National Library of Energy BETA

Sample records for atmospheric mesoscale model

  1. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    SciTech Connect (OSTI)

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.; Lee, S.; Sprague, M. A.; Lundquist, J. K.; Moriarty, P. J.

    2013-10-01

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in wind plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.

  2. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    SciTech Connect (OSTI)

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  3. Mesoscale modeling of fuel restructuring. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Mesoscale modeling of fuel restructuring. Citation Details In-Document Search Title: Mesoscale modeling of fuel restructuring. Abstract not provided. Authors: Dingreville, Remi...

  4. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS...

    Office of Scientific and Technical Information (OSTI)

    STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS Anter El-Azab 36 MATERIALS SCIENCE dislocation dynamics; mesoscale deformation of metals; crystal mechanics...

  5. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS Citation Details In-Document Search Title: STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS The research under this project focused on a theoretical and computational modeling of dislocation dynamics of mesoscale deformation of metal single crystals. Specifically, the work aimed to implement a continuum statistical theory of dislocations to understand

  6. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS Citation Details In-Document Search Title: STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS The research under this project focused on a theoretical and computational modeling of dislocation dynamics of mesoscale deformation of metal single crystals. Specifically, the work aimed to implement a continuum statistical theory of dislocations to understand

  7. Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling

    Office of Scientific and Technical Information (OSTI)

    Microstructure evolution and Mechanical Localization. (Conference) | SciTech Connect Conference: Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling Microstructure evolution and Mechanical Localization. Citation Details In-Document Search Title: Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling Microstructure evolution and Mechanical Localization. Abstract not provided. Authors: Dingreville, Remi Philippe Michel ; Robbins, Joshua ; Bartel, Timothy James Publication

  8. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous

    Office of Scientific and Technical Information (OSTI)

    materials. (Technical Report) | SciTech Connect Technical Report: LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. Citation Details In-Document Search Title: LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline

  9. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous

    Office of Scientific and Technical Information (OSTI)

    materials. (Technical Report) | SciTech Connect LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. Citation Details In-Document Search Title: LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  10. Mesoscale Modeling Framework Design: Subcontract Report (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Mesoscale Modeling Framework Design: Subcontract Report Citation Details In-Document Search Title: Mesoscale Modeling Framework Design: Subcontract Report × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this

  11. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials. (Technical Report) | SciTech Connect LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. Citation Details In-Document Search Title: LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where

  12. Mesoscale Modeling Framework Design: Subcontract Report (Technical Report)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | SciTech Connect Mesoscale Modeling Framework Design: Subcontract Report Citation Details In-Document Search Title: Mesoscale Modeling Framework Design: Subcontract Report Authors: Chen, L Q ; Tang, M ; Heo, T W ; Wood, B C Publication Date: 2014-01-09 OSTI Identifier: 1116973 Report Number(s): LLNL-SR-648484 DOE Contract Number: W-7405-ENG-48 Resource Type: Technical Report Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE Country of

  13. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    SciTech Connect (OSTI)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  14. THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL

    SciTech Connect (OSTI)

    Werth, D.; O'Steen, L.

    2008-02-11

    We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.

  15. Mesoscale Modeling of LX-17 Under Isentropic Compression

    SciTech Connect (OSTI)

    Springer, H K; Willey, T M; Friedman, G; Fried, L E; Vandersall, K S; Baer, M R

    2010-03-06

    Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weighted specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.

  16. Mesoscale modeling of metal-loaded high explosives

    SciTech Connect (OSTI)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  17. Community Atmosphere Model

    Energy Science and Technology Software Center (OSTI)

    2004-10-18

    The Community Atmosphere Model (CAM) is an atmospheric general circulation model that solves equations for atmospheric dynamics and physics. CAM is an outgrowth of the Community Climate Model at the National Center for Atmospheric Research (NCAR) and was developed as a joint collaborative effort between NCAR and several DOE laboratories, including LLNL. CAM contains several alternative approaches for advancing the atmospheric dynamics. One of these approaches uses a finite-volume method originally developed by personnel atmore » NASNGSFC, We have developed a scalable version of the finite-volume solver for massively parallel computing systems. FV-CAM is meant to be used in conjunction with the Community Atmosphere Model. It is not stand-alone.« less

  18. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect (OSTI)

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  19. MESO-SCALE MODELING OF THE INFLUENCE OF INTERGRANULAR GAS BUBBLES ON EFFECTIVE THERMAL CONDUCTIVITY

    SciTech Connect (OSTI)

    Paul C. Millett; Michael Tonks

    2011-06-01

    Using a mesoscale modeling approach, we have investigated how intergranular fission gas bubbles, as observed in high-burnup nuclear fuel, modify the effective thermal conductivity in a polycrystalline material. The calculations reveal that intergranular porosity has a significantly higher resistance to heat transfer compared to randomly-distributed porosity. A model is developed to describe this conductivity reduction that considers an effective grain boundary Kapitza resistance as a function of the fractional coverage of grain boundaries by bubbles.

  20. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    SciTech Connect (OSTI)

    Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ? in coupling to the other equations of FHD. The resulting ?-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ?-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ?-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 , the ?-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  1. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; et al

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research andmore » Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.« less

  2. A creep-damage model for mesoscale simulations of concrete expansion-degradation phenomena

    SciTech Connect (OSTI)

    Giorla, Alain B; Le Pape, Yann

    2015-01-01

    Long-term performance of aging concrete in nuclear power plants (NPPs) requires a careful examination of the physical phenomena taking place in the material. Concrete under high neutron irradiation is subjected to large irreversible deformations as well as mechanical damage, caused by a swelling of the aggregates. However, these results, generally obtained in accelerated conditions in test reactors, cannot be directly applied to NPP irradiated structures, i.e., the biological shield, operating conditions due to difference in time scale and environmental conditions (temperature, humidity). Mesoscale numerical simulations are performed to separate the underlying mechanisms and their interactions. The cement paste creep-damage model accounts for the effect of the loading rate on the apparent damage properties of the material and uses an event-based approach to capture the competition between creep and damage. The model is applied to the simulation of irradiation experiments from the literature and shows a good agreement with the experimental data.

  3. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    SciTech Connect (OSTI)

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 8.1 Mg CH4/h in the SoCAB.

  4. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect (OSTI)

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  5. An Evaluation of Mesoscale Model Predictions of Down-Valley and Canyon Flows and Their Consequences Using Doppler Lidar Measurements During VTMX 2000

    SciTech Connect (OSTI)

    Fast, Jerome D.; Darby, Lisa S.

    2004-04-01

    A mesoscale model, a Lagrangian particle dispersion model, and extensive Doppler lidar wind measurements during the VTMX 2000 field campaign were used to examine converging flows over the Salt Lake Valley and their effect on vertical mixing of tracers at night and during the morning transition period. The simulated wind components were transformed into radial velocities to make a direct comparison with about 1.3 million Doppler lidar data points and critically evaluate, using correlation coefficients, the spatial variations in the simulated wind fields aloft. The mesoscale model captured reasonably well the general features of the observed circulations including the daytime up-valley flow, the nighttime slope, canyon, and down-valley flows, and the convergence of the flows over the valley. When there were errors in the simulated wind fields, they were usually associated with the timing, structure, or strength of specific flows. Simulated outflows from canyons along the Wasatch Mountains propagated over the valley and converged with the down-valley flow, but the advance and retreat of these simulated flows was often out of phase with the lidar measurements. While the flow reversal during the evening transition period produced rising motions over much of the valley atmosphere in the absence of significant ambient winds, average vertical velocities became close to zero as the down-valley flow developed. Still, vertical velocities between 5 and 15 cm s-1 occurred where down-slope, canyon and down-valley flows converged and vertical velocities greater than 50 cm s-1 were produced by hydraulic jumps at the base of the canyons. The presence of strong ambient winds resulted in smaller average rising motions during the evening transition period and larger average vertical velocities after that. A fraction of the tracer released at the surface was transported up to the height of the surrounding mountains; however, higher concentrations were produced aloft for evenings characterized by well-developed drainage circulations. Simulations with and without vertical motions in the particle model produced large differences in the tracer concentrations at specific locations and times; however, the overall ventilation of the valley atmosphere differed by only 5% or less. Despite the atmospheric stability, turbulence produced by vertical wind shears mixed particles well above the surface stable layer for the particle model simulation without vertical motions.

  6. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  7. Materials at the Mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » Materials at the Mesoscale 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues » submit Materials at the Mesoscale Los Alamos's bold proposal to understand and control material properties December 12, 2015 Materials at the Mesoscale Between the atomic and macro scales lies a gap in our knowledge of materials known as the mesoscale. A gap remains in the understanding of mesoscale properties and responses, especially in extreme temperature,

  8. Impact of aerosol on mixed-phase stratocumulus during MPACE in a mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model with two-moment microphysics Impact of aerosol on mixed-phase stratocumulus during MPACE in a mesoscale model with two-moment microphysics Morrison, Hugh MMM/ASP National Center for Atmospheric Research Pinto, James University of Colorado Curry, Judith Georgia Institute of Technology Category: Modeling The Penn State/NCAR mesoscale model MM5 is coupled to a new microphysics scheme to examine the impact of aerosol on mixed-phase stratocumulus during the Mixed-Phase Arctic Stratus

  9. Patent: Mesoscale hybrid calibration artifact | DOEpatents

    Office of Scientific and Technical Information (OSTI)

    Mesoscale hybrid calibration artifact Citation Details Title: Mesoscale hybrid calibration artifact

  10. SciTech Connect: mesoscale

    Office of Scientific and Technical Information (OSTI)

    mesoscale Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: mesoscale Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator Author:...

  11. Mesoscale Simulations of Coarsening in GB Networks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mukul Kumar is the Principal Investigator for Mesoscale Simulations of Coarsening in GB Networks LLNL BES Programs Highlight Mesoscale Simulations of Coarsening in GB Networks The Phase Field Model evolves a grain boundary network with realistic network correlations, as seeded by a group-theory-based Monte Carlo model M. Tang, B. W. Reed, and M. Kumar, J. Appl. Phys. 112, 043505 (2012) V. Bulatov, B. W. Reed, and M. Kumar; "Grain boundary energy function for FCC metals," Physical

  12. Posters Single-Column Model for Atmospheric Radiation Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters Single-Column Model for AtmosphericRadiation Measurement Sites: Model Development ... Using observational data obtained from the Oklahoma Atmospheric Radiation Measurement ...

  13. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    SciTech Connect (OSTI)

    Harrier, Danielle

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  14. Mesoscale Phase-Field Modeling of Charge Transport in Nanocomposite Electrodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Li, Yulan; Rosso, Kevin M.; Sushko, Maria L.

    2013-01-10

    A phase-field model is developed to investigate the influence of microstructure, thermodynamic and kinetic properties, and charging conditions on charged particle transport in nanocomposite electrodes. Two sets of field variables are used to describe the microstructure. One is comprised of the order parameters describing size, orientation and spatial distributions of nanoparticles, and the other is comprised of the concentrations of mobile species. A porous nanoparticle microstructure filled with electrolyte is taken as a model system to test the phase-field model. Inhomogeneous and anisotropic dielectric constants and mobilities of charged particles, and stresses associated with lattice deformation due to Li-ion insertion/extraction are considered in the model. Iteration methods are used to find the elastic and electric fields in an elastically and electrically inhomogeneous medium. The results demonstrate that the model is capable of predicting charge separation associated with the formation of a double layer at the electrochemical interface between solid and electrolyte, and the effect of microstructure, inhomogeneous and anisotropic thermodynamic and kinetic properties, charge rates, and stresses on voltage versus current density and capacity during charging and discharging.

  15. Lipid-Based Nanodiscs as Models for Studying Mesoscale Coalescence A Transport Limited Case

    SciTech Connect (OSTI)

    Hu, Andrew; Fan, Tai-Hsi; Katsaras, John; Xia, Yan; Li, Ming; Nieh, Mu-Ping

    2014-01-01

    Lipid-based nanodiscs (bicelles) are able to form in mixtures of long- and short-chain lipids. Initially, they are of uniform size but grow upon dilution. Previously, nanodisc growth kinetics have been studied using time-resolved small angle neutron scattering (SANS), a technique which is not well suited for probing their change in size immediately after dilution. To address this, we have used dynamic light scattering (DLS), a technique which permits the collection of useful data in a short span of time after dilution of the system. The DLS data indicate that the negatively charged lipids in nanodiscs play a significant role in disc stability and growth. Specifically, the charged lipids are most likely drawn out from the nanodiscs into solution, thereby reducing interparticle repulsion and enabling the discs to grow. We describe a population balance model, which takes into account Coulombic interactions and adequately predicts the initial growth of nanodiscs with a single parameter i.e., surface potential. The results presented here strongly support the notion that the disc coalescence rate strongly depends on nanoparticle charge density. The present system containing low-polydispersity lipid nanodiscs serves as a good model for understanding how charged discoidal micelles coalesce.

  16. Coupled ocean-atmosphere model system for studies of interannual-to-decadal climate variability over the North Pacific Basin and precipitation over the Southwestern United States

    SciTech Connect (OSTI)

    Lai, Chung-Chieng A.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The ultimate objective of this research project is to make understanding and predicting regional climate easier. The long-term goals of this project are (1) to construct a coupled ocean-atmosphere model (COAM) system, (2) use it to explore the interannual-to-decadal climate variability over the North Pacific Basin, and (3) determine climate effects on the precipitation over the Southwestern United States. During this project life, three major tasks were completed: (1) Mesoscale ocean and atmospheric model; (2) global-coupled ocean and atmospheric modeling: completed the coupling of LANL POP global ocean model with NCAR CCM2+ global atmospheric model; and (3) global nested-grid ocean modeling: designed the boundary interface for the nested-grid ocean models.

  17. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

    2013-03-14

    This three-year project, in cooperation with Professor Bob Houze at University of Washington, has been successfully finished as planned. Both ARM (the Atmospheric Radiation Measurement Program) data and cloud-resolving model (CRM) simulations were used to identify the water budgets of clouds observed in two international field campaigns. The research results achieved shed light on several key processes of clouds in climate change (or general circulation models), which are summarized below. 1. Revealed the effect of mineral dust on mesoscale convective systems (MCSs) Two international field campaigns near a desert and a tropical coast provided unique data to drive and evaluate CRM simulations, which are TWP-ICE (the Tropical Warm Pool International Cloud Experiment) and AMMA (the African Monsoon Multidisciplinary Analysis). Studies of the two campaign data were contrasted, revealing that much mineral dust can bring about large MCSs via ice nucleation and clouds. This result was reported as a PI presentation in the 3rd ASR Science Team meeting held in Arlington, Virginia in March 2012. A paper on the studies was published in the Journal of the Atmospheric Sciences (Zeng et al. 2013). 2. Identified the effect of convective downdrafts on ice crystal concentration Using the large-scale forcing data from TWP-ICE, ARM-SGP (the Southern Great Plains) and other field campaigns, Goddard CRM simulations were carried out in comparison with radar and satellite observations. The comparison between model and observations revealed that convective downdrafts could increase ice crystal concentration by up to three or four orders, which is a key to quantitatively represent the indirect effects of ice nuclei, a kind of aerosol, on clouds and radiation in the Tropics. This result was published in the Journal of the Atmospheric Sciences (Zeng et al. 2011) and summarized in the DOE/ASR Research Highlights Summaries (see http://www.arm.gov/science/highlights/RMjY5/view). 3. Used radar observations to evaluate model simulations In cooperation with Profs. Bob Houze at University of Washington and Steven Rutledge at Colorado State University, numerical model results were evaluated with observations from W- and C-band radars and CloudSat/TRMM satellites. These studies exhibited some shortcomings of current numerical models, such as too little of thin anvil clouds, directing the future improvement of cloud microphysics parameterization in CRMs. Two papers of Powell et al (2012) and Zeng et al. (2013), summarizing these studies, were published in the Journal of the Atmospheric Sciences. 4. Analyzed the water budgets of MCSs Using ARM data from TWP-ICE, ARM-SGP and other field campaigns, the Goddard CRM simulations were carried out to analyze the water budgets of clouds from TWP-ICE and AMMA. The simulations generated a set of datasets on clouds and radiation, which are available http://cloud.gsfc.nasa.gov/. The cloud datasets were available for modelers and other researchers aiming to improve the representation of cloud processes in multi-scale modeling frameworks, GCMs and climate models. Special datasets, such as 3D cloud distributions every six minutes for TWP-ICE, were requested and generated for ARM/ASR investigators. Data server records show that 86,206 datasets were downloaded by 120 users between April of 2010 and January of 2012. 5. MMF simulations The Goddard MMF (multi-scale modeling framework) has been improved by coupling with the Goddard Land Information System (LIS) and the Goddard Earth Observing System Model, Version 5 (GOES5). It has also been optimized on NASA HEC supercomputers and can be run over 4000 CPUs. The improved MMF with high horizontal resolution (1 x 1 degree) is currently being applied to cases covering 2005 and 2006. The results show that the spatial distribution pattern of precipitation rate is well simulated by the MMF through comparisons with satellite retrievals from the CMOPRH and GPCP data sets. In addition, the MMF results were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends to produce a higher precipitation rate over some topical regions, it actually well captures the variations in the zonal and meridional means. Among the three reanalyses, ERA-Interim seems to have values close to those of the satellite retrievals especially for GPCP. It is interesting to note that the MMF obtained the best results in the rain forest of Africa even better than those of CFSR and ERA-Interim, when compared to CMORPH. MERRA fails to capture the precipitation in this region. We are now collaborating with Steve Rutledge (CSU) to validate the model results for AMMA 6. MC3E and the diurnal variation of precipitation processes The Midlatitude Continental Convective Clouds Experiment (MC3E) was a joint field campaign between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the NASA Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. It took place in central Oklahoma during the period April 22 _ June 6, 2011. Some of its major objectives involve the use of CRMs in precipitation science such as: (1) testing the fidelity of CRM simulations via intensive statistical comparisons between simulated and observed cloud properties and latent heating fields for a variety of case types, (2) establishing the limits of CRM space-time integration capabilities for quantitative precipitation estimates, and (3) supporting the development and refinement of physically-based GMI, DPR, and DPR-GMI combined retrieval algorithms using ground-based GPM GV Ku-Ka band radar and CRM simulations. The NASA unified WRF model (nu-WRF) was used for real time forecasts during the field campaign, and ten precipitation events were selected for post mission simulations. These events include well-organized squall lines, scattered storms and quasi-linear storms. A paper focused on the diurnal variation of precipitation will be submitted in September 2012. The major highlights are as follows: a. The results indicate that NU-WRF model could capture observed diurnal variation of rainfall (composite not individual); b. NU-WRF model could simulate two different types (propagating and local type) of the diurnal variation of rainfall; c. NU-WRF model simulation show very good agreement with observation in terms of precipitation pattern (linear MCS), radar reflectivity (a second low peak – shallow convection); d. NU-WRF model simulation indicates that the cool-pool dynamic is the main physical process for MCS propagation speed; e. Surface heat fluxes (including land surface model and initial surface condition) do not play a major role in phase of diurnal variation (change rainfall amount slightly); f. Terrain effect is important for initial stage of MCS (rainfall is increased and close to observation by increasing the terrain height that is also close to observed); g. Diurnal variation of radiation is not important for the simulated variation of rainfall. Publications: Zeng, X., W.-K. Tao, S. Powell, R. Houze, Jr., P. Ciesielski, N. Guy, H. Pierce and T. Matsui, 2012: A comparison of the water budgets between clouds from AMMA and TWP-ICE. J. Atmos. Sci., 70, 487-503. Powell, S. W., R. A. Houze, Jr., A. Kumar, and S. A. McFarlane, 2012: Comparison of simulated and observed continental tropical anvil clouds and their radiative heating profiles. J. Atmos. Sci., 69, 2662-2681. Zeng, X., W.-K. Tao, T. Matsui, S. Xie, S. Lang, M. Zhang, D. Starr, and X. Li, 2011: Estimating the Ice Crystal Enhancement Factor in the Tropics. J. Atmos. Sci., 68, 1424-1434. Conferences: Zeng, X., W.-K. Tao, S. Powell, R. Houze, Jr., P. Ciesielski, N. Guy, H. Pierce and T. Matsui, 2012: Comparison of water budget between AMMA and TWP-ICE clouds. The 3rd Annual ASR Science Team Meeting. Arlington, Virginia, Mar. 12-16, 2012. Zeng, X., W.-K. Tao, S. Powell, R. A. Houze Jr., and P. Ciesielski, 2011: Comparing the water budgets between AMMA and TWP-ICE clouds. Fall 2011 ASR Working Group Meeting. Annapolis, September 12-16, 2011. Zeng, X. et al., 2011: Introducing ice nuclei into turbulence parameterizations in CRMs. Fall 2011 ASR Working Group Meeting. Annapolis, September 12-16, 2011.

  18. Model-Observation "Data Cubes" for the DOE Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model-Observation "Data Cubes" for the DOE Atmospheric Radiation Measurement Facility's ... Program through its Atmospheric Radiation Measurement Facility. 2. Data Cube ...

  19. Atmospheric transmittance model for photosynthetically active radiation

    SciTech Connect (OSTI)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, ngstrm's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  20. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Houze, Jr., Robert A.

    2013-11-13

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  1. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Atmospheric Methane at Four Corners

    SciTech Connect (OSTI)

    Costigan, Keeley Rochelle; Dubey, Manvendra Krishna

    2015-07-10

    Atmospheric models are compared in collaboration with LANL and the University of Michigan to understand emissions and the condition of the atmosphere from a model perspective.

  2. Nesting large-eddy simulations within mesoscale simulations for wind energy applications

    SciTech Connect (OSTI)

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-09-08

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.

  3. Aeras: A next generation global atmosphere model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  4. Aeras: A next generation global atmosphere model

    SciTech Connect (OSTI)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not components of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.

  5. Atmospheric Dispersion Modeling in Safety Analyses; GENII

    Office of Environmental Management (EM)

    part of GENII) 5 GENII Acute Atmospheric Transport Straight-line (centerline) Gaussian plume for individuals For short duration releases (2 hours) Single source...

  6. A Framework for Integrated Modeling of Perturbations in Atmospheres...

    Office of Scientific and Technical Information (OSTI)

    Conjunction Tracking (IMPACT) Citation Details In-Document Search Title: A Framework for Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking (IMPACT) ...

  7. Optically Directed Assembly of Continuous Mesoscale Filaments...

    Office of Scientific and Technical Information (OSTI)

    Optically Directed Assembly of Continuous Mesoscale Filaments Title: Optically Directed Assembly of Continuous Mesoscale Filaments Authors: Bahns, J. T. ; Sankaranarayanan, S. K. ...

  8. HIGH-RESOLUTION ATMOSPHERIC ENSEMBLE MODELING AT SRNL

    SciTech Connect (OSTI)

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.

    2011-05-10

    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  9. Mesoscale Simulations of Particulate Flows with Parallel Distributed

    Office of Scientific and Technical Information (OSTI)

    Lagrange Multiplier Technique (Conference) | SciTech Connect Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Citation Details In-Document Search Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to

  10. Mesoscale Simulations of Particulate Flows with Parallel Distributed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lagrange Multiplier Technique (Conference) | SciTech Connect Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Citation Details In-Document Search Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to

  11. Mesoscale and Large-Eddy Simulations for Wind Energy

    SciTech Connect (OSTI)

    Marjanovic, N

    2011-02-22

    Operational wind power forecasting, turbine micrositing, and turbine design require high-resolution simulations of atmospheric flow over complex terrain. The use of both Reynolds-Averaged Navier Stokes (RANS) and large-eddy (LES) simulations is explored for wind energy applications using the Weather Research and Forecasting (WRF) model. To adequately resolve terrain and turbulence in the atmospheric boundary layer, grid nesting is used to refine the grid from mesoscale to finer scales. This paper examines the performance of the grid nesting configuration, turbulence closures, and resolution (up to as fine as 100 m horizontal spacing) for simulations of synoptically and locally driven wind ramping events at a West Coast North American wind farm. Interestingly, little improvement is found when using higher resolution simulations or better resolved turbulence closures in comparison to observation data available for this particular site. This is true for week-long simulations as well, where finer resolution runs show only small changes in the distribution of wind speeds or turbulence intensities. It appears that the relatively simple topography of this site is adequately resolved by all model grids (even as coarse as 2.7 km) so that all resolutions are able to model the physics at similar accuracy. The accuracy of the results is shown in this paper to be more dependent on the parameterization of the land-surface characteristics such as soil moisture rather than on grid resolution.

  12. Computer support to run models of the atmosphere. Final report

    SciTech Connect (OSTI)

    Fung, I.

    1996-08-30

    This research is focused on a better quantification of the variations in CO{sub 2} exchanges between the atmosphere and biosphere and the factors responsible for these exchangers. The principal approach is to infer the variations in the exchanges from variations in the atmospheric CO{sub 2} distribution. The principal tool involves using a global three-dimensional tracer transport model to advect and convect CO{sub 2} in the atmosphere. The tracer model the authors used was developed at the Goddard institute for Space Studies (GISS) and is derived from the GISS atmospheric general circulation model. A special run of the GCM is made to save high-frequency winds and mixing statistics for the tracer model.

  13. Mesoscale Simulations of Power Compaction

    SciTech Connect (OSTI)

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  14. A Framework for Integrated Modeling of Perturbations in Atmospheres for

    Office of Scientific and Technical Information (OSTI)

    Conjunction Tracking (IMPACT) (Conference) | SciTech Connect Framework for Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking (IMPACT) Citation Details In-Document Search Title: A Framework for Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking (IMPACT) Authors: Linares, Richard [1] ; Klimenko, Alexei V. [1] ; Brennan, Sean M. [1] ; Godinez Vazquez, Humberto C. [1] ; Higdon, David M. [1] ; Koller, Josef [1] ; Lawrence, Earl C. [1] ; Palmer,

  15. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    SciTech Connect (OSTI)

    Heng, Kevin; Workman, Jared E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  16. Acoustic Characterization of Mesoscale Objects

    SciTech Connect (OSTI)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  17. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    SciTech Connect (OSTI)

    Sugiyama, Gayle; Nasstrom, John; Pobanz, Brenda; Foster, Kevin; Simpson, Matthew; Vogt, Phil; Aluzzi, Fernando; Homann, Steve

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  18. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    SciTech Connect (OSTI)

    M. WILLIAMS

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  19. GAP Flow Measurements During the Mesoscale Alpine Programme

    SciTech Connect (OSTI)

    Mayr, G.; Armi, L.; Arnold, S.; Banta, Robert M.; Darby, Lisa S.; Durran, D. D.; Flamant, C.; Gabersek, S.; Gohm, A.; Mayr, R.; Mobbs, S.; Nance, L. B.; Vergeiner, I.; Vergeiner, J.; Whiteman, Charles D.

    2004-04-30

    This article provides an overview of the Gap Flow sub-program of the Mesoscale Alpine Programme, a major international meteorological field experiment conducted in the European Alps. The article describes the initial results of an investigation of the wind flow through the Brenner Pass gap in the east-west oriented central section of the European Alps under conditions of south foehn. The overview describes the objectives of the experiments, the instrumentation used for the field investigation, and the mesoscale model simulations. Initial findings of the scientific program are provided.

  20. Review of structure representation and reconstruction on mesoscale and microscale

    SciTech Connect (OSTI)

    Li, Dongsheng

    2014-05-01

    Structure representation and reconstruction on mesoscale and microscale is critical in material design, advanced manufacturing and multiscale modeling. Microstructure reconstruction has been applied in different areas of materials science and technology, structural materials, energy materials, geology, hydrology, etc. This review summarizes the microstructure descriptors and formulations used to represent and algorithms to reconstruct structures at microscale and mesoscale. In the stochastic methods using correlation function, different optimization approaches have been adapted for objective function minimization. A variety of reconstruction approaches are compared in efficiency and accuracy.

  1. Optically Directed Assembly of Continuous Mesoscale Filaments...

    Office of Scientific and Technical Information (OSTI)

    Optically Directed Assembly of Continuous Mesoscale Filaments Bahns, J. T.; Sankaranarayanan, S. K. R. S.; Gray, S. K.; Chen, L. Not Available American Physical Society None USDOE...

  2. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    SciTech Connect (OSTI)

    Warneford, Emma S. Dellar, Paul J.

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [Equatorial superrotation in shallow atmospheres, Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune explains the transition from a prograde to a retrograde equatorial jet, while the broader jets are due to the deformation radius being a larger fraction of the planetary radius.

  3. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect (OSTI)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  4. Quanta to the Continuum: Opportunities for Mesoscale Science...

    Office of Scientific and Technical Information (OSTI)

    Quanta to the Continuum: Opportunities for Mesoscale Science Citation Details In-Document Search Title: Quanta to the Continuum: Opportunities for Mesoscale Science No abstract...

  5. Modeling Workflow for the DOE Atmospheric Radiation Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workflow for the DOE Atmospheric Radiation Measurement Facility's LES ARM Symbiotic ... and Environmental Research Program through its Atmospheric Radiation Measurement Facility. ...

  6. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and

    Office of Scientific and Technical Information (OSTI)

    fully coupled experiments (Journal Article) | SciTech Connect Journal Article: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments Citation Details In-Document Search Title: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments The Community Atmosphere Model, version 4 (CAM4) was released as the atmosphere component of the Community Climate System Model, version 4 (CCSM4) and is described. The

  7. Atmospheric Dispersion Modeling: Challenges of the Fukushima Daiichi Response

    SciTech Connect (OSTI)

    Sugiyama, Gayle; Nasstrom, John; Pobanz, Brenda; Foster, Kevin; Simpson, Matthew; Vogt, Phil; Aluzzi, Fernando; Homann, Steve

    2012-05-01

    The U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident. This work encompassed: weather forecasts and atmospheric transport predictions, estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases, predictions of possible plume arrival times and dose levels at U.S. locations, and source estimation and plume model refinement. An overview of NARAC response activities is provided, along with a more in-depth discussion of some of NARAC’s preliminary source reconstruction analyses. NARAC optimized the overall agreement of model predictions to dose rate measurements using statistical comparisons of data and model values paired in space and time. Estimated emission rates varied depending on the choice of release assumptions (e.g., time-varying vs. constant release rates), the radionuclide mix, meteorology, and/or the radiological data used in the analysis. Results were found to be consistent with other studies within expected uncertainties, despite the application of different source estimation methodologies and the use of significantly different radiological measurement data. A discussion of some of the operational and scientific challenges encountered during the response, along with recommendations for future work, is provided.

  8. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling methods used in this study.

  9. High Resolution Atmospheric Modeling for Wind Energy Applications

    SciTech Connect (OSTI)

    Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

    2010-03-18

    The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

  10. Assessment of MARMOT. A Mesoscale Fuel Performance Code

    SciTech Connect (OSTI)

    Tonks, M. R.; Schwen, D.; Zhang, Y.; Chakraborty, P.; Bai, X.; Fromm, B.; Yu, J.; Teague, M. C.; Andersson, D. A.

    2015-04-01

    MARMOT is the mesoscale fuel performance code under development as part of the US DOE Nuclear Energy Advanced Modeling and Simulation Program. In this report, we provide a high level summary of MARMOT, its capabilities, and its current state of validation. The purpose of MARMOT is to predict the coevolution of microstructure and material properties of nuclear fuel and cladding. It accomplished this using the phase field method coupled to solid mechanics and heat conduction. MARMOT is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE), and much of its basic capability in the areas of the phase field method, mechanics, and heat conduction come directly from MOOSE modules. However, additional capability specific to fuel and cladding is available in MARMOT. While some validation of MARMOT has been completed in the areas of fission gas behavior and grain growth, much more validation needs to be conducted. However, new mesoscale data needs to be obtained in order to complete this validation.

  11. Linking atomistic and mesoscale simulations of nanocrystalline materials : quantitative validation for the case of grain growth.

    SciTech Connect (OSTI)

    Moldovan, D.; Wolf, D.; Phillpot, S. R.; Materials Science Division; Louisiana State Univ.

    2003-11-01

    Using grain growth in nanocrystalline palladium as a simple case study, we demonstrate how a novel mesoscale approach for simulating microstructural evolution in polycrystalline materials can be validated directly against atomic-level simulations of the same system. We first describe molecular dynamics simulations of grain growth in a columnar model microstructure. The atomic-level insights into the grain-growth mechanism gained from these simulations, particularly in the role of grain rotations, are captured theoretically for incorporation into the mesoscale approach, in which the objects evolving in space and time are the grain boundaries and grain junctions rather than the atoms. With all the input parameters to the mesoscale being physically well defined and obtained directly from the atomic-level simulations, the mesoscale simulations are fully prescribed. We find that the morphology of the mesoscale system evolves in an almost identical manner with that of the molecular dynamics simulation, demonstrating that the length- and time-scale linking has been performed correctly. When applied to systems containing large numbers of grains, the now validated mesoscale simulation approach allows the growth topology and long-time growth kinetics to be determined. As an outlook, we describe how the effects of applied stress can be incorporated.

  12. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Controlled Release Study

    SciTech Connect (OSTI)

    Costigan, Keeley Rochelle; Sauer, Jeremy A.; Dubey, Manvendra Krishna

    2015-07-10

    This report discusses the ghgas IC project which when applied, allows for an evaluation of LANL's HIGRAD model which can be used to create atmospheric simulations.

  13. Energy considerations in the Community Atmosphere Model (CAM)

    SciTech Connect (OSTI)

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Yudin, Valery; Taylor, Mark

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for the state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.

  14. Energy considerations in the Community Atmosphere Model (CAM)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Yudin, Valery; Taylor, Mark

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for themore » state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.« less

  15. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes (Journal Article) | SciTech Connect Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes Citation Details In-Document Search Title: Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison

  16. Mesoscale morphologies in polymer thin films.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  17. Improved atmosphere-ocean coupled modeling in the tropics for climate

    Office of Scientific and Technical Information (OSTI)

    prediction (Technical Report) | SciTech Connect Improved atmosphere-ocean coupled modeling in the tropics for climate prediction Citation Details In-Document Search Title: Improved atmosphere-ocean coupled modeling in the tropics for climate prediction We investigated the initial development of the double ITCZ in the Community Climate System Model (CCSM Version 3) in the central Pacific. Starting from a resting initial condition of the ocean in January, the model developed a warm bias of

  18. Collaborative Project. A Flexible Atmospheric Modeling Framework for the Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Gettelman, Andrew

    2015-10-01

    In this project we have been upgrading the Multiscale Modeling Framework (MMF) in the Community Atmosphere Model (CAM), also known as Super-Parameterized CAM (SP-CAM). This has included a major effort to update the coding standards and interface with CAM so that it can be placed on the main development trunk. It has also included development of a new software structure for CAM to be able to handle sub-grid column information. These efforts have formed the major thrust of the work.

  19. A Coupling Methodology for Mesoscale-informed Nuclear Fuel Performance Codes

    SciTech Connect (OSTI)

    Michael Tonks; Derek Gaston; Cody Permann; Paul Millett; Glen Hansen; Dieter Wolf

    2010-10-01

    This study proposes an approach for capturing the effect of microstructural evolution on reactor fuel performance by coupling a mesoscale irradiated microstructure model with a finite element fuel performance code. To achieve this, the macroscale system is solved in a parallel, fully coupled, fully-implicit manner using the preconditioned Jacobian-free Newton Krylov (JFNK) method. Within the JFNK solution algorithm, microstructure-influenced material parameters are calculated by the mesoscale model and passed back to the macroscale calculation. Due to the stochastic nature of the mesoscale model, a dynamic fitting technique is implemented to smooth roughness in the calculated material parameters. The proposed methodology is demonstrated on a simple model of a reactor fuel pellet. In the model, INLs BISON fuel performance code calculates the steady-state temperature profile in a fuel pellet and the microstructure-influenced thermal conductivity is determined with a phase field model of irradiated microstructures. This simple multiscale model demonstrates good nonlinear convergence and near ideal parallel scalability. By capturing the formation of large mesoscale voids in the pellet interior, the multiscale model predicted the irradiation-induced reduction in the thermal conductivity commonly observed in reactors.

  20. Prediction of Ice Crystal Number in Community Atmospheric Model (CAM3.0)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prediction of Ice Crystal Number in Community Atmospheric Model (CAM3.0) Liu, Xiaohong Pacific Northwest National Laboratory Ghan, Steven Pacific Northwest National Laboratory Wang, M University of Michigan Penner, Joyce University of Michigan Category: Modeling A prognostic equation of ice crystal number concentrations is implemented in the Community Atmospheric Model (CAM3.0) with the aim to study the aerosol effects on climate through changing the ice cloud properties. The microphysical

  1. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    SciTech Connect (OSTI)

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup 1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption signatures.

  2. Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime in AeroCom

    Office of Scientific and Technical Information (OSTI)

    Phase II Constrained by Aircraft Observations (Journal Article) | SciTech Connect Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime in AeroCom Phase II Constrained by Aircraft Observations Citation Details In-Document Search Title: Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime in AeroCom Phase II Constrained by Aircraft Observations Black carbon (BC) aerosols absorb solar radiation, and are generally held to exacerbate global warming through exerting a

  3. A review of wind field models for atmospheric transport

    SciTech Connect (OSTI)

    Ramsdell, J.V. Jr.; Skyllingstad, E.D.

    1993-06-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. The HEDR Project is developing a computer code to estimate these doses and their uncertainties. The code, known as the HEDR integrated Code (HEDRIC), consists of four separate component codes. One of the component codes, called the Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET) combines meteorological and release data to estimate time-integrated air concentrations and surface contamination at specific locations in the vicinity of the Hanford Site. The RATCHET domain covers approximately 75,000 square miles, extending from the crest of the Cascade Mountains on the west to the eastern edge of the Idaho panhandle and from central Oregon on the south to the Canadian border. This letter report explains the procedures in RATCHET that transform observed wind data into the wind fields used in atmospheric transport calculations. It also describes and evaluates alternative procedures not selected for use in RATCHET.

  4. Mesoscale Modeling Framework Design: Subcontract Report Chen...

    Office of Scientific and Technical Information (OSTI)

    Tang, M; Heo, T W; Wood, B C 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 25 ENERGY STORAGE Abstract not provided Lawrence Livermore National Laboratory (LLNL),...

  5. Mesoscale Modeling Framework Design: Subcontract Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    Have feedback or suggestions for a way to improve these results? Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My ...

  6. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    SciTech Connect (OSTI)

    Hu Renyu; Seager, Sara; Bains, William

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the benchmark atmospheres for quickly assessing the lifetime of trace gases in reducing, weakly oxidizing, and highly oxidizing atmospheres on terrestrial exoplanets for the exploration of possible biosignature gases.

  7. Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime...

    Office of Scientific and Technical Information (OSTI)

    from four recent aircraft measurement campaigns with 13 state of the art aerosol models, and show that recent assessments may have overestimated present day BC radiative forcing. ...

  8. A mesoscale analysis of the Rayleigh-Plateau instability.

    SciTech Connect (OSTI)

    Pao, Wenxiao (BU); Soteriou, Marios (UTRC); Li, Xiaoyi (UTRC); Karniadakis, George (BU); Arienti, Marco

    2010-11-01

    Capillary pinch-off results carried out with the Many-Body Dissipative Particle Dynamics (MDPD) method are compared with the two-phase continuum discretization of hydrodynamics. The MDPD method provides a mesoscale description of the liquid-gas interface -- molecules can be thought of as grouped in particles with modeled Brownian and dissipative effects. No liquid-gas interface is explicitly defined; surface properties, such as surface tension, result from the MDPD interaction parameters. In side-to-side comparisons, the behavior of the MDPD liquid is demonstrated to replicate the macroscale behavior (thin interface assumption) calculated by the Combined Level Set-Volume of Fluid (CLSVOF) method. For instance, in both the continuum and mesoscale discretizations the most unstable wavelength perturbation leads to pinch-off, whereas a smaller wavelength-to-diameter ratio, as expected, does not. The behavior of the virial pressure in MDPD will be discussed in relation to the hydrodynamic capillary pressure that results from the thin interface assumption.

  9. From Quanta to the Continuum: Opportunities for Mesoscale Science

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: From Quanta to the Continuum: Opportunities for Mesoscale Science Citation Details In-Document Search Title: From Quanta to the Continuum: Opportunities for Mesoscale Science This report explores the opportunity and defines the research agenda for mesoscale science-discovering, understanding, and controlling interactions among disparate systems and phenomena to reach the full potential of materials

  10. Mesoscale Simulations of Particulate Flows with Parallel Distributed...

    Office of Scientific and Technical Information (OSTI)

    Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Fluid particulate flows are common phenomena in nature and industry. ...

  11. Meso-Scale during Electron Beam Additive Manufacturing Chen,...

    Office of Scientific and Technical Information (OSTI)

    Thermal Properties and Beam-Particle Interaction at Meso-Scale during Electron Beam Additive Manufacturing Chen, Jian ORNL ORNL; Zheng, Lili ORNL ORNL; Feng, Zhili...

  12. From Quanta to the Continuum: Opportunities for Mesoscale Science...

    Office of Scientific and Technical Information (OSTI)

    Quanta to the Continuum: Opportunities for Mesoscale Science Crabtree, George Argonne National Lab. (ANL), Argonne, IL (United States); Sarrao, John Los Alamos National Lab....

  13. Challenge of Dynamic Mesoscale Imaging Barnes, Cris William ...

    Office of Scientific and Technical Information (OSTI)

    The Matter-Radiation Interactions in Extremes Project, and the Challenge of Dynamic Mesoscale Imaging Barnes, Cris William Los Alamos National Laboratory; Barber, John L. Los...

  14. Quanta to the Continuum: Opportunities for Mesoscale Science...

    Office of Scientific and Technical Information (OSTI)

    Quanta to the Continuum: Opportunities for Mesoscale Science Sarrao, John L Los Alamos National Laboratory; Crabtree, George Argonne National Laboratory 36 MATERIALS SCIENCE;...

  15. Unusual lithiation and fracture behavior of silicon mesoscale...

    Office of Scientific and Technical Information (OSTI)

    of silicon mesoscale pillars: roles of ultrathin atomic layer coatings and initial geometry Citation Details In-Document Search Title: Unusual lithiation and fracture behavior...

  16. Quanta to the Continuum: Opportunities for Mesoscale Science...

    Office of Scientific and Technical Information (OSTI)

    Continuum: Opportunities for Mesoscale Science No abstract prepared. Authors: Sarrao, John L 1 ; Crabtree, George 2 + Show Author Affiliations Los Alamos National Laboratory...

  17. Mesoscale simulations of particulate flows with parallel distributed...

    Office of Scientific and Technical Information (OSTI)

    distributed Lagrange multiplier technique Citation Details In-Document Search Title: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier ...

  18. A Flexible Atmospheric Modeling Framework for the CESM

    SciTech Connect (OSTI)

    Randall, David; Heikes, Ross; Konor, Celal

    2014-11-12

    We have created two global dynamical cores based on the unified system of equations and Z-grid staggering on an icosahedral grid, which are collectively called UZIM (Unified Z-grid Icosahedral Model). The z-coordinate version (UZIM-height) can be run in hydrostatic and nonhydrostatic modes. The sigma-coordinate version (UZIM-sigma) runs in only hydrostatic mode. The super-parameterization has been included as a physics option in both models. The UZIM versions with the super-parameterization are called SUZI. With SUZI-height, we have completed aquaplanet runs. With SUZI-sigma, we are making aquaplanet runs and realistic climate simulations. SUZI-sigma includes realistic topography and a SiB3 model to parameterize the land-surface processes.

  19. Mesoscale polycrystal calculations of damage in spallation in metals

    SciTech Connect (OSTI)

    Tonks, Davis L [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Livescu, Veronica [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Bronkhorst, C A [Los Alamos National Laboratory

    2010-01-01

    The goal of this project is to produce a damage model for spallation in metals informed by the polycrystalline grain structure at the mesoscale. Earlier damage models addressed the continuwn macroscale in which these effects were averaged out. In this work we focus on cross sections from recovered samples examined with EBSD (electron backscattered diffraction), which reveal crystal grain orientations and voids. We seek to understand the loading histories of specific sample regions by meshing up the crystal grain structure of these regions and simulating the stress, strain, and damage histories in our hydro code, FLAG. The stresses and strain histories are the fundamental drivers of damage and must be calculated. The calculated final damage structures are compared with those from the recovered samples to validate the simulations.

  20. Improved Meteorological Input for Atmospheric Release Decision support Systems and an Integrated LES Modeling System for Atmospheric Dispersion of Toxic Agents: Homeland Security Applications

    SciTech Connect (OSTI)

    Arnold, E; Simpson, M; Larsen, S; Gash, J; Aluzzi, F; Lundquist, J; Sugiyama, G

    2010-04-26

    When hazardous material is accidently or intentionally released into the atmosphere, emergency response organizations look to decision support systems (DSSs) to translate contaminant information provided by atmospheric models into effective decisions to protect the public and emergency responders and to mitigate subsequent consequences. The Department of Homeland Security (DHS)-led Interagency Modeling and Atmospheric Assessment Center (IMAAC) is one of the primary DSSs utilized by emergency management organizations. IMAAC is responsible for providing 'a single piont for the coordination and dissemination of Federal dispersion modeling and hazard prediction products that represent the Federal position' during actual or potential incidents under the National Response Plan. The Department of Energy's (DOE) National Atmospheric Release Advisory Center (NARAC), locatec at the Lawrence Livermore National Laboratory (LLNL), serves as the primary operations center of the IMAAC. A key component of atmospheric release decision support systems is meteorological information - models and data of winds, turbulence, and other atmospheric boundary-layer parameters. The accuracy of contaminant predictions is strongly dependent on the quality of this information. Therefore, the effectiveness of DSSs can be enhanced by improving the meteorological options available to drive atmospheric transport and fate models. The overall goal of this project was to develop and evaluate new meteorological modeling capabilities for DSSs based on the use of NASA Earth-science data sets in order to enhance the atmospheric-hazard information provided to emergency managers and responders. The final report describes the LLNL contributions to this multi-institutional effort. LLNL developed an approach to utilize NCAR meteorological predictions using NASA MODIS data for the New York City (NYC) region and demonstrated the potential impact of the use of different data sources and data parameterizations on IMAAC/NARAC fate and transport predictions. A case study involving coastal sea breeze circulation patterns in the NYC region was used to investigate the sensitivity of atmospheric dispersion results on the source of three-dimensional wind field data.

  1. A first-look atmospheric modeling study of the young directly imaged

    Office of Scientific and Technical Information (OSTI)

    planet-mass companion, ROXS 42Bb (Journal Article) | SciTech Connect A first-look atmospheric modeling study of the young directly imaged planet-mass companion, ROXS 42Bb Citation Details In-Document Search Title: A first-look atmospheric modeling study of the young directly imaged planet-mass companion, ROXS 42Bb We present and analyze JK{sub s}L' photometry and our previously published H-band photometry and K-band spectroscopy for ROXs 42Bb, an object Currie et al. first reported as a

  2. Generation of mesoscale convective structures in tokamak edge plasma

    SciTech Connect (OSTI)

    Krasheninnikov, S. I.; Smolyakov, A. I. [University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2007-10-15

    It is shown that the interplay of the interchange drive and nonlinear effects of Reynolds stress and inverse cascade of drift wave turbulence select a range of plasma parameters (plasma pressure), for which mesoscale perturbations of a certain transverse length scale become unstable. It is suggested that the blob formation is a result of these mesoscale instabilities.

  3. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL] [ORNL; Randerson, James T. [University of California, Irvine] [University of California, Irvine; Arora, Vivek K. [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada] [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada; Bao, Qing [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics] [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; Cadule, Patricia [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment] [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment; Ji, Duoying [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing] [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing; Jones, Chris D. [Hadley Centre, U.K. Met Office] [Hadley Centre, U.K. Met Office; Kawamiya, Michio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)] [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Khatiwala, Samar [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY] [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY; Lindsay, Keith [National Center for Atmospheric Research (NCAR)] [National Center for Atmospheric Research (NCAR); Obata, Atsushi [Meteorological Research Institute, Japan] [Meteorological Research Institute, Japan; Shevliakova, Elena [Princeton University] [Princeton University; Six, Katharina D. [Max Planck Institute for Meteorology, Hamburg, Germany] [Max Planck Institute for Meteorology, Hamburg, Germany; Tjiputra, Jerry F. [Uni Climate, Uni Research] [Uni Climate, Uni Research; Volodin, Evgeny M. [Institute of Numerical Mathematics, Russian Academy of Science, Moscow] [Institute of Numerical Mathematics, Russian Academy of Science, Moscow; Wu, Tongwen [China Meteorological Administration (CMA), Beijing] [China Meteorological Administration (CMA), Beijing

    2014-01-01

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.

  4. Atmosphere Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy balance due to aerosol-radiation interactions, but the effect depends on the dust optical properties assumed in the simulations without mineralogy. More importantly, the...

  5. Simulating atmosphere flow for wind energy applications with WRF-LES

    SciTech Connect (OSTI)

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-01-14

    Forecasts of available wind energy resources at high spatial resolution enable users to site wind turbines in optimal locations, to forecast available resources for integration into power grids, to schedule maintenance on wind energy facilities, and to define design criteria for next-generation turbines. This array of research needs implies that an appropriate forecasting tool must be able to account for mesoscale processes like frontal passages, surface-atmosphere interactions inducing local-scale circulations, and the microscale effects of atmospheric stability such as breaking Kelvin-Helmholtz billows. This range of scales and processes demands a mesoscale model with large-eddy simulation (LES) capabilities which can also account for varying atmospheric stability. Numerical weather prediction models, such as the Weather and Research Forecasting model (WRF), excel at predicting synoptic and mesoscale phenomena. With grid spacings of less than 1 km (as is often required for wind energy applications), however, the limits of WRF's subfilter scale (SFS) turbulence parameterizations are exposed, and fundamental problems arise, associated with modeling the scales of motion between those which LES can represent and those for which large-scale PBL parameterizations apply. To address these issues, we have implemented significant modifications to the ARW core of the Weather Research and Forecasting model, including the Nonlinear Backscatter model with Anisotropy (NBA) SFS model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005).We are also modifying WRF's terrain-following coordinate system by implementing an immersed boundary method (IBM) approach to account for the effects of complex terrain. Companion papers presenting idealized simulations with NBA-RSFS-WRF (Mirocha et al.) and IBM-WRF (K. A. Lundquist et al.) are also presented. Observations of flow through the Altamont Pass (Northern California) wind farm are available for validation of the WRF modeling tool for wind energy applications. In this presentation, we use these data to evaluate simulations using the NBA-RSFS-WRF tool in multiple configurations. We vary nesting capabilities, multiple levels of RSFS reconstruction, SFS turbulence models (the new NBA turbulence model versus existing WRF SFS turbulence models) to illustrate the capabilities of the modeling tool and to prioritize recommendations for operational uses. Nested simulations which capture both significant mesoscale processes as well as local-scale stable boundary layer effects are required to effectively predict available wind resources at turbine height.

  6. Posters The Impacts of Data Error and Model Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Posters The Impacts of Data Error and Model Resolution on the Result of Variational Data Assimilation S. Yang and Q. Xu Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The representativeness and accuracy of the measurements or estimates of the lateral boundary fluxes and surface fluxes are crucial for the single-column model and budget studies of climatic variables over Atmospheric Radiation Measurement (ARM) sites. Since the

  7. Aerosol Effects on Cirrus through Ice Nucleation in the Community Atmosphere Model CAM5 with a Statistical Cirrus Scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.

    2014-09-01

    A statistical cirrus cloud scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into NCAR CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. 1% to 10% dust particles serving as heterogeneous IN is 20 found to produce ice supersaturaiton in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations of meso-scale motion produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles significantly alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m-2) with a significant clear-sky longwave component (0.01 to -0.55 W m-2). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m-2 to -1.54 W m-2, with a standard deviation of 0.10 W m-2. Aerosol effects on cirrus clouds exert an even larger impact on the atmospheric component of the radiative fluxes (two or three times the changes in the TOA radiative fluxes) and therefore on the hydrology cycle through the fast atmosphere response. This points to the urgent need to quantify aerosol effects on cirrus clouds through ice nucleation and how these further affect the hydrological cycle.

  8. Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials

    SciTech Connect (OSTI)

    Afonso, C.N.; Feldman, L.C.; Gonella, F.; Haglund, R.F.; Luepke, G.; Magruder, R.H.; Mazzoldi, P.; Osborne, D.H.; Solis, J.; Zuhr, R.A.

    1999-11-01

    Complex nonlinear optical materials comprising elemental, compound or alloy quantum dots embedded in appropriate dielectric or semiconducting hosts may be suitable for deployment in photonic devices. Ion implantation, ion exchange followed by ion implantation, and pulsed laser deposition have ail been used to synthesize these materials. However, the correlation between the parameters of energetic-beam synthesis and the nonlinear optical properties is still very rudimentary when one starts to ask what is happening at nanoscale dimensions. Systems integration of complex nonlinear optical materials requires that the mesoscale materials science be well understood within the context of device structures. We discuss the effects of beam energy and energy density on quantum-dot size and spatial distribution, thermal conductivity, quantum-dot composition, crystallinity and defects - and, in turn, on the third-order optical susceptibility of the composite material. Examples from recent work in our laboratories are used to illustrate these effects.

  9. Estimating Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics

    SciTech Connect (OSTI)

    Burrows, Susannah M.; Rayner, Perter; Butler, T.; Lawrence, M.

    2013-06-04

    Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, by using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC). Simulated particle concentrations in the tropopause region and at high latitudes, as well as transport of particles to tundra and land ice regions are shown to be highly sensitive to scavenging in mixed-phase clouds, which is poorly characterized in most global climate models. This may be a critical uncertainty in correctly simulating the transport of aerosol particles to the Arctic. Source estimation via Monte Carlo Markov Chain is applied to a suite of sensitivity simulations and the global mean emissions are estimated. We present an analysis of the partitioning of uncertainties in the global mean emissions that are attributable to particle size, CCN activity, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. Uncertainty due to CCN activity or to a 1 um error in particle size is typically between 10% and 40% of the uncertainty due to data uncertainty, as measured by the 5%-ile to 95%-ile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mized-phase clouds is as high as 10% to 20% of the data uncertainty. Taken together, the four model 20 parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the measurements. This was a surprisingly large contribution from model uncertainty in light of the substantial data uncertainty, which ranges from 81% to 870% for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol particles should be treated explicitly and systematically in both forward and inverse modelling studies.

  10. Phase Effects on Mesoscale Object X-ray Absorption Images

    SciTech Connect (OSTI)

    Martz, Jr., H E; Aufderheide, M B; Barty, A; Lehman, S K; Kozioziemski, B J; Schneberk, D J

    2004-09-24

    At Lawrence Livermore National Laboratory particular emphasis is being placed on the nondestructive characterization (NDC) of 'mesoscale' objects.[Martz and Albrecht 2003] We define mesoscale objects as objects that have mm extent with {micro}m features. Here we confine our discussions to x-ray imaging methods applicable to mesoscale object characterization. The goal is object recovery algorithms including phase to enable emerging high-spatial resolution x-ray imaging methods to ''see'' inside or image mesoscale-size materials and objects. To be successful our imaging characterization effort must be able to recover the object function to one micrometer or better spatial resolution over a few millimeters field-of-view with very high contrast.

  11. Development of NEXRAD Wind Retrievals as Input to Atmospheric Dispersion Models

    SciTech Connect (OSTI)

    Fast, Jerome D.; Newsom, Rob K.; Allwine, K Jerry; Xu, Qin; Zhang, Pengfei; Copeland, Jeffrey H.; Sun, Jenny

    2007-03-06

    The objective of this study is to determine the feasibility that routinely collected data from the Doppler radars can appropriately be used in Atmospheric Dispersion Models (ADMs) for emergency response. We have evaluated the computational efficiency and accuracy of two variational mathematical techniques that derive the u- and v-components of the wind from radial velocities obtained from Doppler radars. A review of the scientific literature indicated that the techniques employ significantly different approaches in applying the variational techniques: 2-D Variational (2DVar), developed by NOAAs (National Oceanic and Atmospheric Administration's) National Severe Storms Laboratory (NSSL) and Variational Doppler Radar Analysis System (VDRAS), developed by the National Center for Atmospheric Research (NCAR). We designed a series of numerical experiments in which both models employed the same horizontal domain and resolution encompassing Oklahoma City for a two-week period during the summer of 2003 so that the computed wind retrievals could be fairly compared. Both models ran faster than real-time on a typical single dual-processor computer, indicating that they could be used to generate wind retrievals in near real-time. 2DVar executed ~2.5 times faster than VDRAS because of its simpler approach.

  12. Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 1 Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 2 Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185 USA Hy D. Tran, PhD, PE Phone: (505)844-5417 Fax: (505)844-4372 hdtran@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product.

  13. Mesoscale simulations of particulate flows with parallel distributed

    Office of Scientific and Technical Information (OSTI)

    Lagrange multiplier technique (Journal Article) | SciTech Connect Journal Article: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Citation Details In-Document Search Title: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Authors: Kanarska, Y ; Lomov, I ; Antoun, T Publication Date: 2010-09-10 OSTI Identifier: 1120915 Report Number(s): LLNL-JRNL-455392 DOE Contract Number: W-7405-ENG-48

  14. Optically Directed Assembly of Continuous Mesoscale Filaments (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Optically Directed Assembly of Continuous Mesoscale Filaments Citation Details In-Document Search Title: Optically Directed Assembly of Continuous Mesoscale Filaments Authors: Bahns, J. T. ; Sankaranarayanan, S. K. R. S. ; Gray, S. K. ; Chen, L. Publication Date: 2011-02-28 OSTI Identifier: 1099937 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 106; Journal Issue: 9; Journal ID: ISSN

  15. From Quanta to the Continuum: Opportunities for Mesoscale Science

    Office of Scientific and Technical Information (OSTI)

    SEPTEMBER 2012 FROM QUANTA TO THE CONTINUUM: opportunities for MESOSCALE SCIENCE A REPORT FOR THE BASIC ENERGY SCIENCES ADVISORY COMMITTEE MESOSCALE SCIENCE SUBCOMMITTEE About the Department of Energy's Basic Energy Sciences Program Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. This research provides the foundations for new energy technologies and supports DOE missions in

  16. Mesoscale Simulations of Particulate Flows with Parallel Distributed

    Office of Scientific and Technical Information (OSTI)

    Lagrange Multiplier Technique (Conference) | SciTech Connect Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Citation Details In-Document Search Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a

  17. Mesoscale simulations of particulate flows with parallel distributed

    Office of Scientific and Technical Information (OSTI)

    Lagrange multiplier technique (Journal Article) | SciTech Connect Journal Article: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Citation Details In-Document Search Title: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI)

  18. Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC) | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC) Print Text Size: A A A FeedbackShare Page IMASC Header Director Cynthia Friend Lead Institution Harvard University Year Established 2014 Mission To drive

  19. A moist aquaplanet variant of the HeldSuarez test for atmospheric model dynamical cores

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thatcher, D. R.; Jablonowski, C.

    2015-09-29

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the HeldSuarez (HS) test that was developed for dry simulations on a flat Earth and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the non-linear dynamics-physics moisture feedbacks without the complexity of full physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary layer mixing, and the exchange ofmorelatent and sensible heat between the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of NCAR's Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics-dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. The new moist variant of the HS test can be considered a test case of intermediate complexity.less

  20. Large-scale ocean-atmosphere interactions in a simplified coupled model of the midlatitude wintertime circulation

    SciTech Connect (OSTI)

    Miller, A.J. )

    1992-02-15

    Midlatitude ocean-atmosphere interactions are studied in simulations from a simplified coupled model that includes synoptic-scale atmospheric variability, ocean current advection of sea surface temperature (SST), and air-sea heat exchange. Although theoretical dynamical ([open quotes]identical twin[close quotes]) predictions using this model have shown that the SST anomalies in this model indeed influence the atmosphere, it is found here that standard cross-correlation and empirical orthogonal function analyses of monthly mean model output yield the standard result, familiar from observational studies, that the atmosphere forces the ocean with little or no feedback. Therefore, these analyses are inconclusive and leave open the question of whether anomalous SST is influencing the atmosphere. In contrast, the authors find that compositing strong warm events of model SST is a useful indicator of ocean forcing the atmosphere. The authors present additional evidence for oceanic influence on the atmosphere, namely, that ocean current advection appears to enhance the persistence of model SST anomalies through a feedback effect that is absent when only heat flux is allowed to influence SST anomaly evolution. Models with more complete physics must ultimately be used to conclusively demonstrate these results. 26 refs., 27 figs., 5 tabs.

  1. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; Taylor, Karl E.

    2012-05-15

    We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less

  2. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; Zender, C. S.; Kok, J. F.; Liu, Xiaohong; Zhang, Y.; Albani, Samuel

    2015-01-01

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmorein place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm? for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm?) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, -0.05 and -0.17 Wm?, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.less

  3. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scanza, R. A.; Mahowald, N.; Ghan, S.; Zender, C. S.; Kok, J. F.; Liu, X.; Zhang, Y.

    2014-07-02

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05 W m−2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 W m−2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 W m−2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  4. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scanza, R. A.; Mahowald, N.; Ghan, S.; Zender, C. S.; Kok, J. F.; Liu, X.; Zhang, Y.; Albani, S.

    2015-01-15

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm−2 for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm−2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 Wm−2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  5. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    SciTech Connect (OSTI)

    Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; Zender, C. S.; Kok, J. F.; Liu, Xiaohong; Zhang, Y.; Albani, Samuel

    2015-01-01

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral components in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm? for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm?) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, -0.05 and -0.17 Wm?, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.

  6. Aerosol specification in single-column Community Atmosphere Model version 5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-27

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more » By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm−3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less

  7. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAGâ??s advanced dynamics core with the â??physicsâ? of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  8. Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rawlins, M. A.; McGuire, A. D.; Kimball, J. S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; et al

    2015-07-28

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960–2009 at 0.5° resolution, which is a scale common among many global carbon and climate modelmore » simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m⁻² yr⁻², equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960–1969 vs. 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model elements controlling vegetation productivity and soil respiration as being needed for reducing uncertainty in land-atmosphere CO2 exchange. These advances will require collection of new field data on vegetation and soil dynamics, the development of benchmarking data sets from measurements and remote-sensing observations, and investments in future model development and intercomparison studies.« less

  9. Fully-coupled engineering and mesoscale simulations of thermal conductivity in UO2 fuel using an implicit multiscale approach

    SciTech Connect (OSTI)

    Michael Tonks; Derek Gaston; Cody Permann; Paul Millett; Glen Hansen; Chris Newman

    2009-08-01

    Reactor fuel performance is sensitive to microstructure changes during irradiation (such as fission gas and pore formation). This study proposes an approach to capture microstructural changes in the fuel by a two-way coupling of a mesoscale phase field irradiation model to an engineering scale, finite element calculation. This work solves the multiphysics equation system at the engineering-scale in a parallel, fully-coupled, fully-implicit manner using a preconditioned Jacobian-free Newton Krylov method (JFNK). A sampling of the temperature at the Gauss points of the coarse scale is passed to a parallel sequence of mesoscale calculations within the JFNK function evaluation phase of the calculation. The mesoscale thermal conductivity is calculated in parallel, and the result is passed back to the engineering-scale calculation. As this algorithm is fully contained within the JFNK function evaluation, the mesoscale calculation is nonlinearly consistent with the engineering-scale calculation. Further, the action of the Jacobian is also consistent, so the composite algorithm provides the strong nonlinear convergence properties of Newton's method. The coupled model using INL's \\bison\\ code demonstrates quadratic nonlinear convergence and good parallel scalability. Initial results predict the formation of large pores in the hotter center of the pellet, but few pores on the outer circumference. Thus, the thermal conductivity is is reduced in the center of the pellet, leading to a higher internal temperature than that in an unirradiated pellet.

  10. Results of an emergency response atmospheric dispersion model comparison using a state accepted statistical protocol

    SciTech Connect (OSTI)

    Ciolek, J.T. Jr.

    1993-10-01

    The Rocky Flats Plant, located approximately 26 km northwest of downtown Denver, Colorado, has developed an emergency response atmospheric dispersion model for complex terrain applications. Plant personnel would use the model, known as the Terrain-Responsive Atmospheric Code (TRAC) (Hodgin 1985) to project plume impacts and provide off-site protective action recommendations to the State of Colorado should a hazardous material release occur from the facility. The Colorado Department of Health (CDH) entered into an interagency agreement with the Rocky Flats Plant prime contractor, EG&G Rocky Flats, and the US Department of Energy to evaluate TRAC as an acceptable emergency response tool. After exhaustive research of similar evaluation processes from other emergency response and regulatory organizations, the interagency committee devised a formal acceptance process. The process contains an evaluation protocol (Hodgin and Smith 1992), descriptions of responsibilities, an identified experimental data set to use in the evaluation, and judgment criteria for model acceptance. The evaluation protocol is general enough to allow for different implementations. This paper explains one implementation, shows protocol results for a test case, and presents results of a comparison between versions of TRAC with different wind Field codes: a two dimensional mass consistent code called WINDS (Fosberg et al. 1976) that has been extended to three dimensions, and a fully 3 dimensional mass conserving code called NUATMOS (Ross and Smith 1987, Ross et al. 1988).

  11. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the demonstrated range of validity of soundproof models, showing that they are more broadly applicable than some had previously thought. Substantial testing of EULAG included application and extension of the Jablonowski-Williamson baroclinic wave test - an archetype of planetary weather - and further analysis of multi-scale interactions arising from collapse of temperature fronts in both the baroclinic wave test and simulations of the Held-Suarez idealized climate. These analyses revealed properties of atmospheric gravity waves not seen in previous work and further demonstrated the ability of EULAG to simulate realistic behavior over several orders of magnitude of length scales. Additional collaborative work enhanced capability for modeling atmospheric flows with adaptive moving meshes and demonstrated the ability of EULAG to move into petascale computing. 3b. CAM-EULAG Advances We have developed CAM-EULAG in collaboration with former project postdoc, now University of Cape Town Assistant Professor, Babatunde Abiodun. Initial study documented good model performance in aqua-planet simulations. In particular, we showed that the grid adaptivity (stretching) implemented in CAM-EULAG allows higher resolution in selected regions without causing anomalous behavior such as spurious wave reflection. We then used the stretched-grid version to analyze simulated extreme precipitation events in West Africa, comparing the precipitation and event environment with observed behavior. The model simulates fairly well the spatial scale and the interannual and intraseasonal variability of the extreme events, although its extreme precipitation intensity is weaker than observed. In addition, both observations and the simulations show possible forcing of extreme events by African easterly waves. 3c. Other Contributions Through our collaborations, we have made contributions to a wide range of outcomes. For research focused on terrestrial behavior, these have included (1) upwind schemes for gas dynamics, (2) a nonlinear perspective on the dynamics of the Madden-Julian Oscillation, (3) numerical realism of thermal co

  12. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect (OSTI)

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  13. Towards Direct Simulation of Future Tropical Cyclone Statistics in a High-Resolution Global Atmospheric Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wehner, Michael F.; Bala, G.; Duffy, Phillip; Mirin, Arthur A.; Romano, Raquel

    2010-01-01

    We present a set of high-resolution global atmospheric general circulation model (AGCM) simulations focusing on the model's ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature (SST) is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm numbers and intensities in all ocean basins. Whilemore » this paper supports previous high-resolution model and theoretical findings that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as a focus on the Northern hemisphere tropical storm seasons.« less

  14. Co-Design at the Mesoscale: Opportunities for NSLS-II (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Co-Design at the Mesoscale: Opportunities for NSLS-II Citation Details In-Document Search Title: Co-Design at the Mesoscale: Opportunities for NSLS-II Authors: Sarrao,...

  15. Co-Design at the Mesoscale: Opportunities for NSLS-II (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Co-Design at the Mesoscale: Opportunities for NSLS-II Citation Details In-Document Search Title: Co-Design at the Mesoscale: Opportunities for NSLS-II You are...

  16. A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model

    SciTech Connect (OSTI)

    Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y

    2011-10-27

    Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.

  17. HGSYSTEMUF6. Model for Simulating Dispersion due to Atmospheric Release of UF6

    SciTech Connect (OSTI)

    Hanna, G; Chang, J.C.; Zhang, J.X.; Bloom, S.G.; Goode, W.D. Jr; Lombardi, D.A.; Yambert, M.W.

    1998-08-01

    HGSYSTEMUF6 is a suite of models designed for use in estimating consequences associated with accidental, atmospheric release of Uranium Hexafluoride (UF6) and its reaction products, namely Hydrogen Fluoride (HF), and other non-reactive contaminants which are either negatively, neutrally, or positively buoyant. It is based on HGSYSTEM Version 3.0 of Shell Research LTD., and contains specific algorithms for the treatment of UF6 chemistry and thermodynamics. HGSYSTEMUF6 contains algorithms for the treatment of dense gases, dry and wet deposition, effects due to the presence of buildings (canyon and wake), plume lift-off, and the effects of complex terrain. The models components of the suite include (1) AEROPLUME/RK, used to model near-field dispersion from pressurized two-phase jet releases of UF6 and its reaction products, (2) HEGADAS/UF6 for simulating dense, ground based release of UF6, (3) PGPLUME for simulation of passive, neutrally buoyant plumes (4) UF6Mixer for modeling warm, potentially reactive, ground-level releases of UF6 from buildings, and (5) WAKE, used to model elevated and ground-level releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant.

  18. Model for Simulating Dispersion due to Atmospheric Release of UF6

    Energy Science and Technology Software Center (OSTI)

    1997-01-01

    HGSYSTEMUF6 is a suite of models designed for use in estimating consequences associated with accidental, atmospheric release of Uranium Hexafluoride (UF6) and its reaction products, namely Hydrogen Fluoride (HF), and other non-reactive contaminants which are either negatively, neutrally, or positively buoyant. It is based on HGSYSTEM Version 3.0 of Shell Research LTD., and contains specific algorithms for the treatment of UF6 chemistry and thermodynamics. HGSYSTEMUF6 contains algorithms for the treatment of dense gases, dry andmore » wet deposition, effects due to the presence of buildings (canyon and wake), plume lift-off, and the effects of complex terrain. The models components of the suite include (1) AEROPLUME/RK, used to model near-field dispersion from pressurized two-phase jet releases of UF6 and its reaction products, (2) HEGADAS/UF6 for simulating dense, ground based release of UF6, (3) PGPLUME for simulation of passive, neutrally buoyant plumes (4) UF6Mixer for modeling warm, potentially reactive, ground-level releases of UF6 from buildings, and (5) WAKE, used to model elevated and ground-level releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant.« less

  19. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model computational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.« less

  20. Statistical modelling of discharge behavior of atmospheric pressure dielectric barrier discharge

    SciTech Connect (OSTI)

    Tay, W. H.; Kausik, S. S.; Wong, C. S. Yap, S. L.; Muniandy, S. V.

    2014-11-15

    In this work, stochastic behavior of atmospheric pressure dielectric barrier discharge (DBD) has been investigated. The experiment is performed in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes powered by a 50?Hz ac high voltage source. Current pulse amplitude distributions for different space gaps and the time separation between consecutive current pulses are studied. A probability distribution function is proposed to predict the experimental distribution function for the current pulse amplitudes and the occurrence of the transition regime of the pulse distribution. Breakdown voltage at different positions on the dielectric surface is suggested to be stochastic in nature. The simulated results based on the proposed distribution function agreed well with the experimental results and able to predict the regime of transition voltage. This model would be useful for the understanding of stochastic behaviors of DBD and the design of DBD device for effective operation and applications.

  1. The Carbon-Land Model Intercomparison Project (C-LAMP): A Model-Data Comparison System for Evaluation of Coupled Biosphere-Atmosphere Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M; Randerson, Jim; Thornton, Peter E; Mahowald, Natalie; Bonan, Gordon; Running, Steven; Fung, Inez

    2009-01-01

    The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) provides a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the Community Land Model version 3 (CLM3) in the Community Climate System Model version 3 (CCSM3): The CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons against Ameriflus site measurements, MODIS satellite observations, NOAA flask records, TRANSCOM inversions, and Free Air CO{sub 2} Enrichment (FACE) site measurements, and other datasets have been performed and are described in Randerson et al. (2009). The C-LAMP diagnostics package was used to validate improvements to CASA and CN for use in the next generation model, CLM4. It is hoped that this effort will serve as a prototype for an international carbon-cycle model benchmarking activity for models being used for the Inter-governmental Panel on Climate Change (IPCC) Fifth Assessment Report. More information about C-LAMP, the experimental protocol, performance metrics, output standards, and model-data comparisons from the CLM3-CASA and CLM3-CN models are available at http://www.climatemodeling.org/c-lamp.

  2. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  3. Improved atmosphere-ocean coupled modeling in the tropics for climate prediction

    SciTech Connect (OSTI)

    Zhang, Minghua

    2015-01-01

    We investigated the initial development of the double ITCZ in the Community Climate System Model (CCSM Version 3) in the central Pacific. Starting from a resting initial condition of the ocean in January, the model developed a warm bias of sea-surface temperature (SST) in the central Pacific from 5oS to 10oS in the first three months. We found this initial bias to be caused by excessive surface shortwave radiation that is also present in the standalone atmospheric model. The initial bias is further amplified by biases in both surface latent heat flux and horizontal heat transport in the upper ocean. These biases are caused by the responses of surface winds to SST bias and the thermocline structure to surface wind curls. We also showed that the warming biases in surface solar radiation and latent heat fluxes are seasonally offset by cooling biases from reduced solar radiation after the austral summer due to cloud responses and in the austral fall due to enhanced evaporation when the maximum SST is closest to the equator. The warming biases from the dynamic heat transport by ocean currents however stay throughout all seasons once they are developed, which are eventually balanced by enhanced energy exchange and penetration of solar radiation below the mixed layer. Our results also showed that the equatorial cold tongue develops after the warm biases in the south central Pacific, and the overestimation of surface shortwave radiation recurs in the austral summer in each year.

  4. Development of the first nonhydrostatic nested-grid grid-point global atmospheric modeling system on parallel machines

    SciTech Connect (OSTI)

    Kao, C.Y.J.; Langley, D.L.; Reisner, J.M.; Smith, W.S.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Evaluating the importance of global and regional climate response to increasing atmospheric concentrations of greenhouse gases requires a comprehensive global atmospheric modeling system (GAMS) capable of simulations over a wide range of atmospheric circulations, from complex terrain to continental scales, on high-performance computers. Unfortunately, all of the existing global circulation models (GCMs) do not meet this requirements, because they suffer from one or more of the following three shortcomings: (1) use of the hydrostatic approximation, which makes the models potentially ill-posed; (2) lack of a nested-grid (or multi-grid) capability, which makes it difficult to consistently evaluate the regional climate response to the global warming, and (3) spherical spectral (opposed to grid-point finite-difference) representation of model variables, which hinders model performance for parallel machine applications. The end product of the research is a highly modularized, multi-gridded, self-calibratable (for further parameterization development) global modeling system with state-of-the-science physics and chemistry. This system will be suitable for a suite of atmospheric problems: from local circulations to climate, from thunderstorms to global cloud radiative forcing, from urban pollution to global greenhouse trace gases, and from the guiding of field experiments to coupling with ocean models. It will also provide a unique testbed for high-performance computing architecture.

  5. Collaborative project. Ocean-atmosphere interaction from meso- to planetary-scale. Mechanics, parameterization, and variability

    SciTech Connect (OSTI)

    Saravanan, Ramalingam; Small, Justin

    2015-12-01

    Most climate models are currently run with grid spacings of around 100km, which, with today’s computing power, allows for long (up to 1000 year) simulations, or ensembles of simulations to explore climate change and variability. However this grid spacing does not resolve important components of the weather/climate system such as atmospheric fronts and mesoscale systems, and ocean boundary currents and eddies. The overall aim of this project has been to look at the effect of these small-scale features on the weather/climate system using a suite of high and low resolution climate models, idealized models and observations. High-resolution global coupled integrations using CAM/CESM were carried out at NCAR by the lead PI. At TAMU, we have complemented the work at NCAR by analyzing datasets from the high-resolution (28km) CESM integrations (Small et al., 2014) as well as very high resolution (9km, 3km) runs using a coupled regional climate (CRCM) carried out locally. The main tasks carried out were: 1. Analysis of surface wind in observations and high-resolution CAM/CCSM simulations 2. Development of a feature-tracking algorithm for studying midlatitude air-sea interaction by following oceanic mesoscale eddies and creating composites of the atmospheric response overlying the eddies. 3. Applying the Lagrangian analysis technique in the Gulf Stream region to compare data from observational reanalyses, global CESM coupled simulations, 9km regional coupled simulations and 3km convection-resolving regional coupled simulations. Our main findings are that oceanic mesoscale eddies influence not just the atmospheric boundary layer above them, but also the lower portions of the free troposphere above the boundary layer. Such a vertical response could have implications for a remote influence of Gulf Stream oceanic eddies on North Atlantic weather patterns through modulation of the storm track, similar to what has been noted in the North Pacific. The coarse resolution observational reanalyses perhaps underestimate the atmospheric response, but the 28km global model resolution appears to be adequate to capture some, but not all, aspects of the boundary response. The higher resolution regional models show a stronger response in certain fields such as the latent heat flux.

  6. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    SciTech Connect (OSTI)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  7. Global energy and water balance: Characteristics from finite-volume atmospheric model of the IAP/LASG (FAMIL1)

    SciTech Connect (OSTI)

    Zhou, Linjiong; Bao, Qing; Liu, Yimin; Wu, Guoxiong; Wang, Wei-Chyung; Wang, Xiaocong; He, Bian; Yu, Haiyang; Li, Jiandong

    2015-03-01

    This paper documents version 1 of the Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1), which has a flexible horizontal resolution up to a quarter of 1. The model, currently running on the Tianhe 1A supercomputer, is the atmospheric component of the third-generation Flexible Global Ocean-Atmosphere-Land climate System model (FGOALS3) which will participate in the Coupled Model Intercomparison Project Phase 6 (CMIP6). In addition to describing the dynamical core and physical parameterizations of FAMIL1, this paper describes the simulated characteristics of energy and water balances and compares them with observational/reanalysis data. The comparisons indicate that the model simulates well the seasonal and geographical distributions of radiative fluxes at the top of the atmosphere and at the surface, as well as the surface latent and sensible heat fluxes. A major weakness in the energy balance is identified in the regions where extensive and persistent marine stratocumulus is present. Analysis of the global water balance also indicates realistic seasonal and geographical distributions with the global annual mean of evaporation minus precipitation being approximately 10?? mm d?. We also examine the connections between the global energy and water balance and discuss the possible link between the two within the context of the findings from the reanalysis data. Finally, the model biases as well as possible solutions are discussed.

  8. Global energy and water balance: Characteristics from finite-volume atmospheric model of the IAP/LASG (FAMIL1)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Linjiong; Bao, Qing; Liu, Yimin; Wu, Guoxiong; Wang, Wei-Chyung; Wang, Xiaocong; He, Bian; Yu, Haiyang; Li, Jiandong

    2015-03-01

    This paper documents version 1 of the Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1), which has a flexible horizontal resolution up to a quarter of 1°. The model, currently running on the ‘‘Tianhe 1A’’ supercomputer, is the atmospheric component of the third-generation Flexible Global Ocean-Atmosphere-Land climate System model (FGOALS3) which will participate in the Coupled Model Intercomparison Project Phase 6 (CMIP6). In addition to describing the dynamical core and physical parameterizations of FAMIL1, this paper describes the simulated characteristics of energy and water balances and compares them with observational/reanalysis data. The comparisons indicate that the model simulates well the seasonalmore » and geographical distributions of radiative fluxes at the top of the atmosphere and at the surface, as well as the surface latent and sensible heat fluxes. A major weakness in the energy balance is identified in the regions where extensive and persistent marine stratocumulus is present. Analysis of the global water balance also indicates realistic seasonal and geographical distributions with the global annual mean of evaporation minus precipitation being approximately 10⁻⁵ mm d⁻¹. We also examine the connections between the global energy and water balance and discuss the possible link between the two within the context of the findings from the reanalysis data. Finally, the model biases as well as possible solutions are discussed.« less

  9. Improvement of Moist and Radiative Processes in Highly Parallel Atmospheric General Circulation Models: Validation and Development

    SciTech Connect (OSTI)

    Frank, William M.; Hack, James J.; Kiehl, Jeffrey T.

    1997-02-24

    Research on designing an integrated moist process parameterization package was carried. This work began with a study that coupled an ensemble of cloud models to a boundary layer model to examine the feasibility of such a methodology for linking boundary layer and cumulus parameterization schemes. The approach proved feasible, prompting research to design and evaluate a coupled parameterization package for GCMS. This research contributed to the development of an Integrated Cumulus Ensemble-Turbulence (ICET) parameterization package. This package incorporates a higher-order turbulence boundary layer that feeds information concerning updraft properties and the variances of temperature and water vapor to the cloud parameterizations. The cumulus ensemble model has been developed, and initial sensitivity tests have been performed in the single column model (SCM) version of CCM2. It is currently being coupled to a convective wake/gust front model. The major function of the convective wake/gust front model is to simulate the partitioning of the boundary layer into disturbed and undisturbed regions. A second function of this model is to predict the nonlinear enhancement of surface to air sensible heat and moisture fluxes that occur in convective regimes due to correlations between winds and anomalously cold, dry air from downdrafts in the gust front region. The third function of the convective wake/gust front model is to predict the amount of undisturbed boundary layer air lifted by the leading edge of the wake and the height to which this air is lifted. The development of the wake/gust front model has been completed, and it has done well in initial testing as a stand-alone component. The current task, to be completed by the end of the funding period, is to tie the wake model to a cumulus ensemble model and to install both components into the single column model version of CCM3 for evaluation. Another area of parametrization research has been focused on the representation of cloud radiative properties. An examination of the CCM2 simulation characteristics indicated that many surface temperature and warm land precipitation problems were linked to deficiencies in the specification of cloud optical properties, which allowed too much shortwave radiation to reach the surface. In-cloud liquid water path was statically specified in the CCM2 using a "prescribed, meridionally and height varying, but time independent, cloud liquid water density profile, which was analytically determined from a meridionally specified liquid water scale height. Single-column model integrations were conducted to explore alternative formulations for the cloud liquid water path diagnostic, converging on an approach that employs a similar, but state-dependent technique for determining in-cloud liquid water concentration. The new formulation, results in significant improvements to both the top-of- atmosphere and surface energy budgets. In particular, when this scheme is incorporated in the three-dimensional GCM, simulated July surface temperature biases are substantially reduced, where summer precipitation over the northern hemisphere continents, as well as precipitation rates over most all warm land areas, is more consistent with observations". This improved parameterization has been incorporated in the CCM3.

  10. Impact of Resolution on Simulation of Closed Mesoscale Cellular Convection Identified by Dynamically Guided Watershed Segmentation

    SciTech Connect (OSTI)

    Martini, Matus; Gustafson, William I.; Yang, Qing; Xiao, Heng

    2014-11-27

    Organized mesoscale cellular convection (MCC) is a common feature of marine stratocumulus that forms in response to a balance between mesoscale dynamics and smaller scale processes such as cloud radiative cooling and microphysics. We use the Weather Research and Forecasting model with chemistry (WRF-Chem) and fully coupled cloud-aerosol interactions to simulate marine low clouds during the VOCALS-REx campaign over the southeast Pacific. A suite of experiments with 3- and 9-km grid spacing indicates resolution-dependent behavior. The simulations with finer grid spacing have smaller liquid water paths and cloud fractions, while cloud tops are higher. The observed diurnal cycle is reasonably well simulated. To isolate organized MCC characteristics we develop a new automated method, which uses a variation of the watershed segmentation technique that combines the detection of cloud boundaries with a test for coincident vertical velocity characteristics. This ensures that the detected cloud fields are dynamically consistent for closed MCC, the most common MCC type over the VOCALS-REx region. We demonstrate that the 3-km simulation is able to reproduce the scaling between horizontal cell size and boundary layer height seen in satellite observations. However, the 9-km simulation is unable to resolve smaller circulations corresponding to shallower boundary layers, instead producing invariant MCC horizontal scale for all simulated boundary layers depths. The results imply that climate models with grid spacing of roughly 3 km or smaller may be needed to properly simulate the MCC structure in the marine stratocumulus regions.

  11. Crossing the mesoscale no-mans land via parallel kinetic Monte Carlo.

    SciTech Connect (OSTI)

    Garcia Cardona, Cristina (San Diego State University); Webb, Edmund Blackburn, III; Wagner, Gregory John; Tikare, Veena; Holm, Elizabeth Ann; Plimpton, Steven James; Thompson, Aidan Patrick; Slepoy, Alexander (U. S. Department of Energy, NNSA); Zhou, Xiao Wang; Battaile, Corbett Chandler; Chandross, Michael Evan

    2009-10-01

    The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.

  12. A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5

    SciTech Connect (OSTI)

    Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

    2013-11-08

    In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model uncertainty via calibration of uncertain model parameters with the largest sensitivity.

  13. Thermodynamic properties of mesoscale convective systems observed during BAMEX

    SciTech Connect (OSTI)

    Correia, James; Arritt, R.

    2008-11-01

    Dropsonde observations from the Bow-echo and Mesoscale convective vortex EXperiment (BAMEX) are used to document the spatio-temporal variability of temperature, moisture and wind within mesoscale convective systems (MCSs). Onion type sounding structures are found throughout the stratiform region of MCSs but the temperature and moisture variability is large. Composite soundings were constructed and statistics of thermodynamic variability were generated within each sub-region of the MCS. The calculated air vertical velocity helped identify subsaturated downdrafts. We found that lapse rates within the cold pool varied markedly throughout the MCS. Layered wet bulb potential temperature profiles seem to indicate that air within the lowest several km comes from a variety of source regions. We also found that lapse rate transitions across the 0 C level were more common than isothermal, melting layers. We discuss the implications these findings have and how they can be used to validate future high resolution numerical simulations of MCSs.

  14. Scientific Final Report: COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz

    2012-04-09

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  15. Quantum fluctuations and saturable absorption in mesoscale lasers

    SciTech Connect (OSTI)

    Roy-Choudhury, Kaushik [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Levi, A. F. J. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-2533 (United States)

    2011-04-15

    We present a quantum-mechanical treatment of fluctuations and saturable absorption in mesoscale lasers. The time evolution of the density matrix is obtained from numerical integration and field-field and intensity-intensity correlations are calculated to obtain steady-state linewidth and photon statistics. Inclusion of a saturable absorber in the otherwise homogeneous medium is shown to suppress lasing, increase fluctuations, and enhance spontaneous emission near threshold.

  16. Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams.

    SciTech Connect (OSTI)

    Schroen, Diana Grace; Flicker, Dawn G.; Haill, Thomas A.; Root, Seth; Mattsson, Thomas Kjell Rene

    2011-06-01

    Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.

  17. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect (OSTI)

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earth??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

  18. Atmospheric Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    competencies Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced...

  19. Center for Mesoscale Transport Properties (m2M) | U.S. DOE Office...

    Office of Science (SC) Website

    in complex battery systems with respect to multiple length scales, from molecular to mesoscale (m2m); to minimize heat and maximize work of electrical energy storage devices. ...

  20. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect (OSTI)

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on, experimentally and relatively easy to model. We were provided with bulk samples of carbon aerogel by Dr. Joe Satcher, but the shop that would have prepared mounted samples for us was overwhelmed by programmatic assignments. We are pursuing aligned carbon nanotubes, provided to us by colleagues at NASA Ames Research Center, as an alternative to aerogels. Dr. Gilmer started modeling the laser/thermally accelerated reactions of carbon with H{sub 2}, rather than O{sub 2}, due to limited information on equation of state for CO. We have extended our molecular dynamics models of ablation to include carbon in the form of graphite, vitreous carbon, and aerogels. The computer code has features that allow control of temperature, absorption of shock waves, and for the ejection of material from the computational cell. We form vitreous carbon atomic configurations by melting graphite in a microcanonical cell at a temperature of about 5000K. Quenching the molten carbon at a controlled rate of cooling yields material with a structure close to that of the vitreous carbon produced in the laboratory. To represent the aerogel, we have a computer code that connects ''graphite'' rods to randomly placed points in the 3-D computational cell. Ablation simulations yield results for vitreous carbon similar to our previous results with copper, usually involving the transient melting of the material above the threshold energy density. However, some fracturing in the solid regions occurs in this case, but was never observed in copper. These simulations are continuing, together with studies of the reaction of hydrogen with vitreous graphite at high temperatures. These reactions are qualitatively similar to that of oxygen with the carbon atoms at the surface, and the simulations should provide insight into the applicability of the use of chemical reactions to shape the surfaces of aerogels.

  1. Collaborative project. Ocean-atmosphere interaction from meso-to planetary-scale. Mechanisms, parameterization, and variability

    SciTech Connect (OSTI)

    Small, Richard; Bryan, Frank; Tribbia, Joseph; Park, Sungsu; Dennis, John; Saravanan, R.; Schneider, Niklas; Kwon, Young-Oh

    2015-06-11

    This project aims to improve long term global climate simulations by resolving ocean mesoscale activity and the corresponding response in the atmosphere. The main computational objectives are; i) to perform and assess Community Earth System Model (CESM) simulations with the new Community Atmospheric Model (CAM) spectral element dynamical core; ii) use static mesh refinement to focus on oceanic fronts; iii) develop a new Earth System Modeling tool to investigate the atmospheric response to fronts by selectively filtering surface flux fields in the CESM coupler. The climate research objectives are 1) to improve the coupling of ocean fronts and the atmospheric boundary layer via investigations of dependency on model resolution and stability functions: 2) to understand and simulate the ensuing tropospheric response that has recently been documented in observations: and 3) to investigate the relationship of ocean frontal variability to low frequency climate variability and the accompanying storm tracks and extremes in high resolution simulations. This is a collaborative multi-institution project consisting of computational scientists, climate scientists and climate model developers. It specifically aims at DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  2. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model

    SciTech Connect (OSTI)

    Jensen, M; Johnson, K; Mather, J; Randall, D

    2008-03-01

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties.

  3. Evaluation of the Atmospheric Transport Model in the MACCS2 Code and its Impact on Decision Making at DOE Sites

    Office of Environmental Management (EM)

    the Atmospheric Transport Model in the MACCS2 Code and its Impact on Decision Making at Department of Energy Sites John E. Till and Arthur S. Rood June 5, 2012 RAC Historical Dose Reconstruction Projects Environmental Risk Assessment "Understanding and communicating the movement of radionuclides and chemicals released to the environment, resulting exposure to humans, and the subsequent dose or risk from exposure." Types of Dose/Risk  Medical  Occupational  Public Dose/Risk Can

  4. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.81014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.21016 to 2.51016 Bq and estimates for the facility in Indonesia vary from 6.11013 to 3.61014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  5. Analysis of Mesoscale Model Data for Wind Integration (Poster)

    SciTech Connect (OSTI)

    Schwartz, M.; Elliott, D.; Lew, D.; Corbus, D.; Scott, G.; Haymes, S.; Wan, Y. H.

    2009-05-01

    Supports examination of implications of national 20% wind vision, and provides input to integration and transmission studies for operational impact of large penetrations of wind on the grid.

  6. Mesoscale modeling of intergranular bubble percolation in nuclear fuels

    SciTech Connect (OSTI)

    Millett, Paul C.; Tonks, Michael; Biner, S. B. [Nuclear Fuels and Materials, Idaho National Laboratory, Idaho Falls, Idaho 83415 (United States)

    2012-04-15

    Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density and little-to-no dependency on the grain boundary gas diffusivity.

  7. MESOSCALE MODELING OF INTERGRANULAR BUBBLE PERCOLATION IN NUCLEAR FUELS

    SciTech Connect (OSTI)

    Paul C. Millett; Michael Tonks; S. B. Biner

    2012-04-01

    Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density, and little-to-no dependency on the grain boundary gas diffusivity.

  8. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS...

    Office of Scientific and Technical Information (OSTI)

    These aspects of crystal deformation are manifestations of the evolution of the underlying ... When used to predict the evolution of the dislocation system, the planar motion of ...

  9. Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling...

    Office of Scientific and Technical Information (OSTI)

    Abstract not provided. Authors: Dingreville, Remi Philippe Michel ; Robbins, Joshua ; Bartel, Timothy James Publication Date: 2013-08-01 OSTI Identifier: 1106425 Report Number(s): ...

  10. LDRD final report : mesoscale modeling of dynamic loading of...

    Office of Scientific and Technical Information (OSTI)

    of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs. Authors: Robbins, Joshua ; Dingreville, Remi Philippe Michel ; Voth, Thomas Eugene ; Furnish, Michael...

  11. Computational Modeling of Heterogeneous Reactive Materials at the Mesoscale

    SciTech Connect (OSTI)

    BAER, MARVIN R.

    1999-09-22

    The mesoscopic processes of consolidation, deformation and reaction of shocked porous energetic materials are studied using shock physics analysis of impact on a collection of discrete ''crystals.'' Highly resolved three-dimensional CTH simulations indicate that rapid deformation occurs at material contact points causing large amplitude fluctuations of stress states with wavelengths of the order of several particle diameters. Localization of energy produces ''hot-spots'' due to shock focusing and plastic work near internal boundaries as material flows into interstitial regions. Numerical experiments indicate that ''hot-spots'' are strongly influenced by multiple crystal interactions. Chemical reaction processes also produce multiple wave structures associated with particle distribution effects. This study provides new insights into the micromechanical behavior of heterogeneous energetic materials strongly suggesting that initiation and sustained reaction of shocked heterogeneous materials involves states distinctly different from single jump state descriptions.

  12. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    SciTech Connect (OSTI)

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; Gettelman, Andrew; Jablonowski, Christiane

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25, 1, and 2 is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations reveals both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.

  13. Mesoscale simulations of shock initiation in energetic materials characterized by three-dimensional nanotomography.

    SciTech Connect (OSTI)

    Long, Gregory T.; Brundage, Aaron L.; Wixom, Ryan R.; Tappan, Alexander Smith

    2009-08-01

    Three-dimensional shock simulations of energetic materials have been conducted to improve our understanding of initiation at the mesoscale. Vapor-deposited films of PETN and pressed powders of HNS were characterized with a novel three-dimensional nanotomographic technique. Detailed microstructures were constructed experimentally from a stack of serial electron micrographs obtained by successive milling and imaging in a dual-beam FIB/SEM. These microstructures were digitized and imported into a multidimensional, multimaterial Eulerian shock physics code. The simulations provided insight into the mechanisms of pore collapse in PETN and HNS samples with distinctly different three-dimensional pore morphology and distribution. This modeling effort supports investigations of microscale explosive phenomenology and elucidates mechanisms governing initiation of secondary explosives.

  14. Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia

    SciTech Connect (OSTI)

    Rawlins, M. A.; McGuire, A. D.; Kimball, J. S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D. P.; Miller, P.; Moore, J. C.; Smith, B.; Sueyoshi, T.

    2015-07-28

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 19602009 at 0.5 resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m? yr?, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (19601969 vs. 20002009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model elements controlling vegetation productivity and soil respiration as being needed for reducing uncertainty in land-atmosphere CO2 exchange. These advances will require collection of new field data on vegetation and soil dynamics, the development of benchmarking data sets from measurements and remote-sensing observations, and investments in future model development and intercomparison studies.

  15. Single-Column Modeling A Stratiform Cloud Parameterization for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameterization originally developed for mesoscale cloud models (Tripoli and Cotton 1980, Cotton et al. 1982 and 1986, Meyers et al. 1992). These approximations are...

  16. Documentation of Hybrid Hydride Model for Incorporation into...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride d-ZrH1.5 precipitation in ...

  17. NEW ATLAS9 AND MARCS MODEL ATMOSPHERE GRIDS FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT (APOGEE)

    SciTech Connect (OSTI)

    Meszaros, Sz.; Allende Prieto, C.; De Vicente, A.; Edvardsson, B.; Gustafsson, B.; Castelli, F.; Garcia Perez, A. E.; Majewski, S. R.; Plez, B.; Schiavon, R.; Shetrone, M.

    2012-10-01

    We present a new grid of model photospheres for the SDSS-III/APOGEE survey of stellar populations of the Galaxy, calculated using the ATLAS9 and MARCS codes. New opacity distribution functions were generated to calculate ATLAS9 model photospheres. MARCS models were calculated based on opacity sampling techniques. The metallicity ([M/H]) spans from -5 to 1.5 for ATLAS and -2.5 to 0.5 for MARCS models. There are three main differences with respect to previous ATLAS9 model grids: a new corrected H{sub 2}O line list, a wide range of carbon ([C/M]) and {alpha} element [{alpha}/M] variations, and solar reference abundances from Asplund et al. The added range of varying carbon and {alpha}-element abundances also extends the previously calculated MARCS model grids. Altogether, 1980 chemical compositions were used for the ATLAS9 grid and 175 for the MARCS grid. Over 808,000 ATLAS9 models were computed spanning temperatures from 3500 K to 30,000 K and log g from 0 to 5, where larger temperatures only have high gravities. The MARCS models span from 3500 K to 5500 K, and log g from 0 to 5. All model atmospheres are publicly available online.

  18. Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime in AeroCom Phase II Constrained by Aircraft Observations

    SciTech Connect (OSTI)

    Samset, B. H.; Myhre, G.; Herber, Andreas; Kondo, Yutaka; Li, Shao-Meng; Moteki, N.; Koike, Makoto; Oshima, N.; Schwarz, Joshua P.; Balkanski, Y.; Bauer, S.; Bellouin, N.; Berntsen, T.; Bian, Huisheng; Chin, M.; Diehl, Thomas; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kirkevag, A.; Lamarque, Jean-Francois; Lin, Guang; Liu, Xiaohong; Penner, Joyce E.; Schulz, M.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, Kostas; Zhang, Kai

    2014-11-27

    Black carbon (BC) aerosols absorb solar radiation, and are generally held to exacerbate global warming through exerting a positive radiative forcing1. However, the total contribution of BC to the ongoing changes in global climate is presently under debate2-8. Both anthropogenic BC emissions and the resulting spatial and temporal distribution of BC concentration are highly uncertain2,9. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood, leading to large estimated uncertainty in BC concentration at high altitudes and far from emission sources10. These uncertainties limit our ability to quantify both the historical, present and future anthropogenic climate impact of BC. Here we compare vertical profiles of BC concentration from four recent aircraft measurement campaigns with 13 state of the art aerosol models, and show that recent assessments may have overestimated present day BC radiative forcing. Further, an atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in transport dominated remote regions. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in the multi-model median direct BC forcing from fossil fuel and biofuel burning over the industrial era.

  19. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Third Quarter 2008

    SciTech Connect (OSTI)

    JH Mather; DA Randall; CJ Flynn

    2008-06-30

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. This report describes the aerosol optical depth (AOD) product.

  20. DOE Workshop; Pan-Gass Conference on the Representation of Atmospheric Processes in Weather and Climate Models

    SciTech Connect (OSTI)

    Morrison, PI Hugh

    2012-09-21

    This is the first meeting of the whole new GEWEX (Global Energy and Water Cycle Experiment) Atmospheric System Study (GASS) project that has been formed from the merger of the GEWEX Cloud System Study (GCSS) Project and the GEWEX Atmospheric Boundary Layer Studies (GABLS). As such, this meeting will play a major role in energizing GEWEX work in the area of atmospheric parameterizations of clouds, convection, stable boundary layers, and aerosol-cloud interactions for the numerical models used for weather and climate projections at both global and regional scales. The representation of these processes in models is crucial to GEWEX goals of improved prediction of the energy and water cycles at both weather and climate timescales. This proposal seeks funds to be used to cover incidental and travel expenses for U.S.-based graduate students and early career scientists (i.e., within 5 years of receiving their highest degree). We anticipate using DOE funding to support 5-10 people. We will advertise the availability of these funds by providing a box to check for interested participants on the online workshop registration form. We will also send a note to our participants' mailing lists reminding them that the funds are available and asking senior scientists to encourage their more junior colleagues to participate. All meeting participants are encouraged to submit abstracts for oral or poster presentations. The science organizing committee (see below) will base funding decisions on the relevance and quality of these abstracts, with preference given to under-represented populations (especially women and minorities) and to early career scientists being actively mentored at the meeting (e.g. students or postdocs attending the meeting with their advisor).

  1. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale

    SciTech Connect (OSTI)

    McCarty, J.; Clark, A. J.; Copperman, J.; Guenza, M. G.

    2014-05-28

    Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k ? 0 limit, c{sub 0}. A numerical solution to the PRISM integral equations is used to determine c{sub 0}, by adjusting the value of the effective hard sphere diameter, d{sub HS}, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.

  2. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    SciTech Connect (OSTI)

    Aldridge, David Franklin; Collier, Sandra L.; Marlin, David H.; Ostashev, Vladimir E.; Symons, Neill Phillip; Wilson, D. Keith

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  3. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; et al

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less

  4. Development of a computer model for calculation of radioactive materials into the atmosphere after an accident

    SciTech Connect (OSTI)

    Schershakov, V.

    1997-11-01

    Secondary atmospheric contamination with radioactive dust and chemical species deposited on the ground and resuspended by wind occur very widely. This process is particularly pronounced in case of extensive contamination of soil and under extreme weather conditions, for example, during dust storms. The mechanism of wind dust generation consists in the following. At low wind speed U=2-3 m/s, which is most common in midlatitude, small radioactive dust particles (diameter of hundredth of a micron to 10-20 microns) are lifted from soil surface due to turbulent vortexes. Under the gravitational force the particles of 1-2 micron diameter practically do not settle. Larger dust particles cannot remain in the air for a long time: they are lifted by turbulent vortexes and settle, their motion in the wind flow is jump-wise and the interaction of particles with the flow is called saltation /I/. Saltation is the main mechanism of dust generation up to the wind velocity at which wind erosion starts. The size of dust particles can be as large as 100 pm. When dropping they can be ricocheting from ground or pass the impulse to other particles which begin rolling over and jumping up. The process of dust transport by wind can be compared to a chain reaction. At the velocity of 10 m/s large particles of about 500 pm stop skipping and roll over only, while particles of more than 1 mm remain stationary. Thus, the fine fraction is blown out from the polydispersed soil particles. The intensity of wind resuspension of radioactive dust from the ground is characterized either by a resuspension factor or a resuspension rate.

  5. Wind Power Curve Modeling Using Statistical Models: An Investigation of Atmospheric Input Variables at a Flat and Complex Terrain Wind Farm

    SciTech Connect (OSTI)

    Wharton, S.; Bulaevskaya, V.; Irons, Z.; Qualley, G.; Newman, J. F.; Miller, W. O.

    2015-09-28

    The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational wind farms in two regions of the country. The first site is a 235 MW wind farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW wind farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high wind resource areas in the U.S. and are representative of typical wind farms found in their respective areas.

  6. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    SciTech Connect (OSTI)

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  7. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model - First Quarter 2008

    SciTech Connect (OSTI)

    JH Mather; D Randall

    2007-12-30

    In 2008, the Atmospheric Radiation Measurement (ARM) program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. The first quarter milestone is initial formulation of the algorithm to produce and make available, new continuous time series of retrieved cloud , aerosol and dust properties, based on results from the ARM Mobile Facility deployment in Niger, Africa. The first quarter milestone has been achieved.

  8. MICRO-SEISMOMETERS VIA ADVANCED MESO-SCALE FABRICATION

    SciTech Connect (OSTI)

    Garcia, Caesar A; Onaran, Guclu; Avenson, Brad; Hall, Neal

    2014-11-07

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integration of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.

  9. Refined BCF-type boundary conditions for mesoscale surface step dynamics

    SciTech Connect (OSTI)

    Zhao, Renjie; Ackerman, David M.; Evans, James W.

    2015-06-24

    Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the absence of any additional step attachment barriers. We explore the description of this behavior within an analytic Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete deposition-diffusion equation formalism which accounts for step structure. These coefficients are generally higher for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close proximity to a rough step. Incorporation of these refined kinetic coefficients into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the KMC simulations.

  10. Refined BCF-type boundary conditions for mesoscale surface step dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Renjie; Ackerman, David M.; Evans, James W.

    2015-06-24

    Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the absence of any additional step attachment barriers. We explore the description of this behavior within an analytic Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete deposition-diffusion equation formalism which accounts for stepmore » structure. These coefficients are generally higher for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close proximity to a rough step. Incorporation of these refined kinetic coefficients into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the KMC simulations.« less

  11. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Z.; Day, D. A.; Ortega, A. M.; Palm, B. B.; Hu, W. W.; Stark, H.; Li, R.; Tsigaridis, K.; Brune, W. H.; Jimenez, J. L.

    2015-09-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via boxmoremodeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under "pathological OFR conditions" of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm) may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab studies, and by humidification. SOA photolysis is shown to be insignificant for most functional groups, except for nitrates and especially aromatics, which may be photolyzed at high UV flux settings. Our work further establishes the OFR's usefulness as a tool to study atmospheric chemistry and enables better experiment design and interpretation, as well as improved future reactor design.less

  12. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    SciTech Connect (OSTI)

    Heng, Kevin; Mendona, Joo M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  13. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes

    SciTech Connect (OSTI)

    Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-20

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  14. Working with SRNL - Our Facilities - Atmospheric Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The SRNL Atmospheric Technologies Center has extensive capabilities for world-wide meteorological forecasts and real-time atmospheric transport modeling and assessment. ...

  15. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    SciTech Connect (OSTI)

    Nassar, Ray; Jones, DBA; Suntharalingam, P; Chen, j.; Andres, Robert Joseph; Wecht, K. J.; Yantosca, R. M.; Kulawik, SS; Bowman, K; Worden, JR; Machida, T; Matsueda, H

    2010-01-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure generally resulting in decreased CO2 over land and increased CO2 over the oceans. Since these CO2 emissions are omitted or misrepresented in most inverse modeling work to date, their implementation in forward simulations should lead to improved inverse modeling estimates of terrestrial biospheric fluxes.

  16. Sensitivity of precipitation to parameter values in the community atmosphere model version 5

    SciTech Connect (OSTI)

    Johannesson, Gardar; Lucas, Donald; Qian, Yun; Swiler, Laura Painton; Wildey, Timothy Michael

    2014-03-01

    One objective of the Climate Science for a Sustainable Energy Future (CSSEF) program is to develop the capability to thoroughly test and understand the uncertainties in the overall climate model and its components as they are being developed. The focus on uncertainties involves sensitivity analysis: the capability to determine which input parameters have a major influence on the output responses of interest. This report presents some initial sensitivity analysis results performed by Lawrence Livermore National Laboratory (LNNL), Sandia National Laboratories (SNL), and Pacific Northwest National Laboratory (PNNL). In the 2011-2012 timeframe, these laboratories worked in collaboration to perform sensitivity analyses of a set of CAM5, 2 runs, where the response metrics of interest were precipitation metrics. The three labs performed their sensitivity analysis (SA) studies separately and then compared results. Overall, the results were quite consistent with each other although the methods used were different. This exercise provided a robustness check of the global sensitivity analysis metrics and identified some strongly influential parameters.

  17. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    SciTech Connect (OSTI)

    Chen, Zhaoquan; Yin, Zhixiang Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui; Xia, Guangqing; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  18. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Fourth Quarter 2008

    SciTech Connect (OSTI)

    JH Mather; DA Randall; CJ Flynn

    2008-09-30

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. The first quarter milestone was the initial formulation of the algorithm for retrieval of these properties. The second quarter milestone included the time series of ARM-retrieved cloud properties and a year-long CCPP control simulation. The third quarter milestone included the time series of ARM-retrieved aerosol optical depth and a three-year CCPP control simulation. This final fourth quarter milestone includes the time-series of aerosol and dust properties and a decade-long CCPP control simulation.

  19. Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    SciTech Connect (OSTI)

    Keeling, Ralph

    2014-12-12

    The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

  20. Source Term Estimation of Radioxenon Released from the Fukushima Dai-ichi Nuclear Reactors Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Biegalski, S.; Bowyer, Ted W.; Cooper, Matthew W.; Haas, Derek A.; Hayes, James C.; Hoffman, Ian; Korpach, E.; Yi, Jing; Miley, Harry S.; Rishel, Jeremy P.; Ungar, R. Kurt; White, Brian; Woods, Vincent T.

    2014-01-01

    Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout from the Fukushima Daiichi nuclear accident in March 2011. Atmospheric transport modeling (ATM) of plumes of noble gases and particulates were performed soon after the accident to determine plausible detection locations of any radioactive releases to the atmosphere. We combine sampling data from multiple International Modeling System (IMS) locations in a new way to estimate the magnitude and time sequence of the releases. Dilution factors from the modeled plume at five different detection locations were combined with 57 atmospheric concentration measurements of 133-Xe taken from March 18 to March 23 to estimate the source term. This approach estimates that 59% of the 1.24×1019 Bq of 133-Xe present in the reactors at the time of the earthquake was released to the atmosphere over a three day period. Source term estimates from combinations of detection sites have lower spread than estimates based on measurements at single detection sites. Sensitivity cases based on data from four or more detection locations bound the source term between 35% and 255% of available xenon inventory.

  1. MaRIE: A facility for time-dependent materials science at the mesoscale

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect MaRIE: A facility for time-dependent materials science at the mesoscale Citation Details In-Document Search Title: MaRIE: A facility for time-dependent materials science at the mesoscale Authors: Barnes, Cris William [1] ; Kippen, Karen Elizabeth [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-02-11 OSTI Identifier: 1170260 Report Number(s): LA-UR-15-20995 DOE Contract Number: AC52-06NA25396 Resource Type: Technical

  2. MaRIE: A facility for time-dependent materials science at the mesoscale

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: MaRIE: A facility for time-dependent materials science at the mesoscale Citation Details In-Document Search Title: MaRIE: A facility for time-dependent materials science at the mesoscale × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  3. Co-Design at the Mesoscale: Opportunities for NSLS-II (Conference) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciTech Connect Conference: Co-Design at the Mesoscale: Opportunities for NSLS-II Citation Details In-Document Search Title: Co-Design at the Mesoscale: Opportunities for NSLS-II Authors: Sarrao, John L. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-08-15 OSTI Identifier: 1090634 Report Number(s): LA-UR-13-26447 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: NSLS-II First Experiments Workshop ; 2013-08-12 -

  4. Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qian, Yun; Yan, Huiping; Hou, Zhangshuan; Johannesson, G.; Klein, Stephen A.; Lucas, Donald; Neale, Richard; Rasch, Philip J.; Swiler, Laura P.; Tannahill, John; et al

    2015-04-10

    We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics.more » Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.« less

  5. Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5

    SciTech Connect (OSTI)

    Qian, Yun; Yan, Huiping; Hou, Zhangshuan; Johannesson, G.; Klein, Stephen A.; Lucas, Donald; Neale, Richard; Rasch, Philip J.; Swiler, Laura P.; Tannahill, John; Wang, Hailong; Wang, Minghuai; Zhao, Chun

    2015-04-10

    We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics. Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.

  6. Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, R.; Wang, H.; Hegg, D. A.; Qian, Y.; Doherty, S. J.; Dang, C.; Ma, P.-L.; Rasch, P. J.; Fu, Q.

    2015-11-18

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source–receptor relationships for atmospheric BC and its deposition to snow over western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over northwestern USA and westernmore » Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based positive matrix factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.« less

  7. Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, R.; Wang, H.; Hegg, D. A.; Qian, Y.; Doherty, S. J.; Dang, C.; Ma, P.-L.; Rasch, P. J.; Fu, Q.

    2015-05-04

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source-receptor relationships for atmospheric BC and its deposition to snow over Western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over the Northwest USA andmore » West Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based Positive Matrix Factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.« less

  8. Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    SciTech Connect (OSTI)

    Zhang, Rudong; Wang, Hailong; Hegg, D. A.; Qian, Yun; Doherty, Sarah J.; Dang, Cheng; Ma, Po-Lun; Rasch, Philip J.; Fu, Qiang

    2015-11-18

    The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source-receptor relationships for atmospheric BC and its deposition to snow over Western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over the Northwest USA and West Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based Positive Matrix Factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.

  9. Cirrus clouds in a global climate model with a statistical cirrus cloud scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Penner, Joyce E.

    2010-06-21

    A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.

  10. The effect of variable atmospheric forcing on oceanic subduction of a passive tracer in a numerical model: Implications for global warming

    SciTech Connect (OSTI)

    Horsfall, F.; Bleck, R.; Hanson, H.P.

    1997-11-01

    This study addresses the issue of the ocean`s response to the changing climate. The objectives is to determine the effect of variable atmospheric forcing on the ocean on decadal time scales, specifically on the subduction of a passive tracer. In the context of the model used in this study, this tracer is {open_quotes}tagged{close_quotes} water that is subducted into the thermocline and into the deep ocean. The model used in this study is the Miami Isopycnic Coordinate Ocean Model which has a realistic Atlantic domain from 20{degrees}S to 60{degrees}N. There are twelve model layers, the first (top) layer being the thermodynamically active mixed layer and the lower eleven layers all having constant potential density ({sigma}{sub {theta}}). The atmospheric forcing changes vary latitudinally, allowing for a maximum increase in wind at midlatitudes and a maximum increase in temperature at the poles. In these experiments, it was found that wind speed and temperature effects dominate in bringing about changes in mixed-layer depth and in tracer penetration at high latitudes, with wind speed effects having the greater weight. It is apparent from the results that the weakening of the North Atlantic thermohaline circulation is dependent on the atmospheric changes in air temperature and in the wind field. 11 refs., 2 figs.

  11. Response of the regional water cycle to an increase of atmosphere moisture related to global warming

    SciTech Connect (OSTI)

    Frei, C.; Widmann, M.; Luethi, D.

    1997-11-01

    This study examines the sensitivity of the mid-latitude regional hydrological cycle to an imposed warming. Mesoscale limited-area climate simulations over Europe are performed. The modelling study is complemented with a detailed analysis of the observed precipitation and circulation trends in the same region. It is demonstrated that an increase of the moisture content leads to an enhancement of the model`s water cycle during the synoptically active seasons. The simulations suggest that this mechanism may contribute towards an increase in mean precipitation and more frequency occurrence of heavy precipitation events. Observational analysis results illustrate that the relationship between precipitation and atmospheric moisture seen in the climate simulations constitutes a possible physical mechanism relevant for the interpretation of the observed trends. A key feature of the model results is the pronounced increase in the frequency of strong precipitation events associated with the intensification of the water cycle. This large sensitivity highlights the vulnerability of the precipitation climate with respect to global climate change. 19 refs., 2 figs., 1 tab.

  12. Mesoscale Simulations of a Wind Ramping Event for Wind Energy Prediction

    SciTech Connect (OSTI)

    Rhodes, M; Lundquist, J K

    2011-09-21

    Ramping events, or rapid changes of wind speed and wind direction over a short period of time, present challenges to power grid operators in regions with significant penetrations of wind energy in the power grid portfolio. Improved predictions of wind power availability require adequate predictions of the timing of ramping events. For the ramping event investigated here, the Weather Research and Forecasting (WRF) model was run at three horizontal resolutions in 'mesoscale' mode: 8100m, 2700m, and 900m. Two Planetary Boundary Layer (PBL) schemes, the Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) schemes, were run at each resolution as well. Simulations were not 'tuned' with nuanced choices of vertical resolution or tuning parameters so that these simulations may be considered 'out-of-the-box' tests of a numerical weather prediction code. Simulations are compared with sodar observations during a wind ramping event at a 'West Coast North America' wind farm. Despite differences in the boundary-layer schemes, no significant differences were observed in the abilities of the schemes to capture the timing of the ramping event. As collaborators have identified, the boundary conditions of these simulations probably dominate the physics of the simulations. They suggest that future investigations into characterization of ramping events employ ensembles of simulations, and that the ensembles include variations of boundary conditions. Furthermore, the failure of these simulations to capture not only the timing of the ramping event but the shape of the wind profile during the ramping event (regardless of its timing) indicates that the set-up and execution of such simulations for wind power forecasting requires skill and tuning of the simulations for a specific site.

  13. On the existence of astationary measure for the stochastic system of the Lorenz model describing abaroclinic atmosphere

    SciTech Connect (OSTI)

    Klevtsova, Yu Yu

    2013-09-30

    The paper is concerned with a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for abaroclinic atmosphere on arotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. Sufficient conditions on the parameters and the right-hand side are obtained for the existence of astationary measure. Bibliography: 25 titles.

  14. Modeling of plasma chemistry in an atmospheric pressure Ar/NH{sub 3} cylindrical dielectric barrier discharge described using the one-dimensional fluid model

    SciTech Connect (OSTI)

    Li Zhi [School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao Zhen [School of Chemistry and Life Science, Anshan Normal University, Anshan 114007 (China); School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Li Xuehui [Physical Science and Technical College, Dalian University, Dalian 116622 (China)

    2013-01-15

    The keynote of our research is to study the gas phase chemistry in an atmospheric pressure Ar/NH{sub 3} cylindrical dielectric barrier discharge, which is very important to produce the iron-nitride magnetic fluid. For this purpose, a home-made one dimensional fluid model with the Scharfetter-Gummel method has been developed. The equations solved are the particle balances, assuming a drift-diffusion approximation for the fluxes, and the electron energy equation. The self-consistent electric field is obtained by the simultaneous solution of Poisson's equation. The simulations were carried out for the different ammonia concentrations (2%, 3.5%, and 7%), at a voltage of 1 kV, and a driving frequency of 20 kHz. It concluded that the major ion products of Ar are Ar{sup +} and Ar{sub 2}{sup +}. Ar{sup +} is the most important positive ions, followed by Ar{sub 2}{sup +}. It is shown that the NH{sup +} density is smaller than that of the other ammonia ions. The density of NH{sub 4}{sup +} is more than that of the other ammonia ions when the ammonia concentration increased. The diffuse mode can be established after the discharge was ignited, and the mode changes to filamentary mode with an increase in ammonia concentration.

  15. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  16. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  17. Evaluating atmospheric CO2 inversions at multiple scales over a highly-inventoried agricultural landscape.

    SciTech Connect (OSTI)

    Schuh, Andrew E.; Lauvaux, Thomas; West, Tristram O.; Denning, A.; Davis, Kenneth J.; Miles, Natasha; Richardson, S. J.; Uliasz, Marek; Lokupitiya, Erandathie; Cooley, Dan; Andrews, Arlyn; Ogle, Stephen

    2013-05-01

    An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2005 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty-_ve di_erent associated projects were spawned across _ve U.S. agencies over the course of nearly a decade involving hundreds of researchers. The primary objective of the project was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 exchange over the major croplands of the U.S. Statistics from densely monitored crop production, consisting primarily corn and soybeans, provided the backbone of a well-studied\\bottom up"flux estimate that was used to evaluate the atmospheric inversion results. Three different inversion systems, representing spatial scales varying from high resolution mesoscale, to continental, to global, coupled to different transport models and optimization techniques were compared to the bottom up" inventory estimates. The mean annual CO2-C sink for 2007 from the inversion systems ranged from 120 TgC to 170 TgC, when viewed across a wide variety of inversion setups, with the best" point estimates ranging from 145 TgC to 155 TgC. Inversion-based mean C sink estimates were generally slightly stronger, but statistically indistinguishable,from the inventory estimate whose mean C sink was 135 TgC. The inversion results showed temporal correlations at seasonal lengths while week to week correlations remained low. Comparisons were made between atmospheric transport yields of the two regional inversion systems, which despite having different influence footprints in space and time due to differences in underlying transport models and external forcings, showed similarity when aggregated in space and time.

  18. Evaluation of atmospheric transport models for use in Phase II of the historical public exposures studies at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Rood, A.S.; Killough, G.G.; Till, J.E.

    1999-08-01

    Five atmospheric transport models were evaluated for use in Phase II of the Historical Public Exposures Studies at the Rocky Flats Plant. Models included a simple straight-line Gaussian plume model (ISCST2), several integrated puff models (RATCHET, TRIAD, and INPUFF2), and a complex terrain model (TRAC). Evaluations were based on how well model predictions compared with sulfur hexafluoride tracer measurements taken in the vicinity of Rocky Flats in February 1991. Twelve separate tracer experiments were conducted, each lasting 9 hr and measured at 140 samplers in arcs 8 and 16 km from the release point at Rocky Flats. Four modeling objectives were defined based on the endpoints of the overall study: (1) the unpaired maximum hourly average concentration, (2) paired time-averaged concentration, (3) unpaired time-averaged concentration, and (4) arc-integrated concentration. Performance measures were used to evaluate models and focused on the geometric mean and standard deviation of the predicted-to-observed ratio and the correlation coefficient between predicted and observed concentrations. No one model consistently outperformed the others in all modeling objectives and performance measures. The overall performance of the RATCHET model was somewhat better than the other models.

  19. Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe; Kumar, Navanit; Zhang, Yingqi; Jordan, Preston; Pan, Lehua; Granvold, Patrick; Chow, Fotini K.

    2009-06-01

    We have developed a framework for assessing the leakage risk of geologic carbon sequestration sites. This framework, known as the Certification Framework (CF), emphasizes wells and faults as the primary potential leakage conduits. Vulnerable resources are grouped into compartments, and impacts due to leakage are quantified by the leakage flux or concentrations that could potentially occur in compartments under various scenarios. The CF utilizes several model components to simulate leakage scenarios. One model component is a catalog of results of reservoir simulations that can be queried to estimate plume travel distances and times, rather than requiring CF users to run new reservoir simulations for each case. Other model components developed for the CF and described here include fault characterization using fault-population statistics; fault connection probability using fuzzy rules; well-flow modeling with a drift-flux model implemented in TOUGH2; and atmospheric dense-gas dispersion using a mesoscale weather prediction code.

  20. Dynamics and generation mechanisms of mesoscale structures in tokamak edge plasmas

    SciTech Connect (OSTI)

    Krasheninnikov, S. I. [University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Smolyakov, A. I. [University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2008-05-15

    Intermittent convective-like plasma transport associated with mesoscale coherent structures extended along the magnetic field lines (''blobs'') is often dominant at the edge of tokamaks, stellarators, and linear devices. Blobs can travel a large distance toward the wall ({approx}10 cm and larger) and strongly enhance both edge plasma energy and particle transport and plasma-wall interactions. The dynamics of blobs and blob generation mechanisms are discussed in this paper.

  1. Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K. [Planetary atmospheres

    SciTech Connect (OSTI)

    Borysow, A. )

    1991-08-01

    The 20-300 K free-free rotovibrational collision-induced absorption (RV CIA) spectra of H2-H2 pairs are presently obtained by a numerical method which, in addition to closely matching known CIA spectra of H2-H2, can reproduce the results of the quantum-mechanical computations to within a few percent. Since the spectral lineshape parameters are derivable by these means from the lowest three quantum-mechanical spectral moments, these outer-planet atmosphere-pertinent model spectra may be computed on even small computers. 35 refs.

  2. Upscaling Calcite Growth Rates From the Mesoscale to the Macroscale

    SciTech Connect (OSTI)

    Bracco, Jacquelyn N [ORNL; Stack, Andrew G [ORNL; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL)

    2013-01-01

    Quantitative prediction of mineral reaction rates in the subsurface remains a daunting task partly because a key parameter for macroscopic models, the reactive site density, is poorly constrained. Here we report atomic force microscopy (AFM) measurements on the calcite surface of monomolecular step densities, treated as equivalent to the reactive site density, as a function of aqueous calcium-to-carbonate ratio and saturation index. Data for the obtuse step orientation are combined with existing step velocity measurements to generate a model that predicts overall macroscopic calcite growth rates. The model is quantitatively consistent with several published macroscopic rates under a range of alkaline solution conditions, particularly for two of the most comprehensive data sets without the need for additional fit parameters. The model reproduces peak growth rates and its functional form is simple enough to be incorporated into reactive transport or other macroscopic models designed for predictions in porous media. However, it currently cannot model equilibrium, pH effects, and may overestimate rates at high aqueous calcium-to-carbonate ratios. The discrepancies in rates at high calcium-to-carbonate ratios may be due to differences in pre-treatment, such as exposing the seed material to SI 1.0 to generate/develop growth hillocks, or other factors.

  3. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    SciTech Connect (OSTI)

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate-vegetation interactions.

  4. Greenland and Antarctic mass balances for present and doubled atmospheric CO{sub 2} from the GENESIS version-2 global climate model

    SciTech Connect (OSTI)

    Thompson, S.L.; Pollard, D.

    1997-05-01

    As anthropogenic greenhouse warming occurs in the next century, changes in the mass balances of Greenland and Antarctica will probably accelerate and may have significant effects on global sea level. Recent trends and possible future changes in these mass balances have received considerable attention in the glaciological literature, but until recently relatively few general circulation modeling (GCM) studies have focused on the problem. However, there are two significant problems in using GCMs to predict mass balance distributions on ice sheets: (i) the relatively coarse GCM horizontal resolution truncates the topography of the ice-sheet flanks and smaller ice sheets such as Greenland, and (ii) the snow and ice physics in most GCMs does not include ice-sheet-specific processes such as the refreezing of meltwater. Two techniques are described that attack these problems, involving (i) an elevation-based correction to the surface meteorology and (ii) a simple a posteriori correction for the refreezing of meltwater following Pfeiffer et al. Using these techniques in a new version 2 of the Global Environmental and Ecological Simulation of Interactive Systems global climate model, the authors present global climate and ice-sheet mass-balance results from two equilibrated runs for present and doubled atmospheric CO{sub 2}. This GCM is well suited for ice-sheet mass-balance studies because (a) the surface can be represented at a finer resolution (2{degrees} lat x 2{degrees} long) than the atmospheric GCM, (b) the two correction techniques are included as part of the model, and the model`s mass balances for present-day Greenland and Antarctica are realistic. 131 refs., 23 figs., 2 tabs.

  5. Coherent neutron scattering and collective dynamics on mesoscale

    SciTech Connect (OSTI)

    Novikov, Vladimir [ORNL; Schweizer, Kenneth S [ORNL; Sokolov, Alexei P [ORNL

    2013-01-01

    By combining, and modestly extending, a variety of theoretical concepts for the dynamics of liquids in the supercooled regime, we formulate a simple analytic model for the temperature and wavevector dependent collective density fluctuation relaxation time that is measurable using coherent dynamic neutron scattering. Comparison with experiments on the ionic glass-forming liquid Ca K NO3 in the lightly supercooled regime suggests the model captures the key physics in both the local cage and mesoscopic regimes, including the unusual wavevector dependence of the collective structural relaxation time. The model is consistent with the idea that the decoupling between diffusion and viscosity is reflected in a different temperature dependence of the collective relaxation time at intermediate wavevectors and near the main (cage) peak of the static structure factor. More generally, our analysis provides support for the ideas that decoupling information and growing dynamic length scales can be at least qualitatively deduced by analyzing the collective relaxation time as a function of temperature and wavevector, and that there is a strong link between dynamic heterogeneity phenomena at the single and many particle level. Though very simple, the model can be applied to other systems, such as molecular liquids.

  6. ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific ...

  7. Modeling, Analysis and Simulation of Multiscale Preferential Flow - 8/05-8/10 - Final Report

    SciTech Connect (OSTI)

    Ralph Showalter; Malgorzata Peszynska

    2012-07-03

    The research agenda of this project are: (1) Modeling of preferential transport from mesoscale to macroscale; (2) Modeling of fast flow in narrow fractures in porous media; (3) Pseudo-parabolic Models of Dynamic Capillary Pressure; (4) Adaptive computational upscaling of flow with inertia from porescale to mesoscale; (5) Adaptive modeling of nonlinear coupled systems; and (6) Adaptive modeling and a-posteriori estimators for coupled systems with heterogeneous data.

  8. Evaluation of Preindustrial to Present-day Black Carbon and its Albedo Forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    SciTech Connect (OSTI)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, Drew; Berntsen, T.; Bisiauxs, M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, Steven J.; Horowitz, L.; McConnell, J.R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, Vaishali; Rumbold, S.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, Jin-Ho

    2013-03-05

    As a part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against the observations including 12 ice core records, a long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using the NCAR Community Land and Sea-Ice model 4 with prescribed meteorology from 1996-2000, which includes the SNICAR BC-snow model. We evaluated the vertical profile of BC snow concentrations from these offline simulations to using recent BC snowpack measurements. Despite using the same BC emissions, global BC burden differs by approximately a factor of 3 among models due to the differences in aerosol removal parameterizations and simulated meteorology among models; 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However,models agree well on 2.5~3 times increase in the global BC burden from preindustrial to present-day, which matches with the 2.5 times increase in BC emissions. We find a large model diversity at both NH and SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC mass concentrations well in Europe and North America except at Jungfrauch and Ispra. However, the models fail to capture the Arctic BC seasonality due tosevere underestimations during winter and spring. Compared to recent snowpack measurements, the simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of observations except for Greenland and Arctic Ocean. However, model and observation differ widely due to missing interannual variations in emissions and possibly due to the choice of the prescribed meteorology period (i.e., 1996-2000).

  9. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    SciTech Connect (OSTI)

    Koracin, Darko; Cerovecki, Ivana; Vellore, Ramesh; Mejia, John; Hatchett, Benjamin; McCord, Travis; McLean, Julie; Dorman, Clive

    2013-04-11

    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes within the WRF model needs more evaluation and analysis.

  10. Model for Simulation of Hydride Precipitation in Zr-Based Used Fuel Claddings: A Status Report on Current Model Capabilities

    Broader source: Energy.gov [DOE]

    The report demonstrates a meso-scale, microstructural evolution model for simulation of zirconium hydride precipitation in the cladding of used fuels during long-term dry-storage.

  11. Interaction between surface wind and ocean circulation in the Carolina Capes in a coupled low-order model

    SciTech Connect (OSTI)

    Xie, L.; Pietrafesa, L.J.; Raman, S.

    1997-03-18

    Interactions between surface winds and ocean currents over an east-coast continental shelf are studied using a simple mathematical model. The model physics include cross-shelf advection of sea surface temperature (SST) by Ekman drift, upwelling due to Ekman transport divergence, differential heating of the low-level atmosphere by a cross-shelf SST gradient, and the Coriolis effect. Additionally, the effects of diabatic cooling of surface waters due to air-sea heat exchange and of the vertical density stratification on the thickness of the upper ocean Ekman layer are considered. The model results are qualitatively consistent with observed wind-driven coastal ocean circulation and surface wind signatures induced by SST. This simple model also demonstrates that two-way air-sea interaction plays a significant role in the subtidal frequency variability of coastal ocean circulation and mesoscale variability of surface wind fields over coastal waters.

  12. Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of the Community Atmosphere Model (CAM)

    SciTech Connect (OSTI)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.; Algieri, C.

    2011-03-01

    One key question regarding current climate models is whether the projection of climate extremes converges to a realistic representation as the spatial and temporal resolutions of the model are increased. Ideally the model extreme statistics should approach a fixed distribution once the resolutions are commensurate with the characteristic length and time scales of the processes governing the formation of the extreme phenomena of interest. In this study, a series of AGCM runs with idealized 'aquaplanet-steady-state' boundary conditions have been performed with the Community Atmosphere Model CAM3 to investigate the effect of horizontal resolution on climate extreme simulations. The use of the aquaplanet framework highlights the roles of model physics and dynamics and removes any apparent convergence in extreme statistics due to better resolution of surface boundary conditions and other external inputs. Assessed at a same large spatial scale, the results show that the horizontal resolution and time step have strong effects on the simulations of precipitation extremes. The horizontal resolution has a much stronger impact on precipitation extremes than on mean precipitation. Updrafts are strongly correlated with extreme precipitation at tropics at all the resolutions, while positive low-tropospheric temperature anomalies are associated with extreme precipitation at mid-latitudes.

  13. Multi-temperature model derived from state-to-state kinetics for hypersonic entry in Jupiter atmosphere

    SciTech Connect (OSTI)

    Colonna, G.; Pietanza, L. D.; D'Ammando, G.; Capitelli, M.

    2014-12-09

    A state-to-state model of H{sub 2}/He plasmas coupling the master equations for internal distributions of heavy species with the transport equation for the free electrons has been used as a basis for implementing a multi-temperature kinetic model. In the multi-temperature model internal distributions of heavy particles are Boltzmann, the electron energy distribution function is Maxwell, and the rate coefficients of the elementary processes become a function of local temperatures associated to the relevant equilibrium distributions. The state-to-state and multi-temperature models have been compared in the case of a homogenous recombining plasma, reproducing the conditions met during supersonic expansion though converging-diverging nozzles.

  14. A process for evaluation and state approval of an emergency response atmospheric dispersion model for Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Hodgin, C.R.

    1991-11-06

    This document contains copies of the vugraphs used by C. R. Hodgin for the November 6, 1991 presentation summarizing the process to be used for evaluation of the Emergency Response Dispersion Model. (MHB)

  15. Further evaluations of the CALMET/CALPUFF modeling system for the estimation of the fate of atmospheric nitrogen

    SciTech Connect (OSTI)

    Garrison, M.; Gill, S.; Sherwell, J.

    1999-07-01

    The CALMET/CALPUFF modeling system has been used to estimate nitrogen deposition in an area surrounding Baltimore and the northern portion of the Chesapeake Bay. Comprehensive NO{sub x} emissions inventories and meteorological data bases have been developed to conduct the modeling. A previous study reported on an evaluation of predicted non-ammonia, inorganic nitrogen wet deposition rates compared to measured rates at two NADP/NTN sites in Maryland. This paper presents the results of an expanded evaluation of the performance of the modeling system. Data collected at a total of 38 monitoring stations located in or near the Chesapeake Bay Watershed, including NADP/NTN, CASTNET, and AIRS sites, have been used to conduct evaluations of the model's ability to predict concentrations of nitric acid, particulate nitrate, and NO{sub x} in addition to wet nitrate deposition. This expanded evaluation has allowed for the testing of additional model technical options in an attempt to improve the performance when compared to measured data. Results of this evaluation are expected to allow for better estimates of the impacts of nitrogen species formed from utility and other anthropogenic sources of NO{sub x} on the environment in Maryland.

  16. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Xiao, Xingcheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Wang, Chong M.

    2014-01-14

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.

  17. Upper ocean model of dissolved atmospheric gases. Final report for the period 1 August 1991--31 May 1995

    SciTech Connect (OSTI)

    Schudlich, R.; Emerson, S.

    1996-05-01

    This report summarizes results from three years of funding for a modelling study of processes controlling the distribution of metabolic chemical tracers in surface waters. We determined concentrations of the gases O{sub 2}, Ar, N{sub 2}, and the stable isotope ratio ({sup 18}O/{sup 16}O) of molecular oxygen in surface waters at Station ALOHA in conjunction with the Global Ocean Flux Study (GOFS) Hawaiian Ocean Time-series project during the years 1989- 90 and 1992-93. Under this contract we have incorporated chemical tracers into an existing ocean mixed-layer model to simulate the physical processes controlling the distribution and seasonal cycle of dissolved gases in the upper ocean. The broad background of concurrent chemical, physical, and biological measurements at Station ALOHA provides enough redundancy of ``ground truth`` to assess the model`s accuracy. Biological oxygen production estimated from modelled chemical tracers agrees with estimates based on measurement of carbon fluxes into the deep ocean and nitrate fluxes into the upper ocean during 1989-90 and 1992-93, verifying for the first time the utility of chemical tracers for determining biological fluxes in the ocean. Our results suggest that in the euphotic zone (the upper 100 m of the ocean), the net biological O{sub 2} production is 1.0-2. 0 moles m{sup -2}yr{sup - 1}. Inert gas (Ar, N{sub 2}) supersaturation levels show that air and bubble injection are important modes of air-sea gas transfer in the Station ALOHA region.

  18. DE-SC0001933 DOE Final Report

    SciTech Connect (OSTI)

    Cerovecki, Ivana

    2014-11-14

    The overall objective of this study was to improve the representation of regional ocean circulation in the North Pacific by using high resolution atmospheric forcing that accurately represents mesoscale processes in ocean-atmosphere regional (North Pacific) model configuration. The goal was to assess the importance of accurate representation of mesoscale processes in the atmosphere and the ocean on large scale circulation. This is an important question, as mesoscale processes in the atmosphere which are resolved by the high resolution mesoscale atmospheric models such as Weather Research and Forecasting (WRF), are absent in commonly used atmospheric forcing such as CORE forcing, employed in e.g. the Community Climate System Model (CCSM).

  19. Development of an Immersed Boundary Method to Resolve Complex Terrain in the Weather Research and Forecasting Model

    SciTech Connect (OSTI)

    Lunquist, K A; Chow, F K; Lundquist, J K; Mirocha, J D

    2007-09-04

    Flow and dispersion processes in urban areas are profoundly influenced by the presence of buildings which divert mean flow, affect surface heating and cooling, and alter the structure of turbulence in the lower atmosphere. Accurate prediction of velocity, temperature, and turbulent kinetic energy fields are necessary for determining the transport and dispersion of scalars. Correct predictions of scalar concentrations are vital in densely populated urban areas where they are used to aid in emergency response planning for accidental or intentional releases of hazardous substances. Traditionally, urban flow simulations have been performed by computational fluid dynamics (CFD) codes which can accommodate the geometric complexity inherent to urban landscapes. In these types of models the grid is aligned with the solid boundaries, and the boundary conditions are applied to the computational nodes coincident with the surface. If the CFD code uses a structured curvilinear mesh, then time-consuming manual manipulation is needed to ensure that the mesh conforms to the solid boundaries while minimizing skewness. If the CFD code uses an unstructured grid, then the solver cannot be optimized for the underlying data structure which takes an irregular form. Unstructured solvers are therefore often slower and more memory intensive than their structured counterparts. Additionally, urban-scale CFD models are often forced at lateral boundaries with idealized flow, neglecting dynamic forcing due to synoptic scale weather patterns. These CFD codes solve the incompressible Navier-Stokes equations and include limited options for representing atmospheric processes such as surface fluxes and moisture. Traditional CFD codes therefore posses several drawbacks, due to the expense of either creating the grid or solving the resulting algebraic system of equations, and due to the idealized boundary conditions and the lack of full atmospheric physics. Meso-scale atmospheric boundary layer simulations, on the other hand, are performed by numerical weather prediction (NWP) codes, which cannot handle the geometry of the urban landscape, but do provide a more complete representation of atmospheric physics. NWP codes typically use structured grids with terrain-following vertical coordinates, include a full suite of atmospheric physics parameterizations, and allow for dynamic synoptic scale lateral forcing through grid nesting. Terrain following grids are unsuitable for urban terrain, as steep terrain gradients cause extreme distortion of the computational cells. In this work, we introduce and develop an immersed boundary method (IBM) to allow the favorable properties of a numerical weather prediction code to be combined with the ability to handle complex terrain. IBM uses a non-conforming structured grid, and allows solid boundaries to pass through the computational cells. As the terrain passes through the mesh in an arbitrary manner, the main goal of the IBM is to apply the boundary condition on the interior of the domain as accurately as possible. With the implementation of the IBM, numerical weather prediction codes can be used to explicitly resolve urban terrain. Heterogeneous urban domains using the IBM can be nested into larger mesoscale domains using a terrain-following coordinate. The larger mesoscale domain provides lateral boundary conditions to the urban domain with the correct forcing, allowing seamless integration between mesoscale and urban scale models. Further discussion of the scope of this project is given by Lundquist et al. [2007]. The current paper describes the implementation of an IBM into the Weather Research and Forecasting (WRF) model, which is an open source numerical weather prediction code. The WRF model solves the non-hydrostatic compressible Navier-Stokes equations, and employs an isobaric terrain-following vertical coordinate. Many types of IB methods have been developed by researchers; a comprehensive review can be found in Mittal and Iaccarino [2005]. To the authors knowledge, this is the first IBM approach that is able to

  20. Pyrocumulus Collapse. Unpredicted Wildfire Dangers

    SciTech Connect (OSTI)

    Kim, Young-Joon; Linn, Rodman

    2015-12-07

    We validate our proposed mechanisms with the aid of numerical simulations using a mesoscale atmospheric model and LANL's local-scale dispersion model.

  1. Precision Determination of Atmospheric Extinction at Optical...

    Office of Scientific and Technical Information (OSTI)

    spectra by their characteristic dependences on wavelength and airmass. State-of-the-art models of atmospheric radiation transport and modern codes are used to accurately...

  2. Design and fabrication of a meso-scale stirling engine and combustor.

    SciTech Connect (OSTI)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin; Mills, Bernice E.; Liu, Shiling; Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N.; Hekmuuaty, Michelle A.

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid prototypes to verify the design. A final high precision engine was created via LIGA. The micro-combustor was based on an excess enthalpy concept. Development of a micro-combustor included both modeling and experiments. We developed a suite of simulation tools both in support of the design of the prototype combustors, and to investigate more fundamental aspects of combustion at small scales. Issues of heat management and integration with the micro-scale Stirling engine were pursued using CFD simulations. We found that by choice of the operating conditions and channel dimensions energy conversion occurs by catalysis-dominated or catalysis-then-homogeneous phase combustion. The purpose of the experimental effort in micro-combustion was to study the feasibility and explore the design parameters of excess enthalpy combustors. The efforts were guided by the necessity for a practical device that could be implemented in a miniature power generator, or as a stand-alone device used for heat generation. Several devices were fabricated and successfully tested using methane as the fuel.

  3. URBAN ATMOSPHERIC OBSERVATORY (UAO) FIRST PLANNING WORKSHOP, JANUARY 27-28-2003. WORKSHOP SUMMARY.

    SciTech Connect (OSTI)

    REYNOLDS,R.M.; LEE,H.N.

    2003-03-27

    The Urban Atmospheric Observatory (UAO) First Planning Workshop was held on 27-28 January 2003 at the Environmental Measurements Laboratory (EML) in downtown Manhattan, New York City. The meeting was well attended by local, state, and national administrators, as well as scientists and engineers from the national laboratories and academia. The real-time intensive UAO is a necessary step toward the development and validation of new technologies in support of the New York City emergency management and anti-terrorism effort. The real-time intensive UAO will be a dense array of meteorological instrumentation, remote sensing and satellite products and model output, as well as radiation detection, gamma spectrometer and aerosol measurements focused onto a small area in the heart of Manhattan. Such a test-bed, developed in a somewhat homogeneous urban area, and with a well-developed communication and data collection backbone, will be of immense utility for understanding how models of all scales can be improved and how they can best be integrated into the city's emergency program. The goal of the First Planning Workshop was to bring together a small group of experts in the fields of urban meteorology, modeling from mesoscale to fine-mesh computational fluid dynamics, instrumentation, communications and visualization, in order to (1) establish the importance of the observational program, (2) define the most efficient and cost-effective design for the program, (3) define needed intensive observational efforts and establish a schedule, and (4) define the importance of the UAO in emergency operations. The workshop achieved its goals with the enthusiastic participation of over forty persons. There was a synthesis of ideas towards a world-class facility that would benefit both immediate emergency management activities and, over an extended time, the entire field of urban meteorology and contaminant dispersion modeling.

  4. A Comprehensive Parameterization of Heterogeneous Ice Nucleation of Dust Surrogate: Laboratory Study with Hematite Particles and Its Application to Atmospheric Models

    SciTech Connect (OSTI)

    Hiranuma, Naruki; Paukert, Marco; Steinke, Isabelle; Zhang, Kai; Kulkarni, Gourihar R.; Hoose, Corinna; Schnaiter, Martin; Saathoff, Harald; Mohler, Ottmar

    2014-12-10

    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 ?C to -78 ?C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by ns, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost independent freezing was observed at -60 ?C < T < -50 ?C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 ?C < T < -60 ?C and -50 ?C < T < -36 ?C. More specifically, observations at T colder than -60 ?C revealed that higher RHice was necessary to maintain constant ns, whereas T may have played a significant role in ice nucleation at T warmer than -50 ?C. We implemented new ns parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 ?C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.

  5. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING WARNING Today is April 1 But that ...

  6. Terrain-Responsive Atmospheric Code

    Energy Science and Technology Software Center (OSTI)

    1991-11-20

    The Terrain-Responsive Atmospheric Code (TRAC) is a real-time emergency response modeling capability designed to advise Emergency Managers of the path, timing, and projected impacts from an atmospheric release. TRAC evaluates the effects of both radiological and non-radiological hazardous substances, gases and particulates. Using available surface and upper air meteorological information, TRAC realistically treats complex sources and atmospheric conditions, such as those found in mountainous terrain. TRAC calculates atmospheric concentration, deposition, and dose for more thanmore »25,000 receptor locations within 80 km of the release point. Human-engineered output products support critical decisions on the type, location, and timing of protective actions for workers and the public during an emergency.« less

  7. Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-{alpha} method

    SciTech Connect (OSTI)

    Dana, Saswati, E-mail: saswatid@rishi.serc.iisc.ernet.in [Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India); Raha, Soumyendu, E-mail: raha@serc.iisc.ernet.in [Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2011-10-01

    Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic {alpha} (FIS {alpha}) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway.

  8. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  9. Atmospheric Radiation Measurement Radiative Atmospheric Divergence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    campaign is sponsored by the Atmospheric Radiation Measurement (ARM) Program, the largest global change research program within the U.S. Department of Energy's Office of Science. ...

  10. Mapping pan-Arctic methane emissions at high spatial resolution using an adjoint atmospheric transport and inversion method and process-based wetland and lake biogeochemical models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E.; Sweeney, C.; Turner, A. J.

    2015-11-18

    Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting changes in the global methane cycle under future climate scenarios. Here we optimize Arctic methane emissions with a nested-grid high-resolution inverse model by assimilating both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes are integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. We find that, the global methane emissions during July 2004June 2005 ranged from 496.4 to 511.5 Tg yr?1, with wetlandmoremethane emissions ranging from 130.0 to 203.3 Tg yr?1. The Arctic methane emissions during July 2004June 2005 were in the range of 14.630.4 Tg yr?1, with wetland and lake emissions ranging from 8.8 to 20.4 Tg yr?1 and from 5.4 to 7.9 Tg yr?1 respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different inversions indicates that the distribution of global and Arctic methane emissions is sensitive to prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic inversions improve estimates of methane mixing ratios in boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic.less

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Research Mesoscale Model 5 (MM5), in particular the shortwave downwelling (SW) flux calculations, is examined in this paper. Selected quantities output from the MM5...

  12. NIR-Selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices

    SciTech Connect (OSTI)

    Williams, TE; Chang, CM; Rosen, EL; Garcia, G; Runnerstrom, EL; Williams, BL; Koo, B; Buonsanti, R; Milliron, DJ; Helms, BA

    2014-01-01

    We report here the first solid-state, NIR-selective electrochromic devices. Critical to device performance is the arrangement of nanocrystal-derived electrodes into heteromaterial frameworks, where hierarchically porous ITO nanocrystal active layers are infiltrated by an ion-conducting polymer electrolyte with mesoscale periodicity. Enhanced coloration efficiency and transport are realized over unarchitectured electrodes in devices, paving the way towards new smart windows technologies.

  13. SULI Intern: Atmospheric Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Science Share Hear how Argonne intern Jane Pan helped scientists accurately represent atmospheric conditions in computer models and forecasts. Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy

  14. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  15. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    SciTech Connect (OSTI)

    Roldn, .; Martnez, I. A.; Rica, R. A.; Dinis, L.

    2014-06-09

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.

  16. Equilibrium Structure of a Triblock Copolymer System Revealed by Mesoscale Simulation and Neutron Scattering

    SciTech Connect (OSTI)

    Do, Changwoo [ORNL] [ORNL; Chen, Wei-Ren [ORNL] [ORNL; Hong, Kunlun [ORNL] [ORNL; Smith, Gregory Scott [ORNL] [ORNL

    2013-01-01

    We have performed both mesoscale simulations and neutron scattering experiments on Pluronic L62, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer system in aqueous solution. The influence of simulation variables such PEO/PPO block ratio, interaction parameters, and coarse-graining methods is extensively investigated by covering all permutations of parameters found in the literatures. Upon increasing the polymer weight fraction from 50 wt% to 90 wt%, the equilibrium structure of the isotropic, reverse micellar, bicontinuous, worm-like micelle network, and lamellar phases are respectively predicted from the simulation depending on the choices of simulation parameters. Small angle neutron scattering (SANS) measurements show that the same polymer systems exhibit the spherical micellar, lamellar, and reverse micellar phases with the increase of the copolymer concentration at room temperature. Detailed structural analysis and comparison with simulations suggest that one of the simulation parameter sets can provide reasonable agreement with the experimentally observed structures.

  17. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    SciTech Connect (OSTI)

    Stoica, Grigoreta M [ORNL; Stoica, Alexandru Dan [ORNL; Miller, Michael K [ORNL; Ma, Dong [ORNL

    2014-01-01

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization of anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.

  18. NEAMS FPL M2 Milestone Report: Development of a UO? Grain Size Model using Multicale Modeling and Simulation

    SciTech Connect (OSTI)

    Michael R Tonks; Yongfeng Zhang; Xianming Bai

    2014-06-01

    This report summarizes development work funded by the Nuclear Energy Advanced Modeling Simulation program's Fuels Product Line (FPL) to develop a mechanistic model for the average grain size in UO? fuel. The model is developed using a multiscale modeling and simulation approach involving atomistic simulations, as well as mesoscale simulations using INL's MARMOT code.

  19. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect (OSTI)

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Krcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24106 m-2) is obviously less than that from the LP (8.46106 m-2) and BN (5.62106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2) and BN (0.39 W m-2) parameterizations.

  20. ARM - Measurement - Atmospheric pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream

  1. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListAtmospheric Pressure Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Atmospheric Pressure Humans are subjected to the pressure produced by the weight of the gases of the atmosphere above us. The force exerted on a unit area of surface by the weight of the air above the surface is named

  2. Assessment of Molecular Modeling & Simulation

    SciTech Connect (OSTI)

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  3. Clear Skies S. A. Clough Atmospheric and Environmental Research, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, MA 02139 The objective of this research effort is to develop radiative transfer models that are consistent with Atmospheric Radiation Measurement (ARM) Program spectral radiance measurements for clear and cloudy atmospheres. Our approach is to develop the model physics and related databases with a line-by-line model in the context of available spectral radiance measurements. The line-by- line mode! then functions as an

  4. Atmospheric and Climate Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric and Climate Science Argonne research in aerosols, micro-meteorology, remote sensing, and atmospheric chemistry combined with our scalable, portable, high-performance climate and weather applications offer a unique look at the complexities of a dynamic planet. Changes in climate can affect biodiversity, the cost of food, our health, and even whole economies. Argonne is developing computational models and tools designed to shed light on complex biological processes and their economic,

  5. ARM - Measurement - Atmospheric moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered

  6. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  7. ARM - Measurement - Atmospheric turbulence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following

  8. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Atmospheric Heat Budget The average temperature of the earth has remained approximately constant at about 15 degrees Celsius during the past century. It is therefore in a state of radiative balance, emitting the same

  9. Moist multi-scale models for the hurricane embryo

    SciTech Connect (OSTI)

    Majda, Andrew J. [New York University; Xing, Yulong [ORNL; Mohammadian, Majid [University of Ottawa, Canada

    2010-01-01

    Determining the finite-amplitude preconditioned states in the hurricane embryo, which lead to tropical cyclogenesis, is a central issue in contemporary meteorology. In the embryo there is competition between different preconditioning mechanisms involving hydrodynamics and moist thermodynamics, which can lead to cyclogenesis. Here systematic asymptotic methods from applied mathematics are utilized to develop new simplified moist multi-scale models starting from the moist anelastic equations. Three interesting multi-scale models emerge in the analysis. The balanced mesoscale vortex (BMV) dynamics and the microscale balanced hot tower (BHT) dynamics involve simplified balanced equations without gravity waves for vertical vorticity amplification due to moist heat sources and incorporate nonlinear advective fluxes across scales. The BMV model is the central one for tropical cyclogenesis in the embryo. The moist mesoscale wave (MMW) dynamics involves simplified equations for mesoscale moisture fluctuations, as well as linear hydrostatic waves driven by heat sources from moisture and eddy flux divergences. A simplified cloud physics model for deep convection is introduced here and used to study moist axisymmetric plumes in the BHT model. A simple application in periodic geometry involving the effects of mesoscale vertical shear and moist microscale hot towers on vortex amplification is developed here to illustrate features of the coupled multi-scale models. These results illustrate the use of these models in isolating key mechanisms in the embryo in a simplified content.

  10. GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model

    SciTech Connect (OSTI)

    V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

    2010-06-17

    This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

  11. Meso-scale cooling effects of high albedo surfaces: Analysis of meteorological data from White Sands National Monument and White Sands Missile Range

    SciTech Connect (OSTI)

    Fishman, B.; Taha, H.; Akbari, H.

    1994-05-20

    Urban summer daytime temperatures often exceed those of the surrounding rural areas. Summer ``urban heat islands`` are caused by dark roofs and paved surfaces as well as the lack of vegetation. Researchers at Lawrence Berkeley Laboratory are interested in studying the effects of increasing the albedo of roof tops and paved surfaces in order to reduce the impacts of summer urban heat islands. Increasing the albedo of urban surfaces may reduce this heat island effect in two ways, directly and indirectly. The direct effect involves reducing surface temperature and, therefore, heat conduction through the building envelope. This effect of surface albedo on surface temperatures is better understood and has been quantified in several studies. The indirect effect is the impact of high albedo surfaces on the near surface air temperatures. Although the indirect effect has been modeled for the Los Angeles basin by Sailor, direct field observations are required. The objective of this report is to investigate the meso-scale climate of a large high albedo area and identify the effects of albedo on the near surface air temperature. To accomplish this task, data from several surface weather stations at White Sands, New Mexico were analyzed. This report is organized into six sections in addition to this introduction. The first gives the general geological, topographic, and meteorological background of White Sands. The second is a discussion of the basic surface meteorology of the White Sands region. This section is followed by a general discussion of the instrumentation and available data. The fourth section is a description of the method used for data analyis. The fifth section which presents the results of this analysis. Finally, the last section is the summary and conclusion, where a discussion of the results is presented.

  12. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-20

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less

  13. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    SciTech Connect (OSTI)

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Endo, Satoshi

    2015-01-20

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.

  14. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    SciTech Connect (OSTI)

    Davis, K.J.; Richardson, S.J.; Miles, N.L.

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2?3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

  15. Carbonaceous spheresan unusual template for solid metal oxide mesoscale spheres: Application to ZnO spheres

    SciTech Connect (OSTI)

    Patrinoiu, Greta; Caldern-Moreno, Jose Maria; Culita, Daniela C. [Illie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Birjega, Ruxandra [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box Mg27, Magurele, Bucharest (Romania); Ene, Ramona [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Carp, Oana, E-mail: ocarp@icf.ro [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania)

    2013-06-15

    A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N{sub 2} adsorptiondesorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization. - Graphical abstract: A novel and eco-friendly methodology for the synthesis of mesoscale solid ZnO spheres was developed. The protocol involves a double coating of the starch-derived carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. - Highlights: ZnO solid spheres are obtained via a template route using carbonaceous spheres. Two-step coatings of interchangeable order are used as deposition procedure. The coating procedure influences the porosity and surface area. ZnO spheres exhibited interesting visible photoluminescence properties. Solid spheres showed photocatalytical activity in degradation of phenol.

  16. Comparative study of laminar and turbulent flow model with different operating parameters for radio frequency-inductively coupled plasma torch working at 3??MHz frequency at atmospheric pressure

    SciTech Connect (OSTI)

    Punjabi, Sangeeta B.; Sahasrabudhe, S. N.; Das, A. K.; Joshi, N. K.; Mangalvedekar, H. A.; Kothari, D. C.

    2014-01-15

    This paper provides 2D comparative study of results obtained using laminar and turbulent flow model for RF (radio frequency) Inductively Coupled Plasma (ICP) torch. The study was done for the RF-ICP torch operating at 50?kW DC power and 3?MHz frequency located at BARC. The numerical modeling for this RF-ICP torch is done using ANSYS software with the developed User Defined Function. A comparative study is done between laminar and turbulent flow model to investigate how temperature and flow fields change when using different operating conditions such as (a) swirl and no swirl velocity for sheath gas flow rate, (b) variation in sheath gas flow rate, and (c) variation in plasma gas flow rate. These studies will be useful for different material processing applications.

  17. A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results

    SciTech Connect (OSTI)

    Gettelman, A.; Morrison, H.; Ghan, Steven J.

    2008-08-11

    The global performance of a new 2-moment cloud microphysics scheme for a General Circulation Model (GCM) is presented and evaluated relative to observations. The scheme produces reasonable representations of cloud particle size and number concentration when compared to observations, and represents expected and observed spatial variations in cloud microphysical quantities. The scheme has smaller particles and higher number concentrations over land than the standard bulk microphysics in the GCM, and is able to balance the radiation budget of the planet with 60% the liquid water of the standard scheme, in better agreement with observations. The new scheme treats both the mixing ratio and number concentration of rain and snow, and is therefore able to differentiate the two key regimes, consisting of drizzle in shallow warm clouds and larger rain drops in deeper cloud systems. The modeled rain and snow size distributions are consistent with observations.

  18. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

    1990-01-01

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  19. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  20. Atmospheric Science: Solving Challenges of Climate Change

    SciTech Connect (OSTI)

    Geffen, Charlette

    2015-08-05

    PNNLs atmospheric science research provides data required to make decisions about challenges presented by climate change: Where to site power plants, how to manage water resources, how to prepare for severe weather events and more. Our expertise in fundamental observations and modeling is recognized among the national labs and the world.

  1. LABLE: A multi-institutional, student-led, atmospheric boundary layer experiment

    SciTech Connect (OSTI)

    Klein, P.; Bonin, T. A.; Newman, J. F.; Turner, D. D.; Chilson, P. B.; Wainwright, C. E.; Blumberg, W. G.; Mishra, S.; Carney, M.; Jacobsen, E. P.; Wharton, Sonia; Newsom, Rob K.

    2015-10-23

    This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, multi-agency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary-layer processes. The main objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including i) instruments deployed, ii) sampling strategies, iii) parameters observed, and iv) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE, namely the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.

  2. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1988-08-01

    Currently, the broad goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales in the air, in clouds, and on the surface. For several years, studies of transport and diffusion have been extended to mesoscale areas of complex terrain. Atmospheric cleansing research has expanded to a regional scale, multilaboratory investigation of precipitation scavenging processes involving the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, the redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. A few long-range tracer experiments conducted in recent years and the special opportunity for measuring the transport and removal of radioactivity following the Chernobyl reactor accident of April 1986 offer important initial data bases for studying atmospheric processes at these super-regional scales.

  3. ARM - Evolution of the Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListEvolution of the Atmosphere Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Evolution of the Atmosphere The earth's atmosphere plays a crucial role in shaping the weather, climate, and life-supporting systems. However, the ocean and atmosphere are the earth's fluid outer layers and are

  4. ARM - Composition of the Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListComposition of the Atmosphere Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Composition of the Atmosphere The atmosphere is 1000 kilometers above mean sea level. In fact, only about 1 percent of the total mass of the atmosphere is above an altitude of approximately 30 kilometers above

  5. Our Dusty Atmosphere | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dusty Atmosphere Our Dusty Atmosphere September 6, 2011 - 4:26pm Addthis A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest

  6. Simulation of atmospheric temperature effects on cosmic ray muon flux

    SciTech Connect (OSTI)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmospheres effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmospheres effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  7. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  8. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes

    SciTech Connect (OSTI)

    Hu, Renyu; Seager, Sara

    2014-03-20

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H{sub 2}-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H{sub 2}-dominated atmospheres and non-H{sub 2}-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO{sub 2} rather than CH{sub 4} or CO in a H{sub 2}-depleted water-dominated thick atmosphere and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C{sub 2}H{sub 2} features at 1.0 and 1.5 ?m in transmission and C{sub 2}H{sub 2} and C{sub 2}H{sub 4} features at 9-14 ?m in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.

  9. Final Report for Integrated Multiscale Modeling of Molecular Computing Devices

    SciTech Connect (OSTI)

    Glotzer, Sharon C.

    2013-08-28

    In collaboration with researchers at Vanderbilt University, North Carolina State University, Princeton and Oakridge National Laboratory we developed multiscale modeling and simulation methods capable of modeling the synthesis, assembly, and operation of molecular electronics devices. Our role in this project included the development of coarse-grained molecular and mesoscale models and simulation methods capable of simulating the assembly of millions of organic conducting molecules and other molecular components into nanowires, crossbars, and other organized patterns.

  10. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    SciTech Connect (OSTI)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-01

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.

  11. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-17

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimesmore » to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.« less

  12. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    SciTech Connect (OSTI)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-17

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.

  13. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study ... for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research ...

  14. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility (ARM) Biological and ... BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement ...

  15. ARM - Sources of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Sources of Atmospheric Carbon Atmospheric carbon represented a steady state system, where influx equaled outflow, before the Industrial Revolution. Currently, it is no longer a steady state system because the

  16. NETL SOFC: Atmospheric Pressure Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Pressure Systems ATMOSPHERIC PRESSURE SYSTEMS (INDUSTRY TEAMS)-This key technology focuses on the design, scaleup, and integration of the SOFC technology, ultimately resulting in atmospheric-pressure modules suitable to serve as the building blocks for distributed-generation, commercial, and utility-scale power systems. Activities include fabrication, testing, post-test analysis of cells; integrating cells into stacks; and the development and validation testing of progressively

  17. ARM - Destination of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Destination of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Destination of Atmospheric Carbon Oceans: 92 gigatonnes [(Gt) 1 gigatonne = 1x1012 kilograms] are recycled annually from the atmosphere to the oceans. This carbon is used for biosynthesis or remains dissolved

  18. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect (OSTI)

    Serrato, M. G.

    2013-09-27

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  19. Sorption Phase of Supercritical CO2 in Silica Aerogel: Experiments and Mesoscale Computer Simulations

    SciTech Connect (OSTI)

    Rother, Gernot [ORNL; Vlcek, Lukas [ORNL; Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Chialvo, Ariel A [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Banuelos, Jose Leo [ORNL; Wallacher, Dirk [Helmholtz-Zentrum Berlin; Grimm, Nico [Helmholtz-Zentrum Berlin; Cole, David [Ohio State University

    2014-01-01

    Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar for two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.

  20. Polyport atmospheric gas sampler

    DOE Patents [OSTI]

    Guggenheim, S. Frederic (Teaneck, NJ)

    1995-01-01

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  1. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    SciTech Connect (OSTI)

    Peralta, J.; Lpez-Valverde, M. A.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studiedacoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  2. MaRIE 1.0: The Matter-Radiation Interactions in Extremes Project, and the Challenge of Dynamic Mesoscale Imaging

    SciTech Connect (OSTI)

    Barnes, Cris William; Barber, John L.; Kober, Edward Martin; Lookman, Turab; Sandberg, Richard L.; Shlachter, Jack S.; Sheffield, Richard L.

    2015-02-23

    The Matter-Radiation Interactions in Extremes project will build the experimental facility for the time-dependent control of dynamic material performance. An x-ray free electron laser at up to 42-keV fundamental energy and with photon pulses down to sub-nanosecond spacing, MaRIE 1.0 is designed to meet the challenges of time-dependent mesoscale materials science. Those challenges will be outlined, the techniques of coherent diffractive imaging and dynamic polycrystalline diffraction described, and the resulting requirements defined for a coherent x-ray source. The talk concludes with the role of the MaRIE project and science in the future.

  3. Single-Column Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Atmospheric Radiation Measurement (ARM) Program. The model contains a full set of modern GCM parameterizations of subgrid physical processes. To force the model, the...

  4. Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere

    SciTech Connect (OSTI)

    Tooman, T.P.

    1997-01-01

    This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

  5. Explosive Release Atmospheric Dispersal 3.2

    Energy Science and Technology Software Center (OSTI)

    2001-06-26

    ERAD (Explosive Release Atmospheric Dispersal) is a 3D numerical transport and diffusion model, used to model the consequences associated with the buoyant (or nonbuoyant) dispersal of radioactive material It incorporates an integral plume rise model to simulate the buoyant rise of heated gases following an explosive detonation. treating buoyancy effects from time zero onward, eliminating the need for the stabilized doud assumption, and enabling the penetration of inversions. Modeling of the atmospheric boundary layer usesmore » contemporary parameterization based on scaling theories derived from observational, laboratory and numerical studies. A Monte Carlo stochastic process simulates particle dispersion. Results were validated for both dose and deposition against measurements taken during Operation Roller Coaster (a joint US-UK test performed at NTS). Meteorology is defined using a single vertical sounding containing wind speed and direction and temperature as a function of height. Post processing applies 50-year CEDE DCFs (either ICRP 26 or 60) to determine the contribution of the relevant dose pathways (inhalation, submersion, and ground shine) as well as the total dose received. Dose and deposition contours are overlaid on a fully integrated worldwide GIS and tabulates hearth effects (fatalities and casualties) to resident population. The software runs on a laptop and takes less than 2 minutes to process. The Municipal version of ERAD does not include the ability to model the mitigation effects of aqueous foam.« less

  6. Perspective: Water cluster mediated atmospheric chemistry

    SciTech Connect (OSTI)

    Vaida, Veronica

    2011-07-14

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  7. Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999

    SciTech Connect (OSTI)

    Holdridge, D. J., ed

    1999-09-27

    The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.

  8. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  9. National Oceanic and Atmospheric Administration (NOAA) | Open...

    Open Energy Info (EERE)

    National Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name: National Oceanic and...

  10. Correcting radar range measurements for atmospheric propagation...

    Office of Scientific and Technical Information (OSTI)

    Correcting radar range measurements for atmospheric propagation effects. Citation Details In-Document Search Title: Correcting radar range measurements for atmospheric propagation...

  11. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion...

  12. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-001 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  13. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  14. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-008 Atmospheric Radiation Measurement Program Climate Research Facility ...

  15. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-10-029 Atmospheric Radiation Measurement Program Climate Research Facility ...

  16. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  17. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. ... Fiscal Year 2004 Budget Summary and User Statistics Atmospheric Radiation Measurement ...

  18. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-002 Atmospheric Radiation Measurement Program Climate Research Facility ...

  19. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  20. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-11-022 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  1. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-019 Atmospheric Radiation Measurement Program Climate Research Facility ...

  2. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  3. Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison

    Office of Environmental Management (EM)

    and Validation Strategy | Department of Energy Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride d-ZrH1.5 precipitation in the cladding of used nuclear fuels that may occur during long-term dry

  4. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  5. Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Atmospheric System Research (ASR) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  6. Atmospheric circulation of eccentric hot Jupiter HAT-P-2B

    SciTech Connect (OSTI)

    Lewis, Nikole K.; Showman, Adam P.; Fortney, Jonathan J.; Knutson, Heather A.; Marley, Mark S.

    2014-11-10

    The hot Jupiter HAT-P-2b has become a prime target for Spitzer Space Telescope observations aimed at understanding the atmospheric response of exoplanets on highly eccentric orbits. Here we present a suite of three-dimensional atmospheric circulation models for HAT-P-2b that investigate the effects of assumed atmospheric composition and rotation rate on global scale winds and thermal patterns. We compare and contrast atmospheric models for HAT-P-2b, which assume one and five times solar metallicity, both with and without TiO/VO as atmospheric constituents. Additionally we compare models that assume a rotation period of half, one, and two times the nominal pseudo-synchronous rotation period. We find that changes in assumed atmospheric metallicity and rotation rate do not significantly affect model predictions of the planetary flux as a function of orbital phase. However, models in which TiO/VO are present in the atmosphere develop a transient temperature inversion between the transit and secondary eclipse events that results in significant variations in the timing and magnitude of the peak of the planetary flux compared with models in which TiO/VO are omitted from the opacity tables. We find that no one single atmospheric model can reproduce the recently observed full orbit phase curves at 3.6, 4.5 and 8.0 ?m, which is likely due to a chemical process not captured by our current atmospheric models for HAT-P-2b. Further modeling and observational efforts focused on understanding the chemistry of HAT-P-2b's atmosphere are needed and could provide key insights into the interplay between radiative, dynamical, and chemical processes in a wide range of exoplanet atmospheres.

  7. Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study

    SciTech Connect (OSTI)

    Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.; Easter, Richard C.; Gustafson, William I.; Liu, Xiaohong; Ghan, Steven J.; Singh, Balwinder

    2014-05-06

    A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 when the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.

  8. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect (OSTI)

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative transfer calculations, will be acquired using the aircraft and surface facilities available to ARESE. This document outlines the scientific approach and measurement requirements of the project.

  9. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  10. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect (OSTI)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  11. Atmosphere to Electrons Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmosphere to Electrons (A2e) Initiative Overview DOE Wind and Water Power Technologies Office January 2014 2 * Motivation for a new R&D framework * A2e initiative overview - Strategic planning framework - Management construct - Executive Management Committee (EMC) - National Laboratory Leadership * Strategic thrust area planning introduction * Program objectives * Open discussion of approach Overview Agenda 3 Wind energy today ..... * Multi-Billion dollar industry with involvement of

  12. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  13. Impact of atmospheric refraction: how deeply can we probe exo-earth's atmospheres during primary eclipse observations?

    SciTech Connect (OSTI)

    Btrmieux, Yan; Kaltenegger, Lisa

    2014-08-10

    Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets and tabulate the critical altitude, density, and pressure for an exoplanet identical to Earth with a 1 bar N{sub 2}/O{sub 2} atmosphere as a function of both the incident stellar flux (Venus, Earth, and Mars-like) at the top of the atmosphere and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 ?m model transmission spectra of Earth's atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.

  14. DEFRA Global Atmosphere Dept | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: SW1E 6DE Product: Atmosphere research department of the UK Department of Food and Rural Affairs. References: DEFRA - Global Atmosphere Dept.1 This article is a...

  15. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  16. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  17. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  18. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the

  19. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  20. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  1. Quantitative determination of atmospheric hydroperoxyl radical

    DOE Patents [OSTI]

    Springston, Stephen R. (Upton, NY); Lloyd, Judith (Westbury, NY); Zheng, Jun (Stony Brook, NY)

    2007-10-23

    A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.

  2. Atmosphere to Electrons | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Atmosphere to Electrons Atmosphere to Electrons Atmosphere to Electrons Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. Better insight into the flow physics has the potential to reduce wind farm energy losses by up to 20%, to reduce annual operational

  3. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect (OSTI)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  4. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PVLibMatlab Permalink Gallery Sandia Labs Releases New Version of PVLib Toolbox Modeling, News, Photovoltaic, Solar Sandia Labs Releases New Version of PVLib Toolbox Sandia has released version 1.3 of PVLib, its widely used Matlab toolbox for modeling photovoltaic (PV) power systems. The version 1.3 release includes the following added functions: functions to estimate parameters for popular PV module models, including PVsyst and the CEC '5 parameter' model a new model of the effects of solar

  5. Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements

    SciTech Connect (OSTI)

    Teller, E; Leith, C; Canavan, G; Wood, L

    2001-11-13

    We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These {approx}$10{sup 2} B annual savings dwarf the <$1 B costs of operating a rational, long-range weather prediction system of the type proposed.

  6. Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements

    DOE R&D Accomplishments [OSTI]

    Teller, E.; Leith, C.; Canavan, G.; Wood, L.

    2001-11-13

    We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These{approx}$10{sup 2} B annual savings dwarf the<$1 B costs of operating a rational, long-range weather prediction system of the type proposed.

  7. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wood, Robert [VOCALS-REx PI, University of Washington; Bretherton, Christopher [GEWEX/GCSS Representative, University of Washington; Huebert, Barry [SOLAS Representative, University of Hawaii; Mechoso, Roberto C. [VOCALS Science Working Group Chair, UCLA; Weller, Robert [Woods Hole Oceanographic Institution

    VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international CLIVAR program the major goal of which is to develop and promote scientific activities leading to improved understanding of the Southeast Pacific (SEP) coupled ocean-atmosphere-land system on diurnal to inter-annual timescales. The principal program objectives are: 1) the improved understanding and regional/global model representation of aerosol indirect effects over the SEP; 2) the elimination of systematic errors in the region of coupled atmospheric-ocean general circulation models, and improved model simulations and predictions of the coupled climate in the SEP and global impacts of the system variability. VOCALS is organized into two tightly coordinated components: 1) a Regional Experiment (VOCALSREx), and 2) a Modeling Program (VOCALS-Mod). Extended observations (e.g. IMET buoy, satellites, EPIC/PACS cruises) will provide important additional contextual datasets that help to link the field and the modeling components. The coordination through VOCALS of observational and modeling efforts (Fig. 3) will accelerate the rate at which field data can be used to improve simulations and predictions of the tropical climate variability [Copied from the Vocals Program Summary of June 2007, available as a link from the VOCALS web at http://www.eol.ucar.edu/projects/vocals/]. The CLIVAR sponsored program to under which VOCALS falls is VAMOS, which stands for Variability of the American Monsoon Systems.

  8. Atmospheric-pressure guided streamers for liposomal membrane disruption

    SciTech Connect (OSTI)

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.; Gazeli, K.; Clement, F.; Antimisiaris, S. G.

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  9. Improvement of snowpack simulations in a regional climate model

    SciTech Connect (OSTI)

    Jin, J.; Miller, N.L.

    2011-01-10

    To improve simulations of regional-scale snow processes and related cold-season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth-generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land-surface model. One important cause for the underestimated SWE in Noah is its unrealistic land-surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow-season surface albedo overestimated by MM5Noah is now more accurately predicted by MM5CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near-surface cold bias in MM5Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5Noah. In addition, the over-predicted precipitation in the Pacific Northwest as shown in MM5Noah is significantly decreased in MM5 CLM3 due to the lower evaporation resulting from the longer snow duration.

  10. Radar range measurements in the atmosphere. (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Radar range measurements in the atmosphere. Citation Details In-Document Search Title: Radar range measurements in the atmosphere. The earth's atmosphere affects the velocity of...

  11. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion/Modeling - Modelingadmin2015-10-28T01:54:52+00:00 Modelers at the CRF are developing high-fidelity simulation tools for engine combustion and detailed micro-kinetic, surface chemistry modeling tools for catalyst-based exhaust aftertreatment systems. The engine combustion modeling is focused on developing Large Eddy Simulation (LES). LES is being used with closely coupled key target experiments to reveal new understanding of the fundamental processes involved in engine

  12. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reacting Flow/Modeling - Modelingadmin2015-10-28T02:39:13+00:00 Turbulence models typically involve coarse-graining and/or time averaging. Though adequate for modeling mean transport, this approach does not address turbulence-microphysics interactions that are important in combustion processes. Subgrid models are developed to represent these interactions. The CRF has developed a fundamentally different representation of these interactions that does not involve distinct coarse-grained and subgrid

  13. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Capabilities, Center for Infrastructure Research and Innovation (CIRI), Computational Modeling & Simulation, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials Science, Modeling, Modeling & Analysis, News, News & Events, Partnership, Research & Capabilities, Systems Analysis, Systems Engineering, Transportation Energy Widespread Hydrogen Fueling Infrastructure Is

  14. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H{sub 2}S AND SO{sub 2} PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES

    SciTech Connect (OSTI)

    Hu Renyu; Seager, Sara; Bains, William

    2013-05-20

    Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H{sub 2}S and SO{sub 2}) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H{sub 2}S and SO{sub 2} are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H{sub 2}, N{sub 2}, and CO{sub 2} atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earth's volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of elemental sulfur and sulfuric acid in the atmosphere, which would condense to form aerosols if saturated. For terrestrial exoplanets in the habitable zone of Sun-like stars or M stars, Earth-like sulfur emission rates result in optically thick haze composed of elemental sulfur in reducing H{sub 2}-dominated atmospheres for a wide range of particle diameters (0.1-1 {mu}m), which is assumed as a free parameter in our simulations. In oxidized atmospheres composed of N{sub 2} and CO{sub 2}, optically thick haze, composed of elemental sulfur aerosols (S{sub 8}) or sulfuric acid aerosols (H{sub 2}SO{sub 4}), will form if the surface sulfur emission is two orders of magnitude more than the volcanic sulfur emission of Earth. Although direct detection of H{sub 2}S and SO{sub 2} by their spectral features is unlikely, their emission might be inferred by observing aerosol-related features in reflected light with future generation space telescopes.

  15. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

  16. Unmanned Aerial Systems (UAS) Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    De Boer, Gijs

    2016-01-05

    Data were collected to improve understanding of the Arctic troposphere, and to provide researchers with a focused case-study period for future observational and modeling studies pertaining to Arctic atmospheric processes.

  17. Toward a Minimal Representation of Aerosols in Climate Models: Description

    Office of Scientific and Technical Information (OSTI)

    and Evaluation in the Community Atmosphere Model CAM5 (Journal Article) | SciTech Connect Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 Citation Details In-Document Search Title: Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the

  18. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WVMinputs-outputs Permalink Gallery Sandia Labs releases wavelet variability model (WVM) Modeling, News, Photovoltaic, Solar Sandia Labs releases wavelet variability model (WVM) When a single solar photovoltaic (PV) module is in full sunlight, then is shaded by a cloud, and is back in full sunlight in a matter of seconds, a sharp dip then increase in power output will result. However, over an entire PV plant, clouds will often uncover some modules even as they cover others, [...] By Andrea

  19. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Project Is the ACME of Computer Science to Address Climate Change Analysis, Climate, Global Climate & Energy, Modeling, Modeling & Analysis, News, News & Events, Partnership New Project Is the ACME of Computer Science to Address Climate Change Sandia high-performance computing (HPC) researchers are working with DOE and 14 other national laboratories and institutions to develop and apply the most complete climate and Earth system model, to address the most challenging and

  20. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A rail tank car of the type used to transport crude oil across North America. Recent incidents have raised concerns about the safety of this practice, which the DOE-DOT-sponsored team is investigating. (photo credit: Harvey Henkelmann) Permalink Gallery Expansion of DOE-DOT Tight Oil Research Work Capabilities, Carbon Capture & Storage, Carbon Storage, Energy, Energy Assurance, Energy Assurance, Fuel Options, Infrastructure Assurance, Infrastructure Security, Modeling, Modeling, Modeling

  1. Broadband Outdoor Radiometer Callibration Process for the Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement ... Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement ...

  2. ChEAS Data: The Chequamegon Ecosystem Atmosphere Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Davis, Kenneth J. [Penn State

    The Chequamegon Ecosystem-Atmosphere Study (ChEAS) is a multi-organizational research effort studying biosphere/atmosphere interactions within a northern mixed forest in Northern Wisconsin. A primary goal is to understand the processes controlling forest-atmosphere exchange of carbon dioxide and the response of these processes to climate change. Another primary goal is to bridge the gap between canopy-scale flux measurements and the global CO2 flask sampling network. The ChEAS flux towers participate in AmeriFlux, and the region is an EOS-validation site. The WLEF tower is a NOAA-CMDL CO2 sampling site. ChEAS sites are primarily located within or near the Chequamegon-Nicolet National Forest in northern Wisconsin, with one site in the Ottawa National Forest in the upper peninsula of Michigan. Current studies observe forest/atmosphere exchange of carbon dioxide at canopy and regional scales, forest floor respiration, photosynthesis and transpiration at the leaf level and use models to scale to canopy and regional levels. EOS-validation studies quantitatively assess the land cover of the area using remote sensing and conduct extensive ground truthing of new remote sensing data (i.e. ASTER and MODIS). Atmospheric remote sensing work is aimed at understanding atmospheric boundary layer dynamics, the role of entrainment in regulating the carbon dioxide mixing ratio profiles through the lower troposphere, and feedback between boundary layer dynamics and vegetation (especially via the hydrologic cycle). Airborne studies have included include balloon, kite and aircraft observations of the CO2 profile in the troposphere.

  3. ATMOSPHERIC CIRCULATION OF BROWN DWARFS: JETS, VORTICES, AND TIME VARIABILITY

    SciTech Connect (OSTI)

    Zhang, Xi; Showman, Adam P.

    2014-06-10

    A variety of observational evidence demonstrates that brown dwarfs exhibit active atmospheric circulations. In this study we use a shallow-water model to investigate the global atmospheric dynamics in the stratified layer overlying the convective zone on these rapidly rotating objects. We show that the existence and properties of the atmospheric circulation crucially depend on key parameters including the energy injection rate and radiative timescale. Under conditions of strong internal heat flux and weak radiative dissipation, a banded flow pattern comprised of east-west jet streams spontaneously emerges from the interaction of atmospheric turbulence with the planetary rotation. In contrast, when the internal heat flux is weak and/or radiative dissipation is strong, turbulence injected into the atmosphere damps before it can self-organize into jets, leading to a flow dominated by transient eddies and isotropic turbulence instead. The simulation results are not very sensitive to the form of the forcing. Based on the location of the transition between jet-dominated and eddy-dominated regimes, we suggest that many brown dwarfs may exhibit atmospheric circulations dominated by eddies and turbulence (rather than jets) due to the strong radiative damping on these worlds, but a jet structure is also possible under some realistic conditions. Our simulated light curves capture important features from observed infrared light curves of brown dwarfs, including amplitude variations of a few percent and shapes that fluctuate between single-peak and multi-peak structures. More broadly, our work shows that the shallow-water system provides a useful tool to illuminate fundamental aspects of the dynamics on these worlds.

  4. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  5. National Oceanic and Atmospheric Administration, Honolulu, Hawaii |

    Office of Environmental Management (EM)

    Department of Energy Oceanic and Atmospheric Administration, Honolulu, Hawaii National Oceanic and Atmospheric Administration, Honolulu, Hawaii Photo of a Staff Residence at the Pacific Tsunami Warning Center in Hawaii The staff residences at the Pacific Tsunami Warning Center in Hawaii now have solar water heating systems funded by the Federal Energy Management Program (FEMP). The Center is part of the Department of Commerce's National Oceanic and Atmospheric Administration (DOC-NOAA). New

  6. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while...

  7. Precision Determination of Atmospheric Extinction at Optical...

    Office of Scientific and Technical Information (OSTI)

    a technique to implement a new strategy to directly measure variations of atmospheric transmittance at optical wavelengths and application of these measurements to calibration...

  8. Atmosphere to Electrons Program Overview Presentation

    Broader source: Energy.gov [DOE]

    This presentation provides an introduction to the Atmosphere to Electrons (A2e) initiative, including objectives, program areas, and a general timeline of activities.

  9. An Instrumentation Complex for Atmospheric Radiation Measurements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. ...

  10. Session Papers Atmospheric Radiation Measurement Program- Unmanned...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Session Papers Atmospheric Radiation Measurement Program- Unmanned Aerospace Vehicle: The Follow-On Phase J. Vitko, Jr. ARM-UAV Technical Director Sandia National Laboratories ...

  11. Atmospheric Radiation Measurement Tropical Warm Pool International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program ...

  12. Atmospheric Radiation Measurement Convective and Orographically...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convective and Orographically Induced Precipitation Study The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM ...

  13. Atmospheric Radiation Measurement Program facilities newsletter, April 2000

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2000-05-05

    This issue of the Atmospheric Radiation Measurement Program (ARM Program) monthly newsletter is about the ARM Program goal to improve scientific understanding of the interactions of sunlight (solar radiation) with the atmosphere, then incorporate this understanding into computer models of climate change. To model climate accurately all around the globe, a variety of data must be collected from many locations on Earth. For its Cloud and Radiation Testbed (CART) sites, ARM chose locations in the US Southern Great Plains, the North Slope of Alaska, and the Tropical Western Pacific Ocean to represent different climate types around the world. In this newsletter they consider the North Slope of Alaska site, with locations at Barrow and Atqasuk, Alaska.

  14. ORISE: Climate and Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATDD's objectives include: Developing better methods for predicting transport and dispersion of air pollutants. Collecting high-quality measurements and improving the modeling...

  15. Towards a Fine-Resolution Global Coupled Climate System for Prediction...

    Office of Scientific and Technical Information (OSTI)

    58 GEOSCIENCES climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale eddies climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale...

  16. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Oceanography GEOSCIENCES climate numerical modeling earth system model ocean sea ice mesoscale eddies climate numerical modeling earth system model ocean sea ice mesoscale eddies...

  17. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    SciTech Connect (OSTI)

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M.; Dinelli, B. M.; Adriani, A.; D'Aversa, E.; Moriconi, M. L.; Boersma, C.; Allamandola, L. J.

    2013-06-20

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  18. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earths surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earths energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  19. Program Abstracts: Formation and Growth of Atmospheric Aerosols

    SciTech Connect (OSTI)

    Peter H. McMurry; Markku Kulmala

    2006-09-07

    DOE provided $11,000 to sponsor the Workshop on New Particle Formation in the Atmosphere, which was held at The Riverwood Inn and Conference Center near Minneapolis, MN from September 7 to 9, 2006. Recent work has shown that new particle formation is an important atmospheric process that must be better understood due to its impact on cloud cover and the Earth's radiation balance. The conference was an informal gathering of atmospheric and basic scientists with expertise pertinent to this topic. The workshop included discussions of: atmospheric modeling; computational chemistry pertinent to clustering; ions and ion induced nucleation; basic laboratory and theoretical studies of nucleation; studies on neutral molecular clusters; interactions of organic compounds and sulfuric acid; composition of freshly nucleated particles. Fifty six scientists attended the conference. They included 27 senior scientists, 9 younger independent scientists (assistant professor or young associate professor level), 7 postdocs, 13 graduate students, 10 women, 35 North Americans (34 from the U.S.), 1 Asian, and 20 Europeans. This was an excellent informal workshop on an important topic. An effort was made to include individuals from communities that do not regularly interact. A number of participants have provided informal feedback indicating that the workshop led to research ideas and possible future collaborations.

  20. NREL: Process Development and Integration Laboratory - Atmospheric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Platform Capabilities Atmospheric Processing Platform Capabilities The Atmospheric Processing platform in the Process Development and Integration Laboratory offers powerful capabilities with integrated tools for depositing, processing, and characterizing photovoltaic materials and devices. In particular, this platform focuses on different methods to deposit ("write") materials onto a variety of substrates and then further process into optoelectronic materials using rapid

  1. Operation Periods: Single Column Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    climate model. Researchers first use the SCM to efficiently improve submodels of clouds, solar radiation transfer, and atmosphere-surface interactions, then implement the results...

  2. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth's weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  3. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth`s weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  4. On the numerical treatment of problems in atmospheric chemistry

    SciTech Connect (OSTI)

    Aro, C.J.

    1995-09-01

    Atmospheric chemical-radiative-transport (CRT) models are vital in performing research on atmospheric chemical change. Even with the enormous computing capability delivered by massively parallel systems, extended three dimensional CRT simulations are still not computationally feasible. The major obstacle in a CRT model is the nonlinear ODE system describing the chemical kinetics in the model. These ODE systems are usually very stiff and account for anywhere from 75% to 90% of the CPU time required to run a CRT model. In this study, a simple explicit class of time stepping method is developed and demonstrated to be useful in treating chemical ODE systems without the use of a Jacobian matrix. These methods, called preconditioned time differencing methods, are tested on small mathematically idealized problems, box model problems, and full 2-D and 3-D CRT models. The methods are found to be both fast and memory efficient. Studies are performed on both vector and parallel systems. The preconditioned time differencing methods are established as a viable alternative to the more common backward differentiation formulas in terms of CPU speed across architectural platforms.

  5. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  6. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  7. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in warm dense matter experiments with diffuse interface methods in the ALE-AMR code Wangyi Liu ∗ , John Barnard, Alex Friedman, Nathan Masters, Aaron Fisher, Velemir Mlaker, Alice Koniges, David Eder † August 4, 2011 Abstract In this paper we describe an implementation of a single-fluid inter- face model in the ALE-AMR code to simulate surface tension effects. The model does not require explicit information on the physical state of the two phases. The only change to the existing fluid

  8. Antineutrino Oscillations in the Atmospheric Sector

    SciTech Connect (OSTI)

    Himmel, Alexander I.; /Caltech

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for {nu}{sub {mu}} {yields} {bar {nu}}{sub {mu}} transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |{Delta}{bar m}{sub atm}{sup 2}| = (3.36{sub -0.40}{sup +0.46}(stat) {+-} 0.06(syst)) x 10{sup -3} eV{sup 2} and sin{sup 2}(2{bar {theta}}{sub 23}) = 0.860{sub -0.12}{sup +0.11}(stat) {+-} 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  9. COLLOQUIUM: Toward a Better Understanding of the Solar Atmosphere:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combining Observations and Numerical Modeling | Princeton Plasma Physics Lab September 21, 2015, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Toward a Better Understanding of the Solar Atmosphere: Combining Observations and Numerical Modeling Dr. Bart De Pontieu Solar and Astrophysics Laboratory, Lockheed Martin, Inc. Presentation: File MC21SEP2015_BDePontieu_PPT.pptx The study of the Sun, our nearest star, is making rapid progress, through a combination of a host of new space-based

  10. modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  11. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA Earth at Night Video EC, Energy, Energy Efficiency, Global, Modeling, News & Events, Solid-State Lighting, Videos NASA Earth at Night Video Have you ever wondered what the Earth looks like at night? NASA provides a clear, cloud-free view of the Earth at night using the Suomi National Polar-orbiting Partnership Satellite. The satellite utilizes an instrument known as the Visible Infrared Radiometer Suite (VIIRS), which allows the satellite to capture images of a "remarkably detailed

  12. SWiFT site atmospheric characterization

    SciTech Connect (OSTI)

    Kelley, Christopher Lee; Ennis, Brandon Lee

    2016-01-01

    Historical meteorological tall tower data are analyzed from the Texas Tech University 200 m tower to characterize the atmospheric trends of the Scaled Wind Farm Technologies (SWiFT) site. In this report the data are analyzed to reveal bulk atmospheric trends, temporal trends and correlations of atmospheric variables. Through this analysis for the SWiFT turbines the site International Electrotechnical Commission (IEC) classification is determined to be class III-C. Averages and distributions of atmospheric variables are shown, revealing large fluctuations and the importance of understanding the actual site trends as opposed to simply using averages. The site is significantly directional with the average wind speed from the south, and particularly so in summer and fall. Site temporal trends are analyzed from both seasonal (time of the year) to daily (hour of the day) perspectives. Atmospheric stability is seen to vary most with time of day and less with time of year. Turbulence intensity is highly correlated with stability, and typical daytime unstable conditions see double the level of turbulence intensity versus that experienced during the average stable night. Shear, veer and atmospheric stability correlations are shown, where shear and veer are both highest for stable atmospheric conditions. An analysis of the Texas Tech University tower anemometer measurements is performed which reveals the extent of the tower shadow effects and sonic tilt misalignment.

  13. National Atmospheric Release Advisory Center (NARAC) Capabilities for Homeland Security

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J; Baskett, R; Simpson, M

    2010-03-08

    The Department of Energy's National Atmospheric Release Advisory Center (NARAC) provides critical information during hazardous airborne releases as part of an integrated national preparedness and response strategy. Located at Lawrence Livermore National Laboratory, NARAC provides 24/7 tools and expert services to map the spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC graphical products show affected areas and populations, potential casualties, and health effect or protective action guideline levels. LLNL experts produce quality-assured analyses based on field data to assist decision makers and responders. NARAC staff and collaborators conduct research and development into new science, tools, capabilities, and technologies in strategically important areas related to airborne transport and fate modeling and emergency response. This paper provides a brief overview of some of NARAC's activities, capabilities, and research and development.

  14. Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program

    SciTech Connect (OSTI)

    Stokes, G.M. ); Tichler, J.L. )

    1990-06-01

    The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the study of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.

  15. Modeling

    SciTech Connect (OSTI)

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  16. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffuse interface methods in ALE-AMR code with application in modeling NDCX-II experiments Wangyi Liu 1 , John Barnard 2 , Alex Friedman 2 , Nathan Masters 2 , Aaron Fisher 2 , Alice Koniges 2 , David Eder 2 1 LBNL, USA, 2 LLNL, USA This work was part of the Petascale Initiative in Computational Science at NERSC, supported by the Director, Office of Science, Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was performed

  17. MONTE CARLO SIMULATION OF METASTABLE OXYGEN PHOTOCHEMISTRY IN COMETARY ATMOSPHERES

    SciTech Connect (OSTI)

    Bisikalo, D. V.; Shematovich, V. I. [Institute of Astronomy of the Russian Academy of Sciences, Moscow (Russian Federation); Grard, J.-C.; Hubert, B. [Laboratory for Planetary and Atmospheric Physics (LPAP), University of Lige, Lige (Belgium); Jehin, E.; Decock, A. [Origines Cosmologiques et Astrophysiques (ORCA), University of Lige (Belgium); Hutsemkers, D. [Extragalactic Astrophysics and Space Observations (EASO), University of Lige (Belgium); Manfroid, J., E-mail: B.Hubert@ulg.ac.be [High Energy Astrophysics Group (GAPHE), University of Lige (Belgium)

    2015-01-01

    Cometary atmospheres are produced by the outgassing of material, mainly H{sub 2}O, CO, and CO{sub 2} from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical processes lead to the production of other species generally absent from the nucleus, such as OH. Although all comets are different, they all have a highly rarefied atmosphere, which is an ideal environment for nonthermal photochemical processes to take place and influence the detailed state of the atmosphere. We develop a Monte Carlo model of the coma photochemistry. We compute the energy distribution functions (EDF) of the metastable O({sup 1}D) and O({sup 1}S) species and obtain the red (630nm) and green (557.7nm) spectral line shapes of the full coma, consistent with the computed EDFs and the expansion velocity. We show that both species have a severely non-Maxwellian EDF, that results in broad spectral lines and the suprathermal broadening dominates due to the expansion motion. We apply our model to the atmosphere of comet C/1996 B2 (Hyakutake) and 103P/Hartley 2. The computed width of the green line, expressed in terms of speed, is lower than that of the red line. This result is comparable to previous theoretical analyses, but in disagreement with observations. We explain that the spectral line shape does not only depend on the exothermicity of the photochemical production mechanisms, but also on thermalization, due to elastic collisions, reducing the width of the emission line coming from the O({sup 1}D) level, which has a longer lifetime.

  18. Final Report. "Collaborative Project. Contributions of organic compounds to the growth of freshly nucleated atmospheric nanoparticles"

    SciTech Connect (OSTI)

    Smith, James N

    2015-12-23

    This is the final technical report for the portion of the project that took place at the National Center for Atmospheric Research, which covers approximately the first year of the three-year project. During this time we focused primarily on analysis and modeling of DOE-funded observations as well as preparation for laboratory studies of individual processes that contribute to atmospheric new particle formation.

  19. Data Assimilation J. S. Van Baelen(a) National Center for Atmospheric Research(b)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Van Baelen(a) National Center for Atmospheric Research(b) Boulder, CO 80307-3000 Introduction of wind profilers to provide accurate estimates of the momentum and heat fluxes might be their most important contribution yet to the field of atmospheric dynamic studies, especially when those measurements can be ingested into circulation models. In particular, flux measurements in the planetary boundary layer can provide critically needed information on the pel turbulent structures and their effect

  20. Pavlos Kollias Associate Professor Department of Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pavlos Kollias Associate Professor Department of Atmospheric and Oceanic Sciences, McGill University Room 817, Burnside Hall, 805 Sherbrooke Street West, Montreal, Quebec, H3A 0B9...

  1. Operating Experience Level 3, Atmospheric Dispersion Parameter...

    Broader source: Energy.gov (indexed) [DOE]

    5 OE-3 2015-02: Atmospheric Dispersion Parameter (xQ) for Calculation of Co-located Worker Dose This Operating Experience Level 3 (OE-3) document informs the complex of the...

  2. Free Floating Atmospheric Pressure Ball Plasmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Floating Atmospheric Pressure Ball Plasmas G. A. Wurden, Z. Wang, C. Ticos Los Alamos National Laboratory L Al NM 87545 USA Los Alamos, NM 87545 USA C. J. v. Wurden Los Alamos...

  3. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  4. Air Activation Following an Atmospheric Explosion

    SciTech Connect (OSTI)

    Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

    2013-03-13

    In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

  5. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  6. Atmospheric Neutrinos in the MINOS Far Detector

    SciTech Connect (OSTI)

    Howcroft, Caius L.F.

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  7. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    DOE R&D Accomplishments [OSTI]

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  8. Radon Measurements of Atmospheric Mixing (RAMIX) 2006-2014 Final...

    Office of Scientific and Technical Information (OSTI)

    Title: Radon Measurements of Atmospheric Mixing (RAMIX) 2006-2014 Final Campaign Summary ... estimates of regional land-atmosphere carbon exchange (i.e., estimates based on ...

  9. Global Atmospheric Pollution Forum Air Pollutant Emission Inventory...

    Open Energy Info (EERE)

    Atmospheric Pollution Forum Air Pollutant Emission Inventory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Atmospheric Pollution (GAP) Forum Air Pollutant...

  10. Radar range measurements in the atmosphere. (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Radar range measurements in the atmosphere. Citation Details In-Document Search Title: Radar range measurements in the atmosphere. You are accessing a document from the...

  11. Simulation and Theory of Ions at Atmospherically Relevant Aqueous...

    Office of Scientific and Technical Information (OSTI)

    Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces Citation Details In-Document Search Title: Simulation and Theory of Ions at Atmospherically...

  12. A marine biogenic source of atmospheric ice-nucleating particles...

    Office of Scientific and Technical Information (OSTI)

    A marine biogenic source of atmospheric ice-nucleating particles Citation Details In-Document Search Title: A marine biogenic source of atmospheric ice-nucleating particles The ...

  13. A U. S. Department of Energy User Facility Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Department of Energy User Facility AtmosphericRadiationMeasurement Climate Research Facility U.S. Department of Energy Atmospheric Radiation Measurement Program DOESC-ARM...

  14. Session Papers Quality Measurement Experiments Within the Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Measurement Experiments Within the Atmospheric Radiation Measurement Program N. E. ... Introduction The general goal of the Atmospheric RadiationMeasurement (ARM) Program is to ...

  15. ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation Measurement Unmanned ... This program has its origins in the Atmospheric RadiationMeasurement (ARM) Program's long ...

  16. DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  17. Posters Objective Analysis Schemes to Monitor Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Objective Analysis Schemes to Monitor AtmosphericRadiation Measurement Data in Near ... large networks of instruments such as the AtmosphericRadiation Measurement (ARM) Program. ...

  18. Style Guide Atmospheric Radiation Measurement (ARM) Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work ...

  19. A Decade of Atmospheric Research in the Tropical Western Pacific...

    Office of Science (SC) Website

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility has three user ... The Science The Department of Energy's Atmospheric Radiation Measurement (ARM) Climate ...

  20. Critical review of studies on atmospheric dispersion in coastal regions

    SciTech Connect (OSTI)

    Shearer, D.L.; Kaleel, R.J.

    1982-09-01

    This study effort was required as a preliminary step prior to initiation of field measurements of atmospheric dispersion in coastal regions. The Nuclear Regulatory Commission (NRC) is in the process of planning an extensive field measurement program to generate data which will serve as improved data bases for licensing decisions, confirmation of regulations, standards, and guides, and for site characterizations. The study being reported here is an effort directed to obtaining as much information as is possible from existing studies that is relevant toward NRC's objectives. For this study, reports covering research and meteorological measurements conducted for industrial purposes, utility needs, military objectives, and academic studies were obtained and critically reviewed in light of NRC's current data needs. This report provides an interpretation of the extent of existing usable information, an indication of the potential for tailoring existing research toward current NRC information needs, and recommendations for several follow-on studies which could provide valuable additional information through reanalysis of the data. Recommendations are also offered regarding new measurement programs. Emphasis is placed on the identification and acquisition of data from atmospheric tracer studies conducted in coastal regions. A total of 225 references were identified which deal with the coastal atmosphere, including meteorological and tracer measurement programs, theoretical descriptions of the relevant processes, and dispersion models.

  1. Refining climate models

    ScienceCinema (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2014-06-26

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  2. Refining climate models

    SciTech Connect (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2012-10-31

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  3. An Update on Radiative Transfer Model Development at Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    equilibrium (Non-LTE option). * The exponential function and the exact "linear in tau" function are now tabulated at 5000 values, and a table lookup is used in the radiative...

  4. Improved atmosphere-ocean coupled modeling in the tropics for...

    Office of Scientific and Technical Information (OSTI)

    The warming biases from the dynamic heat transport by ocean currents however stay throughout all seasons once they are developed, which are eventually balanced by enhanced energy ...

  5. A Framework for Integrated Modeling of Perturbations in Atmospheres...

    Office of Scientific and Technical Information (OSTI)

    David M. 1 ; Koller, Josef 1 ; Lawrence, Earl C. 1 ; Palmer, David 1 ; Thompson, David C. 1 ; Walker, Andrew C. 1 ; Wohlberg, Brendt E. 1 + Show Author ...

  6. Single-Column Modeling C. J. Walcek Atmospheric Sciences Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a is a function of height in the troposphere and represents the relative humidity depression from 100% at which cloud amount falls off to 37% (e-1): 0.2+a3 a <0.75 a -...

  7. ARM - Publications: Science Team Meeting Documents: Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of mesoscale model cloud simulations of the March 2000 IOP Tselioudis, George NASAGoddard Institute for Space Studies A suite of mesoscale models was used to produce...

  8. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  9. Controlled atmosphere for fabrication of cermet electrodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA)

    1998-01-01

    A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.

  10. Controlled atmosphere for fabrication of cermet electrodes

    DOE Patents [OSTI]

    Ray, S.P.; Woods, R.W.

    1998-08-11

    A process is disclosed for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750 C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5--3000 ppm in order to obtain a desired composition in the resulting composite. 2 figs.

  11. Toward a Minimal Representation of Aerosols in Climate Models...

    Office of Scientific and Technical Information (OSTI)

    Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 Citation Details In-Document Search Title: Toward a Minimal ...

  12. Atmospheric characterization of the hot Jupiter Kepler-13Ab

    SciTech Connect (OSTI)

    Shporer, Avi; O'Rourke, Joseph G.; Knutson, Heather A.; Szab, Gyula M.; Zhao, Ming; Burrows, Adam; Fortney, Jonathan; Agol, Eric; Cowan, Nicolas B.; Desert, Jean-Michel; Howard, Andrew W.; Isaacson, Howard; Lewis, Nikole K.; Showman, Adam P.; Todorov, Kamen O.

    2014-06-10

    Kepler-13Ab (= KOI-13.01) is a unique transiting hot Jupiter. It is one of very few known short-period planets orbiting a hot A-type star, making it one of the hottest planets currently known. The availability of Kepler data allows us to measure the planet's occultation (secondary eclipse) and phase curve in the optical, which we combine with occultations observed by warm Spitzer at 4.5 ?m and 3.6 ?m and a ground-based occultation observation in the K{sub s} band (2.1 ?m). We derive a day-side hemisphere temperature of 2750 160 K as the effective temperature of a black body showing the same occultation depths. Comparing the occultation depths with one-dimensional planetary atmosphere models suggests the presence of an atmospheric temperature inversion. Our analysis shows evidence for a relatively high geometric albedo, A {sub g} = 0.33{sub ?0.06}{sup +0.04}. While measured with a simplistic method, a high A {sub g} is supported also by the fact that the one-dimensional atmosphere models underestimate the occultation depth in the optical. We use stellar spectra to determine the dilution, in the four wide bands where occultation was measured, due to the visual stellar binary companion 1.''15 0.''05 away. The revised stellar parameters measured using these spectra are combined with other measurements, leading to revised planetary mass and radius estimates of M{sub p} = 4.94-8.09 M {sub J} and R{sub p} = 1.406 0.038 R {sub J}. Finally, we measure a Kepler midoccultation time that is 34.0 6.9 s earlier than expected based on the midtransit time and the delay due to light-travel time and discuss possible scenarios.

  13. Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Transfer Model and ARM Data Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model and ARM Data Yue, Qing Dept. of Atomspheric & Oceanic Sciences, UCLA Liou, Kuo-Nan UCLA Ou, Szu-cheng University of California, Los Angeles Kahn, Brian Jet Propulsion Laboratory Yang, Ping Texas A&M Mace, Gerald University of Utah Category: Radiation A thin cirrus cloud thermal infrared radiative transfer model has been developed to interpret AIRS

  14. Connectivity To Atmospheric Release Advisory Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-02-26

    To establish DOE and NNSA connectivity to Atmospheric Release Advisory Capability (ARAC) for sites and facilities that have the potential for releasing hazardous materials sufficient to generate certain emergency declarations and to promote efficient use of resources for consequence assessment activities at DOE sites, facilities, operations, and activities in planning for and responding to emergency events. No cancellations.

  15. Application of lidar to current atmospheric topics

    SciTech Connect (OSTI)

    Sedlacek, A.J. III

    1996-12-31

    The goal of the conference was to address the various applications of lidar to topics of interest in the atmospheric community. Specifically, with the development of frequency-agile, all solid state laser systems, high-quantum-efficiency detectors, increased computational power along with new and more powerful algorithms, and novel detection schemes, the application of lidar to both old and new problems has expanded. This expansion is evidenced by the contributions to the proceedings, which demonstrate the progress made on a variety of atmospheric remote sensing problems, both theoretically and experimentally. The first session focused on aerosol, ozone, and temperature profile measurements from ground-based units. The second session, Chemical Detection, provided applications of lidar to the detection of atmospheric pollutants. Papers in the third session, Wind and Turbulence Measurements, described the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiments, Doppler techniques for ground-based wind profiling and mesopause radial wind and temperature measurements utilizing a frequency-agile lidar system. The papers in the last two sessions, Recent Advanced in Lidar Technology and Techniques and Advanced Operational Lidars, provided insights into novel approaches, materials, and techniques that would be of value to the lidar community. Papers have been processed separately for inclusion on the data base.

  16. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  17. Integrated Climate and Carbon-cycle Model

    Energy Science and Technology Software Center (OSTI)

    2006-03-06

    The INCCA model is a numerical climate and carbon cycle modeling tool for use in studying climate change and carbon cycle science. The model includes atmosphere, ocean, land surface, and sea ice components.

  18. ATOMIC CARBON IN THE UPPER ATMOSPHERE OF TITAN

    SciTech Connect (OSTI)

    Zhang, X.; Yung, Y. L.; Ajello, J. M.

    2010-01-01

    The atomic carbon emission C I line feature at 1657 A ({sup 3} P {sup 0} {sub J}-{sup 3} P{sub J} ) in the upper atmosphere of Titan is first identified from the airglow spectra obtained by the Cassini Ultra-violet Imaging Spectrograph. A one-dimensional photochemical model of Titan is used to study the photochemistry of atomic carbon on Titan. Reaction between CH and atomic hydrogen is the major source of atomic carbon, and reactions with hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}) are the most important loss processes. Resonance scattering of sunlight by atomic carbon is the dominant emission mechanism. The emission intensity calculations based on model results show good agreement with the observations.

  19. The Atmospheric Dynamics Mission on the International Space Station--A new technique for observing winds in the atmosphere

    SciTech Connect (OSTI)

    Ingmann, P.; Readings, C. J.; Knott, K.

    1999-01-22

    For the post-2000 time-frame two general classes of Earth Observation missions have been identified to address user requirements (see e.g. ESA, 1995), namely Earth Watch and Earth Explorer missions. One of the candidate Earth Explorer Missions selected for Phase A study is the Atmospheric Dynamics Mission which is intended to exploit a Doppler wind lidar, ALADIN, to measure winds in clear air (ESA, 1995 and ESA, 1996). It is being studied as a candidate for flight on the International Space Station (ISS) as an externally attached payload. The primary, long-term objective of the Atmospheric Dynamics Mission is to provide observations of wind profiles (e.g. radial wind component). Such data would be assimilated into numerical forecasting models leading to an improvement in objective analyses and hence in Numerical Weather Prediction. The mission would also provide data needed to address some of the key concerns of the World Climate Research Programme (WCRP) i.e. quantification of climate variability, validation and improvement of numerical models and process studies relevant to climate change. The newly acquired data would also help realize some of the objectives of the Global Climate Observing System (GCOS)

  20. Coupled land-ocean-atmosphere processes and South Asian monsoon variability

    SciTech Connect (OSTI)

    Meehl, G.A.

    1994-10-14

    Results from a global coupled ocean-atmosphere climate model and a model with specified tropical convective heating anomalies show that the South Asian monsoon was an active part of the tropical biennial oscillation (TBO). Convective heating anomalies over Africa and the western Pacific Ocean associated with the TBO altered the simulated pattern of atmospheric circulation for the Northern Hemisphere winter mid-latitude over Asia. This alteration in the mid-latitude circulation maintained temperature anomalies over South Asia through winter and helped set up the land-sea temperature contrast for subsequent monsoon development. South Asian snow cover contributed to monsoon strength but was symptomatic of the larger scale alteration in the mid-latitude atmospheric circulation pattern. 36 refs., 5 figs.

  1. Atmospheric Inverse Estimates of Methane Emissions from Central California

    SciTech Connect (OSTI)

    Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

    2008-11-21

    Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

  2. A technique for measuring winds in the lower atmosphere using incoherent Doppler lidar

    SciTech Connect (OSTI)

    DeSlover, D.H.; Slaughter, D.R.; Tulloch, W.M.; White, W.E.

    1993-04-14

    Wind speed is useful from a meteorological standpoint, in atmospheric modeling, and assessment of trace gas dispersal. A continuing effort is involved in improving the sensitivity of such measurements, and is exemplified by the literature. The Mobile Atmospheric Research Laboratory (MARL) at Lawrence Livermore National Laboratory (LLNL) is currently developing a method to improve the sensitivity of wind sounding in the lower through middle atmosphere using a pair of Fabry- Perot interferometers in parallel. This technique, first described by Chanin, et al., for the middle atmosphere using Doppler Rayleigh lidar, can be applied to the lower atmosphere where Mie (aerosol) backscatter is strong. Elastic events, inherent in both Rayleigh and Mie backscatter, dominate the return signal throughout the atmosphere. Both are susceptible to local wind vectors; which will Doppler shift the laser frequency proportional to the wind velocity. A pair of Fabry-Perot interferometers, tuned to either side of the laser frequency, will provide necessary data to determine the shift in frequency of the backscattered signal. Spectral drift and jitter of the laser and a lack of data points to determine the wind vector place limits on the sensitivity of the system. A method to minimize each of these is presented.

  3. A technique for measuring winds in the lower atmosphere using incoherent Doppler lidar

    SciTech Connect (OSTI)

    DeSlover, D.H.; Slaughter, D.R.; Tulloch, W.M.; White, W.E.

    1993-04-14

    Wind speed is useful from a meteorological standpoint, in atmospheric modeling, and assessment of trace gas dispersal. A continuing effort is involved in improving the sensitivity of such measurements, and is exemplified by the literature. The Mobile Atmospheric Research Laboratory (MARL) at Lawrence Livermore National Laboratory (LLNL) is currently developing a method to improve the sensitivity of wind sounding in the lower through middle atmosphere using a pair of Fabry-Perot interferometers in parallel. This technique, first described by Chanin, et al., for the middle atmosphere using Doppler Rayleigh lidar, can be applied to the lower atmosphere where Mie (aerosol) backscatter is strong. Elastic events, inherent in both Rayleigh and Mie backscatter, dominate the return signal throughout the atmosphere. Both are susceptible to local wind vectors; which will Doppler shift the laser frequency proportional to the wind velocity. A pair of Fabry-Perot interferometers, tuned to either side of the laser frequency, will provide necessary data to determine the shift in frequency of the backscattered signal. Spectral drift and jitter of the laser and a lack of data points to determine the wind vector place limits on the sensitivity of the system. A method to minimize each of these is presented.

  4. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect (OSTI)

    Domagal-Goldman, Shawn D.; Segura, Antgona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric contextparticularly redox state and O atom inventoryof the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  5. A TRANSMISSION SPECTRUM OF TITAN'S NORTH POLAR ATMOSPHERE FROM A SPECULAR REFLECTION OF THE SUN

    SciTech Connect (OSTI)

    Barnes, Jason W.; Clark, Roger N.; Sotin, Christophe; Buratti, Bonnie J.; dmkovics, Mt; Appr, Thomas; Rodriguez, Sebastien; Brown, Robert H.; Baines, Kevin H.; Le Moulic, Stphane; Nicholson, Philip D.

    2013-11-10

    Cassini/VIMS T85 observations of a solar specular reflection off of Kivu Lacus (87.4N 241.1E) provide an empirical transmission spectrum of Titan's atmosphere. Because this observation was acquired from short range (33,000 km), its intensity makes it visible within the 2.0, 2.7, and 2.8 ?m atmospheric windows in addition to the 5 ?m window where all previous specular reflections have been seen. The resulting measurement of the total one-way normal atmospheric optical depth (corresponding to haze scattering plus haze and gas absorption) provides strong empirical constraints on radiative transfer models. Using those models, we find that the total haze column abundance in our observation is 20% higher than the Huygens equatorial value. Ours is the first measurement in the 2-5 ?m wavelength range that probes all the way to the surface in Titan's arctic, where the vast majority of surface liquids are located. The specular technique complements other probes of atmospheric properties such as solar occultations and the direct measurements from Huygens. In breaking the degeneracy between surface and atmospheric absorptions, our measured optical depths will help to drive future calculations of deconvolved surface albedo spectra.

  6. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS Anter El Azab MATERIALS SCIENCE dislocation dynamics mesoscale deformation of metals crystal mechanics dislocation...

  7. Gradient Plasticity Model and its Implementation into MARMOT

    SciTech Connect (OSTI)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

  8. Symposium on intermediate-range atmospheric-transport processes and technology assessment. [Lead Abstract

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution. (KRM)

  9. Influence of the atmosphere on remotely sensed reflection from vegetation surfaces

    SciTech Connect (OSTI)

    Simmer, C.; Gerstl, S.A.W.

    1985-01-01

    Multiple scattering of solar radiation in a vegetation canopy is modelled equivalent to absorbing and scattering in a turbid medium with direction-dependent cross sections. Perturbations of plant reflection patterns due to atmospheric effects are computed at different altitudes and compared to the angular reflection characteristics caused by Lambertian surfaces of varying albedoes.

  10. Pulsed atmospheric fluidized bed combustor apparatus

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  11. Atmosphere to Electrons Initiative Takes Shape

    Broader source: Energy.gov [DOE]

    Since DOE launched its Atmosphere to Electrons (A2e) Initiative last July, the A2e executive committee has been developing a comprehensive approach for working with multiple stakeholders (industry, national laboratories, international experts, and universities) over the next 5- to 7 years. In February, they held an external merit review to lay the groundwork for an A2e multi-year strategic research plan.

  12. Emerging Technology for Measuring Atmospheric Aerosol Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology for Measuring Atmospheric Aerosol Properties Bruce Gandrud Greg Kok Droplet Measurement Technologies Darrel Baumgardner Centro de Ciencias de la Atmósfera Universidad Nacional Autónoma de México Acknowledgements * The DMT staff * Bob Bluth and Haflidi Jonsson * Pat Arnott * Greg Roberts and Thanos Nenes * Dave Fahey, Shuka Schwarz and Ru-Shan Gao * NSF, NASA, ONR, NOAA and DOE Introducing Droplet Measurement Technologies * Founded in 1987 * Specializing in aerosol and cloud

  13. Large area atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM); Babayan, Steve E. (Huntington Beach, CA); Hicks, Robert F. (Los Angeles, CA)

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  14. Atmospheric and combustion chemistry of dimethyl ether

    SciTech Connect (OSTI)

    Nielsen, O.J.; Egsgaard, H.; Larsen, E.; Sehested, J.; Wallington, T.J.

    1997-12-31

    It has been demonstrated that dimethyl ether (DME) is an ideal diesel fuel alternative. DME, CH{sub 3}OCH{sub 3}, combines good fuel properties with low exhaust emissions and low combustion noise. Large scale production of this fuel can take place using a single step catalytic process converting CH{sub 4} to DME. The fate of DME in the atmosphere has previously been studied. The atmospheric degradation is initiated by the reaction with hydroxyl radicals, which is also a common feature of combustion processes. Spectrokinetic investigations and product analysis were used to demonstrate that the intermediate oxy radical, CH{sub 3}OCH{sub 2}O, exhibits a novel reaction pathway of hydrogen atom ejection. The application of tandem mass spectrometry to chemi-ions based on supersonic molecular beam sampling has recently been demonstrated. The highly reactive ionic intermediates are sampled directly from the flame and identified by collision activation mass spectrometry and ion-molecule reactions. The mass spectrum reflects the distribution of the intermediates in the flame. The atmospheric degradation of DME as well as the unique fuel properties of a oxygen containing compound will be discussed.

  15. Characterization of extreme precipitation within atmospheric river events over California

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeon, S.; Prabhat,; Byna, S.; Gu, J.; Collins, W. D.; Wehner, M. F.

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  16. Improved determination of the atmospheric parameters of the pulsating sdB star Feige 48

    SciTech Connect (OSTI)

    Latour, M.; Fontaine, G.; Brassard, P.; Green, E. M.; Chayer, P.

    2014-06-10

    As part of a multifaceted effort to better exploit the asteroseismological potential of the pulsating sdB star Feige 48, we present an improved spectroscopic analysis of that star based on new grids of NLTE, fully line-blanketed model atmospheres. To that end, we gathered four high signal-to-noise ratio time-averaged optical spectra of varying spectral resolutions from 1.0 to 8.7 , and we made use of the results of four independent studies to fix the abundances of the most important metals in the atmosphere of Feige 48. The mean atmospheric parameters we obtained from our four spectra of Feige 48 are: T {sub eff} = 29,850 60 K, log g = 5.46 0.01, and log N(He)/N(H) = 2.88 0.02. We also modeled, for the first time, the He II line at 1640 from the STIS archive spectrum of the star, and with this line we found an effective temperature and a surface gravity that match well with the values obtained with the optical data. With some fine tuning of the abundances of the metals visible in the optical domain, we were able to achieve a very good agreement between our best available spectrum and our best-fitting synthetic one. Our derived atmospheric parameters for Feige 48 are in rather good agreement with previous estimates based on less sophisticated models. This underlines the relatively small effects of the NLTE approach combined with line blanketing in the atmosphere of this particular star, implying that the current estimates of the atmospheric parameters of Feige 48 are reliable and secure.

  17. Atmospheric Radiation Measurement Program facilities newsletter, November 2002.

    SciTech Connect (OSTI)

    Holdridge, D. J.

    2002-12-03

    Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle--In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled-down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve submodels of clouds, solar radiation transfer, and atmosphere-surface interactions, then implement the results in large-scale global models. With measured values for a starting point, the SCM predicts atmospheric variables during prescribed time periods. A computer calculates values for such quantities as the amount of solar radiation reaching the surface and predicts how clouds will evolve and interact with incoming light from the sun. Researchers compare the SCM's predictions with actual measurements made during the IOP, then adjust the submodels to make predictions more reliable. A second IOP conducted concurrently with the SCM IOP involves high-altitude, long-duration aircraft flights. The original plan was to use an unmanned aerospace vehicle (UAV), but the National Aeronautics and Space Administration (NASA) aircraft Proteus will be substituted because all UAVs have been deployed elsewhere. The UAV is a small, instrument-equipped, remote-control plane that is operated from the ground by a computer. The Proteus is a manned aircraft, originally designed to carry telecommunications relay equipment, that can be reconfigured for uses such as reconnaissance and surveillance, commercial imaging, launching of small space satellites, and atmospheric research. The plane is designed for two on-board pilots in a pressurized cabin, flying to altitudes up to 65,000 feet for as long as 18 hours. The Proteus has a variable wingspan of 77-92 feet and is 56 feet long. The plane can carry up to 7,260 pounds of equipment, making it a versatile research tool. The Proteus is making measurements at the very top of the cirrus cloud layer to characterize structures of these clouds. These new measurements will provide more accurate, more abundant data for use in improving the representation of clouds in the SCM. 2002-2003 Winter Weather Forecast--Top climate forecasters at the National Oceanic and Atmospheric Administration's (NOAA's) Climate Prediction Center say that an El Nino condition in the tropical Pacific Ocean will influence our winter weather this year. Although this El Nino is not as strong as the event of the 1997-1998 winter season, the United States will nevertheless experience some atypical weather. Strong impacts could be felt in several areas. Nationally, forecasters are predicting warmer-than-average temperatures over the northern tier of states and wetter-than-average conditions in the southern tier of states during the 2002-2003 winter season. Kansas residents should expect warmer and wetter conditions, while Oklahoma will be wetter than average.

  18. Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmosphere to Electrons Enabling the Wind Plant of Tomorrow 2 Atmosphere to Electrons Enabling the Wind Plant of Tomorrow The U.S. Department of Energy's (DOE's) Atmosphere to Electrons (A2e) research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented under- standing of how the Earth's atmosphere interacts with the wind plants and developing innovative technologies to maximize energy extraction from the wind. The A2e initiative

  19. DOE - NNSA/NFO -- Photo Library Atmospheric Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Atmospheric Testing A total of 100 atmospheric tests were conducted at the Nevada Test Site. These tests were conducted to provide information on weapons effects, effects of the height of burst on overpressure, and information on nuclear phenomena to improve the design of nuclear weapons. Atmospheric testing ceased for good in 1963, after which nuclear testing moved underground. Instructions: Click the

  20. Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow a2e-fact-sheet-cover-thumbnail.jpg The U.S. Department of Energy's (DOE's) Atmosphere to Electrons (A2e) research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented understanding of how the Earth's atmosphere interacts with the wind plants and developing innovative technologies to maximize energy

  1. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Troyan, D

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  2. The role of moisture transport between ground and atmosphere in global change

    SciTech Connect (OSTI)

    Rind, D.; Rosenzweig, C.; Stieglitz, M.

    1997-12-31

    Projections of the effect of climate change on future water availability are examined by reviewing the formulations used to calculate moisture transport between the ground and the atmosphere. General circulation models and climate change impact models have substantially different formulations for evapotranspiration, so their projections of future water availability often disagree, even though they use the same temperature and precipitation forecasts. General circulation models forecast little change in tropical and subtropical water availability, while impact models show severe water and agricultural shortages. A comparison of observations and modeling techniques shows that the parameterizations in general circulation models likely lead to an underestimate of the impacts of global warming on soil moisture and vegetation. Such errors would crucially affect the temperature and precipitation forecasts used in impact models. Some impact model evaporation formulations are probably more appropriate than those in general circulation models, but important questions remain. More observations are needed, especially in the vicinity of forests, to determine appropriate parameterizations.

  3. Doppler lidar for measurement of atmospheric wind fields

    SciTech Connect (OSTI)

    Menzies, R.T. )

    1991-01-01

    Measurements of wind fields in the earth's troposphere with daily global coverage is widely considered as a significant advance for forecasting and transport studies. For optimal use by NWP (Numerical Weather Prediction) models the horizontal and vertical resolutions should be approximately 100 km and 1 km, respectively. For boundary layer studies vertical resolution of a few hundred meters seems essential. Earth-orbiting Doppler lidar has a unique capability to measure global winds in the troposphere with the high vertical resolution required. The lidar approach depends on transmission of pulses with high spectral purity and backscattering from the atmospheric aerosol particles or layered clouds to provide a return signal. Recent field measurement campaigns using NASA research aircraft have resulted in collection of aerosol and cloud data which can be used to optimize the Doppler lidar instrument design and measurement strategy. 5 refs.

  4. Phenomena of oscillations in atmospheric pressure direct current glow discharges

    SciTech Connect (OSTI)

    Liu, Fu-cheng; Yan, Wen; Wang, De-zhen

    2013-12-15

    Self-sustained oscillations in a dc glow discharge with a semiconductor layer at atmospheric pressure were investigated by means of a one-dimensional fluid model. It is found that the dc glow discharge initially becomes unstable in the subnormal glow region and gives rise to oscillations of plasma parameters. A variety of oscillations with one or more frequencies have been observed under different conditions. The discharge oscillates between the glow discharge mode and the Townsend discharge mode in the oscillations with large amplitude while operates in the subnormal glow discharge mode all the while in the oscillations with small amplitude. Fourier Transform spectra of oscillations reveal the transition mechanism between different oscillations. The effects of semiconductor conductivity on the oscillation frequency of the dominant mode, gas voltage, as well as the discharge current have also been analyzed.

  5. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect (OSTI)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  6. A General Investigation of Optimized Atmospheric Sample Duration

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Miley, Harry S.

    2012-11-28

    ABSTRACT The International Monitoring System (IMS) consists of up to 80 aerosol and xenon monitoring systems spaced around the world that have collection systems sensitive enough to detect nuclear releases from underground nuclear tests at great distances (CTBT 1996; CTBTO 2011). Although a few of the IMS radionuclide stations are closer together than 1,000 km (such as the stations in Kuwait and Iran), many of them are 2,000 km or more apart. In the absence of a scientific basis for optimizing the duration of atmospheric sampling, historically scientists used a integration times from 24 hours to 14 days for radionuclides (Thomas et al. 1977). This was entirely adequate in the past because the sources of signals were far away and large, meaning that they were smeared over many days by the time they had travelled 10,000 km. The Fukushima event pointed out the unacceptable delay time (72 hours) between the start of sample acquisition and final data being shipped. A scientific basis for selecting a sample duration time is needed. This report considers plume migration of a nondecaying tracer using archived atmospheric data for 2011 in the HYSPLIT (Draxler and Hess 1998; HYSPLIT 2011) transport model. We present two related results: the temporal duration of the majority of the plume as a function of distance and the behavior of the maximum plume concentration as a function of sample collection duration and distance. The modeled plume behavior can then be combined with external information about sampler design to optimize sample durations in a sampling network.

  7. Nonlinear symmetric stability of planetary atmospheres

    SciTech Connect (OSTI)

    Bowman, J.C.; Shepherd, T.G.

    1994-11-01

    The energy-Casimir method is applied to the problem of symmetric stability in the context of a compressible, hydrostatic planetary atmosphere with a general equation of state. Linear stability criteria for symmetric disturbances to a zonally symmetric baroclinic flow are obtained. In the special case of a perfect gas the results of Stevens (1983) are recovered. Nonlinear stability conditions are also obtained that, in addition to implying linear stability, provide an upper bound on a certain positive-definite measure of disturbance amplitude.

  8. Magnetospheric structure and atmospheric Joule heating of habitable planets orbiting M-dwarf stars

    SciTech Connect (OSTI)

    Cohen, O.; Drake, J. J.; Garraffo, C.; Poppenhaeger, K.; Glocer, A.; Ridley, A. J.; Gombosi, T. I.

    2014-07-20

    We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvnic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvnic sectors, while no bow shock forms in the sub-Alfvnic sectors. The planets reside most of the time in the sub-Alfvnic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the intense stellar wind. For the steady-state solution, the heating is about 0.1%-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport. Here we assume constant ionospheric Pedersen conductance similar to that of the Earth. The conductance could be greater due to the intense EUV radiation leading to smaller heating rates. We plan to quantify the ionospheric conductance in future study.

  9. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. The ARM Mobile Facility (AMF) operates at non-permanent sites selected by the ARM Program. Sometimes these sites can become permanent ARM sites, as was the case with Graciosa Island in the Azores. It is now known as the Eastern North Atlantic permanent site. In January 2006 the AMF deployed to Niamey, Niger, West Africa, at the Niger Meteorological Office at Niamey International Airport. This deployment was timed to coincide with the field phases and Special Observing Periods of the African Monsoon Multidisciplinary Analysis (AMMA). The ARM Program participated in this international effort as a field campaign called "Radiative Divergence using AMF, GERB and AMMA Stations (RADAGAST).The primary purpose of the Niger deployment was to combine an extended series of measurements from the AMF with those from the Geostationary Earth Radiation Budget (GERB) Instrument on the Meteosat operational geostationary satellite in order to provide the first well-sampled, direct estimates of the divergence of solar and thermal radiation across the atmosphere. A large collection of data plots based on data streams from specific instruments used at Niamey are available via a link from ARM's Niamey, Niger site information page. Other data can be found at the related websites mentioned above and in the ARM Archive. Users will be requested to create a password, but the plots and data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  10. Cold atmospheric plasma in cancer therapy

    SciTech Connect (OSTI)

    Keidar, Michael; Shashurin, Alex; Volotskova, Olga; Ann Stepp, Mary; Srinivasan, Priya; Sandler, Anthony; Trink, Barry

    2013-05-15

    Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 10{sup 8} electrons, the electrical field in the head vicinity is about 10{sup 7} V/m, and the electron density of the streamer column is about 10{sup 19} m{sup ?3}. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.

  11. New analysis indicates no thermal inversion in the atmosphere of HD 209458b

    SciTech Connect (OSTI)

    Diamond-Lowe, Hannah; Stevenson, Kevin B.; Bean, Jacob L.; Line, Michael R.; Fortney, Jonathan J.

    2014-11-20

    An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We reexamine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119% 0.007%, 0.123% 0.006%, 0.134% 0.035%, and 0.215% 0.008% in the 3.6, 4.5, 5.8, and 8.0 ?m bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.

  12. Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program

    SciTech Connect (OSTI)

    TP Ackerman; AD Del Genio; RG Ellingson; RA Ferrare; SA Klein; GM McFarquhar; PJ Lamb; CN Long; J Verlinde

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARMs Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  13. Pre/post-strike atmospheric assessment system (PAAS)

    SciTech Connect (OSTI)

    Peglow, S. G., LLNL; Molitoris, J. D., LLNL

    1997-02-03

    The Pre/Post-Strike Atmospheric Assessment System was proposed to show the importance of local meteorological conditions in the vicinity of a site suspected of storing or producing toxic agents and demonstrate a technology to measure these conditions, specifically wind fields. The ability to predict the collateral effects resulting from an attack on a facility containing hazardous materials is crucial to conducting effective military operations. Our study approach utilized a combination of field measurements with dispersion modeling to better understand which variables in terrain and weather were most important to collateral damage predictions. To develop the PAAS wind-sensing technology, we utilized a combination of emergent and available technology from micro-Doppler and highly coherent laser systems. The method used for wind sensing is to probe the atmosphere with a highly coherent laser beam. As the beam probes, light is back-scattered from particles entrained in the air to the lidar transceiver and detected by the instrument. Any motion of the aerosols with a component along the beam axis leads to a Doppler shift of the received light. Scanning in a conical fashion about the zenith results in a more accurate and two-dimensional measurement of the wind velocity. The major milestones in the benchtop system development were to verify the design by demonstrating the technique in the laboratory, then scale the design down to a size consistent with a demonstrator unit which could be built to take data in the field. The micro-Doppler heterodyne system we developed determines absolute motion by optically mixing a reference beam with the return signal and has shown motion sensitivity to better than 1 cm/s. This report describes the rationale, technical approach and laboratory testing undertaken to demonstrate the feasibility and utility of a system to provide local meteorological data and predict atmospheric particulate motion. The work described herein was funded by the Laboratory Science and Technology Office as a part of the 1996 Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory.

  14. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect (OSTI)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  15. Emulation to simulate low resolution atmospheric data

    SciTech Connect (OSTI)

    Hebbur Venkata Subba Rao, Vishwas [ORNL; Archibald, Richard K [ORNL; Evans, Katherine J [ORNL

    2012-08-01

    Climate simulations require significant compute power, they are complex and therefore it is time consuming to simulate them. We have developed an emulator to simulate unknown climate datasets. The emulator uses stochastic collocation and multi-dimensional in- terpolation to simulate the datasets. We have used the emulator to determine various physical quantities such as temperature, short and long wave cloud forcing, zonal winds etc. The emulation gives results which are very close to those obtained by simulations. The emulator was tested on 2 degree atmospheric datasets. The work evaluates the pros and cons of evaluating the mean first and inter- polating and vice versa. To determine the physical quantities, we have assumed them to be a function of time, longitude, latitude and a random parameter. We have looked at parameters that govern high stable clouds, low stable clouds, timescale for convection etc. The emulator is especially useful as it requires negligible compute times when compared to the simulation itself.

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluxes for an Evolving Tropical Cloud System Barker, H.W., Atmospheric Environment Service of Canada; Fu, Q., Dalhousie University Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Domain-averaged, broadband solar radiative budgets for an evolving tropical mesoscale convective cloud system are computed by two approximate one-dimensional (1-D) models, which make different assumptions about the structure of unresolved clouds. One model is the standard plane-parallel, homogeneous

  17. Measurements and model calculations of radiative fluxes for the Cabauw

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Site for Atmospheric Research, the Netherlands Measurements and model calculations of radiative fluxes for the Cabauw Experimental Site for Atmospheric Research, the Netherlands Knap, Wouter Royal Netherlands Meteorological Institute KNMI Los, Alexander KNMI Boers, Reinout KNMI Category: Radiation The Cabauw Experimental Site for Atmospheric Research (CESAR), the Netherlands (52.0N, 4.9E), contains an extensive set of instruments for atmospheric research, such as radar, lidar

  18. Atmospheric Dispersion Effects in Weak Lensing Measurements

    SciTech Connect (OSTI)

    Plazas, Andrs Alejandro; Bernstein, Gary

    2012-10-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed the statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.

  19. Atmospheric Dispersion Effects in Weak Lensing Measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Plazas, Andrés Alejandro; Bernstein, Gary

    2012-10-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore »statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less

  20. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ray, J.; Lee, J.; Yadav, V.; Lefantzi, S.; Michalak, A. M.; van Bloemen Waanders, B.

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) and fitting.more »Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO2 (ffCO2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO2 emissions and synthetic observations of ffCO2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  1. North America's net terrestrial carbon exchange with the atmosphere 1990-2009

    SciTech Connect (OSTI)

    King, Anthony W.; Andres, Robert; Davis, Kenneth J.; Hafer, M.; Hayes, Daniel J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, Werner; McGuire, A. David; Vargas, Rodrigo; Wei, Yaxing; West, Tristram O.; Woodall, Chris W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil-fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America over the period (1990-2009). This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North America land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the atmospheric inversion estimate forms the lower bound of that range (a larger land-sink) and the inventory-based estimate the upper (a smaller land sink). Integrating across estimates, a best estimates (i.e., measures of central tendency) are -472 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil-fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. The continents CO2 source to sink ratio for this time period was likely in the range of 4:1 to 3:1.

  2. The charge ratio of the atmospheric muons at low energy

    SciTech Connect (OSTI)

    Bahmanabadi, M.; Samimi, J.; Sheidaei, F.; Ghomi, M. Khakian

    2006-10-15

    From the nature of the muon production processes, it can be seen that the ratio of positive to negative cosmic muons has important information in both 'the atmospheric neutrino problem', and 'the hadronic interactions'. We have carried out an experiment for the measurement of the muon charge ratio in the cosmic ray flux in momentum range 0.112-0.178 GeV/c. The muon charge ratio is found to be 1.21{+-}0.01 with a mean zenith angle of 32 deg. {+-}5 deg. . From the measurements it has been obtained a zenithal angle distribution of muons as I({theta})=I(0)cos{sup n}{theta} with n=1.95{+-}0.13. An asymmetry has been observed in East-West directions because of the geomagnetic field. Meanwhile, in about the same momentum range, positive and negative muons have been studied on the basis of Monte Carlo simulations of the extensive air shower developement (Cosmic Ray Simulations for Kascade), using the Quark Gluon String model with JETs model as generator.

  3. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  4. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    SciTech Connect (OSTI)

    Goossens, M.; Van Doorsselaere, T.; Soler, R.; Verth, G.

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  5. Simulations of cirrus clouds using an explicit cloud model: integratin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASAGoddard Space Flight Center Starr, David NASAGoddard Space Flight Center Yang, Ping Texas A&M Category: Modeling Understanding the atmospheric conditions required to...

  6. Cloud-Resolving Model Simulation and Mosaic Treatment of Subgrid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The development of cloud-resolving models (CRMs) and the extensive Atmospheric Radiation Measurements (ARMs) provide a unique opportunity for shading some lights on this problem. ...

  7. Oxygen detected in atmosphere of Saturn's moon Dione

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of molecular oxygen ions in the upper-most atmosphere of Dione. March 3, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  8. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAtmospheric State, Cloud Microphysics & Radiative Flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux [ ARM Principal Investigator (PI) Data Product ] Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the

  9. ARM - Amount of Greenhouse Gases in the Global Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PlansAmount of Greenhouse Gases in the Global Atmosphere Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Amount of Greenhouse Gases in the Global Atmosphere Objective The objective is to feel the changes of the amounts of greenhouse gases in the global atmosphere. Materials Each group of

  10. Good Is Not Enough: Improving Measurements of Atmospheric Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scatter sunlight, with other particle properties. These properties include particle size, chemical composition, and ability to soak up atmospheric water. By linking these...

  11. Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tmospheric R R esearch esearch 4STAR: 4STAR: Spectrometer Spectrometer for for Sky Sky - - Scanning Scanning , , Sun Sun - - Tracking Tracking Atmospheric Research...

  12. An ensemble constrained variational analysis of atmospheric forcing...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: An ensemble constrained variational analysis of atmospheric forcing data and its application to evaluate clouds in CAM5: Ensemble 3DCVA and Its Application ...

  13. Posters Scanning Raman Lidar Measurements of Atmospheric Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general...

  14. Atmospheric Dispersion Parameter (x/Q) for Calculation of Co...

    Energy Savers [EERE]

    Nuclear facilities that are potentially affected by the situation described above should review their atmospheric dispersion assumptions and NSRD- 2015-TD01. Attachment E of...

  15. Estimating atmospheric parameters and reducing noise for multispectral imaging

    DOE Patents [OSTI]

    Conger, James Lynn

    2014-02-25

    A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.

  16. Atmospheric Correction of Satellite Signal in Solar Domain: ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Correction of Satellite Signal in Solar Domain: Impact of Improved Molecular Spectroscopy A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada B....

  17. Technical Sessions M. C. MacCracken Atmospheric amj Geophysical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... system, including treatment of the deep ocean and horizontal transport by ocean currents 4 Separate, uncoupled, and limited treatment of atmospheric composition, chemical ...

  18. NSRD-2015-TD01, Technical Report for Calculations of Atmospheric...

    Broader source: Energy.gov (indexed) [DOE]

    an evaluation of the technical bases for the default value for the atmospheric dispersion parameter Q. This parameter appears in the calculation of radiological dose at...

  19. ARM - Field Campaign - Evaluation of Routine Atmospheric Sounding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Campaign Links ERASMUS Backgrounder News & Press Images Comments? We would love to hear from...

  20. Radon Measurements of Atmospheric Mixing (RAMIX) 2006-2014 Final...

    Office of Scientific and Technical Information (OSTI)

    Publisher: DOE ARM Climate Research Facility, Pacific Northwest National Laboratory; Richland, Washington. Research Org: DOE Office of Science Atmospheric Radiation Measurement ...