collections of cloud ice by snow and cloud liquid by rain are of minor importance for single-layer boundary layer mixed-phase clouds in the Arctic.

Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter; Zelenyuk, Alla

2011-12-24T23:59:59.000Z

260

Attribution Analysis of Cloud Feedback  

E-Print Network [OSTI]

-term global warming. If the EIS-low cloud fraction relationship holds under global warming, it is likely that the tropical low cloud fraction change is non-negative. Climate models without significant negative low cloud fraction change suggest that the cloud...

Zhou, Chen

2014-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Chapter Three Thermodynamics, Cloud Microphysics  

E-Print Network [OSTI]

and rainwater. The raindrops differ from cloud water in that they sediment at a parameterized terminal speed. The fall-out of the rainwater from the cloud in which it forms is recognized as a major factor-conversion) from these cloud droplets and are then allowed to collect smaller cloud droplets (accretion

Xue, Ming

262

Convective Cloud Lifecycles Lunchtime seminar  

E-Print Network [OSTI]

Convective Cloud Lifecycles Lunchtime seminar 19th May 2009 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations Why Conclusions Convective Cloud Lifecycles ­ p.1/3 #12;Why bother? Convective Cloud Lifecycles ­ p.2/3 #12;Some

Plant, Robert

263

An Assessment of MultiAngle Imaging SpectroRadiometer (MISR) Stereo-Derived Cloud Top Heights and cloud top winds using ground-based radar, lidar, and microwave radiometers  

SciTech Connect (OSTI)

Clouds are of tremendous importance to climate because of their direct radiative effects and because of their role in atmospheric dynamics and the hydrological cycle. The value of satellite imagery in monitoring cloud properties on a global basis can hardly be understated. One cloud property that satellites are in an advantageous position to monitor is cloud top height. Cloud top height retrievals are especially important for MISR because the derived height field is used to co-register the measured radiances. In this presentation we show the results of an ongoing comparison between ground-based millimeter-wave cloud radar and lidar measurements of cloud top and MISR stereo-derived cloud top height. This comparison is based on data from three radar systems located in the U.S Southern Great Plains (Lamont, Oklahoma), the Tropical Western Pacific (Nauru Island) and the North Slope of Alaska (Barrow, Alaska). These radars are operated as part of the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. The MISR stereo height algorithm is performing largely as expected for most optically thick clouds. As with many satellite retrievals, the stereo-height retrieval has difficulty with optically thin clouds or ice clouds with little optical contrast near cloud top.

Marchand, Roger T.; Ackerman, Thomas P.; Moroney, C.

2007-03-17T23:59:59.000Z

264

The Tropical Warm Pool International Cloud Experiment  

SciTech Connect (OSTI)

One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

2008-05-01T23:59:59.000Z

265

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect (OSTI)

The Importance of Clouds and Radiation for Climate Change: The Earths surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earths energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01T23:59:59.000Z

266

Moving into the Cloud.  

E-Print Network [OSTI]

??Cloud computing is the notion of abstracting and outsourcing hardware or software resources over the Internet, often to a third party on a pay-as-you-go basis. (more)

Mikalsen, Christian

2009-01-01T23:59:59.000Z

267

Factors influencing the microphysics and radiative properties of liquid-dominated Arctic clouds: insight from observations of aerosol and clouds during ISDAC  

SciTech Connect (OSTI)

Aircraft measurements during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 are used to investigate aerosol indirect effects in Arctic clouds. Two aerosol-cloud regimes are considered in this analysis: single-layer stratocumulus cloud with below-cloud aerosol concentrations (N{sub a}) below 300 cm{sup -3} on April 8 and April 26-27 (clean cases); and inhomogeneous layered cloud with N{sub a} > 500 cm{sup -3} below cloud base on April 19-20, concurrent with a biomass burning episode (polluted cases). Vertical profiles through cloud in each regime are used to determine average cloud microphysical and optical properties. Positive correlations between the cloud droplet effective radius (Re) and cloud optical depth ({tau}) are observed for both clean and polluted cases, which are characteristic of optically-thin, non-precipitating clouds. Average Re values for each case are {approx} 6.2 {mu}m, despite significantly higher droplet number concentrations (Nd) in the polluted cases. The apparent independence of Re and Nd simplifies the description of indirect effects, such that {tau} and the cloud albedo (A) can be described by relatively simple functions of the cloud liquid water path. Adiabatic cloud parcel model simulations show that the marked differences in Na between the regimes account largely for differences in droplet activation, but that the properties of precursor aerosol also play a role, particularly for polluted cases where competition for vapour amongst the more numerous particles limits activation to larger and/or more hygroscopic particles. The similarity of Re for clean and polluted cases is attributed to compensating droplet growth processes for different initial droplet size distributions.

Earle, Michael; Liu, Peter S.; Strapp, J. Walter; Zelenyuk, Alla; Imre, D.; McFarquhar, Greg; Shantz, Nicole C.; Leaitch, W. R.

2011-11-04T23:59:59.000Z

268

Ice Formation in Arctic Mixed-Phase Clouds: Insights from a 3-D Cloud-Resolving Model with Size-Resolved Aerosol and Cloud Microphysics  

SciTech Connect (OSTI)

The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) programs Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a 3-dimensional cloud-resolving model the System for Atmospheric Modeling (SAM) coupled with an explicit bin microphysics scheme and a radar-lidar simulator. Two possible ice enhancement mechanisms activation of droplet evaporation residues by condensation-followed-by-freezing and droplet freezing by contact freezing inside-out, are scrutinized by extensive comparisons with aircraft and radar and lidar measurements. The locations of ice initiation associated with each mechanism and the role of ice nuclei (IN) in the evolution of mixed-phase clouds are mainly addressed. Simulations with either mechanism agree well with the in-situ and remote sensing measurements on ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give very similar cloud microphysical, macrophysical, dynamical, and radiative properties, although the ice nucleation properties (rate, frequency and location) are completely different. Ice nucleation from activation of evaporation nuclei is most efficient near cloud top areas concentrated on the edges of updrafts, while ice initiation from the drop freezing process has no significant location preference (occurs anywhere that droplet evaporation is significant). Both enhanced nucleation mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. The contribution of ice nuclei (IN) recycling from ice particle evaporation to IN and ice particle concentration is found to be very significant in this case. Cloud can be very sensitive to IN initially and form a nonquilibrium transition condition, but become much less sensitive as cloud evolves to a steady mixed-phase condition. The parameterization of Meyers et al. [1992] with the observed MPACE IN concentration is able to predict the observed mixed-phase clouds reasonably well. This validation may facilitate the application of this parameterization in the cloud and climate models to simulate Arctic clouds.

Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

2009-02-27T23:59:59.000Z

269

Cloud vertical distribution from radiosonde, remote sensing, and model simulations  

E-Print Network [OSTI]

Cloud vertical distribution from radiosonde, remote sensing, and model simulations Jinqiang Zhang's radiation budget and atmospheric adiabatic heating. Yet it is among the most difficult quantities to observe Great Plains and along with ground- based and space-borne remote sensing products, use it to evaluate

Li, Zhanqing

270

The study of cirrus clouds using airborne and satellite data  

E-Print Network [OSTI]

Cirrus clouds are known to play a key role in the earth's radiation budget, yet are one of the most uncertain components of the earth-atmosphere system. With the development of instruments such as the Airborne Visible/Infrared Imaging Spectrometer...

Meyer, Kerry Glynne

2004-09-30T23:59:59.000Z

271

FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD-CLOUD COLLISION  

SciTech Connect (OSTI)

Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

Inoue, Tsuyoshi [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258 (Japan); Fukui, Yasuo, E-mail: inouety@phys.aoyama.ac.jp [Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

2013-09-10T23:59:59.000Z

272

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1. 2012 Summary

273

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1. 2012

274

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1. 2012Florida

275

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1.

276

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1.Hawaii

277

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1.HawaiiIdaho

278

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table

279

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 TableIndiana

280

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 TableIndianaIowa

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 TableIndianaIowaKansas

282

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012

283

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012Louisiana Electricity

284

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012Louisiana

285

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012LouisianaMaryland

286

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile

287

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichigan Electricity

288

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichigan

289

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichiganMissouri Electricity

290

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichiganMissouri

291

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichiganMissouriNebraska

292

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshire Electricity Profile 2012

293

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshire Electricity Profile

294

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshire Electricity ProfileMexico

295

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012 Table 1. 2012

296

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012 Table 1.

297

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012 Table 1.Utah

298

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012 Table

299

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012 TableVirginia

300

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012West Virginia

302

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012West

303

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012WestWyoming

304

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012WestWyomingAlabama

305

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile

306

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity ProfileArkansas Nuclear

307

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity ProfileArkansas

308

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity ProfileArkansasConnecticut

309

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgia Nuclear Profile 2010

310

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgia Nuclear Profile

311

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgia Nuclear ProfileIowa

312

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear Profile 2010 Missouri

313

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear Profile 2010

314

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear Profile 2010Hampshire

315

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear Profile

316

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear ProfileYork Nuclear

317

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear ProfileYork NuclearNorth

318

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear ProfileYork

319

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear ProfileYorkPennsylvania

320

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennessee profile Tennessee

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennessee profile

322

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennessee profileVermont

323

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennesseeWashington profile

324

Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis  

SciTech Connect (OSTI)

Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

Zahn, S.G.

1993-12-01T23:59:59.000Z

325

Next generation aerosol-cloud microphysics for advanced high-resolution climate predictions  

SciTech Connect (OSTI)

The three top-level project goals are: -We proposed to develop, test, and run a new, physically based, scale-independent microphysical scheme for those cloud processes that most strongly affect greenhouse gas scenarios, i.e. warm cloud microphysics. In particular, we propsed to address cloud droplet activation, autoconversion, and accretion. -The new, unified scheme was proposed to be derived and tested using the University of Hawaii's IPRC Regional Atmospheric Model (iRAM). -The impact of the new parameterizations on climate change scenarios will be studied. In particular, the sensitivity of cloud response to climate forcing from increased greenhouse gas concentrations will be assessed.

Bennartz, Ralf; Hamilton, Kevin P; Phillips, Vaughan T.J.; Wang, Yuqing; Brenguier, Jean-Louis

2013-01-14T23:59:59.000Z

326

Migrating enterprise storage applications to the cloud  

E-Print Network [OSTI]

2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

Vrable, Michael Daniel

2011-01-01T23:59:59.000Z

327

A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II: Cloud Fraction and Surface Radiative Forcing  

E-Print Network [OSTI]

at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility and for single-layered low (0­3 km), middle (3­6 km), and high clouds ( 6 km) using ARM SCF ground-based paired-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties

Dong, Xiquan

328

Thin Cloud Length Scales Using CALIPSO and CloudSat Data  

E-Print Network [OSTI]

Thin clouds are the most difficult cloud type to observe. The recent availability of joint cloud products from the active remote sensing instruments aboard CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) facilitates...

Solbrig, Jeremy E.

2010-10-12T23:59:59.000Z

329

Atmospheric Environment ] (  

E-Print Network [OSTI]

and the other site was located downwind of the city to study the effect of the urban area on the stability energy budget located throughout Oklahoma City. Three wind-profiling radars were used to measure wind mixing heights during the Joint URBAN (2003) experiment in Oklahoma City, Oklahoma. AERMET is a simple 2

Raman, Sethu

330

Coupling Between Oceanic Upwelling and Cloud-aerosol Properties at the AMF Point Reyes Site  

SciTech Connect (OSTI)

Cloud microphysical properties measured at the ARM Mobile Facility site located on the northern coast of California near Point Reyes, during the 2005 Marine Stratus Radiation, Aerosol and Drizzle experiment, were analyzed to determine their relationship to the coastal sea surface temperature (SST) which was characterized using measurements acquired from a National Oceanic and Atmospheric Administration offshore buoy. An increase in SST resulting from a relaxation of upwelling, occurring in the eastern Pacific Ocean off the coast of California in summer is observed to strongly correlate with nearby ground measured cloud microphysical properties and cloud condensation nuclei (CCN) concentrations. Correlations between these atmospheric and oceanic features provide insight into the interplay between the ocean and cloud radiative properties. We present evidence of this robust correlation and examine the factors controlling these features. The marine boundary layer is in direct contact with the sea surface and is strongly influenced by SST. Moisture and vertical motion are crucial ingredients for cloud development and so we examine the role of SST in providing these key components to the atmosphere. Although upwelling of cold subsurface waters is conventionally thought to increase aerosols in the region, thus increasing clouds, here we observed a relaxation of upwelling associated with changes in the structure of marine stratus clouds. As upwelling relaxes, the SST get warmer, thick clouds with high liquid water paths are observed and persist for a few days. This cycle is repeated throughout the summer upwelling season. A concomitant cyclic increase and decrease of CCN concentration is also observed. Forcing mechanisms and large-scale atmospheric features are discussed. Marine stratocumulus clouds are a critical component of the earth's radiation budget and this site provides an excellent opportunity to study the influence of SST on these clouds.

Dunn, M.; Jensen, M.; Miller, M.; Kollias, P.; Bartholomew, M. J.; Turner, D.; Andrews, E.; Jefferson, A.; Daum, P.

2008-03-10T23:59:59.000Z

331

An Assessment of Microwave Absorption Models and Retrievals of Cloud Liquid Water Using Clear-Sky Data  

SciTech Connect (OSTI)

Passive microwave radiometers have a long history in the remote sensing of atmospheric liquid and water vapor. Retrievals of these quantities are sensitive to variations in pressure and temperature of the liquid and water vapor. Rather than use a statistical or climatological approach to account for the natural variability in atmospheric pressure and temperature, additional information on the atmospheric profile at the time of the radiometer measurements can be directly incorporated into the retrieval process. Such an approach has been referred to in the literature as a physical-iterative solution. This paper presents an assessment of the accuracy of the column liquid water path that can be expected using such an iterative technique as a result of uncertainties in the microwave emissions from oxygen and water vapor. It is shown that the retrieval accuracy is influenced by the accuracy of the instrument measurements and the quality of the atmospheric profiles of temperature and pressure, as one would expect. But also critical is the uncertainty in the absorption coefficients used in the underlying microwave radiative transfer model. The uncertainty in the absorption coefficients is particularly problematic in that it may well bias the liquid water retrieval. The differences between 3 absorption models examined in this paper are equivalent to a bias of 15 to 30 g/m2, depending on the total column water vapor. An examination of typical liquid water paths from the Southern Great Plains region of the United States shows that errors of this magnitude have significant implications for shortwave radiation and retrievals of cloud effective particle size.

Marchand, Roger T.; Ackerman, Thomas P.; Westwater, Ed R.; Clough, Shepard A.; Cady-Pereira, Karen; Liljegren, James C.

2003-12-19T23:59:59.000Z

332

Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment  

SciTech Connect (OSTI)

By making use of the in-situ data collected from the recent Atmospheric Radiation Measurement Mixed-Phase Arctic Cloud Experiment, we have tested the mixed-phase cloud parameterizations used in the two major U.S. climate models, the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory climate model (AM2), under both the single-column modeling framework and the U.S. Department of Energy Climate Change Prediction Program-Atmospheric Radiation Measurement Parameterization Testbed. An improved and more physically based cloud microphysical scheme for CAM3 has been also tested. The single-column modeling tests were summarized in the second quarter 2007 Atmospheric Radiation Measurement metric report. In the current report, we document the performance of these microphysical schemes in short-range weather forecasts using the Climate Chagne Prediction Program Atmospheric Radiation Measurement Parameterizaiton Testbest strategy, in which we initialize CAM3 and AM2 with realistic atmospheric states from numerical weather prediction analyses for the period when Mixed-Phase Arctic Cloud Experiment was conducted.

Xie, S; Boyle, J; Klein, S; Liu, X; Ghan, S

2007-06-01T23:59:59.000Z

333

Observing Warm Clouds in 3D Using ARM Scanning Cloud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Observing Warm Clouds in 3D Using ARM Scanning Cloud Radars and a Novel Ensemble Method For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

334

Sensitivity of Remote Aerosol Distributions to Representation of Cloud-Aerosol Interactions in a Global Climate Model  

SciTech Connect (OSTI)

Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in the Arctic winter (summer) BC burden. This BC aging treatment, however, has minimal effect on other under-predicted species. Interestingly, our modifications to CAM5 that aim at improving prediction of high-latitude and upper tropospheric aerosols also produce much better AOD and AAOD over various other regions globally when compared to multi-year AERONET retrievals. The improved aerosol distributions have impacts on other aspects of CAM5, improving the simulation of global mean liquid water path and cloud forcing.

Wang, Hailong; Easter, Richard C.; Rasch, Philip J.; Wang, Minghuai; Liu, Xiaohong; Ghan, Steven J.; Qian, Yun; Yoon, Jin-Ho; Ma, Po-Lun; Vinoj, V.

2013-06-05T23:59:59.000Z

335

Global Hydrometeor Occurrence as Observed by CloudSAT: Initial Observations from Summer 2006  

SciTech Connect (OSTI)

Measurements of global hydrometeor coverage and occurrence frequencies as observed by the cloud radar on CloudSat are summarized using data collected during Summer 2006. CloudSat was launched on 28 April 2006 and began collecting data routinely on 7 June 2006. In this article we document the distribution of cloudiness from the ITCZ to the Polar regions as observed by CloudSat during the first summer of operations. The overall global hydrometeor coverage as observed by CloudSat is found to be 0.506. The vertical distribution of zonally averaged hydrometeor occurrence shows the relationship of clouds with components of the atmospheric general circulation such as the Hadley Cell, the ubiquitous storms over the Southern Ocean, and the subtropical stratocumulus regimes.

Mace, Gerald G.; Marchand, Roger T.; Zhang, Qiuqing; Stephens, Graeme L.

2007-05-08T23:59:59.000Z

336

Cloud Based Applications and Platforms (Presentation)  

SciTech Connect (OSTI)

Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

Brodt-Giles, D.

2014-05-15T23:59:59.000Z

337

Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud  

SciTech Connect (OSTI)

Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

2008-02-27T23:59:59.000Z

338

ARM Cloud Properties Working Group: Meeting Logistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust Documentation DataProductswsicloudwsicloudsummarygifAOS3 ARM9 ARM2Cloud

339

Evaluating the MMF Using CloudSat  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton StanatAccepted|the EffectCloudSat, ARM, and

340

Final Report for ?¢????Cloud-Aerosol Physics in Super-Parameterized Atmospheric Regional Climate Simulations (CAP-SPARCS)?¢??? (DE-SC0002003) for 8/15/2009 through 8/14/2012  

SciTech Connect (OSTI)

Improving the representation of local and non-local aerosol interactions in state-of-the-science regional climate models is a priority for the coming decade (Zhang, 2008). With this aim in mind, we have combined two new technologies that have a useful synergy: (1) an aerosol-enabled regional climate model (Advanced Weather Research and Forecasting Model with Chemistry WRF-Chem), whose primary weakness is a lack of high quality boundary conditions and (2) an aerosol-enabled multiscale modeling framework (PNNL Multiscale Aerosol Climate Model (MACM)), which is global but captures aerosol-convection-cloud feedbacks, and thus an ideal source of boundary conditions. Combining these two approaches has resulted in an aerosol-enabled modeling framework that not only resolves high resolution details in a particular region, but crucially does so within a global context that is similarly faithful to multi-scale aerosol-climate interactions. We have applied and improved the representation of aerosol interactions by evaluating model performance over multiple domains, with (1) an extensive evaluation of mid-continent precipitation representation by multiscale modeling, (2) two focused comparisons to transport of aerosol plumes to the eastern United States for comparison with observations made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), with the first being idealized and the second being linked to an extensive wildfire plume, and (3) the extension of these ideas to the development of a new approach to evaluating aerosol indirect effects with limited-duration model runs by ?¢????nudging?¢??? to observations. This research supported the work of one postdoc (Zhan Zhao) for two years and contributed to the training and research of two graduate students. Four peer-reviewed publications have resulted from this work, and ground work for a follow-on project was completed.

Lynn M. Russell; Richard C.J. Somerville

2012-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

investigate the effects of cloud composition, such as ice particle shape and orientation, on  

E-Print Network [OSTI]

, on the Earth's energy balance, · understand the properties and impact of aerosols in the atmosphere. Scientists), and radiometer instruments to characterise the atmosphere by making detailed measurements of precipitation, cloud on this antenna and provides high resolution, long range measurements of all types of precipitation such as rain

342

An Assessment of Factors Limiting Tropical Congestus Cloud-Top Heights  

E-Print Network [OSTI]

Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment USA United States of America UTC Universal Time Constant x TABLE OF CONTENTS Page ABSTRACT...) Histogram of brightness temperatures derived from GMS IR TB data over the West Pacific, showing the five stages of cloud development (time right to left); (b) Radiosonde relative humidity composites corresponding to the times in (a...

Casey, Sean P.

2010-07-14T23:59:59.000Z

343

Cloud Condensation Nuclei Retrievals at Cloud Base in North Dakota  

E-Print Network [OSTI]

Cloud Condensation Nuclei Retrievals at Cloud Base in North Dakota · Mariusz Starzec #12;Motivation Compare University of Wyoming (UWyo) and Droplet Measurement Technologies (DMT) cloud condensation nuclei condensation nuclei concentration (CCNC) at any supersaturation (SS) #12;Background Aerosols act as nuclei

Delene, David J.

344

HNCO in molecular clouds  

SciTech Connect (OSTI)

In a survey of 18 molecular clouds, HNCO J/sub K/-1K1..-->..J'/sub K/'-1K'1 = 5/sub 05/..-->..4/sub 05/ and 4/sub 04/..-->..3/sub 03/ emission was etected in seven clouds, and possibly in one other. Emission in these transitions originates in high-density regions (n> or approx. =10/sup 6/ cm/sup -3/). The molecule's excitation requirements allow us to derive limits to excitation temperatures an optical depths. We discuss the possibility of clumping with respect to the beam and compare our results with data from other molecular species. The HNCO emission from Sgr A is an ordder of magnitude larger than the other detected sources as is the ratio ..delta..T +- /sub A/(HNCO 5/sub 05/..-->..4/sub 04/)/..delta..T +- /sub A/(C/sup 18/O 1..-->..0). HNCO is probably a constituent of most molecular clouds.

Jackson, J.M.; Armstrong, J.T.; Barrett, A.H.

1984-05-15T23:59:59.000Z

345

Climatology and Formation of Tropical Midlevel Clouds at the Darwin ARM Site  

SciTech Connect (OSTI)

A 4-yr climatology of midlevel clouds is presented from vertically pointing cloud lidar and radar measurements at the Atmospheric Radiation Measurement Program (ARM) site at Darwin, Australia. Few studies exist of tropical midlevel clouds using a dataset of this length. Seventy percent of clouds with top heights between 4 and 8 km are less than 2 km thick. These thin layer clouds have a peak in cloud-top temperature around the melting level (0C) and also a second peak around -12.5C. The diurnal frequency of thin clouds is highest during the night and reaches a minimum around noon, consistent with variation caused by solar heating. Using a 1.5-yr subset of the observations, the authors found that thin clouds have a high probability of containing supercooled liquid water at low temperatures: ~20% of clouds at -30C, ~50% of clouds at -20C, and ~65% of clouds at -10C contain supercooled liquid water. The authors hypothesize that thin midlevel clouds formed at the melting level are formed differently during active and break monsoon periods and test this over three monsoon seasons. A greater frequency of thin midlevel clouds are likely formed by increased condensation following the latent cooling of melting during active monsoon periods when stratiform precipitation is most frequent. This is supported by the high percentage (65%) of midlevel clouds with preceding stratiform precipitation and the high frequency of stable layers slightly warmer than 0C. In the break monsoon, a distinct peak in the frequency of stable layers at 0C matches the peak in thin midlevel cloudiness, consistent with detrainment from convection.

Riihimaki, Laura D.; McFarlane, Sally A.; Comstock, Jennifer M.

2012-10-01T23:59:59.000Z

346

Emulation to simulate low resolution atmospheric data  

SciTech Connect (OSTI)

Climate simulations require significant compute power, they are complex and therefore it is time consuming to simulate them. We have developed an emulator to simulate unknown climate datasets. The emulator uses stochastic collocation and multi-dimensional in- terpolation to simulate the datasets. We have used the emulator to determine various physical quantities such as temperature, short and long wave cloud forcing, zonal winds etc. The emulation gives results which are very close to those obtained by simulations. The emulator was tested on 2 degree atmospheric datasets. The work evaluates the pros and cons of evaluating the mean first and inter- polating and vice versa. To determine the physical quantities, we have assumed them to be a function of time, longitude, latitude and a random parameter. We have looked at parameters that govern high stable clouds, low stable clouds, timescale for convection etc. The emulator is especially useful as it requires negligible compute times when compared to the simulation itself.

Hebbur Venkata Subba Rao, Vishwas [ORNL; Archibald, Richard K [ORNL; Evans, Katherine J [ORNL

2012-08-01T23:59:59.000Z

347

Opaque cloud detection  

DOE Patents [OSTI]

A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

Roskovensky, John K. (Albuquerque, NM)

2009-01-20T23:59:59.000Z

348

Parameterizations of Cloud Microphysics and Indirect Aerosol Effects  

SciTech Connect (OSTI)

1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

Tao, Wei-Kuo [NASA/GSFC] [NASA/GSFC

2014-05-19T23:59:59.000Z

349

Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds  

SciTech Connect (OSTI)

Deep convective clouds (DCCs) play a crucial role in the general circulation and energy and hydrological cycle of our climate system. Anthropogenic and natural aerosol particles can influence DCCs through changes in cloud properties, precipitation regimes, and radiation balance. Modeling studies have reported both invigoration and suppression of DCCs by aerosols, but none has fully quantified aerosol impacts on convection life cycle and radiative forcing. By conducting multiple month-long cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macro- and micro-physical properties of summer convective clouds in the tropics and mid-latitudes, this study provides the first comprehensive look at how aerosols affect cloud cover, cloud top height (CTH), and radiative forcing. Observations validate these simulation results. We find that microphysical aerosol effects contribute predominantly to increased cloud cover and CTH by inducing larger amount of smaller but longer lasting ice particles in the stratiform/anvils of DCCs with dynamical aerosol effects contributing at most ~ 1/4 of the total increase of cloud cover. The overall effect is a radiative warming in the atmosphere (3 to 5 W m-2) with strong surface cooling (-5 to -8 W m-2). Herein we clearly identified mechanisms more important than and additional to the invigoration effects hypothesized previously that explain the consistent signatures of increased cloud tops area and height by aerosols in DCCs revealed by observations.

Fan, Jiwen; Leung, Lai-Yung R.; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

2013-11-26T23:59:59.000Z

350

Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research. Part 2: Atmospheric and climate research  

SciTech Connect (OSTI)

Atmospheric research at Pacific Northwest Laboratory (PNL) occurs in conjunction with the Atmospheric Chemistry Program (ACP) and with the Atmospheric Studies in Complex Terrain (ASCOT) Program. Solicitations for proposals and peer review were used to select research projects for funding in FY 1995. Nearly all ongoing projects were brought to a close in FY 1994. Therefore, the articles in this volume include a summary of the long-term accomplishments as well as the FY 1994 progress made on these projects. The following articles present summaries of the progress in FY 1994 under these research tasks: continental and oceanic fate of pollutants; research aircraft operations; ASCOT program management; coupling/decoupling of synoptic and valley circulations; interactions between surface exchange processes and atmospheric circulations; and direct simulations of atmospheric turbulence. Climate change research at PNL is aimed at reducing uncertainties in the fundamental processes that control climate systems that currently prevent accurate predictions of climate change and its effects. PNL is responsible for coordinating and integrating the field and laboratory measurement programs, modeling studies, and data analysis activities of the Atmospheric Radiation Measurements (ARM) program. In FY 1994, PNL scientists conducted 3 research projects under the ARM program. In the first project, the sensitivity of GCM grid-ad meteorological properties to subgrid-scale variations in surface fluxes and subgrid-scale circulation patterns is being tested in a single column model. In the second project, a new and computationally efficient scheme has been developed for parameterizing stratus cloud microphysics in general circulation models. In the last project, a balloon-borne instrument package is being developed for making research-quality measurements of radiative flux divergence profiles in the lowest 1,500 meters of the Earth`s atmosphere.

NONE

1995-04-01T23:59:59.000Z

351

5, 60136039, 2005 FRESCO cloud  

E-Print Network [OSTI]

ACPD 5, 6013­6039, 2005 FRESCO cloud algorithm N. Fournier et al. Title Page Abstract Introduction cloud information over deserts from SCIAMACHY O2 A-band N. Fournier 1 , P. Stammes 1 , M. de Graaf 1 , R, 6013­6039, 2005 FRESCO cloud algorithm N. Fournier et al. Title Page Abstract Introduction Conclusions

Paris-Sud XI, Université de

352

3, 33013333, 2003 Cirrus cloud  

E-Print Network [OSTI]

ACPD 3, 3301­3333, 2003 Cirrus cloud occurrence as function of ambient relative humidity J. Str and Physics Discussions Cirrus cloud occurrence as function of ambient relative humidity: A comparison¨om (johan@itm.su.se) 3301 #12;ACPD 3, 3301­3333, 2003 Cirrus cloud occurrence as function of ambient

Paris-Sud XI, Université de

353

8, 96979729, 2008 FRESCO+ cloud  

E-Print Network [OSTI]

ACPD 8, 9697­9729, 2008 FRESCO+ cloud retrieval algorithm P. Wang et al. Title Page Abstract Chemistry and Physics Discussions FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric on behalf of the European Geosciences Union. 9697 #12;ACPD 8, 9697­9729, 2008 FRESCO+ cloud retrieval

Paris-Sud XI, Université de

354

Cloud Formation, Evolution and Destruction  

E-Print Network [OSTI]

Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new stars and these stars tend to be young. The typical cloud cannot spend long, if any time at all

Estalella, Robert

355

SGP and TWP (Manus) Ice Cloud Vertical Velocities  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

Kalesse, Heike

356

SGP and TWP (Manus) Ice Cloud Vertical Velocities  

SciTech Connect (OSTI)

Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

Kalesse, Heike

2013-06-27T23:59:59.000Z

357

Observed Characteristics of Clouds and Precipitating Systems Associated with the Tropical Circulation in Global Models and Reanalyses  

E-Print Network [OSTI]

This dissertation presents a series of work related to the representation of the Hadley circulation (HC) in atmospheric reanalyses and general circulation models (GCMs), with connections to the underlying tropical and subtropical cloud systems...

Stachnik, Justin Paul

2013-03-25T23:59:59.000Z

358

Investigation of Microphysical Parameterizations of Snow and Ice in Arctic Clouds during M-PACE through ModelObservation Comparisons  

E-Print Network [OSTI]

Investigation of Microphysical Parameterizations of Snow and Ice in Arctic Clouds during M the microphysical properties of Arctic mixed-phase stratocumulus. Intensive measurements taken during the Department of Energy Atmospheric Radiation Measurement Program Mixed-Phase Arctic Cloud Experiment (M

Solomon, Amy

359

Upward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations  

E-Print Network [OSTI]

Many features of the general circulation of the atmosphere shift upward in response to warming in simulations of climate change with both general circulation models (GCMs) and cloud-system-resolving models. The importance ...

Singh, Martin Simran

360

Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with CAM3 Single-Column Model and M-PACE Observations  

SciTech Connect (OSTI)

Most global climate models generally prescribe the partitioning of condensed water into liquid droplets and ice crystals in mixed-phase clouds according to a temperature-dependent function, which affects modeled cloud phase, cloud lifetime and radiative properties. This study evaluates a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the NCAR Community Atmospheric Model Version 3 (CAM3) single column model (SCAM). It is shown that SCAM with the new scheme produces a more realistic simulation of the cloud phase structure and the partitioning of condensed waterinto liquid droplets against observations during the M-PACE than the standard CAM. Sensitivity test indicates that ice number concentration could play an important role in the simulated mixed-phase cloud microphysics, and thereby needs to be realistically represented in global climate models.

Liu, Xiaohong; Xie, Shaocheng; Ghan, Steven J.

2007-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Imaging of lithium pellet ablation trails and measurement of g profiles in TFTR  

E-Print Network [OSTI]

Imaging of lithium pellet ablation trails and measurement of g profiles in TFTR J. L. Terry, E. S March 1992) Video images with 2 ps exposures of the Li+ emission in Li pellet ablation clouds have been obtained in a variety of Tokamak Fusion Test Reactor tokamak discharges. The pellet clouds are viewed from

Garnier, Darren T.

362

2010 Atmospheric System Research (ASR) Science Team Meeting Summary  

SciTech Connect (OSTI)

This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

Dupont, DL

2011-05-04T23:59:59.000Z

363

Stratocumulus Clouds ROBERT WOOD  

E-Print Network [OSTI]

by latent heating in updrafts and cooling in downdrafts. Turbulent eddies and evaporative cooling drives, stratification of the STBL, and in some cases cloud breakup. Feedbacks between radiative cooling, precipitation- way interactions may be a key driver of aerosol concentrations over the remote oceans. Aerosol

Wood, Robert

364

Evaluation of Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Sa...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton StanatAccepted|the EffectCloudSat,Cloud

365

Atmosphere Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4 Medicare5Dust

366

Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud  

SciTech Connect (OSTI)

Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.

Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong

2009-02-02T23:59:59.000Z

367

Experiment Profile:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 tonusingdeposition.EnergyExpedited6 DES and

368

People Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the PacificCollaboration »People Profiles Featured

369

Collaborative Research: Integrated Characterization of Energy, Clouds, Atmospheric state,  

E-Print Network [OSTI]

by the broader scientific community to understand the climates of the GIS and broader Arctic Basin for graduate students at the University of Wisconsin, University of Colorado, and University of Idaho at the University of Idaho and summer workshops at the University of Wisconsin. #12;

Walden, Von P.

370

ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane BackgroundFacilityOtherCF

371

Atmospheric Aerosol Systems | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

372

Ionisation in atmospheres of brown dwarfs and extrasolar planets VI: Properties of large-scale discharge events  

E-Print Network [OSTI]

Mineral clouds in substellar atmospheres play a special role as a catalyst for a variety of charge processes. If clouds are charged, the surrounding environment becomes electrically activated, and ensembles of charged grains are electrically discharging (e.g. by lightning), which significantly infuences the local chemistry creating conditions similar to those thought responsible for life in early planetary atmospheres. We note that such lightning discharges contribute also to the ionisation state of the atmosphere. We apply scaling laws for electrical discharge processes from laboratory measurements and numerical experiments to Drift-Phoenix model atmosphere results to model the discharge's propagation downwards (as lightning) and upwards (as sprites) through the atmospheric clouds. We evaluate the spatial extent and energetics of lightning discharges. The atmospheric volume affected (e.g. by increase of temperature or electron number) is larger in a brown dwarf atmosphere ($10^8 -~10^{10}$m$^3$) than in a gi...

Bailey, R L; Hodos, G; Bilger, C; Stark, C R

2013-01-01T23:59:59.000Z

373

ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane BackgroundFacilityOther AircraftProducts1.6MC3E

374

ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane BackgroundFacilityOther

375

ARM - PI Product - Tropical Cloud Properties and Radiative Heating Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data Derived from NWP Analyses ARM

376

ARM - Evaluation Product - Cloud Microbase-kazr Profiles (ka) VAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborne Visible/Infrared Imaging Spectrometer

377

A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites  

SciTech Connect (OSTI)

Cloud radiative effects on surface downwelling fluxes are investigated using long-term datasets from the three Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) region. The Nauru and Darwin sites show significant variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) due to El Nio and the Australian monsoon, respectively, while the Manus site shows little intra-seasonal or interannual variability. Cloud radar measurement of cloud base and top heights are used to define cloud types so that the effect of cloud type on the surface CRE can be examined. Clouds with low bases contribute 71-75% of the surface shortwave (SW) CRE and 66-74% of the surface longwave (LW) CRE at the three TWP sites, while clouds with mid-level bases contribute 8-9% of the SW CRE and 12-14% of the LW CRE, and clouds with high bases contribute 16-19% of the SW CRE and 15-21% of the LW CRE.

McFarlane, Sally A.; Long, Charles N.; Flaherty, Julia E.

2013-04-01T23:59:59.000Z

378

A Catalog of HI Clouds in the Large Magellanic Cloud  

E-Print Network [OSTI]

A 21 cm neutral hydrogen interferometric survey of the Large Magellanic Cloud (LMC) combined with the Parkes multi-beam HI single-dish survey clearly shows that the HI gas is distributed in the form of clumps or clouds. The HI clouds and clumps have been identified using a thresholding method with three separate brightness temperature thresholds ($T_b$). Each catalog of HI cloud candidates shows a power law relationship between the sizes and the velocity dispersions of the clouds roughly following the Larson Law scaling $\\sigma_v \\propto R^{0.5}$, with steeper indices associated with dynamically hot regions. The clouds in each catalog have roughly constant virial parameters as a function mass suggesting that that the clouds are all in roughly the same dynamical state, but the values of the virial parameter are significantly larger than unity showing that turbulent motions dominate gravity in these clouds. The mass distribution of the clouds is a power law with differential indices between -1.6 and -2.0 for the three catalogs. In contrast, the distribution of mean surface densities is a log-normal distribution.

S. Kim; E. Rosolowsky; Y. Lee; Y. Kim; Y. C. Jung; M. A. Dopita; B. G. Elmegreen; K. C. Freeman; R. J. Sault; M. J. Kesteven; D. McConnell; Y. -H. Chu

2007-06-28T23:59:59.000Z

379

Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities  

E-Print Network [OSTI]

This keynote paper: presents a 21st century vision of computing; identifies various computing paradigms promising to deliver the vision of computing utilities; defines Cloud computing and provides the architecture for creating market-oriented Clouds by leveraging technologies such as VMs; provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; presents some representative Cloud platforms especially those developed in industries along with our current work towards realising market-oriented resource allocation of Clouds by leveraging the 3rd generation Aneka enterprise Grid technology; reveals our early thoughts on interconnecting Clouds for dynamically creating an atmospheric computing environment along with pointers to future community research; and concludes with the need for convergence of competing IT paradigms for delivering our 21st century vision.

Buyya, Rajkumar; Venugopal, Srikumar

2008-01-01T23:59:59.000Z

380

Global circulation as the main source of cloud activity on Titan  

E-Print Network [OSTI]

Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes (~40\\degree) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circ...

Rodriguez, Sbastien; Rannou, Pascal; Tobie, Gabriel; Baines, Kevin H; Barnes, Jason W; Griffith, Caitlin A; Hirtzig, Mathieu; Pitman, Karly M; Sotin, Christophe; Brown, Robert H; Buratti, Bonnie J; Clark, Roger N; Nicholson, Phil D; 10.1038/NATURE08014

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

E-Print Network 3.0 - atmospheric diffusion Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Horizontal transport in the atmosphere Dry and moist static energy Eddy vs. mean transport Horizontal... variations Radiative equilibrium temperature profile vs. actual...

382

Cloud Properties Working Group Low Clouds Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVailCloisteredPresence of

383

Broken and inhomogeneous cloud impact on satellite cloud particle effective radius and cloudphase retrievals  

E-Print Network [OSTI]

on the particle size distribution, height, and thermo- dynamic phase of clouds. Water and ice clouds have parameterizations is the global dis- tribution of cloud thermodynamic phase, i.e., whether a cloud is composed on satellitederived cloud particle effective radius (re) and cloud phase (CPH) for broken and overcast inhomogeneous

Stoffelen, Ad

384

ARM - Publications: Science Team Meeting Documents: Increasing Cloud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication andAn AssessmentARMArcticCloud FractionsAerosol OpticalDroplet

385

ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds (MAGIC):  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD) by Microtops ARM Data Discovery Browse DataCloud

386

Cloud Feedbacks on Climate: A Challenging Scientific Problem  

SciTech Connect (OSTI)

One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.

Norris, Joel (Scripps Institution of Oceanography, UC San Diego) [Scripps Institution of Oceanography, UC San Diego

2010-05-10T23:59:59.000Z

387

Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations  

SciTech Connect (OSTI)

The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

S, Motty G, E-mail: mottygs@gmail.com; Satyanarayana, M., E-mail: mottygs@gmail.com; Krishnakumar, V., E-mail: mottygs@gmail.com; Dhaman, Reji k., E-mail: mottygs@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum-695 581, Kerala (India)

2014-10-15T23:59:59.000Z

388

Declarative Automated Cloud Resource Orchestration  

E-Print Network [OSTI]

orchestration · Cloud resource orchestration constraint optimization problems 4 Provider operational] · Orchestration procedures Transactions · Either commit or abort Distributed communication and optimization

Plotkin, Joshua B.

389

Planetary, Atmospheric, and Environmental Applications of Physics Frank Mills  

E-Print Network [OSTI]

solar energy production Evaluating, forecasting, and managing suburb-scale distributed solar electricity of clouds on the production of solar energy. Most of my research is done in collaboration with other groups production My research applies physics to a range of problems in planetary, atmospheric, and environmental

Chen, Ying

390

Journal of the Atmospheric Sciences EARLY ONLINE RELEASE  

E-Print Network [OSTI]

to cite this EOR in a separate work, please use the following full citation: Bu, Y., R. Fovell, and K. Corbosiero, 2013: Influence of cloud-radiative forcing on tropical cyclone structure. J. Atmos. Sci. doi:10 on tropical cyclone structure1 Yizhe Peggy Bu and Robert G. Fovell Department of Atmospheric and Oceanic

Corbosiero, Kristen L.

391

1. Introduction The atmospheric greenhouse effect is the basic mechanism  

E-Print Network [OSTI]

1. Introduction The atmospheric greenhouse effect is the basic mechanism whereby absorbed solar system of the Earth is endowed with a moderately strong greenhouse effect that is characterized by non CO2. There is a strong feedback contribution to the greenhouse effect by water vapor and clouds

392

HCN ice in Titan's high-altitude southern polar cloud  

E-Print Network [OSTI]

Titan's middle atmosphere is currently experiencing a rapid change of season after northern spring arrived in 2009. A large cloud was observed for the first time above Titan's southern pole in May 2012, at an altitude of 300 km. This altitude previously showed a temperature maximum and condensation was not expected for any of Titan's atmospheric gases. Here we show that this cloud is composed of micron-sized hydrogen cyanide (HCN) ice particles. The presence of HCN particles at this altitude, together with new temperature determinations from mid-infrared observations, indicate a very dramatic cooling of Titan's atmosphere inside the winter polar vortex in early 2012. Such a cooling is completely contrary to previously measured high-altitude warming in the polar vortex, and temperatures are a hundred degrees colder than predicted by circulation models. Besides elucidating the nature of Titan's mysterious polar cloud, these results thus show that post-equinox cooling at the winter pole is much more efficient th...

de Kok, Remco J; Maltagliati, Luca; Irwin, Patrick G J; Vinatier, Sandrine

2014-01-01T23:59:59.000Z

393

A Novel Retrieval Algorithm for Cloud Optical Properties from the Atmopsheric Radiation Measurement Program's Two-Channel Narrow-Field-of-View Radiometer  

SciTech Connect (OSTI)

Cloud optical depth is the most important of all cloud optical properties, and vital for any cloud-radiation parameterization. To estimate cloud optical depth, the atmospheric science community has widely used ground-based flux measurements from either broadband or narrowband radiometers in the past decade. However, this type of technique is limited to overcast conditions and, at best, gives us an "effective" cloud optical depth instead of its "local" value. Unlike flux observations, monochromatic narrow-field-of-view (NFOV) radiance measurements contain information of local cloud properties, but unfortunately, the use of radiance to interpret optical depth suffers from retrieval ambiguity. We have pioneered an algorithm to retrieve cloud optical depth in a fully three-dimensional cloud situation using new Atmospheric Radiation Measurement (ARM) ground-based passive two-channel (673 and 870 nm) NFOV measurements. The underlying principle of the algorithm is that these two channels have similar cloud properties but strong spectral contrast in surface reflectance. This algorthm offers the first opportunity to illustrate cloud evolution with high temporal resolution retrievals. A combination of two-channel NFOV radiances with multi-filter rotating shadowband radiometer (MFRSR) fluxes for the retrieval of cloud optical properties is also discussed.

Wiscombe, Warren J.; Marshak, A.; Chiu, J.-Y. C.; Knyazikhin, Y.; Barnard, James C.; Luo, Yi

2005-03-14T23:59:59.000Z

394

Cicada: Predictive Guarantees for Cloud Network Bandwidth  

E-Print Network [OSTI]

In cloud-computing systems, network-bandwidth guarantees have been shown to improve predictability of application performance and cost. Most previous work on cloud-bandwidth guarantees has assumed that cloud tenants know ...

LaCurts, Katrina

2014-03-24T23:59:59.000Z

395

Magellan: experiences from a Science Cloud  

E-Print Network [OSTI]

2010. From Clusters To Clouds: xCAT 2 Is Out Of The Bag.Cost of Doing Science on the Cloud: The Montage Example. Incost of doing science on the cloud: the montage example. In

Ramakrishnan, Lavanya

2013-01-01T23:59:59.000Z

396

Electron-Cloud Build-Up: Summary  

E-Print Network [OSTI]

Properties In?uencing Electron Cloud Phenomena, Appl. Surf.Dissipation of the Electron Cloud, Proc. PAC03 (Portland,is no signi?cant electron-cloud under nominal operating

Furman, M.A.

2007-01-01T23:59:59.000Z

397

The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar  

SciTech Connect (OSTI)

The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digital Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.

P Kollias; MA Miller; KB Widener; RT Marchand; TP Ackerman

2005-12-30T23:59:59.000Z

398

ARM - Cloud and Rain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love to heartotdngovInstrumentswrf-chemHistoryListCloud and Rain

399

Radiative heating of the ISCCP upper level cloud regimes and its impact on the large-scale tropical circulation  

E-Print Network [OSTI]

Radiative heating of the ISCCP upper level cloud regimes and its impact on the large-scale tropical 2012; accepted 14 December 2012; published 31 January 2013. [1] Radiative heating profiles. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating

400

Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic  

SciTech Connect (OSTI)

Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

Janet Intrieri; Mathhew Shupe

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Upward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations  

E-Print Network [OSTI]

, including upward shifts in the ver- tical velocities and distributions of cloud water and ice as the seaUpward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations circulation of the atmosphere shift upward in response to warming in simu- lations of climate change with both

O'Gorman, Paul

402

A TRUSTED STORAGE SYSTEM FOR THE CLOUD.  

E-Print Network [OSTI]

??Data stored in third party storage systems like the cloud might not be secure since confidentiality and integrity of data are not guaranteed. Though cloud (more)

Karumanchi, Sushama

2010-01-01T23:59:59.000Z

403

Fraunhofer ISST CLOUD COMPUTING APPLICATIONS  

E-Print Network [OSTI]

#12;© Fraunhofer ISST Fraunhofer Innovation Cluster »Cloud Computing for Logistics« Budget 3 * 3 Mio© Fraunhofer ISST CLOUD COMPUTING APPLICATIONS FOR LOGISTICS Jakob Rehof Professor, Chair of Software Engineering, Technical University of Dortmund Director, Fraunhofer-ISST Dortmund and Berlin First

Rajamani, Sriram K.

404

What Goes Up Must Come Down: The Lifecycle of Convective Clouds (492nd Brookhaven Lecture)  

SciTech Connect (OSTI)

Some clouds look like cotton balls and others like anvils. Some bring rain, some snow and sleet, and others, just shade. But, whether big and billowy or dark and stormy, clouds affect far more than the weather each day. Armed with measurements of clouds updrafts and downdraftswhich resemble airflow in a convection ovenand many other atmospheric interactions, scientists from Brookhaven Lab and other institutions around the world are developing models that are crucial for understanding Earths climate and forecasting future climate change. During his lecture, Dr. Jensen provides an overview of the importance of clouds in the Earths climate system before explaining how convective clouds form, grow, and dissipate. His discussion includes findings from the Midlatitude Continental Convective Clouds Experiment (MC3E), a major collaborative experiment between U.S. Department of Energy (DOE) and NASA scientists to document precipitation, clouds, winds, and moisture in 3-D for a holistic view of convective clouds and their environment.

Jensen, Michael [BNL Environmental Sciences

2014-02-19T23:59:59.000Z

405

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations  

SciTech Connect (OSTI)

A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

Turner, David D.

2003-06-01T23:59:59.000Z

406

Study of Multi-Scale Cloud Processes Over the Tropical Western Pacific Using Cloud-Resolving Models Constrained by Satellite Data  

SciTech Connect (OSTI)

Clouds in the tropical western Pacific are an integral part of the large scale environment. An improved understanding of the multi-scale structure of clouds and their interactions with the environment is critical to the ARM (Atmospheric Radiation Measurement) program for developing and evaluating cloud parameterizations, understanding the consequences of model biases, and providing a context for interpreting the observational data collected over the ARM Tropical Western Pacific (TWP) sites. Three-dimensional cloud resolving models (CRMs) are powerful tools for developing and evaluating cloud parameterizations. However, a significant challenge in using CRMs in the TWP is that the region lacks conventional data, so large uncertainty exists in defining the large-scale environment for clouds. This project links several aspects of the ARM program, from measurements to providing improved analyses, and from cloud-resolving modeling to climate-scale modeling and parameterization development, with the overall objective to improve the representations of clouds in climate models and to simulate and quantify resolved cloud effects on the large-scale environment. Our objectives will be achieved through a series of tasks focusing on the use of the Weather Research and Forecasting (WRF) model and ARM data. Our approach includes: -- Perform assimilation of COSMIC GPS radio occultation and other satellites products using the WRF Ensemble Kalman Filter assimilation system to represent the tropical large-scale environment at 36 km grid resolution. This high-resolution analysis can be used by the community to derive forcing products for single-column models or cloud-resolving models. -- Perform cloud-resolving simulations using WRF and its nesting capabilities, driven by the improved regional analysis and evaluate the simulations against ARM datasets such as from TWP-ICE to optimize the microphysics parameters for this region. A cirrus study (Mace and co-authors) already exists for TWP-ICE using satellite and ground-based observations. -- Perform numerical experiments using WRF to investigate how convection over tropical islands in the Maritime Continent interacts with large-scale circulation and affects convection in nearby regions. -- Evaluate and apply WRF as a testbed for GCM cloud parameterizations, utilizing the ability of WRF to run on multiple scales (from cloud resolving to global) to isolate resolution and physics issues from dynamical and model framework issues. Key products will be disseminated to the ARM and larger community through distribution of data archives, including model outputs from the data assimilation products and cloud resolving simulations, and publications.

Dudhia, Jimy

2013-03-12T23:59:59.000Z

407

Evaluation of the Daylight Cycle of Model-Predicted Cloud Amount and Condensed Water Path over Europe with Observations from MSG SEVIRI  

E-Print Network [OSTI]

Evaluation of the Daylight Cycle of Model-Predicted Cloud Amount and Condensed Water Path over accurate information on diurnal cycles during daylight hours of cloud properties over land and ocean surfaces. This paper evaluates the daylight cycle of CA and CWP as predicted by the Regional Atmospheric

Stoffelen, Ad

408

A Comparison of Multiscale Variations of Decade-long Cloud Fractions from Six Different Platforms over the Southern Great Plains in the United States  

SciTech Connect (OSTI)

This study investigates 1997-2011 observationally based cloud fraction estimates from different platforms over the Southern Great Plains, United States, including three ground-based estimates and three satellite-based estimates at multiple temporal and spatial scales. They are: 1) the Active Remotely Sensed Clouds Locations (ARSCL); 2) the Total Sky Imager (TSI); 3) the Radiative Flux Analysis (RFA); 4) Geostationary Operational Environmental Satellite (GOES); 5) the International Satellite Cloud Climatology Project (ISCCP); and 6) Advanced Very High Resolution Radiometer Pathfinder Atmospheres Extended (PATMOS-x). A substantial disagreement is evident among different estimates, especially for ISCCP and ARSCL with statistically significant larger cloud fractions than the other estimates. For example, ISCCP and ARSCL mean cloud fractions in January are ~21% and 8% larger than the average from all the other estimates, respectively. Three estimates (ISCCP, ARSCL, GOES) exhibit an 8%-10% overall increase in the annually averaged cloud fractions from 1998 to 2009; the other three estimates (TSI, RFA, and PATMOS-x) exhibit no significant tendency of increase in this decade. Monthly cloud fractions from all the estimates exhibit Gaussian-like distributions while the distributions of daily cloud fractions are dependent on spatial scales. Investigations of high-resolution cloud fractions reveal that the differences stem from the inconsistent definitions of cloud fraction. Findings from this study suggest caution when using observationally based cloud fraction estimates for climate studies, highlighting that the consistency in defining cloud fraction between models and observations is crucial for studying the Earths climate.

Wu, Wei; Liu, Yangang; Jensen, Michael; Toto, Tami; Foster, Michael J.; Long, Charles N.

2014-03-27T23:59:59.000Z

409

Raman Lidar ProfilesTemperature (RLPROFTEMP) Value-Added Product  

SciTech Connect (OSTI)

The purpose of this document is to describe the Raman Lidar ProfilesTemperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

Newsom, RK; Sivaraman, C; McFarlane, SA

2012-10-31T23:59:59.000Z

410

Tropical Warm Pool International Cloud Experiment (TWP-ICE): Cloud and Rain Characteristics in the Australian Monsoon  

SciTech Connect (OSTI)

The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them. The experiment is a collaboration between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, the Bureau of Meteorology (BoM), the National Aeronautics and Space Administration (NASA), the European Commission DG RTD-1.2, and several United States, Australian, Canadian, and European Universities. This experiment will be undertaken over a 4-week period in early 2006. January and February corresponds to the wet phase of the Australia monsoon. This season has been selected because, despite Darwins coastal location, the convection that occurs over and near Darwin at this time is largely of maritime origin with a large fetch over water. Based on previous experiments, the convection appears typical of maritime convection with widespread convection that has complex organization, but is not as deep or as intense as continental or coastal convection. Therefore, it is expected that the convection and cloud characteristics will be representative of conditions typical for wide areas of the tropics.

PT May; C Jakob; JH Mather

2004-05-30T23:59:59.000Z

411

A Comparison of ARM Cloud Radar Profiles with MMF Simulated Radar Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6APlasma APast

412

IBM Software Solution Brief Safeguarding the cloud  

E-Print Network [OSTI]

IBM Software Solution Brief Safeguarding the cloud with IBM Security solutions Maintain visibility and control with proven security solutions for public, private and hybrid clouds Highlights Address cloud internal and external users, data, applications and workloads as they move to and from the cloud Regain

413

CLOUD COMPUTING INFRASTRUCTURE AND OPERATIONS PROGRAM  

E-Print Network [OSTI]

CLOUD COMPUTING INFRASTRUCTURE AND OPERATIONS PROGRAM A six-week in-depth program in the architectures, infrastructure, and operations of Cloud Computing DePaul University's Cloud Computing Infrastructure and Operations Program provides specialized knowledge in Cloud infrastructure with emphasis

Schaefer, Marcus

414

Locus Technologies 2014 Lost in the Cloud?  

E-Print Network [OSTI]

© Locus Technologies 2014 Lost in the Cloud? There's an App for That David McConaughy Locus Technologies 1997-2014 4 #12;Cloud-based EMIS 2014© Locus Technologies 1997-2014 5 #12; Cloud Synch data back to EIM cloud for analysis 2014© Locus Technologies 1997-2014 9 #12;Mobile Apps for Data

Illinois at Urbana-Champaign, University of

415

Cloud Computing An enterprise perspective Raghavan Subramanian  

E-Print Network [OSTI]

Cloud Computing ­ An enterprise perspective Raghavan Subramanian Infosys Technologies Limited #12;2Infosys Confidential Overview of cloud computing? Cloud computing* Computing in which dynamically scalable of cloud computing 1. On-demand self-service 2. Ubiquitous network access 3. Location independent resource

Rajamani, Sriram K.

416

Changes in Cloud Cover and Cloud Types over the Ocean from Surface Observations,  

E-Print Network [OSTI]

1 Changes in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 1954-2008 Ryan and Infrared Radiation (IR) #12;5 Low Clouds and Sea Surface Temperature #12;6 Cloud Data To better understand of this information with the longest continuous period of record #12;7 Surface Observed Cloud Climatology Ocean data

Hochberg, Michael

417

Cloud Futures Workshop 2010 Cloud Computing Support for Massively Social Gaming Alexandru Iosup  

E-Print Network [OSTI]

1 Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming Alexandru Iosup Pierre (Vrije U.). Cloud Computing Support for Massively Social Gaming (Rain for the Thirsty) #12;Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming 2 Intermezzo: Tips on how

Iosup, Alexandru

418

CLOUD, DRIZZLE, AND TURBULENCE OBSERVATIONS IN MARINE STRATOCUMULUS CLOUDS IN THE AZORES  

E-Print Network [OSTI]

CLOUD, DRIZZLE, AND TURBULENCE OBSERVATIONS IN MARINE STRATOCUMULUS CLOUDS IN THE AZORES Jasmine at the Azores provided a unique, long-term record (May 2009 to December 2010) of cloud observations in a regime dominated by low-level stratiform clouds. First, a comprehensive cloud classification scheme that utilizes

419

Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution  

E-Print Network [OSTI]

Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended

420

Vision: Cloud-Powered Sight for All Showing the Cloud What You See  

E-Print Network [OSTI]

Vision: Cloud-Powered Sight for All Showing the Cloud What You See Paramvir Bahl Matthai Philipose argue that for computers to do more for us, we need to show the cloud what we see and embrace cloud General Terms Algorithms, Design, Human Factors, Languages, Performance, Security Keywords Camera, cloud

Zhong, Lin

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics  

SciTech Connect (OSTI)

Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

2013-10-01T23:59:59.000Z

422

Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report  

SciTech Connect (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2007-09-30T23:59:59.000Z

423

Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud  

E-Print Network [OSTI]

Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially-extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section ($\\sim 3\\times10^{-26}{\\rm cm}^{3}{\\rm s}^{-1}$) for dark matter masses $\\lesssim 30$ GeV annihilating via the $b \\bar b$ or $\\tau^{+}\\tau^{-}$ channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

Alex Drlica-Wagner; German A. Gomez-Vargas; John W. Hewitt; Tim Linden; Luigi Tibaldo

2014-06-30T23:59:59.000Z

424

Scale dependence of entrainment-mixing mechanisms in cumulus clouds  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasing scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.

Lu, Chunsong [Nanjing Univ. of Information Science and Technology (China). Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Chinese Acadamy of Sciences, Beijing (China); Brookhaven National Laboratory (BNL), Upton, NY (United States). Biological, Environmental and Climate Science Dept.; Liu, Yangang [Brookhaven National Laboratory (BNL), Upton, NY (United States). Biological, Environmental and Climate Science Dept.; Niu, Shengjie [Nanjing Univ. of Information Science and Technology (China). Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Endo, Satoshi [Brookhaven National Laboratory (BNL), Upton, NY (United States). Biological, Environmental and Climate Science Dept.

2014-12-27T23:59:59.000Z

425

Cloud Computing for Telecom Systems.  

E-Print Network [OSTI]

??Context: Cloud computing is reshaping the service-delivery and business-models in Information and Communications Technology (ICT). The Information Technology (IT) sector has benefited from it in (more)

Sapkota, Sagar

2011-01-01T23:59:59.000Z

426

Global Climate Modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds  

E-Print Network [OSTI]

Radiative effects of water ice clouds have noteworthy consequences on the Martian atmosphere, its thermal structure and circulation. Accordingly, the inclusion of such effects in the LMD Mars Global Climate Model (GCM) greatly modifies the simulated Martian water cycle. The intent of this paper is to address the impact of radiatively active clouds on atmospheric water vapor and ice in the GCM and improve its representation. We propose a new enhanced modeling of the water cycle, consisting of detailed cloud microphysics with dynamic condensation nuclei and a better implementation of perennial surface water ice. This physical modeling is based on tunable parameters. This new version of the GCM is compared to the Thermal Emission Spectrometer observations of the water cycle. Satisfying results are reached for both vapor and cloud opacities. However, simulations yield a lack of water vapor in the tropics after Ls=180{\\deg} which is persistent in simulations compared to observations, as a consequence of aphelion c...

Navarro, Thomas; Forget, Franois; Spiga, Aymeric; Millour, Ehouarn; Montmessin, Franck

2013-01-01T23:59:59.000Z

427

Power spectral analysis of Jupiter's clouds and kinetic energy from Cassini David S. Choi  

E-Print Network [OSTI]

of wind vectors and atmospheric kinetic energy within Jupiter's troposphere. We computed power spectraPower spectral analysis of Jupiter's clouds and kinetic energy from Cassini David S. Choi , Adam P o Article history: Received 16 December 2010 Revised 8 September 2011 Accepted 6 October 2011

428

Author's personal copy Power spectral analysis of Jupiter's clouds and kinetic energy from Cassini  

E-Print Network [OSTI]

full-longitudinal maps of wind vectors and atmospheric kinetic energy within Jupiter's troposphere. WeAuthor's personal copy Power spectral analysis of Jupiter's clouds and kinetic energy from Cassini 85721, USA a r t i c l e i n f o Article history: Received 16 December 2010 Revised 8 September 2011

Choi, David S.

429

Science Plan for the Atmospheric Radiation Measurement Program (ARM)  

SciTech Connect (OSTI)

The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

NONE

1996-02-01T23:59:59.000Z

430

Midlatitude Continental Convective Clouds Experiment (MC3E)  

SciTech Connect (OSTI)

The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the AprilMay 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administrations (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available.

Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

2010-04-10T23:59:59.000Z

431

Title: Networking the Cloud: Enabling Enterprise Computing and Storage Cloud computing has been changing how enterprises run and manage their IT systems. Cloud  

E-Print Network [OSTI]

Title: Networking the Cloud: Enabling Enterprise Computing and Storage Abstract: Cloud computing has been changing how enterprises run and manage their IT systems. Cloud computing platforms provide introduction on Cloud Computing. We propose a Virtual Cloud Pool abstraction to logically unify cloud

432

The Evolution of Cloud Computing in ATLAS  

E-Print Network [OSTI]

The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

Taylor, Ryan P.; The ATLAS collaboration; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

2015-01-01T23:59:59.000Z

433

Spectrophotometric Resolution of Stellar Atmospheres with Microlensing  

E-Print Network [OSTI]

Microlensing is a powerful tool for studying stellar atmospheres because as the source crosses regions of formally infinite magnification (caustics) the surfaceof the star is resolved, thereby allowing one to measure the radial intensity profile, both photometrically and spectroscopically. However, caustic crossing events are relatively rare, and monitoring them requires intensive application of telescope resources. It is therefore essential that the observational parameters needed to accurately measure the intensity profile are quantified. We calculate the expected errors in the recovered radial intensity profile as a function of the unlensed flux, source radius, spatial resolution the recovered intensity profile, and caustic crossing time for the two principle types of caustics: point-mass and binary lenses. We demonstrate that for both cases there exist simple scaling relations between these parameters and the resultant errors. We find that the error as a function of the spatial resolution of the recovered profile, parameterized by the number of radial bins, increases as $N_R^{3/2}$, considerably faster than the naive $N_R^{1/2}$ expectation. Finally, we discuss the relative advantages of binary caustic-crossing events and point-lens events. Binary events are more common, easier to plan for, and provide more homogeneous information about the stellar atmosphere. However, a sub-class of point-mass events with low impact parameters can provide dramatically more information provided that they can be recognized in time to initiate observations.

B. Scott Gaudi; Andrew Gould

1998-02-14T23:59:59.000Z

434

Atmospheric profiles of CO? as integrators of regional scale exchange  

E-Print Network [OSTI]

not simulate uncultivated land associated with agriculture, which in Scotland represents 36 % of agricultural holdings. Therefore, uncultivated land components may provide an explanation for the increase in model-data error. Interannual variation in weather...

Smallman, Thomas Luke

2014-06-30T23:59:59.000Z

435

Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations  

SciTech Connect (OSTI)

Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate models have generally proven unsuccessful at simulating the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. An ice nucleation parameterization and a vapor deposition scheme were developed that together provide a physically-consistent treatment of mixed-phase clouds in global climate models. These schemes have been implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3). This report documents the performance of these schemes against ARM Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the CAM single column model version (SCAM). SCAM with our new schemes has a more realistic simulation of the cloud phase structure and the partitioning of condensed water into liquid droplets against observations during the M-PACE than the standard CAM simulations.

Liu, X; Ghan, SJ; Xie, S

2007-04-01T23:59:59.000Z

436

Midlatitude Continental Convective Clouds Experiment (MC3E)  

SciTech Connect (OSTI)

Convective processes play a critical role in the Earths energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical parameterizations that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the AprilMay 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administrations (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available. Several different components of convective cloud and precipitation processes tangible to both the convective parameterization and precipitation retrieval algorithm problem are targeted, such as preconvective environment and convective initiation, updraft/downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, spatial and temporal variability of precipitation, influence on the environment and radiation, and a detailed description of the large-scale forcing.

Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

2010-04-01T23:59:59.000Z

437

Climate Sciences: Atmospheric Thermodynamics  

E-Print Network [OSTI]

1 Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http://aerosol.ucsd.edu/courses.html Text: Curry & Webster Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 Energy Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http

Russell, Lynn

438

5, 60416076, 2005 Atmospheric  

E-Print Network [OSTI]

opportunity to examine atmospheric oxidation in a megacity that has more pollution than typical USACPD 5, 6041­6076, 2005 Atmospheric oxidation in the Mexico City Metropolitan Area T. R. Shirley et.atmos-chem-phys.org/acpd/5/6041/ SRef-ID: 1680-7375/acpd/2005-5-6041 European Geosciences Union Atmospheric Chemistry

Boyer, Edmond

439

Radiative Importance of ThinŽ Liquid Water Clouds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323Program Accomplishments of the Cloud

440

Radiative Importance of ThinŽ Liquid Water Clouds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323Program Accomplishments of the CloudProgram

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Accelerator beam profile analyzer  

DOE Patents [OSTI]

A beam profile analyzer employing sector or quadrant plates each servo controlled to outline the edge of a beam.

Godel, Julius B. (Bayport, NY); Guillaume, Marcel (Grivegnee, BE); Lambrecht, Richard M. (East Quogue, NY); Withnell, Ronald (East Setauket, NY)

1976-01-01T23:59:59.000Z

442

Final Report - Satellite Calibration and Verification of Remotely Sensed Cloud and Radiation Properties Using ARM UAV Data (February 28, 1995 - February 28, 1998)  

SciTech Connect (OSTI)

The work proposed under this agreement was designed to validate and improve remote sensing of cloud and radiation properties in the atmosphere for climate studies with special emphasis on the use of satellites for monitoring these parameters to further the goals of the Atmospheric Radiation Measurement (ARM) Program.

Minnis, Patrick

1998-02-28T23:59:59.000Z

443

The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE  

SciTech Connect (OSTI)

Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the cold second indirect effect. The data showed a correlation of R= 0.75 between liquid drop number concentration, Nliq, inside cloud and ambient aerosol number concentration NPCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant profile of Nliq, suggested that liquid drops were nucleated from aerosol at cloud base. No strong evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration Ni and NPCASP above cloud was noted. Increases in ice nuclei (IN) concentration with NPCASP above cloud combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The higher Nice and lower effective radius rel for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the cold second indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.

Jackson, Robert C.; McFarquhar, Greg; Korolev, Alexei; Earle, Michael; Liu, Peter S.; Lawson, R. P.; Brooks, Sarah D.; Wolde, Mengistu; Laskin, Alexander; Freer, Matthew

2012-08-14T23:59:59.000Z

444

Disruptive technology business models in cloud computing  

E-Print Network [OSTI]

Cloud computing, a term whose origins have been in existence for more than a decade, has come into fruition due to technological capabilities and marketplace demands. Cloud computing can be defined as a scalable and flexible ...

Krikos, Alexis Christopher

2010-01-01T23:59:59.000Z

445

Socially Optimal Pricing of Cloud Computing Resources  

E-Print Network [OSTI]

The cloud computing paradigm offers easily accessible computing resources of variable size and capabilities. We consider a cloud-computing facility that provides simultaneous service to a heterogeneous, time-varying ...

Menache, Ishai

446

Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus  

E-Print Network [OSTI]

Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus hygroscopic aerosols were introduced into a solid marine stratocumulus cloud (200 m thick) by burning hygroscopic flares mounted on an aircraft. The cloud microphysical response in two parallel seeding plumes

Miami, University of

447

Cloud Tracking in Cloud-Resolving Models R. S. Plant1  

E-Print Network [OSTI]

Cloud Tracking in Cloud-Resolving Models R. S. Plant1 1 Department of Meteorology, University. INTRODUCTION In recent years Cloud Resolving Models (CRMs) have become an increasingly important tool for CRM data, which allows one to investigate statistical prop- erties of the lifecycles of the "clouds

Plant, Robert

448

HPI Cloud Symposium ,Operating The Cloud` 25.09.2013, Hasso-Plattner-Institut, Auditorium Building  

E-Print Network [OSTI]

Agenda HPI Cloud Symposium ,Operating The Cloud` 25.09.2013, Hasso-Plattner-Institut, Auditorium Building 09:30h Registration 10:00h Opening Prof. Dr. Christoph Meinel, HPI Potsdam 10:30h Cloud-RAID: Eine Methode zur Bereitstellung zuverlässiger Speicherressourcen in ?ffentlichen Clouds Maxim Schnajkin, HPI

Weske, Mathias

449

The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise  

E-Print Network [OSTI]

1 The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise Ali Khajeh-Hosseini, David Greenwood, James W. Smith, Ian Sommerville Cloud Computing Co-laboratory, School of Computer Science University of St Andrews, UK {akh, dsg22, jws7, ifs}@cs.st-andrews.ac.uk Abstract Cloud computing

Sommerville, Ian

450

Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman  

E-Print Network [OSTI]

Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman Security Architecture University Park, PA, USA yus138,hvijay,tjaeger@cse.psu.edu Abstract--Cloud computing has commoditized compute paradigm, its adoption has been stymied by cloud platform's lack of trans- parency, which leaves customers

Jaeger, Trent

451

CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy  

E-Print Network [OSTI]

CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy: Computing in a Policy Cloud? Forthcoming in the Journal of Information Technology and Politics, 5(3). Paul T. Jaeger University of Maryland Jimmy Lin University of Maryland Justin M. Grimes University of Maryland #12;CLOUD

Lin, Jimmy

452

Cloud networking and communications Cloud computing is having an important impact on  

E-Print Network [OSTI]

Editorial Cloud networking and communications Cloud computing is having an important impact attention has been devoted to system aspects of Cloud computing. More recently, however, the focus is shifting towards Cloud net- working and communications with evolutionary and revo- lutionary propositions

Boutaba, Raouf

453

ARM - Field Campaign - Cloud IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWSTCampaign 2govCampaignsCloud IOP ARM

454

Development and testing of an aerosol/stratus cloud parameterization scheme for middle and high latitudes. Final technical progress report, November 1, 1994--October 31, 1998  

SciTech Connect (OSTI)

At the present time, general circulation models (GCMs) poorly represent clouds, to the extent that they cannot be relied upon to simulate the climatic effects of increasing concentrations of greenhouse gases, or of anthropogenic perturbations to concentrations of cloud condensation nuclei (CCN) or ice nuclei (IN). The long-term objective of this research was the development of an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary-layer clouds which responds to variations in CCN and IN. The work plan was to perform simulations of these cloud systems to gain understanding of their dynamics and microphysics, especially how aerosols affect cloud development and properties, that cold then be used to guide parameterizations. Several versions of the CSU RAMS (Regional Atmospheric Modeling System), modified to treat Arctic clouds, have been used during the course of this work. The authors also developed a new modeling system, the Trajectory Ensemble Model, to perform detailed chemical and microphysical simulations off-line from the host LES model. The increased understanding of the cloud systems investigated in this research can be applied to a single-column cloud model, designed as an adaptive grid model which can interface into a GCM vertical grid through distinct layers of the troposphere where the presence of layer clouds is expected.

Kreidenweis, S.M.; Cotton, W.R.

1999-05-20T23:59:59.000Z

455

AtmosphericAtmospheric Composition Introduction The division investigates the atmospheric  

E-Print Network [OSTI]

development on observation side was the installation of an ozone observation station in Surinam in close co-operation with the Surinam Meteorological Service. Processes in the tropical regions are important for the global climate and the global atmospheric composition. The participation in Indoex (Indian Ocean Experiment) and this Surinam

Haak, Hein

456

Microsoft Private Cloud Title of document  

E-Print Network [OSTI]

Microsoft Private Cloud Title of document 1 1 Microsoft Private Cloud A Comparative Look at Functionality, Benefits, and Economics November2012 #12;Microsoft Private Cloud Title of document 2 2 Copyright Information 2012 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information

Chaudhuri, Surajit

457

6, 93519388, 2006 Aerosol-cloud  

E-Print Network [OSTI]

ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

Paris-Sud XI, Université de

458

Cloud Microphysics Spring 2013 **odd years?**  

E-Print Network [OSTI]

ATS724 Cloud Microphysics (2-0-0) Spring 2013 **odd years?** Prerequisites: ATS620, ATS621; Ph, as the class will involve designing and building a simple cloud microphysical model. Course Description: **Sue and observations of nucleation, mechanisms of cloud droplet-spectra broadening, precipitation particle growth

459

Level Set Implementations on Unstructured Point Cloud  

E-Print Network [OSTI]

Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong A Thesis Submitted;Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong This is to certify that I have implementations on unstructured point cloud 15 3.1 Level set initialization

Duncan, James S.

460

Cloud Security: Issues and Concerns Pierangela Samarati*  

E-Print Network [OSTI]

1 Cloud Security: Issues and Concerns Authors Pierangela Samarati* Università degli Studi di Milano, Italy sabrina.decapitani@unimi.it Keywords cloud security confidentiality integrity availability secure data storage and processing Summary The cloud has emerged as a successful computing paradigm

Samarati, Pierangela

Note: This page contains sample records for the topic "atmospheric profiling cloud" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.