Powered by Deep Web Technologies
Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Browsing and Keyword-Based Profiles: A Cautionary Tale Michael Shepherd, Carolyn Watters, Jack Duffy and Raj Kaushik  

E-Print Network [OSTI]

Browsing and Keyword-Based Profiles: A Cautionary Tale Michael Shepherd, Carolyn Watters, Jack Duffy and Raj Kaushik Faculty of Computer Science Dalhousie University Halifax, Nova Scotia, Canada B3H 1W5 {shepherd | watters | kaushik} @cs.dal.ca jack.duffy@dal.ca Abstract In this research, adaptive

Shepherd, Mike

2

Retrieval of cloud-cleared atmospheric temperature profiles from hyperspectral infrared and microwave observations  

E-Print Network [OSTI]

This thesis addresses the problem of retrieving the temperature profile of the Earth's atmosphere from overhead infrared and microwave observations of spectral radiance in cloudy conditions. The contributions of the thesis ...

Blackwell, William Joseph, 1971-

2002-01-01T23:59:59.000Z

3

Nonlinear Retrieval of Atmospheric Profiles from MetOp-IASI and MTG-IRS Data  

E-Print Network [OSTI]

Nonlinear Retrieval of Atmospheric Profiles from MetOp-IASI and MTG-IRS Data Gustavo Camps-Vallsa , Luis Guanterb , Jordi Mu~noz-Mar´ia , Luis G´omez-Chovaa and Xavier Calbetc a Image Processing retrieval methods to derive cloud, surface and atmospheric properties from hyperspectral MetOp-IASI and MTG

Camps-Valls, Gustavo

4

Global ISCCP B1 Browse System | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global ISCCP B1 Browse System Global ISCCP B1 Browse System Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Global ISCCP B1 Browse System Dataset Summary Description Global full disk satellite images from 1983 to present. Tags {GIBBS,ISCCP,satellite,full-disk,geostationary,infrared,visible,"water vapor",GOES,POES,DMSP,ISCCP,GVI,AVHRR,TOVS,ATOVS,SSM/I,HIRS,AMSU-A,AMSU-B,TIROS,VTPR,GVAR,CLASS,"Scientific data Stewardship",Browse,Images,"Satellite Images","Satellite data"} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet Ease of Access 0 No votes yet Dataset Additional Information Last Updated 03/08/12 Publisher National Oceanic and Atmospheric Administration, Department of Commerce

5

Impact of Varying Atmospheric Profiles on Extensive Air Shower Observation: Fluorescence Light Emission and Energy Reconstruction  

E-Print Network [OSTI]

Several experiments measure the fluorescence light produced by extensive air showers in the atmosphere. This light is converted into a longitudinal shower profile from which information on the primary energy and composition is derived. The fluorescence yield, as the conversion factor between light profile measured by EAS experiments and physical interpretation of showers, has been measured in several laboratory experiments. The results, however, differ considerably. In this article, a model calculation of the fluorescence emission from relevant band systems of nitrogen in dependence on wavelength and atmospheric conditions is presented. Different calculations are compared to each other in combination with varying input parameters. The predictions are compared with measurements and the altitude-dependence of the fluorescence yield is discussed in detail.

B. Keilhauer; J. Bluemer; R. Engel; H. O. Klages

2005-11-05T23:59:59.000Z

6

Evaluation of Hydrometeor Occurrence Profiles in the Multiscale Modeling Framework Climate Model using Atmospheric Classification  

SciTech Connect (OSTI)

Vertical profiles of hydrometeor occurrence from the Multiscale Modeling Framework (MMF) climate model are compared with profiles observed by a vertically pointing millimeter wavelength cloud-radar (located in the U.S. Southern Great Plains) as a function of the largescale atmospheric state. The atmospheric state is determined by classifying (or clustering) the large-scale (synoptic) fields produced by the MMF and a numerical weather prediction model using a neural network approach. The comparison shows that for cold frontal and post-cold frontal conditions the MMF produces profiles of hydrometeor occurrence that compare favorably with radar observations, while for warm frontal conditions the model tends to produce hydrometeor fractions that are too large with too much cloud (non-precipitating hydrometeors) above 7 km and too much precipitating hydrometeor coverage below 7 km. We also find that the MMF has difficulty capturing the formation of low clouds and that for all atmospheric states that occur during June, July, and August, the MMF produces too much high and thin cloud, especially above 10 km.

Marchand, Roger T.; Beagley, Nathaniel; Ackerman, Thomas P.

2009-09-01T23:59:59.000Z

7

Optimization Online - Search or Browse Submissions  

E-Print Network [OSTI]

Search or Browse Optimization Online Submissions. Advanced Search using Our Search Engine. Enter your search terms: name of author(s), title, keywords,...

8

ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 31, MAY 2014, 559569 Ensemble Retrieval of Atmospheric Temperature Profiles from AIRS  

E-Print Network [OSTI]

Satellite-based observations provide great opportunities for improving weather forecasting. Physical in global climate and weather systems. Among all observations, satellite-derived atmospheric temperatureCooperative Institute for Meteorological Satellite Studies, University of Wisconsin--Madison, Madison

Li, Jun

9

Headspace profiles of modified atmosphere packaged fresh red snapper (Lutjanus campechanus) by gas liquid chromatography  

E-Print Network [OSTI]

activity. Typical components found in the headspace were, butanal, ethanol, hexanal, dimethylamine and trimethylamine. During storage at 4 C, the microbial population within the packages containing C02 tended to shift from an initial gram negative... dioxide (CO2) enriched atmospheres and vacuum packaging have become important new technologies that will improve the quality and shelf-life of fresh seafood products. This type of packaging not only extends the shelf-life of seafoods, it also makes...

Scorah, Craig Darrell Allen

1988-01-01T23:59:59.000Z

10

Speed-dependent Automatic Zooming for Browsing Large Documents  

E-Print Network [OSTI]

@microsoft.com ABSTRACT We propose a navigation technique for browsing large documents that integrates rate. With typical scrolling interfaces, it is difficult to browse a large document efficiently. UsingSpeed-dependent Automatic Zooming for Browsing Large Documents Takeo Igarashi Computer Science

Igarashi, Takeo

11

Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra  

SciTech Connect (OSTI)

A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

Stiller, G.P.; Gunson, M.R.; Lowes, L.L.; Abrams, M.C.; Raper, O.F.; Farmer, C.B.; Zander, R.; Rinsland, C.P. [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany)] [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany); [Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA (United States); [Liege Univ., Liege (Belgium); [NASA, Langley Research Center, Hampton, VA (United States)

1995-02-01T23:59:59.000Z

12

Absolute atomic oxygen density profiles in the discharge core of a microscale atmospheric pressure plasma jet  

Science Journals Connector (OSTI)

The micro atmospheric pressure plasma jet is an rf driven (13.56 MHz ? 20 ? W ) capacitively coupled discharge producing a homogeneous plasma at ambient pressure when fed with a gas flow of helium (1.4 slm) containing small admixtures of oxygen ( ? 0.5 % ) . The design provides excellent optical access to the plasma core. Ground state atomic oxygen densities up to 3 10 16 ? cm ? 3 are measured spatially resolved in the discharge core by absolutely calibrated two-photon absorption laser-induced fluorescence spectroscopy. The atomic oxygen density builds up over the first 8 mm of the discharge channel before saturating at a maximum level. The absolute value increases linearly with applied power.

Nikolas Knake; Kari Niemi; Stephan Reuter; Volker Schulz-von der Gathen; Jrg Winter

2008-01-01T23:59:59.000Z

13

DOE Research and Development Accomplishments Database Browse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Database Browse Database Browse The ASTRAL Compendium in 2004; Chandonia, John-Marc; Hon, Gary; Walker, Nigel S.; Lo Conte, Loredana; Koehl, Patrice; Levitt, Michael; Brenner, Steven E.; September 15, 2003; LBNL--53820; ACC0491 322 K, 10 pp. View Document A Novel Method for Sampling Alpha-Helical Protein Backbones; Fain, Boris; Levitt, Michael; 2001; ; ACC0490 1223 K, 28 pp. View Document Chemical Research--Radiochemistry Report for Month Ending April 17, 1943; Franck, J. Division Director; 1952; CC-579; ACC0484 13567 K, 21 pp. View Document Theoretical Studies in Chemical Kinetics - Annual Report, 1970.; Karplus, Martin; October 1970; HUX--3780-33; ACC0483 544 K, 7 pp. View Document Nonequilibrium Contribution to the Rate of Reaction. III. Isothermal Multicomponent Systems; Shizgal, B.; Karplus, M.; October 1970; HUX--3780-31; ACC0482

14

Metadata type system: integrate presentation, data models and extraction to enable exploratory browsing interfaces  

Science Journals Connector (OSTI)

Exploratory browsing involves encountering new information during open-ended tasks. Disorientation and digression are problems that arise, as the user repeatedly loses context while clicking hyperlinks. To maintain context, exploratory browsing interfaces ... Keywords: dynamic metadata, exploratory browsing, type systems

Yin Qu, Andruid Kerne, Nic Lupfer, Rhema Linder, Ajit Jain

2014-06-01T23:59:59.000Z

15

Strategies for Using the Back Button when Browsing the Web  

E-Print Network [OSTI]

Strategies for Using the Back Button when Browsing the Web by Andrey Feuerverger 1 and Je#11;rey S Wide Web, we consider Markov chains with the option of moving \\back" to the previous state. For #12. This modi#12;ed walk (or \\backo#11; process") is intended to model a user browsing the World Wide Web, where

Rosenthal, Jeffrey S.

16

Browse by Discipline -- E-print Network Subject Pathways: Biology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home About Advanced Search Browse by Discipline Scientific Societies E-print Alerts Add E-prints FAQ * HELP * SITE MAP * CONTACT US Enter Search Terms Search Advanced Search...

17

Browse by Discipline -- E-print Network Subject Pathways: Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home About Advanced Search Browse by Discipline Scientific Societies E-print Alerts Add E-prints FAQ * HELP * SITE MAP * CONTACT US Enter Search Terms Search Advanced Search...

18

Browse by Discipline -- E-print Network Subject Pathways: Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home About Advanced Search Browse by Discipline Scientific Societies E-print Alerts Add E-prints FAQ * HELP * SITE MAP * CONTACT US Enter Search Terms Search Advanced Search...

19

Lidar determination of altitude profile of the refraction index in electro-optical monitoring of the Earths atmosphere  

E-Print Network [OSTI]

generated data 1. Introduction Control of atmosphere pollution is a complex problem of environmental of the reconstruction of the individual contributions and the overall altitude pro- file of the refraction index of air the pollutants and obtain detailed information about the distri- bution of the substances both in altitude

20

Browse by region (RaphaelSVGMap) | OpenEI Community  

Open Energy Info (EERE)

Browse by region (RaphaelSVGMap) Browse by region (RaphaelSVGMap) Home > Groups > Developer Dear all, I am wondering if the semantic result format for the region browser (http://en.openei.org/wiki/Browse_By_Region) is available for reuse. Could anyone point me to the developer of it? Thanks and best wishes, Timo Submitted by Timo.Kouwenhoven on 2 October, 2013 - 05:35 2 answers Points: 1 Timo, My apologies for the delayed response. The Semantic Result Format we used was a custom Raphael SVG mapping format we developed. While we're not easily able to release it, you can replicate the even better Google GeoCharts Result Format, which you can see here: http://en.openei.org/wiki/About_the_Smart_Grid For this, all we did was take the code for the Google GeoMaps Result Format and modify it to pass in the parameters and base URL necessary to access

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Browse by region (RaphaelSVGMap) | OpenEI Community  

Open Energy Info (EERE)

Browse by region (RaphaelSVGMap) Browse by region (RaphaelSVGMap) Home > Groups > Developer Dear all, I am wondering if the semantic result format for the region browser (http://en.openei.org/wiki/Browse_By_Region) is available for reuse. Could anyone point me to the developer of it? Thanks and best wishes, Timo Submitted by Timo.Kouwenhoven on 2 October, 2013 - 05:35 2 answers Points: 1 Timo, My apologies for the delayed response. The Semantic Result Format we used was a custom Raphael SVG mapping format we developed. While we're not easily able to release it, you can replicate the even better Google GeoCharts Result Format, which you can see here: http://en.openei.org/wiki/About_the_Smart_Grid For this, all we did was take the code for the Google GeoMaps Result Format and modify it to pass in the parameters and base URL necessary to access

22

API for browsing available data sources? | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

API for browsing available data sources? API for browsing available data sources? Safety Data/Tools Apps Challenges Resources Blogs Let's Talk Safety You are here Data.gov » Communities » Safety » Forums API for browsing available data sources? Submitted by G. Hussain Chinoy on Tue, 09/18/2012 - 4:46pm Log in to vote 2 The provided "Data/Tools" tab is a nice human readable view of the data resources on safety.data.gov, but is there an API to view the different data sources by category or any of the other attributes of a data set? Thanks Add new comment Your name Subject Comment * More information about text formats Plain text No HTML tags allowed. Web page addresses and e-mail addresses turn into links automatically. Lines and paragraphs break automatically. CAPTCHA This question is for testing whether you are a human visitor and to prevent

23

Browse by region (RaphaelSVGMap) | OpenEI Community  

Open Energy Info (EERE)

Browse by region (RaphaelSVGMap) Browse by region (RaphaelSVGMap) Home > Groups > Developer Dear all, I am wondering if the semantic result format for the region browser (http://en.openei.org/wiki/Browse_By_Region) is available for reuse. Could anyone point me to the developer of it? Thanks and best wishes, Timo Submitted by Timo.Kouwenhoven on 2 October, 2013 - 05:35 2 answers Points: 1 Timo, My apologies for the delayed response. The Semantic Result Format we used was a custom Raphael SVG mapping format we developed. While we're not easily able to release it, you can replicate the even better Google GeoCharts Result Format, which you can see here: http://en.openei.org/wiki/About_the_Smart_Grid For this, all we did was take the code for the Google GeoMaps Result Format and modify it to pass in the parameters and base URL necessary to access

24

Atmospheric Pb deposition since the Industrial Revolution recorded by five Swiss peat profiles: Enrichment factors, fluxes, isotopic composition, and sources  

SciTech Connect (OSTI)

Atmospheric Pb deposition since the Industrial Revolution was studied in western, central, and southern Switzerland using five rural peat bogs. Similar temporal patterns were found in western and central Switzerland, with two distinct periods of Pb enrichment relative to the natural background: between 1880 and 1920 with enrichments ranging from 40 to 80 times, and between 1960 and 1980 with enrichments ranging from 80 to 100 times. The fluxes also were generally elevated in those time periods: in western Switzerland between 1.16 and 1.55 {micro}g cm{sup {minus}2} y{sup {minus}1} during the second period. Between the Industrial Revolution and 1985, nonradiogenic Pb became increasingly important in all five cores because of the replacement of coal by oil after ca. 1920, the use of Australian Pb in industry, and the extensive combustion of leaded gasoline after 1950. The introduction of unleaded gasoline in 1985 had a pronounced effect on the Pb deposition in all five cores. Enrichments dropped sharply, and the isotopic ratios reverted back toward natural values. The cores from western and central Switzerland showed very similar isotopic trends throughout the time period studied, implying that these sites were influenced contemporaneously by similar pollution sources and atmospheric pathways. Southern Switzerland revealed a different record with respect to the Pb pollution: it was dominated by a single massive Pb enrichment dated between 1930 and 1950.

Weiss, D.; Shotyk, W.; Kramers, J.D. [Univ. of Bern (Switzerland)] [Univ. of Bern (Switzerland); Appleby, P.G. [Univ. of Liverpool (United Kingdom). Dept. of Mathematical Sciences] [Univ. of Liverpool (United Kingdom). Dept. of Mathematical Sciences; Cheburkin, A.K. [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. of Geological Sciences] [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. of Geological Sciences

1999-05-01T23:59:59.000Z

25

White-tailed Deer Browse Preferences for South Texas and the Edwards Plateau  

E-Print Network [OSTI]

Deer prefer forbs, but these plants are not always available. Browse plants actually make up the major part of deer diets, and the specific browse plants deer eat depends on plant palatibility and availability. This publication explains deer...

Wright, Byron D.; Lyons, Robert K.; Cooper, Susan; Cathey, James

2003-01-06T23:59:59.000Z

26

ScentTrails: Integrating Browsing and Searching on the Web  

E-Print Network [OSTI]

. Searching is the process of entering a search query (usually a list of keywords) into a search engine, which are more appropriately termed by Jul and Furnas [1997] as "search by navigation" and "search by query," respectively, but we will use the more common terms "browsing" and "searching.") Authors' addresses: Chris

Chi, Ed Huai-hsin

27

Interaction differences in web search and browse logs Paul Thomas  

E-Print Network [OSTI]

differences in behaviour across users and sites. We observe similar overall characteristics to other browsing, Australia, 10 December 2010. Copyright for this article remains with the authors. Staff Public Intranet pages Intranet External pages Staff external Public Figure 1: We have three classes of interaction data

Thomas, Paul

28

Fast Browsing of Archived Web Contents Sangchul Song  

E-Print Network [OSTI]

and deep contents, web contents involve a wide variety of objects such as html pages, documents, multimediaFast Browsing of Archived Web Contents Sangchul Song Department of Electrical and Computer The web is becoming the preferred medium for communicating and storing information pertaining to almost

JaJa, Joseph F.

29

ARM - Measurement - Atmospheric moisture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

moisture moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer

30

ARM - Measurement - Atmospheric pressure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pressure pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

31

ARM - Measurement - Atmospheric temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

32

ARM - Measurement - Atmospheric turbulence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbulence turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

33

On the energy content of the atmosphere  

Science Journals Connector (OSTI)

Vertical profiles of the content of sensible heat, potential energy, and latent heat in the atmosphere between...

Stefan L. Hastenrath

1969-01-01T23:59:59.000Z

34

Home | Login | Logout | Access Information | Ale Top 100 Documents BROWSE SEARCH IEEE XPLORE GUIDE  

E-Print Network [OSTI]

Home | Login | Logout | Access Information | Ale Top 100 Documents BROWSE SEARCH IEEE XPLORE GUIDE Information 1. Subtly different facial expression recognition and expressionintensity estimation Lien, J

Yang, Liuqing

35

E-Print Network 3.0 - analysis browsing server Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

>> 1 UBB Mining: Finding Unexpected Browsing Behaviour in Clickstream Data to Improve a Web Site's Design Summary: algorithm can discover the relationship between different user's...

36

Effective Browsing and Serendipitous Discovery with an Experience-Infused Browser  

E-Print Network [OSTI]

Effective Browsing and Serendipitous Discovery with an Experience-Infused Browser Sudheendra Hangal explore how this recall can be leveraged during web browsing. We have built a system called the Experience-Infused, an experience-infused browser can enhance the effect of a user noticing personally relevant terms on a page

Pratt, Vaughan

37

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Pagani, Mark (Mark Pagani) - Department of Geology and Geophysics, Yale University Pahnke, Katharina (Katharina Pahnke) - Lamont-Doherty Earth Observatory, Columbia University Palmer, Paul (Paul Palmer) - School of GeoSciences, University of Edinburgh Palmer, Robert D. (Robert D. Palmer) - Atmospheric Radar Research Center & School of Meteorology, University of Oklahoma Pan, Feifei (Feifei Pan) - Department of Geography, University of North Texas Pan, Laura (Laura Pan) - Atmospheric Chemistry Division, National Center for Atmospheric Research Pan, Zaitao (Zaitao Pan) - Department of Earth and Atmospheric Sciences, Saint Louis University Panagiotakopulu, Eva (Eva Panagiotakopulu) - School of GeoSciences, University of Edinburgh

38

Atmospheric Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

competencies Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced...

39

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

K L M N O P Q R S K L M N O P Q R S T U V W X Y Z Jablonowski, Christiane (Christiane Jablonowski) - Department of Atmospheric, Oceanic and Space Science, University of Michigan Jablonski, David (David Jablonski) - Department of Geophysical Sciences, University of Chicago Jackman, Charles H. (Charles H. Jackman) - Laboratory for Atmospheres, NASA Goddard Space Flight Center Jackson, Charles S. (Charles S. Jackson) - Institute for Geophysics, University of Texas at Austin Jackson, Darren (Darren Jackson) - Environmental Technology Laboratory, National Oceanic and Atmospheric Administration (NOAA) Jackson, George (George Jackson) - Department of Oceanography, Texas A&M University Jackson, Jennifer M. (Jennifer M. Jackson) - Division of Geological and Planetary Sciences, California Institute of Technology

40

Browse by Discipline -- E-print Network Subject Pathways: Power  

Office of Scientific and Technical Information (OSTI)

U V W X Y Z U V W X Y Z Tabor, Neil (Neil Tabor) - Department of Earth Sciences, Southern Methodist University Tadross, Mark (Mark Tadross) - Climate Systems Analysis Group, Department of Environmental and Geographical Science, University of Cape Town Taggart, Christopher (Christopher Taggart) - Department of Oceanography, Dalhousie University Taggart, Ralph E. (Ralph E. Taggart) - Department of Geological Sciences, Michigan State University Taillefert, Martial (Martial Taillefert) - School of Earth and Atmospheric Sciences, Georgia Institute of Technology Talbot, Jennifer M. (Jennifer M. Talbot) - Department of Plant Biology, University of Minnesota Tang, Kam W. (Kam W. Tang) - Virginia Institute of Marine Science, College of William and Mary Tanimoto, Hiroshi (Hiroshi Tanimoto) - Atmospheric Environment

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

W X Y Z W X Y Z Vainchtein, Dmitri (Dmitri Vainchtein) - Center for Nonlinear Science, School of Physics, Georgia Institute of Technology Vajda, Vivi (Vivi Vajda) - Department of Earth and Ecosystem Sciences, Lunds Universitet Vali, Gabor (Gabor Vali) - Department of Atmospheric Science, University of Wyoming Valkó, Peter (Peter Valkó) - Department of Petroleum Engineering, Texas A&M University Vallée, Martin (Martin Vallée) - Laboratoire Géosciences Azur, Université de Nice Sophia Antipolis Vallis, Geoff (Geoff Vallis) - Geophysical Fluid Dynamics Laboratory & Program in Atmospheric and Oceanic Sciences, Princeton University van der Baan, Mirko (Mirko van der Baan) - Department of Physics, University of Alberta van der Beek, Peter (Peter van der Beek) - Institut des Sciences de

42

Dynamics of Planetary Atmospheres  

E-Print Network [OSTI]

pressure (bars) N2 82%; Ar 12%; CH4 6%CO2 96.5%; N2 3.5%Atmospheric composition 26177Orbital inclination (1992) orbiter ­ Winds from cloud-tracking and probe drifts ­ IR temperatures, solar-fixed tides, polar-Huygens mission (from 2005) ­ Doppler wind descent profile ­ IR temperature and composition maps ­ Visible, IR

Read, Peter L.

43

TiDi Browser: A Novel Photo Browsing Technique for Mobile Gerald Biebera, Christian Tominskib, and Bodo Urbanb  

E-Print Network [OSTI]

TiDi Browser: A Novel Photo Browsing Technique for Mobile Devices Gerald Biebera, Christian's digital photos can be tagged with information about when and where they were taken. On stationary computers, this information is often used to drive photo browsing. This is not the case for mobile devices

Tominski, Christian

44

Browse by Discipline -- E-print Network Subject Pathways: Power  

Office of Scientific and Technical Information (OSTI)

Z Z Yager, Patricia L. (Patricia L. Yager) - Department of Marine Sciences, University of Georgia Yahel, Gitai (Gitai Yahel) - School of Marine Sciences and Marine Environment, University of Victoria Yakir, Dan (Dan Yakir) - Department of Environmental Sciences and Energy Research, Weizmann Institute of Science Yalcin, Kaplan (Kaplan Yalcin) - College of Oceanic and Atmospheric Sciences, Oregon State University Yalcin, Kaplan (Kaplan Yalcin) - Department of Geosciences, Oregon State University Yamada, Sylvia B. (Sylvia B. Yamada) - Department of Zoology, Oregon State University Yanai, Ruth D. (Ruth D. Yanai) - Department of Forest and Natural Resources Management, SUNY, College of Environmental Science and Forestry Yang, Ziheng (Ziheng Yang) - Department of Genetics, Evolution and

45

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

Y Z Y Z Xiao, Jingfeng (Jingfeng Xiao) - Complex Systems Research Center, University of New Hampshire Xie, Jiakang "Jack" (Jiakang "Jack" Xie) - Lamont-Doherty Earth Observatory, Columbia University Xie, Shang-Ping (Shang-Ping Xie) - International Pacific Research Center, School of Earth and Ocean Science and Technology, University of Hawai'i at Manoa Xiu, Peng (Peng Xiu) - School of Marine Sciences, University of Maine Xu, Kehui "Kevin" (Kehui "Kevin" Xu) - Department of Marine Science, Coastal Carolina University Xuan, Chuang (Chuang Xuan) - College of Oceanic and Atmospheric Sciences, Oregon State University Xue, Ming (Ming Xue) - School of Meteorology, University of Oklahoma Go back to Individual Researchers Collections:

46

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

O P Q R S O P Q R S T U V W X Y Z Nachabe, Mahmood H. (Mahmood H. Nachabe) - Department of Civil and Environmental Engineering, University of South Florida Nadiga, Balasubramanya T. "Balu" (Balasubramanya T. "Balu" Nadiga) - Climate, Ocean and Sea Ice Modeling Project, Los Alamos National Laboratory Nagy-Shadman, Elizabeth A. (Elizabeth A. Nagy-Shadman) - Department of Geological Sciences, California State University, Northridge Nahm, Amanda (Amanda Nahm) - Lunar and Planetary Institute Nair, Ramachandran D. (Ramachandran D. Nair) - Scientific Computing Division, National Center for Atmospheric Research Najman, Yani (Yani Najman) - Department of Environmental Science, Lancaster University Nakamura, Daisuke (Daisuke Nakamura) - Department of Earth Sciences,

47

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

Z Z Zachariah, Michael R. (Michael R. Zachariah) - Departments of Chemistry & Mechanical Engineering, University of Minnesota Zakarian, Armen (Armen Zakarian) - Department of Chemistry and Biochemistry, Florida State University Zare, Richard N. (Richard N. Zare) - Department of Chemistry, Stanford University Zargarian, Davit (Davit Zargarian) - Département de Chimie, Université de Montréal Zeiri, Yehuda (Yehuda Zeiri) - Institute of Chemistry, Hebrew University of Jerusalem Zewail, Ahmed (Ahmed Zewail) - Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology Zhang, John Z.H. (John Z.H. Zhang) - Department of Chemistry, New York University Zhang, Qi (Qi Zhang) - Atmospheric Science Research Center, State University of New York, Albany,

48

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

Z Z Yager, Patricia L. (Patricia L. Yager) - Department of Marine Sciences, University of Georgia Yalcin, Kaplan (Kaplan Yalcin) - College of Oceanic and Atmospheric Sciences, Oregon State University Yalcin, Kaplan (Kaplan Yalcin) - Department of Geosciences, Oregon State University Yamashita, Teruo (Teruo Yamashita) - Earthquake Research Institute, University of Tokyo Yamazaki, Toshitsugu (Toshitsugu Yamazaki) - Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology Yang, Dinghui (Dinghui Yang) - Department of Mathematical Sciences, Tsinghua University Yang, Shouye (Shouye Yang) - School of Ocean and Earth Science, Tongji University Yang, Youqing "Richard" (Youqing "Richard" Yang) - Department of

49

Semantic Web Portal: A Platform for Better Browsing and Visualizing Semantic Data  

E-Print Network [OSTI]

Semantic Web Portal: A Platform for Better Browsing and Visualizing Semantic Data Ying Ding1 of the Semantic Web. In this paper, we propose the Semantic Web Portal (SWP) as a light-weight platform portal, a patient health center portal and a Linked Open Data portal for bio-chemical data. SWP can

Menczer, Filippo

50

Atmospheric Dynamics of Exoplanets  

E-Print Network [OSTI]

The characterization of exoplanetary atmospheres has come of age in the last decade, as astronomical techniques now allow for albedos, chemical abundances, temperature profiles and maps, rotation periods and even wind speeds to be measured. Atmospheric dynamics sets the background state of density, temperature and velocity that determines or influences the spectral and temporal appearance of an exoplanetary atmosphere. Hot exoplanets are most amenable to these characterization techniques; in the present review, we focus on highly-irradiated, large exoplanets (the "hot Jupiters"), as astronomical data begin to confront theoretical questions. We summarize the basic atmospheric quantities inferred from the astronomical observations. We review the state of the art by addressing a series of current questions and look towards the future by considering a separate set of exploratory questions. Attaining the next level of understanding will require a concerted effort of constructing multi-faceted, multi-wavelength dat...

Heng, Kevin

2014-01-01T23:59:59.000Z

51

Browse by Discipline -- E-print Network Subject Pathways: Power  

Office of Scientific and Technical Information (OSTI)

P Q R S P Q R S T U V W X Y Z O'Connor, Mary (Mary O'Connor) - Department of Zoology, University of British Columbia O'Donnell, Sean (Sean O'Donnell) - Department of Biology, Drexel University O'Driscoll, Michael. A. -Department of Geological Sciences, East Carolina Universit('Driscoll, Michael. A. -Department of Geological Sciences, East Carolina Universi)ty O'Driscoll, Nelson (Nelson O'Driscoll) - Department of Earth and Environmental Sciences, Acadia University O'Gorman, Paul (Paul O'Gorman) - Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT) O'Grady, Patrick M. (Patrick M. O'Grady) - Department of Environmental Science Policy and Management, University of California at Berkeley O'Laughlin, Jay (Jay O'Laughlin) - Department of Forest Resources,

52

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

B C D E F G H I J K L M N O P Q R S B C D E F G H I J K L M N O P Q R S T U V W X Y Z Babin, Marcel (Marcel Babin) - Laboratoire d'Océanographie de Villefranche Backe, Knut (Knut Backe) - Department of Petroleum Engineering and Applied Geophysics, Norwegian University of Science and Technology Baer, Ferdinand (Ferdinand Baer) - Department of Atmospheric and Oceanic Science, University of Maryland at College Park Bagtzoglou, Amvrossios C. (Amvrossios C. Bagtzoglou) - Department of Civil and Environmental Engineering, University of Connecticut Baird, Mark (Mark Baird) - Climate and Environmental Dynamics Laboratory, School of Mathematics and Statistics, University of New South Wales Baldwin, Mark (Mark Baldwin) - Northwest Research Associates, Inc. Balland, Pierre-Alexandre (Pierre-Alexandre Balland) - Faculty of

53

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Gabai, David (David Gabai) - Department of Mathematics, Princeton University Gabelli, Stefania (Stefania Gabelli) - Department of Mathematics, Università degli Studi Roma Tre Gabitov, Ildar (Ildar Gabitov) - Department of Mathematics, University of Arizona Gaboriau, Damien (Damien Gaboriau) - Unité de Mathématiques Pures et Appliquées, Ecole Normale Supérieure de Lyon Gabriel, Michael (Michael Gabriel) - Department of Mathematics and Statistics, University of Ottawa Gabrielli, Davide (Davide Gabrielli) - Dipartimento di Matematica Pura e Applicata, Università dell'Aquila Gabrielov, Andrei (Andrei Gabrielov) - Departments of Mathematics & Earth and Atmospheric Sciences, Purdue University Gadat, Sébastien (Sébastien Gadat) - Institut de Mathématiques de

54

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

R S R S T U V W X Y Z Qian, Jian-Hua "Joshua" (Jian-Hua "Joshua" Qian) - International Research Institute for Climate and Society, Columbia University Qian, Weihong (Weihong Qian) - Department of Atmospheric and Oceanic Sciences, Peking University Qing, Hairuo (Hairuo Qing) - Department of Geology, University of Regina Qiu, Bo (Bo Qiu) - Department of Oceanography, University of Hawai'i at Manoa Quan, Xiaowei (Xiaowei Quan) - NOAA-CIRES Climate Diagnostics Center, University of Colorado at Boulder Quartly, Graham (Graham Quartly) - National Oceanography Centre Southampton Quinn, Nigel (Nigel Quinn) - Earth Sciences Division, Lawrence Berkeley National Laboratory Quiring, Steven M. (Steven M. Quiring) - Department of Geography, Texas A&M University

55

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Gabet, Emmanuel "Manny" (Emmanuel "Manny" Gabet) - Department of Geology, San José State University Gable, Carl W. (Carl W. Gable) - Earth and Environmental Sciences Division, Los Alamos National Laboratory Gabrielov, Andrei (Andrei Gabrielov) - Departments of Mathematics & Earth and Atmospheric Sciences, Purdue University Gagliardini, Olivier (Olivier Gagliardini) - Laboratoire de Glaciologie et Géophysique de l'Environnement Gaherty, James (James Gaherty) - Lamont-Doherty Earth Observatory, Columbia University Galanti, Eli (Eli Galanti) - International Research Institute for Climate Prediction, Lamont-Doherty Earth Observatory, Columbia University Galewsky, Joe (Joe Galewsky) - Department of Earth and Planetary

56

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

J K L M N O P Q R S J K L M N O P Q R S T U V W X Y Z Ide, Kayo (Kayo Ide) - Department of Atmospheric and Oceanic Sciences, University of California at Los Angeles Ingólfsson, Ólafur (Ólafur Ingólfsson) - Institute of Earth Sciences & Department of Geology and Geography, University of Iceland Innanen, Kristopher A. (Kristopher A. Innanen) - Department of Physics, University of Houston Ito, Garrett (Garrett Ito) - Department of Geology and Geophysics, University of Hawai'i at Manoa Iwata, Naoyoshi (Naoyoshi Iwata) - Department of Earth and Environmental Sciences, Yamagata University Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Illinois State Geological Survey, Oil and Gas Section

57

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

P Q R S P Q R S T U V W X Y Z O'Driscoll, Michael. A. -Department of Geological Sciences, East Carolina Universit('Driscoll, Michael. A. -Department of Geological Sciences, East Carolina Universi)ty O'Driscoll, Nelson (Nelson O'Driscoll) - Department of Earth and Environmental Sciences, Acadia University O'Gorman, Paul (Paul O'Gorman) - Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT) O'Hara, Kieran (Kieran O'Hara) - Department of Earth and Environmental Sciences, University of Kentucky O'Neil, Jonathan (Jonathan O'Neil) - Department of Terrestrial Magnetism, Carnegie Institution for Science Occhipinti, Giovanni "Ninto" (Giovanni "Ninto" Occhipinti) - Institut de Physique du Globe de Paris

58

Browse by Discipline -- E-print Network Subject Pathways: Power  

Office of Scientific and Technical Information (OSTI)

L M N O P Q R S L M N O P Q R S T U V W X Y Z Kaduk, Joerg (Joerg Kaduk) - Department of Geography, University of Leicester Kahl, Jonathan D. W. (Jonathan D. W. Kahl) - Department of Mathematical Sciences, University of Wisconsin-Milwaukee Kajiura, Stephen (Stephen Kajiura) - Department of Biological Sciences, Florida Atlantic University Kalcounis-Rüppell, Matina (Matina Kalcounis-Rüppell) - Department of Biology, University of North Carolina at Greensboro Kalinowski, Steven T (Steven T Kalinowski) - Department of Ecology, Montana State University Kalisz, Susan (Susan Kalisz) - Department of Biological Sciences, University of Pittsburgh Kalnay, Eugenia (Eugenia Kalnay) - Departments of Civil and Environmental Engineering & Atmospheric and Oceanic Science, University of

59

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

I J K L M N O P Q R S I J K L M N O P Q R S T U V W X Y Z Haak, Hein (Hein Haak) - Koninklijk Nederlands Meteorologisch Instituut Haase, Jennifer (Jennifer Haase) - Department of Earth and Atmospheric Sciences, Purdue University Hack, Robert (Robert Hack) - Department of Earth Systems Analysis, International Institute for Geo-Information Science and Earth Observation, Universiteit Twente Hacker, Bradley R. (Bradley R. Hacker) - Institute for Crustal Studies & Department of Geological Sciences, University of California at Santa Barbara Hagadorn, Whitey (Whitey Hagadorn) - Department of Geology, Amherst College Haine, Thomas W. N. (Thomas W. N. Haine) - Department of Earth and Planetary Sciences, Johns Hopkins University Haines, Stephanie L. (Stephanie L. Haines) - Global Hydrology and

60

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

B C D E F G H I J K L M N O P Q R S B C D E F G H I J K L M N O P Q R S T U V W X Y Z Bak-Jensen, Birgitte (Birgitte Bak-Jensen) - Department of Energy Technology, Aalborg University Banerjee, Rangan (Rangan Banerjee) - Department of Mechanical Engineering, Indian Institute of Technology Bombay Barlaz, Morton A. (Morton A. Barlaz) - Department of Civil, Construction, and Environmental Engineering, North Carolina State University Basu, Sukanta (Sukanta Basu) - Department of Marine, Earth and Atmospheric Sciences, North Carolina State University Benson, Eric R. (Eric R. Benson) - Department of Bioresources Engineering, University of Delaware Berning, Torsten (Torsten Berning) - Department of Energy Technology, Aalborg University Bialek, Janusz W. (Janusz W. Bialek) - School of Engineering and

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

F G H I J K L M N O P Q R S F G H I J K L M N O P Q R S T U V W X Y Z Fabrikant, Sara Irina (Sara Irina Fabrikant) - Department of Geography, Universität Zürich Fabry, Frederic (Frederic Fabry) - Department of Atmospheric and Oceanic Sciences, McGill University Fagan, William (William Fagan) - Department of Biology, University of Maryland at College Park Fagherazzi, Sergio (Sergio Fagherazzi) - Department of Earth and Environment, Boston University Fairbanks, Richard G. (Richard G. Fairbanks) - Lamont-Doherty Earth Observatory & Department of Earth and Environmental Sciences, Columbia University Falge, Eva (Eva Falge) - Max-Planck-Institut für Chemie Fan, Xingang (Xingang Fan) - Geosystems Research Institute, Mississippi State University Fantle, Matthew (Matthew Fantle) - Department of Geosciences,

62

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

E F G H I J K L M N O P Q R S E F G H I J K L M N O P Q R S T U V W X Y Z D'Andrea, Fabio (Fabio D'Andrea) - Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure D'Odorico, Paolo (Paolo D'Odorico) - Department of Environmental Sciences, University of Virginia Dacre, Helen (Helen Dacre) - Department of Meteorology, University of Reading Daczko, Nathan (Nathan Daczko) - Department of Earth and Planetary Sciences, Macquarie University Dai, Aiguo (Aiguo Dai) - Climate and Global Dynamics Division, National Center for Atmospheric Research Daly, Christopher (Christopher Daly) - Department of Geosciences, Oregon State University Damm, Bodo (Bodo Damm) - Institut für Geographie, Universität Regensburg Damoah, Richard (Richard Damoah) - School of GeoSciences, University

63

Browse by Discipline -- E-print Network Subject Pathways: Power  

Office of Scientific and Technical Information (OSTI)

B C D E F G H I J K L M N O P Q R S B C D E F G H I J K L M N O P Q R S T U V W X Y Z Badyaev, Alex (Alex Badyaev) - Department of Ecology and Evolutionary Biology, University of Arizona Baes, Fred (Fred Baes) - Life Sciences Division, Oak Ridge National Laboratory Bahn, Volker (Volker Bahn) - Department of Biological Sciences, Wright State University Bailey, Donovan (Donovan Bailey) - Department of Biology, New Mexico State University Baird, Mark (Mark Baird) - Climate and Environmental Dynamics Laboratory, School of Mathematics and Statistics, University of New South Wales Baird, Robin W. (Robin W. Baird) - Cascadia Research Collective Baker, Andrew C. (Andrew C. Baker) - Rosenstiel School of Marine and Atmospheric Sciences, University of Miami Baker, Robert J. (Robert J. Baker) - Museum of Texas Tech University

64

Musical Atmospherics  

Science Journals Connector (OSTI)

... THE characteristics of audio musical atmospherics which are obtained when an ... musical atmospherics which are obtained when an audio amplifier is placed in a long line or aerial have been discussed from time to ...

T. L. ECKERSLEY

1935-01-19T23:59:59.000Z

65

Browse by Discipline -- Subject Pathways for the E-print Network -- Energy,  

Office of Scientific and Technical Information (OSTI)

Browse by Discipline These pages contain links to thousands of servers, sites, and documents contributed by individual authors that contain e-print information in discipline areas of interest to the Department of Energy's research activities. These resources are organized into discipline-specific categories as indicated below. To view these resources and sites, simply select a discipline, browse the entries listed in alphabetical order, and click on any entry to leave the discipline you selected and enter a specific website. Use the "Back" button to return to the E-print Discipline you exited from. Biology and Medicine Biotechnology Computer Technologies and Information Sciences Chemistry Energy Storage, Conversion and Utilization Engineering Environmental Management and Restoration Technologies

66

Atmospheric Neutrinos  

E-Print Network [OSTI]

This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

Thomas K. Gaisser

2006-12-11T23:59:59.000Z

67

Improved Humidity Profiling by Combining Passive and Active Remote...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

resolution of atmospheric humidity profiles. We show preliminary results and discuss advantages and limitations related to this technique. Basic Principles The role of ground-based...

68

Atmospheric tritium  

SciTech Connect (OSTI)

Research progress for the year 1979 to 1980 are reported. Concentrations of tritiated water vapor, tritium gas and tritiated hydrocarbons in the atmosphere at selected sampling points are presented. (ACR)

Oestlund, H.G.; Mason, A.S.

1980-01-01T23:59:59.000Z

69

Dynamic user profiles for web personalisation  

Science Journals Connector (OSTI)

Abstract Web personalisation systems are used to enhance the user experience by providing tailor-made services based on the users interests and preferences which are typically stored in user profiles. For such systems to remain effective, the profiles need to be able to adapt and reflect the users changing behaviour. In this paper, we introduce a set of methods designed to capture and track user interests and maintain dynamic user profiles within a personalisation system. User interests are represented as ontological concepts which are constructed by mapping web pages visited by a user to a reference ontology and are subsequently used to learn short-term and long-term interests. A multi-agent system facilitates and coordinates the capture, storage, management and adaptation of user interests. We propose a search system that utilises our dynamic user profile to provide a personalised search experience. We present a series of experiments that show how our system can effectively model a dynamic user profile and is capable of learning and adapting to different user browsing behaviours.

Ahmad Hawalah; Maria Fasli

2015-01-01T23:59:59.000Z

70

People Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What Is NIF? How NIF Works Seven Wonders Beamline NIF Construction Who Works for NIF & PS? People Profiles Management Awards Honors Fellows Who Partners with NIF? FAQs Visit Us...

71

Mentee Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentee Profile Mentee Profile The information you provide on this form will assist us in providing you with a list of prospective mentor from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Are you student or intern? Do you have a preference on mentor? For example, male, female, particular career field, specific person or other? If so, what or who? Do you want a mentor in your career field? What are your career goals?

72

Mentor Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentor Profile Mentor Profile The information you provide on this form will assist us in providing you with a list of prospective mentee from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Do you want a student or intern mentee? Do you have a preference on mentee? For example, male, female, particular career field or other? If so, what or state name of pre selected mentee? Do you want a mentee in your career field? What are your hobbies?

73

Uncertainty in Contaminant Concentration Fields Resulting from Atmospheric Boundary Layer Depth Uncertainty  

Science Journals Connector (OSTI)

The relationship between atmospheric boundary layer (ABL) depth uncertainty and uncertainty in atmospheric transport and dispersion (ATD) simulations is investigated by examining profiles of predicted concentrations of a contaminant. Because ...

Brian P. Reen; Kerrie J. Schmehl; George S. Young; Jared A. Lee; Sue Ellen Haupt; David R. Stauffer

2014-11-01T23:59:59.000Z

74

A Comparison of ARM Cloud Radar Profiles with MMF Simulated Radar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MMF Simulated Radar Profiles as a Function of the Large-Scale Atmospheric State Roger Marchand and Thomas Ackerman Joint Institute for the Study of the Atmosphere and Ocean...

75

E-Print Network 3.0 - atmospheric infrared sounder Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

humidity profiles which are also measurable by a microwave sounder... on a geosynchronous satellite. The proposed microwave sounder could provide sensing of atmospheric...

76

Quantification and comparison of terpene concentrations in various balsam fir growth forms and foliage ages, and a simulation of moose browsing on balsam fir trees at Isle Royale  

E-Print Network [OSTI]

pressure are approximately similar (2A% difference) to those reported in a study of white-tailed deer (Odocolleus virginianus) browsing on eastern hemlock (Tsuga canadentis), balsam fir, and 4 deciduous species in Wisconsin (Anderson and Katz 1993), 28... pressure are approximately similar (2A% difference) to those reported in a study of white-tailed deer (Odocolleus virginianus) browsing on eastern hemlock (Tsuga canadentis), balsam fir, and 4 deciduous species in Wisconsin (Anderson and Katz 1993), 28...

Terra-Berns, Mary Helen

2012-06-07T23:59:59.000Z

77

ARM - Campaign Instrument - s-band-profiler  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentss-band-profiler govInstrumentss-band-profiler Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA S-band (2835 Mhz) Profiler (S-BAND-PROFILER) Instrument Categories Cloud Properties, Atmospheric Profiling Campaigns CRYSTAL-FACE [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2002.06.26 - 2002.08.01 Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers [ Download Data ] Southern Great Plains, 2011.04.22 - 2011.06.06 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) [ Download Data ] Tropical Western Pacific, 2006.01.21 - 2006.02.13 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available

78

Commercial and Residential Hourly Load Profiles for all TMY3 Locations in  

Open Energy Info (EERE)

and Residential Hourly Load Profiles for all TMY3 Locations in and Residential Hourly Load Profiles for all TMY3 Locations in the United States Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Hourly load profiles are available for over all TMY3 locations in the United States here. Browse files in this dataset, accessible as individual files and as commercial and residential downloadable ZIP files. This dataset is approximately 4.8GiB compressed or 19GiB uncompressed. July 2nd, 2013 update: Residential High and Low load files have been updated from 366 days in a year for leap years to the more general 365 days in a normal year.

79

Wind Structure in the Atmospheric Boundary Layer  

Science Journals Connector (OSTI)

13 May 1971 research-article Wind Structure in the Atmospheric Boundary Layer...semi-empirical laws for the variation of mean wind speed with height and for the statistical...provide some useful ordering of the mean wind profile characteristics in relation to...

1971-01-01T23:59:59.000Z

80

Status of the Broadband Heating Rate Profile (BBHRP) VAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Status of the Broadband Heating Rate Profile (BBHRP) VAP Status of the Broadband Heating Rate Profile (BBHRP) VAP Mlawer, Eli Atmospheric & Environmental Research, Inc. Clough, Shepard Atmospheric and Environmental Research Delamere, Jennifer Atmospheric and Environmental Research, Inc. Miller, Mark Brookhaven National Laboratory Johnson, Karen Brookhaven National Laboratory Troyan, David Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Shippert, Timothy Pacific Northwest National Laboratory Long, Chuck Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Sivaraman, Chitra Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Heck, Patrick University of Wisconsin Rutan, David Analytical Services & Materials, Inc.

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Classification of Vertical Wind Speed Profiles Observed Above a Sloping Forest at Nighttime Using the Bulk Richardson Number  

Science Journals Connector (OSTI)

Wind speed profiles above a forest canopy relate to ... atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can ... be classified by a stability index developed...

Hikaru Komatsu; Norifumi Hotta; Koichiro Kuraji

2005-05-01T23:59:59.000Z

82

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy...

83

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw)...

84

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

85

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

86

Browse by Discipline -- E-print Network Subject Pathways: Plasma Physics  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sagarin, Rafe (Rafe Sagarin) - Institute of the Environment, University of Arizona Selin, Noelle Eckley (Noelle Eckley Selin) - Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT) Selker, John (John Selker) - Department of Biological and Ecological Engineering, Oregon State University Semprini, Lewis (Lewis Semprini) - School of Chemical, Biological, and Environmental Engineering, Oregon State University Semprini, Lewis (Lewis Semprini) - Western Region Hazardous Substance Research Center & Department of Civil, Construction and Environmental Engineering, Oregon State University Small, Randall (Randall Small) - Department of Ecology and Evolutionary Biology, University of Tennessee

87

Atmospheric Transport of Radionuclides  

SciTech Connect (OSTI)

The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

Crawford, T.V.

2003-03-03T23:59:59.000Z

88

The Boulder Atmospheric Observatory  

Science Journals Connector (OSTI)

The Boulder Atmospheric Observatory (BAO) is a unique research facility for studying the planetary boundary layer and for testing and calibrating atmospheric sensors. The facility includes a 300 m tower instrumented with fast- and slow-response ...

J. C. Kaimal; J. E. Gaynor

1983-05-01T23:59:59.000Z

89

Spectrophotometric Resolution of Stellar Atmospheres with Microlensing  

E-Print Network [OSTI]

Microlensing is a powerful tool for studying stellar atmospheres because as the source crosses regions of formally infinite magnification (caustics) the surfaceof the star is resolved, thereby allowing one to measure the radial intensity profile, both photometrically and spectroscopically. However, caustic crossing events are relatively rare, and monitoring them requires intensive application of telescope resources. It is therefore essential that the observational parameters needed to accurately measure the intensity profile are quantified. We calculate the expected errors in the recovered radial intensity profile as a function of the unlensed flux, source radius, spatial resolution the recovered intensity profile, and caustic crossing time for the two principle types of caustics: point-mass and binary lenses. We demonstrate that for both cases there exist simple scaling relations between these parameters and the resultant errors. We find that the error as a function of the spatial resolution of the recovered profile, parameterized by the number of radial bins, increases as $N_R^{3/2}$, considerably faster than the naive $N_R^{1/2}$ expectation. Finally, we discuss the relative advantages of binary caustic-crossing events and point-lens events. Binary events are more common, easier to plan for, and provide more homogeneous information about the stellar atmosphere. However, a sub-class of point-mass events with low impact parameters can provide dramatically more information provided that they can be recognized in time to initiate observations.

B. Scott Gaudi; Andrew Gould

1998-02-14T23:59:59.000Z

90

User_TalentProfile  

Broader source: Energy.gov (indexed) [DOE]

Accessing and Modifying Talent Profile Accessing and Modifying Talent Profile © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Accessing and Modifying Talent Profile Purpose The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile information. Task A. Access Talent Profile Enter the web address (URL) of the user application into your browser Address field and press the Enter key. Enter your user ID in the User ID textbox. Enter your password in the Password textbox. Click Sign In. Access Talent Profile 4 Steps Task A Add Information to Talent Profile Sections 5 Steps Task B Edit Talent Profile Sections

91

ARM - Evaluation Product - Broadband Heating Rate Profile Project (BBHRP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsBroadband Heating Rate Profile Project ProductsBroadband Heating Rate Profile Project (BBHRP) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Broadband Heating Rate Profile Project (BBHRP) 2000.03.01 - 2006.02.28 Site(s) SGP General Description The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties

92

8, 10691088, 2008 Atmospheric  

E-Print Network [OSTI]

into the atmosphere (Molina et al., 1974; Farman et al., 1985) has led to an interna- tional effort to replace

Boyer, Edmond

93

Radon in atmospheric studies: a review  

SciTech Connect (OSTI)

The distribution of the isotopes of radon in space and time, their physical characteristics, and their behavior in the dynamics of the atmosphere have presented challenges for many decades. /sup 220/Rn, /sup 222/Rn and their daughters furnish a unique set of tracers for the study of transport and mixing processes in the atmosphere. Appropriate applications of turbulent diffusion theory yield general agreement with measured profiles. Diurnal and seasonal variations follow patterns set by consideration of atmospheric stability. /sup 222/Rn has been used successfully in recent studies of nocturnal drainage winds and cumulus convection. Good results have been obtained using /sup 222/Rn and its long-lived /sup 210/Pb daughter as tracers in the study of continent-to-ocean and ocean-to-continent air mass trajectories, /sup 220/Rn (thoron) because of its short half-life of only 55 seconds has been used to measure turbulent diffusion within the first few meters of the earth's surface and to study the influence of meteorological variables on the rate of exhalation from the ground. Radon daughters attach readily to atmospheric particulate matter which makes it possible to study these aerosols with respect to size spectra, attachment characteristics, removal by gravitation and precipitation, and residence times in the troposphere. The importance of ionization by radon and its daughters in the lower atmosphere and its effect on atmospheric electrical parameters is well known. Knowledge of the mobility and other characteristics of radon daughter ions has led to applications in the study of atmospheric electrical environments under fair weather and thunderstorm conditions and in the formation of condensation nuclei. The availability of increasingly sophisticated analytical tools and atmospheric measurement systems can be expected to add much to our understanding of radon and its daughters as trace components of the atmospheric environment in the years ahead.

Wilkening, M.

1981-01-01T23:59:59.000Z

94

The Upper Atmosphere Observatory  

Science Journals Connector (OSTI)

...with *the plasma frethe progress...explorcreated an even larger number of...the upper atmosphere and ionosphere...the upper atmosphere. For this...ionospheric plasma motion simul-taneously...field is large, the horizontal...resolved. The atmospheric gravity waves...simul-taneously at a large number of...two regions plasma drifts separated...

J. V. Evans

1972-05-05T23:59:59.000Z

95

The Upper Atmosphere Observatory  

Science Journals Connector (OSTI)

...DATA, JOURNAL OF ATMOSPHERIC AND TERRESTRIAL...IN NEAR-EARTH PLASMA, SPACE SCIENCE...INVESTIGATION OF WHISTLING ATMOSPHERICS, PHILOSOPHICAL...TRANSPOLAR EXOSPHERIC PLASMA .1. PLASMASPHERE...dynamics of the upper atmosphere. For this purpose...the ionospheric plasma motion simul-taneously...

J. V. Evans

1972-05-05T23:59:59.000Z

96

5, 60416076, 2005 Atmospheric  

E-Print Network [OSTI]

opportunity to examine atmospheric oxidation in a megacity that has more pollution than typical USACPD 5, 6041­6076, 2005 Atmospheric oxidation in the Mexico City Metropolitan Area T. R. Shirley et.atmos-chem-phys.org/acpd/5/6041/ SRef-ID: 1680-7375/acpd/2005-5-6041 European Geosciences Union Atmospheric Chemistry

Boyer, Edmond

97

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Christopher Williams; Mike Jensen

98

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

99

Browse by Discipline -- E-print Network Subject Pathways: Plasma Physics  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Pasternack, Gregory B. (Gregory B. Pasternack) - Department of Land, Air and Water Resources, University of California, Davis Perfect, Ed (Ed Perfect) - Department of Earth and Planetary Sciences, University of Tennessee Piller, Kyle R. (Kyle R. Piller) - Department of Biological Sciences, Southeastern Louisiana University Pitt, Robert E. (Robert E. Pitt) - Department of Civil and Environmental Engineering, University of Alabama Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pacific Marine Environmental Laboratory NOAA, Tropical Atmosphere Ocean Project Pacific Northwest National Laboratory, Data Quality Objectives Program, Visual Sample Plan Pacific Northwest National Laboratory, EMSL Collaboratory

100

A New Microwave Temperature Profiler … First Measurements in Polar Regions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microwave Temperature Profiler - First Microwave Temperature Profiler - First Measurements in Polar Regions E. N. Kadygrov, A. V. Koldaev, and A. S. Viazankin Central Aerological Observatory Moscow, Russia A. Argentini, and A. Conidi Institute of Atmospheric Physics CNR, Italy Introduction Temperature inversions are a ubiquitous feature of the high latitude atmospheric boundary layer (ABL). In Polar Regions, the temperature inversion is a complicated phenomenon involving interactions between surface radiative cooling, subsidence and warm air advection. In the period 1997-2002, several microwave temperature profilers were used to measure temperature inversion parameters at one of the three sites of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM)

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

AtmosphericAtmospheric Composition Introduction The division investigates the atmospheric  

E-Print Network [OSTI]

development on observation side was the installation of an ozone observation station in Surinam in close co-operation with the Surinam Meteorological Service. Processes in the tropical regions are important for the global climate and the global atmospheric composition. The participation in Indoex (Indian Ocean Experiment) and this Surinam

Haak, Hein

102

Atmospheric Radiation Measurement Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan - ARM in the next 5 years ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement ARM Status - Science ARM Status - Science * Steadily increasing productivity - Poster session - over 220 posters (may need to do something about submissions next year) - Peer-reviewed articles: 2.5 to 3 per year per

103

Comparison of temperature and humidity profiles with elastic-backscatter lidar data  

SciTech Connect (OSTI)

This contribution analyzes elastic-backscatter lidar data and temperature and humidity profiles from radiosondes acquired in Barcelona in July 1992. Elastic-backscatter lidar data reveal the distribution of aerosols within the volume of atmosphere scanned. By comparing this information with temperature and humidity profiles of the atmosphere at a similar time, we are able to asses de relationship among aerosol distribution and atmospheric stability or water content, respectively. Comparisons have shown how lidar`s revealed layers of aerosols correspond to atmospheric layers with different stability condition and water content.

Soriano, C. [Universidad Politecnica de Cataluna, Barcelona (Spain)]|[Los Alamos National Lab., NM (United States); Buttler, W.T. [Los Alamos National Lab., NM (United States); Baldasano, J.M. [Universidad Politecnica de Cataluna, Barcelona (Spain)

1995-04-01T23:59:59.000Z

104

Atmospheric Neutrino Fluxes  

E-Print Network [OSTI]

Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

Thomas K. Gaisser

2005-02-18T23:59:59.000Z

105

ARM - Atmospheric Heat Budget  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About...

106

ARM Site Atmospheric State Best Estimates for AIRS Validation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Atmospheric State Best Estimates Site Atmospheric State Best Estimates for AIRS Validation D. C. Tobin, H. E. Revercomb, W. F. Feltz, R. D. Knuteson, and D. D. Turner Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin B. M. Lesht Environmental Research Division Argonne National Laboratory Argonne, Illinois L. Strow University of Maryland College Park, Maryland C. Barnet Joint Center for Earth Systems Technology Baltimore, Maryland E. Fetzer National Aeronautics Space Administration Jet Propulsion Laboratory Pasadena, California Introduction The atmospheric infrared sounder (AIRS) is a high spectral resolution infrared sounder on the earth observing plan (EOS) Aqua platform. Temperature and water vapor profile retrievals from AIRS are

107

Conference on Atmospheric Pollution  

Science Journals Connector (OSTI)

... THE half-yearly Conference of representatives of local authorities and other organisations co-operating with the Department of Scientific ... of atmospheric pollution was held in the offices of the Department on May 25. The Conference received from Dr. G. M. B. Dobson, chairman of the Atmospheric Pollution ...

1936-05-30T23:59:59.000Z

108

Spatial Characterization of the Atmospheric-Pressure Moderate-Power He Microwave-Induced Plasma  

Science Journals Connector (OSTI)

Three-dimensional emission profiles of several metallic and nonmetallic elements from a moderate-power (450 W) atmospheric-pressure helium microwave-induced plasma (He MIP) are...

Pak, Yong-Nam; Koirtyohann, S R

1991-01-01T23:59:59.000Z

109

Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research  

E-Print Network [OSTI]

Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research www in modeling of the associated multiphase processes. Iron redox species are important pollutants. The oxidative capacity of the atmospheric cloud water decreases when dissolution is included

Boyer, Edmond

110

Estimation of sector roughness lengths and the effect on prediction of the vertical wind speed profile  

Science Journals Connector (OSTI)

An estimate of roughness length is required by some atmospheric models and is also used in the logarithmic profile to determine the increase of wind speed with height under neutral conditions. The choice ... thei...

R. J. Barthelmie; J. P. Palutikof; T. D. Davies

1993-10-01T23:59:59.000Z

111

Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere  

SciTech Connect (OSTI)

This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

Tooman, T.P. [ed.] [Sandia National Labs., Livermore, CA (United States). Exploratory Systems Technology Dept.

1997-01-01T23:59:59.000Z

112

LANSCE | News & Media | Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Profiles Shea Mosby: Lighting the way for nuclear science discoveries By Diana Del Mauro ADEPS Communications Photos by Richard Robinson, IRM-CAS Shea Mosby Cradling a heavy...

113

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity (megawatts)...

114

Management's Discussion & Analysis Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7-26-2013. Management's Discussion & Analysis Profile The Bonneville Power Administration is a federal agency under the Department of Energy. BPA markets wholesale electrical power...

115

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity...

116

Atmospheric Physics and Earth Observations  

Science Journals Connector (OSTI)

...has been used by atmospheric modelers as a vertical...Ackerman, in Atmospheric Physics from Spacelab...shut-tle allows recovery of the film, we...dry nitrogen at atmospheric pressure. To avoid water condensation on the optical...

M. HERS

1984-07-13T23:59:59.000Z

117

Mesoscale Waves as a Probe of Jupiter's Deep Atmosphere  

Science Journals Connector (OSTI)

Search of the Voyager images of Jupiter reveals a class of mesoscale waves occurring near the extrema of the zonal velocity profile between latitudes 30S and 30N. The average horizontal wavelength is 300 km, compared to an atmospheric scale ...

F. M. Flasar; P. J. Gierasch

1986-11-01T23:59:59.000Z

118

2015 Pearson Education, Inc. Chapter 6 Atmospheric and Oceanic  

E-Print Network [OSTI]

. Atmospheric Pressure Profile #12;© 2015 Pearson Education, Inc. Measure Air Pressure--Mercury Barometer · Seal Education, Inc. Learning Objectives · Define the concept of air pressure. · Describe instruments used to measure air pressure. · Define wind. · Locate the primary high- and low-pressure areas and principal winds

Pan, Feifei

119

Nature: Earth's Atmosphere and Beyond  

Science Journals Connector (OSTI)

Nature: Earth's Atmosphere and Beyond ... The column summarizes research articles from Nature that report on anthropogenic activities and natural phenomena that influence the chemical composition of Earth's atmosphere. ...

Sabine Heinhorst; Gordon Cannon

2003-10-01T23:59:59.000Z

120

The atmosphere of Venus  

Science Journals Connector (OSTI)

The investigations of Venus take a special position in planetary researches. It was just the atmosphere of Venus where first measurements in situ were carried out by means of the equipment delivered by a space pr...

V. I. Moroz

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ARM - Publications: Science Team Meeting Documents: ARM Site Atmospheric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Site Atmospheric State Best Estimates for AIRS Forward Model and ARM Site Atmospheric State Best Estimates for AIRS Forward Model and Retrieval Validation Tobin, David University of Wisconsin-Madison Revercomb, Henry University Of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Feltz, Wayne University of Wisconsin Moy, Leslie University of Wisconsin-Madison Lesht, Barry Argonne National Laboratory Cress, Ted Pacific Northwest National Laboratory Strow, Larrabee Hannon, Scott Fetzer, Eric Jet Propulsion Laboratory The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua platform is the first of a new generation of advanced hyperspectral atmospheric sounders with the capability of retrieving temperature and trace gas profiles with high vertical resolution and absolute accuracy. In the past few years ARM has played a major role in the validation of AIRS, including the launch of

122

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

123

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

124

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

125

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

126

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

127

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

128

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

129

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

130

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

131

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

132

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

133

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

134

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

135

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

136

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

137

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

138

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

139

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

140

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

142

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

143

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

144

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

145

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

146

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

147

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

148

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

149

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

150

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

151

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

152

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

153

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

154

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

155

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

156

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

157

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

158

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

159

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

160

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

162

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

163

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

164

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

165

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

166

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

167

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

168

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

169

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

170

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

171

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

172

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

173

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

174

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

175

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

176

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

177

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

178

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

179

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

180

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

182

profiles | OpenEI  

Open Energy Info (EERE)

profiles profiles Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

183

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

184

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

185

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

186

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia Electricity Profile 2010 District of Columbia profile District of Columbia Electricity Profile 2010 District of Columbia profile Table 1. 2010 Summary Statistics (District of Columbia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Petroleum Net Summer Capacity (megawatts) 790 51 Independent Power Producers & Combined Heat and Power 790 46 Net Generation (megawatthours) 199,858 51 Independent Power Producers & Combined Heat and Power 199,858 51 Emissions (thousand metric tons) Sulfur Dioxide 1 49 Nitrogen Oxide * 51 Carbon Dioxide 191 50 Sulfur Dioxide (lbs/MWh) 8.8 2 Nitrogen Oxide (lbs/MWh) 4.0 3 Carbon Dioxide (lbs/MWh) 2,104 1 Total Retail Sales (megawatthours) 11,876,995 43 Full Service Provider Sales (megawatthours) 3,388,490 50 Energy-Only Provider Sales (megawatthours) 8,488,505 12

187

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

188

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

189

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

190

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

191

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

192

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

193

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

194

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

195

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

196

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

197

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,837 14...

198

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,587...

199

Profiling for Performance  

Science Journals Connector (OSTI)

Performance and profiling are critical words in our everyday conversations in the office where I work, in our engagements with clients, and in our teaching. Both words apply equally well to all aspec...

Ron Crisco

2011-01-01T23:59:59.000Z

200

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

202

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

203

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

204

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

205

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

206

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

207

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

208

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

209

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

210

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

211

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

212

Article Atmospheric Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

© The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp © The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp *Corresponding author (email: luchunsong110@gmail.com) Article Atmospheric Science February 2013 Vol.58 No.4-5: 545  551 doi: 10.1007/s11434-012-5556-6 A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds LU ChunSong 1,2* , LIU YanGang 2 & NIU ShengJie 1 1 Key Laboratory for Atmospheric Physics and Environment of China Meteorological Administration, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 Atmospheric Sciences Division, Brookhaven National Laboratory, New York 11973, USA

213

BNL | Atmospheric Systems Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric System Research is a DOE observation-based research program Atmospheric System Research is a DOE observation-based research program created to advance process-level understanding of the key interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics, with the ultimate goal of reducing the uncertainty in global and regional climate simulations and projections. General areas of research at BNL under this program include studies of aerosol and cloud lifecycles, and cloud-aerosol-precipitation interactions. Contact Robert McGraw, 631.344.3086 aerosols Aerosol Life Cycle The strategic focus of the Aerosol Life Cycle research is observation-based process science-examining the properties and evolution of atmospheric aerosols. Observations come from both long-term studies conducted by the

214

Atmospheres of Brown Dwarfs  

E-Print Network [OSTI]

Brown Dwarfs are the coolest class of stellar objects known to date. Our present perception is that Brown Dwarfs follow the principles of star formation, and that Brown Dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes Brown Dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown Dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying Xray-activity indicators across the fully convective boundary.

Helling, Christiane

2014-01-01T23:59:59.000Z

215

Tips for Daylighting - Browse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tips for Daylighting with Windows Tips for Daylighting with Windows These guidelines provide an integrated approach to the cost-effective design of perimeter zones in new commercial buildings. They function as a quick reference for designers through a set of easy steps and rules-of-thumb, emphasizing "how-to" practical details. References are given to more detailed sources of information, should the reader wish to go further. No guidelines can answer all possible questions from all types of users. However, this document addresses the most commonly occurring scenarios. The guidance here is limited by the medium; short paper documents can only go so far in assisting a designer with a unique project. This document has been carefully shaped to best meet the needs of a designer when time does not permit a more extensive form of assistance.

216

Browsing the Web  

Science Journals Connector (OSTI)

Amazon Silk is the name of the new web browser, run on Amazon Web Services (AWS), for the Kindle Fire...

Kevin Wilson

2014-01-01T23:59:59.000Z

217

ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Integrated Column Description An Integrated Column Description of the Atmosphere An Integrated Column Description of the Atmosphere Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific Northwest National Laboratory The "other" Washington ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Credits to Credits to * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team * Ric Cederwall * Xiquan Dong * Chuck Long * Jay Mace * Mark Miller * Robin Perez * Dave Turner and the rest of the ARM science team ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Outline Outline * A little philosophy

218

An Alternative Mass Flux Profile in the KainFritsch Convective Parameterization and Its Effects in Seasonal Precipitation  

Science Journals Connector (OSTI)

The authors have altered the vertical profile of updraft mass flux detrainment in an implementation of the KainFritsch2 (KF2) convective parameterization within the fifth-generation Pennsylvania State UniversityNational Center for Atmospheric ...

Christopher J. Anderson; Raymond W. Arritt; John S. Kain

2007-10-01T23:59:59.000Z

219

ATMOSPHERIC ELSEVIER AtmosphericResearch40 (1996) 223-259  

E-Print Network [OSTI]

of atmospheric aerosol particles and cloud hydrometeors (water drops, ice particles, and, particularlyATMOSPHERIC RESEARCH ELSEVIER AtmosphericResearch40 (1996) 223-259 Simulations of drop fall turbulence. The model permits us to generate different realizations of the random velocity field component

Mark, Pinsky

220

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

Performance Profiles of Major Energy Producers 2009 Performance Profiles of Major Energy Producers 2009 vii Major Findings This edition of Performance Profiles reviews financial and operating data for the calendar year 2009 and discusses important trends and emerging issues relevant to U.S. energy company operations. Major U.S.-based oil and natural gas producers and petroleum refiners submit the data in this report annually on Form EIA-28, the Financial Reporting System (FRS). FRS companies' net income declined to the lowest level since 2002.  Net income fell 66 percent (in constant 2009 dollars) to $30 billion in 2009 from $88 billion in 2008. Substantial reductions in oil and natural gas prices in 2009 slowed revenue growth. FRS companies cut operating costs but by less than the decline in revenue, resulting in a 69-percent drop in operating income.

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State Nuclear Profiles 2010 State Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | State Nuclear Profiles 2010 i Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

222

Differential atmospheric tritium sampler  

DOE Patents [OSTI]

An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

Griesbach, O.A.; Stencel, J.R.

1987-10-02T23:59:59.000Z

223

Differential atmospheric tritium sampler  

DOE Patents [OSTI]

An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

1990-01-01T23:59:59.000Z

224

The changing atmosphere  

SciTech Connect (OSTI)

The chemistry of the atmosphere is changing, in large measure because of gases emitted by such human activities as farming, manufacturing, and the combustion of fossil fuels. The deleterious effects are increasingly evident; they may well become worse in the years ahead. This paper discusses the pollutants and the environmental perturbations with which they are associated. The authors believe the solution to the earth's environmental problems lies in a truly global effort.

Graedel, T.E.; Crutzen, P.J.

1989-09-01T23:59:59.000Z

225

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

226

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

227

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

228

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

229

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

230

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

231

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

232

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

233

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

234

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

235

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

236

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

237

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

238

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

239

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

240

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

242

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

243

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

244

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

245

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Illinois Nuclear Profile 2010 Illinois profile Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

246

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

247

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Nuclear Profile 2010 Iowa profile Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

248

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

249

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

250

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

251

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

252

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

253

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

254

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

255

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Nuclear Profile 2010 Ohio profile Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

256

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

257

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

258

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

259

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

260

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

262

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

263

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

264

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

265

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

York Nuclear Profile 2010 New York profile York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3 2,005 1.5 Total 39,357 100.0 136,962 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

266

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

267

ORISE: Climate and Atmospheric Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate and Atmospheric Research Climate and Atmospheric Research Capabilities Overview U.S. Climate Reference Network U.S. Historical Climate Network Contact Us Oak Ridge Institute for Science Education Climate and Atmospheric Research The Oak Ridge Institute for Science and Education (ORISE) partners with the National Oceanic and Atmospheric Administration's Atmospheric Turbulence and Diffusion Division (ATDD) to conduct climate research focused on issues of national and global importance. Research is performed with personnel support from ORISE's Independent Environmental Assessment and Verification (IEAV) programs, as well as in collaboration with scientists and engineers from Oak Ridge National Laboratory (ORNL), and numerous other organizations, government agencies, universities and private research institutions.

268

Atmospheric Pressure Deposition for Electrochromic Windows |...  

Broader source: Energy.gov (indexed) [DOE]

Atmospheric Pressure Deposition for Electrochromic Windows Atmospheric Pressure Deposition for Electrochromic Windows Emerging Technologies Project for the 2013 Building...

269

ARM - Field Campaign - ASSIST: Atmospheric Sounder Spectrometer for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology 2008.07.08 - 2008.07.18 Lead Scientist : Michael Howard For data sets, see below. Description Goals of assist were to intercompare radiance spectra and profile retrievals from a new AERI-like instrument, called "ASSIST" with the SGP site AERI(s) and calculations from Radiosondes measurements. * To bring the ASSIST instrument to the SGP ACRF and perform simultaneous measurements of the sky radiation with those from the AERI. * On relatively cloud-free days, release a special radiosonde at the

270

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

271

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

06) 06) Distribution Category UC-950 Performance Profiles of Major Energy Producers 2006 December 2007 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Performance Profiles of Major Energy Producers 2006 is prepared by the Energy Information Administration, Office of Energy Markets and End Use, Energy Markets and Contingency Information Division, Financial

272

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

273

Chemical profiles of switchgrass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

274

Temperature profile detector  

DOE Patents [OSTI]

Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

Tokarz, R.D.

1983-10-11T23:59:59.000Z

275

Wind profile above the surface boundary layer S.-E. Gryning (1), E. Batchvarova (2) and B. Brmmer (3)  

E-Print Network [OSTI]

Wind profile above the surface boundary layer S.-E. Gryning (1), E. Batchvarova (2) and B. Brümmer in predictions of the wind profile in the lowest hundreds me- ters of the atmosphere, being connected to the general increase in height of structures such as bridges, high houses and wind turbines. The hub height

276

Atmospheric Chemistry of Dichlorvos  

Science Journals Connector (OSTI)

Atmospheric Chemistry of Dichlorvos ... In the positive ion mode, protonated water hydrates (H3O+(H2O)n) generated by the corona discharge in the chamber diluent air were responsible for the protonation of analytes, and the ions that were mass analyzed were mainly protonated molecules ([M + H]+) and their protonated homo- and heterodimers. ... Methyl nitrite, 2-propyl nitrite and N2O5 were prepared and stored as described previously,(8, 10) and O3 in O2 diluent was generated using a Welsbach T-408 ozone generator. ...

Sara M. Aschmann; Ernesto C. Tuazon; William D. Long; Roger Atkinson

2011-03-15T23:59:59.000Z

277

Raman lidar profiling of water vapor and aerosols over the ARM SGP Site  

SciTech Connect (OSTI)

The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

Ferrare, R.A.

2000-01-09T23:59:59.000Z

278

RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.  

SciTech Connect (OSTI)

We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

FERRARE,R.A.

2000-01-09T23:59:59.000Z

279

NOTES ON NEUTRON DEPTH PROFILING  

E-Print Network [OSTI]

NOTES ON NEUTRON DEPTH PROFILING by J.K. Shultis Department of Mechanical and Nuclear Engineering College of Engineering Kansas State University Manhattan, Kansas 66506 Dec. 2003 #12;Notes on Neutron Depth Profiling J. Kenneth Shultis December 2003 1 Introduction The purpose of neutron depth profiling

Shultis, J. Kenneth

280

Atmospheric propagation of THz radiation.  

SciTech Connect (OSTI)

In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

915-MHz Radar Wind Profiler (915RWP) Handbook  

SciTech Connect (OSTI)

The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

Coulter, R

2005-01-01T23:59:59.000Z

282

EMSL: Science: Atmospheric Aerosol Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Aerosol Systems Atmospheric Aerosol Systems atmospheric logo Nighttime enhancement of nitrogen-containing organic compounds, or NOC Observed nighttime enhancement of nitrogen-containing organic compounds, or NOC, showed evidence of being formed by reactions that transform carbonyls into imines. The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model parameterization to improve the accuracy of climate model simulations and develop a predictive understanding of climate. By elucidating the role of natural and anthropogenic regional and global climate forcing mechanisms, EMSL can provide DOE and others with the ability to develop cost-effective strategies to monitor, control and mitigate them.

283

ARM - Evolution of the Atmosphere  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provides clues as to the composition of the early atmosphere. Volcanic emissions include nitrogen, sulfur dioxide, carbon dioxide, and trace gases such as argon. Although oxygen,...

284

Project Cost Profile Spreadsheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet.xlsx More Documents & Publications Statement of Work (SOW) Template (Combined...

285

Texas Crop Profile: Potatoes  

E-Print Network [OSTI]

175 pounds of nitrogen, 80 pounds of phosphorus, and 80 pounds of potassium. Potassium is generally not needed in the High Plains, although many growers apply it. Texas Crop Profile P O T A T O E S E-19 3-00 Prepared by Kent D. Hall, Rodney L. Holloway..., following drag-off or after potato plants have fully emerged. Controls weeds by disrupting growth process during germination. Does not control established weeds. State Contacts Rodney L. Holloway Extension Specialist 2488 TAMU College Station, Texas 77843...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

286

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

287

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

288

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas profile Texas profile Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0 411,695 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

289

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

290

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

291

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee profile Tennessee profile Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

292

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

293

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

294

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

295

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

296

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

297

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

298

Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)  

SciTech Connect (OSTI)

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

2012-01-01T23:59:59.000Z

299

DOE research on atmospheric aerosols  

SciTech Connect (OSTI)

Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

Schwartz, S.E.

1995-11-01T23:59:59.000Z

300

Space Science : Atmosphere Greenhouse Effect  

E-Print Network [OSTI]

Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate at the carbon cycle #12;However, #12;Greenhouse Effect is Complex #12;PLANETARY ENERGY BALANCE G+W fig 3-5

Johnson, Robert E.

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Approximate Stokes Drift Profiles in Deep Water  

Science Journals Connector (OSTI)

A deep-water approximation of the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, namely, the ...

yvind Breivik; Peter A. E. M. Janssen; Jean-Raymond Bidlot

2014-09-01T23:59:59.000Z

302

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_001b.htm06/07/2004 13:02:41 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_001d.htm06/07/2004 13:02:52 #12;5 Year

303

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_0029.htm06/07/2004 13:01:23 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_002d.htm06/07/2004 13:01:34 #12;5 Year

304

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0067.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_006b.htm06/07/2004 13:04:46 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

305

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0079.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_007b.htm06/07/2004 13:05:59 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

306

Mars atmospheric CO[subscript 2] condensation above the north and south poles as revealed by radio occultation, climate sounder, and laser ranging observations  

E-Print Network [OSTI]

[1] We study the condensation of CO[subscript 2] in Mars' atmosphere using temperature profiles retrieved from radio occultation measurements from Mars Global Surveyor (MGS) as well as the climate sounding instrument onboard ...

Hu, Renyu

307

Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles  

DOE Patents [OSTI]

A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

2005-12-26T23:59:59.000Z

308

Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Radiation Measurement (ARM) Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

309

High resolution properties of the marine atmospheric boundary layer  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) participated in the Central Equatorial Pacific Experiment (CEPEX) by fielding a water-vapor Raman lidar on board the Research Vessel Vickers. The lidar measured water vapor concentration from the surface to lower tropospheric altitudes in order to support the CEPEX goal of evaluating a hypothesis regarding feedback mechanisms for global circulation models. This report describes some of the features observed within the marine Atmospheric Boundary Layer (ABL) and the lower troposphere. Data was collected continuously 24 hours per day over the equatorial Pacific from March 8th to March 2 1st of 1993 while in route between Guadalcanal and Christmas Island (the transect was at approximately 2{degree} south latitude). The lidar collected vertical transects of water vapor concentration up to 10 km during night operations and 4 km in the day. The vertical lidar profiles of water vapor were produced by summing the data over a period up to 600 seconds. The water-vapor Raman lidar measured the properties of the marine ABL as well as the lower and mid-troposphere. From the lidar water vapor profiles, ``images`` of water vapor concentration versus altitude and date or sea surface temperature will be produced along with other products such as latent heat fluxes. The Raman water vapor lidar data will be used to better understand the role of transport and exchange at the ocean-atmosphere interface and throughout the marine atmosphere.

Cooper, D.; Cottingame, W.; Eichinger, W.; Forman, P.; Lebeda, C.; Poling, D.; Thorton, R.

1994-02-01T23:59:59.000Z

310

Scholarship Search Profile Personal Information  

E-Print Network [OSTI]

Scholarship Search Profile Personal Information Name: ____________________________________ Address) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Work Experience: List most recent job first Employer/Company Name _______________________________________________________________ Reference: Name and telephone _____________________________________________ Employer/Company Name

Mather, Patrick T.

311

Evaluate Greenhouse Gas Emissions Profile  

Broader source: Energy.gov [DOE]

Evaluating a Federal agency's greenhouse gas (GHG) emissions profile means getting a solid understanding of the organization's largest emission categories, largest emission sources, and its potential for improvement.

312

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Christopher Williams; Mike Jensen

313

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Christopher Williams; Mike Jensen

314

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Christopher Williams; Mike Jensen

315

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

316

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

317

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

318

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

319

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

320

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

322

Observing chemistry of atmospheric particles | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Observing chemistry of atmospheric particles Observing chemistry of atmospheric particles Review article reached the International Reviews in Physical Chemistry most read list NULL...

323

Production of CO2 in Soil Profiles of a California Annual Grassland  

E-Print Network [OSTI]

Production of CO2 in Soil Profiles of a California Annual Grassland Noah Fierer,1 * Oliver A play a key role in the global cycling of carbon (C), storing organic C, and releasing CO2 to the atmosphere. Although a large number of studies have focused on the CO2 flux at the soil­air inter- face

Fierer, Noah

324

Impact of realistic hourly emissions profiles on air pollutants concentrations modelled with CHIMERE  

E-Print Network [OSTI]

Impact of realistic hourly emissions profiles on air pollutants concentrations modelled Keywords: Atmospheric composition European air quality Anthropogenic emissions a b s t r a c t Regional inputs data like anthropogenic surface emissions of NOx, VOCs and particulate matter. These emissions

Menut, Laurent

325

Radon Content of the Atmosphere  

Science Journals Connector (OSTI)

... preliminary work. The absence of levels of a higher order suggests that the contribution of radon from this source does not represent a significant addition to the total atmospheric level. ... Domestic 0.70

W. ANDERSON; R. C. TURNER

1956-07-28T23:59:59.000Z

326

Laser Atmospheric Studies with VERITAS  

E-Print Network [OSTI]

As a calibrated laser pulse propagates through the atmosphere, the amount of Rayleigh-scattered light arriving at the VERITAS telescopes can be calculated precisely. This technique was originally developed for the absolute calibration of ultra-high-energy cosmic-ray fluorescence telescopes but is also applicable to imaging atmospheric Cherenkov telescopes (IACTs). In this paper, we present two nights of laser data taken with the laser at various distances away from the VERITAS telescopes and compare it to Rayleigh scattering simulations.

C. M. Hui; for the VERITAS collaboration

2007-09-25T23:59:59.000Z

327

Doubling of atmospheric methane supported  

SciTech Connect (OSTI)

Atmospheric methane over the past 27,000 years was measured by analyzing air trapped in glacial ice in Greenland and Antarctica. Atmospheric concentrations were stable over that period until about 200 years b.p. In the last 200 years they have more than doubled. This change in concentration is correlated with the increase in human population; the implications for climate modification are discussed. 1 figure, 3 references.

Kerr, R.A.

1984-11-23T23:59:59.000Z

328

Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks  

SciTech Connect (OSTI)

The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

Robert J. Goldston

2009-08-20T23:59:59.000Z

329

Technical Sessions B. E. Manner National Oceanic and Atmospheric Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B. E. Manner B. E. Manner National Oceanic and Atmospheric Administration Wave Propagation Laboratory 130ulder, CO 80303 The Atmospheric Radiation Measurement (ARM) pirog ram goals are ambitious, and its schedule is demanding. Many of the instruments, proposed for operations at the first Cloud and Radiation Testbed (CART) site as early alS 1992 represent emerging technology and exist only as :special research prototypes. Therefore, an important preparatory step for ARM was an intensive field project in Colorado in 1991 to assess the suitability of instruments an(j tech- niques for profiling the thermodynamic and kinematic structure of the troposphere and lower stratosphere. The field work was designed to provide ARM with a head start by gathering practical information for the desigln and

330

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

Charts Income Back http://www.fin.mmu.ac.uk/f18_004b.htm06/07/2004 12:57:08 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_004c.htm06 http://www.fin.mmu.ac.uk/f18_004d.htm06/07/2004 12:57:19 #12;5 Year Financial Profile - Charts - zoom 5

331

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

Charts Income Back http://www.fin.mmu.ac.uk/f18_008b.htm06/07/2004 12:51:21 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_008c.htm06 http://www.fin.mmu.ac.uk/f18_008d.htm06/07/2004 12:51:31 #12;5 Year Financial Profile - Charts - zoom 5

332

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

Charts Income Back http://www.fin.mmu.ac.uk/f18_010b.htm06/07/2004 10:57:23 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_010c.htm06 http://www.fin.mmu.ac.uk/f18_010d.htm06/07/2004 12:40:15 #12;5 Year Financial Profile - Charts - zoom 5

333

Tropospheric and Lower Stratospheric Ozone Profiles From AERI-X Emission Spectra  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropospheric and Lower Stratospheric Ozone Profiles Tropospheric and Lower Stratospheric Ozone Profiles From AERI-X Emission Spectra P. F. Fogal and F. J. Murcray Department of Physics and Astronomy University of Denver Denver, Colorado Introduction The University of Denver Atmospheric Emission Radiometric Interferometer-Extended (AERI-X) has been in regular operation at the Southern Great Plains (SGP) Atmospheric Radiation Measurements (ARM) Program site, conditions permitting, since the mid-1990s. We present here the analysis of several spectra from May 10, 1999, and demonstrate the ability to retrieve the tropospheric ozone profile at the ARM site. While the presence of ozone in the stratosphere is of vital importance for several reasons, in the troposphere, ozone is a pollutant and a powerful oxidizer. For these reasons, it is

334

Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury  

E-Print Network [OSTI]

activities that release mercury to the atmosphere include coal burning, industrial processes, waste incine

335

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities Income Breakdown Expenditure Breakdown http://www.fin.mmu.ac.uk/f18 Charts Income Back http://www.fin.mmu.ac.uk/f18_005b.htm06/07/2004 13:00:29 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_005c.htm06

336

G-Band Vapor Radiometer Profiler (GVRP) Handbook  

SciTech Connect (OSTI)

The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humidity conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.

Caddeau, MP

2010-06-23T23:59:59.000Z

337

SPEAK UP, EPPING! COMMUNITY PROFILE  

E-Print Network [OSTI]

SPEAK UP, EPPING! COMMUNITY PROFILE REPORT Epping, New Hampshire April 14, 2007 #12;TABLE ............................................................................................. 21 6. Community Services, Facilities and Utilities........................................................................................................................... 38 1. Natural Resources & Environment 2. Communication 3. Infrastructure & Public Safety 4

New Hampshire, University of

338

Profile of Alec J. Jeffreys  

Science Journals Connector (OSTI)

Profile of Alec J. Jeffreys 10.1073/pnas.0603953103 Nick Zagorski As one of the great contributors to modern genetics...the forensic sciences. That achievement alone is worthy of merit, contributing to Jeffreys' receiving three high distinctions...

Nick Zagorski

2006-01-01T23:59:59.000Z

339

Neuropsychological Profile of Stuttering Children  

Science Journals Connector (OSTI)

The purpose of this study was to analyze the cognitive profile of stuttering children. A sample of 290 children was ... classified as stutterers. In general, performance in stuttering children was similar to the ...

Alfredo Ardila; Mnica Rosselli

2000-06-01T23:59:59.000Z

340

Energy Consumption Profile for Energy  

E-Print Network [OSTI]

317 Chapter 12 Energy Consumption Profile for Energy Harvested WSNs T. V. Prabhakar, R Venkatesha.............................................................................................318 12.2 Energy Harvesting ...................................................................................318 12.2.1 Motivations for Energy Harvesting...............................................319 12

Langendoen, Koen

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vibration of Tethered Microstructure Profilers  

Science Journals Connector (OSTI)

Although loosely tethered turbulence profilers have many advantages, they are prone to resonant vibrations at frequencies in the dissipation range when they are falling rapidly or when the tether is strummed. Using the Advanced Microstructure ...

Jack B. Miller; M. C. Gregg; Vernon W. Miller; Gordon L. Welsh

1989-12-01T23:59:59.000Z

342

JOBAID-ACCESSING AND MODIFYING TALENT PROFILE  

Broader source: Energy.gov [DOE]

The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile...

343

Unexpected vertical wind speed profiles in the boundary layer over the southern North Sea  

Science Journals Connector (OSTI)

Abstract Shallow atmospheric internal boundary layers over the southern part of the North Sea are common. Analysis of one year of meteorological data from the FINO1 research platform in the German Bight reveals that vertical wind speed profiles frequently do not conform to the expected modified logarithmic profile of MoninObukhov similarity theory. The wind profiles are mostly characterized by local maxima or kinks within the first 100m over the sea surface. The data reveals the most frequent occurrence of a single maximum, but multiple maxima are often present, and there are sometimes even reversed profiles with the wind speed decreasing with height. The expected modified logarithmic profile occurs for a minority of cases. The evidence suggests the frequent presence of internal boundary layers that propagate from coastal land masses that surround the North Sea. A census of vertical wind speed profiles is presented that shows how different inflection states are linked with wind speed and atmospheric stability. The kinks are most prevalent in the upper part of the measurement range near the 100m hub height of modern offshore the wind turbines, so that internal boundary layers represent a possible concern for the offshore wind energy industry in the North Sea region.

Anthony J. Kettle

2014-01-01T23:59:59.000Z

344

CDIAC Atmospheric Pressure Data Sets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Pressure Atmospheric Pressure CDIAC Climate Holdings Containing Atmospheric Pressure Data Global Data Sets Data Set Name Investigators Data Type/Format Period of Record Global Historical Climatology Network (GHCN); Vs. 1 (CDIAC NDP-041) R.S. Vose et al. Surface stations; monthly mean sea-level pressure Varies by station; through 1990 Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952-2009 (CDIAC NDP-026C) C.J. Hahn, S.G. Warren, and R. Eastman Six-hourly synoptic observations of sea-level pressure Land 1971-2009; Ocean 1952-2008 Global Historical Climatology Network (GHCN); Vs. 2 (Note: the above link takes you to NOAA's National Climatic Data Center website.) R.S. Vose et al. Surface stations; monthly mean sea-level pressure Varies by station; some through most recent month

345

National Atmospheric Release Advisory Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NARAC TOC NARAC TOC The National Atmospheric Release Advisory Center, NARAC, provides tools and services to the Federal Government, that map the probable spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC provides atmospheric plume predictions in time for an emergency manager to decide if taking protective action is necessary to protect the health and safety of people in affected areas. Located at the Lawrence Livermore National Laboratory, NARAC is a national support and resource center for planning, real-time assessment, emergency response, and detailed studies of incidents involving a wide variety of hazards, including nuclear, radiological, chemical, biological, and natural emissions. In an emergency situation (if lives are at risk), event-specific NARAC

346

CDIAC Atmospheric Moisture Data Sets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Moisture Atmospheric Moisture CDIAC Climate Holdings Containing Atmospheric Moisture Data Global Data Sets Data Set Name Investigators Data Type/Format Period of Record Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952-2009 (CDIAC NDP-026C) C.J. Hahn, S.G. Warren, and R. Eastman Six-hourly synoptic observations of dew point depression (combined with air temperature) Land 1971-2009; Ocean 1952-2008 Regional Data Sets Data Set Name Investigators Data Type/Format Period of Record Six- and Three-Hourly Meteorological Observations from 223 Former U.S.S.R. Stations (CDIAC NDP-048) V. Razuvaev et al. Surface stations; 6- and 3-hourly observations of relative humidity, vapor pressure, humidity deficit, and dew point temperature Varies by station; through 2000

347

Chemical modeling of exoplanet atmospheres  

E-Print Network [OSTI]

The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition, the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which a...

Venot, Olivia

2014-01-01T23:59:59.000Z

348

atmospheric pressure | OpenEI  

Open Energy Info (EERE)

pressure pressure Dataset Summary Description (Abstract):Atmospheric Pressure (kPa)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Atmospheric Pressure (kPa)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated Unknown Keywords atmospheric pressure climate NASA SWERA UNEP Data text/csv icon Download Data (csv, 46 MiB)

349

SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics  

E-Print Network [OSTI]

. Radiant Energy. Radiative Transfer. Transport.) 10-Oct W 3 More Transfer Processes 15-Oct M 4 4 Gas. Equation of State. Hydrostatic Equilibrium.) 3-Oct W 2 2.11 First and Second Laws and Characteristics. Precipitation Processes. Radiative Transfer in a Cloudy Atmosphere. Fogs, Stratus

Russell, Lynn

350

Linked Environments for Atmospheric Discovery Linked Environments for Atmospheric  

E-Print Network [OSTI]

Unidata Program Center #12;Linked Environments for Atmospheric Discovery The Team: 9 institutions and 105 MethodologyTraditional NWP Methodology STATIC OBSERVATIONS Radar Data Mobile Mesonets Surface Observations Satellites The Process is Entirely Prescheduled and Serial; It Does NOT Respond to the Weather! The Process

351

Atmospheric Environment 40 (2006) 17431758 Impact of urban heat island on regional atmospheric pollution  

E-Print Network [OSTI]

and spatial distribution of atmospheric pollutants over the Paris region. One anticyclonic episode from Elsevier Ltd. All rights reserved. Keywords: Regional atmospheric pollution; Urban area micrometeorology are large sources of atmospheric pollutants. Their spatial distribution and their temporal evolution can

Ribes, Aurélien

352

Atmosphere-Surface Exchange Measurements  

Science Journals Connector (OSTI)

...HICKS, B.B., A SIMULATION OF THE EDDY ACCUMULATION...CLOSURES IN 2ND-ORDER MODELING, JOURNAL OF THE ATMOSPHERIC...Their advantag-es are rapid response, linear output...the measurement and modeling of surface fluxes are...the appli-cation of automated conditional sampling...

W. F. Dabberdt; D. H. Lenschow; T. W. Horst; P. R. Zimmerman; S. P. Oncley; A. C. Delany

1993-06-04T23:59:59.000Z

353

ATMOSPHERIC SCIENCES 2014-2015  

E-Print Network [OSTI]

ATMOSPHERIC SCIENCES 2014-2015 Graduate Student Handbook followed a Code of Honor, which is stated in this very simple verse: An Aggie does not lie, cheat, or steal that knowledge for the benefit of society. Our most fundamental mission is to help students at all levels, from

354

Pulsed atmospheric fluidized bed combustion  

SciTech Connect (OSTI)

The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

Not Available

1992-08-01T23:59:59.000Z

355

13, 90179049, 2013 Stable atmospheric  

E-Print Network [OSTI]

ACPD 13, 9017­9049, 2013 Stable atmospheric methane in the 2000s I. Pison et al. Title Page Utrecht, Utrecht University, Utrecht, the Netherlands 3 SRON Netherlands Institute for Space Research, Utrecht, the Netherlands 4 Vrije Universiteit, Department of Systems Ecology, Amsterdam, the Netherlands 5

Paris-Sud XI, Université de

356

Phenotype MicroArray Profiling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MicroArray MicroArray Profiling of Zymomonas mobilis ZM4 Barry Bochner & Vanessa Gomez & Michael Ziman & Shihui Yang & Steven D. Brown Received: 22 May 2009 / Accepted: 26 October 2009 # The Author(s) 2009. This article is published with open access at Springerlink.com Abstract In this study, we developed a Phenotype MicroArray(tm) (PM) protocol to profile cellular phenotypes in Zymomonas mobilis, which included a standard set of nearly 2,000 assays for carbon, nitrogen, phosphorus and sulfur source utilization, nutrient stimulation, pH and osmotic stresses, and chemical sensitivities with 240 inhibitory chemicals. We observed two positive assays for C-source utilization (fructose and glucose) using the PM screen, which uses redox chemistry and cell respiration as a universal reporter to profile growth phenotypes in a high-throughput 96-well plate-based format.

357

Industry Profile | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

358

gprof Profiling Tools | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tuning MPI on BG/Q Tuning and Analysis Utilities (TAU) HPCToolkit HPCTW mpiP gprof Profiling Tools Darshan PAPI BG/Q Performance Counters BGPM Openspeedshop Scalasca BG/Q DGEMM Performance Software & Libraries IBM References Intrepid/Challenger/Surveyor Tukey Eureka / Gadzooks Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] gprof Profiling Tools Contents Introduction Profiling on the Blue Gene Enabling Profiling Collecting Profile Information Profiling Threaded Applications Using gprof Routine Level Flat Profile Line Level Flat Profile Call Graph Analysis Routine Execution Count List Annotated Source Listing Issues in Interpreting Profile Data Profiling Concepts Programs in Memory

359

Land and Atmospheric Science GRAD STUDENT HANDBOOK  

E-Print Network [OSTI]

1 Land and Atmospheric Science GRAD STUDENT HANDBOOK 2011-2012 WELCOME Welcome to the Graduate on the fundamentals of Earth system processes related to land and atmosphere and their coupled interactions. Students

Minnesota, University of

360

Land and Atmospheric Science GRAD STUDENT HANDBOOK  

E-Print Network [OSTI]

1 Land and Atmospheric Science GRAD STUDENT HANDBOOK 2012-2013 WELCOME Welcome to the Graduate on the fundamentals of Earth system processes related to land and atmosphere and their coupled interactions. Students

Minnesota, University of

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sulfuryl fluoride in the global atmosphere  

E-Print Network [OSTI]

The first calibrated high-frequency, high-precision, in situ atmospheric and archived air measurements of the fumigant sulfuryl fluoride (SO[subscript 2]F[subscript 2]) have been made as part of the Advanced Global Atmospheric ...

Muhle, J.

362

Lifetimes and time scales in atmospheric chemistry  

Science Journals Connector (OSTI)

...such as for years with extensive forest fires. Moving beyond atmospheric chemistry, extension of this approach to Earth system models could yield surprises. The coupling across different components of the chemistry-climate system, such as atmospheric...

2007-01-01T23:59:59.000Z

363

Enhancing mobile browsing and reading  

E-Print Network [OSTI]

Although the web browser has become a standard interface for information access on the Web, the mobile web browser on the smartphone does not hold the same interest to mobile users. A survey with 11 mobile users shows that ...

Yu, Chen-Hsiang

364

Browse the archive Show summaries  

E-Print Network [OSTI]

that a "fast ignition" laser facility could make a significant contribution to fusion research, as well, the lasers that compress the fuel capsule also heat it. Fast ignition, which was first proposed by Max Tabak, fast ignition requires less laser energy than the conventional approach, which means

365

Surface Modification by Atmospheric Pressure Plasma for Improved Bonding  

E-Print Network [OSTI]

composites using atmospheric plasma treatment. J. Appl.of polymer surfaces: atmospheric plasma versus vacuum plasmaA. Morgan, The effect of atmospheric plasma treatment on the

Williams, Thomas Scott

2013-01-01T23:59:59.000Z

366

1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists  

SciTech Connect (OSTI)

DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

Paul H. Wine

1998-11-23T23:59:59.000Z

367

Model Atmospheres for Low Field Neutron Stars  

E-Print Network [OSTI]

We compute model atmospheres and emergent spectra for low field (Bsolar abundance and iron atmospheres. We compare our results to high field magnetic atmospheres, available only for hydrogen. An application to apparently thermal flux from the low field millisecond pulsar PSR J0437--4715 shows that H atmospheres fit substantially better than Fe models. We comment on extension to high fields and the implication of these results for neutron star luminosities and radii.

Mohan Rajagopal; Roger Romani

1995-10-19T23:59:59.000Z

368

Radar range measurements in the atmosphere.  

SciTech Connect (OSTI)

The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

Doerry, Armin Walter

2013-02-01T23:59:59.000Z

369

Quantitative determination of atmospheric hydroperoxyl radical  

DOE Patents [OSTI]

A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.

Springston, Stephen R. (Upton, NY); Lloyd, Judith (Westbury, NY); Zheng, Jun (Stony Brook, NY)

2007-10-23T23:59:59.000Z

370

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Christopher Williams

371

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher

2012-11-06T23:59:59.000Z

372

Radar Measurement of the Upper Atmosphere  

Science Journals Connector (OSTI)

...of the Upper Atmosphere James C. G...two decades large radars have...of the upper atmosphere. These radars...ionospheric plasma, all as functions...ionospheric plasma by detection...is wasted. Atmospheric radar scientists...305 m and an area of 73,000...frequency of 430 MHz. The radar...

James C. G. Walker

1979-10-12T23:59:59.000Z

373

Climate Impact of Increasing Atmospheric Carbon Dioxide  

Science Journals Connector (OSTI)

...RADIATIVE-TRANSFER DUE TO ATMOSPHERIC WATER-VAPOR - GLOBAL...giving rise to atmospheric mo-tions that...heat release by condensation as moist air...and because the atmospheric motions that...to thE1tfrof water in a leaky bucket...

J. Hansen; D. Johnson; A. Lacis; S. Lebedeff; P. Lee; D. Rind; G. Russell

1981-08-28T23:59:59.000Z

374

Instrumental Requirements for Global Atmospheric Chemistry  

Science Journals Connector (OSTI)

...SIMULTANEOUS MEASUREMENT OF ATMOSPHERIC CH2O, O3, AND NO2...AIRBORNE MEASUREMENTS OF ATMOSPHERIC OH, JOURNAL OF GEOPHYSICAL...HYDROGEN-CHLORIDE AND WATER AT ANTARCTIC STRATOSPHERIC...TOON, O.B., CONDENSATION OF HNO3 AND HCL IN...requirements for global atmospheric chemistry. | The field...

D. L. Albritton; F. C. Fehsenfeld; A. F. Tuck

1990-10-05T23:59:59.000Z

375

Space plasma influences on the Earth's atmosphere  

Science Journals Connector (OSTI)

...Lond. A (2003) Space plasma and the Earth's atmosphere 129 0.2 0.6 1.0...Lond. A (2003) Space plasma and the Earth's atmosphere 131 the size and the...satellites probing the space-plasma and atmospheric environments, they provide...

2003-01-01T23:59:59.000Z

376

Predicting Future Atmospheric Carbon Dioxide Levels  

Science Journals Connector (OSTI)

...Predicting future atmospheric carbon dioxide levels...1978012175 air atmosphere biosphere carbon...Predicting future atmospheric carbon dioxide levels...re-quired 5-Mhz bandwidth, which...synchronization rate of 16 khz and the picture...the interstellar plasma. For UHF frequencies...

U. Siegenthaler; H. Oeschger

1978-01-27T23:59:59.000Z

377

Impacts of Atmospheric Anthropogenic Nitrogen on the  

E-Print Network [OSTI]

anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decreaseImpacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean R. A. Duce,1 * J. LaRoche,2 K quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about

Ward, Bess

378

Ch4. Atmosphere and Surface Energy Balances  

E-Print Network [OSTI]

than red light. #12;The Electromagnetic Spectrum 8% 47% 45% 100% solar radiation #12;Blue Sky, Red;Energy Pathways #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Atmosphere or performing any work. #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Transmission

Pan, Feifei

379

Proof of the Atmospheric Greenhouse Effect  

E-Print Network [OSTI]

A recently advanced argument against the atmospheric greenhouse effect is refuted. A planet without an infrared absorbing atmosphere is mathematically constrained to have an average temperature less than or equal to the effective radiating temperature. Observed parameters for Earth prove that without infrared absorption by the atmosphere, the average temperature of Earth's surface would be at least 33 K lower than what is observed.

Smith, Arthur P

2008-01-01T23:59:59.000Z

380

ATS621, Fall 2013 Atmospheric Chemistry  

E-Print Network [OSTI]

ATS621, Fall 2013 Atmospheric Chemistry Tuesdays and Thursdays, 10 ­ 10:50, 212B ACRC) 491-8587 Teaching Assistant: Lauren Potter Atmospheric Chemistry Bldg., Room 11 Lepotter, transport, chemistry and deposition impact atmospheric chemical composition; 2) Explain the chemical

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ATS621, Fall 2014 Atmospheric Chemistry  

E-Print Network [OSTI]

ATS621, Fall 2014 Atmospheric Chemistry Monday and Wednesday, 9 ­ 9:50, 212B ACRC Instructor: Prof) Understand quantitatively how emissions, transport, chemistry and deposition impact atmospheric chemical to Atmospheric Chemistry, D.J. Jacob Princeton University Press, 1999 PDF versions of the chapters can

Collett Jr., Jeffrey L.

382

Evaluation of Health Risks of Atmospheric Pollutants  

E-Print Network [OSTI]

4 5- (DRAFT) Evaluation of Health Risks of Atmospheric Pollutants Guy Landrieu INERIS Institut, Stuttgart : Germany (1995)" #12;INERIS: Evaluation of health risks of atmospheric pollutants (DRAFT may 1995) Evaluation of health risks of atmospheric pollutants Summary 1 Introduction 2 Background 3 Harmfulness

Paris-Sud XI, Université de

383

Light extinction in the atmosphere  

SciTech Connect (OSTI)

Atmospheric aerosol particles originating from natural sources, such as volcanos and sulfur-bearing gas emissions from the oceans, and from human sources, such as sulfur emissions from fossil fuel combustion and biomass burning, strongly affect visual air quality and are suspected to significantly affect radiative climate forcing of the planet. During the daytime, aerosols obscure scenic vistas, while at night they diminish our ability to observe stellar objects. Scattering of light is the main means by which aerosols attenuate and redistribute light in the atmosphere and by which aerosols can alter and reduce visibility and potentially modify the energy balance of the planet. Trends and seasonal variability of atmospheric aerosol loading, such as column-integrated light extinction or optical depth, and how they may affect potential climate change have been difficult to quantify because there have been few observations made of important aerosol optical parameters, such as optical depth, over the globe and over time and often these are of uneven quality. To address questions related to possible climate change, there is a pressing need to acquire more high-quality aerosol optical depth data. Extensive deployment of improved solar radiometers over the next few years will provide higher-quality extinction data over a wider variety of locations worldwide. An often overlooked source of turbidity data, however, is available from astronomical observations, particularly stellar photoelectric photometry observations. With the exception of the Project ASTRA articles published almost 20 years ago, few of these data ever appear in the published literature. This paper will review the current status of atmospheric extinction observations, as highlighted by the ASTRA work and augmented by more recent solar radiometry measurements.

Laulainen, N.

1992-06-01T23:59:59.000Z

384

Central Appalachia: Coal industry profile  

SciTech Connect (OSTI)

Central Appalachia, the most complex and diverse coal-producing region in the United States, is also the principal source of very low sulfur coal in the East. This report provides detailed profiles of companies and facilities responsible for about 90% of the area's production, conveying a unique view of the aggregate industry as well as its many parts.

McMahan, R.L.; Kendall, L.K. (Resource Data International, Inc., Boulder, CO (USA))

1991-05-01T23:59:59.000Z

385

Microfluidics and Nanoscale Research Profile  

E-Print Network [OSTI]

Microfluidics and Nanoscale Science Research Profile Our research group is engaged in a broad range of activities in the general area of microfluidics and nanoscale science. At a primary level, our interest that when compared to macroscale tech- nology, microfluidic systems engender a number of distinct advantages

386

Turfgrass Disease Profiles Brown Patch  

E-Print Network [OSTI]

Turfgrass Disease Profiles Brown Patch Richard Latin, Professor of Plant Pathology Brown patch to algae and moss infestation. Even mild brown patch outbreaks can spoil the appearance of golf greens and perennial ryegrass) also may sustain damage from brown patch infection. Disease Characteristics and Symptom

387

MODELING OF CHANGING ELECTRODE PROFILES  

SciTech Connect (OSTI)

A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

Prentice, Geoffrey Allen

1980-12-01T23:59:59.000Z

388

Atmospheric Sciences Program Department of Marine, Earth and Atmospheric Sciences (MEAS)  

E-Print Network [OSTI]

atmospheric chemistry/air quality, boundary layer and air pollution meteorology, regional/global climatology MODELING OF MULTIPLE AIR POLLUTANTS AT URBAN AND REGIONAL SCALES Our atmosphere is a complex systemAtmospheric Sciences Program Department of Marine, Earth and Atmospheric Sciences (MEAS) (http

Parker, Matthew D. Brown

389

Reconstruction of Longitudinal Profiles of Ultra-High Energy Cosmic Ray Showers from Fluorescence and Cherenkov Light Measurements  

E-Print Network [OSTI]

We present a new method for the reconstruction of the longitudinal profile of extensive air showers induced by ultra-high energy cosmic rays. In contrast to the typically considered shower size profile, this method employs directly the ionization energy deposit of the shower particles in the atmosphere. Due to universality of the energy spectra of electrons and positrons, both fluorescence and Cherenkov light can be used simultaneously as signal to infer the shower profile from the detected light. The method is based on an analytic least-square solution for the estimation of the shower profile from the observed light signal. Furthermore, the extrapolation of the observed part of the profile with a Gaisser-Hillas function is discussed and the total statistical uncertainty of shower parameters like total energy and shower maximum is calculated.

M. Unger; B. R. Dawson; R. Engel; F. Schssler; R. Ulrich

2008-01-28T23:59:59.000Z

390

A numerical investigation of long waves in the atmosphere produced by flow over various mountain profiles  

E-Print Network [OSTI]

vector in the y direction unit vector in the vertical direction wavelength periodic length of model residual error distance from center of paraboloid mountain horizontal distance t ime U, u average zonal wind V west wind component of V..., However, Rossby did not at that time associate mountains with these waves. Constructing 5-day, mean, pressure charts for the 3-km level, he noted the existence of the major semi-permanent features of the low- level circulation which he termed "centers...

Collins, Ralph Warren

2012-06-07T23:59:59.000Z

391

Composition and Reactions of Atmospheric Aerosol Particles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composition and Reactions of Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

392

Composition and Reactions of Atmospheric Aerosol Particles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

393

Composition and Reactions of Atmospheric Aerosol Particles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

394

ATMOSPHERIC DENSITY ESTIMATION USING SATELLITE PRECISION ORBIT EPHEMERIDES  

E-Print Network [OSTI]

The current atmospheric density models are not capable enough to accurately model the atmospheric density, which varies continuously in the upper atmosphere mainly due to the changes in solar and geomagnetic activity. Inaccurate atmospheric modeling...

Arudra, Anoop Kumar

2011-04-22T23:59:59.000Z

395

Definition: Electrical Profiling Configurations | Open Energy Information  

Open Energy Info (EERE)

Profiling Configurations Profiling Configurations Jump to: navigation, search Dictionary.png Electrical Profiling Configurations Electrical profiling is a DC resistivity survey which aims to trace lateral variations in the apparent resistivity structure of the subsurface. Traditionally, electrical profiling provides qualitative information of relative apparent resistivity values in order to detect anomalous geological features.[1] Also Known As Electrical mapping References ↑ http://www.amazon.com/Principles-Electric-Borehole-Geophysics-Geochemistry/dp/0444529942 Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Electrical_Profiling_Configurations&oldid=596184" Category: Definitions

396

IPM Profiling Tool at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IPM IPM IPM Description and Overview IPM is a portable profiling infrastructure which provide a high level report on the execution of a parallel job. IPM reports hardware counters data, MPI function timings, and memory usage. It provides a low overhead means to generate scaling studies or performance data for ERCAP submissions. When you run a job using the IPM module you will get a performance summary (see below) to stdout as well as a web accessible summary of all your IPM jobs. The two main objectives of IPM are ease-of-use and scalability in performance analysis. Usage % module load ipm On HPC architectures that support shared libraries that's all you need to do. Once the module is loaded you can run as you normally and get a performance profile once the job has successfully completed. You do not

397

Benchmarking optimization software with performance profiles  

E-Print Network [OSTI]

Abstract: We propose performance profiles -- probability distribution functions for a performance metric -- as a tool for benchmarking and comparing optimization...

Elizabeth Dolan

398

Atmospheric-pressure plasma jet  

SciTech Connect (OSTI)

A {gamma}-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250 C at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region there between. A jet of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

Selwyn, G.S.

1999-10-05T23:59:59.000Z

399

Cloud Features and Zonal Wind Measurements of Saturn's Atmosphere as Observed by Cassini/VIMS  

E-Print Network [OSTI]

We present an analysis of data about Saturn's atmosphere from Cassini's Visual and Infrared Mapping Spectrometer (VIMS), focusing on the meteorology of the features seen in the 5-micron spectral window. We present VIMS mosaics and discuss the morphology and general characteristics of the features backlit by Saturn's thermal emission. We have also constructed a zonal wind profile from VIMS feature tracking observation sequences using an automated cloud feature tracker. Comparison with previously constructed profiles from Voyager and Cassini imaging data reveals broad similarities, suggesting minimal vertical shear of the zonal wind. However, areas of apparent wind shear are present in the VIMS zonal wind profile at jet stream cores. In particular, our analysis shows that the equatorial jet reaches speeds exceeding 450 m/s, similar to speeds obtained during the Voyager era. This suggests that recent inferences of relatively slower jet speeds of ~275-375 m/s are confined to the upper troposphere and that the dee...

Choi, David S; Brown, Robert H; 10.1029/2008JE003254

2013-01-01T23:59:59.000Z

400

Time dependences of atmospheric Carbon dioxide fluxes  

E-Print Network [OSTI]

Understanding the lifetime of CO2 in the atmosphere is critical for predictions regarding future climate changes. A simple mass conservation analysis presented here generates tight estimations for the atmosphere's retention time constant. The analysis uses a leaky integrator model that combines the observed deficit (only less than 40% of CO2 produced from combustion of fossil fuels is actually retained in the atmosphere, while more than 60% is continuously shed) with the exponential growth of fossil fuel burning. It reveals a maximum characteristic time of less than 23 year for the transfer of atmospheric CO2 to a segregation sink. This time constant is further constrained by the rapid disappearance of 14C after the ban of atmospheric atomic bomb tests, which provides a lower limit of 18 years for this transfer. The study also generates evaluations of other CO2 fluxes, exchange time constants and volumes exchanged. Analysis of large harmonic oscillations of atmospheric CO2 concentration, often neglected in th...

DeSalvo, Riccardo

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Absolute calibration of imaging atmospheric Cherenkov telescopes  

E-Print Network [OSTI]

A calibrated laser pulse propagating through the atmosphere produces a flash of Rayleigh scattered light with an intensity that can be calculated very accurately when atmospheric conditions are good. This is used in a technique developed for the absolute calibration of ultra high energy cosmic ray fluorescence telescopes, and it can also be applied to imaging atmospheric Cherenkov telescopes (IACTs). In this paper we present the absolute calibration system being constructed and tested for the VERITAS project.

N. Shepherd; J. H. Buckley; O. Celik; J. Holder; S. LeBohec; H. Manseri; F. Pizlo; M. Roberts

2005-07-04T23:59:59.000Z

402

What we can learn from atmospheric neutrinos  

E-Print Network [OSTI]

Physics potential of future measurements of atmospheric neutrinos is explored. Observation of $\\Delta m^2_{21}$ driven sub-dominant effects and $\\theta_{13}$ driven large matter effects in atmospheric neutrinos can be used to study the deviation of $\\theta_{23}$ from maximality and its octant. Neutrino mass hierarchy can be determined extremely well due to the large matter effects. New physics can be constrained both in standard atmospheric neutrino experiments as well as in future neutrino telescopes.

Sandhya Choubey

2006-09-19T23:59:59.000Z

403

Energy conservation in high-rise buildings: Changes in air conditioning load induced by vertical temperature and humidity profile in Delhi  

Science Journals Connector (OSTI)

Temperature and humidity profiles in the upper atmosphere are different from those observed by ground level meteorological stations and used to design HVAC systems for high-rise buildings. There exist correlations among solar energy, atmospheric turbidity and pollutants in urban areas, affecting the temperature and humidity profiles with variation in height. In the present study, a theoretical model is developed considering these parameters, and the HVAC load is calculated. The results are compared with the HVAC load calculated from data obtained from the meteorological station, and the comparison showed that the results differ significantly (20%) for a hypothetical 200 m high office building.

S. Sinha; Sanjay Kumar; N. Kumar

1998-01-01T23:59:59.000Z

404

NREL: Process Development and Integration Laboratory - Atmospheric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Processing Platform Capabilities Atmospheric Processing Platform Capabilities The Atmospheric Processing platform in the Process Development and Integration Laboratory offers powerful capabilities with integrated tools for depositing, processing, and characterizing photovoltaic materials and devices. In particular, this platform focuses on different methods to deposit ("write") materials onto a variety of substrates and then further process into optoelectronic materials using rapid thermal processing. You can read more on the rationale for developing this platform and its capabilities. Contact Maikel van Hest for more details on these capabilities. The Atmospheric Processing platform will allow deposition in any sequence and is applicable to activities in all Technology Roadmaps, which include

405

Earth and Atmospheric Sciences | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Forensics Climate & Environment Sensors and Measurements Chemical & Engineering Materials Computational Earth Science Systems Modeling Geographic Information Science and Technology Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Earth and Atmospheric Sciences SHARE Earth and Atmospheric Sciences At ORNL, we combine our capabilities in atmospheric science, computational science, and biological and environmental systems science to focus in the cross-disciplinary field of climate change science. We use computer models to improve climate change predications and to measure the impact of global warming on the cycling of chemicals in earth systems. Our Climate Change Science Institute uses models to explore connections among atmosphere,

406

Atmospheric Pressure Discharges: Traveling Wave Plasma Sources  

Science Journals Connector (OSTI)

Microwave sustained, atmospheric pressure plasmas are finding an increasing number of applications ... interest in the developing and investigating of appropriate plasma sources [1, 2].

Z. Zakrzewski; M. Moisan

1999-01-01T23:59:59.000Z

407

12.815 Atmospheric Radiation, Fall 2005  

E-Print Network [OSTI]

Introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. ...

Prinn, Ronald G.

408

Mesoscale Coupled Ocean-Atmosphere Interaction  

E-Print Network [OSTI]

heat flux, and wind power input to the ocean. Geophys. Res.Powers and Stoelinga (2000). They developed a comprehensive atmosphere-ocean-

Seo, Hyodae

2007-01-01T23:59:59.000Z

409

Mesoscale coupled ocean-atmosphere interaction  

E-Print Network [OSTI]

heat flux, and wind power input to the ocean. Geophys. Res.Powers and Stoelinga (2000). They developed a comprehensive atmosphere-ocean-

Seo, Hyodae

2007-01-01T23:59:59.000Z

410

Atmosphere to Electrons Program Overview Presentation  

Broader source: Energy.gov [DOE]

This presentation provides an introduction to the Atmosphere to Electrons (A2e) initiative, including objectives, program areas, and a general timeline of activities.

411

EQPT: Ecological Quality Profiling Tool  

SciTech Connect (OSTI)

EQPT uses"Habitat Value Units" to assess the ecological quality of selected areas. A Habitat Value Unit is equal to one unit area of pristine or desired habitat. The proximity of waste reduces the value of the habitat. The GIS uses a proximity-based iterative algorithm to aggregate similarly classified waste sites. A variable size buffering algorithm is then used to approximate the effects of the waste on the environmental quality of the surrounding areas. The user designated areas are analyzed, and the resulting quality profiles are presented quantitatively in tabular summaries and graphically as grids on vector base maps.

Tzemos, Spyridon (BATTELLE (PACIFIC NW LAB)); Sackschewsky, Michael R. (BATTELLE (PACIFIC NW LAB)); Bilyard, Gordon R. (BATTELLE (PACIFIC NW LAB))

2002-08-21T23:59:59.000Z

412

Texas Crop Profile: Sweet Potatoes  

E-Print Network [OSTI]

is between 120 to 135 days. Texas Crop Profile S W E E T P O T A T O E S E-22 3-00 Prepared by Rodney L. Holloway, Kent D. Hall and Dudley T. Smith 1 In collaboration with James V. Robinson, George Philley and Marvin Baker 2 1 Extension Specialist, Extension... Command will not. Rodney L. Holloway Extension Specialist 2488 TAMU College Station, Texas 77843-2488 979-845-3849 rholloway@tamu.edu Kent D. Hall Extension Associate 2488 TAMU College Station, Texas 77843-2488 979-845-3849 kd-hall@tamu.edu Dudley Smith...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

413

Ca isotopic anomaly in the atmospheres of Ap stars  

E-Print Network [OSTI]

We present results of the Ca stratification analysis in the atmospheres of 21 magnetic chemically peculiar (Ap) stars. This analysis was based on the spectral observations carried out with the UVES spectrograph attached to the 8-m VLT telescope. Ca was found to be strongly stratified in all stars with different effective temperatures and magnetic field strengths. This element is overabundant by 1-1.5 dex below logtau_5000~-1 and strongly depleted above logtau_5000=-1.5. Based on the overall Ca abundance distributions, we modelled a profile of the IR-triplet Ca II 8498 line. It shows a significant contribution of the heavy isotopes 46Ca and 48Ca, which represent less than 1% of the solar Ca isotopic mixture. In Ap stars with the relatively small surface magnetic fields (Ca isotope is concentrated close to the photosphere, while the heavy isotopes are pushed towards the outer layers. Isotopic separation disappears in the atmospheres of stars with magnetic fields above 6-7 kG. The observed overall Ca stratification and isotopic anomalies may be explained by a combined action of the radiatively-driven diffusion and the light-induced drift.

T. Ryabchikova; O. Kochukhov; S. Bagnulo

2007-03-13T23:59:59.000Z

414

Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition  

E-Print Network [OSTI]

Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a ...

Zhuang, Qianlai

415

PWR AXIAL BURNUP PROFILE ANALYSIS  

SciTech Connect (OSTI)

The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

J.M. Acaglione

2003-09-17T23:59:59.000Z

416

Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition  

E-Print Network [OSTI]

Response of global soil consumption of atmospheric methane to changes in atmospheric climate June 2013. [1] Soil consumption of atmospheric methane plays an important secondary role in regulating). Here we used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21

417

Atmospheric Science The Earth's atmosphere, a layered sphere of gas extending  

E-Print Network [OSTI]

division study the composition, structure, chemical, and physical processes of the Earth's atmosphere. The division's four interrelated groups focus on satellite, airborne, and ground-based observations processes such as atmospheric dynamics, chemistry, and radiation on Earth and other planets. Our atmospheric

Mojzsis, Stephen J.

418

DISTRIBUTION OF CO{sub 2} IN SATURN'S ATMOSPHERE FROM CASSINI/CIRS INFRARED OBSERVATIONS  

SciTech Connect (OSTI)

This paper focuses on the CO{sub 2} distribution in Saturn's atmosphere based on analysis of infrared spectral observations of Saturn made by the Composite Infrared Spectrometer aboard the Cassini spacecraft. The Cassini spacecraft was launched in 1997 October, inserted in Saturn's orbit in 2004 July, and has been successfully making infrared observations of Saturn, its rings, Titan, and other icy satellites during well-planned orbital tours. The infrared observations, made with a dual Fourier transform spectrometer in both nadir- and limb-viewing modes, cover spectral regions of 10-1400 cm{sup 1}, with the option of variable apodized spectral resolutions from 0.53 to 15 cm{sup 1}. An analysis of the observed spectra with well-developed radiative transfer models and spectral inversion techniques has the potential to provide knowledge of Saturn's thermal structure and composition with global distributions of a series of gases. In this paper, we present an analysis of a large observational data set for retrieval of Saturn's CO{sub 2} distribution utilizing spectral features of CO{sub 2} in the Q-branch of the ?{sub 2} band, and discuss its possible relationship to the influx of interstellar dust grains. With limited spectral regions available for analysis, due to low densities of CO{sub 2} and interference from other gases, the retrieved CO{sub 2} profile is obtained as a function of a model photochemical profile, with the retrieved values at atmospheric pressures in the region of ?1-10 mbar levels. The retrieved CO{sub 2} profile is found to be in good agreement with the model profile based on Infrared Space Observatory measurements with mixing ratios of ?4.9 10{sup 10} at atmospheric pressures of ?1 mbar.

Abbas, M. M.; LeClair, A. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Woodard, E.; Young, M.; Stanbro, M. [University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Flasar, F. M.; Achterberg, R. K.; Bjoraker, G.; Brasunas, J.; Jennings, D. E. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kunde, V. G., E-mail: Mian.M.Abbas@nasa.gov, E-mail: Andre.C.LeClair@nasa.gov, E-mail: eaw0009@uah.edu, E-mail: mcs0001@uah.edu, E-mail: youngmm@uah.edu, E-mail: f.m.flasar@nasa.gov, E-mail: virgil.g.kunde@gsfc.nasa.gov [University of Maryland, College Park, MD 20742 (United States); Collaboration: and the Cassini/CIRS team

2013-10-20T23:59:59.000Z

419

Performance Engineering in the Community Atmosphere Model  

SciTech Connect (OSTI)

The Community Atmosphere Model (CAM) is the atmospheric component of the Community Climate System Model (CCSM) and is the primary consumer of computer resources in typical CCSM simulations. Performance engineering has been an important aspect of CAM development throughout its existence. This paper briefly summarizes these efforts and their impacts over the past five years.

Worley, P; Mirin, A; Drake, J; Sawyer, W

2006-05-30T23:59:59.000Z

420

Radio Frequency Signals in Jupiter's Atmosphere  

Science Journals Connector (OSTI)

...IMAGE OF A LARGE UPWARD ELECTRICAL-DISCHARGE...RINNERT K , HDB ATMOSPHERIC ELEC 27 ( 1995...MEASUREMENTS OF THE RF CHARACTERISTICS...JUPITER PLASMA-WAVE OBSERVATIONS...OBSERVATIONS OF UPPER ATMOSPHERIC OPTICAL FLASHES...Solar and thermal radiation...relatively large at the beginning...and about non-radiative...sensitive area of 6...

L. J. Lanzerotti; K. Rinnert; G. Dehmel; F. O. Gliem; E. P. Krider; M. A. Uman; J. Bach

1996-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Predicting Future Atmospheric Carbon Dioxide Levels  

Science Journals Connector (OSTI)

...re-quired 5-Mhz bandwidth...interstellar plasma. For UHF frequencies of 500 Mhz, this amounts...chang-ing the atmospheric carbon dioxide...in the polar areas. Although...The shaded area indicates the...per-missible atmospheric CO2 level might...emission rates are largest between 2000...

U. Siegenthaler; H. Oeschger

1978-01-27T23:59:59.000Z

422

Some challenges of middle atmosphere data assimilation  

E-Print Network [OSTI]

Some challenges of middle atmosphere data assimilation 1234567 89A64BC7DEF72B4 8629EEC7C72DEEE5.1256/qj.05.87 Some challenges of middle atmosphere data assimilation By S. POLAVARAPU1,2, T. G. SHEPHERD2 Data assimilation is employed at operational weather forecast centres to combine measurements and model

Wirosoetisno, Djoko

423

Atmospheric muon background in the ANTARES detector  

E-Print Network [OSTI]

An evaluation of the background due to atmospheric muons in the ANTARES high energy neutrino telescope is presented. Two different codes for atmospheric shower simulation have been used. Results from comparisons between these codes at sea level and detector level are presented. The first results on the capability of ANTARES to reject this class of background are given.

S. Cecchini; E. Korolkova; A. Margiotta; L. Thompson

2005-10-28T23:59:59.000Z

424

The Radon Content of the Atmosphere  

Science Journals Connector (OSTI)

... MEASUREMENTS of the radon content of the atmosphere were made so long ago as 1905 by Eve1-2 in ... whole seemed to support the original suggestion of Elster and Geitel6 in 1903 that the radon in the atmosphere arises mainly from the soil. These workers noted that the highest ...

W. ANDERSON; W. V. MAYNEORD; R. C. TURNER

1954-09-04T23:59:59.000Z

425

United States Department Atmospheric and Biospheric Interactions  

E-Print Network [OSTI]

United States Department Atmospheric and Biospheric Interactions of Agriculture Forest Service coordinator. 1997. Atmospheric and biospheric interactions of gases and energy in the Pacific region century have caused a dramatic increase in global air pollution. This process has accelerated in the past

Standiford, Richard B.

426

Extremes and Atmospheric Data Eric Gilleland  

E-Print Network [OSTI]

Extremes and Atmospheric Data Eric Gilleland Research Applications Laboratory National Center for Atmospheric Research 2007-08 Program on Risk Analysis, Extreme Events and Decision Theory, opening workshop 16-19 September, North Carolina #12;Extremes · Interest in making inferences about large, rare, extreme phenomena

Gilleland, Eric

427

A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE  

SciTech Connect (OSTI)

Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

Hoerst, S. M. [Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder, CO (United States); Brown, M. E., E-mail: sarah.horst@colorado.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States)

2013-02-20T23:59:59.000Z

428

Definition: Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search Dictionary.png Electromagnetic Profiling Techniques Electromagnetic profiling techniques map lateral variations in subsurface resistivity.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic) to measure the physical properties of rocks, and in particular, to detect

429

Project Profile: Forecasting and Influencing Technological Progress...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasting and Influencing Technological Progress in Solar Energy Project Profile: Forecasting and Influencing Technological Progress in Solar Energy Logos of the University of...

430

Project Profile: Regenerative Carbonate-Based Thermochemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System...

431

Project Profile: Concentrated Solar Thermoelectric Power | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermoelectric Power Project Profile: Concentrated Solar Thermoelectric Power MIT logo The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of...

432

Plant Energy Profiler | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Profiler Pumping System Assessment Tool Process Heating Assessment and Survey Tool Steam System Modeler Advanced Manufacturing Home Key Activities Research &...

433

TAU Portable Performance Profiling Tools Sameer Shende  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory, Los Alamos National Laboratory sameer@cs.uoregon.edu Tuning and Analysis Utilities http:www.acl.lanl.govtau TAU Profiling Team Members (In alphabetical order) Peter...

434

Atmospheric Radiation Measurement (ARM) Data from Specific Instruments Used in the ARM Program  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ARM is known for its comprehensive set of world-class, and in some cases, unique, instruments available for use by the global scientific community. In addition to the ARM instruments, the ARM Climate Research Facility identifies and acquires a wide variety of data including model, satellite, and surface data, from "external instruments," to augment the data being generated within the program. External instruments belong to organizations that are outside of the ARM Program. Field campaign instruments are another source of data used to augment routine observations. The huge archive of ARM data can be organized by instrument categories into twelve "collections:" Aerosols, Airborne Observations, Atmospheric Carbon, Atmospheric Profiling, Cloud Properties, Derived Quantities and Models, Ocean Observations, Radiometric, Satellite Observations, Surface Meteorology, Surface/Subsurface Properties, and Other. Clicking on one of the instrument categories leads to a page that breaks that category down into sub-categories. For example, "Atmospheric Profiling" is broken down into ARM instruments (with 11 subsets), External Instruments (with 6 subsets), and Field Campaign Instruments (with 42 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading.

435

Electrical conductivity of plasmas of DB white dwarf atmospheres  

Science Journals Connector (OSTI)

......Electrical conductivity of plasmas of DB white dwarf atmospheres V. A. Sreckovic 1 Lj...applicable for the helium plasmas of DB white dwarf atmospheres described in Koester...study of DB white dwarf atmosphere plasma properties, helium plasmas......

V. A. Sreckovic; Lj. M. Ignjatovic; A. A. Mihajlov; M. S. Dimitrijevic

2010-07-21T23:59:59.000Z

436

Atomic Force and Scanning Electron Microscopy of Atmospheric Particles  

E-Print Network [OSTI]

conducted so as to characterize atmospheric aerosols from anthropogenic (pollution) and natural (sea saltAtomic Force and Scanning Electron Microscopy of Atmospheric Particles ZAHAVA BARKAY,1 * AMIT 69978, Israel KEY WORDS atmospheric aerosols; atomic force microscopy; scanning electron microscopy

Shapira, Yoram

437

Adjoint modeling for atmospheric pollution process sensitivity at regional scale  

E-Print Network [OSTI]

Adjoint modeling for atmospheric pollution process sensitivity at regional scale Laurent Menut; 0345 Atmospheric Composition and Structure: Pollution--urban and regional (0305); 3210 Mathematical: atmospheric pollution, tropospheric ozone, urban pollution peaks, adjoint modeling, sensitivity Citation

Menut, Laurent

438

Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

439

Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

440

Parent and Teacher Report: Comparing Results from the Sensory Profile and the Sensory Profile School Companion  

E-Print Network [OSTI]

OBJECTIVE. This study investigated the similarities and differences between parent and teacher report on the Sensory Profile and the Sensory Profile School Companion (School Companion). METHOD. Using data gathered during ...

Clark, Jessica Saiter

2008-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Generated using version 3.0 of the official AMS LATEX template Atmospheric dynamics triggered by an oceanic SST front in a  

E-Print Network [OSTI]

Generated using version 3.0 of the official AMS LATEX template Atmospheric dynamics triggered and motivation Over the last few years, the emphasis of air­sea interaction studies has shifted from the effect. 1981; Businger and Shaw 1984) noted that the asymmetry in the SST profile creates an unequal heating

Ghil, Michael

442

A Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) Panel 2. Storm Peak Laboratory (SPL), near Steamboat Springs, Colorado  

E-Print Network [OSTI]

A Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) Panel 2. Storm in the Rocky Mountains to improve our understanding of regional carbon fluxes and to fill key gaps in the North Sep. 16, 2005. Large increases and a relatively flat profile at night indicate pooling of CO2 respired

Stephens, Britton B.

443

Visualizing Storms from NCAR's Atmosphere Model at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmosphere Model Visualizing Storms from NCAR's Atmosphere Model CCSM-sprabhat.png Global warming will likely change the statistics of tropical cyclones and hurricanes. In this...

444

Comparative Analysis of Urban Atmospheric Aerosol by Particle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

445

Intense and Highly Energetic Atmospheric Pressure Plasma Jet Arrays.  

E-Print Network [OSTI]

??This thesis documents the efforts taken to produce highly ionized and concentrated atmospheric pressure plasma using an arrayed atmospheric pressure plasma jet (APPJ) system. The (more)

Furmanski, John

2012-01-01T23:59:59.000Z

446

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...  

Office of Environmental Management (EM)

Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

447

An Infrared Spectral Library for Atmospheric Environmental Monitoring...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Library for Atmospheric Environmental Monitoring. An Infrared Spectral Library for Atmospheric Environmental Monitoring. Abstract: Infrared (IR) spectroscopy is one of several...

448

MEMORANDUM OF UNDERSTANDING THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION OF  

E-Print Network [OSTI]

national economies; Recognizing that significant interrelated, atmospheric, oceanic and terrestrial global, terrestrial and atmospheric ecosystem studies should focus on the structure and processes of the environment

449

Oxygen detected in atmosphere of Saturn's moon Dione  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of...

450

A framework for nonparametric profile monitoring  

Science Journals Connector (OSTI)

Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework ... Keywords: B-spline, Block bootstrap, Confidence band, Curve depth, Nonparametric profile monitoring

Shih-Chung Chuang; Ying-Chao Hung; Wen-Chi Tsai; Su-Fen Yang

2013-01-01T23:59:59.000Z

451

Research profiling for `standardization and innovation'  

Science Journals Connector (OSTI)

This paper addresses the profiling of research papers on `standardization and innovation'--exploring major topics and arguments in this field. Drawing on 528 papers retrieved from the database, Web of Science, we employed trend, factor, and clustering ... Keywords: Bibliometrics, Clustering analysis, Innovation, Publication analysis, Research profiling, Standardization, Taxonomy

Dong Geun Choi; Heesang Lee; Tae-Kyung Sung

2011-07-01T23:59:59.000Z

452

A PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH  

E-Print Network [OSTI]

can be advanced--among patients, health care providers, and the community at large. This workA PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH DIAGNOSES, 2000-2010 #12; #12; i A Profile of Kentucky Medicaid Mental Health Diagnoses, 20002010 BY Michael T. Childress

Hayes, Jane E.

453

Shortwave Transport in the Cloudy Atmosphere  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shortwave Transport in the Cloudy Atmosphere Shortwave Transport in the Cloudy Atmosphere by Anomalous/Lévy Diffusion: New Diagnostics Using FORTÉ Lightning Data A. B. Davis Los Alamos National Laboratory Space & Remote Sensing Sciences Group Los Alamos, New Mexico D. M. Suszcynsky Los Alamos National Laboratory Space & Atmospheric Sciences Group Los Alamos, New Mexico A. Marshak National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Introduction Anomalous photon diffusion can be described as an ad hoc modification of the popular 2-stream approximation, specifically the δ-Eddington/diffusion version, for monochromatic radiative transfer in a scattering plane-parallel atmosphere. In the physical picture that describes the standard diffusion (hence

454

Airborne Particles in Outdoor Air: Atmospheric Dust  

Science Journals Connector (OSTI)

For industrial products, in addition to the harmful effect like usual particles, the particular harmful effect of atmospheric dust especially metal particles is very large. For example, the light metal element...

Zhonglin Xu

2014-01-01T23:59:59.000Z

455

The Mars Atmospheric Constellation Observatory (MACO) Concept  

Science Journals Connector (OSTI)

The Mars Atmospheric Constellation Observatory (MACO) represents an innovative approach...2, and dust cycles together with the energy and momentum budgets. The mission concept is based on a constellation of satel...

E. R. Kursinski; W. Folkner; C. Zuffada

2004-01-01T23:59:59.000Z

456

Uraninite and Fullerene in Atmospheric Particulates  

E-Print Network [OSTI]

incineration, uranium mining, and atmospheric testing of nuclearweapons-burning power plants typically contain very small amounts of uranium ( concentrations, the form of the uranium has been unknown. Using a variety of advanced electron microscopy

Utsunomiya, Satoshi

457

Atmospheric Plasma Effect on Cotton Nonwovens  

Science Journals Connector (OSTI)

Atmospheric Plasma Effect on Cotton Nonwovens ... (22) Plasma II is more effective than Plasma I with the ability to develop homogeneous plasmas and eliminate boundary-layer air effects. ...

Sudheer Jinka; Uday Turaga; Vinitkumar Singh; Rachel L. Behrens; Cenk Gumeci; Carol Korzeniewski; Todd Anderson; Rory Wolf; Seshadri Ramkumar

2014-07-22T23:59:59.000Z

458

Adaptive control for Mars atmospheric flight  

E-Print Network [OSTI]

landing accuracy requirements for a manned space vehicle make it necessary to ?y a controlled entry trajectory rather than a more robust ballistic entry trajectory used for some robotic missions. The large variations in Mars atmospheric properties make a...

Restrepo, Carolina Isabel

2009-05-15T23:59:59.000Z

459

Effects of Atmospheric Turbulence on Ballistic Testing  

Science Journals Connector (OSTI)

The effects of atmospheric turbulence on munition target scatter are determined from numerical simulations of ballistic trajectories through many realizations of realistic simulated turbulent wind fields. A technique is evaluated for correcting ...

Rod Frehlich; Robert Sharman; Charles Clough; Michael Padovani; Kelly Fling; Ward Boughers; W. Scott Walton

2008-05-01T23:59:59.000Z

460

Reducing the atmospheric impact of wet slaking  

SciTech Connect (OSTI)

Means of reducing the atmospheric emissions due to the wet slaking of coke are considered. One option, investigated here, is to remove residual active silt and organic compounds from the biologically purified wastewater sent for slaking, by coagulation and flocculation.

B.D. Zubitskii; G.V. Ushakov; B.G. Tryasunov; A.G.Ushakov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

HYPERsensarium : an archive of atmospheric conditions  

E-Print Network [OSTI]

HYPERsensarium proposes a tangible interface of atmospheres for public experience through an archive of historical and projected weathers. While architecture's purpose has long been to act as the technical boundary between ...

Shaw, Kelly E. (Kelly Evelyn)

2013-01-01T23:59:59.000Z

462

Balanced Atmospheric Response to Squall Lines  

Science Journals Connector (OSTI)

When a Squall line propagates through the atmosphere, it not only excite transient gravityinertia wave motion but also produces more permanent modifications to the large-scale balanced flow. Here we calculate this balanced response using the is ...

Wayne H. Schubert; Scott R. Fulton; Rolf F. A. Herttenstein

1989-08-01T23:59:59.000Z

463

Azores Global Atmosphere Monitoring Complex 1. INTRODUCTION  

E-Print Network [OSTI]

to the accuracy of European weather forecasts. Today, they provide a unique base for studies of atmospheric levels. Measurements in the free troposphere (FT) are particularly useful, because trace gas and particle

Honrath, Richard E.

464

Synopsis of Atmospheric Research under MAGS  

Science Journals Connector (OSTI)

Cold regions present a challenge to atmospheric and hydrologic research. Their low temperatures test the endurance of field workers and their instruments; their distance from large urban centers raises the cos...

Ming-ko Woo

2008-01-01T23:59:59.000Z

465

Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scan...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recent Progress in Retrieving Air Temperature Profiles Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scanning Radiometer Data D. Cimini University of L'Aquila L'Aquila, Italy J. A. Shaw Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction A system of two scanning radiometers has been developed by National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory (ETL) and deployed on the NOAA Ron H. Brown (RHB) Research Vessel (RV) during the Nauru99 cruise in the Tropical Western Pacific,

466

TOF Profile function used at POWGEN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TOF Profile function used at POWGEN: TOF Profile function used at POWGEN: Powgen uses a TOF profile function which is a variation on the standard profile function originally derived by VonDreele, Jorgensen and Windsor (VonDreele RB, Jorgensen JD and Windsor CG, "Rietveld Refinement with Spallation Neutron Powder Diffraction Data", J. Appl. Cryst. 15, 581 (1982). This function is implemented in GSAS (profile function 3, 4 & 5) and Fullprof NPROF 9 and is most applicable to diffractometers viewing ambient polyethylene or water moderators. The POWGEN diffractometer, however, views a poisoned cryogenic H 2 (liquid) moderator. The variation in peak shape and peak position with TOF (or d-spacing d) is calculated using a more complex function related to thermal and epithermal components of the neutron spectrum that was

467

Atmospheric State, Cloud Microphysics and Radiative Flux  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

Mace, Gerald

468

Air Activation Following an Atmospheric Explosion  

SciTech Connect (OSTI)

In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

2013-03-13T23:59:59.000Z

469

Trace analysis of atmospheric organic bases  

E-Print Network [OSTI]

analysis of atmospheric organic bases were investigated; the study included (1) the analysis of submarine charcoal filter bed samples for nitrogen bases and (2) the use of metallic tetraphenylporphines (TPP) as specific adsorbents for atmospheric... gas chromatography (GC) and GC-mass spectrometry (GC-MS). The isolation procedure provided acceptable reproducibi lity in the determination of trace amounts of nitrogen bases in the submarine environment. Several metallic TPP adsorbents were...

Clark, Dwayne C.

2012-06-07T23:59:59.000Z

470

The Birth and Life of Our Atmosphere  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Birth and Life of Our Atmosphere Birth and Life of Our Atmosphere Nature Bulletin No. 554-A February 15, 1975 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE BIRTH AND LIFE OF OUR ATMOSPHERE In Bulletin No. 542-A we described the atmosphere that surrounds the earth, held there by the pull of gravity, including the canopy of air immediately above us. That canopy is responsible for our weather and climates, shields us from the killing rays of the sun, and furnishes substances necessary for all life: oxygen, nitrogen, carbon dioxide, and water vapor. Astronomers believe that none of the other planets -- excepting Mars, perhaps -- has an atmosphere anything like ours. The principal elements, free nitrogen (78 percent) and free oxygen (21 percent), apparently are rare in the universe. On the other hand, the earth's atmosphere contains only traces of free hydrogen and helium -- the two lightest gases -- whereas they are by far the most common elements elsewhere in the universe.

471

The Atmospheric Monitoring System of the JEM-EUSO Space Mission  

E-Print Network [OSTI]

An Atmospheric Monitoring System (AMS) is a mandatory and key device of a space-based mission which aims to detect Ultra-High Energy Cosmic Rays (UHECR) and Extremely-High Energy Cosmic Rays (EHECR) from Space. JEM-EUSO has a dedicated atmospheric monitoring system that plays a fundamental role in our understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. Our AMS consists of a very challenging space infrared camera and a LIDAR device, that are being fully designed with space qualification to fulfil the scientific requirements of this space mission. The AMS will provide information of the cloud cover in the FoV of JEM-EUSO, as well as measurements of the cloud top altitudes with an accuracy of 500 m and the optical depth profile of the atmosphere transmittance in the direction of each air shower with an accuracy of 0.15 degree and a resolution of 500 m. This will ensure that the energy of the primary UHECR and the depth of maximum development of the EAS ( Extensive Air Shower)...

Frias, M D Rodriguez; Bozzo, E; del Peral, L; Neronov, A; Wada, S

2015-01-01T23:59:59.000Z

472

Combining a monostatic sodar with a radar wind profiler and RASS in a power plant pollution study  

SciTech Connect (OSTI)

A single-beam monostatic sodar, radar wind profiler, radio acoustic sounding system (RASS), and in situ sensors mounted on a 100-m tower were used to acquire meteorological data in the vicinity of a coal burning power plant in a northern Thailand valley. These data were used to examine the atmospheric processes that are responsible for fumigation of high concentrations of sulfur dioxide to the surface on a near daily basis during the cool season.

Crescenti, G.H.; Templeman, B.D.; Gaynor, J.E.

1995-05-01T23:59:59.000Z

473

Recent Developments on the Broadband Heating Rate Profile Value-Added Product  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recent Developments on the Recent Developments on the Broadband Heating Rate Profile Value-Added Product E. J. Mlawer, J. S. Delamere, and S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts M. A. Miller and K. L. Johnson Brookhaven National Laboratory Upton, New York T. R. Shippert and C. N. Long Pacific Northwest National Laboratory Richland, Washington R. G. Ellingson Florida State University Tallahassee, Florida M. H. Zhang State University of New York - Stony Brook Albany, New York R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia R. T. Cederwall and S. C. Xie Los Alamos National Laboratory Los Alamos, New Mexico J. A. Ogren National Oceanic and Atmospheric Administration

474

Simple model to estimate the contribution of atmospheric CO2 to the Earths greenhouse effect  

Science Journals Connector (OSTI)

We show how the CO2 contribution to the Earths greenhouse effect can be estimated from relatively simple physical considerations and readily available spectroscopic data. In particular we present a calculation of the climate sensitivity (that is the increase in temperature caused by a doubling of the concentration of CO2) in the absence of feedbacks. Our treatment highlights the important role played by the frequency dependence of the CO2absorptionspectrum. For pedagogical purposes we provide two simple models to visualize different ways in which the atmosphere might return infrared radiation back to the Earth. The more physically realistic model based on the Schwarzschild radiative transfer equations uses as input an approximate form of the atmospheres temperature profile and thus includes implicitly the effect of heat transfer mechanisms other than radiation.

Derrek J. Wilson; Julio Gea-Banacloche

2012-01-01T23:59:59.000Z

475

Spatially Resolved STIS Spectroscopy of Betelgeuse's Outer Atmosphere  

E-Print Network [OSTI]

We present spatially resolved spectra observed with HST-STIS of the upper chromosphere and dust envelope of Alpha Orionis (M2 Iab). In the fall of 2002 a set of five high-resolution near-UV spectra was obtained by scanning at intensity peak-up position and four off-limb target positions up to one arcsecond, using a small aperture, to investigate the thermal conditions and flow dynamics in the outer atmosphere of this important nearby cool supergiant star. Based on Mg II h & k, Fe II 2716 A, C II 2327 A, and Al II ] 2669 A emission lines we provide the first evidence for the presence of warm chromospheric plasma at least 1 arcsecond away from the star at ~40 R* (1 R*~700 Rsun). The STIS spectra reveal that Betelgeuse's upper chromosphere extends far beyond the circumstellar H alpha envelope of ~5 R*, determined from previous ground-based imaging. The flux in the broad and self-absorbed resonance lines of Mg II decreases by a factor of ~700 compared to the flux at chromospheric disk center. We observe strong asymmetry changes in the Mg II h and Si I resonance line profiles when scanning off-limb, signaling the outward acceleration of gas outflow in the upper chromosphere. From the radial intensity distributions of Fe I and Fe II emission lines we determine the radial non-LTE iron ionization balance. We compute that the local kinetic gas temperatures of the warm chromospheric gas component in the outer atmosphere exceed 2600 K, when assuming local gas densities of the cool gas component we determine from radiative transfer models that fit the 9.7 um silicate dust emission feature. The spatially resolved STIS spectra directly demonstrate that warm chromospheric plasma co-exisists with cool gas in Betelgeuse's circumstellar dust envelope.

A. Lobel; J. Aufdenberg; A. K. Dupree; R. L. Kurucz; R. P. Stefanik; G. Torres

2003-12-03T23:59:59.000Z

476

Infrasound records from U.S. atmospheric tests  

SciTech Connect (OSTI)

The United States conducted over 100 atmospheric nuclear tests at the Nevada Test Site from 1951 through 1962. Some of the earliest tests caused unexpected damage, primarily broken glass and cracked plaster, in Las Vegas and other surrounding communities. To address this problem, Sandia initiated a program to monitor and predict the pressure waves around NTS. Infrasound recording systems were developed, then field for all tests beginning with Operation Buster in October 1951. Investigators soon discovered that near-surface temperature inversions and wind profiles caused the damaging pressures in Las Vegas. A typical test was recorded at about a dozen stations from the Control Point on NTS to as far away as Pasadena, CA. In addition, some tests in the South Pacific were monitored, as well as numerous chemical explosions. Strip charts recorded signals in the frequency band from 0.05 to 30 Hz, and the paper tapes were achieved at Sandia in the early 1970s. The NTS events ranged in yield from below 1 ton to 74 kilotons; source altitudes varied from near ground level (including some cratering experiments) to as high as 11 km. The resulting data contain a wealth of information on the source function, yield scaling and regional propagation of infrasound signals from atmospheric explosions. The renewed interest in infrasonic monitoring for CTBT verification has prompted the authors to exhume some of the archived records. The authors plan to digitize the signals from several tests and evaluate their applicability to CTBT issues. In addition, they will collect any existing parametric measurements for these records (arrival times, amplitudes, etc.). All data will be converted to CSS database format and made available to the research community. If appropriate, the resulting information could also be included in the Knowledge Base under development for CTBT monitoring.

Chael, E.P.; Lohr, R.D.

1998-07-01T23:59:59.000Z

477

Stellar model atmospheres with magnetic line blanketing. III. The role of magnetic field inclination  

E-Print Network [OSTI]

Context. See abstract in the paper. Aims. In the last paper of this series we study the effects of the magnetic field, varying its strength and orientation, on the model atmosphere structure, the energy distribution, photometric colors and the hydrogen Balmer line profiles. We compare with the previous results for an isotropic case in order to understand whether there is a clear relation between the value of the magnetic field angle and model changes, and to study how important the additional orientational information is. Also, we examine the probable explanation of the visual flux depressions of the magnetic chemically peculiar stars in the context of this work. Methods. We calculated one more grid of the model atmospheres of magnetic A and B stars for different effective temperatures (Teff=8000K, 11000K, 15000K), magnetic field strengths (B=0, 5, 10, 40 kG) and various angles of the magnetic field (Omega=0-90 degr) with respect to the atmosphere plane. We used the LLmodels code which implements a direct method for line opacity calculation, anomalous Zeeman splitting of spectral lines, and polarized radiation transfer. Results. We have not found significant changes in model atmosphere structure, photometric and spectroscopic observables or profiles of hydrogen Balmer lines as we vary the magnetic field inclination angle Omega. The strength of the magnetic field plays the main role in magnetic line blanketing. We show that the magnetic field has a clear relation to the visual flux depressions of the magnetic CP stars. Conclusions. See abstract in the paper.

S. A. Khan; D. V. Shulyak

2006-07-20T23:59:59.000Z

478

Which Hydrogen Balmer Lines Are Most Reliable for Determining White Dwarf Atmospheric Parameters?  

E-Print Network [OSTI]

Our preliminary results from laboratory experiments studying white dwarf (WD) photospheres show a systematic difference between experimental plasma conditions inferred from measured H$\\beta$ absorption line profiles versus those from H$\\gamma$. One hypothesis for this discrepancy is an inaccuracy in the relative theoretical line profiles of these two transitions. This is intriguing because atmospheric parameters inferred from H Balmer lines in observed WD spectra show systematic trends such that inferred surface gravities decrease with increasing principal quantum number, $n$. If conditions inferred from lower-$n$ Balmer lines are indeed more accurate, this suggests that spectroscopically determined DA WD masses may be greater than previously thought and in better agreement with the mean mass determined from gravitational redshifts.

Falcon, Ross E; Bailey, J E; Gomez, T A; Montgomery, M H; Winget, D E; Nagayama, T

2014-01-01T23:59:59.000Z

479

Atmospheric chemistry impacts and feedbacks on the global carbon cycle  

E-Print Network [OSTI]

prediction. Issues to be addressed include the quantification of the impact of the atmospheric oxidation and the oxidative state of the atmosphere. The end goal is to create a model that can quantitatively predict is required to: Predict 3-D atmospheric CO2 production as a function of the CCSM3 atmospheric chemistry module

480

MET 600: Advanced Atmospheric Dynamics Air-sea interface  

E-Print Network [OSTI]

the atmosphere-ocean-land system is driven? #12;Upper-Ocean Currents How the atmosphere-ocean-land system/Salinity/Mass/Momentum Conservations #12; How the atmosphere-ocean-land system is driven? It is the sun that sustains all living beings on earth #12;Energy Conservation: Global Radiation Balance How the atmosphere-ocean-land system is driven

Fu, Joshua Xiouhua

Note: This page contains sample records for the topic "atmospheric profiling browse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Performance Profiles of Major Energy Producers 1993  

Gasoline and Diesel Fuel Update (EIA)

3) 3) Distribution Category UC-950 Performance Profiles of Major Energy Producers 1993 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 Energy Information Administration/ Performance Profiles of Major Energy Producers 1993 ii This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/ Performance Profiles of Major Energy Producers 1993 iii The Financial Reporting System, 1977-1993 diskette is available from the Energy Information Administration.

482

Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Profiling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

483

Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Vertical Seismic Profiling Vertical Seismic Profiling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Seismic Profiling Details Activities (4) Areas (3) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

484

Electrical Profiling Configurations | Open Energy Information  

Open Energy Info (EERE)

Electrical Profiling Configurations Electrical Profiling Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Profiling Configurations Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Direct-Current Resistivity Survey Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

485

Unified line profiles for hydrogen perturbed by collisions with protons: satellites and asymmetries  

E-Print Network [OSTI]

We present new calculations of unified line profiles for hydrogen perturbed by collisions with protons. We report on new calculations of the potential energies and dipole moments which allow the evaluation of profiles for the lines of the Lyman series up to Lyman$\\delta$ and the Balmer series up to Balmer10. Unified calculations only existed for the lines Lyman$\\alpha$ to Lyman$\\gamma$ and Balmer$\\alpha$ including the H$_2^+$ quasi-molecule. These data are available as online material accompanying this paper and should be included in atmosphere models, in place of the Stark effect of protons, since the quasi-molecular contributions cause not only satellites, but large asymmetries that are unaccounted for in models that assume Stark broadening of electrons and protons are equal.

Pelisoli, Ingrid; Kepler, S O

2015-01-01T23:59:59.000Z

486

Physics of Atmospheres and Oceans: Class Question Sheets COMPARATIVE PLANETARY ATMOSPHERES  

E-Print Network [OSTI]

is the mass of Jupiter and R its radius. Assuming this is all converted to thermal energy, give a crudePhysics of Atmospheres and Oceans: Class Question Sheets COMPARATIVE PLANETARY ATMOSPHERES PLA.1 for discounting the less popular of these? Show that the energy liberated during the collapse of a sphere of mass

Read, Peter L.

487

Atmospheric reactivity of gaseous dimethyl sulfate  

SciTech Connect (OSTI)

The atmospheric reactivity of dimethyl sulfate (DMS) with a series of atmospheric species has been investigated. Upper limits to the rate constants for the homogeneous gas-phase reactions of DMS with O{sub 3}, NH{sub 3}, and H{sub 2}O have been determined by using FTIR spectroscopy and are <1.4 {times} 10{sup {minus}21}, <1.5 {times} 10{sup {minus}21}, and <1.1 {times} 10{sup {minus}23} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}, respectively. The reactivity of DMS toward ON radicals and Cl atoms has been determined by using relative rate techniques, and the rate constants for those reactions are <5 {times} 10{sup {minus}13} and (4.2 {plus minus} 0.5) {times} 10{sup {minus}13} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}, respectively. These rate constants correspond to atmospheric lifetimes ranging from >23 days with respect to reaction with OH radicals to >33 years with respect to reaction with ozone. With the possible exception of its reaction with water, for which the calculated lifetime of DMS is >2 days, these results indicate that the atmospheric fate of DMS is not determined by its homogeneous gas-phase reactions with any of the atmosphere species studied.

Japar, S.M.; Wallington, T.J.; Andino, J.M.; Ball, J.C. (Ford Motor Co., Dearborn, MI (USA))

1990-03-01T23:59:59.000Z

488

Subsurface imaging with reverse vertical seismic profiles  

E-Print Network [OSTI]

This thesis presents imaging results from a 3D reverse vertical seismic profile (RVSP) dataset measured at a hydrocarbon bearing pinnacle reef in northern Michigan. The study presented many challenges in seismic data ...

Krasovec, Mary L. (Mary Lee), 1972-

2001-01-01T23:59:59.000Z

489

load profile | OpenEI Community  

Open Energy Info (EERE)

data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL Files: applicationzip icon System Advisor Model Tool for Downloading Load Data...

490

Longitudinal profile of channels cut by springs  

E-Print Network [OSTI]

We propose a simple theory for the longitudinal profile of channels incised by groundwater flow. The aquifer surrounding the stream is represented in two dimensions through Darcy's law and the Dupuit approximation. The ...

Devauchelle, O.

491

Automatic program timing profiles with FTN4  

SciTech Connect (OSTI)

Design of a scheme for producing execution timing profiles of FORTRAN programs automatically is proposed with a recommendation to implement it as an option to the compiler. An experimental implementation on the LBL 7600 is also described. 1 figure.

Friedman, R.

1980-09-01T23:59:59.000Z

492

Definition: Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Profiling Profiling Jump to: navigation, search Dictionary.png Vertical Seismic Profiling Vertical Seismic Profile (VSP) is a technique of seismic measurements used for high resolution seismic imaging. It can also be used for correlation with surface seismic data providing velocity information and information for processing such as deconvolution parameters. The defining characteristic of a VSP is that the detectors are in a borehole.[1][2][3] View on Wikipedia Wikipedia Definition Also Known As Advanced Borehole Seismology (ABS), Related Terms Seismic Techniques, High Resolution Imaging and Monitoring References ↑ Bob Hardage VSP Principles ↑ High resolution 3D seismic imaging using 3C data from large downhole seismic arrays Paulsson et al. (2004) ↑ Mueller Soroka Paulsson (2010)

493

Analysis Methodology for Industrial Load Profiles  

E-Print Network [OSTI]

ANALYSIS METHODOLOGY FOR INDUSTRIAL LOAD PROFILES Thomas W. Reddoch Executive Vice President Eleclrolek Concepts, Inc. Knoxvillc, Tennessee ABSTRACT A methodology is provided for evaluating the impact of various demand-side management... (OSM) options on industrial customers. The basic approach uses customer metered load profile data as a basis for the customer load shape. OSM technologies are represented as load shapes and are used as a basis for altering the customers existing...

Reddoch, T. W.

494

Maine Geological Survey Borehole Temperature Profiles  

SciTech Connect (OSTI)

This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

Marvinney, Robert

2013-11-06T23:59:59.000Z

495

Atmospheric and Climate Science | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric and Climate Science Atmospheric and Climate Science Argonne research in aerosols, micro-meteorology, remote sensing, and atmospheric chemistry combined with our scalable, portable, high-performance climate and weather applications offer a unique look at the complexities of a dynamic planet. Changes in climate can affect biodiversity, the cost of food, our health, and even whole economies. Argonne is developing computational models and tools designed to shed light on complex biological processes and their economic, social, and health effects. Research spans the molecular level to whole organisms and their interaction with climate, the ecosystem, and human activities. The goal is to improve our understanding of the world around us while increasing the accuracy of regional climate models to

496

Atmospheric Delta 14C Record from Wellington  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Isotopes » Carbon Isotopes » δ14C from Wellington Atmospheric δ14C Record from Wellington graphics Graphics data Data Investigators M.R. Manning, W.H. Melhuish National Institute of Water and Atmospheric Research, Ltd., Climate Division, Gracefield Road, Gracefield, P.O. Box 31-311, Lower Hutt, New Zealand Period of Record 1954-93 Methods Trays containing ~2 L of 5 normal NaOH carbonate-free solution are typically exposed for intervals of 1-2 weeks, and the atmospheric CO2 absorbed during that time is recovered by acid evolution. Considerable fractionation occurs during absorption into the NaOH solution, and the standard fractionation correction (Stuiver and Polach 1977) is used to determine a δ 14C value corrected to δ 13C = -25 per mil. Some samples reported here were taken using BaOH solution or with extended

497

atmospheric water vapor | OpenEI  

Open Energy Info (EERE)

atmospheric water vapor atmospheric water vapor Dataset Summary Description (Abstract): Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a concentrating collector, such as a dish collector, which tracks the sun continuously. Source NREL Date Released July 31st, 2006 (8 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmospheric water vapor Carribean Islands Central America DNI GIS Mexico NREL GEF solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 247.8 KiB) text/csv icon Download Data (csv, 370.6 KiB) Quality Metrics Level of Review Some Review

498

Our Dusty Atmosphere | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dusty Atmosphere Dusty Atmosphere Our Dusty Atmosphere September 6, 2011 - 4:26pm Addthis A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Researchers are developing a better understanding of the effects of

499

Our Dusty Atmosphere | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Our Dusty Atmosphere Our Dusty Atmosphere Our Dusty Atmosphere September 6, 2011 - 4:26pm Addthis A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Researchers are developing a better understanding of the effects of

500

Atmospheric Radiation Measurement Climate Research Facility | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Radiation Measurement Climate Research Facility Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists study clouds and their influence on the sun's radiant energy, which heats our planet. Above is one of the purchases: the Vaisala Present Weather Detector. It optically measures visibility, present weather, precipitation intensity, and precipitation type. It provides a measure of current weather conditions by combining measurements from three