Sample records for atmospheric mixing ramix

  1. ARM - Field Campaign - Radon Measurements of Atmospheric Mixing (RAMIX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign(RHUBC)2008)

  2. ARM - Field Campaign - Radon Measurements of Atmospheric Mixing (RAMIX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity

  3. Article Atmospheric Science Entrainment-mixing parameterization in shallow cumuli

    E-Print Network [OSTI]

    Ohta, Shigemi

    an important role in global radiation budget [1­4]. Turbulent entrainment-mixing processes in cumulus clouds are critical to cloud­climate feedbacks, evaluation of aerosol indirect effects, and precipitationArticle Atmospheric Science Entrainment-mixing parameterization in shallow cumuli and effects

  4. atmospheric co2 mixing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  5. atmospheres pressure mixed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Aircraft Performance: Atmospheric Pressure FAA Handbook of Aeronautical Knowledge Chap 10 12 - 21% Oxygen - 1% other gases (argon,...

  6. Widespread elevated atmospheric SF6 mixing ratios in the Northeastern United States: Implications for

    E-Print Network [OSTI]

    Ho, David

    Widespread elevated atmospheric SF6 mixing ratios in the Northeastern United States: Implications; Unsaturated zone; Northeastern USA; SF6 Summary SF6 is a promising transient tracer for groundwater dating, but elevated levels of atmospheric SF6 may limit application of this dating method in urban areas. To deter

  7. Changes in the ocean mixed layer following extraordinary atmospheric forcing. Master's thesis

    SciTech Connect (OSTI)

    Mettlach, T.R.

    1985-12-01T23:59:59.000Z

    A one-dimensional ocean planetary boundary-layer model is used to predict the evolution of the thermal structure of the ocean mixed layer at six locations in the ocean following the hypothetical effects on the atmosphere of a major nuclear war. The inputs to the ocean model are the heat and momentum fluxes computed from a 3D climate model designed to simulate nuclear winter effects in the atmosphere. The experiment gives evidence that the summertime mixed layer can cool 5 C within 30 days and that the effect of increased wind along coastal regions due to sudden ocean-land temperture differences will deepen the mixed layer 20 to 30 meters. The scientific literature on the subject of nuclear winter is reviewed and interpreted to trace the evolution of the nuclear winter hypothesis and to assess the quality of the results of the mixed layer experiment.

  8. Energy transport, overshoot, and mixing in the atmospheres of very cool stars

    E-Print Network [OSTI]

    H. -G. Ludwig

    2002-08-30T23:59:59.000Z

    We constructed hydrodynamical model atmospheres for mid M-type main-, as well as pre-main-sequence objects. Despite the complex chemistry encountered in such cool atmospheres a reasonably accurate representation of the radiative transfer is possible. The detailed treatment of the interplay between radiation and convection in the hydrodynamical models allows to study processes usually not accessible within the framework conventional model atmospheres. In particular, we determined the efficiency of the convective energy transport, and the efficiency of mixing by convective overshoot. The convective transport efficiency expressed in terms of an equivalent mixing-length parameter amounts to values around ~2 in the optically thick, and ~2.8 in the optically thin regime. The thermal structure of the formally convectively stable layers is little affected by convective overshoot and wave heating, i.e. stays close to radiative equilibrium. Mixing by convective overshoot shows an exponential decline with geometrical distance from the Schwarzschild stability boundary. The scale height of the decline varies with gravitational acceleration roughly as g^(-1/2), with 0.5 pressure scale heights at log(g)=5.0.

  9. The Ratio of Helium- to Hydrogen-Atmosphere White Dwarfs: Direct Evidence for Convective Mixing

    E-Print Network [OSTI]

    P. -E. Tremblay; P. Bergeron

    2007-10-04T23:59:59.000Z

    We determine the ratio of helium- to hydrogen-atmosphere white dwarf stars as a function of effective temperature from a model atmosphere analysis of the infrared photometric data from the Two Micron All Sky Survey combined with available visual magnitudes. Our study surpasses any previous analysis of this kind both in terms of the accuracy of the Teff determinations as well as the size of the sample. We observe that the ratio of helium- to hydrogen-atmosphere white dwarfs increases gradually from a constant value of ~0.25 between Teff = 15,000 K and 10,000 K to a value twice as large in the range 10,000 > Teff > 8000 K, suggesting that convective mixing, which occurs when the bottom of the hydrogen convection zone reaches the underlying convective helium envelope, is responsible for this gradual transition. The comparison of our results with an approximate model used to describe the outcome of this convective mixing process implies hydrogen mass layers in the range log M_H/M_tot = -10 to -8 for about 15% of the DA stars that survived the DA to DB transition near Teff ~ 30,000 K, the remainder having presumably more massive layers above log M_H/M_tot ~ -6.

  10. Limits on Sterile Neutrino Mixing using Atmospheric Neutrinos in Super-Kamiokande

    E-Print Network [OSTI]

    :,; Haga, Y; Hayato, Y; Ikeda, M; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Tanaka, H; Tomura, T; Ueno, K; Wendell, R A; Yokozawa, T; Irvine, T; Kajita, T; Kametani, I; Kaneyuki, K; Lee, K P; McLachlan, T; Nishimura, Y; Richard, E; Okumura, K; Labarga, L; Fernandez, P; Berkman, S; Tanaka, H A; Tobayama, S; Gustafson, J; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Carminati, G; Kropp, W R; Mine, S; Weatherly, P; Renshaw, A; Smy, M B; Sobel, H W; Takhistov, V; Ganezer, K S; Hartfiel, B L; Hill, J; Keig, W E; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Kikawa, T; Minamino, A; Murakami, A; Nakaya, T; Suzuki, K; Takahashi, S; Tateishi, K; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yamaguchi, R; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Suda, Y; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Connolly, K; Wilkes, R J

    2014-01-01T23:59:59.000Z

    We present limits on sterile neutrino mixing using 4,438 live-days of atmospheric neutrino data from the Super-Kamiokande experiment. We search for fast oscillations driven by an eV$^2$-scale mass splitting and for oscillations into sterile neutrinos instead of tau neutrinos at the atmospheric mass splitting. When performing both these searches we assume that the sterile mass splitting is large, allowing $\\sin^2(\\Delta m^2 L/4E)$ to be approximated as $0.5$, and we assume that there is no mixing between electron neutrinos and sterile neutrinos ($|U_{e4}|^2 = 0$). No evidence of sterile oscillations is seen and we limit $|U_{\\mu4}|^2$ to less than 0.041 and $|U_{\\tau4}|^2$ to less than 0.18 for $\\Delta m^2 > 0.8$ eV$^2$ at the 90% C.L. in a 3+1 framework. The approximations that can be made with atmospheric neutrinos allow these limits to be easily applied to 3+N models, and we provide our results in a generic format to allow comparisons with other sterile neutrino models.

  11. Near Maximal Atmospheric Neutrino Mixing in Neutrino Mass Models with Two Texture Zeros

    E-Print Network [OSTI]

    S. Dev; Radha Raman Gautam; Lal Singh; Manmohan Gupta

    2014-08-05T23:59:59.000Z

    The implications of a large value of the effective Majorana neutrino mass for a class of two texture zero neutrino mass matrices have been studied in the flavor basis. It is found that these textures predict near maximal atmospheric neutrino mixing angle in the limit of large effective Majorana neutrino mass. It is noted that this prediction is independent of the values of solar and reactor neutrino mixing angles. We present the symmetry realization of these textures using the discrete cyclic group $Z_3$. It is found that the texture zeros realised in this work remain stable under renormalization group running of the neutrino mass matrix from the seesaw scale to the electroweak scale, at one loop level.

  12. Energy transport, overshoot, and mixing in the atmospheres of M-type main- and pre-main-sequence objects

    E-Print Network [OSTI]

    H. -G. Ludwig; F. Allard; P. H. Hauschildt

    2006-08-12T23:59:59.000Z

    We constructed hydrodynamical model atmospheres for mid M-type main-, as well as pre-main-sequence (PMS) objects. Despite the complex chemistry encountered in these cool atmospheres a reasonably accurate representation of the radiative transfer is possible, even in the context of time-dependent and three-dimensional models. The models provide detailed information about the morphology of M-type granulation and statistical properties of the convective surface flows. In particular, we determined the efficiency of the convective energy transport, and the efficiency of mixing by convective overshoot. The convective transport efficiency was expressed in terms of an equivalent mixing-length parameter alpha in the formulation of mixing-length theory (MLT) given by Mihalas (1978). Alpha amounts to values around 2 for matching the entropy of the deep, adiabatically stratified regions of the convective envelope, and lies between 2.5 and 3.0 for matching the thermal structure of the deep photosphere. For current spectral analysis of PMS objects this implies that MLT models based on alpha=2.0 overestimate the effective temperature by 100 K and surface gravities by 0.25 dex. The average thermal structure of the formally convectively stable layers is little affected by convective overshoot and wave heating, i.e., stays close to radiative equilibrium conditions. Our models suggest that the rate of mixing by convective overshoot declines exponentially with geometrical distance to the Schwarzschild stability boundary. It increases at given effective temperature with decreasing gravitational acceleration.

  13. Flavor symmetry L{sub e}-L{sub {mu}}-L{sub {tau}}, atmospheric neutrino mixing, and CP violation in the lepton sector

    SciTech Connect (OSTI)

    Petcov, S.T.; Rodejohann, W. [Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, I-34014 Trieste, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34014 Trieste (Italy)

    2005-04-01T23:59:59.000Z

    The Pontecorvo-Maki-Nakagawa-Sakata neutrino mixing matrix is given, in general, by the product of two unitary matrices associated with the diagonalization of the charged lepton and neutrino mass matrices. Assuming that the active flavor neutrinos possess a Majorana mass matrix which is diagonalized by a bimaximal mixing matrix, we give the allowed forms of the charged lepton mixing matrix and the corresponding implied forms of the charged lepton mass matrix. We then assume that the origin of bimaximal mixing is a weakly broken flavor symmetry corresponding to the conservation of the nonstandard lepton charge L{sup '}=L{sub e}-L{sub {mu}}-L{sub {tau}}. The latter does not predict, in general, the atmospheric neutrino mixing to be maximal. We study the impact of this fact on the allowed forms of the charged lepton mixing matrix and on the neutrino mixing observables, analyzing the case of CP violation in detail. When compared with the case of exact bimaximal mixing, the deviations from zero U{sub e3} and from maximal atmospheric neutrino mixing are typically more sizable if one assumes just L{sup '} conservation. In fact, |U{sub e3}|{sup 2} can be as small as 0.007 and atmospheric neutrino mixing can take any value inside its currently allowed range. We discuss under which conditions the atmospheric neutrino mixing angle is larger or smaller than {pi}/4. We present also a simple seesaw realization of the implied light neutrino Majorana mass matrix and consider leptogenesis in this scenario.

  14. Evaluation of A New Mixed-Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model (CAM3) and ARM Observations Fourth Quarter 2007 ARM Metric Report

    SciTech Connect (OSTI)

    X Liu; SJ Ghan; S Xie; J Boyle; SA Klein

    2007-09-30T23:59:59.000Z

    Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as temperature dependent functions. In our previous 2007 ARM metric reports a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) was documented and implemented in the NCAR Community Atmospheric Model Version 3 (CAM3). The new scheme was tested against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the single column modeling and short-range weather forecast approaches. In this report this new parameterization is further tested with CAM3 in its climate simulations. It is shown that the predicted ice water content from CAM3 with the new parameterization is in better agreement with the ARM measurements at the Southern Great Plain (SGP) site for the mixed-phase clouds.

  15. ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 21, NO. 5, 2004, 755766 The Effect of Diapycnal Mixing on the Ventilation

    E-Print Network [OSTI]

    Drange, Helge

    on the Ventilation and CFC-11 Uptake in the Southern Ocean Yongqi GAO*1,2,3 and Helge DRANGE1,2,3,4 1 Nansen the effect of diapycnal mixing on the oceanic uptake of CFC-11 and the ventilation of the surface waters ventilation of the surface waters and westward-directed (eastward-directed) isopycnic transport and mixing

  16. Uranium oxide--iron oxide mixed aerosol experiments in steam--air atmospheres: NSPP Tests 611, 612, 613, and 631, Data record report

    SciTech Connect (OSTI)

    Tobias, M.L.; Adams, R.E.

    1988-01-01T23:59:59.000Z

    This data record report summarizes the results from three tests involving mixed aerosols of uranium oxide and iron oxide in a steam-air environment and one test in a dry environment. This research, sponsored by the US Nuclear Regulatory Commission, was conducted in the Nuclear Safety Pilot Plant at the Oak Ridge National Laboratory. The purpose of this project is to provide a data base on the behavior of aerosols in containment under conditions assumed to occur in postulated LWR accident sequences;this data base will provide experimental validation of aerosol behavioral codes under development. In the report, a brief description is given of each test together with the results in the form of tables and graphs. Included are data on aerosol mass concentration, aerosol fallout and plateout rates, total mass fallout and plateout, aerosol particle size, vessel atmosphere pressure, vessel atmosphere temperatures, temperature gradients near the vessel wall, and steam condensation rates on the vessel wall.

  17. Investigations of cloud altering effects of atmospheric aerosols using a new mixed Eulerian-Lagrangian aerosol model

    E-Print Network [OSTI]

    Steele, Henry Donnan, 1974-

    2004-01-01T23:59:59.000Z

    Industry, urban development, and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn, has altered cloud ...

  18. The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol

    SciTech Connect (OSTI)

    Wang, J.; Cubison, M.; Aiken, A.; Jimenez, J.; Collins, D.; Gaffney, J.; Marley, N.

    2010-03-15T23:59:59.000Z

    The influences of atmospheric aerosols on cloud properties (i.e., aerosol indirect effects) strongly depend on the aerosol CCN concentrations, which can be effectively predicted from detailed aerosol size distribution, mixing state, and chemical composition using Köhler theory. However, atmospheric aerosols are complex and heterogeneous mixtures of a large number of species that cannot be individually simulated in global or regional models due to computational constraints. Furthermore, the thermodynamic properties or even the molecular identities of many organic species present in ambient aerosols are often not known to predict their cloud-activation behavior using Köhler theory. As a result, simplified presentations of aerosol composition and mixing state are necessary for large-scale models. In this study, aerosol microphysics, CCN concentrations, and chemical composition measured at the T0 urban super-site in Mexico City during MILAGRO are analyzed. During the campaign in March 2006, aerosol size distribution and composition often showed strong diurnal variation as a result of both primary emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. The submicron aerosol composition was ~1/2 organic species. Closure analysis is first carried out by comparing CCN concentrations calculated from the measured aerosol size distribution, mixing state, and chemical composition using extended Köhler theory to concurrent CCN measurements at five supersaturations ranging from 0.11% to 0.35%. The closure agreement and its diurnal variation are studied. CCN concentrations are also derived using various simplifications of the measured aerosol mixing state and chemical composition. The biases associated with these simplifications are compared for different supersaturations, and the variation of the biases is examined as a function of aerosol age. The results show that the simplification of internally mixed, size-independent particle composition leads to substantial overestimation of CCN concentration for freshly emitted aerosols in early morning, but can reasonably predict the CCN concentration after the aerosols underwent atmospheric processing for several hours. This analysis employing various simplifications provides insights into the essential information of particle chemical composition that needs to be represented in models to adequately predict CCN concentration and cloud microphysics.

  19. Diamond and Related Materials, 2 (1993) 661 666 661 Degenerate four-wave mixing diagnostics of atmospheric pressure

    E-Print Network [OSTI]

    Zare, Richard N.

    -3]. An r.f. inductively coupled plasma offers the benefits of an "electrodeless" discharge for minimum film application of this new spectroscopic technique to an atmospheric pressure plasma synthesis reactor. DFWM measurements of the CH radicals in the boundary layer of an r.f. inductively coupled plasma deposition reactor

  20. Ecosystem-Atmosphere Exchange of Carbon, Water and Energy over a Mixed Deciduous Forest in the Midwest

    SciTech Connect (OSTI)

    Danilo Dragoni; Hans Peter Schmid; C.S.B. Grimmond; J.C. Randolph; J.R. White

    2012-12-17T23:59:59.000Z

    During the project period we continued to conduct long-term (multi-year) measurements, analysis, and modeling of energy and mass exchange in and over a deciduous forest in the Midwestern United States, to enhance the understanding of soil-vegetation-atmosphere exchange of carbon. At the time when this report was prepared, results from nine years of measurements (1998 - 2006) of above canopy CO2 and energy fluxes at the AmeriFlux site in the Morgan-Monroe State Forest, Indiana, USA (see Table 1), were available on the Fluxnet database, and the hourly CO2 fluxes for 2007 are presented here (see Figure 1). The annual sequestration of atmospheric carbon by the forest is determined to be between 240 and 420 g C m-2 a-1 for the first ten years. These estimates are based on eddy covariance measurements above the forest, with a gap-filling scheme based on soil temperature and photosynthetically active radiation. Data gaps result from missing data or measurements that were rejected in qua)lity control (e.g., during calm nights). Complementary measurements of ecological variables (i.e. inventory method), provided an alternative method to quantify net carbon uptake by the forest, partition carbon allocation in each ecosystem components, and reduce uncertainty on annual net ecosystem productivity (NEP). Biometric datasets are available on the Fluxnext database since 1998 (with the exclusion of 2006). Analysis for year 2007 is under completion.

  1. Simulation of Containment Atmosphere Mixing and Stratification Experiment in the ThAI Facility with a CFD Code

    SciTech Connect (OSTI)

    Babic, Miroslav; Kljenak, Ivo; Mavko, Borut [Reactor Engineering Division, Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia)

    2006-07-01T23:59:59.000Z

    The CFD code CFX4.4 was used to simulate an experiment in the ThAI facility, which was designed for investigation of thermal-hydraulic processes during a severe accident inside a Light Water Reactor containment. In the considered experiment, air was initially present in the vessel, and helium and steam were injected during different phases of the experiment at various mass flow rates and at different locations. The main purpose of the proposed work was to assess the capabilities of the CFD code to reproduce the atmosphere structure with a three-dimensional model, coupled with condensation models proposed by the authors. A three-dimensional model of the ThAI vessel for the CFX4.4 code was developed. The flow in the simulation domain was modeled as single-phase. Steam condensation on vessel walls was modeled as a sink of mass and energy using a correlation that was originally developed for an integral approach. A simple model of bulk phase change was also included. Calculated time-dependent variables together with temperature and volume fraction distributions at the end of different experiment phases are compared to experimental results. (authors)

  2. Neutrino Mixing

    E-Print Network [OSTI]

    Carlo Giunti; Marco Laveder

    2004-10-01T23:59:59.000Z

    In this review we present the main features of the current status of neutrino physics. After a review of the theory of neutrino mixing and oscillations, we discuss the current status of solar and atmospheric neutrino oscillation experiments. We show that the current data can be nicely accommodated in the framework of three-neutrino mixing. We discuss also the problem of the determination of the absolute neutrino mass scale through Tritium beta-decay experiments and astrophysical observations, and the exploration of the Majorana nature of massive neutrinos through neutrinoless double-beta decay experiments. Finally, future prospects are briefly discussed.

  3. Solid state reactions of nanocrystalline Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} mixed oxide with high surface area silica in oxidizing and reducing atmosphere

    SciTech Connect (OSTI)

    Malecka, Malgorzata A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw 2 (Poland); Kepinski, Leszek, E-mail: L.Kepinski@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw 2 (Poland)

    2012-08-15T23:59:59.000Z

    The interaction of nanocrystalline Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} mixed oxide with a high surface amorphous silica support in an oxidizing and reducing atmosphere was studied by XRD, HRTEM, SAED, SEM and BET techniques. The Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75}-SiO{sub 2} system shows very high structural and size stability in the oxidizing atmosphere up to 1000 Degree-Sign C, but in hydrogen spreading of the oxide onto silica occurs at temperatures above 800 Degree-Sign C. In the oxidizing atmosphere stability of the mixed oxide is limited by extraction of ytterbium from the oxide driven by a tendency to form ytterbium silicates. A new polymorph of Yb silicate, isomorphic with y-Y{sub 2}Si{sub 2}O{sub 7} (yttrialite), has been identified in the samples containing the mixed Ce-Yb oxide. The absence of y-Yb{sub 2}Si{sub 2}O{sub 7} silicate in the Yb{sub 2}O{sub 3}-SiO{sub 2} samples treated in similar conditions indicates that Ce{sup 4+} ions are needed to stabilize the structure. - Graphical abstract: Structure evolution of nano-Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75}-SiO{sub 2} in air and in H{sub 2}. Highlights: Black-Right-Pointing-Pointer Nano-Ce{sub 0.50}Yb{sub 0.50}O{sub 1.75} on SiO{sub 2} is stable in air up to 1000 Degree-Sign C but spreads in hydrogen at 800 Degree-Sign C. Black-Right-Pointing-Pointer Formation of Yb silicates determines the stability of Ce{sub 0.50}Yb{sub 0.50}O{sub 1.75} at high temperatures. Black-Right-Pointing-Pointer New, y-Yb{sub 2}Si{sub 2}O{sub 7} silicate (yttrialite type) forms in Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75}-SiO{sub 2} in H{sub 2} at 1100 Degree-Sign C.

  4. The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols

    SciTech Connect (OSTI)

    Wang, J.; Cubison, M. J.; Aiken, A. C.; Jimenez, J. L.; Collins, D. R.

    2010-05-01T23:59:59.000Z

    Aerosol microphysics, chemical composition, and CCN concentrations were measured at the T0 urban supersite in Mexico City during Megacity Initiative: Local and Global Research Observations (MILAGRO) in March 2006. The aerosol size distribution and composition often showed strong diurnal variation associated with traffic emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. CCN concentrations (N{sub CCN}) are derived using Kohler theory from the measured aerosol size distribution and various simplified aerosol mixing state and chemical composition, and are compared to concurrent measurements at five supersaturations ranging from 0.11% to 0.35%. The influence of assumed mixing state on calculated N{sub CCN} is examined using both aerosols observed during MILAGRO and representative aerosol types. The results indicate that while ambient aerosols often consist of particles with a wide range of compositions at a given size, N{sub CCN} may be derived within {approx}20% assuming an internal mixture (i.e., particles at a given size are mixtures of all participating species, and have the identical composition) if great majority of particles has an overall {kappa} (hygroscopicity parameter) value greater than 0.1. For a non-hygroscopic particle with a diameter of 100 nm, a 3 nm coating of sulfate or nitrate is sufficient to increase its {kappa} from 0 to 0.1. The measurements during MILAGRO suggest that the mixing of non-hygroscopic primary organic aerosol (POA) and black carbon (BC) particles with photochemically produced hygroscopic species and thereby the increase of their {kappa} to 0.1 take place in a few hours during daytime. This rapid process suggests that during daytime, a few tens of kilometers away for POA and BC sources, N{sub CCN} may be derived with sufficient accuracy by assuming an internal mixture, and using bulk chemical composition. The rapid mixing also indicates that, at least for very active photochemical environments such as Mexico City, a substantially shorter timescale during daytime for the conversion of hydrophobic POA and BC to hydrophilic particles than the 1-2 days used in some global models. The conversion time scale is substantially longer during night. Most POA and BC particles emitted during evening hours likely remain non-hygroscopic until efficiently internally mixed with secondary species in the next morning. The results also suggest that the assumed mixing state strongly impacts calculated N{sub CCN} only when POA and BC represent a large fraction of the total aerosol volume. One of the implications is that while physically unrealistic, external mixtures, which are used in many global models, may also sufficiently predict N{sub CCN} for aged aerosol, as the contribution of non-hygroscopic POA and BC to overall aerosol volume is often substantially reduced due to the condensation of secondary species.

  5. ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC

    E-Print Network [OSTI]

    Moelders, Nicole

    ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC RESEARCH On the parameterization of ice and water substance mixing ratio fields were only strongly altered by turning off the ice phase of these schemes includes ice processes. But in mid- latitudes and also in tropics the ice phase is an important

  6. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  7. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

    1990-01-01T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  8. An atmospheric mixing index for Houston, Texas

    E-Print Network [OSTI]

    Norton, Colburn Lee

    1975-01-01T23:59:59.000Z

    , in aiding me with this thesis. TABLE OF CONTENTS ABSTRACT. Page ACKNOWLEDGMENTS. TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES. INTRODUC'IION v1 General Objectives A brief history of the Air Pollution Potential-Air Stagnation Advisory... for use in the present thesis. No attempt is made in this thesis to describe the overall poL)ution load in Houston. However, pollution measurements must be considered, since the early APP (ASA) were checked against suspended particulate concentrations...

  9. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11T23:59:59.000Z

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  10. Atmospheric Environment ] (

    E-Print Network [OSTI]

    Raman, Sethu

    and the other site was located downwind of the city to study the effect of the urban area on the stability energy budget located throughout Oklahoma City. Three wind-profiling radars were used to measure wind mixing heights during the Joint URBAN (2003) experiment in Oklahoma City, Oklahoma. AERMET is a simple 2

  11. Atmospheric Aerosols Workshop | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosols Workshop Atmospheric Aerosols Workshop EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality. Baer DR, BJ...

  12. Oscillations of solar atmosphere neutrinos

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; A. Mirizzi; D. Montanino; P. D. Serpico

    2006-11-10T23:59:59.000Z

    The Sun is a source of high energy neutrinos (E > 10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged ``vacuum'' oscillations, dominated by a single mixing parameter (the angle theta_23).

  13. Atmospheric Aerosol Systems | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

  14. INTRODUCTIONTOTHE SOLAR ATMOSPHERE

    E-Print Network [OSTI]

    ? #12;WHAT ISTHE SOLAR ATMOSPHERE? #12;#12;1-D MODEL ATMOSPHERE · Averaged over space and time · GoodINTRODUCTIONTOTHE SOLAR ATMOSPHERE D. Shaun Bloomfield Trinity College Dublin #12;OUTLINE · What is the solar atmosphere? · How is the solar atmosphere observed? · What structures exist and how do they evolve

  15. Recent Atmospheric Neutrino Results from Super-Kamiokande

    E-Print Network [OSTI]

    Himmel, Alexander

    2013-01-01T23:59:59.000Z

    The Super-Kamiokande experiment has collected more than 11 live-years of atmospheric neutrino data. Atmospheric neutrinos cover a wide phase space in both energy and distance travelled, the parameters relevant for studying neutrino oscillations. We present here recent measurements of the three-flavor neutrino oscillation parameters using this atmospheric neutrino data, as well as new limits on mixing with a fourth sterile neutrino state.

  16. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-27T23:59:59.000Z

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore »scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  17. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Chunsong [Nanjing Univ. of Information Science and Technology (China). Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Chinese Acadamy of Sciences, Beijing (China); Brookhaven National Laboratory (BNL), Upton, NY (United States). Biological, Environmental and Climate Science Dept.; Liu, Yangang [Brookhaven National Laboratory (BNL), Upton, NY (United States). Biological, Environmental and Climate Science Dept.; Niu, Shengjie [Nanjing Univ. of Information Science and Technology (China). Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Endo, Satoshi [Brookhaven National Laboratory (BNL), Upton, NY (United States). Biological, Environmental and Climate Science Dept.

    2014-12-27T23:59:59.000Z

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasing scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.

  18. The Upper Atmosphere of HD17156b

    E-Print Network [OSTI]

    T. T. Koskinen; A. D. Aylward; S. Miller

    2008-11-28T23:59:59.000Z

    HD17156b is a newly-found transiting extrasolar giant planet (EGP) that orbits its G-type host star in a highly eccentric orbit (e~0.67) with an orbital semi-major axis of 0.16 AU. Its period, 21.2 Earth days, is the longest among the known transiting planets. The atmosphere of the planet undergoes a 27-fold variation in stellar irradiation during each orbit, making it an interesting subject for atmospheric modelling. We have used a three-dimensional model of the upper atmosphere and ionosphere for extrasolar gas giants in order to simulate the progress of HD17156b along its eccentric orbit. Here we present the results of these simulations and discuss the stability, circulation, and composition in its upper atmosphere. Contrary to the well-known transiting planet HD209458b, we find that the atmosphere of HD17156b is unlikely to escape hydrodynamically at any point along the orbit, even if the upper atmosphere is almost entirely composed of atomic hydrogen and H+, and infrared cooling by H3+ ions is negligible. The nature of the upper atmosphere is sensitive to to the composition of the thermosphere, and in particular to the mixing ratio of H2, as the availability of H2 regulates radiative cooling. In light of different simulations we make specific predictions about the thermosphere-ionosphere system of HD17156b that can potentially be verified by observations.

  19. mixed-bean-chili

    E-Print Network [OSTI]

    ... J. Infante) MIXED BEAN CHILI So, I added 1 cup of tvp to 2 cups of water, ... was about 6 cups of water to mix everything together) Cook for about 5 hours at ...

  20. ATMOSPHERIC CO2 A GLOBAL LIMITING RESOURCE

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    Carbondioxideatmosphericburden,PgC Land use Fossil CO2 from land use emissions ­ not fossil fuel combustion ­ was the dominant CO2 Comparison of CO2 mixing ratio from fossil fuel combustion and land use changes 400 380 360 340 cores 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Forcing,Wm -2 #12;ATMOSPHERIC CO2 EMISSIONS Time series 1700

  1. Atmospheric Transport of Radionuclides

    SciTech Connect (OSTI)

    Crawford, T.V.

    2003-03-03T23:59:59.000Z

    The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

  2. How atmospheric ice forms | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric ice forms How atmospheric ice forms Released: September 08, 2014 New insights into atmospheric ice formation could improve climate models This study advances our...

  3. Atmospheric Pressure Reactor System | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Pressure Reactor System Atmospheric Pressure Reactor System The atmospheric pressure reactor system is designed for testing the efficiency of various catalysts for the...

  4. Climate Sciences: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    1 Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http://aerosol.ucsd.edu/courses.html Text: Curry & Webster Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 Energy Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http

  5. FINAL REPORT: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds

    SciTech Connect (OSTI)

    Shupe, Matthew D

    2007-10-01T23:59:59.000Z

    This final report summarizes the major accomplishments and products resulting from a three-year grant funded by the DOE, Office of Science, Atmospheric Radiation Measurement Program titled: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds. Accomplishments are listed under the following subcategories: Mixed-phase cloud retrieval method development; Mixed-phase cloud characterization; ARM mixed-phase cloud retrieval review; and New ARM MICROBASE product. In addition, lists are provided of service to the Atmospheric Radiation Measurement Program, data products provided to the broader research community, and publications resulting from this grant.

  6. Terrestrial Planet Atmospheres. The Moon's Sodium Atmosphere

    E-Print Network [OSTI]

    Walter, Frederick M.

    ;Origins of Atmospheres · Outgassing ­ Volcanoes expel water, CO2, N2, H2S, SO2 removed by the Fme convecFon reaches deserts #12;Water and Ice Clouds #12;H2SO4

  7. Mixed-mode cooling.

    E-Print Network [OSTI]

    Brager, Gail

    2006-01-01T23:59:59.000Z

    ASHRAE’s permission. Mixed-Mode Cooling Photo Credit: Paulnatural ventilation for cooling. Buildings typically had1950s of large-scale mechanical cooling, along with other

  8. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

    2003-01-01T23:59:59.000Z

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  9. EMSL - Atmospheric Aerosol Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scienceatmospheric The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model...

  10. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18T23:59:59.000Z

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  11. Optimal operation of a mixed fluid cascade LNG process

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal operation of a mixed fluid cascade LNG process Jørgen Bauck Jensen & Sigurd Skogestad distances is to first produce liquefied natural gas (LNG) and then transport the LNG by ships. At atmospheric pressure LNG has approximately 600 times the density of gaseous NG and a temperature of ap

  12. Liquid mixing device

    SciTech Connect (OSTI)

    O'Leary, R. P.

    1985-08-06T23:59:59.000Z

    A mixing device for mixing at least two liquids to produce a homogenous mixture. The device includes an elongated chamber in which a vertically oriented elongated mixing cavity is located. The cavity is sealed at its lower end and it is open at its upper end and in communication with the interior of the chamber. An elongated conduit extends the length of the cavity and is adapted to receive liquids to be mixed. The conduit includes a plurality of ports located at longitudinally spaced positions therealong and which ports are directed in different directions. The ports create plural streams of liquid which interact and mix with one another within the cavity. The mixed liquids overflow the cavity and out its top end into the chamber 24. The chamber 24 includes an outlet from which the mixed liquids are withdrawn. In accordance with the preferred embodiment gas eductor means are provided in the inlet to the conduit to introduce gas bubbles within the cavity. Gas vent means are also provided in the device to vent any introduced gases from the device so that only the mixed liquids flow out the outlet.

  13. TOWARDS A CLOUD CEILOMETER NETWORK REPORTING MIXING LAYER HEIGHT Wiel M.F. Wauben

    E-Print Network [OSTI]

    Wauben, Wiel

    profiles if the aerosol concentrations are not too low. Since aerosol is well mixed in the atmospheric in the backscatter profile (cf. Wauben et al., 2006). Sometimes, medium and low clouds can also be missed or falsely1 TOWARDS A CLOUD CEILOMETER NETWORK REPORTING MIXING LAYER HEIGHT Wiel M.F. Wauben 1 , Marijn de

  14. Guidelines for mixed waste minimization

    SciTech Connect (OSTI)

    Owens, C.

    1992-02-01T23:59:59.000Z

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  15. Atmospheric Dynamics II Instructor

    E-Print Network [OSTI]

    AT602 Atmospheric Dynamics II 2 credits Instructor: David W. J. Thompson davet: An Introduction to Dynamic Meteorology, 5th Edition, Academic Press (recommended) · Marshall, J., and Plumb, R. A., 2008: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, Academic Press. · Vallis, G. K

  16. Atmospheric Thermodynamics Composition

    E-Print Network [OSTI]

    Russell, Lynn

    1 Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 EnergyBalance Ch4 Water Ch Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http #12;2 Review from Ch. 1 · Thermodynamic quantities · Composition · Pressure · Density · Temperature

  17. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S.; Dimenna, R.; Tamburello, D.

    2011-02-14T23:59:59.000Z

    The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?

  18. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    Hawaii requires the state’s retail electric suppliers to disclose details regarding the fuel mix of their electric generation to retail customers. Such information must be provided on customers’...

  19. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    Washington’s retail electric suppliers must disclose details regarding the fuel mix of their electric generation to customers. Electric suppliers must provide such information in a standard format...

  20. 13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS

    E-Print Network [OSTI]

    13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS Updated October 2011 by K compelling evidences for oscillations of neutrinos caused by nonzero neutrino masses and neutrino mixing. The data imply the existence of 3-neutrino mixing in vacuum. We review the theory of neutrino oscillations

  1. 13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS

    E-Print Network [OSTI]

    13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS Written May 2010 by K. Nakamura for oscillations of neutrinos caused by nonzero neutrino masses and neutrino mixing. The data imply the existence of 3-neutrino mixing in vacuum. We review the theory of neutrino oscillations, the phenomenology

  2. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  3. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  4. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-11-13T23:59:59.000Z

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and schedule savings. The focus of the present work is to establish mixing criteria associated with the waste processing at SRS and to quantify the mixing time required to suspend sludge particles with the submersible jet pump. Literature results for a turbulent jet flow are reviewed briefly, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. One of the main objectives in the waste processing is to provide the DWPF a uniform slurry composition at a certain weight percentage (typically {approx}13 wt%) over an extended period of time. In preparation of the sludge for slurrying to DWPF, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition for DWPF? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination? Grenville and Tilton (1996) investigated the mixing process by giving a pulse of tracer (electrolyte) through the submersible jet nozzle and by monitoring the conductivity at three locations within the cylindrical tank. They proposed that the mixing process was controlled by the turbulent kinetic energy dissipation rate in the region far away from the jet entrance. They took the energy dissipation rates in the regions remote from the nozzle to be proportional to jet velocity and jet diameter at that location. The reduction in the jet velocity was taken to be proportional to the nozzle velocity and distance from the nozzle. Based on their analysis, a correlation was proposed. The proposed correlation was shown to be valid over a wide range of Reynolds numbers (50,000 to 300,000) with a relative standard deviation of {+-} 11.83%. An improved correlat

  5. Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment

    SciTech Connect (OSTI)

    Xie, S; Boyle, J; Klein, S; Liu, X; Ghan, S

    2007-06-01T23:59:59.000Z

    By making use of the in-situ data collected from the recent Atmospheric Radiation Measurement Mixed-Phase Arctic Cloud Experiment, we have tested the mixed-phase cloud parameterizations used in the two major U.S. climate models, the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory climate model (AM2), under both the single-column modeling framework and the U.S. Department of Energy Climate Change Prediction Program-Atmospheric Radiation Measurement Parameterization Testbed. An improved and more physically based cloud microphysical scheme for CAM3 has been also tested. The single-column modeling tests were summarized in the second quarter 2007 Atmospheric Radiation Measurement metric report. In the current report, we document the performance of these microphysical schemes in short-range weather forecasts using the Climate Chagne Prediction Program Atmospheric Radiation Measurement Parameterizaiton Testbest strategy, in which we initialize CAM3 and AM2 with realistic atmospheric states from numerical weather prediction analyses for the period when Mixed-Phase Arctic Cloud Experiment was conducted.

  6. Atmospheric Science: An introductory survey 1. Introduction to the atmosphere

    E-Print Network [OSTI]

    Folkins, Ian

    Sound Convergence Zone #12;Terrain effects #12;Von Karman vortex streets #12;Atmosphere in Earth system

  7. Computer support to run models of the atmosphere. Final report

    SciTech Connect (OSTI)

    Fung, I.

    1996-08-30T23:59:59.000Z

    This research is focused on a better quantification of the variations in CO{sub 2} exchanges between the atmosphere and biosphere and the factors responsible for these exchangers. The principal approach is to infer the variations in the exchanges from variations in the atmospheric CO{sub 2} distribution. The principal tool involves using a global three-dimensional tracer transport model to advect and convect CO{sub 2} in the atmosphere. The tracer model the authors used was developed at the Goddard institute for Space Studies (GISS) and is derived from the GISS atmospheric general circulation model. A special run of the GCM is made to save high-frequency winds and mixing statistics for the tracer model.

  8. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31T23:59:59.000Z

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  9. Mixing by Swimming Algae

    E-Print Network [OSTI]

    Guasto, Jeffrey S; Gollub, J P; Pesci, Adriana I; Goldstein, Raymond E

    2009-01-01T23:59:59.000Z

    In this fluid dynamics video, we demonstrate the microscale mixing enhancement of passive tracer particles in suspensions of swimming microalgae, Chlamydomonas reinhardtii. These biflagellated, single-celled eukaryotes (10 micron diameter) swim with a "breaststroke" pulling motion of their flagella at speeds of about 100 microns/s and exhibit heterogeneous trajectory shapes. Fluorescent tracer particles (2 micron diameter) allowed us to quantify the enhanced mixing caused by the swimmers, which is relevant to suspension feeding and biogenic mixing. Without swimmers present, tracer particles diffuse slowly due solely to Brownian motion. As the swimmer concentration is increased, the probability density functions (PDFs) of tracer displacements develop strong exponential tails, and the Gaussian core broadens. High-speed imaging (500 Hz) of tracer-swimmer interactions demonstrates the importance of flagellar beating in creating oscillatory flows that exceed Brownian motion out to about 5 cell radii from the swimm...

  10. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16T23:59:59.000Z

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  11. Computer simulation of mixing phenomena in AFBC boilers

    SciTech Connect (OSTI)

    Domanus, H.M.; Schmitt, R.C.; Sha, W.T.; Petrill, E.M.; Howe, W.C.; Bass, J.W.

    1986-01-01T23:59:59.000Z

    A model has been developed to investigate the detailed thermal-hydraulic mixing phenomena in an atmospheric fluidized bed combustor. The model is three-dimensional and transient. The solution of the conservation equations for mass, momentum, and energy as a boundary value problem in space and an initial value problem in time are embodied in the COMMIX computer code. The model has been applied to investigate several different over-fire air port configurations to assess the impact of the thermal mixing processes. The results show the usefulness of such analysis to design considerations. 8 refs., 17 figs.

  12. Unitarity constraints on trimaximal mixing

    SciTech Connect (OSTI)

    Kumar, Sanjeev [Department of Physics and Astrophysics, University of Delhi, Delhi -110005 (India)

    2010-07-01T23:59:59.000Z

    When the neutrino mass eigenstate {nu}{sub 2} is trimaximally mixed, the mixing matrix is called trimaximal. The middle column of the trimaximal mixing matrix is identical to tribimaximal mixing and the other two columns are subject to unitarity constraints. This corresponds to a mixing matrix with four independent parameters in the most general case. Apart from the two Majorana phases, the mixing matrix has only one free parameter in the CP conserving limit. Trimaximality results in interesting interplay between mixing angles and CP violation. A notion of maximal CP violation naturally emerges here: CP violation is maximal for maximal 2-3 mixing. Similarly, there is a natural constraint on the deviation from maximal 2-3 mixing which takes its maximal value in the CP conserving limit.

  13. Winter mixed-layer development in the central Irminger Sea : the effect of strong, intermittent wind events

    E-Print Network [OSTI]

    Våge, Kjetil

    2006-01-01T23:59:59.000Z

    The impact of the Greenland tip jet on the wintertime mixed-layer of the southwest Irminger Sea is investigated using in-situ moored profiler data and a variety of atmospheric data sets. The mixed-layer was observed to ...

  14. 13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS

    E-Print Network [OSTI]

    13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS Updated May 2012 by K. Nakamura have provided compelling evidences for oscillations of neutrinos caused by nonzero neutrino masses of neutrino oscillations, the phenomenology of neutrino mixing, the problem of the nature - Dirac or Majorana

  15. Dynamics of Atmospheres

    E-Print Network [OSTI]

    Read, Peter L.

    transfer ­ Solar heating of surface, and atmosphere via dust absorption ­ Infrared CO2 band cooling (especially around 667 cm-1) ­ nonLTE near-infrared heating of CO2 and nonLTE cooling effects above ~60-80 km. Baroclinic waves, scales, heat and momentum transport, seasonal occurrence. Qualitative treatment

  16. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    . Along with this growth came a new building on campus and a new name: the Laboratory for Atmospheric of the Sun to the outermost fringes of the solar system. With LASP's continuing operations role in the planet traditional and stable approach based on federal agency funding of research grant

  17. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014...

  18. Introduction The Atmospheric

    E-Print Network [OSTI]

    it is hoped that this species can be retrieved from ACE. Carbon tetrachloride Since the discovery of the ozone has had an impact. The first near global distribution of carbon tetrachloride [1] was obtained from ACE occultation measurements (see below). Low altitude carbon tetrachloride VMRs (volume mixing ratios

  19. Nozzle mixing apparatus

    SciTech Connect (OSTI)

    Mensink, D.L.

    1992-12-31T23:59:59.000Z

    This invention is comprised of a nozzle device for causing two fluids to mix together. In particular, a spray nozzle comprise two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.

  20. Cosmological Kinetic Mixing

    E-Print Network [OSTI]

    Ashok Das; Jorge Gamboa; Miguel Pino

    2015-04-15T23:59:59.000Z

    In this paper we generalize the kinetic mixing idea to time reparametrization invariant theories, namely, relativistic point particles and cosmology in order to obtain new insights for dark matter and energy. In the first example, two relativistic particles interact through an appropriately chosen coupling term. It is shown that the system can be diagonalized by means of a non-local field redefinition, and, as a result of this procedure, the mass of one the particles gets rescaled. In the second case, inspired by the previous example, two cosmological models (each with its own scale factor) are made to interact in a similar fashion. The equations of motion are solved numerically in different scenarios (dust, radiation or a cosmological constant coupled to each sector of the system). When a cosmological constant term is present, kinetic mixing rescales it to a lower value which may be more amenable to observations.

  1. SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics Course Syllabus and Lecture Schedule Instructor: Lynn Russell, 343 NH, 534-4852, lmrussell@ucsd.edu Text: Thermodynamics of Atmospheres of Thermodynamics (Work, Heat, First Law, Second Law, Heat Capacity, Adiabatic Processes) 5-Oct F Hurricane Example

  2. Cooking with Dry Egg Mix

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    package has been opened, place the unused egg mix in a resealable bag or in an airtight container and store it in the refrigerator. How to prepare it To make liquid eggs, stir 1 part mix with 2 parts warm water. Use a fork to blend the egg mix...

  3. Magnetically coupled system for mixing

    SciTech Connect (OSTI)

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01T23:59:59.000Z

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  4. Pluto's Atmosphere Does Not Collapse

    E-Print Network [OSTI]

    Olkin, C B; Borncamp, D; Pickles, A; Sicardy, B; Assafin, M; Bianco, F B; Buie, M W; de Oliveira, A Dias; Gillon, M; French, R G; Gomes, A Ramos; Jehin, E; Morales, N; Opitom, C; Ortiz, J L; Maury, A; Norbury, M; Ribas, F B; Smith, R; Wasserman, L H; Young, E F; Zacharias, M; Zacharias, N

    2013-01-01T23:59:59.000Z

    Combining stellar occultation observations probing Pluto's atmosphere from 1988 to 2013 and models of energy balance between Pluto's surface and atmosphere, we conclude that Pluto's atmosphere does not collapse at any point in its 248-year orbit. The occultation results show an increasing atmospheric pressure with time in the current epoch, a trend present only in models with a high thermal inertia and a permanent N2 ice cap at Pluto's north rotational pole.

  5. Atmospheric radionuclide concentrations measured by Pacific Northwest Laboratory since 1961

    SciTech Connect (OSTI)

    Young, J.A.; Thomas, C.W.

    1981-03-01T23:59:59.000Z

    The atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, radon and thoron decay and the SNAP-9A burn-up ([sup 238]Pu) have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. There has been considerable concern over the health hazard presented by these radionuclides, but it has also been recognized that atmospheric mixing and deposition rates can be determined from their measurement. Therefore, Pacific Northwest Laboratory began the continuous measurement of the atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, and radon and thoron decay. This report will discuss the concentrations of the longer-lived radionuclides (T 1/2 > 12 days). The concentrations of shorter-lived radionuclides measured following Chinese nuclear tests since 1972 are discussed in another report.

  6. Atmospheric radionuclide concentrations measured by Pacific Northwest Laboratory since 1961

    SciTech Connect (OSTI)

    Young, J.A.; Thomas, C.W.

    1981-03-01T23:59:59.000Z

    The atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, radon and thoron decay and the SNAP-9A burn-up ({sup 238}Pu) have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. There has been considerable concern over the health hazard presented by these radionuclides, but it has also been recognized that atmospheric mixing and deposition rates can be determined from their measurement. Therefore, Pacific Northwest Laboratory began the continuous measurement of the atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, and radon and thoron decay. This report will discuss the concentrations of the longer-lived radionuclides (T 1/2 > 12 days). The concentrations of shorter-lived radionuclides measured following Chinese nuclear tests since 1972 are discussed in another report.

  7. Almost Maximal Lepton Mixing with Large T Violation in Neutrino Oscillations and Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    Zhi-zhong Xing

    2001-07-02T23:59:59.000Z

    We point out two simple but instructive possibilities to construct the charged lepton and neutrino mass matrices, from which the nearly bi-maximal neutrino mixing with large T violation can naturally emerge. The two lepton mixing scenarios are compatible very well with current experimental data on solar and atmospheric neutrino oscillations, and one of them may lead to an observable T-violating asymmetry between \

  8. ChEAS Data: The Chequamegon Ecosystem Atmosphere Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Davis, Kenneth J. [Penn State

    The Chequamegon Ecosystem-Atmosphere Study (ChEAS) is a multi-organizational research effort studying biosphere/atmosphere interactions within a northern mixed forest in Northern Wisconsin. A primary goal is to understand the processes controlling forest-atmosphere exchange of carbon dioxide and the response of these processes to climate change. Another primary goal is to bridge the gap between canopy-scale flux measurements and the global CO2 flask sampling network. The ChEAS flux towers participate in AmeriFlux, and the region is an EOS-validation site. The WLEF tower is a NOAA-CMDL CO2 sampling site. ChEAS sites are primarily located within or near the Chequamegon-Nicolet National Forest in northern Wisconsin, with one site in the Ottawa National Forest in the upper peninsula of Michigan. Current studies observe forest/atmosphere exchange of carbon dioxide at canopy and regional scales, forest floor respiration, photosynthesis and transpiration at the leaf level and use models to scale to canopy and regional levels. EOS-validation studies quantitatively assess the land cover of the area using remote sensing and conduct extensive ground truthing of new remote sensing data (i.e. ASTER and MODIS). Atmospheric remote sensing work is aimed at understanding atmospheric boundary layer dynamics, the role of entrainment in regulating the carbon dioxide mixing ratio profiles through the lower troposphere, and feedback between boundary layer dynamics and vegetation (especially via the hydrologic cycle). Airborne studies have included include balloon, kite and aircraft observations of the CO2 profile in the troposphere.

  9. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric Heat

  10. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric

  11. Atmospheric PSF Interpolation

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BYAbrasion andArticle)Atmospheric

  12. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31T23:59:59.000Z

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  13. Mixed Mode Matrix Multiplication

    SciTech Connect (OSTI)

    Meng-Shiou Wu; Srinivas Aluru; Ricky A. Kendall

    2004-09-30T23:59:59.000Z

    In modern clustering environments where the memory hierarchy has many layers (distributed memory, shared memory layer, cache,...), an important question is how to fully utilize all available resources and identify the most dominant layer in certain computations. When combining algorithms on all layers together, what would be the best method to get the best performance out of all the resources we have? Mixed mode programming model that uses thread programming on the shared memory layer and message passing programming on the distributed memory layer is a method that many researchers are using to utilize the memory resources. In this paper, they take an algorithmic approach that uses matrix multiplication as a tool to show how cache algorithms affect the performance of both shared memory and distributed memory algorithms. They show that with good underlying cache algorithm, overall performance is stable. When underlying cache algorithm is bad, superlinear speedup may occur, and an increasing number of threads may also improve performance.

  14. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  15. atmospheres thin atmospheres: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  16. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Electricity suppliers and electricity companies must also provide a fuel mix report to customers twice annually, within the June and December billing cycles. Emissions information must be disclos...

  17. Optimal broadcasting of mixed states

    SciTech Connect (OSTI)

    Dang Guifang; Fan Heng [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-08-15T23:59:59.000Z

    The N to M (M{>=}N) universal quantum broadcasting of mixed states {rho}{sup xN} is proposed for a qubit system. The broadcasting of mixed states is universal and optimal in the sense that the shrinking factor is independent of the input state and achieves the upper bound. The quantum broadcasting of mixed qubits is a generalization of the universal quantum cloning machine for identical pure input states. A pure state decomposition of the identical mixed qubits {rho}{sup xN} is obtained.

  18. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Maryland’s 1999 electric utility restructuring legislation requires all electric companies and electricity suppliers to provide customers with details regarding the fuel mix and emissions of...

  19. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Ohio's 1999 electric industry restructuring law requires the state's electricity suppliers to disclose details regarding their fuel mix and emissions to customers. Electric utilities and...

  20. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Virginia’s 1999 electric industry restructuring law requires the state's electricity providers to disclose -- "to the extent feasible" -- fuel mix and emissions data regarding electric generation....

  1. Atmospheric Results from Super-Kamiokande

    E-Print Network [OSTI]

    ,

    2014-01-01T23:59:59.000Z

    Recent results from a 282 kiloton-year exposure of the Super-Kamiokande detector to atmospheric neutrinos are presented. The data when fit both by themselves and in conjunction with constraints from the T2K and reactor neutrino experiments show a weak, though insignificant, preference for the normal mass hierarchy at the level of ~1 sigma. Searches for evidence of oscillations into a sterile neutrino have resulted in limits on the parameters governing their mixing, |U_mu4}|^2 <0.041 and |U_tau4|^2 < 0.18 at 90% C.L. A similar search for an indication of Lorentz-invariance violating oscillations has yielded limits three to seven orders of magnitude more stringent than existing measurements. Additionally, analyses searching for an excess of neutrinos in the atmospheric data produced from the annihilation of dark matter particles in the galaxy and sun have placed tight limits on the cross sections governing their annihilation and scattering.

  2. Overview of Neutrino Mixing Models and Their Mixing Angle Predictions

    SciTech Connect (OSTI)

    Albright, Carl H.

    2009-11-01T23:59:59.000Z

    An overview of neutrino-mixing models is presented with emphasis on the types of horizontal flavor and vertical family symmetries that have been invoked. Distributions for the mixing angles of many models are displayed. Ways to differentiate among the models and to narrow the list of viable models are discussed.

  3. Measurements of moisture suction in hot mix asphalt mixes

    E-Print Network [OSTI]

    Kassem, Emad Abdel-Rahman

    2006-10-30T23:59:59.000Z

    The presence of moisture in hot mix asphalt (HMA) causes loss of strength and durability of the mix, which is referred to as moisture damage. This study deals with the development of experimental methods for measuring total suction in HMA, which can...

  4. Sandia National Laboratories: atmospheric chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and atmospheric chemistry that is expected to benefit auto and engine manufacturers, oil and gas utilities, and other industries that employ combustion models. A paper...

  5. Internal solitary waves in the Coastal Mixing and Optics 1996 experiment: Multimodal structure and

    E-Print Network [OSTI]

    Kurapov, Alexander

    and resuspension D. J. Bogucki Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami in sediment resuspension during the Coastal Mixing and Optics 1996 (CMO 96) experiment are reported. The largest resuspension events observed in the experiment can be related to retarded flow under the wave

  6. ATMOSPHERIC ELSEVIER AtmosphericResearch 44 (1997) 231-241

    E-Print Network [OSTI]

    Reading, University of

    ATMOSPHERIC RESEARCH ELSEVIER AtmosphericResearch 44 (1997) 231-241 Error analysis of backscatter;accepted 14 February 1997 Abstract Ice sphere backscatter has been calculated using both Mie theory as a reasonable approximation for rv 1997 Elsevier Science B.V. 1. Introduction Cirrus clouds play

  7. 42 MaxPlanckForschung 4 | 13 Turbulence is omnipresent: it plays an important role during planet formation, mixes fuel and air

    E-Print Network [OSTI]

    Falge, Eva

    formation, mixes fuel and air in the cylinder of an engine, but also increases the energy needed for pumps vortices also stir in the weather factory of our atmosphere. "Fluid turbulence is probably the most efficient without the thorough turbu- lent mixing of the injected fuel. And when we stir milk into our

  8. investigating the source, transport, and isotope fractionation of water vapor in the atmospheric boundary layer

    E-Print Network [OSTI]

    Minnesota, University of

    investigating the source, transport, and isotope fractionation of water vapor in the atmospheric-portable mixing ratio generator and Rayleigh distillation device, Agricultural and Forest Meteorology, 150, 1607 ratio generator. Incom- ing dry air passes through a molecular sieve and then a stainless steel frit (a

  9. Natural marine seepage blowout: Contribution to atmospheric Ira Leifer,1,2

    E-Print Network [OSTI]

    Luyendyk, Bruce

    . Simulations suggest a 1.1% gas loss to dissolution compared to $10% loss for a typical low-flux bubble plume than carbon dioxide, CO2 [Khalil and Rasmussen, 1995]. Its atmospheric mixing ratio has more than constrained. [4] Seepage emission estimates are mostly based on observations of gentle bubble emanations [e

  10. Space Science : Atmosphere Greenhouse Effect

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate at the carbon cycle #12;However, #12;Greenhouse Effect is Complex #12;PLANETARY ENERGY BALANCE G+W fig 3-5

  11. Ch4. Atmosphere and Surface Energy Balances

    E-Print Network [OSTI]

    Pan, Feifei

    ;Energy Pathways #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Atmosphere or performing any work. #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Transmission or water. #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Transmission Atmosphere

  12. Neutrino Mixing and Discrete Symmetries

    E-Print Network [OSTI]

    Hu, Bo

    2012-01-01T23:59:59.000Z

    A model independent study of neutrino mixing based on a new method to derive mixing patterns is presented. An interesting result we find is that, in the case where unbroken residual symmetries of the Majorana neutrino and left-handed charged-lepton mass matrices obey some general assumptions, the complete set of possible mixing patterns can be determined by the solutions to the constraint equation with the help of algebraic number theory. This method can also be applied to more general cases beyond the minimal scenario. Several applications and phenomenological implications are discussed.

  13. Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type

    E-Print Network [OSTI]

    Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type Wayne D. Shepperd Colorado State University Fort Collins, CO Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer disturbances to meet the desired objective #12;Aspen in Mixed Conifer ForestsAspen in Mixed Conifer Forests

  14. Common origin of reactor and sterile neutrino mixing

    E-Print Network [OSTI]

    Alexander Merle; Stefano Morisi; Walter Winter

    2014-06-19T23:59:59.000Z

    If the hints for light sterile neutrinos from short-baseline anomalies are to be taken seriously, global fits indicate active-sterile mixings of a magnitude comparable to the known reactor mixing. We therefore study the conditions under which the active-sterile and reactor mixings could have the same origin in an underlying flavour model. As a starting point, we use $\\mu-\\tau$ symmetry in the active neutrino sector, which (for three neutrinos) yields a zero reactor neutrino angle and a maximal atmospheric one. We demonstrate that adding one sterile neutrino can change this setting, so that the active-sterile mixing and non-zero $\\theta_{13}$ can be generated simultaneously. From the phenomenological perspective, electron (anti)neutrino disappearance can be easily accommodated, while muon neutrino disappearance can vanish. It is, however, difficult to reconcile the LSND results with this scenario. From the theory perspective, the setting requires the misalignment of some of the flavon vacuum expectation values, which may be achieved in an $A_4$ or $D_4$ flavour symmetry model using extra dimensions.

  15. Modeling Atmospheric Aerosols V. Rao Kotamarthi

    E-Print Network [OSTI]

    Modeling Atmospheric Aerosols V. Rao Kotamarthi and Yan Feng Climate Research Section Environmental Science Division Argonne National Laboratory #12;Outline Atmospheric Aerosols and gas phase heterogeneous reactions Regional Scales and Atmospheric Aerosols Regional Scale Aerosols: Ganges Valley Aerosol

  16. Fluid Mixing from Viscous Fingering

    E-Print Network [OSTI]

    Jha, Birendra

    Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or ...

  17. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Rhode Island requires all entities that sell electricity in the state to disclose details regarding the fuel mix and emissions of their electric generation to end-use customers. This information...

  18. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03T23:59:59.000Z

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  19. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01T23:59:59.000Z

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  20. Is the tribimaximal mixing accidental?

    SciTech Connect (OSTI)

    Abbas, Mohammed [Ain Shams University, Faculty of Sciences, Abbassiyah 11566, Cairo (Egypt); Center for Theoretical Physics (CTP), British University in Egypt, BUE, El-Sherouk City, Cairo (Egypt); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34014 Trieste (Italy); Smirnov, A. Yu. [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34014 Trieste (Italy); Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-07-01T23:59:59.000Z

    The tribimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on the structure of the neutrino mass matrix and on the underlying flavor symmetry. We show that possible deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation of the TBM-mass relations. As a result, the mass matrix may have an 'anarchical' structure with random values of elements or it may have some symmetry that differs from the TBM symmetry. Interesting examples include matrices with texture zeros, matrices with certain 'flavor alignment' as well as hierarchical matrices with a two-component structure, where the dominant and subdominant contributions have different symmetries. This opens up new approaches to understanding the lepton mixing.

  1. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    In 2001, Nevada enacted legislation requiring the state’s electric utilities to provide details regarding the fuel mix and emissions of electric generation to their customers. Utilities must...

  2. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Michigan's Customer Choice and Electric Reliability Act of 2000 (P.A. 141) requires electric suppliers to disclose to customers details related to the fuel mix and emissions, in pounds per megawatt...

  3. Mixed-Mode Ventilation and Building Retrofits

    E-Print Network [OSTI]

    Brager, Gail; Ackerly, Katie

    2010-01-01T23:59:59.000Z

    Page 15 Mixed-Mode Ventilation and Building RetrofitsEngineers. 2000. Mixed-mode ventilation. CIBSE ApplicationsMichael. 2000. Hybrid Ventilation Systems: An Arup Approach

  4. Occupant satisfaction in mixed-mode buildings.

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2008-01-01T23:59:59.000Z

    Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.Department of Environmental Building Research Establishment

  5. Occupant satisfaction in mixed-mode buildings

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2009-01-01T23:59:59.000Z

    Environmental Quality in Green Buildings”. Indoor Air; 14 (Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.

  6. Neutrino Masses and Flavor Mixing

    E-Print Network [OSTI]

    Fritzsch, Harald

    2015-01-01T23:59:59.000Z

    We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

  7. Neutrino Masses and Flavor Mixing

    E-Print Network [OSTI]

    Harald Fritzsch

    2015-03-06T23:59:59.000Z

    We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

  8. Quantum computing with mixed states

    E-Print Network [OSTI]

    Michael Siomau; Stephan Fritzsche

    2011-01-17T23:59:59.000Z

    We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.

  9. Quantum computing with mixed states

    E-Print Network [OSTI]

    Siomau, Michael

    2011-01-01T23:59:59.000Z

    We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.

  10. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne (Pittsburgh, PA)

    2010-08-24T23:59:59.000Z

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  11. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    DOE Patents [OSTI]

    Lundberg, Wayne

    2010-05-04T23:59:59.000Z

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  12. Fragmentation Energetics of Clusters Relevant to Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Clusters Relevant to Atmospheric New Particle Formation. Fragmentation Energetics of Clusters Relevant to Atmospheric New Particle Formation. Abstract: The exact mechanisms by...

  13. Super-Kamiokande atmospheric neutrinos: Status of subdominant oscillations

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; A. Marrone

    2001-05-15T23:59:59.000Z

    In the context of the recent (79.5 kTy) Super-Kamiokande atmospheric neutrino data, we concisely review the status of muonic-tauonic flavor oscillations and of the subdominant electron or sterile neutrino mixing, in schemes with three or four families and one dominant mass scale. In the three-family case, where we include the full CHOOZ spectral data, we also show, through a specific example, that ``maximal'' violations of the one-dominant mass scale approximation are not ruled out yet.

  14. Environmental Chemistry II (Atmospheric Chemistry)

    E-Print Network [OSTI]

    Dibble, Theodore

    SYLLABUS FOR Environmental Chemistry II (Atmospheric Chemistry) FCH 511 Fall 2013 Theodore S/explaining the trends in J as a function of altitude and solar zenith angle. The second involves analyzing real

  15. THE MARTIAN ATMOSPHERIC BOUNDARY LAYER

    E-Print Network [OSTI]

    Spiga, Aymeric

    THE MARTIAN ATMOSPHERIC BOUNDARY LAYER A. Petrosyan,1 B. Galperin,2 S. E. Larsen,3 S. R. Lewis,4 A [Haberle et al., 1993a; Larsen et al., 2002; Hinson et al., 2008]. At night, convection is inhibited

  16. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D. (ed.)

    1984-07-01T23:59:59.000Z

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  17. Laser Atmospheric Studies with VERITAS

    E-Print Network [OSTI]

    C. M. Hui; for the VERITAS collaboration

    2007-09-25T23:59:59.000Z

    As a calibrated laser pulse propagates through the atmosphere, the amount of Rayleigh-scattered light arriving at the VERITAS telescopes can be calculated precisely. This technique was originally developed for the absolute calibration of ultra-high-energy cosmic-ray fluorescence telescopes but is also applicable to imaging atmospheric Cherenkov telescopes (IACTs). In this paper, we present two nights of laser data taken with the laser at various distances away from the VERITAS telescopes and compare it to Rayleigh scattering simulations.

  18. An infrared origin of leptonic mixing and its test at DeepCore

    E-Print Network [OSTI]

    F. Terranova

    2011-10-10T23:59:59.000Z

    Fermion mixing is generally believed to be a low-energy manifestation of an underlying theory whose energy scale is much larger than the electroweak scale. In this paper we investigate the possibility that the parameters describing lepton mixing actually arise from the low-energy behavior of the neutrino interacting fields. In particular, we conjecture that the measured value of the mixing angles for a given process depends on the number of unobservable flavor states at the energy of the process. We provide a covariant implementation of such conjecture, draw its consequences in a two neutrino family approximation and compare these findings with current experimental data. Finally we show that this infrared origin of mixing will be manifest at the Ice Cube DeepCore array, which measures atmospheric oscillations at energies much larger than the tau lepton mass; it will hence be experimentally tested in a short time scale.

  19. Possible deviation from the tri-bimaximal neutrino mixing in a seesaw model

    SciTech Connect (OSTI)

    Kang, Sin Kyu; Xing Zhizhong; Zhou Shun [School of Physics, Seoul National University, Seoul 151-734 (Korea, Republic of); CCAST (World Laboratory), P.O. Box 8730, Beijing 100080 (China) and Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, Beijing 100049 (China)

    2006-01-01T23:59:59.000Z

    We propose a simple but suggestive seesaw model with two phenomenological conjectures: three heavy (right-handed) Majorana neutrinos are degenerate in mass in the symmetry limit and three light Majorana neutrinos have the tri-bimaximal mixing pattern V{sub 0}. We show that a small mass splitting between the first generation and the other two generations of heavy Majorana neutrinos is responsible for the deviation of the solar neutrino mixing angle {theta}{sub 12} from its initial value 35.3 deg. given by V{sub 0}, and the slight breaking of the mass degeneracy between the second and third generations of heavy Majorana neutrinos results in a small mixing angle {theta}{sub 13} and a tiny departure of the atmospheric neutrino mixing angle {theta}{sub 23} from 45 deg. It turns out that a normal hierarchy of the light neutrino mass spectrum is favored in this seesaw scenario.

  20. Can the Super-Kamiokande Atmospheric Data Predict the Solar Neutrino Deficit ?

    E-Print Network [OSTI]

    Ion Stancu

    1999-03-31T23:59:59.000Z

    In this Letter we show that the evidence for neutrino oscillations from the Super-Kamiokande atmospheric neutrino data fully determines the 3x3 neutrino-oscillations mixing matrix and predicts an energy independent solar neutrino deficit at the level of 45%. This corresponds to a ratio of measured to predicted neutrino flux of R_e^{Solar} = 0.55, in good agreement with the experimental results. We achieve this result within the framework of a minimal, three-generations neutrino mixing, with mass squared differences of dM^2 = 0.45 eV^2 and dm^2 = O(10^-3) eV^2. The mixing matrix derived here is characterized by the mixing angles theta = 35.1, beta = 5.5, and psi = 23.3, and a vanishing CP-violating phase, delta = 0.

  1. Collectibility for Mixed Quantum States

    E-Print Network [OSTI]

    ?ukasz Rudnicki; Zbigniew Pucha?a; Pawe? Horodecki; Karol ?yczkowski

    2012-11-02T23:59:59.000Z

    Bounds analogous to entropic uncertainty relations allow one to design practical tests to detect quantum entanglement by a collective measurement performed on several copies of the state analyzed. This approach, initially worked out for pure states only [Phys. Rev. Lett. 107, 150502 (2011)], is extended here for mixed quantum states. We define collectibility for any mixed states of a multipartite system. Deriving bounds for collectibility for positive partially transposed states of given purity provides a new insight into the structure of entangled quantum states. In case of two qubits the application of complementary measurements and coincidence based detections leads to a new test of entanglement of pseudopure states.

  2. Mixed ternary heterojunction solar cell

    DOE Patents [OSTI]

    Chen, Wen S. (Seattle, WA); Stewart, John M. (Seattle, WA)

    1992-08-25T23:59:59.000Z

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  3. Bs Mixing at the Tevatron

    SciTech Connect (OSTI)

    Gomez-Ceballos, Guillelmo; /Cantabria Inst. of Phys.

    2006-04-01T23:59:59.000Z

    The Tevatron collider at Fermilab provides a very rich environment for the study of B{sub s} mesons. B{sub s} Mixing is the most important analysis within the B Physics program of both experiments. In this paper they summarize the most recent results on this topic from both D0 and CDF experiments. There were very important updates in both experiments after his last talk, hence the organizers warmly recommended me to include the latest available results on B{sub s} mixing, instead of what he presents there.

  4. United Quark and Neutrino Mixing Matrices with Universal Pair of CP-Violating Phases

    E-Print Network [OSTI]

    E. M. Lipmanov

    2008-01-21T23:59:59.000Z

    The Standard Model quark and neutrino mixing matrices are of independent empirical origin, but they do suggest unification. In this paper I obtained two united one-parameter quark and neutrino mixing matrices inferred from two semi-empirical deviation-from-mass-degeneracy (DMD) flavor rules (quadratic DMD-hierarchy rule and Dirac-Majorana DMD-duality rule) without use of the common exact-flavor-symmetry suggestions for that particular unification problem. One small empirical parameter quantitatively defines the pattern of particle flavor physics. The main predictions are: 1) hierarchical connections between the 2 large solar and atmospheric neutrino mixing angels, and the 2 small quark mixing angels, 2) universal sequence of 14 equality relations to that one-empirical-parameter of the quark and neutrino mixing-matrix parameters, CP-phases and lepton mass ratios, which are free dimensionless constants in the Standard Model, 3) complementarity connections between doubled large neutrino and small quark mixing angles, 4) tentative solution of the CP-violation problem in framework of Standard Model mixing matrix phenomenology by suggesting a universal set of two nonzero values ~58.8 and ~31.2 degrees for Dirac and Majorana CP-violating phases.

  5. Images reveal that atmospheric particles can undergo liquid-liquid phase separations

    SciTech Connect (OSTI)

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

    2012-07-30T23:59:59.000Z

    A large fraction of submicron atmospheric particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semi-volatile organic compounds, the scattering and absorption of solar radiation, and the uptake of reactive gas species on atmospheric particles will be affected, with important implications for climate predictions. The actual occurrence of these types of phase transitions within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we observe the coexistence of two non-crystalline phases in particles generated from real-world samples collected on multiple days in Atlanta, Georgia, and in particles generated in the laboratory using atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. Using a box model, we show that liquid-liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 in the Atlanta region, due to decreased particle uptake of N2O5.

  6. Cumulant expansions for atmospheric flows

    E-Print Network [OSTI]

    Ait-Chaalal, Farid; Meyer, Bettina; Marston, J B

    2015-01-01T23:59:59.000Z

    The equations governing atmospheric flows are nonlinear, and consequently the hierarchy of cumulant equations is not closed. But because atmospheric flows are inhomogeneous and anisotropic, the nonlinearity may manifests itself only weakly through interactions of mean fields with disturbances such as thermals or eddies. In such situations, truncations of the hierarchy of cumulant equations hold promise as a closure strategy. We review how truncations at second order can be used to model and elucidate the dynamics of turbulent atmospheric flows. Two examples are considered. First, we study the growth of a dry convective boundary layer, which is heated from below, leading to turbulent upward energy transport and growth of the boundary layer. We demonstrate that a quasilinear truncation of the equations of motion, in which interactions of disturbances among each other are neglected but interactions with mean fields are taken into account, can successfully capture the growth of the convective boundary layer. Seco...

  7. Advances in compressible turbulent mixing

    SciTech Connect (OSTI)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01T23:59:59.000Z

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  8. Dark energy and particle mixing

    E-Print Network [OSTI]

    A. Capolupo; S. Capozziello; G. Vitiello

    2008-08-30T23:59:59.000Z

    We show that the vacuum condensate due to particle mixing is responsible of a dynamically evolving dark energy. In particular, we show that values of the adiabatic index close to -1 for vacuum condensates of neutrinos and quarks imply, at the present epoch, contributions to the vacuum energy compatible with the estimated upper bound on the dark energy.

  9. Neutrino Mass and Mixing Measurements at Super-Kamiokande R. Svoboda (for the Super-Kamiokande Collaboration) a

    E-Print Network [OSTI]

    Tokyo, University of

    1 Neutrino Mass and Mixing Measurements at Super-Kamiokande R. Svoboda (for the Super-Kamiokande-4001 USA The latest atmospheric and solar neutrino measurements from over 1100 live days of the Super-Kamiokande Oscillation (VO) allowed regions from ux de#12;cit alone are excluded at the 95% c:l: 1. The Super-Kamiokande

  10. Search for Differences in Oscillation Parameters for Atmospheric Neutrinos and Antineutrinos at Super-Kamiokande

    E-Print Network [OSTI]

    Abe, K; Iida, T; Ikeda, M; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Takeuchi, Y; Ueno, K; Ueshima, K; Watanabe, H; Yamada, S; Yokozawa, T; Ishihara, C; Kaji, H; Lee, K P; Kajita, T; Kaneyuki, K; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Martens, K; Vagins, M R; Labarga, L; Magro, L M; Dufour, F; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Kropp, W R; Mine, S; Regis, C; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T M; Tasaka, S; Learned, J G; Matsuno, S; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Nishino, H; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Minamino, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Kim, S B; Yang, B S; Ishizuka, T; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Yokoyama, M; Totsuka, Y; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Wilkes, R J

    2011-01-01T23:59:59.000Z

    We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande -I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best fit antineutrino mixing is found to be at (dm2bar, sin2 2 thetabar) = (2.0x10^-3 eV^2, 1.0) and is consistent with the overall Super-K measurement.

  11. ATMOSPHERIC ELSEVIER AtmosphericResearch 38 (1995) 2942

    E-Print Network [OSTI]

    Harrington, Jerry Y.

    parameterization Part I: the single-moment scheme R.L. Walko, W.R. Cotton *, M.P. Meyers, J.Y. Harrington Colorado 1994 Abstract A new cloud microphysical parameterization is described. Features of this new scheme; the use of a heat budget equation for hydrometeor classes, allowing heat storage and mixed phase hydrome

  12. Atmospheric Inverse Estimates of Methane Emissions from Central California

    SciTech Connect (OSTI)

    Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

    2008-11-21T23:59:59.000Z

    Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

  13. HEATING THE ATMOSPHERE ABOVE SUNSPOTS

    E-Print Network [OSTI]

    Rucklidge, Alastair

    become fragmented and twisted, and where they generate the necessary energy to heat the solar coronaHEATING THE ATMOSPHERE ABOVE SUNSPOTS David Alexander and Neal E. Hurlburt Lockheed Martin Solar, University of Cambridge, Cambridge, CB3 9EW, UK Abstract We present our results of a hybrid model of sunspots

  14. Space Science: Atmosphere Thermal Structure

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science: Atmosphere Part -2 Thermal Structure Review tropospheres Absorption of Radiation Adiabatic Lapse Rate ~ 9 K/km Slightly smaller than our estimate Pressure ~3000ft under ocean surface thickness (positive up) is the solar zenith angle Fs is the solar energy flux at frequency (when

  15. ATOC/CHEM 5151 Problem 5 Converting Volume Mixing Ratio to Mass Density

    E-Print Network [OSTI]

    Toohey, Darin W.

    , 2014 In 2012, the dry mixing ratio volume of sulfur hexafluoride (SF6) in the atmosphere was about 7.5 parts per trillion by volume ("pptv" or "ppt"). Convert this value into the mass density of SF6 in units of micrograms of SF6 per cubic meter of air ("g m-3" ). Source of information: MW(SF6)= 146 g mol-1 Methodology

  16. Synthesis and structure of nanocrystalline mixed Ce–Yb silicates

    SciTech Connect (OSTI)

    Ma?ecka, Ma?gorzata A., E-mail: M.Malecka@int.pan.wroc.pl; K?pi?ski, Leszek

    2013-07-15T23:59:59.000Z

    Graphical abstract: - Highlights: • New method of synthesis of nanocrystalline mixed lanthanide silicates is proposed. • Formation of A-type (Ce{sub 1?y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} in well dispersed Ce{sub 1?x}Yb{sub x}O{sub 2?(x/2)}–SiO{sub 2} system. • Formation of Yb{sub y}Ce{sub 9.33?y}(SiO{sub 4}){sub 6}O{sub 2} in agglomerated Ce{sub 1?x}Yb{sub x}O{sub 2?(x/2)}–SiO{sub 2} system. - Abstract: This work presents results of studies on synthesis and structure of mixed, nanocrystalline Ce–Yb silicates. Using TEM, XRD and FTIR we showed that heat treatment of nanocrystalline Ce{sub 1?x}Yb{sub x}O{sub 2?(x/2)} (x = 0.3, 0.5) mixed oxide supported on amorphous silica in reducing atmosphere, results in formation of Ce–Yb mixed silicates. Dispersion of the oxide on the silica surface and thus a local lanthanide/Si atomic ratio determines the stoichiometry of the silicate. Oxide crystallites uniformly dispersed on the silica surface transformed into A-(Ce{sub 1?y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} disilicate, while the agglomerated nanoparticles converted into Yb{sub y}Ce{sub 9.33?y}(SiO{sub 4}){sub 6}O{sub 2} oxyapatite silicate as an intermediate phase.

  17. Neutrino mixing, flavor states and dark energy

    E-Print Network [OSTI]

    M. Blasone; A. Capolupo; S. Capozziello; G. Vitiello

    2007-11-06T23:59:59.000Z

    We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe.

  18. Estimating a mixed strategy employing maximum entropy

    E-Print Network [OSTI]

    Golan, Amos; Karp, Larry; Perloff, Jeffrey M.

    1996-01-01T23:59:59.000Z

    MIXED STRATEGY EMPLOYING MAXIMUM ENTROPY by Amos Golan LarryMixed Strategy Employing Maximum Entropy Amos Golan Larry S.Abstract Generalized maximum entropy may be used to estimate

  19. Rotational Mixing and Lithium Depletion

    E-Print Network [OSTI]

    Pinsonneault, M H

    2010-01-01T23:59:59.000Z

    I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...

  20. HETEROGENEOUS REBURNING BY MIXED FUELS

    SciTech Connect (OSTI)

    Wei-Yin Chen; Benson B. Gathitu

    2005-01-14T23:59:59.000Z

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  1. Heterogeneous Reburning By Mixed Fuels

    SciTech Connect (OSTI)

    Anderson Hall

    2009-03-31T23:59:59.000Z

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  2. Mixing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrocamera t 0 5 ps 10 ps Pyrocamera Diffractive grating wavenumber 1.3 cm -1 Fourier transform Measured Simulated :) Single-shot :) Simple reliable :) Indiv. pulse...

  3. Magnetohydrodynamic kink waves in nonuniform solar flux tubes: phase mixing and energy cascade to small scales

    E-Print Network [OSTI]

    Soler, Roberto

    2015-01-01T23:59:59.000Z

    Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles for the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfv\\'en continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In ...

  4. Optimization Online - Analysis of mixed integer programming ...

    E-Print Network [OSTI]

    Thiago Henrique Nogueira

    2014-07-15T23:59:59.000Z

    Jul 15, 2014 ... Analysis of mixed integer programming formulations for single machine scheduling problems with sequence dependent setup times and ...

  5. Dark energy induced by neutrino mixing

    E-Print Network [OSTI]

    Antonio Capolupo; Salvatore Capozziello; Giuseppe Vitiello

    2006-12-11T23:59:59.000Z

    The energy content of the vacuum condensate induced by the neutrino mixing is interpreted as dynamically evolving dark energy.

  6. Sulfuryl fluoride in the global atmosphere

    E-Print Network [OSTI]

    Muhle, J.

    The first calibrated high-frequency, high-precision, in situ atmospheric and archived air measurements of the fumigant sulfuryl fluoride (SO[subscript 2]F[subscript 2]) have been made as part of the Advanced Global Atmospheric ...

  7. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012)

    E-Print Network [OSTI]

    Gerber, Edwin

    2012-01-01T23:59:59.000Z

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012) Published online in Wiley Online Library using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP) concentrations and sea- surface temperatures (SSTs). These integrations enable the relative role of ozone

  8. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    SciTech Connect (OSTI)

    Paul H. Wine

    1998-11-23T23:59:59.000Z

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  9. atmospheric nitrogen fluorescence: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Greenhouse Effect and Atmospheric Warming Atmosphere absorbs heat energy A real greenhouse traps heatCh4. Atmosphere and Surface Energy Balances...

  10. atmospheric energy redistribution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Ch4. Atmosphere and Surface Energy Balances Geosciences Websites Summary: Greenhouse Effect and Atmospheric Warming Atmosphere absorbs heat energy A real greenhouse traps...

  11. atmospheric pressure surface: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K. 27 Ch4. Atmosphere and Surface Energy Balances Geosciences Websites Summary: Greenhouse Effect and Atmospheric Warming Atmosphere absorbs heat energy A real greenhouse traps...

  12. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01T23:59:59.000Z

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  13. Atmospheric Environment 42 (2008) 21412157 Mixing of mineral with pollution aerosols in dust season in

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    , industrial/ coal combustion, salts, phosphates, nitrites, and oil combustion were identified by PMF

  14. Proof of the Atmospheric Greenhouse Effect

    E-Print Network [OSTI]

    Smith, Arthur P

    2008-01-01T23:59:59.000Z

    A recently advanced argument against the atmospheric greenhouse effect is refuted. A planet without an infrared absorbing atmosphere is mathematically constrained to have an average temperature less than or equal to the effective radiating temperature. Observed parameters for Earth prove that without infrared absorption by the atmosphere, the average temperature of Earth's surface would be at least 33 K lower than what is observed.

  15. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Scherer, Norbert F.

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  16. Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with CAM3 Single-Column Model and M-PACE Observations

    SciTech Connect (OSTI)

    Liu, Xiaohong; Xie, Shaocheng; Ghan, Steven J.

    2007-12-14T23:59:59.000Z

    Most global climate models generally prescribe the partitioning of condensed water into liquid droplets and ice crystals in mixed-phase clouds according to a temperature-dependent function, which affects modeled cloud phase, cloud lifetime and radiative properties. This study evaluates a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the NCAR Community Atmospheric Model Version 3 (CAM3) single column model (SCAM). It is shown that SCAM with the new scheme produces a more realistic simulation of the cloud phase structure and the partitioning of condensed waterinto liquid droplets against observations during the M-PACE than the standard CAM. Sensitivity test indicates that ice number concentration could play an important role in the simulated mixed-phase cloud microphysics, and thereby needs to be realistically represented in global climate models.

  17. B0-B0bar mixing

    E-Print Network [OSTI]

    Olivier Schneider

    2008-06-30T23:59:59.000Z

    The subject of particle-antiparticle mixing in the neutral B meson systems is reviewed. The formalism of B0-B0bar mixing is recalled and basic Standard Model predictions are given, before experimental issues are discussed and the latest combinations of experimental results on mixing parameters are presented, including those on mixing-induced CP violation, mass differences, and decay-width differences. Finally, time-integrated mixing results are used to improve our knowledge on the fractions of the various b-hadron species produced in Z decays and at high-energy colliders.

  18. B0-B0bar mixing

    E-Print Network [OSTI]

    Olivier Schneider

    2006-06-17T23:59:59.000Z

    The subject of particle-antiparticle mixing in the neutral B meson systems is reviewed. The formalism of B0-B0bar mixing is recalled and basic Standard Model predictions are given, before experimental issues are discussed and the latest combinations of experimental results on mixing parameters are presented, including those on mixing-induced CP violation, mass differences, and decay-width differences. Finally, time-integrated mixing results are used to improve our knowledge on the fractions of the various b-hadron species produced in Z decays and at high-energy colliders.

  19. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  20. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    SciTech Connect (OSTI)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20T23:59:59.000Z

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  1. Tailored mixing inside a translating droplet

    E-Print Network [OSTI]

    Rodolphe Chabreyrie; Dmitri Vainchtein; Cristel Chandre; Pushpendra Singh; Nadine Aubry

    2008-03-03T23:59:59.000Z

    Tailored mixing inside individual droplets could be useful to ensure that reactions within microscopic discrete fluid volumes, which are used as microreactors in ``digital microfluidic'' applications, take place in a controlled fashion. In this article we consider a translating spherical liquid drop to which we impose a time periodic rigid-body rotation. Such a rotation not only induces mixing via chaotic advection, which operates through the stretching and folding of material lines, but also offers the possibility of tuning the mixing by controlling the location and size of the mixing region. Tuned mixing is achieved by judiciously adjusting the amplitude and frequency of the rotation, which are determined by using a resonance condition and following the evolution of adiabatic invariants. As the size of the mixing region is increased, complete mixing within the drop is obtained.

  2. Expandable mixing section gravel and cobble eductor

    DOE Patents [OSTI]

    Miller, Arthur L. (Kenyon, MN); Krawza, Kenneth I. (Lakeville, MN)

    1997-01-01T23:59:59.000Z

    In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.

  3. Orifice mixing of immiscible liquids

    E-Print Network [OSTI]

    McDonough, Joseph Aloysius

    1960-01-01T23:59:59.000Z

    solution (7). The present study of orif1ce mixing is a continuation of previous research on this project which yielded a relationship explaining the effect of operating conditions upon the format1on of 1nterfacial area for the system water-kerosene.... The experimental technique evolved by Helch (18), Vesselhoff (19), McNair (8), and Scott (IA) was changed only slightly. Their work on water-kerosene was repeated for the liquid pairs trichloroethylene-water, heptanol-water, 20 per oent aqueous sucrose-kerosene...

  4. An Infrared Spectral Library for Atmospheric Environmental Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Infrared Spectral Library for Atmospheric Environmental Monitoring. An Infrared Spectral Library for Atmospheric Environmental Monitoring. Abstract: Infrared (IR) spectroscopy...

  5. atmospheric research community: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Corporation for Atmospheric Research Geosciences Websites Summary: University Corporation for Atmospheric Research CIGNA DENTAL PREFERRED PROVIDER INSURANCE EFFECTIVE...

  6. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  7. Closure Report for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    none,

    2013-06-27T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Security Site: · CAS 07-23-03, Atmospheric Test Site T-7C · CAS 07-23-04, Atmospheric Test Site T7-1 · CAS 07-23-05, Atmospheric Test Site · CAS 07-23-06, Atmospheric Test Site T7-5a · CAS 07-23-07, Atmospheric Test Site - Dog (T-S) · CAS 07-23-08, Atmospheric Test Site - Baker (T-S) · CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) · CAS 07-23-10, Atmospheric Test Site - Dixie · CAS 07-23-11, Atmospheric Test Site - Dixie · CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) · CAS 07-23-13, Atmospheric Test Site - Baker (Buster) · CAS 07-23-14, Atmospheric Test Site - Ruth · CAS 07-23-15, Atmospheric Test Site T7-4 · CAS 07-23-16, Atmospheric Test Site B7-b · CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NFO for closure of CAU 104 · The transfer of CAU 104 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  8. Pulse atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. During this reporting period, a total of eight shakedown and debugging coal combustion tests were performed in the AFBC. A start-up procedure was established, system improvements implemented, and preliminary material and heat balances made based on these tests. The pulse combustor for the AFBC system was fabricated and installed and a series of tests was conducted on the system. 17 figs., 5 tabs.

  9. NETL SOFC: Atmospheric Pressure Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525AdaptingWaterTerryAtmospheric

  10. Large |U{sub e3}| and tribimaximal mixing

    SciTech Connect (OSTI)

    Goswami, Srubabati [Physical Research Laboratory, Ahmedabad 380 009 (India); Petcov, Serguey T. [SISSA and INFN Sezione di Trieste, Via Beirut 2-4, I-34014 Trieste (Italy) and Institute for the Physics of Mathematics of the Universe, 5-1-5 Kashiwa-no-Ha, Kashiwa Shi, Chiba 277-8568 (Japan); Ray, Shamayita [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2009-09-01T23:59:59.000Z

    We investigate in a model-independent way to what extent one can perturb tribimaximal mixing in order to generate a sizable value of |U{sub e3}|, while at the same time keeping solar neutrino mixing near its measured value, which is close to sin{sup 2}{theta}{sub 12}=(1/3). Three straightforward breaking mechanisms to generate |U{sub e3}|{approx_equal}0.1 are considered. For charged lepton corrections, the suppression of a sizable contribution to sin{sup 2}{theta}{sub 12} can be achieved if CP violation in neutrino oscillations is almost maximal. Generation of the indicated value of |U{sub e3}|{approx_equal}0.1 through renormalization group corrections requires the neutrinos to be quasidegenerate in mass. The consistency with the allowed range of sin{sup 2}{theta}{sub 12} together with large running of |U{sub e3}| forces one of the Majorana phases to be close to {pi}. This implies large cancellations in the effective Majorana mass governing neutrinoless double beta (({beta}{beta}){sub 0{nu}}) decay, constraining it to lie near its minimum allowed value of m{sub 0}cos2{theta}{sub 12}, where m{sub 0} > or approx. 0.1 eV. Finally, explicit breaking of the neutrino mass matrix in the inverted hierarchical and quasidegenerate neutrino mass spectrum cases is similarly correlated with the ({beta}{beta}){sub 0{nu}}-decay effective Majorana mass, although to a lesser extent. The implied values for the atmospheric neutrino mixing angle {theta}{sub 23} are given in all cases.

  11. Water Vapor Turbulence Profiles in Stationary Continental Convective Mixed Layers

    SciTech Connect (OSTI)

    Turner, D. D.; Wulfmeyer, Volker; Berg, Larry K.; Schween, Jan

    2014-10-08T23:59:59.000Z

    The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program’s Raman lidar at the ARM Southern Great Plains (SGP) site in north-central Oklahoma has collected water vapor mixing ratio (q) profile data more than 90% of the time since October 2004. Three hundred (300) cases were identified where the convective boundary layer was quasi-stationary and well-mixed for a 2-hour period, and q mean, variance, third order moment, and skewness profiles were derived from the 10-s, 75-m resolution data. These cases span the entire calendar year, and demonstrate that the q variance profiles at the mixed layer (ML) top changes seasonally, but is more related to the gradient of q across the interfacial layer. The q variance at the top of the ML shows only weak correlations (r < 0.3) with sensible heat flux, Deardorff convective velocity scale, and turbulence kinetic energy measured at the surface. The median q skewness profile is most negative at 0.85 zi, zero at approximately zi, and positive above zi, where zi is the depth of the convective ML. The spread in the q skewness profiles is smallest between 0.95 zi and zi. The q skewness at altitudes between 0.6 zi and 1.2 zi is correlated with the magnitude of the q variance at zi, with increasingly negative values of skewness observed lower down in the ML as the variance at zi increases, suggesting that in cases with larger variance at zi there is deeper penetration of the warm, dry free tropospheric air into the ML.

  12. Optimal Control of Evolution Mixed Variational Inclusions

    SciTech Connect (OSTI)

    Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx [Universidad Nacional Autónoma de México, Departamento de Recursos Naturales, Instituto de Geofísica (Mexico)

    2013-12-15T23:59:59.000Z

    Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.

  13. Seesaw enhancement of lepton mixing

    SciTech Connect (OSTI)

    Smirnov, A.Y. (Institute for Advanced Study, Princeton, New Jersey 08540 (United States) International Centre for Theoretical Physics, 34100 Trieste (Italy) Institute for Nuclear Research, 117312 Moscow (Russian Federation))

    1993-10-01T23:59:59.000Z

    The seesaw mechanism of neutrino mass generation may enhance lepton mixing up to maximal even if the Dirac mass matrices of leptons have a structure similar to that in the quark sector. Two sets of conditions for such an enhancement are found. The first one includes the seesaw generation of heavy Majorana masses for right-handed neutrinos and a universality of Yukawa couplings which can follow from the unification of neutrinos with new superheavy neutral leptons. The second set is related to the lepton number symmetry of the Yukawa interactions in the Dirac basis of neutrinos. Models which realize these conditions have a strong hierarchy or strong degeneration of Majorana masses of the right-handed neutrinos.

  14. Fingering convection and cloudless models for cool brown dwarf atmospheres

    E-Print Network [OSTI]

    Tremblin, P; Mourier, P; Baraffe, I; Chabrier, G; Drummond, B; Homeier, D; Venot, O

    2015-01-01T23:59:59.000Z

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless mode...

  15. Atmospheric Dispersion Modeling: Challenges of the Fukushima Daiichi Response

    SciTech Connect (OSTI)

    Sugiyama, Gayle [Lawrence Livermore National Laboratory; Nasstrom, John [Lawrence Livermore National Laboratory; Pobanz, Brenda [Lawrence Livermore National Laboratory; Foster, Kevin [Lawrence Livermore National Laboratory; Simpson, Matthew [Lawrence Livermore National Laboratory; Vogt, Phil [Lawrence Livermore National Laboratory; Aluzzi, Fernando [Lawrence Livermore National Laboratory; Homann, Steve [Lawrence Livermore National Laboratory

    2012-05-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident. This work encompassed: weather forecasts and atmospheric transport predictions, estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases, predictions of possible plume arrival times and dose levels at U.S. locations, and source estimation and plume model refinement. An overview of NARAC response activities is provided, along with a more in-depth discussion of some of NARAC’s preliminary source reconstruction analyses. NARAC optimized the overall agreement of model predictions to dose rate measurements using statistical comparisons of data and model values paired in space and time. Estimated emission rates varied depending on the choice of release assumptions (e.g., time-varying vs. constant release rates), the radionuclide mix, meteorology, and/or the radiological data used in the analysis. Results were found to be consistent with other studies within expected uncertainties, despite the application of different source estimation methodologies and the use of significantly different radiological measurement data. A discussion of some of the operational and scientific challenges encountered during the response, along with recommendations for future work, is provided.

  16. Simulations of Arctic Mixed-Phase Clouds in Forecasts with CAM3 and AM2 for M-PACE

    SciTech Connect (OSTI)

    Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven J.

    2008-02-29T23:59:59.000Z

    Simulations of mixed-phase clouds in short-range forecasts with the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed under the DOE CCPP-ARM Parameterization Testbed (CAPT), which initializes the climate models with analysis data produced from numerical weather prediction (NWP) centers. It is shown that CAM3 significantly underestimates the observed boundary layer mixed-phase clouds and cannot realistically simulate the variations with temperature and cloud height of liquid water fraction in the total cloud condensate based an oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer clouds while its clouds contain much less cloud condensate than CAM3 and the observations. Both models underestimate the observed cloud top and base for the boundary layer clouds. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used. The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes in CAM3. It is shown that the Bergeron-Findeisen process, i.e., the ice crystal growth by vapor deposition at the expense of coexisting liquid water, is important for the models to correctly simulate the characteristics of the observed microphysical properties in mixed-phase clouds. Sensitivity tests show that these results are not sensitive to the analysis data used for model initializations. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. Ice crystal number density has large impact on the model simulated mixed-phase clouds and their microphysical properties and needs to be accurately represented in climate models.

  17. Hygroscopic Properties of Internally Mixed Particles Composed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical...

  18. Optimization Online - Convex Quadratic Relaxations for Mixed ...

    E-Print Network [OSTI]

    Hassan L. Hijazi

    2013-09-30T23:59:59.000Z

    Sep 30, 2013 ... Convex Quadratic Relaxations for Mixed-Integer Nonlinear Programs in Power Systems. Hassan L. Hijazi (hassan.hijazi ***at*** nicta.com.au)

  19. Independent Oversight Review, Advanced Mixed Waste Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    April 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site This report documents an independent review of...

  20. Optimization Online - Concrete Structure Design Using Mixed ...

    E-Print Network [OSTI]

    Andres Guerra

    2009-11-26T23:59:59.000Z

    Nov 26, 2009 ... Abstract: We present a mixed-integer nonlinear programming (MINLP) formulation to achieve minimum-cost designs for reinforced concrete ...

  1. TANK MIXING STUDY WITH FLOW RECIRCULATION

    SciTech Connect (OSTI)

    Lee, S.

    2014-06-25T23:59:59.000Z

    The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

  2. Lanthanide doped strontium barium mixed halide scintillators

    SciTech Connect (OSTI)

    Gundiah, Gautam; Bizarri, Gregory; Hanrahan, Stephen M; Bourret-Courchesne, Edith; Derenzo, Stephen E

    2013-07-16T23:59:59.000Z

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

  3. Optimization Online - Mixed-Integer Nonlinear Optimization

    E-Print Network [OSTI]

    Pietro Belotti

    2012-12-02T23:59:59.000Z

    Dec 2, 2012 ... Mixed-Integer Nonlinear Optimization. Pietro Belotti(pbelott ***at*** clemson.edu) Sven Leyffer(leyffer ***at*** mcs.anl.gov) Christian ...

  4. Atmospheric neutrino flux at INO site

    SciTech Connect (OSTI)

    Honda, Morihiro [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan)

    2011-11-23T23:59:59.000Z

    To illustrate the calculation of the atmospheric neutrino flux, we briefly explain our calculation scheme and important components, such as primary cosmic ray spectra, interaction model, and geomagnetic model. Then, we calculate the atmospheric neutrino flux at INO site in our calculation scheme. We compare the calculated atmospheric neutrino fluxes predicted at INO with those at other major neutrino detector sites, especially that at SK site.

  5. Inference of ICF implosion core mix using experimental data and theoretical mix modeling

    SciTech Connect (OSTI)

    Sherrill, Leslie Welser [Los Alamos National Laboratory; Haynes, Donald A [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Sherrill, Manolo E [Los Alamos National Laboratory; Mancini, Roberto C [UNR; Tommasini, Riccardo [LLNL; Golovkin, Igor E [PRISM COMP. SCIENCES; Haan, Steven W [LLNL

    2009-01-01T23:59:59.000Z

    The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

  6. Toxicity of atmospheric aerosols on marine phytoplankton

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    metals added from these aerosols to the bioassay incubationsreleased to seawater from the aerosol filters after Author4605 CHEMISTRY Atmospheric aerosol deposition CHEMISTRY

  7. Urban Atmospheres captures a unique, synergistic moment

    E-Print Network [OSTI]

    Paulos, Eric

    Urban Atmospheres captures a unique, synergistic moment ­ expanding urban populations, rapid EDITORS Eric Paulos Intel Research eric@paulos.net Tom Jenkins Royal College of Art thomas

  8. Characterizing orbit uncertainty due to atmospheric uncertainty

    E-Print Network [OSTI]

    Wilkins, Matthew Paul

    2000-01-01T23:59:59.000Z

    is implemented to model errors in the atmospheric density model. This study shows that the Kalman filter computes a believable and more realistic covariance....

  9. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improving our understanding of how clouds and atmospheric moisture interact with solar radiation and the effects of these interactions on climate. Photo courtesy Argonne National...

  10. Physics Potential of Future Atmospheric Neutrino Searches

    E-Print Network [OSTI]

    Thomas Schwetz

    2008-12-12T23:59:59.000Z

    The potential of future high statistics atmospheric neutrino experiments is considered, having in mind currently discussed huge detectors of various technologies (water Cerekov, magnetized iron, liquid Argon). I focus on the possibility to use atmospheric data to determine the octant of $\\theta_{23}$ and the neutrino mass hierarchy. The sensitivity to the $\\theta_{23}$-octant of atmospheric neutrinos is competitive (or even superior) to long-baseline experiments. I discuss the ideal properties of a fictitious atmospheric neutrino detector to determine the neutrino mass hierarchy.

  11. Super-Kamiokande atmospheric neutrino results

    E-Print Network [OSTI]

    Toshiyuki Toshito; the Super-Kamiokande collaboration

    2001-05-14T23:59:59.000Z

    We present atmospheric neutrino results from a 79 kiloton year (1289 days) exposure of the Super-Kamiokande detector. Our data are well explained by $\

  12. atmospheres: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  13. atmosphere: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  14. atmospherics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  15. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a ...

  16. Parallization of Stellar Atmosphere Codes

    E-Print Network [OSTI]

    P. Hoeflich

    2002-09-19T23:59:59.000Z

    Parallel computing has turned out to be the enabling technology to solve complex physical systems. However, the transition from shared memory, vector computers to massively parallel, distributed memory systems and, recently, to hybrid systems poses new challenges to the scientist. We want to present a cook-book (with a very strong, personal bias) based on our experience with parallization of our existing codes. Some of the general tools and communication libraries are discussed. Our approach includes a mixture of algorithm, domain and physical module based parallization. The advantages, scalability and limitations of each are discussed at some examples. We want show that it becomes easier to write parallel code with increasing complexity of the physical problem making stellar atmosphere codes beyond the classical assumptions very suitable.

  17. Limits to the lunar atmosphere

    SciTech Connect (OSTI)

    Morgan, T.H. (National Aeronautics and Space Administration, Washington, D.C. (USA)); Shemansky, D.E. (Univ. of Arizona, Tucson (USA))

    1991-02-01T23:59:59.000Z

    The presence of sodium and potassium on the Moon implies that other more abundant species should be present. Volatile molecules like H{sub 2}O are significantly more abundant than sodium in any of the proposed external atmospheric sources. Source mechanisms which derive atoms from the surface should favor abundant elements in the regolith. It is therefore puzzling that the Apollo ultraviolet spectrometer experiment set limits on the density of oxygen of N{sub O} < 5 {times} 10{sup 2} cm{sup {minus}3}, and that the Apollo Lunar Atmospheric Composition Experiment data imply N{sub O} < 50 cm{sup {minus}3} above the subsolar point. These limits are surprisingly small relative to the measured value for sodium. A simple consideration of sources and sinks predicts significantly greater densities of oxygen. It is possible but doubtful that the Apollo measurements occur ed during an epoch in which source rates were small. A preferential loss process for oxygen on the darkside of the Moon is considered in which ionization by electron capture in surface collisions leads to escape through acceleration in the local electric field. Cold trapping in permanently shadowed regions as a net sink is considered and discounted, but the episodic nature of cometary insertion may allow formation of ice layers which act as a stablized source of OH. On the basis of an assumed meteoroid impact source, the authors predict a possible emission brightness of {approximately} 50 R in the OH(A {minus} X)(0,0) band above the lunar bright limb. A very uncertain small comet source of H{sub 2}O could raise this value by more than two orders of magnitude.

  18. Neutrino Mixing and Oscillations in Astrophysical Environments

    E-Print Network [OSTI]

    A. B. Balantekin

    2014-01-22T23:59:59.000Z

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  19. Milestone M4900: Simulant Mixing Analytical Results

    SciTech Connect (OSTI)

    Kaplan, D.I.

    2001-07-26T23:59:59.000Z

    This report addresses Milestone M4900, ''Simulant Mixing Sample Analysis Results,'' and contains the data generated during the ''Mixing of Process Heels, Process Solutions, and Recycle Streams: Small-Scale Simulant'' task. The Task Technical and Quality Assurance Plan for this task is BNF-003-98-0079A. A report with a narrative description and discussion of the data will be issued separately.

  20. Adaptive wavelet deconvolution for strongly mixing sequences

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adaptive wavelet deconvolution for strongly mixing sequences Christophe Chesneau Abstract square error over Besov balls, we explore the performances of two wavelet estimators: a standard linear, Strongly mixing, Adap- tivity, Wavelets, Hard thresholding. AMS 2000 Subject Classifications: 62G07, 62G20

  1. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect (OSTI)

    Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

    2014-05-02T23:59:59.000Z

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  2. Predictions From High Scale Mixing Unification Hypothesis

    E-Print Network [OSTI]

    Srivastava, Rahul

    2015-01-01T23:59:59.000Z

    Starting with 'High Scale Mixing Unification' hypothesis, we investigate the renormalization group evolution of mixing parameters and masses for both Dirac and Majorana type neutrinos. Following this hypothesis, the PMNS mixing parameters are taken to be identical to the CKM ones at a unifying high scale. Then, they are evolved to a low scale using MSSM renormalization-group equations. For both type of neutrinos, the renormalization group evolution 'naturally' results in a non-zero and small value of leptonic mixing angle $\\theta_{13}$. One of the important predictions of this analysis is that, in both cases, the mixing angle $\\theta_{23}$ turns out to be non-maximal for most of the parameter range. We also elaborate on the important differences between Dirac and Majorana neutrinos within our framework and how to experimentally distinguish between the two scenarios. Furthermore, for both cases, we also derive constraints on the allowed parameter range for the SUSY breaking and unification scales, for which th...

  3. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  4. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11T23:59:59.000Z

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  5. Doctoral Programs Atmospheric, Oceanic & Space Sciences

    E-Print Network [OSTI]

    Eustice, Ryan

    University of Michigan Space Research Building 2455 Hayward Street Ann Arbor, MI 48109-2143 aoss Katherine E. White, Ann Arbor ©The Regents of the University of Michigan Research areas Atmospheric Science Atmospheric Dynamics Climate, Climate Modeling & Climate Change Clouds & Precipitation Paleoclimate, Ice

  6. Human effects on the global atmosphere

    SciTech Connect (OSTI)

    Johnston, H.S.

    1984-01-01T23:59:59.000Z

    This review considers whether human activities can significantly change important functions of the global atmosphere by altering the amount or distribution of certain trace species. It deals with three specific topics: stratopheric ozone, the role of species other than carbon dioxide on the greenhouse effect, and certain recently recognized atmospheric consequences of a large scale nuclear war. 64 references, 10 figures, 2 tables.

  7. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013)

    E-Print Network [OSTI]

    Lee, Sukyoung

    2013-01-01T23:59:59.000Z

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013) Published online in Wiley Online Library Sciences, Seoul National University, Seoul, South Korea *Correspondence to: C. Yoo, Center for Atmosphere). A number of studies have shown that the MJO plays an important role in modulating the extratropical cir

  8. ATOMIC IONIZATION AND OPACITIES IN PULSAR ATMOSPHERES

    E-Print Network [OSTI]

    ATOMIC IONIZATION AND OPACITIES IN PULSAR ATMOSPHERES Hydrogen Atmospheres J. VENTURA Physics.g. Pavlov et al., 1995; Zavlin et al., 1995, 1996; #12; 2 J. VENTURA ET AL. Rajagopal and Romani, 1996 the past three years. As is well known (Canuto and Ventura, 1977; Ruder et al., 1994), the external strong

  9. Atmospheric neutrino flux calculation using the NRLMSISE00 atmospheric model

    E-Print Network [OSTI]

    Honda, M; Kajita, T; Kasahara, K; Midorikawa, S

    2015-01-01T23:59:59.000Z

    In this paper, we extend the calculation of the atmospheric neutrino flux~\\cite{hkkm2004,hkkms2006,hkkm2011} to the sites in polar and tropical regions. In our earliest full 3D-calculation~\\cite{hkkm2004}, we used DPMJET-III~\\cite{dpm} for the hadronic interaction model above 5~GeV, and NUCRIN~\\cite{nucrin} below 5~GeV. We modified DPMJET-III as in Ref.~\\cite{hkkms2006} to reproduce the experimental muon spectra better, mainly using the data observed by BESS group~\\cite{BESSTeVpHemu}. In a recent work~\\cite{hkkm2011}, we introduced JAM interaction model for the low energy hadronic interactions. JAM is a nuclear interaction model developed with PHITS (Particle and Heavy-Ion Transport code System)~\\cite{phits}. In Ref.~\\cite{hkkm2011}, we could reproduce the observed muon flux at the low energies at balloon altitude with DPMJET-III above 32 GeV and JAM below that better than the combination of DPMJET-III above 5~GeV and NUCRIN below that. Besides the interaction model, we have also improved the calculation sche...

  10. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18T23:59:59.000Z

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  11. Fast mix table construction for material discretization

    SciTech Connect (OSTI)

    Johnson, S. R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-07-01T23:59:59.000Z

    An effective hybrid Monte Carlo-deterministic implementation typically requires the approximation of a continuous geometry description with a discretized piecewise-constant material field. The inherent geometry discretization error can be reduced somewhat by using material mixing, where multiple materials inside a discrete mesh voxel are homogenized. Material mixing requires the construction of a 'mix table,' which stores the volume fractions in every mixture so that multiple voxels with similar compositions can reference the same mixture. Mix table construction is a potentially expensive serial operation for large problems with many materials and voxels. We formulate an efficient algorithm to construct a sparse mix table in O(number of voxels x log number of mixtures) time. The new algorithm is implemented in ADVANTG and used to discretize continuous geometries onto a structured Cartesian grid. When applied to an end-of-life MCNP model of the High Flux Isotope Reactor with 270 distinct materials, the new method improves the material mixing time by a factor of 100 compared to a naive mix table implementation. (authors)

  12. $B_d-\\bar{B}_d$ mixing vs. $B_s-\\bar{B}_s$ mixing with the anomalous $Wtb$ couplings

    E-Print Network [OSTI]

    Jong Phil Lee; Kang Young Lee

    2008-09-29T23:59:59.000Z

    We explore the effects of the anomalous $tbW$ couplings on the $\\bd$ mixing and recently measured $\\bs$ mixing. The combined analysis of mixings via box diagrams with penguin decays provides strong constraints on the anomalous top quark couplings. We find the bound from the $\\bd$ mixing data is stronger than that from the $\\bs$ mixing.

  13. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect (OSTI)

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27T23:59:59.000Z

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  14. Stellar models with mixing length and T(tau) relations calibrated on 3D convection simulations

    E-Print Network [OSTI]

    Salaris, Maurizio

    2015-01-01T23:59:59.000Z

    (abridged) The calculation of the thermal stratification in the superadiabatic layers of stellar models with convective envelopes is a long standing problem of stellar astrophysics, and has a major impact on predicted observational properties like radius and effective temperature. The Mixing Length Theory, almost universally used to model the superadiabatic convective layers, contains effectively one free parameter to be calibrated --alpha(ml)-- whose value controls the resulting effective temperature. Here we present the first self-consistent stellar evolution models calculated by employing the atmospheric temperature stratification, Rosseland opacities, and calibrated variable alpha(ml) (dependent on effective temperature and surface gravity) from a large suite of three-dimensional radiation hydrodynamics simulations of stellar convective envelopes and atmospheres for solar stellar composition (Trampedach et al. 2013). From our calculations (with the same composition of the radiation hydrodynamics simulatio...

  15. Unveiling neutrino mixing and leptonic CP violation

    SciTech Connect (OSTI)

    Mena, Olga; /Fermilab

    2005-01-01T23:59:59.000Z

    We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle {theta}{sub 13} and the CP-phase {delta}. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.

  16. Updated Constraints on General Squark Flavor Mixing

    E-Print Network [OSTI]

    Arana-Catania, M; Herrero, M J

    2014-01-01T23:59:59.000Z

    We explore the phenomenological implications on non-minimal flavor violating (NMFV) processes from squark flavor mixing within the Minimal Supersymmetric Standard Model. We work under the model-independent hypothesis of general flavor mixing in the squark sector, being parametrized by a complete set of dimensionless delta^AB_ij (A,B = L, R; i,j = u, c, t or d, s, b) parameters. The present upper bounds on the most relevant NMFV processes, together with the requirement of compatibility in the choice of the MSSM parameters with the recent LHC and g-2 data, lead to updated constraints on all squark flavor mixing parameters.

  17. Iron Speciation and Mixing in Single Aerosol Particles from the Asian Continental Outflow

    SciTech Connect (OSTI)

    Moffet, Ryan C.; Furutani, Hiroshi; Rodel, Tobias; Henn, Tobias R.; Sprau, Peter; Laskin, Alexander; Uematsu, Mitsuo; Gilles, Marry K.

    2012-04-04T23:59:59.000Z

    Bioavailable iron from atmospheric aerosol is an essential nutrient that can control oceanic productivity, thereby impacting the global carbon budget and climate. Particles collected on Okinawa Island during an atmospheric pollution transport event from China were analyzed using complementary single particle techniques to determine the iron source and speciation. Comparing the spatial distribution of iron within ambient particles and standard Asian mineral dust, it was determined that field-collected atmospheric Fe-containing particles have numerous sources, including anthropogenic sources such as coal combustion. Fe-containing particles were found to be internally mixed with secondary species such as sulfate, soot, and organic carbon. The mass weighted average Fe(II) fraction (defined as Fe(II)/[Fe(II)+Fe(III)]) was determined to be 0.33 {+-} 0.08. Within the experimental uncertainty, this value lies close to the range of 0.26-0.30 determined for representative Asian mineral dust. Previous studies have indicated that the solubility of iron from combustion is much higher than that from mineral dust. Therefore, chemical and/or physical differences other than oxidation state may help explain the higher solubility of iron in atmospheric particles.

  18. Conservation Community Perspective on Mixed Conifer Management in SW Colorado

    E-Print Network [OSTI]

    Public education important #12;Warm-Dry Mixed Conifer, Cool-Moist Mixed Conifer, Aspen with Conifer One.g., WUI treatment and mixed conifer restoration) where possible. Need to reconcile mc & aspen mngt

  19. Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical. Atmospheric aerosols have profound effects on the environment through several physicochemical processes on the respiratory and cardiovascular systems. Understanding aerosol atmospheric chemistry and its environmental

  20. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.

    SciTech Connect (OSTI)

    Rambukkange,M.; Verlinde, J.; Elorante, E.; Luke, E.; Kollias, P.; Shupe, M.

    2006-07-10T23:59:59.000Z

    Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivity of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.

  1. HEAT OF DISSOLUTION MEASUREMENTS FOR CO2 IN MIXED ALKANOLAMINE SOLVENTS

    SciTech Connect (OSTI)

    Vinayak N. Kabadi

    2004-04-27T23:59:59.000Z

    The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80 C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

  2. HEAT OF DISSOLUTION MEASUREMENTS FOR CO2 IN MIXED ALKANOLAMINE SOLVENTS

    SciTech Connect (OSTI)

    Vinayak N. Kabadi

    2004-11-15T23:59:59.000Z

    The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80 C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

  3. Quasidegeneracy of Majorana Neutrinos and the Origin of Large Leptonic Mixing

    E-Print Network [OSTI]

    G. C. Branco; M. N. Rebelo; J. I. Silva-Marcos; Daniel Wegman

    2015-02-20T23:59:59.000Z

    We propose that the observed large leptonic mixing may just reflect a quasidegeneracy of three Majorana neutrinos. The limit of exact degeneracy of Majorana neutrinos is not trivial, as leptonic mixing and even CP violation may occur. We conjecture that the smallness of $|U_{13}|$, when compared to the other elements of $U_{PMNS}$, may just reflect the fact that, in the limit of exact mass degeneracy, the leptonic mixing matrix necessarily has a vanishing element. We show that the lifting of the mass degeneracy can lead to the measured value of $|U_{13}|$ while at the same time accommodating the observed solar and atmospheric mixing angles. In the scenario we consider for the breaking of the mass degeneracy there is only one CP violating phase, already present in the limit of exact degeneracy, which upon the lifting of the degeneracy generates both Majorana and Dirac-type CP violation in the leptonic sector. We analyse some of the correlations among physical observables and point out that in most of the cases considered, the implied strength of leptonic Dirac-type CP violation is large enough to be detected in the next round of experiments.

  4. Heat of Dissolution Measurements for CO2 in Mixed Alkanolamine Solvents

    SciTech Connect (OSTI)

    Vinayak N. Kabadi

    2006-05-29T23:59:59.000Z

    The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

  5. HEAT OF DISSOLUTION MEASUREMENTS FOR CO2 IN MIXED ALKANOLAMINE SOLVENTS

    SciTech Connect (OSTI)

    Vinayak N. Kabadi

    2005-05-23T23:59:59.000Z

    The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

  6. LES Simulations of Roll Clouds Observed During Mixed- Phase Arctic Cloud Experiment

    SciTech Connect (OSTI)

    Greenberg, S.D.; Harrington, J.Y.; Prenni, A.; DeMott, P.

    2005-03-18T23:59:59.000Z

    Roll clouds, and associated roll convection, are fairly common features of the atmospheric boundary layer. While these organized cumuliform clouds are found over many regions of the planet, they are quite ubiquitous near the edge of the polar ice sheets. In particular, during periods of off-ice flow, when cold polar air flows from the ice pack over the relatively warm ocean water, strong boundary layer convection develops along with frequent rolls. According to Bruemmer and Pohlman (2000), most of the total cloud cover in the Arctic is due to roll clouds. In an effort to examine the influences of mixed-phase microphysics on the boundary layer evolution of roll clouds during off-ice flow, Olsson and Harrington (2000) used a 2D mesoscale model coupled to a bulk microphysical scheme (see Section 2). Their results showed that mixed-phase clouds produced more shallow boundary layers with weaker turbulence than liquid-phase cases. Furthermore, their results showed that because of th e reduced turbulent drag on the atmosphere in the mixed-phase case, regions of mesoscale divergence in the marginal ice-zone were significantly affected. A follow-up 2D study (Harrington and Olsson 2001) showed that the reduced turbulent intensity in mixed-phase cases was due to precipitation. Ice precipitation caused downdraft stabilization which fed back and caused a reduction in the surface heat fluxes. In this work, we extend the work of Olsson and Harrington (2000) and Harrington and Olsson (2001) by examining the impacts of ice microphysics on roll convection. We will present results that illustrate how microphysics alters roll cloud structure and dynamics.

  7. Atmospheric science encompasses meteorology and climatology, as well as fields such as atmospheric chemistry and remote sensing.Atmospheric

    E-Print Network [OSTI]

    Oceanography and Meteorology Building.The Doppler weather radar on the roof of the building is a campus Mobile Atmospheric Research and Teaching Radar (SMART-R).This radar is used in national and international

  8. New Constraints on General Slepton Flavor Mixing

    E-Print Network [OSTI]

    Arana-Catania, M; Herrero, M J

    2013-01-01T23:59:59.000Z

    We explore the phenomenological implications on charged lepton flavor violating (LFV) processes from slepton flavor mixing within the Minimal Supersymmetric Standard Model. We work under the model-independent hypothesis of general flavor mixing in the slepton sector, being parametrized by a complete set of dimensionless delta^AB_ij (A,B = L,R; i,j = 1, 2, 3) parameters. The present upper bounds on the most relevant LFV processes, together with the requirement of compatibility in the choice of the MSSM parameters with the recent LHC and (g-2) data, lead to updated constraints on all slepton flavor mixing parameters. A comparative discussion of the most effective LFV processes to constrain the various generation mixings is included.

  9. Mixing in a liquid metal electrode

    E-Print Network [OSTI]

    Kelley, Douglas H.

    Fluid mixing has first-order importance for many engineering problems in mass transport, including design and optimization of liquid-phase energy storage devices. Liquid metal batteries are currently being commercialized ...

  10. Economizer Control Using Mixed Air Enthalpy

    E-Print Network [OSTI]

    Feng, J.; Liu, M.; Pang, W.

    2007-01-01T23:59:59.000Z

    economizer is db-temperature based economizer. Table7. Economizer Operation Testing Period: April.3 rd ~Aug. 22 th ,2007 Temperature- based Economizer Mixed-air enthalpy economizer Operation hours 888 1251 Energy saving - 15.7% 6...

  11. Mixed micelles system: equilibrium and kinetics 

    E-Print Network [OSTI]

    Salonen, Anniina M

    Lipid-detergent systems are interesting to study, as the two amphiphiles have very different spontaneous curvature, however readily form mixed micelles in solution. These micelles can be shorter cylindrical micelles ...

  12. Particle mixing, flavor condensate and dark energy

    E-Print Network [OSTI]

    Massimo Blasone; Antonio Capolupo; Giuseppe Vitiello

    2009-12-08T23:59:59.000Z

    The mixing of neutrinos and quarks generate a vacuum condensate that, at the present epoch, behaves as a cosmological constant. The value of the dark energy is constrained today by the very small breaking of the Lorentz invariance.

  13. Rating of Mixed Split Residential Air Conditioners

    E-Print Network [OSTI]

    Domanski, P. A.

    1988-01-01T23:59:59.000Z

    A methodology is presented for rating the performance of mixed, split residential air conditioners. The method accounts for the impact on system performance of the indoor evaporator, expansion device and fan; three major components that are likely...

  14. Fuel Effects on Mixing-Controlled Combustion Strategies for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion...

  15. Morphology of Mixed Primary and Secondary Organic Particles and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Mixed Primary and Secondary Organic Particles and the Adsorption of Spectator Organic Gases during Aerosol Morphology of Mixed Primary and Secondary Organic Particles and the...

  16. Mixing it up - Measuring diffusion in supercooled liquid solutions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixing it up - Measuring diffusion in supercooled liquid solutions of methanol and ethanol at temperatures near the glass Mixing it up - Measuring diffusion in supercooled liquid...

  17. Design Case Summary: Production of Mixed Alcohols from Municipal...

    Office of Environmental Management (EM)

    Mixed Alcohols from Municipal Solid Waste via Gasification Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification The Bioenergy Technologies...

  18. Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference...

  19. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes. Abstract: The Vanadium (V) cation structures in mixed acid based...

  20. Non carbon mixed conducting materials for PEFC electrocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes These slides were...

  1. Advanced Mixed Waste Treatment Project Achieves Impressive Safety...

    Office of Environmental Management (EM)

    Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June...

  2. Stabilization of CO2 Atmospheres on Exoplanets around M Dwarf Stars

    E-Print Network [OSTI]

    Gao, Peter; Robinson, Tyler D; Li, Cheng; Yung, Yuk L

    2015-01-01T23:59:59.000Z

    We investigate the chemical stability of CO2-dominated atmospheres of M dwarf terrestrial exoplanets using a 1-dimensional photochemical model. On planets orbiting Sun-like stars, the photolysis of CO2 by Far-UV (FUV) radiation is balanced by the reaction between CO and OH, the rate of which depends on H2O abundance. By comparison, planets orbiting M dwarf stars experience higher FUV radiation compared to planets orbiting Sun-like stars, and they are also likely to have low H2O abundance due to M dwarfs having a prolonged, high-luminosity pre-main sequence (Luger & Barnes 2015). We show that, for H2O-depleted planets around M dwarfs, a CO2-dominated atmosphere is stable to conversion to CO and O2 by relying on a catalytic cycle involving H2O2 photolysis. However, this cycle breaks down for planets with atmospheric hydrogen mixing ratios below ~1 ppm, resulting in ~40% of the atmospheric CO2 being converted to CO and O2 on a time scale of 1 Myr. The increased abundance of O2 also results in high O3 concent...

  3. Mixed oxide nanoparticles and method of making

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Phelps, Tommy J. (Knoxville, TN); Zhang, Chuanlun (Columbia, MO); Roh, Yul (Oak Ridge, TN)

    2002-09-03T23:59:59.000Z

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  4. Mass hierarchies and the seesaw neutrino mixing

    SciTech Connect (OSTI)

    Kuo, T. K. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)] [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Wu, Guo-Hong [Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)] [Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States); Mansour, Sadek W. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)] [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)

    2000-06-01T23:59:59.000Z

    We give a general analysis of neutrino mixing in the seesaw mechanism with three flavors. Assuming that the Dirac and u-quark mass matrices are similar, we establish simple relations between the neutrino parameters and individual Majorana masses. They are shown to depend rather strongly on the physical neutrino mixing angles. We calculate explicitly the implied Majorana mass hierarchies for parameter sets corresponding to different solutions to the solar neutrino problem. (c) 2000 The American Physical Society.

  5. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1989-11-01T23:59:59.000Z

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  6. atmospheric pressure ionization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Atmospheric Pressure, in Vivo, and Imaging Mass. For example, atmospheric pressure infrared MALDI (AP IR-MALDI), capable of producing ions from small ionization (DESI),5...

  7. atmospheric carbon emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxide (N2O) 13 Paris-Sud XI, Universit de 13 Atmospheric Lifetime of Fossil Fuel Carbon Dioxide Geosciences Websites Summary: Atmospheric Lifetime of Fossil Fuel Carbon...

  8. atmospheric oxygenation recorded: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cores may contain high quality records of atmospheric deposition. The qualitative Short, Daniel 3 Bistability of atmospheric oxygen and the Great Oxidation Geosciences Websites...

  9. atmospheric optical turbulence: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Page Last Page Topic Index 1 Atmospheric Turbulence and its Influence on Adaptive Optics Physics Websites Summary: Atmospheric Turbulence and its Influence on Adaptive Optics...

  10. atmospheric ion measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Atmospheric CERN Preprints Summary: We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by...

  11. Comparative Analysis of Urban Atmospheric Aerosol by Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

  12. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne...

  13. A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...

    Open Energy Info (EERE)

    atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than...

  14. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health...

  15. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...

    Energy Savers [EERE]

    Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

  16. atmospheric global electric: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    global atmospheric iron cycle, and combustion this paper. Key Words aerosol deposition, climate change, deserts Abstract Atmospheric inputs of iron sources of iron are...

  17. atmospheric dispersion coefficient: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the earth surface. In general, the atmospheric motion is driven by the intense solar energy arriving at the equator 3 A GIS-based atmospheric dispersion model Computer...

  18. atmospheric dispersion calculations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the earth surface. In general, the atmospheric motion is driven by the intense solar energy arriving at the equator 4 A GIS-based atmospheric dispersion model Computer...

  19. atmospheric dispersion experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the earth surface. In general, the atmospheric motion is driven by the intense solar energy arriving at the equator 2 A GIS-based atmospheric dispersion model Computer...

  20. atmospheric climate model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curry & Webster Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 Energy Russell, Lynn 10 Climate Sciences: Atmospheric Thermodynamics Environmental...

  1. atmosphere box model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GloveBoxes Glove boxes allow the user to perform operations in an atmosphere 8 University Corporation for Atmospheric Research PO Box 3000 Boulder, Colorado 80307 Geosciences...

  2. Oxygen detected in atmosphere of Saturn's moon Dione

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of...

  3. atmospheric modeling system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models University of California eScholarship Repository Summary: Atmosphere and Ocean...

  4. atmospheric co2 content: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  5. atmospheric chemistry simulations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Sciences and Ecology Websites Summary: , nitrogen and oxygen The Greenhouse Effect Atmospheric Aerosols Atmospheric chemical kinetics including and oral reports to...

  6. atmospheric sciences exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual reviews of faculty performance in accordance 8 Space Science : Atmosphere Greenhouse Effect Physics Websites Summary: Space Science : Atmosphere Greenhouse Effect Part-5a...

  7. atmospheric chemistry project: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Sciences and Ecology Websites Summary: , nitrogen and oxygen The Greenhouse Effect Atmospheric Aerosols Atmospheric chemical kinetics including and oral reports to...

  8. atmospheric co2 concentrations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  9. atmospheric co2 concentration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  10. atmospheric co2 laser: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  11. atmospheric loading effects: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large solar proton Paris-Sud XI, Universit de 7 Space Science : Atmosphere Greenhouse Effect Physics Websites Summary: Space Science : Atmosphere Greenhouse Effect Part-5a...

  12. atmospheric chemistry programme: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Sciences and Ecology Websites Summary: , nitrogen and oxygen The Greenhouse Effect Atmospheric Aerosols Atmospheric chemical kinetics including and oral reports to...

  13. atmospheric co2 measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  14. atmospheric co2 variations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  15. atmospheric chemistry experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Sciences and Ecology Websites Summary: , nitrogen and oxygen The Greenhouse Effect Atmospheric Aerosols Atmospheric chemical kinetics including and oral reports to...

  16. atmospheric science people: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual reviews of faculty performance in accordance 9 Space Science : Atmosphere Greenhouse Effect Physics Websites Summary: Space Science : Atmosphere Greenhouse Effect Part-5a...

  17. atmospheric chemistry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Sciences and Ecology Websites Summary: , nitrogen and oxygen The Greenhouse Effect Atmospheric Aerosols Atmospheric chemical kinetics including and oral reports to...

  18. atmospheric sciences: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual reviews of faculty performance in accordance 8 Space Science : Atmosphere Greenhouse Effect Physics Websites Summary: Space Science : Atmosphere Greenhouse Effect Part-5a...

  19. atmospheric aerosols basic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of atmospheric aerosol. Aplin, KL 2012-01-01 13 1. Introduction The atmospheric greenhouse effect is the basic mechanism Environmental Sciences and Ecology Websites Summary: 1....

  20. atmospheric deposition microbial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mercury in the Global Atmosphere: Chemistry, deposition, and land-atmosphere interactions Environmental Management and Restoration Websites Summary: Mercury in the Global...

  1. atmospheric deposition nutrient: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mercury in the Global Atmosphere: Chemistry, deposition, and land-atmosphere interactions Environmental Management and Restoration Websites Summary: Mercury in the Global...

  2. Visualizing Storms from NCAR's Atmosphere Model at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmosphere Model Visualizing Storms from NCAR's Atmosphere Model CCSM-sprabhat.png Global warming will likely change the statistics of tropical cyclones and hurricanes. In this...

  3. Adaptive control for Mars atmospheric flight

    E-Print Network [OSTI]

    Restrepo, Carolina Isabel

    2009-05-15T23:59:59.000Z

    landing accuracy requirements for a manned space vehicle make it necessary to ?y a controlled entry trajectory rather than a more robust ballistic entry trajectory used for some robotic missions. The large variations in Mars atmospheric properties make a...

  4. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large portion of the microscopic particles floating in the air originate from incomplete combustion of coal and oil and from dust storms. Once in the atmosphere, they can have...

  5. HYPERsensarium : an archive of atmospheric conditions

    E-Print Network [OSTI]

    Shaw, Kelly E. (Kelly Evelyn)

    2013-01-01T23:59:59.000Z

    HYPERsensarium proposes a tangible interface of atmospheres for public experience through an archive of historical and projected weathers. While architecture's purpose has long been to act as the technical boundary between ...

  6. The porous atmosphere of eta Carinae

    E-Print Network [OSTI]

    Nir J. Shaviv

    2000-02-09T23:59:59.000Z

    We analyze the wind generated by the great 20 year long super-Eddington outburst of eta-Carinae. We show that using classical stellar atmospheres and winds theory, it is impossible to construct a consistent wind model in which a sufficiently small amount of mass, like the one observed, is shed. One expects the super-Eddington luminosity to drive a thick wind with a mass loss rate substantially higher than the observed one. The easiest way to resolve the inconsistency is if we alleviate the implicit notion that atmospheres are homogeneous. An inhomogeneous atmosphere, or "porous", allows more radiation to escape while exerting a smaller average force. Consequently, such an atmosphere yields a considerably lower mass loss rate for the same total luminosity. Moreover, all the applications of the Eddington Luminosity as a strict luminosity limit should be revised, or at least reanalyzed carefully.

  7. Space Science: Atmospheres Evolution of planets

    E-Print Network [OSTI]

    Johnson, Robert E.

    ;Atmospheres / Evolution Heat Sources Compressional Energy Trapped Radioactive Material Tidal Interactions, same A) the surface temperature,Tg, increases. WOW! Simple #12;Temperature vs. time in an Early Epoch

  8. MIDDLE ATMOSPHERE DYNAMICS AT707 (3 credits)

    E-Print Network [OSTI]

    ., Holton, J. R., Leovy, C. B., Academic Press, 489 pp. · Atmospheric and Oceanic Fluid Dynamics, 2006 Review Articles: · Haynes, P. H., 2005: Stratospheric Dynamics. Annu. Rev. Fluid Mech., 37, 263­ 293

  9. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    E-Print Network [OSTI]

    Dimitra Atri; Adrian L. Melott; Brian C. Thomas

    2010-05-03T23:59:59.000Z

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV - 1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.

  10. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    SciTech Connect (OSTI)

    Stechmann, Samuel N., E-mail: stechmann@wisc.edu [Department of Mathematics, University of Wisconsin-Madison (United States); Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison (United States)

    2014-08-15T23:59:59.000Z

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes.

  11. Air Activation Following an Atmospheric Explosion

    SciTech Connect (OSTI)

    Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

    2013-03-13T23:59:59.000Z

    In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

  12. Trace analysis of atmospheric organic bases

    E-Print Network [OSTI]

    Clark, Dwayne C.

    1984-01-01T23:59:59.000Z

    chromatographic fractions for NS analyses ( 121) and its use as a thin layer chromatography (TLC) adsorbent ( 122). The National Institute of Occupational Safety and Health (NIOSH) recommends its use in the analysis of many industrial vapors ( 113 - 120... analysis of atmospheric organic bases were investigated; the study included (1) the analysis of submarine charcoal filter bed samples for nitrogen bases and (2) the use of metallic tetraphenylporphines (TPP) as specific adsorbents for atmospheric...

  13. Quantum light in the turbulent atmosphere

    E-Print Network [OSTI]

    A. A. Semenov; W. Vogel

    2009-08-12T23:59:59.000Z

    Nonclassical properties of light propagating through the turbulent atmosphere are studied. We demonstrate by numerical simulation that the probability distribution of the transmission coefficient, which characterizes the effects of the atmosphere on the quantum state of light, can be reconstructed by homodyne detection. Nonclassical photon-statistics and, more generally, nonclassical Glauber-Sudarshan functions appear to be more robust against turbulence for weak light fields rather than for bright ones.

  14. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  15. LIQUID MIXING STUDIES WITH AN INTEGRATED MIXER/VALVE

    E-Print Network [OSTI]

    Voldman, Joel

    181 LIQUID MIXING STUDIES WITH AN INTEGRATED MIXER/VALVE Joel Voldman* , Martha L. Gray, and testing of an integrated mixer/valve and a method for determining its mixing performance. The method of their mixing performance - the mixing time. We have designed and fabricated a microfabricated liquid mixer/valve

  16. Does Mixing Make Residential Ventilation More Effective?

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain

    2010-08-16T23:59:59.000Z

    Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. The total ventilation rate is the most important factor in determining the exposure of occupants to given sources, but the zone- specific distribution of exhaust and supply air, and the mixing of ventilation air can have significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage through the building envelope, air distribution systems and the location of sources and occupants. This paper reports recent results of investigations to determine the impact that air mixing has on exposures of residential occupants to prototypical contaminants of concern. Evaluations of existing field measurements and simulations reported in the literature are combined with new analyses to provide an integrated overview of the topic. The results show that for extreme cases additional mixing can be a significant factor but for typical homes looking at average exposures mixing is not helpful and can even make exposures worse.

  17. Temperature-dependent ion beam mixing

    SciTech Connect (OSTI)

    Rehn, L.E.; Alexander, D.E.

    1993-08-01T23:59:59.000Z

    Recent work on enhanced interdiffusion rates during ion-beam mixing at elevated temperatures is reviewed. As discussed previously, expected increase in ion-beam mixing rates due to `radiation-enhanced diffusion` (RED), i.e. the free migration of isolated vacancy and interstitial defects, is well documented in single-crystal specimens in the range of 0.4 to 0.6 of absolute melting temperature. In contrast, the increase often observed at somewhat lower temperatures during ion-beam mixing of polycrystalline specimens is not well understood. However, sufficient evidence is available to show that this increase reflects intracascade enhancement of a thermally-activated process that also occurs without irradiation. Recent evidence is presented which suggests that this process is Diffusion-induced Grain-Boundary Migration (DIGM). An important complementary conclusion is that because ion-beam mixing in single-crystal specimens exhibits no significant temperature dependence below that of RED, models that invoke only irradiation-specific phenomena, e.g., cascade-overlap, thermal-spikes, or liquid-diffusion, and hence which predict no difference in mixing behavior between single- or poly-crystalline specimens, cannot account for the existing results.

  18. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect (OSTI)

    Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong

    2009-02-02T23:59:59.000Z

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.

  19. New nonlinear mechanisms of midlatitude atmospheric low-frequency variability

    E-Print Network [OSTI]

    and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands Abstract

  20. Neutrino mixings and leptonic CP violation from CKM matrix and Majorana phases

    SciTech Connect (OSTI)

    Agarwalla, Sanjib Kumar; Parida, M. K.; Mohapatra, R. N.; Rajasekaran, G. [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Institute of Mathematical Sciences, Chennai 600113 (India)

    2007-02-01T23:59:59.000Z

    The high scale mixing unification hypothesis recently proposed by three of us (R. N. M., M. K. P. and G. R.) states that if at the seesaw scale the quark and lepton mixing matrices are equal, then for quasidegenerate neutrinos radiative corrections can lead to large solar and atmospheric mixings and small reactor angle at the weak scale in agreement with data. Evidence for quasidegenerate neutrinos could, within this framework, be interpreted as being consistent with quark-lepton unification at high scale. In the current work, we extend this model to show that the hypothesis works quite successfully in the presence of CP-violating phases (which were set to zero in the first paper). In the case where the Pontecorvo-Maki-Nakagawa-Sakata matrix is identical to the Cabibbo-Kobayashi-Maskawa quark-mixing matrix at the seesaw scale, with a Dirac phase but no Majorana phase, the low energy Dirac phase is predicted to be ({approx_equal}0.3 deg.) and leptonic CP-violation parameter J{sub CP}{approx_equal}(4-8)x10{sup -5} and {theta}{sub 13}=3.5 deg. If on the other hand, the Pontecorvo-Maki-Nakagawa-Sakata matrix is assumed to also have non-negligible Majorana phase(s) initially, the resulting theory damps radiative magnification phenomenon for a large range of parameters but nevertheless has enough parameter space to give the two necessary large neutrino mixing angles. In this case, one has {theta}{sub 13}=3.5 deg. -10 deg. and vertical bar J{sub CP} vertical bar as large as 0.02-0.04 which are accessible to long baseline neutrino oscillation experiments.

  1. Improvements in Mixing Time and Mixing Uniformity in Devices Designed for Studies of Protein Folding Kinetics

    SciTech Connect (OSTI)

    Yao, Shuhuai [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bakajin, Olgica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2007-08-01T23:59:59.000Z

    Using a microfluidic laminar flow mixer designed for studies of protein folding kinetics, we demonstrate a mixing time of 1 +/- 1 micros with sample consumption on the order of femtomoles. We recognize two limitations of previously proposed designs: (1) size and shape of the mixing region, which limits mixing uniformity and (2) the formation of Dean vortices at high flow rates, which limits the mixing time. We address these limitations by using a narrow shape-optimized nozzle and by reducing the bend of the side channel streamlines. The final design, which combines both of these features, achieves the best performance. We quantified the mixing performance of the different designs by numerical simulation of coupled Navier-Stokes and convection-diffusion equations and experiments using fluorescence resonance energy-transfer (FRET)-labeled DNA.

  2. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1992-04-21T23:59:59.000Z

    A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

  3. Mixed surfactant systems for enhanced oil recovery

    SciTech Connect (OSTI)

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01T23:59:59.000Z

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  4. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1993-10-19T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (pcm) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 10 figures.

  5. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1994-02-01T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  6. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1993-05-18T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  7. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1994-01-01T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  8. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1993-01-01T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  9. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1993-01-01T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  10. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1992-01-01T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  11. Advanced atmospheric fluidized-bed combustion design - spouted bed

    SciTech Connect (OSTI)

    Shirley, F.W.; Litt, R.D.

    1985-11-27T23:59:59.000Z

    This report describes the Spouted-Fluidized Bed Boiler that is an advanced atmospheric fluidized bed combustor (FBC). The objective of this system design study is to develop an advanced AFBC with improved performance and reduced capital and operating costs compared to a conventional AFBC and an oil-fired system. The Spouted-Fluidized Bed (SFB) system is a special type of FBC with a distinctive jet of air in the bed to establish an identifiable solids circulation pattern. This feature is expected to provide: reduced NO/sub x/ emissions because of the fuel rich spout zone; high calcium utilization, calcium-to-sulfur ratio of 1.5, because of the spout attrition and mixing; high fuel utilization because of the solids circulation and spout attrition; improved thermal efficiency because of reduced solids heat loss; and improved fuel flexibility because of the spout phenomena. The SFB was compared to a conventional AFBC and an oil-fired package boiler for 15,000 pound per hour system. The evaluation showed that the operating cost advantages of the SFB resulted from savings in fuel, limestone, and waste disposal. The relative levelized cost for steam from the three systems in constant 1985 dollars is: SFB - $10 per thousand pounds; AFBC - $11 per thousand pounds; oil-fired - $14 per thousand pounds. 18 refs., 5 figs., 11 tabs.

  12. Technique to study corrosion in fluctuating gaseous atmospheres

    SciTech Connect (OSTI)

    Ficalora, P.J.; Godfrey, T.G.

    1983-07-01T23:59:59.000Z

    The hot metal surfaces in a combustion system operating with an imperfect air-to-fuel mix experience a variation of corrosion potential. For example, the corrosion conditions can vary from reducing to oxidizing as the combustion conditions vary from rich to lean. This variation of conditions is particularly important in combustion systems utilizing sulfur-containing fuels since small variations in the sulfur partial pressure can cause catastrophic corrosion conditions. In an atmospheric fluidized-bed combustor (AFBC), coal is burned in the presence of a sulfur sorber, CaO or MgO. The alkaline oxide reacts with sulfur dioxide, the combustion product of the sulfur in the coal, to form the corresponding sulfate. Hence, the oxygen and sulfur dioxide partial pressures are controlled by the input conditions (air-coal ratio) as well as the sorption process. Figure 1 shows the observed variation of the oxygen partial pressure in an AFBC as a function of time and bed position. Clearly, fluctuations occur in a time interval of seconds, and the oxygen partial pressure can vary over approximately ten orders of magnitude. Corrosion in these fluctuating gaseous environments is being studied by measuring the resistance change of a heated metal filament specimen while it reacts with alternating oxidizing and sulfidizing gas pulses.

  13. Pulse Jet Mixing Tests With Noncohesive Solids

    SciTech Connect (OSTI)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2012-02-17T23:59:59.000Z

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

  14. NUCLEAR MIXING METERS FOR CLASSICAL NOVAE

    SciTech Connect (OSTI)

    Kelly, Keegan J.; Iliadis, Christian; Downen, Lori; Champagne, Art [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); José, Jordi [Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, E-08036 Barcelona (Spain)

    2013-11-10T23:59:59.000Z

    Classical novae are caused by mass transfer episodes from a main-sequence star onto a white dwarf via Roche lobe overflow. This material possesses angular momentum and forms an accretion disk around the white dwarf. Ultimately, a fraction of this material spirals in and piles up on the white dwarf surface under electron-degenerate conditions. The subsequently occurring thermonuclear runaway reaches hundreds of megakelvin and explosively ejects matter into the interstellar medium. The exact peak temperature strongly depends on the underlying white dwarf mass, the accreted mass and metallicity, and the initial white dwarf luminosity. Observations of elemental abundance enrichments in these classical nova events imply that the ejected matter consists not only of processed solar material from the main-sequence partner but also of material from the outer layers of the underlying white dwarf. This indicates that white dwarf and accreted matter mix prior to the thermonuclear runaway. The processes by which this mixing occurs require further investigation to be understood. In this work, we analyze elemental abundances ejected from hydrodynamic nova models in search of elemental abundance ratios that are useful indicators of the total amount of mixing. We identify the abundance ratios ?CNO/H, Ne/H, Mg/H, Al/H, and Si/H as useful mixing meters in ONe novae. The impact of thermonuclear reaction rate uncertainties on the mixing meters is investigated using Monte Carlo post-processing network calculations with temperature-density evolutions of all mass zones computed by the hydrodynamic models. We find that the current uncertainties in the {sup 30}P(p, ?){sup 31}S rate influence the Si/H abundance ratio, but overall the mixing meters found here are robust against nuclear physics uncertainties. A comparison of our results with observations of ONe novae provides strong constraints for classical nova models.

  15. Bounds on the Neutrino Mixing Angles and CP Phase for an SO(10) Model with Lopsided Mass Matrices

    E-Print Network [OSTI]

    Carl H. Albright

    2005-07-06T23:59:59.000Z

    The bounds on the neutrino mixing angles and CP Dirac phase for an SO(10) model with lopsided mass matrices, arising from the presence of ${\\bf 16}_H$ and $\\bar{\\bf 16}_H$ Higgs representations, are studied by variation of the one real and three unknown complex input parameters for the right-handed Majorana neutrino mass matrix. The scatter plots obtained favor nearly maximal atmospheric neutrino mixing, while the reactor neutrino mixing lies in the range $10^{-5} \\lsim \\sin^2 \\theta_{13} \\lsim 1 \\times 10^{-2}$ with values greater than $10^{-3}$ most densely populated. A rather compelling scenario within the model follows, if we restrict the three unknown complex parameters to their imaginary axes and set two of them equal. We then find the scatter plots are reduced to narrow bands, as the mixing angles and CP phase become highly correlated and predictive. The bounds on the mixing angles and phase then become $0.45 \\lsim \\sin^2 \\theta_{23} \\lsim 0.55$, $0.38 \\lsim \\tan^2 \\theta_{12} \\lsim 0.50$, $0.002 \\lsim \\sin^2 \\theta_{13} \\lsim 0.003$, and $60^\\circ \\lsim \\pm \\delta_{CP} \\lsim 85^\\circ$. Moreover, successful leptogenesis and subsequent baryogenesis are also obtained, with $\\eta_B$ increasing from $(2.7 to 6.3) \\times 10^{-10}$ as $\\sin^2 \\theta_{23}$ increases from 0.45 to 0.55.

  16. Model Independent Bounds on Kinetic Mixing

    SciTech Connect (OSTI)

    Hook, Anson; Izaguirre, Eder; Wacker, Jay G.; /SLAC

    2011-08-22T23:59:59.000Z

    New Abelian vector bosons can kinetically mix with the hypercharge gauge boson of the Standard Model. This letter computes the model independent limits on vector bosons with masses from 1 GeV to 1 TeV. The limits arise from the numerous e{sup +}e{sup -} experiments that have been performed in this energy range and bound the kinetic mixing by {epsilon} {approx}< 0.03 for most of the mass range studied, regardless of any additional interactions that the new vector boson may have.

  17. B^0_s mixing at CDF

    SciTech Connect (OSTI)

    Piedra, Jonatan; /Paris U., VI-VII

    2006-08-01T23:59:59.000Z

    The Tevatron collider at Fermilab provides a very rich environment for the study of b-hadrons. One of the most important analyses within the B physics program of the CDF experiment is B{sub s}{sup 0} mixing. Since the time this school was held, several improvements in the B{sub s}{sup 0} mixing analysis have made possible the measurement of the B{sub s}{sup 0} oscillation frequency, result that has been presented at the FPCP 2006 Conference.

  18. Mixed waste paper to ethanol fuel

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  19. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1995-01-01T23:59:59.000Z

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  20. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1995-12-26T23:59:59.000Z

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

  1. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1994-12-06T23:59:59.000Z

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

  2. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1994-01-01T23:59:59.000Z

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  3. Simultaneous Detection of Water, Methane and Carbon Monoxide in the Atmosphere of Exoplanet HR8799b

    E-Print Network [OSTI]

    Barman, Travis S; Macintosh, Bruce; Marois, Christian

    2015-01-01T23:59:59.000Z

    Absorption lines from water, methane and carbon monoxide are detected in the atmosphere of exoplanet HR8799b. A medium-resolution spectrum presented here shows well-resolved and easily identified spectral features from all three molecules across the K band. The majority of the lines are produced by CO and H2O, but several lines clearly belong to CH4. Comparisons between these data and atmosphere models covering a range of temperatures and gravities yield log mole fractions of H2O between -3.09 and -3.91, CO between -3.30 and -3.72 and CH4 between -5.06 and -5.85. More precise mole fractions are obtained for each temperature and gravity studied. A reanalysis of H-band data, previously obtained at similar spectral resolution, results in a nearly identical water abundance as determined from the K-band spectrum. The methane abundance is shown to be sensitive to vertical mixing and indicates an eddy diffusion coefficient in the range of 10^6 to 10^8 cm^2 s^-1, comparable to mixing in the deep troposphere of Jupite...

  4. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    SciTech Connect (OSTI)

    Cozzi, A.; Hansen, E.

    2011-08-03T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall shearing was shown to reduce the rheological properties of the grout as it was processed through the transfer line. Samples taken at the static feed tank showed that gelling impacted the rheological properties of the grout before it was fed into the pump and transfer line. A comparison of the rheological properties of samples taken at the feed tank and transfer line discharge indicated shearing of the grout was occurring in the transfer line. Bench scale testing of different mixing methods with three different salt solutions showed that method of mixing influences the rheological properties of the grouts. The paddle blade mixing method of the salt solution used for the BMSR testing provided comparable rheological properties of the grout prepared in the BMSR after 14 minutes of processing, B3. The paddle blade mixing method can be used to represent BMSR results and mixing time can be adjusted to represent larger scale mixing.

  5. Magnetized Atmospheres around Accreting Neutron Stars

    E-Print Network [OSTI]

    S. Zane; R. Turolla; A. Treves

    2000-02-01T23:59:59.000Z

    We present a detailed investigation of atmospheres around accreting neutron stars with high magnetic field ($B\\gtrsim 10^{12}$ G) and low luminosity ($L\\lesssim 10^{33}$ erg/s). We compute the atmospheric structure, intensity and emergent spectrum for a plane-parallel, pure hydrogen medium by solving the transfer equations for the normal modes coupled to the hydrostatic and energy balance equations. The hard tail found in previous investigations for accreting, non-magnetic neutron stars with comparable luminosity is suppressed and the X-ray spectrum, although still harder than a blackbody at the star effective temperature, is nearly planckian in shape. Spectra from accreting atmospheres, both with high and low fields, are found to exhibit a significant excess at optical wavelengths above the Rayleigh-Jeans tail of the X-ray continuum.

  6. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01T23:59:59.000Z

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  7. Super Kamiokande results: atmospheric and solar neutrinos

    E-Print Network [OSTI]

    M. Ishitsuka; for the Super-Kamiokande Collaboration

    2004-06-28T23:59:59.000Z

    Atmospheric neutrino and solar neutrino data from the first phase of Super-Kamiokande (SK-I) are presented. The observed data are used to study atmospheric and solar neutrino oscillations. Zenith angle distributions from various atmospheric neutrino data samples are used to estimate the neutrino oscillation parameter region. In addition, a new result of the $L/E$ measurement is presented. A dip in the $L/E$ distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation. The energy spectrum and the time variation such as day/night and seasonal differences of solar neutrino flux are measured in Super-Kamiokande. The neutrino oscillation parameters are strongly constrained from those measurements.

  8. A Community Atmosphere Model with Superparameterized Clouds

    SciTech Connect (OSTI)

    Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

    2013-06-18T23:59:59.000Z

    In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

  9. Measuring Atmospheric Neutrino Oscillations with Neutrino Telescopes

    E-Print Network [OSTI]

    Ivone F. M. Albuquerque; George F. Smoot

    2001-03-28T23:59:59.000Z

    Neutrino telescopes with large detection volumes can demonstrate that the current indications of neutrino oscillation are correct or if a better description can be achieved with non-standard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of non-standard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely-instrumented strings to the AMANDA II detector makes observations feasible. Such a configuration is competitive with current and proposed experiments.

  10. Controlled atmosphere for fabrication of cermet electrodes

    DOE Patents [OSTI]

    Ray, S.P.; Woods, R.W.

    1998-08-11T23:59:59.000Z

    A process is disclosed for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750 C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5--3000 ppm in order to obtain a desired composition in the resulting composite. 2 figs.

  11. Controlled atmosphere for fabrication of cermet electrodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA)

    1998-01-01T23:59:59.000Z

    A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.

  12. Exploring ?{sub ?}??{sub s} mixing with cascade events in DeepCore

    SciTech Connect (OSTI)

    Esmaili, Arman; Peres, O.L.G. [Instituto de Fisica Gleb Wataghin – UNICAMP, 13083-859, Campinas, SP (Brazil); Halzen, Francis, E-mail: aesmaili@ifi.unicamp.br, E-mail: halzen@icecube.wisc.edu, E-mail: orlando@ifi.unicamp.br [Wisconsin IceCube Particle Astrophysics Center and Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2013-07-01T23:59:59.000Z

    The atmospheric neutrino data collected by the IceCube experiment and its low-energy extension DeepCore provide a unique opportunity to probe the neutrino sector of the Standard Model. In the low energy range the experiment have observed neutrino oscillations, and the high energy data are especially sensitive to signatures of new physics in the neutrino sector. In this context, we previously demonstrated the unmatched potential of the experiment to reveal the existence of light sterile neutrinos. The studies are routinely performed in the simplest 3+1 model concentrating on disappearance of muon neutrinos of TeV energy as a result of their mixing with a sterile neutrino. We here extend this analysis to include cascade events that are secondary electromagnetic and hadronic showers produced by neutrinos of all flavors. We find that it is possible to probe the complete parameter space of 3+1 model, including the poorly constrained mixing of the sterile neutrino to tau neutrinos. We show that ?{sub ?}??{sub s} mixing results into a unique signature in the data that will allow IceCube to obtain constraints well below the current upper limits.

  13. Geochemical Implications of Stirring and Mixing

    E-Print Network [OSTI]

    Rudge, John

    Geochemical Implications of Stirring and Mixing in the Earth's Mantle John Frederick Rudge Trinity Sciences and Applied Mathematics, mostly in the form of papers in my rucksack as I have cycled back constrain the melting, melt mi- gration, and solid state convection that occurs in the Earth's mantle

  14. SOME ASPECTS OF NEUTRINO MIXING AND OSCILLATIONS

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    SOME ASPECTS OF NEUTRINO MIXING AND OSCILLATIONS THESIS SUBMITTED TO THE UNIVERSITY OF CALCUTTA into the fascinating world of neutrinos and for being an excellent teacher and a perfect guide. I convey my regards everything I know about neutrino phenomenology, I owe to him. I consider myself very fortunate to have him

  15. PCC Mix Designs Using Recycled Concrete

    E-Print Network [OSTI]

    Minnesota, University of

    PCC Mix Designs Using Recycled Concrete Pavements Mary E. Vancura, Derek Tompkins, & Lev Khazanovich 21st Annual Transportation Research Conference #12;·! Reassessment of recycled concrete aggregate (RCA) use in rigid pavements ·! History of RCA use ·! Characteristics of RCA concrete ·! RCA production

  16. Hazardous and Radioactive Mixed Waste Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22T23:59:59.000Z

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  17. CP ROAD MAP Mix Design & Analysis Track

    E-Print Network [OSTI]

    payment is made, it is unusual for liability to be assessed later when the actual durability of the structure becomes known." #12;GREEN CONCRETE The Specifications 1. Specify required strength a coarse mix, 8520 psi core strength and 14.89% permeable pores still used in 2008! #12;#12;FIELD STUDIES

  18. Dark energy, cosmological constant and neutrino mixing

    E-Print Network [OSTI]

    A. Capolupo; S. Capozziello; G. Vitiello

    2007-05-02T23:59:59.000Z

    The today estimated value of dark energy can be achieved by the vacuum condensate induced by neutrino mixing phenomenon. Such a tiny value is recovered for a cut-off of the order of Planck scale and it is linked to the sub eV neutrino mass scale. Contributions to dark energy from auxiliary fields or mechanisms are not necessary in this approach.

  19. Symmetrical parametrizations of the lepton mixing matrix

    SciTech Connect (OSTI)

    Rodejohann, W. [Max-Planck-Institut fuer Kernphysik, Postfach 103980, 69029 Heidelberg (Germany); Valle, J. W. F. [AHEP Group, Institut de Fisica Corpuscular--C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia (Spain)

    2011-10-01T23:59:59.000Z

    Advantages of the original symmetrical form of the parametrization of the lepton mixing matrix are discussed. It provides a conceptually more transparent description of neutrino oscillations and lepton number violating processes like neutrinoless double beta decay, clarifying the significance of Dirac and Majorana phases. It is also ideal for parametrizing scenarios with light sterile neutrinos.

  20. Inference for Clustered Mixed Outcomes from a Multivariate Generalized Linear Mixed Model

    E-Print Network [OSTI]

    Chen, Hsiang-Chun

    2013-08-01T23:59:59.000Z

    ) and E(?i2t?) with their marginal expectations over X, ??1 = EX {E(?i1t)} and ??2 = EX {E(?i2t)}, which are shown in the previous subsections. In other words, the overall total-CC is ?total = KtotalN,1,2 (??1, ??2) KtotalD,1,2 (??1, ??2) . 3.2.4....2 Multivariate Generalized Linear Mixed Model . . . . . . . . . . . . . 6 2.3 Assessing Correlation in Generalized Linear Mixed Model . . . . . . . 8 2.4 Bayesian Method for the Generalized Linear Mixed Model . . . . . . 10 3. ASSESSING CORRELATION...

  1. The Role of Subtropical Irreversible PV Mixing in the Zonal Mean Circulation Response to Global Warming-like Thermal Forcing

    SciTech Connect (OSTI)

    Lu, Jian; Sun, Lantao; Wu, Yutian; Chen, Gang

    2014-03-15T23:59:59.000Z

    The atmospheric circulation response to the global warming-like tropical upper tropospheric heating is revisited using a dry atmospheric general circulation model (AGCM) in light of a new diagnostics based on the concept of finite-amplitude wave activity (FAWA) on equivalent latitude. For a given tropical heating profile, the linear Wentzel-Kramers-Brillouin (WKB) wave refraction analysis sometimes gives a very different and even opposite prediction of the eddy momentum flux response to that of the actual full model simulation, exposing the limitation of the traditional linear approach in understanding the full dynamics of the atmospheric response under global warming. The implementation of the FAWA diagnostics reveals that in response to the upper tropospheric heating, effective diffusivity, a measure of the mixing efficiency, increases and advances upward and poleward in the subtropics and the resultant enhancement and the poleward encroachment of eddy potential vorticity mixing leads to a poleward displaced potential vorticity (PV) gradient peak in the upper troposphere. The anomalous eddy PV flux, in balance with the PV dissipation, gives rise to a poleward shift in the eddy-driven jet and eddy-driven mean meridional circulation. Sensitivity experiments show that these irreversible dissipation processes in the upper troposphere are robust, regardless of the width of the tropical heating.

  2. Pulse Jet Mixing Tests With Noncohesive Solids

    SciTech Connect (OSTI)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

    2009-05-11T23:59:59.000Z

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The HLP-022 vessel was also evaluated using 12 m/s pulse jet velocity with 6-in. nozzles, and this design also did not satisfy the criteria for all of the conditions evaluated.

  3. Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations

    SciTech Connect (OSTI)

    Liu, X; Ghan, SJ; Xie, S

    2007-04-01T23:59:59.000Z

    Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate models have generally proven unsuccessful at simulating the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. An ice nucleation parameterization and a vapor deposition scheme were developed that together provide a physically-consistent treatment of mixed-phase clouds in global climate models. These schemes have been implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3). This report documents the performance of these schemes against ARM Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the CAM single column model version (SCAM). SCAM with our new schemes has a more realistic simulation of the cloud phase structure and the partitioning of condensed water into liquid droplets against observations during the M-PACE than the standard CAM simulations.

  4. Mixed waste focus area alternative technologies workshop

    SciTech Connect (OSTI)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A. [Los Alamos National Lab., NM (United States). Technology Analysis Group

    1995-05-24T23:59:59.000Z

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

  5. The dayside atmosphere of the hot-Neptune GJ 436b

    E-Print Network [OSTI]

    Madhusudhan, N

    2010-01-01T23:59:59.000Z

    We present a detailed analysis of the day-side atmosphere of the hot Neptune GJ~436b, based on recent Spitzer observations. We report statistical constraints on the thermal and chemical properties of the planet atmosphere, study correlations between the various molecular species, and discuss scenarios of equilibrium and non-equilibrium chemistry in GJ~436b. We model the planet atmosphere with a 1-D line-by-line radiative transfer code with parametrized molecular abundances and temperature structure. We explore the model parameter space with 10^6 models, using a Markov chain Monte Carlo scheme. Our results encompass previous findings, indicating a paucity of methane, an over-abundance of CO and CO2, and a slight under-abundance of H2O, as compared to equilibrium chemistry with solar metallicity. The concentrations of the species are highly correlated. Our best-fit constraints require a methane (CH4) mixing ratio between 1.0e-7 - 1.0e-6, with CO > 1.0E-3, CO2 between 1.0e-6 - 1.0e-4, and H2O < 1.0E-4; higher...

  6. Mixing device for materials with large density differences

    DOE Patents [OSTI]

    Gregg, David W. (Moraga, CA)

    1994-01-01T23:59:59.000Z

    An auger-tube pump mixing device for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided.

  7. Mixing device for materials with large density differences

    DOE Patents [OSTI]

    Gregg, D.W.

    1994-08-16T23:59:59.000Z

    An auger-tube pump mixing device is disclosed for mixing materials with large density differences while maintaining low stirring RPM and low power consumption. The mixing device minimizes the formation of vortexes and minimizes the incorporation of small bubbles in the liquid during mixing. By avoiding the creation of a vortex the device provides efficient stirring of full containers without spillage over the edge. Also, the device solves the problem of effective mixing in vessels where the liquid height is large compared to the diameter. Because of the gentle stirring or mixing by the device, it has application for biomedical uses where cell damage is to be avoided. 2 figs.

  8. Microlensing Effects in Atmospheres of Substars

    E-Print Network [OSTI]

    L. A. Berdina; A. A. Minakov

    2007-12-10T23:59:59.000Z

    The purpose of the present work is the study of focusing properties of atmospheres of substars that is necessary for adequate interpreting of observational data and for solving the inverse problem consisting in recovery parameters of 'microlenses' (substars) and sources (quasars). Amplification factor for a quasar image as projected onto the field of microlenses-substars was computed for optical and radio wavelengths.

  9. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719 (United States); Rodriguez, Sebastien [Laboratoire AIM, Universite Paris 7/CNRS/CEA-Saclay, DSM/IRFU/SAp (France); Le Mouelic, Stephane [Laboratoire de Planetologie et Geodynamique, CNRS, UMR-6112, Universite de Nantes, 44000 Nantes (France); Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Clark, Roger [U.S. Geological Survey, Denver, CO 80225 (United States); Nicholson, Phil [Department of Astronomy, Cornell University, Ithaca, NY (United States); Jaumann, Ralf [Institute of Planetary Exploration, Deutsche Zentrum, fuer Luft- und Raumfahrt (Germany)

    2009-09-10T23:59:59.000Z

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  10. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  11. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  12. Air Resources Laboratory Atmospheric Tracer Technology

    E-Print Network [OSTI]

    The continuous (near real time) sulfur hexafluoride (SF6 ) analyzers are portable systems that make measurements of atmospheric SF6 concentrations with a response time of just under one second. The rapid response time in Gaussian plume transport and dispersion models. The SF6 analyzers include a computer controlled calibration

  13. 1999 Gordon Research Conference on Atmospheric Chemistry

    SciTech Connect (OSTI)

    Storm, C.

    2000-08-01T23:59:59.000Z

    The Gordon Research Conference (GRC) on Atmospheric Chemistry was held at Salve Regina University in Newport, Rhode Island, June 13-18, 1999. The conference was well attended with 151 participants. The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both US and foreign scientists, senior researchers, young investigators, and students.

  14. Ocean Atmosphere Sea Ice Soil User's Guide

    E-Print Network [OSTI]

    OASIS3 Ocean Atmosphere Sea Ice Soil User's Guide oasis3 prism 2­2, June 2004 Sophie Valcke 1 to realize a coupled simulation with OASIS3. The aim of OASIS3 is to provide a flexible and user friendly. OASIS3 synchronizes the exchanges of coupling fields between the models being coupled, and performs 2D

  15. Ocean Atmosphere Sea Ice Soil User's Guide

    E-Print Network [OSTI]

    OASIS3 Ocean Atmosphere Sea Ice Soil User's Guide oasis3 prism 2­3, August 2004 Sophie Valcke 1 to realize a coupled simulation with OASIS3. The aim of OASIS3 is to provide a flexible and user friendly. OASIS3 synchronizes the exchanges of coupling fields between the models being coupled, and performs 2D

  16. Ocean Atmosphere Sea Ice Soil User's Guide

    E-Print Network [OSTI]

    OASIS 2.0 Ocean Atmosphere Sea Ice Soil User's Guide and Reference Manual November 1995 Laurent for the straightforward use of OASIS 2.0. As far as we know, it is the best way to use it! The aim of OASIS is to provide been particularly emphasized in the OASIS design. The use of OASIS does not change the way the models

  17. Analysis methods for Atmospheric Cerenkov Telescopes

    E-Print Network [OSTI]

    Mathieu de Naurois

    2006-07-12T23:59:59.000Z

    Three different analysis techniques for Atmospheric Imaging System are presented. The classical Hillas parameters based technique is shown to be robust and efficient, but more elaborate techniques can improve the sensitivity of the analysis. A comparison of the different analysis techniques shows that they use different information for gamma-hadron separation, and that it is possible to combine their qualities.

  18. Ch.6 Atmospheric and Oceanic Circulations

    E-Print Network [OSTI]

    Pan, Feifei

    ;Learning Objective Four: Driving forces of wind #12;Driving Forces within the Atmosphere Gravity. #12;Pressure gradient determines wind speed #12; The Coriolis force is an effect of Earth's rotation direction due to the pressure gradient force alone #12;Geostrophic Wind Pressure gradient force + Coriolis

  19. Exploring the Deep... Ocean-Atmosphere

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Climate oscillations 97 #12;Storing energy To understand how solar radiation affects large-scale processes), and biosphere (living organisms) that are driven by solar energy. The ocean and the atmosphere have the greatest on the others. To fully understand the dynamics of our climate, we must examine the global energy balance

  20. Atmospheric Data Package for the Composite Analysis

    SciTech Connect (OSTI)

    Napier, Bruce A.; Ramsdell, James V.

    2005-09-01T23:59:59.000Z

    The purpose of this data package is to summarize our conceptual understanding of atmospheric transport and deposition, describe how this understanding will be simplified for numerical simulation as part of the Composite Analysis (i.e., implementation model), and finally to provide the input parameters needed for the simulations.

  1. The mean molecular mass of Titan's atmosphere

    E-Print Network [OSTI]

    Withers, Paul

    , Mars, Mars #12;Science Questions · Mean molecular mass (µ) -> Chemical composition · How did Titan form? · Current reservoirs of volatiles · Ethane/methane puddles/ocean · Thermal structure of atmosphere #12, delicate, etc ­ T/p sensors are simple, cheap, reliable · Is it possible to know µ based on simple

  2. Characterizing Titan's Upper Atmosphere Using the Titan

    E-Print Network [OSTI]

    Johnson, Robert E.

    methane chemical losses. INMS Data T-GITM Bell et al. [2010b] #12;Constraints on Escape · Parameter Sweep-Thermosphere Model (GITM) · 3-D, non-hydrostatic, altitude-based atmospheric model ­ Compressible Navier (TVD) MUSCL Scheme. ­ Block-based Massively Parallel Framework ­ Updating with 4th order Runge

  3. MIDDLE ATMOSPHERE DYNAMICS ATS 708 (3 credits)

    E-Print Network [OSTI]

    Academic Integrity Policy as found in the General Catalog (http://www.catalog.colostate.edu/FrontPDF/1, 1987, Andrews, Holton, Leovy, Academic Press. · Atmospheric and Oceanic Fluid Dynamics, 2006, Vallis Articles (alphabetically): · Baldwin et al., 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 1979

  4. THE LOWER SOLAR ATMOSPHERE ROBERT J. RUTTEN

    E-Print Network [OSTI]

    Rutten, Rob

    THE LOWER SOLAR ATMOSPHERE ROBERT J. RUTTEN Sterrekundig Instituut, Postbus 80 000, NL­3508 TA, Utrecht, The Netherlands Abstract. This "rapporteur" report discusses the solar photosphere and low does not seem to jeopardize precise determination of solar abundances in classical fashion. It is still

  5. Connectivity To Atmospheric Release Advisory Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-02-26T23:59:59.000Z

    To establish DOE and NNSA connectivity to Atmospheric Release Advisory Capability (ARAC) for sites and facilities that have the potential for releasing hazardous materials sufficient to generate certain emergency declarations and to promote efficient use of resources for consequence assessment activities at DOE sites, facilities, operations, and activities in planning for and responding to emergency events. No cancellations.

  6. Propagation of strangelets in the Earth's atmosphere

    E-Print Network [OSTI]

    Fei Wu; Ren-Xin Xu; Bo-Qiang Ma

    2007-02-13T23:59:59.000Z

    A new model for the description of the behaviour of strangelets in the Earth's atmosphere is presented. Strangelet fission induced by collision with air nuclei is included. It is shown that strangelets with certain parameters of initial mass and energy may reach depths near sea level, which can be examined by ground-based experiments.

  7. JournalofGeophysicalResearch: Atmospheres RESEARCH ARTICLE

    E-Print Network [OSTI]

    Folkins, Ian

    convection to start from more levels · Simple modification of convective parameterization Correspondence to of the Community Atmosphere Model (CAM4), we show that the overall accuracy in the diurnal simulation of convective rise to diurnal cycles in cloud amount [May et al., 2012] and relative humidity [Soden, 2000] which

  8. Land and Atmospheric Science GRAD STUDENT HANDBOOK

    E-Print Network [OSTI]

    Minnesota, University of

    , transport, and fate of pollutants in soil, air, and water; improving and protecting land, air, and water, Policy and Management Agricultural Industries and Marketing The Department occupies the entire Soil are predominantly occupied by Soil Morphology and Genesis, Environmental Biophysics, and Atmospheric Sciences, plus

  9. Modeling of Alpine Atmospheric Dynamics II

    E-Print Network [OSTI]

    Gohm, Alexander

    Parameterization 22 March 2005 Alexander Gohm IMGI, University of Innsbruck #12;The Walko et al. (1995) paper 22 are liquid (may be supercooled); pristine ice, snow and aggregates are completely frozen; graupel and hail are mixed-phase categories Cloud droplets are liquid and small enough to not fall (other categories fall

  10. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data

    SciTech Connect (OSTI)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.; Sanuki, T

    2007-02-15T23:59:59.000Z

    Using the 'modified DPMJET-III' model explained in the previous paper [T. Sanuki et al., preceding Article, Phys. Rev. D 75, 043005 (2007).], we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).], but the usage of the 'virtual detector' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of K-production in the interaction model is estimated using other interaction models: FLUKA'97 and FRITIOF 7.02, and modifying them so that they also reproduce the atmospheric muon flux data correctly. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied.

  11. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases

    E-Print Network [OSTI]

    S. K. Agarwalla; M. K. Parida; R. N. Mohapatra; G. Rajasekaran

    2007-04-11T23:59:59.000Z

    The high scale mixing unification hypothesis recently proposed by three of us (R. N. M., M. K. P. and G. R.) states that if at the seesaw scale, the quark and lepton mixing matrices are equal then for quasi-degenerate neutrinos, radiative corrections can lead to large solar and atmospheric mixings and small reactor angle at the weak scale in agreement with data. Evidence for quasi-degenerate neutrinos could, within this framework, be interpreted as a sign of quark-lepton unification at high scale. In the current work, we extend this model to show that the hypothesis works quite successfully in the presence of CP violating phases (which were set to zero in the first paper). In the case where the PMNS matrix is identical to the CKM matrix at the seesaw scale, with a Dirac phase but no Majorana phase, the low energy Dirac phase is predicted to be ($\\simeq 0.3^{\\circ}$) and leptonic CP-violation parameter $J_{CP} \\simeq (4 - 8)\\times 10^{-5}$ and $\\theta_{13} = 3.5^{\\circ}$. If on the other hand, the PMNS matrix is assumed to also have Majorana phases initially, the resulting theory damps radiative magnification phenomenon for a large range of parameters but nevertheless has enough parameter space to give the two necessary large neutrino mixing angles. In this case, one has $\\theta_{13} = 3.5^{\\circ} - 10^{\\circ}$ and $|J_{CP}|$ as large as $0.02-0.04$ which are accessible to long baseline neutrino oscillation experiments.

  12. Synthesis and study of frustrated oxide and mixed anion materials 

    E-Print Network [OSTI]

    Clark, Lucy

    2013-11-28T23:59:59.000Z

    Mixed anion systems, such as oxynitrides and oxyfluorides, are an emerging class of interesting materials. The lower stability of mixed anion systems in comparison to oxide materials has had the consequence that this ...

  13. Synthesis and physical properties study on mixed metal oxynitrides 

    E-Print Network [OSTI]

    Yang, Minghui

    2010-01-01T23:59:59.000Z

    Mixed metal oxynitrides have attracted attention due to their interesting chemical and physical properties in the past twenty years. In this thesis, four series of mixed metal oxynitrides have been investigated. The ...

  14. Trajectory Optimization using Mixed-Integer Linear Programming

    E-Print Network [OSTI]

    Trajectory Optimization using Mixed-Integer Linear Programming by Arthur George Richards Master Optimization using Mixed-Integer Linear Programming by Arthur George Richards Submitted to the Department subjected to avoidance and assignment requirements. The former include avoidance of collisions

  15. Water and Gold: A Promising Mix for Future Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes...

  16. Controlled Dispensing and Mixing of Pico- to Nanoliter Volumes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dispensing and Mixing of Pico- to Nanoliter Volumes Using On-Demand Droplet-Based Microfluidics. Controlled Dispensing and Mixing of Pico- to Nanoliter Volumes Using On-Demand...

  17. Cost and Schedule of the Mixed Oxide Fuel Fabrication Facility...

    Broader source: Energy.gov (indexed) [DOE]

    project review conducted by NNSA 1 Mixed oxide fuel is produced by mixing plutonium with depleted uranium. concluded that the MOX Facility had a very low probability of being...

  18. MIX and Instability Growth from Oblique Shock

    SciTech Connect (OSTI)

    Molitoris, J D; Batteux, J D; Garza, R G; Tringe, J W; Souers, P C; Forbes, J W

    2011-07-22T23:59:59.000Z

    We have studied the formation and evolution of shock-induced mix resulting from interface features in a divergent cylindrical geometry. In this research a cylindrical core of high-explosive was detonated to create an oblique shock wave and accelerate the interface. The interfaces studied were between the high-explosive/aluminum, aluminum/plastic, and finally plastic/air. Pre-emplaced surface features added to the aluminum were used to modify this interface. Time sequence radiographic imaging quantified the resulting instability formation from the growth phase to over 60 {micro}s post-detonation. Thus allowing the study of the onset of mix and evolution to turbulence. The plastic used here was porous polyethylene. Radiographic image data are compared with numerical simulations of the experiments.

  19. DOE mixed waste treatment capacity analysis

    SciTech Connect (OSTI)

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01T23:59:59.000Z

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  20. Turbulence and turbulent mixing in natural fluids

    E-Print Network [OSTI]

    Gibson, Carl H

    2010-01-01T23:59:59.000Z

    Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretion on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscosity and negative turbulence stresses work against gravity, creating mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until a quark-gluon strong-force SF freeze-out. Gluon-viscosity anti-gravity ({\\Lambda}SF) exponentially inflates the fireball to preserve big bang turbulence information at scales larger than ct as the first fossil turbulence. Cosmic microwave background CMB temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered (10^12 s) as plasma viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales (10^13 s). Turbulent morphologies and viscous-turbulent lengths a...

  1. Effect of mixing on polymerization of styrene 

    E-Print Network [OSTI]

    Treybig, Michael Norris

    1977-01-01T23:59:59.000Z

    was performed by co- feeding styrene monomer, batch prepared living polystyrllithium seed and benzene. Reaction conditions such as temperature, initial monomer and polymer concentrations, residence time and mixing speed were varied to achieve different... for the laboratory reactor. Micromixing was found to pro- duce a broad distribution with a high molecular weight tail, whereas total segregation would produce a more narrow polymer distribution with a low molecular weight tail. Before making the laboratory...

  2. Sideband Mixing in Intense Laser Backgrounds

    E-Print Network [OSTI]

    Martin Lavelle; David McMullan

    2014-07-04T23:59:59.000Z

    The electron propagator in a laser background has been shown to be made up of a series of sideband poles. In this paper we study this decomposition by analysing the impact of the residual gauge freedom in the Volkov solution on the sidebands. We show that the gauge transformations do not alter the location of the poles. The identification of the propagator from the two-point function is maintained but we show that the sideband structures mix under residual gauge transformations.

  3. Process for etching mixed metal oxides

    DOE Patents [OSTI]

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18T23:59:59.000Z

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  4. Process for etching mixed metal oxides

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM); Ginley, David S. (Evergreen, CO)

    1994-01-01T23:59:59.000Z

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  5. August 2000 ((Mixed) Integer Nonlinear Programming ) Sven Leyffer ...

    E-Print Network [OSTI]

    ((Mixed) Integer Linear Programming ) ... Facets of The Cardinality Constrained Circuit Polytope ..... Analysis of MILP Techniques for the Pooling Problem

  6. Eco blocks: Nontraditional use for mixed wastepaper

    SciTech Connect (OSTI)

    Springer, A.M. [Miami Univ., Oxford, OH (United States); Rose, M. [EKA Nobel, Ashland, VA (United States); Ryu, R. [North Carolina State Univ., Raleigh, NC (United States)

    1996-05-01T23:59:59.000Z

    In 1991, approximately 37%, by weight, of the materials going to landfills was paper. Landfill space in the US is becoming a critical problem in certain areas. This mixed paper fraction does not have a good use in traditional recycling applications. Wastepaper dealers have an excess of mixed wastepaper. This project explored the possibility of producing a value added product that would consume large amounts of mixed waste. The product selected was to produce 5 x 10 x 20 cm paper blocks. These blocks could find applications in building structures. The blocks were modeled using a heated platen press and an aluminum mold, fitted with porous brass plates on the top and bottom in order to ease water removal. The material produced was similar to synthetic wood. Unlike wood, it could be molded into different shapes if desired. The density and physical properties of tensile strength and modulus were determined and compared to wood. The water absorption properties were evaluated and found to be a potential problem. Various coatings were investigated in order to improve the water holdout properties. A manufacturing process was laid out and the cost of block production was estimated to be from $0.15 to $0.24 per block, which would make it competitive with other blocks.

  7. Solving the structure of disordered mixed salts

    SciTech Connect (OSTI)

    Frenkel, A. (School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978 (Israel)); Stern, E.A. (Department of Physics FM-15, University of Washington, Seattle, Washington 98195 (United States)); Voronel, A. (School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978 (Israel)); Qian, M. (Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540 (United States)); Newville, M. (Department of Physics FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1994-05-01T23:59:59.000Z

    A detailed x-ray-absorption fine-structure (XAFS) investigation of two mixed alkali halides Rb[sub 0.76]K[sub 0.24]Br and RbBr[sub 0.62]Cl[sub 0.38] was performed. The concentrations of the mixtures had been chosen to produce a single homogeneous phase for each, and it was checked by XAFS that the salts were randomly mixed on the atomic level. Detailed analysis of the data including multiple-scattering contributions revealed an rms buckling angular deviation of both mixtures from the average NaCl collinear structure of 7--9[degree]. The angles are defined by three atomic positions determined through double- and triple-scattering paths. These angles are new parameters which should be added to characterize the buckled crystals. Adding to diffraction results the parameters determined from XAFS as input into a molecular-dynamics simulation the structures of the mixed salts with their fluctuations about the NaCL structure are solved and displayed.

  8. EAS/CEE 6795 Atmospheric Aerosols Fall 2011

    E-Print Network [OSTI]

    Weber, Rodney

    EAS/CEE 6795 Atmospheric Aerosols Fall 2011 Mon Wed Fri ­ 11 concepts of aerosol physics with applications to atmospheric aerosols. Text Book: Hinds, Aerosol Technology: Properties, behavior and measurement of airborne particles

  9. iDirector with Alex Laskin: Atmospheric aerosols | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alex Laskin: Atmospheric aerosols iDirector with Alex Laskin: Atmospheric aerosols Released: September 03, 2014 iDirector with Alex Laskin iDirector interview with EMSL scientist...

  10. Planetary, Atmospheric, and Environmental Applications of Physics Frank Mills

    E-Print Network [OSTI]

    Chen, Ying

    Planetary, Atmospheric, and Environmental Applications of Physics Frank Mills Atomic and Molecular solar energy production Evaluating, forecasting, and managing suburb-scale distributed solar electricity production My research applies physics to a range of problems in planetary, atmospheric, and environmental

  11. atmospheric water transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stenzel, Oliver J 2009-01-01 2 Atmospheric Water Vapor Transport and the Water Balance of North America: Part I CiteSeer Summary: The atmospheric water vapor flux divergence and...

  12. CollegeofEarth,Ocean, andAtmosphericSciences

    E-Print Network [OSTI]

    Kurapov, Alexander

    Chemistry for Environmental Sciences 490 Environmental Conservation & Sustainability 577 Environmental, and Atmospheric Sciences Environmental Sciences Earth Sciences Geology Option Geography Option Earth Systems Sciences or Environmental Sciences** The new College of Earth Ocean and Atmospheric Sciences (CEOAS) has

  13. Electrical apparatus for explosive gas atmospheres, Part 0: General introduction 

    E-Print Network [OSTI]

    IEC Technical Committee

    1971-01-01T23:59:59.000Z

    This Recommendation has been prepared by IEC Technical Committee No. 31, Electrical Apparatus for Explosive Atmospheres; It forms one of a series of publications dealing with electrical apparatus for use in explosive gas atmospheres. This particular...

  14. atmospheric radon-222 concentration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data on the atmospheric concentration of carbon dioxide and on the magnitude of fossil-fuel combustion between the trends in fossil-fuel burning and the trends in atmospheric...

  15. Mesoscale coupled ocean-atmosphere feedbacks in boundary current systems

    E-Print Network [OSTI]

    Putrasahan, Dian Ariyani

    2012-01-01T23:59:59.000Z

    Isolating Mesoscale Coupled Ocean-Atmosphere in the KuroshioSST coupler . . . . Chapter 3 Mesoscale Ocean-Atmosphere4.2 Impact of Mesoscale SST on Precipitation Chapter 4 vi

  16. A Temperature and Abundance Retrieval Method for Exoplanet Atmospheres

    E-Print Network [OSTI]

    Madhusudhan, Nikku

    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of one-dimensional (1D) atmosphere models in order to cover the large ...

  17. Land-atmosphere interaction and radiative-convective equilibrium

    E-Print Network [OSTI]

    Cronin, Timothy (Timothy Wallace)

    2014-01-01T23:59:59.000Z

    I present work on several topics related to land-atmosphere interaction and radiative-convective equilibrium: the first two research chapters invoke ideas related to land-atmosphere interaction to better understand ...

  18. Trends and inferred emissions of atmospheric high molecular weight perfluorocarbons

    E-Print Network [OSTI]

    Ivy, Diane Jean

    2012-01-01T23:59:59.000Z

    Atmospheric observations and atmospheric observation-based global emission estimates are presented for the five high molecular weight perfluorocarbons (PFCs): decafluorobutane (C 4 F 1 0 ), dodecafluoropentane (C5 F1 2 ), ...

  19. Sulfur capture by oil shale ashes under atmospheric and pressurized FBC conditions

    SciTech Connect (OSTI)

    Yrjas, K.P.; Hupa, M. [Aabo Akademi Univ., Turku (Finland). Dept. of Chemical Engineering; Kuelaots, I.; Ots, A. [Tallinn Technical Univ. (Estonia). Thermal Engineering Dept.

    1995-12-31T23:59:59.000Z

    When oil shale contains large quantities of limestone, a significant auto-absorption of sulfur is possible under suitable conditions. The sulfur capture by oil shale ashes has been studied using a pressurized thermogravimetric apparatus. The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. The Ca/S molar ratios in the two oil shales studied were 8 (Estonian) and 10 (Israeli). The samples were first burned in a gas atmosphere containing O{sub 2} and N{sub 2} (and CO{sub 2} if pressurized). After the combustion step, SO{sub 2} was added and sulfation started. The results with the oil shales were compared to those obtained with an oil shale cyclone ash from the Narva power plant in Estonia. In general, the results from the sulfur capture experiments under both atmospheric and pressurized conditions showed that the oil shale cannot only capture its own sulfur but also significant amounts of additional sulfur of another fuel if the fuels are mixed together. For example from the runs at atmospheric pressure, the conversion of CaO to CaSO{sub 4} was about 70% for Israeli oil shale and about 55% for Estonian oil shale (850 C). For the cyclone ash the corresponding conversion was about 20%. In comparison it could be mentioned that under the same conditions the conversions of natural limestones are about 30%. The reason the cyclone ash was a poor sulfur absorbent was probably due to its temperature history. In Narva the oil shale was burned at a significantly higher temperature (1,400 C) than was used in the experiments (750 C and 850 C). This caused the ash to sinter and the reactive surface area of the cyclone ash was therefore decreased.

  20. Homemade mixes can save time and money. You can make

    E-Print Network [OSTI]

    Florida, University of

    Meat Mixes Homemade mixes can save time and money. You can make meat mixes ahead of time and freeze seconds before and after handling food. · Don't cross-contaminate. Keep raw meat, poultry, fish and their juices away from other food in your grocery cart and at home. · Thaw meat safely. Be sure thawing meat

  1. RISK AVERSION AND TECHNOLOGY MIX IN AN ELECTRICITY Guy MEUNIER

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RISK AVERSION AND TECHNOLOGY MIX IN AN ELECTRICITY MARKET Guy MEUNIER Cahier n° 2013-23 ECOLE:chantal.poujouly@polytechnique.edu hal-00906944,version1-20Nov2013 #12;Risk aversion and technology mix in an electricity market Guy-aversion on the long-term equilibrium technology mix in an electricity market. It develops a model where firms can

  2. Bifurcations of flame filaments in chaotically mixed combustion reactions

    E-Print Network [OSTI]

    Gottwald, Georg A.

    Bifurcations of flame filaments in chaotically mixed combustion reactions Shakti N. Menon and Georg ranging fields. Be- sides in the case of combustion, where mixing-induced bifurcations may lead mixing has a significant effect on combustion processes and in particular on flame filamental structures

  3. Efficiency of Mixing Forced by Unsteady Shear Flow RYUICHIRO INOUE

    E-Print Network [OSTI]

    Smyth, William David

    Efficiency of Mixing Forced by Unsteady Shear Flow RYUICHIRO INOUE Department of Physics form 18 December 2008) ABSTRACT The dependence of mixing efficiency on time-varying forcing is studied frame and allowing the tilt angle to vary in time. Mixing efficiency Gc is defined as the ratio

  4. Characterization of turbulent jet mixing in cylindrical tanks

    E-Print Network [OSTI]

    Schulte, Casey M

    1998-01-01T23:59:59.000Z

    , for the most part, confirms many of the findings of previous studies of jet mixing. First, mixing time in jet-mixed systems depends primarily upon the mass of the fluid in a tank and the amount of addition, to maximize the efficient transfer of momentum...

  5. atmosphere research launch: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 research staff and postdoctoral scientists More than 5M per, climate change, radar meteorology, tropical meteorology Atmospheric Chemistry - fundamental...

  6. atmospheric sciences program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Certification for Atmospheric Sciences Undergraduate Students The Computational Science and Engineering certificate program is designed to provide ATMS under- graduate...

  7. antioxidant impacting atmospheric: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impacts on marine biogeochemistry Zender, Charles 13 Impacts of herbaceous bioenergy crops on atmospheric volatile organic composition and potential consequences...

  8. The Seasonal Cycle of Atmospheric Heating and Temperature AARON DONOHOE

    E-Print Network [OSTI]

    Battisti, David

    The Seasonal Cycle of Atmospheric Heating and Temperature AARON DONOHOE Massachusetts Institute of Technology, Cambridge, Massachusetts DAVID S. BATTISTI Department of Atmospheric Sciences, University) ABSTRACT The seasonal cycle of the heating of the atmosphere is divided into a component due to direct

  9. Falsification Of The Atmospheric CO2 Greenhouse Effects

    E-Print Network [OSTI]

    Learned, John

    Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3 Contents Abstract 2 1 Introduction 6 1.1 Problem background

  10. School of Earth and Atmospheric Sciences Georgia Institute of Technology

    E-Print Network [OSTI]

    Weber, Rodney

    School of Earth and Atmospheric Sciences Georgia Institute of Technology Strategic Plan March 1 opportunities. Vision The vision of the School of Earth and Atmospheric Sciences is: To lead in innovative research and educate the future leaders in earth and atmospheric sciences for the 21st century, within

  11. Atmospheric perturbations of large-scale nuclear war

    SciTech Connect (OSTI)

    Malone, R.C.

    1985-01-01T23:59:59.000Z

    Computer simulation of the injection into the atmosphere of a large quantity of smoke following a nuclear war are described. The focus is on what might happen to the smoke after it enters the atmosphere and what changes, or perturbations, could be induced in the atmospheric structure and circulation by the pressure of a large quantity of smoke. 4 refs., 7 figs. (ACR)

  12. ANNOUNCEMENT Project Atmospheric Brown Cloud (ABC) 2006 TRAINING SCHOOL

    E-Print Network [OSTI]

    Cohen, Ronald C.

    composition, radiative effects and transport of atmospheric aerosols and related atmospheric pollutanANNOUNCEMENT Project Atmospheric Brown Cloud (ABC) 2006 TRAINING SCHOOL Project ABC Science consequences of the haze involve regional and global climate change, impacts on ecosystem, the water cycle

  13. Exploring the Earth matter effect with atmospheric neutrinos in ice

    E-Print Network [OSTI]

    Sanjib Kumar Agarwalla; Tracey Li; Olga Mena; Sergio Palomares-Ruiz

    2012-12-10T23:59:59.000Z

    We study the possibility to perform neutrino oscillation tomography and to determine the neutrino mass hierarchy in kilometer-scale ice Cerenkov detectors by means of the theta13-driven matter effects which occur during the propagation of atmospheric neutrinos deep through the Earth. We consider the ongoing IceCube/DeepCore neutrino observatory and future planned extensions, such as the PINGU detector, which has a lower energy threshold. Our simulations include the impact of marginalization over the neutrino oscillation parameters and a fully correlated systematic uncertainty on the total number of events. For the current best-fit value of the mixing angle theta13, the DeepCore detector, due to its relatively high-energy threshold, could only be sensitive to fluctuations on the normalization of the Earth's density of \\Delta\\rho \\simeq \\pm 10% at ~ 1.6 sigma CL after 10 years in the case of a true normal hierarchy. For the two PINGU configurations we consider, overall density fluctuations of \\Delta\\rho \\simeq \\pm 3% (\\pm 2%) could be measured at the 2 sigma CL after 10 years, also in the case of a normal mass hierarchy. We also compare the prospects to determine the neutrino mass hierarchy in these three configurations and find that this could be achieved at the 5 sigma CL, for both hierarchies, after 5 years in DeepCore and about 1 year in PINGU. This clearly shows the importance of lowering the energy threshold below 10 GeV so that detectors are fully sensitive to the resonant matter effects.

  14. Performance of the STACEE Atmospheric Cherenkov Telescope

    E-Print Network [OSTI]

    STACEE Collaboration; D. A. Williams; D. Bhattacharya; L. M. Boone; M. C. Chantell; Z. Conner; C. E. Covault; M. Dragovan; P. Fortin; D. Gingrich; D. T. Gregorich; D. S. Hanna; G. Mohanty; R. Mukherjee; R. A. Ong; S. Oser; K. Ragan; R. A. Scalzo; D. R. Schuette; C. G. Theoret; T. O. Tumer; F. Vincent; J. A. Zweerink

    2000-10-17T23:59:59.000Z

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64.

  15. Performance of the STACEE Atmospheric Cherenkov Telescope

    E-Print Network [OSTI]

    Williams, D A; Boone, L M; Chantell, M C; Conner, Z; Covault, C E; Dragovan, M; Fortin, P; Gingrich, D M; Gregorich, D T; Hanna, D S; Mohanty, G B; Mukherjee, R; Ong, R A; Oser, S M; Ragan, K; Scalzo, R A; Schütte, D R; Theoret, C G; Tümer, T O; Vincent, F; Zweerink, J A

    2000-01-01T23:59:59.000Z

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64.

  16. Improved detection of atmospheric turbulence with SLODAR

    E-Print Network [OSTI]

    Michael Goodwin; Charles Jenkins; Andrew Lambert

    2007-06-19T23:59:59.000Z

    We discuss several improvements in the detection of atmospheric turbulence using SLOpe Detection And Ranging (SLODAR). Frequently, SLODAR observations have shown strong ground-layer turbulence, which is beneficial to adaptive optics. We show that current methods which neglect atmospheric propagation effects can underestimate the strength of high altitude turbulence by up to ~ 30%. We show that mirror and dome seeing turbulence can be a significant fraction of measured ground-layer turbulence, some cases up to ~ 50%. We also demonstrate a novel technique to improve the nominal height resolution, by a factor of 3, called Generalized SLODAR. This can be applied when sampling high-altitude turbulence, where the nominal height resolution is the poorest, or for resolving details in the important ground-layer.

  17. Atmospheric rivers as Lagrangian coherent structures

    E-Print Network [OSTI]

    Garaboa, Daniel; Huhn, Florian; Perez-Muñuzuri, Vicente

    2015-01-01T23:59:59.000Z

    We show that filamentous Atmospheric Rivers (ARs) over the Northern Atlantic Ocean are closely linked to attracting Lagrangian Coherent Structures (LCSs) in the large scale wind field. LCSs represent lines of attraction in the evolving flow with a significant impact on all passive tracers. Using Finite-Time Lyapunov Exponents (FTLE), we extract LCSs from a two-dimensional flow derived from water vapor flux of atmospheric reanalysis data and compare them to the three-dimensional LCS obtained from the wind flow. We correlate the typical filamentous water vapor patterns of ARs with LCSs and find that LCSs bound the filaments on the back side. Passive advective transport of water vapor from tropical latitudes is potentially possible.

  18. Response of the upper ocean to a large summertime injection of smoke in the atmosphere. Final report

    SciTech Connect (OSTI)

    Mettlach, T.R.; Haney, R.L.; Garwood, R.W.; Ghan, S.J.

    1987-02-15T23:59:59.000Z

    A one-dimensional oceanic planetary boundary-layer model is used to investigate the response of the upper ocean to the atmospheric conditions predicted to develop following a hypothetical nuclear exchange. The ocean model is driven by the surface heat and momentum fluxes predicted by an atmospheric general circulation model following a summertime injection of 1.5 X 10/sup 14/ g of smoke from postwar fires over Europe, Asia, and North America. Although the specific response of the upper ocean is highly dependent on the geographic location, the mid-latitude summertime mixed layer typically cools 3 to 5/degree/C and deepens 25 m during the first 30 days following the smoke injection. Moreover, a large fraction of this response is found to take place during a short 2- to 3-day period of very intense winds and falling air temperatures, which occurs during the first week or two after the smoke injection.

  19. Pulsed atmospheric fluidized bed combustor apparatus

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26T23:59:59.000Z

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  20. Extraction of Freshwater and Energy from Atmosphere

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-04-19T23:59:59.000Z

    Author offers and researches a new, cheap method for the extraction of freshwater from the Earth atmosphere. The suggected method is fundamentally dictinct from all existing methods that extract freshwater from air. All other industrial methods extract water from a saline water source (in most cases from seawater). This new method may be used at any point in the Earth except Polar Zones. It does not require long-distance freshwater transportation. If seawater is not utilized for increasing its productivity, this inexpensive new method is very environment-friendly. The author method has two working versions: (1) the first variant the warm (hot) atmospheric air is lifted by the inflatable tube in a high altitude and atmospheric steam is condenced into freswater: (2) in the second version, the warm air is pumped 20-30 meters under the sea-surface. In the first version, wind and solar heating of air are used for causing air flow. In version (2) wind and propeller are used for causing air movment. The first method does not need energy, the second needs a small amount. Moreover, in variant (1) the freshwater has a high pressure (>30 or more atm.) and can be used for production of energy such as electricity and in that way the freshwater cost is lower. For increasing the productivity the seawater is injected into air and solar air heater may be used. The solar air heater produces a huge amount of electricity as a very powerful electricity generation plant. The offered electricity installation in 100 - 200 times cheaper than any common electric plant of equivalent output. Key words: Extraction freshwater, method of getting freshwater, receiving energy from atmosphere, powerful renewal electric plant.

  1. Geochemistry of Surface-Atmosphere Interactions on

    E-Print Network [OSTI]

    Withers, Paul

    state of the surface? #12;Carbonates on Venus ¥ CaCO3+SiO2 = CaSiO3+CO2(g) ¥ Psurface = Pbuffer. ¥ S in lower atmosphere is kinetically controlled ¥ CaCO3 + SO2 = CaSO4 + CO removes SO2 , deposits CaSO4 ¥ Fe rates ¥ Need more data, new spacecraft instruments #12;Handy Minerals ¥ SiO2 Quartz ¥ CaCO3 Calcite ¥ Ca

  2. Atmospheric Neutrinos at Super-Kamiokande

    E-Print Network [OSTI]

    K. Scholberg; for the Super-Kamiokande Collaboration

    1999-05-11T23:59:59.000Z

    In 1998, the Super-Kamiokande announced evidence for the observation of neutrino oscillations based on measurements of the atmospheric neutrino flux. This paper presents the updated results for fully and partially-contained events with 736 days of data, as well as upward-going muon results and a global analysis. Preliminary interpretations of the results in terms of various two-flavor oscillation hypotheses are presented.

  3. Clustering of Aerosols in Atmospheric Turbulent Flow

    E-Print Network [OSTI]

    T. Elperin; N. Kleeorin; M. A. Liberman; V. L'vov; I. Rogachevskii

    2007-02-15T23:59:59.000Z

    A mechanism of formation of small-scale inhomogeneities in spatial distributions of aerosols and droplets associated with clustering instability in the atmospheric turbulent flow is discussed. The particle clustering is a consequence of a spontaneous breakdown of their homogeneous space distribution due to the clustering instability, and is caused by a combined effect of the particle inertia and a finite correlation time of the turbulent velocity field. In this paper a theoretical approach proposed in Phys. Rev. E 66, 036302 (2002) is further developed and applied to investigate the mechanisms of formation of small-scale aerosol inhomogeneities in the atmospheric turbulent flow. The theory of the particle clustering instability is extended to the case when the particle Stokes time is larger than the Kolmogorov time scale, but is much smaller than the correlation time at the integral scale of turbulence. We determined the criterion of the clustering instability for the Stokes number larger than 1. We discussed applications of the analyzed effects to the dynamics of aerosols and droplets in the atmospheric turbulent flow.

  4. Large area atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM); Babayan, Steve E. (Huntington Beach, CA); Hicks, Robert F. (Los Angeles, CA)

    2001-01-01T23:59:59.000Z

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  5. Testing solar lepton mixing sum rules in neutrino oscillation experiments

    E-Print Network [OSTI]

    Ballett, Peter; Luhn, Christoph; Pascoli, Silvia; Schmidt, Michael A

    2014-01-01T23:59:59.000Z

    Small discrete family symmetries such as S4, A4 or A5 may lead to simple leading-order predictions for the neutrino mixing matrix such as the bimaximal, tribimaximal or golden ratio mixing patterns, which may be brought into agreement with experimental data with the help of corrections from the charged-lepton sector. Such scenarios generally lead to relations among the parameters of the physical leptonic mixing matrix known as solar lepton mixing sum rules. In this article, we present a simple derivation of such solar sum rules, valid for arbitrary neutrino and charged lepton mixing angles and phases, assuming only {\\theta}13^{\

  6. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    SciTech Connect (OSTI)

    Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; Zender, C. S.; Kok, J. F.; Liu, Xiaohong; Zhang, Y.; Albani, Samuel

    2015-01-01T23:59:59.000Z

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral components in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05Wm?2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17Wm?2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, ?0.05 and ?0.17Wm?2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.

  7. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    SciTech Connect (OSTI)

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01T23:59:59.000Z

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.

  8. Representative Atmospheric Plume Development for Elevated Releases

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Prichard, Andrew W.

    2014-03-03T23:59:59.000Z

    An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption that an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression for the non-decaying tracer. If the power-law equation for the median dilution factor, Df, based on a non-decaying tracer has the general form Df=a?×t?^(-b) for time t after the release event, then the equation has the form Df=e^(-?t)×a×t^(-b) for a radioactive isotope, where ? is the decay constant for the isotope.

  9. Photochemistry in Terrestrial Exoplanet Atmospheres II: H2S and SO2 Photochemistry in Anoxic Atmospheres

    E-Print Network [OSTI]

    Hu, Renyu; Bains, William

    2013-01-01T23:59:59.000Z

    Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H2S and SO2) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H2S and SO2 are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H2, N2, and CO2 atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earth's volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of element...

  10. Mixing zones in magnetized differentially rotating stars

    E-Print Network [OSTI]

    V. Urpin

    2005-09-29T23:59:59.000Z

    We study the secular instability of magnetized differentially rotating radiative zones taking account of viscosity and magnetic and thermal diffusivities. The considered instability generalizes the well-known Goldreich-Schubert-Fricke instability for the case of a sufficiently strong magnetic field. In magnetized stars, instability can lead to a formation of non-spherical unstable zones where weak turbulence mixes the material between the surface and interiors. Such unstable zones can manifest themselves by a non-spherical distribution of abundance anormalies on the stellar surface.

  11. B_s mixing at the Tevatron

    SciTech Connect (OSTI)

    Lucchesi, Donatella; /Padua U.

    2006-08-01T23:59:59.000Z

    The measurement of the B{sub s} mixing oscillation frequency, {Delta}m{sup s}, has been the main goal for both experiments CDF and D0 which are running at the Tevatron collider. With 1 fb{sup -1} of data collected during the last four years D0 set a lower and upper limit on this frequency, 17 < {Delta}m{sub s} < 21 ps{sup -1}. CDF measured {Delta}m{sub s} with a precision better than 2% and the probability that the data could randomly fluctuate to mimic such a signature is 0.2%.

  12. Increasing jet entrainment, mixing and spreading

    DOE Patents [OSTI]

    Farrington, Robert B. (Wheatridge, CO)

    1994-01-01T23:59:59.000Z

    A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  13. Increasing jet entrainment, mixing and spreading

    DOE Patents [OSTI]

    Farrington, R.B.

    1994-08-16T23:59:59.000Z

    A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 11 figs.

  14. B lifetimes and mixing at the Tevatron

    SciTech Connect (OSTI)

    Bedeschi, Franco; /INFN, Pisa

    2005-05-01T23:59:59.000Z

    The authors present recent results on b-hadron lifetimes and mixing obtained from the analysis of the data collected at the Tevatron Collider by the CDF and D0 Collaborations in the period 2002-2004. Many lifetime measurements have been updated since the Summer 2004 conferences, sometimes improving significantly the accuracy. Likewise the measurement of the B{sub d} oscillation frequency has been updated. New limits on the B{sub s} oscillation frequency have been determined using for the first time Run II data.

  15. CST/Water Slurry Mixing and Resuspension

    SciTech Connect (OSTI)

    Baich, M.A.

    2001-02-13T23:59:59.000Z

    Crystalline Silicotitanate (CST) was selected as one of the alternatives to the In-Tank Precipitation Process (ITP) for removal of cesium from the salt waste at Savannah River Site. The proposed salt waste treatment process using CST would involve passing a filtered salt waste through a fixed bed of CST. The CST would remove the cesium from the salt waste by ion exchange and the decontaminated salt would be incorporated into the Saltstone Process. This report documents the results of investigations into the mixing and re-suspension characteristics of two 10 wt percent CST slurries.

  16. Mixing It Up | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependentDepartment4.docfromImpact |GuidanceMixing It Up

  17. Mixed Solvent Electrolyte Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official FileEnergyAERMOD-PRIME,Department ofMixed Solvent

  18. On detecting biospheres from thermodynamic disequilibrium in planetary atmospheres

    E-Print Network [OSTI]

    Krissansen-Totton, Joshua; Catling, David C

    2015-01-01T23:59:59.000Z

    Atmospheric chemical disequilibrium has been proposed as a method for detecting extraterrestrial biospheres from exoplanet observations. Chemical disequilibrium is potentially a generalized biosignature since it makes no assumptions about particular biogenic gases or metabolisms. Here, we present the first rigorous calculations of the thermodynamic chemical disequilibrium in the atmospheres of Solar System planets, in which we quantify the difference in Gibbs free energy of an observed atmosphere compared to that of all the atmospheric gases reacted to equilibrium. The purely gas phase disequilibrium in Earth's atmosphere, as measured by this available Gibbs free energy, is not unusual by Solar System standards and smaller than that of Mars. However, Earth's atmosphere is in contact with a surface ocean, which means that gases can react with water, and so a multiphase calculation that includes aqueous species is required. We find that the disequilibrium in Earth's atmosphere-ocean system (in joules per mole o...

  19. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    DOE Patents [OSTI]

    Carr; Jeffrey W. (Livermore, CA)

    2009-03-31T23:59:59.000Z

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  20. Evaluation of the atmospheric deposition of toxic contaminants to Puget Sound

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    A growing recognition of the potential for transfer of pollutants from air to water prompted the study of the contribution of airborne toxic contaminants to water quality problems in Puget Sound. The study objectives were: (1) to develop a better understanding of the relative contribution of atmospheric deposition to toxic contaminants in Commencement Bay and (2) to develop efficient and cost-effective tools which could be used for assessing the question in other Puget Sound reaches and embayments. Commencement Bay was selected to represent a 'worst case' test area in Puget Sound because it is heavily industrialized, having a complex mix of air pollution sources and high concentrations of chemicals in the bay sediments. The study design included sampling and analysis for metals, polycyclic aromatic hydrocarbons, PCBs, aliphatic hydrocarbons, and nutrients. Several mathematical models were created or modified for the study.

  1. Search for Matter-Dependent Atmospheric Neutrino Oscillations in Super-Kamiokande

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; K. Abe

    2008-01-05T23:59:59.000Z

    We consider muon neutrino to tau neutrino oscillations in the context of the Mass Varying Neutrino (MaVaN) model, where the neutrino mass can vary depending on the electron density along the flight path of the neutrino. Our analysis assumes a mechanism with dependence only upon the electron density, hence ordinary matter density, of the medium through which the neutrino travels. Fully-contained, partially-contained and upward-going muon atmospheric neutrino data from the Super--Kamiokande detector, taken from the entire SK--I period of 1489 live days, are compared to MaVaN model predictions. We find that, for the case of 2-flavor oscillations, and for the specific models tested, oscillation independent of electron density is favored over density dependence. Assuming maximal mixing, the best-fit case and the density-independent case do not differ significantly.

  2. Geodesic Transport Barriers in Jupiter's Atmosphere: A Video-Based Analysis

    E-Print Network [OSTI]

    Alireza Hadjighasem; George Haller

    2014-08-24T23:59:59.000Z

    Jupiter's zonal jets and Great Red Spot are well known from still images. Yet the planet's atmosphere is highly unsteady, which suggests that the actual material transport barriers delineating its main features should be time-dependent. Rare video footages of Jupiter's clouds provide an opportunity to verify this expectation from optically reconstructed velocity fields. Available videos, however, provide short-time and temporally aperiodic velocity fields that defy classical dynamical systems analyses focused on asymptotic features. To this end, we use here the recent theory of geodesic transport barriers to uncover finite-time mixing barriers in the wind field extracted from a video captured by NASA's Cassini space mission. More broadly, the approach described here provides a systematic and frame-invariant way to extract dynamic coherent structures from time-resolved remote observations of unsteady continua.

  3. Habitability of waterworlds: runaway greenhouses, atmospheric expansion and multiple climate states of pure water atmospheres

    E-Print Network [OSTI]

    Goldblatt, Colin

    2015-01-01T23:59:59.000Z

    There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds". I map these as a function of solar constant for planets ranging in size from Mars size to 10 Earth-mass. The states are: globally ice covered (Tsnet absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surfa...

  4. Large Field Inflation from Axion Mixing

    E-Print Network [OSTI]

    Shiu, Gary; Ye, Fang

    2015-01-01T23:59:59.000Z

    We study the general multi-axion systems, focusing on the possibility of large field inflation driven by axions. We find that through axion mixing from a non-diagonal metric on the moduli space and/or from St\\"uckelberg coupling to a U(1) gauge field, an effectively super-Planckian decay constant can be generated without the need of "alignment" in the axion decay constants. We also investigate the consistency conditions related to the gauge symmetries in the multi-axion systems, such as vanishing gauge anomalies and the potential presence of generalized Chern-Simons terms. Our scenario applies generally to field theory models whose axion periodicities are intrinsically sub-Planckian, but it is most naturally realized in string theory. The types of axion mixings invoked in our scenario appear quite commonly in D-brane models, and we present its implementation in type II superstring theory. Explicit stringy models exhibiting all the characteristics of our ideas are constructed within the frameworks of Type IIA ...

  5. Staged combustion for reduced NO/sub x/ emissions from an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Duqum, J.N.; Fortino, R.T.; Loudin, K.L.

    1989-06-01T23:59:59.000Z

    To reduce exhaust NO/sub x/ below existing levels in an atmospheric fluidized-bed combustor, two-stage combustion was studied on the 6' /times/ 6' (6 /times/ 6) atmospheric fluidized-bed combustion (AFBC) facility at the Babcock and Wilcox (B and W) Alliance, Ohio, Research Center. This report documents the tests and related numerical modeling. The two-stage testing was conducted with Pittsburgh No. 8 coal. NO/sub x/ was reduced to a minimum level of 132 ppM at the stack, or about 50% below baseline NO/sub x/ with overfire air (OFA). Combustion efficiency was maintained at 98% at these minimum NO/sub x/ conditions. Although acceptable sulfur capture was not maintained, tests with overbed fly ash recycle and higher OFA jet velocity indicated that sulfur capture can be brought to acceptable levels by improving freeboard mixing. Numerical modeling was investigated as a means of scaling the results of staged combustion from the 6 /times/ 6 AFBC facility to larger AFBC units. B and W's existing three-dimensional models for pulverized-coal combustion and NO/sub x/ formation and reduction were applied to the 6 /times/ 6 freeboard. Lagrangian particle transport models were found capable of predicting elutriation. Exit flue gas temperatures were well predicted, but internal freeboard temperatures were underpredicted. B and W's NO/sub x/ model under predicted reaction rates for fuel NO/sub x/ production and reduction. The OFA ports for this project were designed using mixing analysis without combustion. This type of analysis can help in the design of OFA ports for larger units such as Tennessee Valley Authority's 20-MW pilot-scale plant. However, additional computer code validation is required before combustion and NO/sub x/ analyses can be used for scale-up. 37 refs., 43 figs.

  6. Development of mixed conducting dense nickel/Ca-doped lanthanum zirconate cermet for gas separation application

    SciTech Connect (OSTI)

    Nag, S. [CSIR - Central Glass and Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata - 700 032 (India)] [CSIR - Central Glass and Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata - 700 032 (India); Mukhopadhyay, S. [Department of Chemical Technology, Calcutta University, 92 A. P. C. Road, Kolkata - 700 009 (India)] [Department of Chemical Technology, Calcutta University, 92 A. P. C. Road, Kolkata - 700 009 (India); Basu, R.N., E-mail: rajenbasu54@gmail.com [CSIR - Central Glass and Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata - 700 032 (India)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Phase pure La{sub 1.95}Ca{sub 0.05}Zr{sub 2}O{sub 7-{delta}} (LCZ) material is prepared by combustion synthesis. Black-Right-Pointing-Pointer LCZ and Ni-LCZ bulk samples are prepared with theoretical density close to 100%. Black-Right-Pointing-Pointer Bulk electrical conductivity {approx}400 S/cm is obtained for Ni-LCZ cermet at 750 Degree-Sign C. -- Abstract: La{sub 1.95}Ca{sub 0.05}Zr{sub 2}O{sub 7-{delta}} (LCZ) and Ni-LCZ cermet have been prepared by combustion synthesis and conventional solid state mixing methods respectively. Both the materials are sintered in air and controlled atmosphere (5% H{sub 2} in Ar). The density obtained for the material sintered at 1400 Degree-Sign C in controlled atmosphere is found to be more than 99.5%. This sintering temperature (1400 Degree-Sign C) is considered to be much lower compared to the conventional sintering temperature. The corresponding total conductivity for such Ni-LCZ cermet materials is {approx}400 S/cm measured at 750 Degree-Sign C having 40 vol% of Ni and 60 vol% LCZ.

  7. The Daytime Mixed Layer Observed by Radiosonde, Profiler, and LIDAR during MILAGRO

    SciTech Connect (OSTI)

    Shaw, William J.; Pekour, Mikhail S.; Coulter, Richard L.; Martin, Tim J.; Walters, Justin

    2007-10-19T23:59:59.000Z

    During the MILAGRO campaign centered in the Mexico City area, Pacific Northwest National Laboratory (PNNL) and Argonne National Laboratory (ANL) operated several atmospheric profiling systems at Veracruz and at two locations on the Central Mexican Plateau in the region around Mexico City. These systems included radiosondes, wind profilers, a sodar, and an aerosol backscatter lidar. An additional wind profiler was operated by the University of Alabama in Huntsville (UAH) at the Mexican Petroleum Institue (IMP) near the center of Mexico City. Because of the opportunity afforded by collocation of profilers, radiosondes, and a lidar, and because of the importance of boundary layer depth on aerosol properties, we have carried out a comparison of mixed layer depth as determined independently from these three types of measurement systems during the campaign. We have then used results of this comparison and additional measurements to develop a detailed description of the daily structure and evolution of the boundary layer on the Central Mexican Plateau during MILAGRO. Our analysis indicates that the profilers were more consistently successful in establishing the mixing layer depth during the daytime. The boundary layer growth was similar at the three locations, although the mixing layer tended to be slightly deeper in the afternoon in central Mexico City. The sodar showed that convection began about an hour after sunrise. Maximum daily mixed layer depths always reached 2000 m AGL and frequently extended to 4000 m. The rate and variability of mixing layer growth was essentially the same as that observed during the IMADA-AVER campaign in the same season in 1997. This growth did not seem to be related to whether deep convection was reported on a given day. Wind speeds within the boundary layer exhibited a daily low-altitude maximum in the late afternoon with lighter winds aloft, consistent with previous reports of diurnal regional circulations. Norte events, which produced high winds at Veracruz, did not appreciably modulate the winds on the plateau. Finally, despite the typically dry conditions at the surface, radiosonde profiles showed that relative humidity often exceeded 50% in the early morning and in the upper part of the boundary layer.

  8. Instabilities, turbulence, and mixing in the ocean of accreting neutron stars

    E-Print Network [OSTI]

    V. Urpin

    2005-04-20T23:59:59.000Z

    We consider the stability properties of the ocean of accreting magnetic neutron stars. It turns out that the ocean is always unstable due to the combined influence of the temperature and chemical composition gradients along the surface and of the Hall effect. Both the oscillatory and non-oscillatory modes can be unstable in accreting stars. The oscillatory instability grows on a short timescale of the order os 0.1-10 s depending on the lengthscale of a surface inhomogeneity and the wavelength of perturbations. The instability of non-oscillatory modes is typically much slower and can develop on a timescale of hours or days. Instability generates a weak turbulence that can be responsible for mixing between the surface and deep ocean layers and for spreading the accreted material over the stellar surface. Spectral features of heavy elements can be detected in the atmospheres of accreting stars due to mixing, and these features should be different in neutron stars with stable and unstable burning. Motions caused by instability can also be the reason for slow variations in the luminosity.

  9. Iron Speciation and Mixing in Single Aerosol Particles from the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iron from atmospheric aerosol is an essential nutrient that can control oceanic productivity, thereby impacting the global carbon budget and climate. Particles collected on...

  10. Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program

    SciTech Connect (OSTI)

    TP Ackerman; AD Del Genio; RG Ellingson; RA Ferrare; SA Klein; GM McFarquhar; PJ Lamb; CN Long; J Verlinde

    2004-10-30T23:59:59.000Z

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: • Maintain the data record at the fixed ARM sites for at least the next five years. • Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. • Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. • Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. • Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. • Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. • Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM’s Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  11. Fermion masses and mixings from dihedral flavor symmetries with preserved subgroups

    SciTech Connect (OSTI)

    Blum, A.; Hagedorn, C.; Lindner, M. [Max-Planck-Institut fuer Kernphysik, Postfach 10 39 80, 69029 Heidelberg (Germany)

    2008-04-01T23:59:59.000Z

    We perform a systematic study of dihedral groups used as flavor symmetry. The key feature here is the fact that we do not allow the dihedral groups to be broken in an arbitrary way, but in all cases some (nontrivial) subgroup has to be preserved. In this way we arrive at only five possible (Dirac) mass matrix structures which can arise, if we require that the matrix has to have a nonvanishing determinant and that at least two of the three generations of left-handed (conjugate) fermions are placed into an irreducible two-dimensional representation of the flavor group. We show that there is no difference between the mass matrix structures for single- and double-valued dihedral groups. Furthermore, we comment on possible forms of Majorana mass matrices. As a first application we find a way to express the Cabibbo angle, i.e. the Cabibbo-Kobayashi-Maskawa matrix element |V{sub us}|, in terms of group theory quantities only, the group index n, the representation index j and the index m{sub u,d} of the different preserved subgroups in the up and down quark sector: |V{sub us}|=|cos(({pi}(m{sub u}-m{sub d})j/n))| which is |cos((3{pi}/7))|{approx_equal}0.2225 for n=7, j=1, m{sub u}=3 and m{sub d}=0. We prove that two successful models which lead to maximal atmospheric mixing and vanishing {theta}{sub 13} in the lepton sector are based on the fact that the flavor symmetry is broken in the charged lepton, Dirac neutrino and Majorana neutrino sector down to different preserved subgroups whose mismatch results in the prediction of these mixing angles. This also demonstrates the power of preserved subgroups in connection with the prediction of mixing angles in the quark as well as in the lepton sector.

  12. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    SciTech Connect (OSTI)

    Turner, David D.

    2003-06-01T23:59:59.000Z

    A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

  13. Environment-induced mixing processes in quantum walks

    E-Print Network [OSTI]

    Lauri Lehman

    2014-07-09T23:59:59.000Z

    The mixing process of discrete-time quantum walks on one-dimensional lattices is revisited in a setting where the walker is coupled to an environment, and the time evolution of the walker and the environment is unitary. The mixing process is found to be incomplete, in the sense that the walker does not approach the maximally mixed state indefinitely, but the distance to the maximally mixed state saturates to some finite value depending on the size of the environment. The quantum speedup of mixing time is investigated numerically as the size of the environment decreases from infinity to a finite value. The mixing process in this unitary setting can be explained by interpreting it as an equilibration process in a closed quantum system, where subsystems can exhibit equilibration even when the entropy of the total system remains zero.

  14. Atmospheric Feedbacks over the Tropical Pacific in Observations and Atmospheric General Circulation Models: An Extended

    E-Print Network [OSTI]

    Sun, Dezheng

    that the bias is likely linked to a weaker relationship between the short-wave cloud forcing is a long-standing tropical bias in the CGCMs. The early hypotheses attribute this problem to the errors;4 errors may induce excessive equatorial upwelling upon coupling. The surface heating from the atmospheric

  15. Levitating atmospheres of Eddington-luminosity neutron stars I. Optically thin Thomson-scattering atmospheres

    E-Print Network [OSTI]

    Wielgus, M; S?dowski, A; Narayan, R; Abramowicz, M

    2015-01-01T23:59:59.000Z

    In general relativity static gaseous atmospheres may be in hydrostatic balance in the absence of a supporting stellar surface, provided that the luminosity is close to the Eddington value. We construct analytic models of optically thin, spherically symmetric shells supported by the radiation pressure of a luminous central body in the Schwarzschild metric.

  16. Levitating atmospheres of Eddington-luminosity neutron stars I. Optically thin Thomson-scattering atmospheres

    E-Print Network [OSTI]

    M. Wielgus; W. Klu?niak; A. S?dowski; R. Narayan; M. Abramowicz

    2015-05-22T23:59:59.000Z

    In general relativity static gaseous atmospheres may be in hydrostatic balance in the absence of a supporting stellar surface, provided that the luminosity is close to the Eddington value. We construct analytic models of optically thin, spherically symmetric shells supported by the radiation pressure of a luminous central body in the Schwarzschild metric.

  17. Understanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric Research Community Atmosphere

    E-Print Network [OSTI]

    Zhang, Guang Jun

    in response to El Nin~o warming. The vast cloud cover in the region leads to much stronger cloud greenhouse effect in longwave radiation (longwave cloud radiative forcing) and cloud shielding effect in shortwaveUnderstanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric

  18. The electrodeless discharge at atmospheric pressure

    SciTech Connect (OSTI)

    Laroussi, M.

    1999-07-01T23:59:59.000Z

    Recently the generation and applications of atmospheric pressure plasmas received increased interest in the plasma research community. Applications such as the surface modification of materials, and the decontamination of matter have been under investigation. In this context, the authors introduce a new means of generating an atmospheric pressure discharge, which is suitable for use in the above-mentioned applications, and in the treatment of undesirable or polluting gases, such as VOC's. This device is a capacitively coupled discharge. It is basically made of a non-conducting tube with two independent loops of wire wrapped around it, and separated by a distance d. A stable discharge is generated inside the tube when an AC voltage of few hundred volts to few kilovolts, at a frequency of few kilohertz, is applied between the loops. One end of the tube is completely open to the outside air, and a seed gas (generally a noble gas such as Helium) is introduced in the tube. The plasma generated with this method is weakly ionized, cold, and is maintained by a relatively low input power (few tens of watts, depending on the size of the tube). In this paper, the discharge electrical characteristics, its radiation emission characteristics, and the measurement of relevant plasma parameters will be presented.

  19. Cold atmospheric plasma in cancer therapy

    SciTech Connect (OSTI)

    Keidar, Michael; Shashurin, Alex; Volotskova, Olga [Mechanical and Aerospace Engineering, George Washington University, Washington DC 20052 (United States)] [Mechanical and Aerospace Engineering, George Washington University, Washington DC 20052 (United States); Ann Stepp, Mary [Medical School, George Washington University, Washington DC 20052 (United States)] [Medical School, George Washington University, Washington DC 20052 (United States); Srinivasan, Priya; Sandler, Anthony [Childrens National Medical Center, Washington DC 20010 (United States)] [Childrens National Medical Center, Washington DC 20010 (United States); Trink, Barry [Head and Neck Cancer Research Division, Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States)] [Head and Neck Cancer Research Division, Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2013-05-15T23:59:59.000Z

    Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 10{sup 8} electrons, the electrical field in the head vicinity is about 10{sup 7} V/m, and the electron density of the streamer column is about 10{sup 19} m{sup ?3}. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.

  20. Vapor scavenging by atmospheric aerosol particles

    SciTech Connect (OSTI)

    Andrews, E.

    1996-05-01T23:59:59.000Z

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  1. Black holes, cuspy atmospheres, and galaxy formation

    E-Print Network [OSTI]

    James Binney

    2004-07-12T23:59:59.000Z

    In cuspy atmospheres, jets driven by supermassive black holes (BHs) offset radiative cooling. The jets fire episodically, but often enough that the cuspy atmosphere does not move very far towards a cooling catastrophe in the intervals of jet inactivity. The ability of energy released on the sub-parsec scale of the BH to balance cooling on scales of several tens of kiloparsecs arises through a combination of the temperature sensitivity of the accretion rate and the way in which the radius of jet disruption varies with ambient density. Accretion of hot gas does not significantly increase BH masses, which are determined by periods of rapid BH growth and star formation when cold gas is briefly abundant at the galactic centre. Hot gas does not accumulate in shallow potential wells. As the Universe ages, deeper wells form, and eventually hot gas accumulates. This gas soon prevents the formation of further stars, since jets powered by the BH prevent it from cooling, and it mops up most cold infalling gas before many stars can form. Thus BHs set the upper limit to the masses of galaxies. The formation of low-mass galaxies is inhibited by a combination of photo-heating and supernova-driven galactic winds. Working in tandem these mechanisms can probably explain the profound difference between the galaxy luminosity function and the mass function of dark halos expected in the cold dark matter cosmology.

  2. Thermal and chemical remediation of mixed waste

    DOE Patents [OSTI]

    Nelson, P.A.; Swift, W.M.

    1994-08-09T23:59:59.000Z

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500 C by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO[sub 3]. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed. 3 figs.

  3. Thermal and chemical remediation of mixed waste

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Swift, William M. (Downers Grove, IL)

    1994-01-01T23:59:59.000Z

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500.degree. C. by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO.sub.3. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed.

  4. Testing matter effects in propagation of atmospheric and long-baseline neutrinos

    E-Print Network [OSTI]

    M. C. Gonzalez-Garcia; Michele Maltoni; Jordi Salvado

    2011-05-07T23:59:59.000Z

    We quantify our current knowledge of the size and flavor structure of the matter effects in the evolution of atmospheric and long-baseline neutrinos based solely on the analysis of the corresponding neutrino data. To this aim we generalize the matter potential of the Standard Model by rescaling its strength, rotating it away from the e-e sector, and rephasing it with respect to the vacuum term. This phenomenological parametrization can be easily translated in terms of non-standard neutrino interactions in matter. We show that in the most general case, the strength of the potential cannot be determined solely by atmospheric and long-baseline data. However its flavor composition is very much constrained and the present determination of the neutrino masses and mixing is robust under its presence. We also present an update of the constraints arising from this analysis in the particular case in which no potential is present in the e-mu and e-tau sectors. Finally we quantify to what degree in this scenario it is possible to alleviate the tension between the oscillation results for neutrinos and antineutrinos in the MINOS experiment and show the relevance of the high energy part of the spectrum measured at MINOS.

  5. Response of the upper ocean to a large summertime injection of smoke in the atmosphere

    SciTech Connect (OSTI)

    Mettlach, T.R.; Haney, R.L.; Garwood R.W. Jr.; Ghan, S.J.

    1987-02-15T23:59:59.000Z

    A one-dimensional oceanic planetary boundary layer model is used to investigate the response of the upper ocean to the atmospheric conditions which are predicted to develop following a hypothetical nuclear exchange. The ocean model is driven by the surface heat and momentum fluxes predicted by an atmospheric general circulation model following a summertime injection of 1.5 x 10/sup 14/ g of smoke from postwar fires over Europe, Asia, and North America. Although the specific response of the upper ocean is highly dependent on the geographic location, the mid-latitude summertime mixed layer typically cools 3/sup 0/ to 5/sup 0/C and deepens 25 m during the first 30 days following the smoke injection. Moreover, a large fraction of this response is found to take place during a short 2- to 3-day period of very intense winds and falling air temperatures, which occurs during the first week or two after the smoke injection. copyrightAmerican Geophysical Union 1987

  6. Stability and Turbulence in the Atmospheric Boundary Layer: A Comparison of Remote Sensing and Tower Observations

    SciTech Connect (OSTI)

    Friedrich, K.; Lundquist, J. K.; Aitken, M.; Kalina, E. A.; Marshall, R. F.

    2012-01-01T23:59:59.000Z

    When monitoring winds and atmospheric stability for wind energy applications, remote sensing instruments present some advantages to in-situ instrumentation such as larger vertical extent, in some cases easy installation and maintenance, measurements of vertical humidity profiles throughout the boundary layer, and no restrictions on prevailing wind directions. In this study, we compare remote sensing devices, Windcube lidar and microwave radiometer, to meteorological in-situ tower measurements to demonstrate the accuracy of these measurements and to assess the utility of the remote sensing instruments in overcoming tower limitations. We compare temperature and wind observations, as well as calculations of Brunt-Vaisala frequency and Richardson numbers for the instrument deployment period in May-June 2011 at the U.S. Department of Energy National Renewable Energy Laboratory's National Wind Technology Center near Boulder, Colorado. The study reveals that a lidar and radiometer measure wind and temperature with the same accuracy as tower instruments, while also providing advantages for monitoring stability and turbulence. We demonstrate that the atmospheric stability is determined more accurately when the liquid-water mixing ratio derived from the vertical humidity profile is considered under moist-adiabatic conditions.

  7. Method of chaotic mixing and improved stirred tank reactors

    DOE Patents [OSTI]

    Muzzio, Fernando J. (Monroe, NJ); Lamberto, David J. (Edison, NJ)

    1999-01-01T23:59:59.000Z

    The invention provides a method and apparatus for efficiently achieving a homogeneous mixture of fluid components by introducing said components having a Reynolds number of between about .ltoreq.1 to about 500 into a vessel and continuously perturbing the mixing flow by altering the flow speed and mixing time until homogeniety is reached. This method prevents the components from aggregating into non-homogeneous segregated regions within said vessel during mixing and substantially reduces the time the admixed components reach homogeneity.

  8. Optical vortex interaction and generation via nonlinear wave mixing

    SciTech Connect (OSTI)

    Lenzini, F. [INLN, Universite de Nice-Sophia Antipolis, CNRS, 1361 route des Lucioles, FR-06560 Valbonne (France); Dipartimento di Fisica, Universita di Firenze, via Sansone 1, IT-50019 Sesto Fiorentino (Italy); Residori, S.; Bortolozzo, U. [INLN, Universite de Nice-Sophia Antipolis, CNRS, 1361 route des Lucioles, FR-06560 Valbonne (France); Arecchi, F. T. [Dipartimento di Fisica, Universita di Firenze, via Sansone 1, IT-50019 Sesto Fiorentino (Italy)

    2011-12-15T23:59:59.000Z

    Optical vortex beams are made to interact via degenerate two-wave mixing in a Kerr-like nonlinear medium. Vortex mixing is shown to occur inside the medium, leading to exchange of topological charge and cascaded generation of vortex beams. A mean-field model is developed and is shown to account for the selection rules of the topological charges observed after the wave-mixing process. Fractional charges are demonstrated to follow the same rules as for integer charges.

  9. Method of chaotic mixing and improved stirred tank reactors

    DOE Patents [OSTI]

    Muzzio, F.J.; Lamberto, D.J.

    1999-07-13T23:59:59.000Z

    The invention provides a method and apparatus for efficiently achieving a homogeneous mixture of fluid components by introducing said components having a Reynolds number of between about [le]1 to about 500 into a vessel and continuously perturbing the mixing flow by altering the flow speed and mixing time until homogeneity is reached. This method prevents the components from aggregating into non-homogeneous segregated regions within said vessel during mixing and substantially reduces the time the admixed components reach homogeneity. 19 figs.

  10. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect (OSTI)

    Wang, Bingbing; Laskin, Alexander

    2014-03-25T23:59:59.000Z

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  11. Stellar mixing length theory with entropy rain

    E-Print Network [OSTI]

    Brandenburg, Axel

    2015-01-01T23:59:59.000Z

    Stellar mixing length theory is modified to include the effects of a nongradient term that originates from the motion of convective elements with entropy perturbations of either sign. It is argued that such a term, first studied by Deardorff in the meteorological context, represents the effects of thin intense downdrafts caused by the rapid cooling in the granulation layer at the top of the convection zone. They transport heat nonlocally, as originally anticipated by Spruit in the 1990s, who describes the convection in the strongly stratified simulations of Stein & Nordlund as entropy rain. Although our model has ill-determined free parameters, it demonstrates that solutions can be found that look similar to the original ones, except that the deeper layers are now Schwarzschild stable, so no giant cells are produced and the typical convective scale is that of granules even at larger depth. Consequences for modeling solar differential, the global dynamo, and sunspots are briefly discussed.

  12. Mixed potential sensors for CO monitoring

    SciTech Connect (OSTI)

    Mukundan, R. (Rangachary); Brosha, E. L. (Eric L.); Garzon, F. H. (Fernando H.)

    2001-01-01T23:59:59.000Z

    A carbon monoxide sensor based on the phenomenon of 'mixed-potential' has been developed. The sensor consists of platinum and gold wire-electrodes embedded in a Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} electrolyte. The sensor response to 500 ppm of CO in room air is {approx} 100 mV at 400 C. The response time to 90% of level is < 5 sec and the response is stable over a period of several months. Moreover, the sensor to sensor reproducibility of these controlled-interface sensors is excellent. The sensor in combination with an activated carbon filter shows great promise for application as a room air CO monitor.

  13. Fourier-Motzkin elimination for mixed systems

    SciTech Connect (OSTI)

    Liepins, G.E.

    1983-08-01T23:59:59.000Z

    A simple extension of Fourier-Motzkin elimination is made to mixed systems of equations, that is, systems consisting of equalities in conjunction with inequalities and strict inequalities. The principal observation is that inequalities combined with strict inequalities result in strict inequalities. Two applications are made to automatic data editing. First, a constructive method is provided to test for the existence of a linear objective function for the minimum weighted fields to impute (MWFI) problem with side constraints. If the linear objective function exists, it is determined; if it does not exist, the extension to a quadratic objective function is given. Next, for any fixed linear objective function, a solution algorithm based on extended Fourier-Motzkin elimination is given for the resultant MWFI and is illustrated with an example. It is believed that the applications are significant in their own right: they provide solution techniques to difficult problems in the field of automatic data editing.

  14. Flavour leptogenesis with tribimaximal mixings and beyond

    E-Print Network [OSTI]

    H. Zeen Devi; Amal Kr Sarma; N. Nimai Singh

    2009-11-12T23:59:59.000Z

    We compute and compare the baryon asymmetry of the universe in thermal leptogenesis scenario with and without flavour effects for different neutrino mass models namely degenerate, inverted hierarchical and normal hierarchical models, with tribimaximal mixings and beyond. Considering three possible diagonal forms of Dirac neutrino mass matrices $m_{LR}$, the right-handed Majorana mass matrices $M_{RR}$ are constructed from the light neutrino mass matrices $m_{LL}$ through the inverse seesaw formula. The normal hierarchical model is found to give the best predictions of the baryon asymmetry for both cases. This analysis serves as an additional information in the discrimination of the presently available neutrino mass models. Moreover, the flavour effects is found to give enhancement of the baryon asymmetry in thermal leptogenesis.

  15. Flavour leptogenesis with tribimaximal mixings and beyond

    E-Print Network [OSTI]

    Devi, H Zeen; Singh, N Nimai

    2009-01-01T23:59:59.000Z

    We compute and compare the baryon asymmetry of the universe in thermal leptogenesis scenario with and without flavour effects for different neutrino mass models namely degenerate, inverted hierarchical and normal hierarchical models, with tribimaximal mixings and beyond. Considering three possible diagonal forms of Dirac neutrino mass matrices $m_{LR}$, the right-handed Majorana mass matrices $M_{RR}$ are constructed from the light neutrino mass matrices $m_{LL}$ through the inverse seesaw formula. The normal hierarchical model is found to give the best predictions of the baryon asymmetry for both cases. This analysis serves as an additional information in the discrimination of the presently available neutrino mass models. Moreover, the flavour effects is found to give enhancement of the baryon asymmetry in thermal leptogenesis.

  16. A General Systems Theory for Atmospheric Flows and Atmospheric Aerosol Size Distribution

    E-Print Network [OSTI]

    A. M. Selvam

    2011-07-25T23:59:59.000Z

    Atmospheric flows exhibit selfsimilar fractal spacetime fluctuations manifested as the fractal geometry to global cloud cover pattern and inverse power law form for power spectra of meteorological parameters such as windspeed, temperature, rainfall etc. Inverse power law form for power spectra indicate long-range spacetime correlations or non-local connections and is a signature of selforganised criticality generic to dynamical systems in nature such as river flows, population dynamics, heart beat patterns etc. The author has developed a general systems theory which predicts the observed selforganised criticality as a signature of quantumlike chaos in dynamical systems. The model predictions are (i) The fractal fluctuations can be resolved into an overall logarithmic spiral trajectory with the quasiperiodic Penrose tiling pattern for the internal structure. (ii) The probability distribution represents the power (variance) spectrum for fractal fluctuations and follows universal inverse power law form incorporating the golden mean. Such a result that the additive amplitudes of eddies when squared represent probability distribution is observed in the subatomic dynamics of quantum systems such as the electron or photon. Therefore the irregular or unpredictable fractal fluctuations exhibit quantumlike chaos. (iii) Atmospheric aerosols are held in suspension by the vertical velocity distribution (spectrum). The atmospheric aerosol size spectrum is derived in terms of the universal inverse power law characterizing atmospheric eddy energy spectrum. Model predicted spectrum is in agreement with the following two experimentally determined atmospheric aerosol data sets, (i) SAFARI 2000 CV-580 Aerosol Data, Dry Season 2000 (CARG) (ii) World Data Centre Aerosols data sets for the three stations Ny {\\AA}lesund, Pallas and Hohenpeissenberg.

  17. The Integer Approximation Error in Mixed-Integer Optimal Control

    E-Print Network [OSTI]

    2010-08-18T23:59:59.000Z

    We extend recent work on nonlinear optimal control problems with integer restrictions on some of the control functions (mixed-integer optimal control problems ...

  18. Control problems with mixed constraints and application to an ...

    E-Print Network [OSTI]

    2009-06-04T23:59:59.000Z

    Abstract We discuss two optimal control problems of parabolic equations, with mixed state and control constraints, for which the standard qualification condition

  19. Convex Quadratic Relaxations for Mixed-Integer Nonlinear ...

    E-Print Network [OSTI]

    H. Hijazi, C. Coffrin and P. Van Hentenryck

    2014-06-03T23:59:59.000Z

    nonlinear and mixed-integer nonlinear programs arising in power systems. The ...... International Symposium on Computer Aided Control Systems Design, pp.

  20. Bounds for Multistage Stochastic Mixed-Integer Programs

    E-Print Network [OSTI]

    Gabriel L. Zenarosa

    2014-09-16T23:59:59.000Z

    Sep 16, 2014 ... Scenario-Tree Decomposition: Bounds for Multistage Stochastic Mixed-Integer Programs. Gabriel L. Zenarosa(glz5 ***at*** pitt.edu) Oleg A.