Powered by Deep Web Technologies
Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Atmospheric CO2 concentrations during ancient greenhouse climates were similar  

E-Print Network [OSTI]

Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted atmospheric CO2 concentrationsCO2atm) during Earth's ancient greenhouse episodes is essential for accurately predicting the response of future climate to elevated CO2 levels. Empirical estimates of ½CO2atm

Ahmad, Sajjad

2

Original article Responses to elevated atmospheric CO2 concentration  

E-Print Network [OSTI]

Original article Responses to elevated atmospheric CO2 concentration and nitrogen supply of Quercus* School of Forest Resources and Conservation, University of Florida, 326 Newins-Ziegler Hall, Gainesville. Elevated [CO2] increased biomass production only in the high-N treatment. Fine root/foliage mass ratio

Paris-Sud XI, Universit de

3

atmospheric co2 concentrations: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

4

atmospheric co2 concentration: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

5

Leaf isoprene emission rate as a function of atmospheric CO2 concentration  

E-Print Network [OSTI]

Leaf isoprene emission rate as a function of atmospheric CO2 concentration M I C H A E L J . W I L not show an increase in isoprene emission at the lowest CO2 concentration. However, isoprene emission rates exhibited a 30­40% reduction in isoprene emission rate when grown at 800 ppmv CO2, compared with 400 ppmv CO

Jackson, Robert B.

6

THE INCREASING CONCENTRATION OF ATMOSPHERIC CO2: HOW MUCH, WHEN, AND WHY?  

E-Print Network [OSTI]

consequence of the varying ratio of H to C is that different fuels have different rates of CO2 emissions per emissions when fuel consumption is expressed in energy units. Table 1: CO2 Emission Rates for Fossil community has achieved a broad consensus that: 1.) the atmospheric concentration of carbon dioxide (CO2

7

Sensitivity of plants to changing atmospheric CO2 concentration: From the geological past to the next century  

SciTech Connect (OSTI)

The rate of CO2 assimilation by plants is directly influenced by the concentration of CO2 in the atmosphere, ca. In response to a short-term change in ca, plants adjust stomatal conductance to CO2 and water vapour to maximise carbon gain in terms of the amount of water lost. This is one of several fundamental feedback processes between plants and their environment that govern the exchange of water for carbon. As an environmental variable, ca further has a unique global and historic significance. Although relatively stable and uniform in the short term, global ca has varied substantially on the timescale of thousands to millions of years, and currently is increasing at seemingly an unprecedented rate. This may exert profound impacts on both climate and plant function. Here we utilise extensive data sets and numerous models to develop an integrated, multi-scale assessment of the impact of changing ca on plant carbon dioxide uptake and water use. We find that, overall, the sensitivity of plants to rising or falling atmospheric CO2 concentration is qualitatively similar across all scales considered. It is characterised by an adaptive feedback response that moves towards maximising the rate of return, in the form of carbon, for the water and nitrogen resources invested in the process of carbon assimilation. This is achieved through predictable adjustments to stomatal anatomy and chloroplast biochemistry. Importantly, the long-term response to changing ca can be described by simple equations rooted in the formulation of more commonly studied short-term responses.

Franks, Peter J [University of Sydney, Australia; Adams, Mark A [University of Sydney, Australia; Amthor, Jeffrey S. [U.S. Department of Energy; Barbour, Margaret M [University of Sydney, Australia; Berry, Joseph A [Carnegie Institution of Washington; Ellsworth, David [ORNL; Farquhar, Graham D [Australian National University, Canberra, Australia; Ghannoum, Oula [University of Western Sydney, Australia; Lloyd, Jon [James Cook University; McDowell, Nathan [ORNL; Norby, Richard J [ORNL; Tissue, David Thomas [ORNL; Von Caemmerer, Susanne [Australian National University, Canberra, Australia

2013-01-01T23:59:59.000Z

8

Soil moisture regulates the biological response of elevated atmospheric CO2 concentrations in a coupled  

E-Print Network [OSTI]

and Atmospheric Sciences, Purdue University, United States b Departments of Geography and Atmospheric and Oceanic Sciences, University of California at Los Angeles, United States Received 16 March 2005; received surface model, dynamically coupled to an atmospheric boundary layer and surface energy balance scheme

Niyogi, Dev

9

The response of soil CO2 ux to changes in atmospheric CO2, nitrogen supply and plant diversity  

E-Print Network [OSTI]

three major anthropogenic global changes: atmos- pheric carbon dioxide (CO2) concentration, nitrogen (N atmospheric carbon dioxide (CO2) concentra- tions, increasing rates of nitrogen (N) deposition, and decliningThe response of soil CO2 ¯ux to changes in atmospheric CO2, nitrogen supply and plant diversity J O

Minnesota, University of

10

ATMOSPHERIC CO2 A GLOBAL LIMITING RESOURCE  

E-Print Network [OSTI]

Carbondioxideatmosphericburden,PgC Land use Fossil CO2 from land use emissions ­ not fossil fuel combustion ­ was the dominant CO2 Comparison of CO2 mixing ratio from fossil fuel combustion and land use changes 400 380 360 340 cores 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Forcing,Wm -2 #12;ATMOSPHERIC CO2 EMISSIONS Time series 1700

Schwartz, Stephen E.

11

Summary Human activities are increasing the concentra-tions of atmospheric carbon dioxide ([CO2]) and tropospheric  

E-Print Network [OSTI]

to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) com- pounds, soluble phenolics and condensed tannins. Elevated [CO2] significantly increased lit- ter biomass] and tropospheric [O3] that we observed, combined with changes in litter biomass production, could significantly

12

RESPONSES OF PRIMARY PRODUCTION AND TOTAL CARBON STORAGE TO CHANGES IN CLIMATE AND ATMOSPHERIC CO2 CONCENTRATION  

E-Print Network [OSTI]

Model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total. For contemporary climate with 315 ppmv CO2, TEM estimated that global NPP is 47.9 PgC/yr and global total carbon-q climate and +20.6% (9.9 PgC/yr) for the GISS climate. The responses of global total carbon storage are +17

13

Copyright 2007, SEPM (Society for Sedimentary Geology) A History of Atmospheric CO2  

E-Print Network [OSTI]

Copyright © 2007, SEPM (Society for Sedimentary Geology) A History of Atmospheric CO2 and Its.00, ISBN 978-0-387- 22069-7. Atmospheric carbon dioxide ([CO2 ]) concentrations have varied considerably through time. Some estimates suggest extraordinarily high concentrations of atmospheric CO2 (~ 4000

Springer, Clint J.

14

Observations and simulations of synoptic, regional, and local variations in atmospheric CO2  

E-Print Network [OSTI]

Observations and simulations of synoptic, regional, and local variations in atmospheric CO2 Jih] Synoptic events may play an important role in determining the CO2 spatial distribution and temporal 2001, which had the most significant CO2 concentration variation in our case pool. The CO2

Collett Jr., Jeffrey L.

15

atmospheric co2 content: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

16

atmospheric co2 measurements: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

17

atmospheric co2 variations: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

18

atmospheric co2 mixing: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

19

Falsification Of The Atmospheric CO2 Greenhouse Effects  

E-Print Network [OSTI]

Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3 Contents Abstract 2 1 Introduction 6 1.1 Problem background

Learned, John

20

Implications of "peak oil" for atmospheric CO2 and climate  

E-Print Network [OSTI]

Peaking of global oil production may have a large effect on future atmospheric CO2 amount and climate change, depending upon choices made for subsequent energy sources. We suggest that, if estimates of oil and gas reserves by the Energy Information Administration are realistic, it is feasible to keep atmospheric CO2 from exceeding approximately 450 ppm, provided that future exploitation of the huge reservoirs of coal and unconventional fossil fuels incorporates carbon capture and sequestration. Existing coal-fired power plants, without sequestration, must be phased out before mid-century to achieve this limit on atmospheric CO2. We also suggest that it is important to "stretch" oil reserves via energy efficiency, thus avoiding the need to extract liquid fuels from coal or unconventional fossil fuels. We argue that a rising price on carbon emissions is probably needed to keep CO2 beneath the 450 ppm ceiling.

Kharecha, P A

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CO2 Concentration Global warming is a hot topic these days. One of the factors that may explain increases  

E-Print Network [OSTI]

CO2 Concentration Global warming is a hot topic these days. One of the factors that may explain increases in global temperatures is the amount of carbon dioxide (CO2) in the atmosphere. Is there a relationship between the amount of carbon dioxide in the atmosphere and global temperatures? Data Collection

Carriquiry, Alicia

22

Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere  

E-Print Network [OSTI]

Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere of anthropogenic emission of greenhouse gases into the atmosphere such as CO2, CH4, N2O and CFCs. The CO2 emissions to reflect, adsorb and emit the solar energy. However, the continuous emissions of CO2 into the atmosphere

Montes-Hernandez, German

23

Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation  

E-Print Network [OSTI]

Click Here for Full Article Constraint of the CO2 rise by new atmospheric carbon isotopic increase of atmospheric carbon dioxide (CO2) during the last glacialinterglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (d13 CO2

Chappellaz, Jérôme

24

ATMOSPHERIC CO2 --A GLOBAL LIMITING RESOURCE: HOW MUCH FOSSIL CARBON CAN WE BURN?  

E-Print Network [OSTI]

of emissions from fossil fuel combustion. An increase in atmospheric CO2 would enhance Earth's naturalATMOSPHERIC CO2 -- A GLOBAL LIMITING RESOURCE: HOW MUCH FOSSIL CARBON CAN WE BURN? S. E. Schwartz, NY www.bnl.gov ABSTRACT Carbon dioxide (CO2) is building up in the atmosphere, largely because

25

Decarbonization and the time-delay between peak CO2 emissions and concentrations  

E-Print Network [OSTI]

Carbon-dioxide (CO2) is the main contributor to anthropogenic global warming, and the timing of its peak concentration in the atmosphere is likely to govern the timing of maximum radiative forcing. While dynamics of atmospheric CO2 is governed by multiple time-constants, we idealize this by a single time-constant to consider some of the factors describing the time-delay between peaks in CO2 emissions and concentrations. This time-delay can be understood as the time required to bring CO2 emissions down from its peak to a small value, and is governed by the rate of decarbonizaton of economic activity. This decarbonization rate affects how rapidly emissions decline after having achieved their peak, and a rapid decline in emissions is essential for limiting peak radiative forcing. Long-term mitigation goals for CO2 should therefore consider not only the timing of peak emissions, but also the rate of decarbonization. We discuss implications for mitigation of the fact that the emissions peak corresponds to small bu...

Seshadri, Ashwin K

2015-01-01T23:59:59.000Z

26

Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude  

SciTech Connect (OSTI)

The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 20012010 than in 19611970, suggesting that human land use and management contribute to seasonal changes in the CO2 exchange between the biosphere and the atmosphere.

Zeng, Ning; Zhao, Fang; Collatz, George; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

2014-11-20T23:59:59.000Z

27

6.11 Atmospheric CO2 and O2 During the Phanerozoic: Tools, Patterns, and Impacts  

E-Print Network [OSTI]

6.11 Atmospheric CO2 and O2 During the Phanerozoic: Tools, Patterns, and Impacts DL Royer, Wesleyan.11.2 Models for Atmospheric CO2 and O2 Estimation 251 6.11.2.1 Key Principles 251 6.11.2.2 GEOCARB Models 252.11.2.2.5 Estimates of CO2 and O2 from the GEOCARB model 254 6.11.2.3 Other Models for CO2 and O2 Reconstruction 254 6

Royer, Dana

28

E-Print Network 3.0 - atmospheric co2 emissions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Collection: Environmental Sciences and Ecology 16 EARTH'S CLIMATE, THE GREENHOUSE EFFECT, AND ENERGY Summary: al. Mauna Loa - Keeling 12;ATMOSPHERIC CO2 EMISSIONS Time...

29

Climate sensitivity constrained by CO2 concentrations over the past 420 million years  

E-Print Network [OSTI]

CO2 level on the rate of CO2 uptake by weathering of calcium and magnesium silicate minerals. A rise atmospheric CO2 consump- tion, forming a negative feedback loop. Here, using the logarithmic relation between for the weathering of calcium and magnesium silicates13 , and held this and all other parameters in GEOCARBSULF fixed

Royer, Dana

30

Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to  

E-Print Network [OSTI]

Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to increase from 36 to 70 Pa CO2 before the end of the 21st century. High pCO2 often increases the growth and repro- duction of C3 annuals, whereas low pCO2 decreases growth and may reduce or prevent

Antonovics, Janis

31

Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas1 emissions into the atmosphere2  

E-Print Network [OSTI]

ppm in the pre-industrial revolution to 37942 ppm in 2005, rising faster in the last 10 years (average atmospheric CO2 concentration doubles the pre-industrial revolution concentration (IPCC,49 2007a 36 insu-00351929,version1-12Jan2009 #12;1. Introduction37 38 Coal caused the first industrial

Boyer, Edmond

32

Leaf gas exchange and carbohydrate concentrations in Pinus pinaster plants subjected to elevated CO2  

E-Print Network [OSTI]

to elevated CO2 and a soil drying cycle Catherine Picon-Cochard Jean-Marc Guehl Unité de recherches en.) were acclimated for 2 years under ambient (350 ?mol mol-1)and elevated (700 ?mol mol-1) CO2 concentrations ([CO2]). In the summer of the second growing season, the plants were subjected to a soil drying

Paris-Sud XI, Université de

33

NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE  

SciTech Connect (OSTI)

A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

Sherman, S

2008-09-22T23:59:59.000Z

34

Evaluating atmospheric CO2 inversions at multiple scales over a highly inventoried agricultural landscape  

E-Print Network [OSTI]

Evaluating atmospheric CO2 inversions at multiple scales over a highly inventoried agricultural the results to an inventory of CO2 fluxes. Statistics from densely monitored crop production, consisting primarily of corn and soybeans, provided the backbone of a well studied bottom-up inventory flux estimate

Collett Jr., Jeffrey L.

35

Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions  

E-Print Network [OSTI]

Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions Margret Steinthorsdottir a,*, Barbara Wohlfarth a , Malin E2 reconstruction Betula nana Sweden a b s t r a c t A new stomatal proxy-based record of CO2

Wohlfarth, Barbara

36

Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2  

SciTech Connect (OSTI)

The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

Keeling, Ralph [UCSD-SIO

2014-12-12T23:59:59.000Z

37

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2  

E-Print Network [OSTI]

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with regions of strong anthropogenic CO2 emissions. Citation: Erickson, D. J., III, R. T. Mills, J. Gregg, T. J

Hoffman, Forrest M.

38

arbon dioxide (CO2 atmosphere has increased by  

E-Print Network [OSTI]

on how plants and ecosystems may respond to this change in atmospheric composition, giving us confidence surface and scale up to affect the landscape water balance. Thus, through its impacts on plant water use and water to produce organic compounds. Since photosynthesis is an unsaturated biochemical reaction

39

WELL KNOWN . . . TO A FEW PEOPLE: ATTRIBUTION OF EXCESS ATMOSPHERIC CO2 AND RESULTING GLOBAL TEMPERATURE CHANGE TO  

E-Print Network [OSTI]

century the major source of incremental atmospheric CO2 was not FF emissions but emissions from so to deforestation. LUC CO2 emissions have been a substantial fraction of anthropogenic CO2 emissions throughout the industrial period and even at present are about a third as great as FF emissions. Cumulative LUC CO2

40

Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres  

E-Print Network [OSTI]

Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm....

Venot, Olivia; Bnilan, Yves; Gazeau, Marie-Claire; Hbrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck

2015-01-01T23:59:59.000Z

42

Stabilization of CO2 Atmospheres on Exoplanets around M Dwarf Stars  

E-Print Network [OSTI]

We investigate the chemical stability of CO2-dominated atmospheres of M dwarf terrestrial exoplanets using a 1-dimensional photochemical model. On planets orbiting Sun-like stars, the photolysis of CO2 by Far-UV (FUV) radiation is balanced by the reaction between CO and OH, the rate of which depends on H2O abundance. By comparison, planets orbiting M dwarf stars experience higher FUV radiation compared to planets orbiting Sun-like stars, and they are also likely to have low H2O abundance due to M dwarfs having a prolonged, high-luminosity pre-main sequence (Luger & Barnes 2015). We show that, for H2O-depleted planets around M dwarfs, a CO2-dominated atmosphere is stable to conversion to CO and O2 by relying on a catalytic cycle involving H2O2 photolysis. However, this cycle breaks down for planets with atmospheric hydrogen mixing ratios below ~1 ppm, resulting in ~40% of the atmospheric CO2 being converted to CO and O2 on a time scale of 1 Myr. The increased abundance of O2 also results in high O3 concent...

Gao, Peter; Robinson, Tyler D; Li, Cheng; Yung, Yuk L

2015-01-01T23:59:59.000Z

43

Atmospheric O2//N2 changes, 19932002: Implications for the partitioning of fossil fuel CO2 sequestration  

E-Print Network [OSTI]

Atmospheric O2//N2 changes, 1993­­2002: Implications for the partitioning of fossil fuel CO2. Cassar (2005), Atmospheric O2/N2 changes, 1993­2002: Implications for the partitioning of fossil fuel CO2. The O2/N2 ratio of air is falling because combustion of fossil fuel and biomass both con- sume O2

Ho, David

44

Can a Convective Cloud Feedback Help to Eliminate Winter Sea Ice at High CO2 Concentrations?  

E-Print Network [OSTI]

have remote effects on global climate as well. Accurate forecasting of winter sea ice has significantCan a Convective Cloud Feedback Help to Eliminate Winter Sea Ice at High CO2 Concentrations? DORIAN) ABSTRACT Winter sea ice dramatically cools the Arctic climate during the coldest months of the year and may

Tziperman, Eli

45

Growth, CO2 Consumption, and H2 Production of Anabaena variabilis ATCC 29413-U under Different Irradiances and CO2 Concentrations  

E-Print Network [OSTI]

Phase Medium Irradiance ? H2 ? CO2 Maximum Reported Ratesa) Specific CO 2 uptake rate, ? CO2 (kg CO 2 /kg dry cell/h)

Berberoglu, Halil; Barra, Natasha; Pilon, Laurent; Jay, Jenny

2008-01-01T23:59:59.000Z

46

Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2: Implications for inversion analyses  

E-Print Network [OSTI]

Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2 carbon emissions. We used TransCom3 annual mean simulations from three transport models to evaluate carbon emission and oxidation processes in deriving inversion estimates of CO2 surface fluxes. Citation

Krakauer, Nir Y.

47

Evaluating atmospheric CO2 inversions at multiple scales over a highly-inventoried agricultural landscape.  

SciTech Connect (OSTI)

An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2005 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty-_ve di_erent associated projects were spawned across _ve U.S. agencies over the course of nearly a decade involving hundreds of researchers. The primary objective of the project was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 exchange over the major croplands of the U.S. Statistics from densely monitored crop production, consisting primarily corn and soybeans, provided the backbone of a well-studied\\bottom up"flux estimate that was used to evaluate the atmospheric inversion results. Three different inversion systems, representing spatial scales varying from high resolution mesoscale, to continental, to global, coupled to different transport models and optimization techniques were compared to the bottom up" inventory estimates. The mean annual CO2-C sink for 2007 from the inversion systems ranged from 120 TgC to 170 TgC, when viewed across a wide variety of inversion setups, with the best" point estimates ranging from 145 TgC to 155 TgC. Inversion-based mean C sink estimates were generally slightly stronger, but statistically indistinguishable,from the inventory estimate whose mean C sink was 135 TgC. The inversion results showed temporal correlations at seasonal lengths while week to week correlations remained low. Comparisons were made between atmospheric transport yields of the two regional inversion systems, which despite having different influence footprints in space and time due to differences in underlying transport models and external forcings, showed similarity when aggregated in space and time.

Schuh, Andrew E.; Lauvaux, Thomas; West, Tristram O.; Denning, A.; Davis, Kenneth J.; Miles, Natasha; Richardson, S. J.; Uliasz, Marek; Lokupitiya, Erandathie; Cooley, Dan; Andrews, Arlyn; Ogle, Stephen

2013-05-01T23:59:59.000Z

48

The Anthropogenic Perturbation of Atmospheric CO2 and the Climate System  

E-Print Network [OSTI]

of carbon dioxide (CO2), a powerful greenhouse gas (GHG), are redistributed within the climate system

Fortunat, Joos

49

Sea ice loss and the changing atmospheric CO2 uptake capacity of the Arctic Ocean: Insights1 from the southeastern Canada Basin2  

E-Print Network [OSTI]

Sea ice loss and the changing atmospheric CO2 uptake capacity of the Arctic Ocean: Insights1 from (Arctic Ocean) to act as an atmospheric CO2 sink under the summertime ice-free conditions12 expected in the near future. Beneath a heavily decayed ice cover, we found surprisingly high13 pCO2sw (~290-320 atm

Paris-Sud XI, Universit de

50

Carbon Dynamics in Aquatic Ecosystems in Response to Elevated Atmospheric CO2 and Altered Nutrients Availability  

E-Print Network [OSTI]

. Our results show that elevated CO2 led to enhanced photosynthetic carbon uptake and dissolved organic carbon (DOC) production. DOC occupied larger percentage in total organic carbon production in high CO2 environment. N addition stimulated biomass...

Song, Chao

2011-04-26T23:59:59.000Z

51

Edinburgh Research Explorer Can seasonal and interannual variation in landscape CO2 fluxes  

E-Print Network [OSTI]

Edinburgh Research Explorer Can seasonal and interannual variation in landscape CO2 fluxes be detected by atmospheric observations of CO2 concentrations made at a tall tower? Citation for published in landscape CO2 fluxes be detected by atmospheric observations of CO2 concentrations made at a tall tower

Millar, Andrew J.

52

Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra  

SciTech Connect (OSTI)

A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

Stiller, G.P.; Gunson, M.R.; Lowes, L.L.; Abrams, M.C.; Raper, O.F.; Farmer, C.B.; Zander, R.; Rinsland, C.P. [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany)] [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany); [Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA (United States); [Liege Univ., Liege (Belgium); [NASA, Langley Research Center, Hampton, VA (United States)

1995-02-01T23:59:59.000Z

53

E-Print Network 3.0 - atmospheric co2 face Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in elevated CO2, in contrast... in a ... Source: Oak Ridge National Laboratory Fossil Energy Program Collection: Fossil Fuels 3 Litterfall 15N Abundance Indicates Declining...

54

CO2 Sequestration short course  

SciTech Connect (OSTI)

Given the publics interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

2014-12-08T23:59:59.000Z

55

Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs and fens  

E-Print Network [OSTI]

Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs, glacial, Last Glacial Maximum (LGM), methane (CH4), peatland, wetland. Summary · Wetlands were the largest (n = 8 per treatment) and measured gaseous CH4 flux, pore water dissolved CH4 and volatile fatty acid

Gauci, Vincent

56

Effects of CO2 Concentration and Inoculum Stage on Chlorella sorokiniana  

E-Print Network [OSTI]

potential, in Second annual conference on carbon sequestration. Alexandria, VA - US. p. 11. Olaizola, M, there has been renewed interest in microalgal biofixation of CO2 as a viable CO2 sequestration technology carbon to stimulate microalgal growth. This process is being investigated by scientists funded by the U

Arnold, Jonathan

57

Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2  

SciTech Connect (OSTI)

The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

Stephen C. Piper; Ralph F. Keeling

2012-01-03T23:59:59.000Z

58

E-Print Network 3.0 - atmospheric co2 laser Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CE of CO2 laser-produced Sn plasmas. The estimated CE of the laser to 13.5 nm radiation, within a 2... % bandwidth, using ... Source: Harilal, S. S. - School of Nuclear...

59

Hypothesized Link Between Glacial/Interglacial Atmospheric CO2 Cycles and Storage/Release of CO2-Rich Fluids From Deep-Sea Sediments  

E-Print Network [OSTI]

volcanic vents. Hydrothermal systems in the Pacific act as both a source and sink for carbon by changes in 14 C production alone and therefore appears to require a flux of 14 C- depleted carbon of CO2 regulation. Here we explore the possibility that hydrothermal sources of CO2 contributed

Stott, Lowell

60

E-Print Network 3.0 - atmospheric 14co2 constraints Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liu Summary: with an emphasis on macroscopic constraint of atmospheric vertical heat transport. This work focuses on exploring... MACROSCOPIC VIEW ON VERTICAL ATMOSPHERIC...

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Millennial-scale oscillations in the Southern Ocean in response to atmospheric CO2 increase  

E-Print Network [OSTI]

time scale under several global warming long-term scenarios, stabilized at different levels ranging: millennial oscillations climate variability abrupt change global warming ice sheets ocean behaviour Southern from 2 to 7 times the pre-industrial CO2 level. The climate response is mainly analyzed in terms

lvarez-Solas, Jorge

62

CO2 Emissions Mitigation and Technological Advance: An  

E-Print Network [OSTI]

PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology of atmospheric CO2 concentrations at 450 parts per million by volume (ppmv) and 550 ppmv in MiniCAM. Each

63

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nations CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

64

ESRP 285 Climate Chart Questions: Your Name _______________________________ You saw Figure 1 in class. It shows estimates of atmospheric CO2 in black, average earth  

E-Print Network [OSTI]

in class. It shows estimates of atmospheric CO2 in black, average earth temperature in red and sea level be much higher than normal every 100,000 yrs #12;5. Figure 1 shows the average earth temperature

Ford, Andrew

65

Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics  

E-Print Network [OSTI]

The atmospheric greenhouse effect, an idea that authors trace back to the traditional works of Fourier 1824, Tyndall 1861 and Arrhenius 1896 and is still supported in global climatology essentially describes a fictitious mechanism in which a planetary atmosphere acts as a heat pump driven by an environment that is radiatively interacting with but radiatively equilibrated to the atmospheric system. According to the second law of thermodynamics such a planetary machine can never exist. Nevertheless, in almost all texts of global climatology and in a widespread secondary literature it is taken for granted that such mechanism is real and stands on a firm scientific foundation. In this paper the popular conjecture is analyzed and the underlying physical principles are clarified. By showing that (a) there are no common physical laws between the warming phenomenon in glass houses and the fictitious atmospheric greenhouse effects, (b) there are no calculations to determine an average surface temperature of a planet, ...

Gerlich, Gerhard

2007-01-01T23:59:59.000Z

66

A Study in the Use of a High Concentration of CO2 in a Modified  

E-Print Network [OSTI]

atmospheres 10 preserve fish during shipment has been limited because of eco- nomic and technical reasons. Recenl interest in the use a/the technique to ship Pacific salmon. Oncorhynchus spp.. aUla/ Alaska has shipped in large containers or vans. Harold 1. Barnett, Research Chemist; Frederick E. Stone. Chemist

67

Response of the middle atmosphere to CO2 doubling: results from the Canadian  

E-Print Network [OSTI]

an increase in solar heating and a decrease in infrared cooling, with the latter accounting for up to 15 of SST changes are a warmer troposphere, a warmer and higher tropopause, cell-like structures of heating on the associated warming effects in the troposphere. In the middle atmosphere, the en- hanced infrared emission

Wirosoetisno, Djoko

68

Soret Effect Study on High-Pressure CO2-Water Solutions Using UV-Raman Spectroscopy and a Concentric-Tube Optical Cell  

SciTech Connect (OSTI)

Spatially resolved deep-UV Raman spectroscopy was applied to solutions of CO2 and H2O (or D2O), which were subject to a temperature gradient in a thermally regulated high-pressure concentric-tube Raman cell in an attempt to measure a Soret effect in the vicinity of the critical point of CO2. Although Raman spectra of solutions of CO2 dissolved in D2O at 10 MPa and temperatures near the critical point of CO2 had adequate signal-to-noise and spatial resolution to observe a Soret effect with a Soret coefficient with magnitude of |ST| > 0.03, no evidence for an effect of this size was obtained for applied temperature gradients up to 19oC. The presence of 1 M NaCl did not make a difference. In contrast, the concentration of CO2 dissolved in H2O was shown to vary significantly across the temperature gradient when excess CO2 was present, but the results could be explained simply by the variation in CO2 solubility over the temperature range and not to kinetic factors. For mixtures of D2O dissolved in scCO2 at 10 MPa and temperatures close to the critical point of CO2, the Raman peaks for H2O were too weak to measure with confidence even at the limit of D2O solubility.

Windisch, Charles F.; McGrail, B. Peter; Maupin, Gary D.

2012-01-01T23:59:59.000Z

69

Soil Profile CO2 concentrations in forested and clear cut sites in Nova Scotia, Canada  

E-Print Network [OSTI]

concentration; Forest management; Soil temperature; Soil moisture; Soil texture 1. Introduction Subsurface2 production and transport caused by the complex interactions between biotic and environmental content, and soil physical characteristics (transport factors) mainly determine the variability

Beltrami, Hugo

70

CO2-CONCENTRATING MECHANISMS OF THE POTENTIALLY TOXIC DINOFLAGELLATE PROTOCERATIUM RETICULATUM (DINOPHYCEAE,  

E-Print Network [OSTI]

et al. 2005). Most microalgae overcome or reduce this limitation by activating carbon-concentrating mechanisms (CCMs; Giordano et al. 2005). A typical biophysical CCM in eukaryotic microalgae includes systems microalgae have been largely overlooked in this respect. With rare exceptions (Berman-Frank et al. 1998

71

Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss  

E-Print Network [OSTI]

Ocean) due to sea ice loss Brent G.T. Else,1 R.J. Galley,1 B. Lansard,2 D.G. Barber,1 K. Brown,3 L as an atmospheric CO2 sink under the summertime ice-free conditions expected in the near future. Beneath a heavily decayed ice cover, we found surprisingly high pCO2sw (~290320 matm), considering that surface water

Boyer, Edmond

72

Synthesis and characterization of ferrite materials for thermochemical CO2 splitting using concentrated solar energy.  

SciTech Connect (OSTI)

The Sunshine to Petrol effort at Sandia aims to convert carbon dioxide and water to precursors for liquid hydrocarbon fuels using concentrated solar power. Significant advances have been made in the field of solar thermochemical CO{sub 2}-splitting technologies utilizing yttria-stabilized zirconia (YSZ)-supported ferrite composites. Conceptually, such materials work via the basic redox reactions: Fe{sub 3}O{sub 4} {yields} 3FeO + 0.5O{sub 2} (Thermal reduction, >1350 C) and 3FeO + CO{sub 2} {yields} Fe{sub 3}O{sub 4} + CO (CO{sub 2}-splitting oxidation, <1200 C). There has been limited fundamental characterization of the ferrite-based materials at the high temperatures and conditions present in these cycles. A systematic study of these composites is underway in an effort to begin to elucidate microstructure, structure-property relationships, and the role of the support on redox behavior under high-temperature reducing and oxidizing environments. In this paper the synthesis, structural characterization (including scanning electron microscopy and room temperature and in-situ x-ray diffraction), and thermogravimetric analysis of YSZ-supported ferrites will be reported.

Stechel, Ellen Beth; Ambrosini, Andrea; Coker, Eric Nicholas; Rodriguez, Mark Andrew; Miller, James Edward; Evans, Lindsey R.; Livers, Stephanie

2010-07-01T23:59:59.000Z

73

Synthesis and characterization of metal oxide materials for thermochemical CO2 splitting using concentrated solar energy.  

SciTech Connect (OSTI)

The Sunshine to Petrol effort at Sandia aims to convert carbon dioxide and water to precursors for liquid hydrocarbon fuels using concentrated solar power. Significant advances have been made in the field of solar thermochemical CO{sub 2}-splitting technologies utilizing yttria-stabilized zirconia (YSZ)-supported ferrite composites. Conceptually, such materials work via the basic redox reactions: Fe{sub 3}O{sub 4} {yields} 3FeO + 0.5O{sub 2} (Thermal reduction, >1350 C) and 3FeO + CO{sub 2} {yields} Fe{sub 3}O{sub 4} + CO (CO{sub 2}-splitting oxidation, <1200 C). There has been limited fundamental characterization of the ferrite-based materials at the high temperatures and conditions present in these cycles. A systematic study of these composites is underway in an effort to begin to elucidate microstructure, structure-property relationships, and the role of the support on redox behavior under high-temperature reducing and oxidizing environments. In this paper the synthesis, structural characterization (including scanning electron microscopy and room temperature and in-situ x-ray diffraction), and thermogravimetric analysis of YSZ-supported ferrites will be reported.

Stechel, Ellen Beth; Ambrosini, Andrea; Coker, Eric Nicholas; Rodriguez, Mark Andrew; Miller, James Edward; Evans, Lindsey R.; Livers, Stephanie

2010-07-01T23:59:59.000Z

74

Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies  

E-Print Network [OSTI]

Owing to their wavelengths dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. Especially, the potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf the CO2 ice particles show no strong effective scattering greenhouse eff...

Kitzmann, D; Rauer, H

2013-01-01T23:59:59.000Z

75

Coupled Vadose Zone and Atmospheric Surface-Layer Transport of CO2 from Geologic Carbon Sequestration Sites  

E-Print Network [OSTI]

1999. Reichle, D. et al. , Carbon sequestration research andfrom geologic carbon sequestration sites: unsaturated zoneof CO 2 from Geologic Carbon Sequestration Sites Curtis M.

Oldenburg, Curtis M.; Unger, Andre J.A.

2004-01-01T23:59:59.000Z

76

Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites  

E-Print Network [OSTI]

CO 2 from geologic carbon sequestration sites, Vadose Zoneleakage at geologic carbon sequestration sites Fotini K.assessment for geologic carbon sequestration sites. We have

Chow, Fotini K.

2009-01-01T23:59:59.000Z

77

Coupled Vadose Zone and Atmospheric Surface-Layer Transport of CO2 from Geologic Carbon Sequestration Sites  

SciTech Connect (OSTI)

Geologic carbon dioxide (CO{sub 2}) sequestration is being considered as a way to offset fossil-fuel-related CO{sub 2} emissions to reduce the rate of increase of atmospheric CO{sub 2} concentrations. The accumulation of vast quantities of injected carbon dioxide (CO{sub 2}) in geologic sequestration sites may entail health and environmental risks from potential leakage and seepage of CO{sub 2} into the near-surface environment. We are developing and applying a coupled subsurface and atmospheric surface-layer modeling capability built within the framework of the integral finite difference reservoir simulator TOUGH2. The overall purpose of modeling studies is to predict CO{sub 2} concentration distributions under a variety of seepage scenarios and geologic, hydrologic, and atmospheric conditions. These concentration distributions will provide the basis for determining above-ground and near-surface instrumentation needs for carbon sequestration monitoring and verification, as well as for assessing health, safety, and environmental risks. A key feature of CO{sub 2} is its large density ({rho} = 1.8 kg m{sup -3}) relative to air ({rho} = 1.2 kg m{sup -3}), a property that may allow small leaks to cause concentrations in air above the occupational exposure limit of 4 percent in low-lying and enclosed areas such as valleys and basements where dilution rates are low. The approach we take to coupled modeling involves development of T2CA, a TOUGH2 module for modeling the multicomponent transport of water, brine, CO{sub 2}, gas tracer, and air in the subsurface. For the atmospheric surface-layer advection and dispersion, we use a logarithmic vertical velocity profile to specify constant time-averaged ambient winds, and atmospheric dispersion approaches to model mixing due to eddies and turbulence. Initial simulations with the coupled model suggest that atmospheric dispersion quickly dilutes diffuse CO{sub 2} seepage fluxes to negligible concentrations, and that rainfall infiltration causes CO{sub 2} to return to the subsurface as a dissolved component in infiltrating rainwater.

Oldenburg, Curtis M.; Unger, Andre J.A.

2004-03-29T23:59:59.000Z

78

Soil CO2 production and surface flux at four climate observatories in eastern Canada  

E-Print Network [OSTI]

Soil CO2 production and surface flux at four climate observatories in eastern Canada David Risk December 2002. [1] Soils constitute the largest terrestrial source of carbon dioxide to the atmosphere the climatic controls on soil respiration. We use subsurface CO2 concentrations, surface CO2 flux and detailed

79

Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-08-05T23:59:59.000Z

80

INVESTIGATIONS ON THE IMPACTS OF LAND-COVER CHANGES AND/OR INCREASED CO2 CONCENTRATIONS ON FOUR REGIONAL WATER CYCLES  

E-Print Network [OSTI]

REGIONAL WATER CYCLES AND THEIR INTERACTIONS WITH THE GLOBAL WATER CYCLE By Zhao Li RECOMMENDED-COVER CHANGES AND/OR INCREASED CO2 CONCENTRATIONS ON FOUR REGIONAL WATER CYCLES AND THEIR INTERACTIONS WITH THE GLOBAL WATER CYCLE A THESIS Presented to the Faculty of the University of Alaska Fairbanks In Partial

Moelders, Nicole

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

atmospheric radon concentration: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The present author has kept observation for concentrations of atmospheric radon, radon progeny and thoron progeny for several years at the campus of Fukushima Medical...

82

Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration  

E-Print Network [OSTI]

atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial-effective and environmentally friendly method for CO2 sequestration. INTRODUCTION Carbon dioxide concentrations and CO2 Sequestration Xiuping Zhu,* Marta C. Hatzell, and Bruce E. Logan Department of Civil

83

E-Print Network 3.0 - atmosphere box model Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology 6 Investigating Large-scale Contemporary CO2 Sources and Sinks Using Inverse Transport Modelling Applied to CO2, CH4 and CO Summary: in atmospheric CO2 concentration. 3....

84

Influence of clouds and diffuse radiation on ecosystem-atmosphere CO 2 and CO 18 O exchanges  

E-Print Network [OSTI]

cover, radiation, meteorological and water isotope data tohere, radiation, cloud property, and aerosol data wereData were obtained from the Atmospheric Radiation

2009-01-01T23:59:59.000Z

85

IMPACTS OF INTERACTING ELEVATED ATMOSPHERIC CO2 AND O3 ON THE STRUCTURE AND FUNCTIONING OF A NORTHERN FOREST ECOSYSTEM: OPERATING AND DECOMMISSIONING THE ASPEN FACE PROJECT  

SciTech Connect (OSTI)

Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are atmospheric CO2 and tropospheric O3. As the only free air, large-scale manipulative experiment studying the interaction of elevated CO2 and O3 on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region. The project was established in 1997 to address the overarching scientific question: What are the effects of elevated [CO2] and [O3], alone and in combination, on the structure and functioning of northern hardwood forest ecosystems? From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem to compare the responses of early-successional, rapid-growing shade intolerant trembling aspen and paper birch to those of a late successional, slower growing shade tolerant sugar maple. Fumigations with elevated CO2 (560 ppm during daylight hours) and O3 (approximately 1.5 x ambient) were conducted during the growing season from 1998 to 2008, and in 2009 through harvest date. Response variables quantified during the experiment included growth, competitive interactions and stand dynamics, physiological processes, plant nutrient status and uptake, tissue biochemistry, litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. In 2009, we conducted a detailed harvest of the site. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. Throughout the experiment, aspen and birch photosynthesis increased with elevated CO2 and tended to decrease with elevated O3, compared to the control. In contrast to aspen and birch, maple photosynthesis was not enhanced by elevated CO2. Elevated O3 did not cause significant reductions in maximum photosynthesis in birch or maple. In addition, photosynthesis in ozone sensitive clones was affected to a much greater degree than that in ozone tolerant aspen clones. Treatment effects on photosynthesis contributed to CO2 stimulation of aboveground and belowground growth that was species and genotype dependent, with birch and aspen being most responsive and maple being least responsive. The positive effects of elevated CO2 on net primary productivity NPP were sustained through the end of the experiment, but negative effects of elevated O3 on NPP had dissipated during the final three years of treatments. The declining response to O3 over time resulted from the compensatory growth of O3-tolerant genotypes and species as the growth of O3-sensitive individuals declined over time. Cumulative NPP over the entire experiment was 39% greater under elevated CO2 and 10% lower under elevated O3. Enhanced NPP under elevated CO2 was sustained by greater root exploration of soil for growth-limiting N, as well as more rapid rates of litter decomposition and microbial N release during decay. Results from Aspen FACE clearly indicate that plants growing under elevated carbon dioxide, regardless of community type or ozone level, obtained significantly greater amounts of soil N. These results indicate that greater plant growth under elevated carbon dioxide has not led to progressive N limitation. If similar forests growing throughout northeastern North America respond in the same manner, then enhanced forest NPP under elevated CO2 may be sustained for a longer duration than previously thought, and the negative effect of elevated O3 may be diminished by compensatory growth of O3-tolerant plants as they begin to dominate forest communities. By the end of the experiment, elevated CO2 increased ecosystem C content by 11%, whereas

Burton, Andrew J. [Michigan Technological University; Zak, Donald R. [University of Michigan; Kubiske, Mark E. [USDA Forest Service; Pregitzer, Kurt S. [University of Idaho

2014-06-30T23:59:59.000Z

86

Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System  

SciTech Connect (OSTI)

NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developed and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon dioxide is split instead of water, which has a lower heat of formation. Hydrogenation with co-electrolysis offers the best overall power performance for two reasons: it requires no external water, and it produces its own water, which reduces the power requirement for co-electrolysis.

Michael G. McKellar; Manohar S. Sohal; Lila Mulloth; Bernadette Luna; Morgan B. Abney

2010-03-01T23:59:59.000Z

87

Modeled atmospheric radon concentrations from uranium mines  

SciTech Connect (OSTI)

Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

Droppo, J.G.

1985-04-01T23:59:59.000Z

88

Complex Flow and Composition Path in CO2 Injection Schemes from Density Effects  

E-Print Network [OSTI]

causes for acceleration in global warming. Because fossil fuels will be a critical component of the world (1) allows for reduction of the CO2 concentration in the atmosphere to reduce global warming and (2) has become more attractive from the standpoint of global warming concerns. The increase in the CO2

Firoozabadi, Abbas

89

Responses of primary production and total carbon storage to changes in climate and atmospheric CO? concentration  

E-Print Network [OSTI]

The authors used the terrestrial ecosystem model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total carbon storage to changes in climate and atmospheric CO2, driven by the ...

Xiao, Xiangming.; Kicklighter, David W.; Melillo, Jerry M.; McGuire, A. David.; Stone, Peter H.; Sokolov, Andrei P.

90

Modeling of CO2 storage in aquifers  

E-Print Network [OSTI]

Feb 6, 2011 ... atmosphere, increasing its temperature (greenhouse effect). To minimize climate change impacts, geological sequestration of CO2 is an...

santos,,,

91

Rampant Negativity No Reason to be so Glum Predictably, as scientific evidence clarifies that the dangerous level of atmospheric CO2 is at  

E-Print Network [OSTI]

, with the exact peak CO2 depending on the true amount of oil and gas reserves, about which there is some dispute depending on the magnitude of true undiscovered oil reserves. People can help assure that maximum CO2 stays

Hansen, James E.

92

Co2 geological sequestration  

SciTech Connect (OSTI)

Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

Xu, Tianfu

2004-11-18T23:59:59.000Z

93

CO2 sequestration | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 sequestration CO2 sequestration Leads No leads are available at this time. Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on...

94

Modeling of Near-Surface Leakage and Seepage of CO2 for Risk Characterization  

SciTech Connect (OSTI)

The injection of carbon dioxide (CO2) into deep geologic carbon sequestration sites entails risk that CO2 will leak away from the primary storage formation and migrate upwards to the unsaturated zone from which it can seep out of the ground. We have developed a coupled modeling framework called T2CA for simulating CO2 leakage and seepage in the subsurface and in the atmospheric surface layer. The results of model simulations can be used to calculate the two key health, safety, and environmental (HSE) risk drivers, namely CO2 seepage flux and nearsurface CO2 concentrations. Sensitivity studies for a subsurface system with a thick unsaturated zone show limited leakage attenuation resulting in correspondingly large CO2 concentrations in the shallow subsurface. Large CO2 concentrations in the shallow subsurface present a risk to plant and tree roots, and to humans and other animals in subsurface structures such as basements or utility vaults. Whereas CO2 concentrations in the subsurface can be high, surfacelayer winds reduce CO2 concentrations to low levels for the fluxes investigated. We recommend more verification and case studies be carried out with T2CA, along with the development of extensions to handle additional scenarios such as calm conditions, topographic effects, and catastrophic surface-layer discharge events.

Oldenburg, Curtis M.; Unger, Andre A.J.

2004-02-18T23:59:59.000Z

95

ARM - Measurement - CO2 concentration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related InformationAcid RainTheimagegovMeasurementsBlack

96

electroseismic monitoring of co2 sequestration: a finite element ...  

E-Print Network [OSTI]

Keywords: Electroseismic Modeling, Poroelasticity, CO2 sequestration, Finite element methods. 2000 AMS ... carbon dioxide emissisons into the atmosphere.

Fabio Zyserman

97

Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach  

E-Print Network [OSTI]

CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study...

Akinnikawe, Oyewande

2012-10-19T23:59:59.000Z

98

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

SciTech Connect (OSTI)

''Hidden'' geothermal systems are systems devoid of obvious surface hydrothermal manifestations. Emissions of moderate-to-low solubility gases may be one of the primary near-surface signals from these systems. We investigate the potential for CO2 detection and monitoring below and above ground in the near-surface environment as an approach to exploration targeting hidden geothermal systems. We focus on CO2 because it is the dominant noncondensible gas species in most geothermal systems and has moderate solubility in water. We carried out numerical simulations of a CO2 migration scenario to calculate the magnitude of expected fluxes and concentrations. Our results show that CO2 concentrations can reach high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are predominantly controlled by CO2 uptake by photosynthesis, production by root respiration, microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include the infrared gas analyzer, the accumulation chamber method, the eddy covariance method, hyperspectral imaging, and light detection and ranging. To meet the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring techniques with statistical analysis and modeling strategies. The proposed monitoring plan initially focuses on rapid, economical, reliable measurements of CO2 subsurface concentrations and surface fluxes and statistical analysis of the collected data. Based on this analysis, are as with a high probability of containing geothermal CO2 anomalies can be further sampled and analyzed using more expensive chemical and isotopic methods. Integrated analysis of all measurements will determine definitively if CO2 derived from a deep geothermal source is present, and if so, the spatial extent of the anomaly. The suitability of further geophysical measurements, installation of deep wells, and geochemical analyses of deep fluids can then be determined based on the results of the near surface CO2 monitoring program.

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-19T23:59:59.000Z

99

Prospects for Subsurface CO2 Sequestration  

E-Print Network [OSTI]

to be around 28 Gigatons. For the last few centuries prior to the industrial revolution, the average atmospheric CO2 concentra- tion was about 280 ppm.2 Since the onset of the industrial rev- olution, there has

Firoozabadi, Abbas

100

Atmospheric Mercury Concentrations Near Salmon Falls Creek Reservoir - Phase 1  

SciTech Connect (OSTI)

Elemental and reactive gaseous mercury (EGM/RGM) were measured in ambient air concentrations over a two-week period in July/August 2005 near Salmon Falls Creek Reservoir, a popular fishery located 50 km southwest of Twin Falls, Idaho. A fish consumption advisory for mercury was posted at the reservoir in 2002 by the Idaho Department of Health and Welfare. The air measurements were part of a multi-media (water, sediment, precipitation, air) study initiated by the Idaho Department of Environmental Quality and the U.S. Environmental Protection Agency (EPA) Region 10 to identify potential sources of mercury contamination to the reservoir. The sampling site is located about 150 km northeast of large gold mining operations in Nevada, which are known to emit large amounts of mercury to the atmosphere (est. 2,200 kg/y from EPA 2003 Toxic Release Inventory). The work was co-funded by the Idaho National Laboratorys Community Assistance Program and has a secondary objective to better understand mercury inputs to the environment near the INL, which lies approximately 230 km to the northeast. Sampling results showed that both EGM and RGM concentrations were significantly elevated (~ 30 70%, P<0.05) compared to known regional background concentrations. Elevated short-term RGM concentrations (the primary form that deposits) were likely due to atmospheric oxidation of high EGM concentrations, which suggests that EGM loading from upwind sources could increase Hg deposition in the area. Back-trajectory analyses indicated that elevated EGM and RGM occurred when air parcels came out of north-central and northeastern Nevada. One EGM peak occurred when the air parcels came out of northwestern Utah. Background concentrations occurred when the air was from upwind locations in Idaho (both northwest and northeast). Based on 2003 EPA Toxic Release Inventory data, it is likely that most of the observed peaks were from Nevada gold mine sources. Emissions from known large natural mercury sources in that area cannot account for the observed EGM peaks due to their diffuse source geometry and the large (170 km) transport distance involved. The EGM peak originating from northwestern Utah air may be from three known mercury sources west of Salt Lake City (Kennecott, US Magnesium, Clean Harbors Aragonite) and/or the 1600 MW coal-fired Intermountain Power plant near Delta. However, the relative importance of these short-term peaks for long-term watershed mercury loading (critical factor affecting fish concentrations) is not known, and there is a need to better quantify the annual frequency and magnitude of these different inputs over a longer period of time.

M. L. Abbott

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Formation Damage due to CO2 Sequestration in Saline Aquifers  

E-Print Network [OSTI]

Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

Mohamed, Ibrahim Mohamed 1984-

2012-10-25T23:59:59.000Z

102

Locating Nearby Sources of Air Pollution by Nonparametric Regression of Atmospheric Concentrations on Wind Direction  

E-Print Network [OSTI]

Locating Nearby Sources of Air Pollution by Nonparametric Regression of Atmospheric Concentrations. #12;1 Locating Nearby Sources of Air Pollution by Nonparametric Regression of Atmospheric. * Corresponding author. Submitted to Atmospheric Environment July, 2001. Abstract The relationship

Washington at Seattle, University of

103

Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO2 levels: The added value of the isotope  

E-Print Network [OSTI]

biogas fluxes, which was expected in clay covers presenting fissures, through which CH4 is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH4 oxidation., 1998). The main com- ponents of biogas are CH4 (50­60%) and carbon dioxide (CO2; 40­50%). A major

104

EMSL - CO2 sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

co2-sequestration en Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on Alumina. http:www.emsl.pnl.govemslwebpublications...

105

A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage  

SciTech Connect (OSTI)

Conventional coal-burning power plants are major contributors of excess CO2 to the atmospheric inventory. Because such plants are stationary, they are particularly amenable to CO2 capture and disposal by deep injection into confined geologic formations. However, the energy penalty for CO2 separation and compression is steep, and could lead to a 30-40 percent reduction in useable power output. Integrated gas combined cycle (IGCC) plants are thermodynamically more efficient, i.e.,produce less CO2 for a given power output, and are more suitable for CO2 capture. Therefore, if CO2 capture and deep subsurface disposal were to be considered seriously, the preferred approach would be to build replacement IGCC plants with integrated CO2 capture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and nitrogen compounds, which are of concern, as their release into the atmosphere leads to the formation of urban ozone and acid rain, the destruction of stratospheric ozone, and global warming. Coal also contains many trace elements that are potentially hazardous to human health and the environment. During CO2 separation and capture, these constituents could inadvertently contaminate the separated CO2 and be co-injected. The concentrations and speciation of the co-injected contaminants would differ markedly, depending on whether CO2 is captured during the operation of a conventional or an IGCC plant, and the specific nature of the plant design and CO2 separation technology. However, regardless of plant design or separation procedures, most of the hazardous constituents effectively partition into the solid waste residue. This would lead to an approximately two order of magnitude reduction in contaminant concentration compared with that present in the coal. Potential exceptions are Hg in conventional plants, and Hg and possibly Cd, Mo and Pb in IGCC plants. CO2 capture and injection disposal could afford an opportunity to deliberately capture environmental pollutants in the gaseous state and co-inject them with the CO2, in order to mitigate problems associated with solid waste disposal in surface impoundments. Under such conditions, the injected pollutant concentrations could be roughly equivalent to their concentrations in the coal feed. The fate of the injected contaminants can only be determined through further testing and geochemical modeling. However, the concentrations of inadvertent contaminants in the injected CO2 would probably be comparable to their ambient concentrations in confining shales of the injection zone. In general, the aqueous concentrations of hazardous constituents in distal parts of the injection zone, regardless of source, are likely to be limited by equilibrium with respect to coexisting solid phases under the acid conditions induced by the dissolved high pressure CO2, rather than by the initial concentrations of injected contaminants. Therefore, even if a deliberate policy of contaminant recovery and injection were to be pursued, water quality in USDWs would more likely depend on thermodynamic controls governing aqueous contaminant concentrations in the presence of high pressure CO2 rather than in the injected CO2. The conclusions reached in this report are preliminary, and should be confirmed through more comprehensive data evaluation and supporting geochemical modeling.

Apps, J.A.

2006-02-23T23:59:59.000Z

106

E-Print Network 3.0 - atmospheric carbon isotope Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of terrestrial ecosystems to rising Summary: to rising concentrations of atmospheric carbon dioxide (CO2 ), and the resulting global changes,are still... from the...

107

Experimental assessment of CO2-mineral-toxic ion interactions in a1 simplified freshwater aquifer: Implications for CO2 leakage from deep2  

E-Print Network [OSTI]

ton CO2/year),2 caused mainly by fossil fuel combustion, have led to concerns about global warming. To,version1-21Jun2013 #12;5 Introduction1 Unregulated CO2 emissions into the Earth's atmosphere (about 22x1093 maintain the atmospheric CO2 level below 500 ppm, CO2 emissions will have to be stabilized4

Paris-Sud XI, Université de

108

Experimental Assessment of CO2Mineral-Toxic Ion Interactions in a Simplified Freshwater Aquifer: Implications for CO2 Leakage from  

E-Print Network [OSTI]

by fossil fuel combustion, have led to concerns about global warming. To maintain the atmospheric CO2 level. INTRODUCTION Unregulated CO2 emissions into the Earth's atmosphere (about 22 ? 109 ton CO2/year), caused mainly below 500 ppm, CO2 emissions will have to be stabilized at current levels, although they are forecast

109

Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification  

E-Print Network [OSTI]

electricity is a major source of CO2 in the atmosphere, but the capture and sequestration of CO2 from flue gas two-thirds), CO2, water vapor, oxygen, and minor components such as carbon monoxide, nitrogen oxides

110

Time dependences of atmospheric Carbon dioxide fluxes  

E-Print Network [OSTI]

Understanding the lifetime of CO2 in the atmosphere is critical for predictions regarding future climate changes. A simple mass conservation analysis presented here generates tight estimations for the atmosphere's retention time constant. The analysis uses a leaky integrator model that combines the observed deficit (only less than 40% of CO2 produced from combustion of fossil fuels is actually retained in the atmosphere, while more than 60% is continuously shed) with the exponential growth of fossil fuel burning. It reveals a maximum characteristic time of less than 23 year for the transfer of atmospheric CO2 to a segregation sink. This time constant is further constrained by the rapid disappearance of 14C after the ban of atmospheric atomic bomb tests, which provides a lower limit of 18 years for this transfer. The study also generates evaluations of other CO2 fluxes, exchange time constants and volumes exchanged. Analysis of large harmonic oscillations of atmospheric CO2 concentration, often neglected in th...

DeSalvo, Riccardo

2014-01-01T23:59:59.000Z

111

Capturing CO2 via reactions in nanopores.  

SciTech Connect (OSTI)

This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z [University of Cincinnati; Dong, J. H. [University of Cincinnati

2008-10-01T23:59:59.000Z

112

CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration  

E-Print Network [OSTI]

CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration amounts of CO2 to the atmosphere, while the magnitude of CO2 degassing from small streams remains a major was as terrestrially-respired CO2 dissolved within soils, over 90% of which evaded to the atmosphere within headwater

Lehmann, Johannes

113

Synthesis, characterization and performance of single-component CO2-binding organic liquids (CO2BOL) for post combustion CO2 capture  

SciTech Connect (OSTI)

Carbon dioxide (CO2) emission to the atmosphere will increase significantly with the shift to coal powered plants for energy generation. This increase in CO2 emission will contribute to climate change. There is need to capture and sequester large amounts of CO2 emitted from these coal power plants in order to mitigate the environmental effects. Here we report the synthesis, characterization and system performance of multiple third generation CO2 binding organic liquids (CO2BOLs) as a solvent system for post combustion gas capture. Alkanolguanidines and alkanolamidines are single component CO2BOLs that reversibly bind CO2 chemically as liquid zwitterionic amidinium / guanidinium alkylcarbonates. Three different alkanolguanidines and alkanolamidines were synthesized and studied for CO2 capacity and binding energetics. Solvent performance of these three CO2BOLs was evaluated by batch-wise CO2 uptake and release over multiple cycles. Synthesis of CO2BOLs, characterization, CO2 uptake, selectivity towards CO2 as well as solvent tolerance to water will be discussed.

Koech, Phillip K.; Heldebrant, David J.; Rainbolt, James E.; Zheng, Feng; Smurthwaite, Tricia D.

2010-03-31T23:59:59.000Z

114

Toward Verifying Fossil Fuel CO2 Emissions with the CMAQ Model: Motivation, Model Description and Initial Simulation  

SciTech Connect (OSTI)

Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known signal-to-noise problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in the meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.

Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R.; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A.

2014-03-14T23:59:59.000Z

115

Long-time evolution of sequestered CO$_2$ in porous media  

E-Print Network [OSTI]

CO$_2$ sequestration in subsurface reservoirs is important for limiting atmospheric CO$_2$ concentrations. However, a complete physical picture able to predict the structure developing within the porous medium is lacking. We investigate theoretically reactive transport in the long-time evolution of carbon in the brine-rock environment. As CO$_2$ is injected into a brine-rock environment, a carbonate-rich region is created amid brine. Within the carbonate-rich region minerals dissolve and migrate from regions of high concentration to low concentration, along with other dissolved carbonate species. This causes mineral precipitation at the interface between the two regions. We argue that precipitation in a small layer reduces diffusivity, and eventually causes mechanical trapping of the CO$_2$. Consequently, only a small fraction of the CO$_2$ is converted to solid mineral; the remainder either dissolves in water or is trapped in its original form. We also study the case of a pure CO$_2$ bubble surrounded by bri...

Cohen, Yossi

2014-01-01T23:59:59.000Z

116

Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux.  

SciTech Connect (OSTI)

Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO2 flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated. Using an experimental Populus deltoides plantation as a model system, we tested the hypothesis that a substantial portion of the CO2 released from belowground autotrophic respiration remains within tree root systems and is transported aboveground through the xylem stream rather than diffusing into the soil atmosphere. On a daily basis, the amount of CO2 that moved upward from the root system into the stem via the xylem stream (0.26 mol CO2 m?2 d?1) rivalled that which diffused from the soil surface to the atmosphere (0.27 mol CO2 m?2 d?1). We estimated that twice the amount of CO2 derived from belowground autotrophic respiration entered the xylem stream as diffused into the soil environment. Our observations indicate that belowground autotrophic respiration consumes substantially more carbohydrates than previously recognized and challenge the paradigm that all root-respired CO2 diffuses into the soil atmosphere.

Aubrey, Doug, P.; Teskey, Robert, O.

2009-07-01T23:59:59.000Z

117

What does stabilizing greenhouse gas concentrations mean?  

E-Print Network [OSTI]

The MIT Emissions Prediction and Policy Analysis (EPPA) model is applied to an exploration of the national emissions obligations that would be required to stabilize atmospheric CO2 concentrations at levels now under active ...

Jacoby, Henry D.; Schmalensee, Richard.; Reiner, David M.

118

Atmospheric Environment 34 (2000) 2851}2863 Resolution of pollutant concentrations in the boundary layer  

E-Print Network [OSTI]

Atmospheric Environment 34 (2000) 2851}2863 Resolution of pollutant concentrations in the boundary 1999 Abstract This paper investigates the solution of a 3D atmospheric dispersion problem using a time to solve the atmospheric di!usion equation. Preliminary studies of dispersion from a single source

Utah, University of

119

CO2 levels during the greenhouse of the Paleocene  

E-Print Network [OSTI]

to reconstruct CO2 concentrations during this period of global warming 56 million years ago. 56 million year oldCO2 levels during the greenhouse of the Paleocene Eocene Thermal Maximum (PETM) Francesca A. Mc, Boulder #12;Estimating paleopCO2 0 5 10 15 20 25 30 0 500 1000 1500 2000 2500 3000 Meter Level, start

Shull, Kenneth R.

120

Electrolysis byproduct D2O provides a third way to mitigate CO2  

SciTech Connect (OSTI)

Rapid atomic power deployment may be possible without using fast breeder reactors or making undue demands on uranium resource. Using by-product D2O and thorium-U233 in CANDU and RBMK piles may circumvent need for either fast breeder reactors or seawater uranium. Atmospheric CO2 is presently increasing 2.25%/year in proportion to 2.25%/year exponential fossil fuel consumption increase. Roughly 1/3 anthropologic CO2 is removed by various CO2 sinks. CO2 removal is modelled as being proportional to 45-year-earlier CO2 amount above 280 ppm-C Water electrolysis produces roughly 0.1 kg-D20/kWe-y. Material balance assumes each electrolysis stage increases D2O bottoms concentration times 3. Except for first two electrolysis stages, all water from hydrogen consumption is returned to electrolysis. The unique characteristic of this process is the ability to economically burn all deuterium-enriched H2 in vehicles. Condensate from vehicles returns to appropriate electrolysis stage. Fuel cell condensate originally from reformed natural gas may augment second-sage feed. Atomic power expansion is 5%/year, giving 55000 GWe by 2100. World primary energy increases 2.25%/y, exceeding 4000 EJ/y by 2100. CO2 maximum is roughly 600 ppm-C around year 2085. CO2 declines back below 300 ppm-C by 2145 if the 45-year-delay seawater sink remains effective.

Schenewerk, William Ernest [self, Los Angeles, CA (United States)

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

GLOBAL CHANGE ECOLOGY -ORIGINAL PAPER Atmospheric change alters foliar quality of host trees  

E-Print Network [OSTI]

Abstract This study examined the independent and interactive effects of elevated carbon dioxide (CO2 on aspen than birch. Interestingly, elevated CO2 largely offset decreased herbivore performance under of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) (IPCC 2007). Concentrations of carbon dioxide

122

Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event  

E-Print Network [OSTI]

November 2012; revised 14 October 2012; accepted 21 November 2012. [1] Rising CO2 concentration the adjacent shelf contributed to northern Gulf shelf waters changing from a net sink to a net source of CO2 in the water can be exchanged with the atmosphere with approximately ~100 Tg of CO2 degassed from U.S. streams

Grossman, Ethan L.

123

amine methanol, ether . Amine amine CO2  

E-Print Network [OSTI]

, . promoter . 1.2 CO2 HBGS process CO2 , CO2 . CO2 , IGCC (Integrated Gasification Combined Cycle) (fuel gas) CO2 . IGCC CO2 H2 . (gasification) CO H2 (water gas shift reaction) H2 CO CO2 . CO2 H2 turbine H2 . H2 , CO2 #12;. fuel gas CO2 40%, 60% H2 . fuel gas (gasification) HBGS process . CO2 CO2 . venture

Hong, Deog Ki

124

Natural and industrial analogues for leakage of CO2 from storagereservoirs: identification of features, events, and processes and lessonslearned  

SciTech Connect (OSTI)

The injection and storage of anthropogenic CO2 in deepgeologic formations is a potentially feasible strategy to reduce CO2emissions and atmospheric concentrations. While the purpose of geologiccarbon storage is to trap CO2 underground, CO2 could migrate away fromthe storage site into the shallow subsurface and atmosphere if permeablepathways such as well bores or faults are present. Large-magnitudereleases of CO2 have occurred naturally from geologic reservoirs innumerous volcanic, geothermal, and sedimentary basin settings. Carbondioxide and natural gas have also been released from geologic CO2reservoirs and natural gas storage facilities, respectively, due toinfluences such as well defects and injection/withdrawal processes. Thesesystems serve as natural and industrial analogues for the potentialrelease of CO2 from geologic storage reservoirs and provide importantinformation about the key features, events, and processes (FEPs) that areassociated with releases, as well as the health, safety, andenvironmental consequences of releases and mitigation efforts that can beapplied. We describe a range of natural releases of CO2 and industrialreleases of CO2 and natural gas in the context of these characteristics.Based on this analysis, several key conclusions can be drawn, and lessonscan be learned for geologic carbon storage. First, CO2 can bothaccumulate beneath, and be released from, primary and secondaryreservoirs with capping units located at a wide range of depths. Bothprimary and secondary reservoir entrapments for CO2 should therefore bewell characterized at storage sites. Second, many natural releases of CO2have been correlated with a specific event that triggered the release,such as magmatic fluid intrusion or seismic activity. The potential forprocesses that could cause geomechanical damage to sealing cap rocks andtrigger the release of CO2 from a storage reservoir should be evaluated.Third, unsealed fault and fracture zones may act as fast and directconduits for CO2 flow from depth to the surface. Risk assessment shouldtherefore emphasize determining the potential for and nature of CO2migration along these structures. Fourth, wells that are structurallyunsound have the potential to rapidly release large quantities of CO2 tothe atmosphere. Risk assessment should therefore be focused on thepotential for both active and abandoned wells at storage sites totransport CO2 to the surface, particularly at sites with depleted oil orgas reservoirs where wellsare abundant. Fifth, the style of CO2 releaseat the surface varies widely between and within different leakage sites.In rare circumstances, the release of CO2 can be a self-enhancing and/oreruptive process; this possibility should be assessed in the case of CO2leakage from storage reservoirs. Sixth, the hazard to human health hasbeen small in most cases of large surface releases of CO2. This could bedue to implementation of public education and CO2 monitoring programs;these programs should therefore be employed to minimize potential health,safety, and environmental effects associated with CO2 leakage. Finally,while changes in groundwater chemistry were related to CO2 leakage due toacidification and interaction with host rocks along flow paths, watersremained potable in most cases. Groundwaters should be monitored forchanges that may be associated with storage reservoirleakage.

Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

2006-02-28T23:59:59.000Z

125

Reply to "Comment on 'Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics' by Joshua B. Halpern, Christopher M. Colose, Chris Ho-Stuart, Joel D. Shore, Arthur P. Smith, J\\"org Zimmermann"  

E-Print Network [OSTI]

It is shown that the notorious claim by Halpern et al. recently repeated in their comment that the method, logic, and conclusions of our "Falsification Of The CO2 Greenhouse Effects Within The Frame Of Physics" would be in error has no foundation. Since Halpern et al. communicate our arguments incorrectly, their comment is scientifcally vacuous. In particular, it is not true that we are "trying to apply the Clausius statement of the Second Law of Thermodynamics to only one side of a heat transfer process rather than the entire process" and that we are "systematically ignoring most non-radiative heat flows applicable to Earth's surface and atmosphere". Rather, our falsification paper discusses the violation of fundamental physical and mathematical principles in 14 examples of common pseudo-derivations of fictitious greenhouse effects that are all based on simplistic pictures of radiative transfer and their obscure relation to thermodynamics, including but not limited to those descriptions (a) that define a "Pe...

Gerlich, Gerhard; 10.1142/S0217979210055573

2010-01-01T23:59:59.000Z

126

Assessment of Metal Concentrations in Atmospheric Particulates from  

E-Print Network [OSTI]

.1.1.1 Meteorological 7 3.1.1.2 Low Pressure Impactor 8 3.1.2 Field Quality Assurance/Quality Control 8 3 contribution from atmospheric sources may represent a significant portion of the total metal load

127

Optimal synthesis of a pressure swing adsorption process for CO2 capture  

SciTech Connect (OSTI)

The emission of carbon dioxide from cement industry and power plants that burn fossil fuels is the major cause for the accumulation of CO2 in the atmosphere, which causes long-range environmental problems. One option to mitigate the emission of CO2 is to capture it from the emission sources and store it to the ocean or depleted oil field or use it for enhanced oil recovery. CO2 recovery has been achieved by gas absorption employing solutions of carbonates and alkanolamines. However, this process is energy-intensive for the regeneration of solvent and also faces problems due to corrosion. Recently, the pressure swing adsorption (PSA) process has been considered as an alternative to the absorption process. PSA processes have been widely applied for the removal of CO2 from various feed mixtures, such as CO2 in the steam reformer off gas, landfill gas and natural gas. In all these commercial PSA cycles, the weakly adsorbed component in the mixture is the desired product and enriching the strongly adsorbed CO2 is not a concern. On the other hand, for the capture of CO2 for sequestration, it is necessary to concentrate the CO2 to a high purity to reduce the compression and transportation cost. Thus, it is necessary to develop a PSA cycle by which a high-purity product for the strongly adsorbed component with a high recovery is obtained. A multitude of PSA cycles and adsorbents have been developed for producing highly pure heavy component (CO2) from feedstock with low CO2 concentration. Kikkinides et al. suggested a 4-bed 4-step process with activated carbon as the sorbent and could recover 68% of CO2 at 99.997% purity. Chue et al. compared activated carbon and zeolite 13X on a 3-bed 7-step process and concluded that the latter is better than the former for CO2 recovery. However, the CO2 recovery was low in their process due to the lack of a countercurrent step in the chosen cycle. Choi et al. reported more than 70% CO2 recovery at more than 90% purity for a modified 3-bed 7-step cycle. However, they solved a very small two variable optimization problem, thus being a specialized case. Zhang et al. have given justifications for using a specific cyclic component step in the adsorption cycle in the context of CO2 capture by using a simplistic mathematical model for the PSA process. Reynolds et al. have suggested a variety of stripping PSA cycles for CO2 recovery at high temperature using a hydrotalcite-like adsorbent. In this study, a two-bed superstructure of the PSA process has been developed to optimally synthesize an appropriate cycle for CO2 capture. The superstructure considers all the possible operating steps in a PSA cycle with two beds. An optimal control problem with a PDE-based model for PSA system has been formulated in which different steps within a cycle are realized with the help of control variables changing with time. The optimization problem has been solved for three different cases of maximizing CO2 recovery (for a given purity), maximizing feed throughput and minimizing specific power (for a given level of CO2 purity and recovery). Current results indicate the superstructure-based approach as a promising technique for deriving optimal PSA cycles. Different cases with different number of control variables indicate convergence to a particular kind of PSA cycle with over 99% purity and recovery of CO2. The results obtained from optimization problem will also be compared with the optimal PSA cycle simulated more accurately in a dynamic simulation environment.

Agarwal, A.; Biegler, L.; Zitney, S.

2008-01-01T23:59:59.000Z

128

Synthesis of Scrub-Oak Ecosystem Responses to Elevated CO2  

SciTech Connect (OSTI)

This report summarizes a synthesis project of a long-term global change experiment conducted at the Kennedy Space Center, Florida, investigating how increasing concentrations of atmospheric carbon dioxide (CO2) influences the functioning of a fire-dominated scrub-oak ecosystem. The experiment began in 1996 and ended in 2007. Results presented here summarize the effects of elevated CO2 on plant growth, soil processes, carbon and nutrient cycling, and other responses. Products include archived data from the experiment, as well as six publications in the peer-reviewed literature.

Hungate, Bruce

2014-11-07T23:59:59.000Z

129

Concentrations and Snow-Atmosphere Fluxes of Reactive Nitrogen at Summit, Greenland  

E-Print Network [OSTI]

1 Concentrations and Snow-Atmosphere Fluxes of Reactive Nitrogen at Summit, Greenland J. W. Munger AT SUMMIT, GREENLAND 2 Abstract. Concentrations and fluxes of NOy (total reactive nitrogen), ozone concentra at Summit, Greenland. Median NOy concentrations declined from 947 ppt in May to 444 ppt by July. NOy fluxes

130

Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel  

E-Print Network [OSTI]

Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel Matthew Eisaman and their impact Technology: Extracting CO2 from seawater Application: Renewable liquid fuel #12;Outline: Renewable liquid fuel #12;The data on atmospheric CO2 2000 years ago http://cdiac.ornl.gov/trends/co2

Homes, Christopher C.

131

E-Print Network 3.0 - atmospheric oxygen concentration Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

< 1 2 3 4 5 > >> 1 Sulfur and oxygen isotope composition of the atmosphere in Saxony (Germany) Tichomirowa et al. Summary: Conclusions Mean SO2 concentrations in 2003 12;Sulfur...

132

Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st Century: A meta-analysis of the literature  

SciTech Connect (OSTI)

Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deep geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity global geologic CO2 storage capacity could be: 35,300 GtCO2 of theoretical capacity; 13,500 GtCO2 of effective capacity; 3,900 GtCO2, of practical capacity; and 290 GtCO2 of matched capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a lack of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.

Dooley, James J.

2013-08-05T23:59:59.000Z

133

CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir-A Numerical Simulation Study  

E-Print Network [OSTI]

injection into saline aquifer, CO2-EOR, CO2-ECBM, and so forth, have been studied to minimize the CO22-EOR, CO2-ECBM, and so forth, have been studied to minimize the CO2 release into the atmosphere1 CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir- A Numerical Simulation

Mohaghegh, Shahab

134

Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration Literature Review  

SciTech Connect (OSTI)

Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ?fG298 and/or log Kr,298 are available for essentially all of these compounds. However, log Kr,T or heat capacity values at temperatures above 298 K exist for less than approximately one-third of these compounds. Because the temperatures of host formations that will be used for CO2 injection and sequestration will be at temperatures in the range of 50C to 100C or greater, the lack of high temperature thermodynamic values for key carbonate compounds especially minerals, will impact the accuracy of some modeling calculations.

Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

2010-09-28T23:59:59.000Z

135

E-Print Network 3.0 - air-sea co2 flux Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

co2 flux Search Powered by Explorit Topic List Advanced Search Sample search results for: air-sea co2 flux Page: << < 1 2 3 4 5 > >> 1 Scott Miller Atmospheric Sciences Research...

136

CO2 interaction with aquifer and seal on geological timescales: the Miller oilfield, UK North Sea  

E-Print Network [OSTI]

Carbon Capture and Storage (CCS) has been identified as a feasible technology to reduce CO2 emissions whilst permitting the continued use of fossil fuels. Injected CO2 must remain efficiently isolated from the atmosphere ...

Lu, Jiemin

2008-01-01T23:59:59.000Z

137

10-MW Supercritical-CO2 Turbine  

Broader source: Energy.gov [DOE]

This fact sheet describes a 10-megawatt supercritical carbon dioxide turbine project, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The research team, led by NREL, intends to showcase the turbomachinery for a new cyclethe supercritical carbon dioxide (s-CO2) Brayton cycle. The cycle is being optimized and tested at conditions representing dry cooling in desert environments, thereby accurately simulating real-world concentrating solar power system operating conditions.

138

Evaluating impacts of CO2 gas intrusion into a confined sandstone aquifer: Experimental results  

SciTech Connect (OSTI)

Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the results from the batch experiments showed that the High Plains sediments mobilized only low concentrations of trace elements (potential contaminants), which were detected occasionally in the aqueous phase during these experiments. Importantly, these occurrences were more frequent in the calcite-free sediment. Results from these investigations provide useful information to support site selection, risk assessment, and public education efforts associated with geological CO2 storage and sequestration.

Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

2014-12-31T23:59:59.000Z

139

Insights into Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids  

SciTech Connect (OSTI)

Long-term geologic storage of carbon dioxide (CO2) is considered an integral part to moderating CO2 concentrations in the atmosphere and subsequently minimizing effects of global climate change. Although subsurface injection of CO2 is common place in certain industries, deployment at the scale required for emission reduction is unprecedented and therefore requires a high degree of predictability. Accurately modeling geochemical processes in the subsurface requires experimental derived data for mineral reactions occurring between the CO2, water, and rocks. Most work in this area has focused on aqueous-dominated systems in which dissolved CO2 reacts to form crystalline carbonate minerals. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet supercritical fluid phase. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably hydrated supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 C) and pressures (90,120 and 160 bar) that simulate conditions in geologic repositories. Mineral transformation reactions were followed by three novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the supercritical CO2 resulted in increased silicate carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared spectroscopy and determined to be critical for facilitating carbonation processes. Even in extreme low water conditions, magic angle spinning nuclear magnetic resonance detected formation of Q3 [Si(OSi)3OH] and Q4 [Si(OSi)4] amorphous silica species. Unlike the thick (<10 ?m) passivating silica layers observed in the fully water saturated scCO2 experiments, images obtained from a focused ion beam sectioned sample indicted these coatings were chemically wollastonite but structurally amorphous. In addition, evidence of an intermediate hydrated amorphous calcium carbonate forming under these conditions further emphasize the importance of understanding geochemical processes occurring in water bearing scCO2 fluids.

Miller, Quin RS; Thompson, Christopher J.; Loring, John S.; Windisch, Charles F.; Bowden, Mark E.; Hoyt, David W.; Hu, Jian Z.; Arey, Bruce W.; Rosso, Kevin M.; Schaef, Herbert T.

2013-07-01T23:59:59.000Z

140

CO2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRIC CNMSMethanol Steam

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Comparison of observed and predicted short-term tracer gas concentrations in the atmosphere  

SciTech Connect (OSTI)

The Savannah River Laboratory is in the process of conducting a series of atmospheric tracer studies. The inert gas sulfurhexafluoride is released from a height of 62 m for 15 min and concentrations in air are measured on sampling arcs up to 30 km downwind of the release point. Maximum 15 min. air concentrations from 14 of these tracer tests have been compared with the ground-level, centerline air concentration predicted with a Gaussian plume atmospheric transport model using eight different sets of atmospheric dispersion parameters. Preliminary analysis of the results from these comparisons indicates that the dispersion parameters developed at Juelich, West Germany, based on tracers released from a height of 50 m, give the best overall agreement between the predicted and observed values. The median value of the ratio of predicted to observed air concentrations for this set of parameters is 1.3, and the correlation coefficient between the log of the predictions and the log of the observations is 0.72. For the commonly used Pasquill-Gifford dispersion parameters, the values of these same statistics are 4.4 and 0.68, respectively. The Gaussian plume model is widely used to predict air concentrations resulting from short-term radionuclide release to the atmosphere. The results of comparisons such as these must be considered whenever the Gaussian model is used for such purposes. 22 references, 3 tables.

Cotter, S.J.; Miller, C.W.; Lin, W.C.T.

1985-01-01T23:59:59.000Z

142

Summary Much attention is focused today on predicting how plants will respond to anticipated changes in atmospheric  

E-Print Network [OSTI]

, such as methane, became oxidized to form an early CO2-rich atmosphere. Over time, the concentration of carbon the atmosphere. Burial and lithification of carbonates and organic matter to limestone, coal or keragen the detailed history of CO2 is not well known for the whole of earth's history, some periods are reasonably

Ehleringer, Jim

143

Developing a Comprehensive Risk Assessment Framework for Geological Storage CO2  

SciTech Connect (OSTI)

The operational risks for CCS projects include: risks of capturing, compressing, transporting and injecting CO?; risks of well blowouts; risk that CO? will leak into shallow aquifers and contaminate potable water; and risk that sequestered CO? will leak into the atmosphere. This report examines these risks by using information on the risks associated with analogue activities such as CO2 based enhanced oil recovery (CO2-EOR), natural gas storage and acid gas disposal. We have developed a new analysis of pipeline risk based on Bayesian statistical analysis. Bayesian theory probabilities may describe states of partial knowledge, even perhaps those related to non-repeatable events. The Bayesian approach enables both utilizing existing data and at the same time having the capability to adsorb new information thus to lower uncertainty in our understanding of complex systems. Incident rates for both natural gas and CO2 pipelines have been widely used in papers and reports on risk of CO2 pipelines as proxies for the individual risk created by such pipelines. Published risk studies of CO2 pipelines suggest that the individual risk associated with CO2 pipelines is between 10-3 and 10-4, which reflects risk levels approaching those of mountain climbing, which many would find unacceptably high. This report concludes, based on a careful analysis of natural gas pipeline failures, suggests that the individual risk of CO2 pipelines is likely in the range of 10-6 to 10-7, a risk range considered in the acceptable to negligible range in most countries. If, as is commonly thought, pipelines represent the highest risk component of CCS outside of the capture plant, then this conclusion suggests that most (if not all) previous quantitative- risk assessments of components of CCS may be orders of magnitude to high. The potential lethality of unexpected CO2 releases from pipelines or wells are arguably the highest risk aspects of CO2 enhanced oil recovery (CO2-EOR), carbon capture, and storage (CCS). Assertions in the CCS literature, that CO2 levels of 10% for ten minutes, or 20 to 30% for a few minutes are lethal to humans, are not supported by the available evidence. The results of published experiments with animals exposed to CO2, from mice to monkeys, at both normal and depleted oxygen levels, suggest that lethal levels of CO2 toxicity are in the range 50 to 60%. These experiments demonstrate that CO2 does not kill by asphyxia, but rather is toxic at high concentrations. It is concluded that quantitative risk assessments of CCS have overestimated the risk of fatalities by using values of lethality a factor two to six lower than the values estimated in this paper. In many dispersion models of CO2 releases from pipelines, no fatalities would be predicted if appropriate levels of lethality for CO2 had been used in the analysis.

Duncan, Ian

2014-08-31T23:59:59.000Z

144

High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl  

E-Print Network [OSTI]

High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl K I R * *Environmental Sciences and Energy Research, The Weizmann Institute of Science, Rehovot. The results were consistent with those of nononline gas chromatography­mass spectrometry for COS and IR gas

Yakir, Dan

145

Atmospheric Environment 38 (2004) 14171423 Measurements of ion concentration in gasoline and diesel  

E-Print Network [OSTI]

Atmospheric Environment 38 (2004) 1417­1423 Measurements of ion concentration in gasoline of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7 ? 108 cm?3

Yu, Fangqun

146

10 MW Supercritical CO2 Turbine Test  

SciTech Connect (OSTI)

The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650C in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

Turchi, Craig

2014-01-29T23:59:59.000Z

147

Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth  

E-Print Network [OSTI]

Cooling effects from adiabatic expansion of CO 2 to atmospheric pressure (1.013 bar), starting from ambient hydrostatic-geothermal

Pruess, K.

2008-01-01T23:59:59.000Z

148

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network [OSTI]

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration...

He, Ting

2011-02-22T23:59:59.000Z

149

Production of CO2 in Soil Profiles of a California Annual Grassland  

E-Print Network [OSTI]

Production of CO2 in Soil Profiles of a California Annual Grassland Noah Fierer,1 * Oliver A play a key role in the global cycling of carbon (C), storing organic C, and releasing CO2 to the atmosphere. Although a large number of studies have focused on the CO2 flux at the soil­air inter- face

Fierer, Noah

150

ORIGINAL PAPER Effects of elevated CO2 and soil water content on phytohormone  

E-Print Network [OSTI]

and agricultural productivity (Goldblum 2009), whereas elevated CO2 has the opposite effect (Ainsworth and LongORIGINAL PAPER Effects of elevated CO2 and soil water content on phytohormone transcript induction increased atmospheric CO2 and drought in the future, possibly altering plant insect dynamics

DeLucia, Evan H.

151

Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source  

E-Print Network [OSTI]

Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source An experimental setup is developed to analyze infrared emission of CO2 plas- mas at atmospheric pressure using CO emission in the overtone vibrational bands v=2. Analysis of the measurements of CO2 emission

Boyer, Edmond

152

Rate Determination of the CO2* Chemiluminescence Reaction CO + O + M = CO2* + M  

E-Print Network [OSTI]

flame characteristics, such as fuel consumption rate, heat release rate, and H-atom concentration. In 2002, Kim et al. [2] made detailed spectral measurements in SI, HCCI, and SCCI engines from various excited state species and determined that CO2...

Kopp, Madeleine Marissa, 1987-

2012-10-15T23:59:59.000Z

153

Northern California CO2 Reduction Project  

SciTech Connect (OSTI)

C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set forth in California?s Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas: ? Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO2 capture, CO2 compression and dehydration at the refinery, and surface facilities at the sequestration site ? Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design ? Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site ? Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO2

Hymes, Edward

2010-06-16T23:59:59.000Z

154

Author's personal copy Antioxidant capacity reduced in scallions grown under elevated CO2  

E-Print Network [OSTI]

Author's personal copy Antioxidant capacity reduced in scallions grown under elevated CO2 was used as a model plant to study the impact of a range of CO2 concentrations and light intensities in controlled environmental chambers under a combination of 3 CO2 concentrations of 400, 1200 and 4000 lmol mol

Paré, Paul W.

155

Capturing CO2 from Air Anca Timofte  

E-Print Network [OSTI]

Capturing CO2 from Air Anca Timofte Climeworks AG Birchstrasse 155, 8050 Zürich www.climeworks.com, contact@climeworks.com Carbon Mitigation Lecture, 27 October 2014 #12;Air Climeworks CO2 capture plant CO2-free air Pure CO2 #12;3 Climeworks Products Demonstrator · 1 ton CO2 per year · Online since 12

Fischlin, Andreas

156

CO2-Based Glue - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRIC CNMSMethanol Steam Reforming.modelCO2

157

Sandia National Laboratories: lower CO2 emission  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturinglife-cycleionlow-temperature dieselCO2

158

Sandia National Laboratories: S-CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolarCybernetics: DynamicCybernetics: WeighBlade SensorsRozaS-CO2

159

Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements  

SciTech Connect (OSTI)

We infer CO2 surface fluxes using satellite observations of mid-tropospheric CO2 from the Tropospheric Emission Spectrometer (TES) and measurements of CO2 from surface flasks in a time-independent inversion analysis based on the GEOS-Chem model. Using TES CO2 observations over oceans, spanning 40 S 40 N, we find that the horizontal and vertical coverage of the TES and flask data are complementary. This complementarity is demonstrated by combining the datasets in a joint inversion, which provides better constraints than from either dataset alone, when a posteriori CO2 distributions are evaluated against independent ship and aircraft CO2 data. In particular, the joint inversion offers improved constraints in the tropics where surface measurements are sparse, such as the tropical forests of South America. Aggregating the annual surface-to-atmosphere fluxes from the joint inversion for the year 2006 yields 1.13 0.21 PgC for the global ocean, 2.77 0.20 PgC for the global land biosphere and 3.90 0.29 PgC for the total global natural flux (defined as the sum of all biospheric, oceanic, and biomass burning contributions but excluding CO2 emissions from fossil fuel combustion). These global ocean and global land fluxes are shown to be near the median of the broad range of values from other inversion results for 2006. To achieve these results, a bias in TES CO2 in the Southern Hemisphere was assessed and corrected using aircraft flask data, and we demonstrate that our results have low sensitivity to variations in the bias correction approach. Overall, this analysis suggests that future carbon data assimilation systems can benefit by integrating in situ and satellite observations of CO2 and that the vertical information provided by satellite observations of mid-tropospheric CO2 combined with measurements of surface CO2, provides an important additional constraint for flux inversions.

Nassar, Ray [University of Toronto; Jones, DBA [University of Toronto; Kulawik, SS [Jet Propulsion Laboratory, Pasadena, CA; Worden, JR [Jet Propulsion Laboratory, Pasadena, CA; Bowman, K [Jet Propulsion Laboratory, Pasadena, CA; Andres, Robert Joseph [ORNL; Suntharalingam, P [University of East Anglia, Norwich, United Kingdom; Chen, j. [University of Toronto; Brenninkmeijer, CAM [Max Planck Institut fur Chemie, Mainz; Schuck, TJ [Max Planck Institut fur Chemie, Mainz; Conway, T.J. [NOAA, Boulder, CO; Worthy, DE [Environment Canada

2011-01-01T23:59:59.000Z

160

Free Air CO2 Enrichment (FACE) Data from the Duke Forest FACE Facility  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at DOEs Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. The Duke University FACE website actually presents information on several FACE experiments. The Forest-Atmosphere Carbon Transfer and Storage (FACTS-I) facility is located in the Blackwood Division of the Duke Forest. It consists of four free-air CO2 enrichment (FACE) plots that provide elevated atmospheric CO2 concentration and four plots that provide ambient CO2 control. The system has been in operation since June, 1994 in the prototype plot, and since August, 1996 in the three additional plots. The prototype plot and its reference were halved with a barrier inserted in the soil in 1998 to conduct, together with five additional plot pairs, CO2 X soil nutrient enrichment experiments. The rest of the plots were partitioned in early 2005 and incorporated into the CO2 X nutrient experiment. To increase statistical power, four additional ambient plots were established in January, 2005, halved, and one half of each fertilized. [copied from http://face.env.duke.edu/description.cfm] The Duke FACE home page makes information available from both completed and ongoing projects, provides a searchable database of publications and presentations, and data, images, and links to related websites.

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Surface CO2 leakage during the first shallow subsurface CO2 release experiment  

E-Print Network [OSTI]

numbered 0-6. Plots of F CO2 measured along the surface wellin Figure 2. Figure 2. Log F CO2 maps for measurements madeof soil CO 2 flux (F CO2 ). The surface leakage onset,

Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

2008-01-01T23:59:59.000Z

162

Multi-Channel Auto-Dilution System for Remote Continuous Monitoring of High Soil-CO2 Fluxes  

SciTech Connect (OSTI)

Geological sequestration has the potential capacity and longevity to significantly decrease the amount of anthropogenic CO2 introduced into the atmosphere by combustion of fossil fuels such as coal. Effective sequestration, however, requires the ability to verify the integrity of the reservoir and ensure that potential leakage rates are kept to a minimum. Moreover, understanding the pathways by which CO2 migrates to the surface is critical to assessing the risks and developing remediation approaches. Field experiments, such as those conducted at the Zero Emissions Research and Technology (ZERT) project test site in Bozeman, Montana, require a flexible CO2 monitoring system that can accurately and continuously measure soil-surface CO2 fluxes for multiple sampling points at concentrations ranging from background levels to several tens of percent. To meet this need, PNNL is developing a multi-port battery-operated system capable of both spatial and temporal monitoring of CO2 at concentrations from ambient to at least 150,000 ppmv. This report describes the system components (sampling chambers, measurement and control system, and power supply) and the results of a field test at the ZERT site during the late summer and fall of 2008. While the system performed well overall during the field test, several improvements to the system are suggested for implementation in FY2009.

Amonette, James E.; Barr, Jonathan L.

2009-04-23T23:59:59.000Z

163

Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage  

E-Print Network [OSTI]

E EPM2- TIP4P2005 PPL- TIP4P2005 Predicted (f) a P ? CO2 2SE? CO2 2SE? CO2 2SE ? CO2 2SE ? CO2 2SE ? CO2 2SE a Surface excess CO

Nielsen, L.C.

2013-01-01T23:59:59.000Z

164

Regional patterns of radiocarbon and fossil fuel-derived CO 2 in surface air across North America  

E-Print Network [OSTI]

changes resulting from fossil-fuel CO 2 release and cosmic-for recently added fossil fuel CO 2 in the atmosphere anddioxide emissions from fossil fuel consumption and cement

Hsueh, Diana Y; Krakauer, Nir Y; Randerson, James T; Xu, Xiaomei; Trumbore, Susan E; Southon, John R

2007-01-01T23:59:59.000Z

165

Deglacial radiocarbon history of tropical Atlantic thermocline waters: absence of CO2 reservoir purging signal  

E-Print Network [OSTI]

purging signal Caroline Cléroux a,*, Peter deMenocal a , Thomas Guilderson b,c a Lamont-Doherty Earth of the atmospheric CO2 increase during the Glacial to Holocene climate transition requires the outgassing of a deep production changes alone (Hughen et al., 2006). These two steps in atmospheric CO2 and radiocarbon anomalies

deMenocal, Peter B.

166

8, 73737389, 2008 Scientists' CO2  

E-Print Network [OSTI]

ACPD 8, 7373­7389, 2008 Scientists' CO2 emissions A. Stohl Title Page Abstract Introduction substantial emissions of carbon dioxide (CO2). In this pa- per, the CO2 emissions of the employees working, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5

Paris-Sud XI, Université de

167

6, 1092910958, 2006 Regional scale CO2  

E-Print Network [OSTI]

ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using radon A. I. Hirsch Title Page Chemistry and Physics Discussions On using radon-222 and CO2 to calculate regional-scale CO2 fluxes A. I (Adam.Hirsch@noaa.gov) 10929 #12;ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using

Paris-Sud XI, Université de

168

Microbial electrolysis desalination and chemical-production cell for CO2 sequestration  

E-Print Network [OSTI]

by the same process was used to absorb CO2 and precipitate magnesium/calcium carbonates. The concentrations optimal conditions, 24 mg of CO2 was absorbed into the alkaline solution and 13 mg of CO2 was precipitated). Various attempts have been made to enhance the mineral dissolution including heat treatment, dry or wet

169

Generation of CO2-rich melts during basalt magma ascent and degassing  

E-Print Network [OSTI]

Generation of CO2-rich melts during basalt magma ascent and degassing Michel Pichavant . Ida Di magma degassing, continuous decompressions of volatile-bearing (2.7-3.8 wt% H2O, 600-1300 ppm CO2 to solubilities. In contrast, the rate of vesiculation controls the final melt CO2 concentration. High

Boyer, Edmond

170

Brief Communications TRPA1 Is a Component of the Nociceptive Response to CO2  

E-Print Network [OSTI]

Brief Communications TRPA1 Is a Component of the Nociceptive Response to CO2 Yuanyuan Y. Wang, Rui of Southern California, Los Angeles, California 90089 In humans, high concentrations of CO2 , as found, and oral epithelia. The molecular basis for this sensation is unknown. Here we show that CO2 specifically

Liman, Emily

171

Modelling CO2 diffusion and assimilation in a leaf with axisymmetric finite volumes  

E-Print Network [OSTI]

Modelling CO2 diffusion and assimilation in a leaf with axisymmetric finite volumes Emily Gallouët. This paper deals with the numerical simulation of the diffusion and assimilation by photosynthesis of CO2 medium, from experimental measurements of the pointwise value of internal CO2 concentration, giving some

Herbin, Raphaèle

172

Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere  

DOE Patents [OSTI]

We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

Allendorf, Mark D; Robinson, Alex L

2014-12-09T23:59:59.000Z

173

Short communication Satellite-derived surface water pCO2 and airsea CO2 fluxes  

E-Print Network [OSTI]

Short communication Satellite-derived surface water pCO2 and air­sea CO2 fluxes in the northern for the estimation of the partial pressure of carbon dioxide (pCO2) and air­sea CO2 fluxes in the northern South), respectively, the monthly pCO2 fields were computed. The derived pCO2 was compared with the shipboard pCO2

174

Introduction In the past two centuries, atmospheric methane  

E-Print Network [OSTI]

90 Introduction In the past two centuries, atmospheric methane (Ch4) concentrations have more than doubled. Despite the about 20o times smaller atmospheric burden of methane compared to carbon dioxide (CO2 ; IPCC 4th assessment report, 2007), because on a per molecule basis methane is a much more effective

Haak, Hein

175

CO2-avskiljning med syrgasfrbrnning -nya tekniska mjligheter  

E-Print Network [OSTI]

with power and industrial sectors #12;Air-Fuel Combustion Air Fuel Flue gas CO2: 10-20 % N2: 60-70% Combustion Process #12;Oxy-Fuel vs. Air-Fuel Combustion - principle changes Principle changes: · Feed gas composition · Concentration of N2 · Recycle of flue gas · Concentration of combustion products · Residence

Lemurell, Stefan

176

MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE  

E-Print Network [OSTI]

MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

Foss, Bjarne A.

177

Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal...  

Open Energy Info (EERE)

subsurface concentrations and surface fluxes and statistical analysis of the collected data. Based on this analysis, are as with a high probability of containing geothermal CO2...

178

Stragegies to Detect Hidden Geothermal Systems Based on Monitoringand Analysis of CO2 in the Near-Surface Environment  

SciTech Connect (OSTI)

We investigate the potential for CO2 monitoring in thenear-surface environment as an approach to exploration for hiddengeothermal systems. Numerical simulations of CO2 migration from a modelhidden geothermal system show that CO2 concentrations can reach highlevels in the shallow subsurface even for relatively low CO2 fluxes.Therefore, subsurface measurements offer an advantage over above-groundmeasurements which are affected by winds that rapidly disperse CO2. Tomeet the challenge of detecting geothermal CO2 emissions within thenatural background variability of CO2, we propose an approach thatintegrates available detection and monitoring techniques with statisticalanalysis and modeling.

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-03-29T23:59:59.000Z

179

CO2 http://andrew.ucsd.edu/co2qc/ University of California, San Diego  

E-Print Network [OSTI]

cooled by liquid nitrogen. The water and CO2 are separated from one another by sublimation and the CO2 for oceanic CO2 analysis: A method for the certification of total alkalinity. Marine Chemistry 80, 185

180

Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices  

E-Print Network [OSTI]

H2O is the most abundant component of astrophysical ices. In most lines of sight it is not possible to fit both the H2O 3 um stretching, the 6 um bending and the 13 um libration band intensities with a single pure H2O spectrum. Recent Spitzer observations have revealed CO2 ice in high abundances and it has been suggested that CO2 mixed into H2O ice can affect relative strengths of the 3 um and 6 um bands. We used laboratory infrared transmission spectroscopy of H2O:CO2 ice mixtures to investigate the effects of CO2 on H2O ice spectral features at 15-135 K. We find that the H2O peak profiles and band strengths are significantly different in H2O:CO2 ice mixtures compared to pure H2O ice. In all H2O:CO2 mixtures, a strong free-OH stretching band appears around 2.73 um, which can be used to put an upper limit on the CO2 concentration in the H2O ice. The H2O bending mode profile also changes drastically with CO2 concentration; the broad pure H2O band gives way to two narrow bands as the CO2 concentration is increased. This makes it crucial to constrain the environment of H2O ice to enable correct assignments of other species contributing to the interstellar 6 um absorption band. The amount of CO2 present in the H2O ice of B5:IRS1 is estimated by simultaneously comparing the H2O stretching and bending regions and the CO2 bending mode to laboratory spectra of H2O, CO2, H2O:CO2 and HCOOH.

Karin I. Oberg; Helen J. Fraser; A. C. Adwin Boogert; Suzanne E. Bisschop; Guido W. Fuchs; Ewine F. van Dishoeck; Harold Linnartz

2006-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - atmospheric pollutant concentrations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sunlight, and natural atmospheric gases. Primary and secondary pollutants 12;Air Pollutants 12... , an atmospheric inversion occurs that can restrict circulation in...

182

Impact of elevated CO2 on a Florida Scrub-oak Ecosystems  

SciTech Connect (OSTI)

Since May of 1996, we have conducted an experiment in Florida Scrub Oak to determine the impact of elevated atmospheric CO2 and climate change on carbon, water, and nutrient cycling in this important terrestrial ecosystem. Florida scrub oak is the name for a collective of species occupying much of the Florida peninsula. The dominant tree species are oaks and the dwarf structure of this community makes it an excellent system in which to test hypotheses regarding the potential capacity of woody ecosystems to assimilate and sequester anthropogenic carbon. Scrub oak is fire dependent with a return cycle of 10-15 years, a time which would permit an experiment to follow the entire cycle. Our site is located on Cape Canaveral at the Kennedy Space Center, Florida. After burning in 1995, we built 16 open top chambers, half of which have been fumigated with pure CO2 sufficient to raise the concentration around the plants to 350 ppm above ambient. In the intervening 10 years we have non destructively measured biomass of shoots and roots, ecosystem gas exchange using chambers and eddy flux, leaf photosynthesis and respiration, soil respiration, and relevant environmental factors such as soil water availability, temperature, light, etc. The overwhelming result from analysis of our extensive data base is that elevated CO2 has had a profound impact on this ecosystem that, overall, has resulted in increased carbon accumulation in plant shoots, roots and litter. Our measurements of net ecosystem gas exchange also indicate that the ecosystem has accumulated carbon much in excess of the increased biomass or soil carbon suggesting a substantial export of carbon through the porous, sandy soil into the water table several meters below the surface. A major discovery is the powerful interaction between the stimulation of growth, photosynthesis, and respiration by elevated CO2 and other environmental factors particularly precipitation and nitrogen. Our measurements focused attention on: stimulation of ecosystem gas exchange by elevated atmospheric CO2; the architecture and distribution of coarse roots using the novel approach of ground penetrating radar; mechanisms for the disturbance of soil carbon pools via the "priming" effect; and how interannual and seasonal variation in precipitation alters the physiological response of key species to elevated CO2. This project was a collaboration between research groups at the Smithsonian Institution, NASA, the Dynamac Corporation, Northern Arizona University, and Old Dominion University in Norfolk, Virginia.

Drake, Bert G

2013-01-01T23:59:59.000Z

183

QGESS: CO2 Impurity Design Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10. Shah, Minish. Capturing CO2 from Oxy-Fuel Combustion Flue Gas. Cottbus, Germany : Praxair Inc., 2005. 11. Spitznogle, Gary O. CO2 Impurity Specification at AEP Mountaineer....

184

5, 33133340, 2005 SCIAMACHY CO2 and  

E-Print Network [OSTI]

ACPD 5, 3313­3340, 2005 SCIAMACHY CO2 and aerosols S. Houweling et al. Title Page Abstract Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols S. Houweling 1,2 , W. Hartmann 1 Commons License. 3313 #12;ACPD 5, 3313­3340, 2005 SCIAMACHY CO2 and aerosols S. Houweling et al. Title

Paris-Sud XI, Université de

185

2, 711743, 2006 Glacial CO2  

E-Print Network [OSTI]

CPD 2, 711­743, 2006 Glacial CO2 sequestration L. C. Skinner Title Page Abstract Introduction CO2 change: a simple "hypsometric effect" on deep-ocean carbon sequestration? L. C. Skinner Godwin Scientist Award win- ners 2006 711 #12;CPD 2, 711­743, 2006 Glacial CO2 sequestration L. C. Skinner Title

Paris-Sud XI, Université de

186

Economic and energetic analysis of capturing CO2 from ambient air  

E-Print Network [OSTI]

Economic and energetic analysis of capturing CO2 from ambient air Kurt Zenz Housea,b,1 , Antonio C for review August 20, 2010) Capturing carbon dioxide from the atmosphere ("air capture") in an industrial suggest these air capture systems may cost a few hundred dollars per tonne of CO2, making it cost

187

Constraining the density of CO2 within the Utsira formation using time-lapse gravity measurements  

E-Print Network [OSTI]

the Sleipner CO2 injection site in 2002 and 2005 on top of 30 concrete benchmarks on the seafloor in order is typically vented into the atmosphere, but at Sleipner the CO2 is compressed and injected into a porous and the water depth is about 80 m. Injection began in 1996 at a gradually increasing rate. Now, about 1 million

Nooner, Scott

188

EFFECTS OF CO2 LEAKAGES FROM STORAGE SITES ON THE QUALITY OF POTABLE GROUNDWATER  

E-Print Network [OSTI]

was packed into two fixed-bed PVC columns. In the one column, gas CO2 and water were co-injected while only gas effect due mainly to the combustion of fossil fuels and CO2 emissions in the atmosphere

189

ORIGINAL PAPER Effects of elevated CO2 and soil water content on phytohormone  

E-Print Network [OSTI]

of droughts this century (Meehl et al. 2007). Typically, drought reduces yield and agricultural productivityORIGINAL PAPER Effects of elevated CO2 and soil water content on phytohormone transcript induction Science+Business Media B.V. 2012 Abstract Plants will experience increased atmospheric CO2 and drought

DeLucia, Evan H.

190

Samenvatting CO2 is het meest belangrijke broeikasgas. The concentratie van CO2 in de atmosfeer  

E-Print Network [OSTI]

Samenvatting CO2 is het meest belangrijke broeikasgas. The concentratie van CO2 in de atmosfeer brandstoffen en veranderingen in landgebruik. Toenemende concentraties van CO2 in de atmosfeer zullen naar toename van CO2 in de atmosfeer op de dynamiek van de microbiële gemeenschap in de directe omgeving van de

van den Brink, Jeroen

191

MAC-Kaust Project P1 CO2 Sequestration Modeling of CO2 sequestration including parameter  

E-Print Network [OSTI]

MAC-Kaust Project P1 ­ CO2 Sequestration Modeling of CO2 sequestration including parameter identification and numerical simulation M. Brokate, O. A. PykhteevHysteresis aspects of CO2 sequestration modeling K-H. Hoffmann, N. D. Botkin Objectives and methods of CO2 sequestration There is a popular belief

Turova, Varvara

192

E-Print Network 3.0 - atmospheric mercury concentrations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

et al. 2007... 1 Global 3-D land-ocean-atmosphere model for mercury: present-day vs. pre-industrial1 cycles... 12 13 14 15 Short title: Global 3-D land-ocean-atmosphere model ......

193

Physical and chemical effects of CO2 storage in saline aquifers of the southern North Sea  

E-Print Network [OSTI]

One of the most promising mitigation strategies for greenhouse gas accumulation in the atmosphere is carbon capture and storage (CCS). Deep saline aquifers are seen as the most efficient carbon dioxide (CO2) storage sites, ...

Heinemann, Niklas

2013-07-01T23:59:59.000Z

194

Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model  

E-Print Network [OSTI]

Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model Uwe earth system model con- sisting of an atmospheric general circulation model, an ocean general

Winguth, Arne

195

Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models  

SciTech Connect (OSTI)

The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.

Hoffman, Forrest M [ORNL] [ORNL; Randerson, James T. [University of California, Irvine] [University of California, Irvine; Arora, Vivek K. [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada] [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada; Bao, Qing [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics] [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; Cadule, Patricia [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment] [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment; Ji, Duoying [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing] [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing; Jones, Chris D. [Hadley Centre, U.K. Met Office] [Hadley Centre, U.K. Met Office; Kawamiya, Michio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)] [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Khatiwala, Samar [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY] [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY; Lindsay, Keith [National Center for Atmospheric Research (NCAR)] [National Center for Atmospheric Research (NCAR); Obata, Atsushi [Meteorological Research Institute, Japan] [Meteorological Research Institute, Japan; Shevliakova, Elena [Princeton University] [Princeton University; Six, Katharina D. [Max Planck Institute for Meteorology, Hamburg, Germany] [Max Planck Institute for Meteorology, Hamburg, Germany; Tjiputra, Jerry F. [Uni Climate, Uni Research] [Uni Climate, Uni Research; Volodin, Evgeny M. [Institute of Numerical Mathematics, Russian Academy of Science, Moscow] [Institute of Numerical Mathematics, Russian Academy of Science, Moscow; Wu, Tongwen [China Meteorological Administration (CMA), Beijing] [China Meteorological Administration (CMA), Beijing

2014-01-01T23:59:59.000Z

196

Simulation assessment of CO2 sequestration potential and enhanced methane recovery in low-rank coalbeds of the Wilcox Group, east-central Texas  

E-Print Network [OSTI]

Carbon dioxide (CO2) from energy consumption is a primary source of greenhouse gases. Injection of CO2 from power plants in coalbed reservoirs is a plausible method for reducing atmospheric emissions, and it can have the additional benefit...

Hernandez Arciniegas, Gonzalo

2006-10-30T23:59:59.000Z

197

The supply chain of CO2 emissions  

E-Print Network [OSTI]

emissions from traded fossil fuels; Top), production (F Pr )Regional, and National Fossil-Fuel CO 2 Emissions (Carbonfrom the burning of fossil fuels are conventionally

Davis, S. J; Peters, G. P; Caldeira, K.

2011-01-01T23:59:59.000Z

198

E-Print Network 3.0 - atmospheric elemental concentration Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Department of Geography, University of North Texas Collection: Geosciences 4 Project EARTH-11-TM1: Volcanoes and the global atmospheric phosphorus cycle Summary: volcanic...

199

Risk Assessment and Monitoring of Stored CO2 in Organic Rocks Under Non-Equilibrium Conditions  

SciTech Connect (OSTI)

The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However. the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ? T ? 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (? 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and shale cores, which were pressurized with high pressure CO2, determine the fate of sequestered CO2 in these cores. Our results suggested that Illinois bituminous coal in its unperturbed state, i.e., when not pressurized with CO2, showed large variations in the mechanical properties. Modulus varied from 0.7 GPa to 3.4 GPa even though samples were extracted from a single large chunk of coal. We did not observe any glass transition for Illinois bituminous coal at - 100oC ? T ? 300oC, however, when the coal was pressurized with CO2 at ambient ? P ? 20.7 MPa, the viscosity of the coal decreased and inversely scaled with the CO2 pressure. The decrease in viscosity as a function of pressure could pose CO2 injection problems for coal as lower viscosity would allow the solid coal to flow to plug the fractures, fissures, and cleats. Our experiments also showed a very small fraction of CO2 was absorbed in coal; and when CO2 pressurized coals were exposed to atmospheric conditions, the loss of CO2 from coals was massive. Half of the sequestered gas from the coal cores was lost in less than 20 minutes. Our shockwave experiments on Illinois bituminous coal, New Albany shale (Illinois), Devonian shale (Ohio), and Utica shale (Ohio) presented clear evidence that the significant emission of the sequestered CO2 from these formations cannot be discounted during seismic activity, especially if caprock is compromised. It is argued that additional shockwave studies, both compressive and transverse, would be required for successfully mapping the risks associated with sequestering high pressure CO2 in coal and shale formations.

Malhotra, Vivak

2014-06-30T23:59:59.000Z

200

4, 23852405, 2007 CO2 and climate  

E-Print Network [OSTI]

BGD 4, 23852405, 2007 CO2 and climate affect European carbon ballance R. Harrison and C. Jones Competing roles of rising CO2 and climate change in the contemporary European carbon balance R. Harrison and C. Jones Met Office, Hadley Centre for Climate Change, Exeter, EX1 3PB, UK Received: 13 April 2007

Paris-Sud XI, Universit de

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CO2 Capture with Enzyme Synthetic Analogue  

SciTech Connect (OSTI)

Project overview provides background on carbonic anhydrase transport mechanism for CO2 in the human body and proposed approach for ARPA-E project to create a synthetic enzyme analogue and utilize it in a membrane for CO2 capture from flue gas.

Harry Cordatos

2010-03-01T23:59:59.000Z

202

Study of CO2 Mobility Control in Heterogeneous Media Using CO2 Thickening Agents  

E-Print Network [OSTI]

CO2 injection is an effective method for performing enhanced oil recovery (EOR). There are several factors that make CO2 useful for EOR, including promoting swelling, reducing oil viscosity, decreasing oil density, and vaporizing and extracting...

Al Yousef, Zuhair

2012-10-19T23:59:59.000Z

203

meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both  

E-Print Network [OSTI]

meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both the facilities and laboratories will need flow meters. ULAR is currently in the process of identifying a cost-effective, accurate, and durable flow meter to install in all of the CO2 chambers in all of the vivaria. When a specific model

Bushman, Frederic

204

International Symposium on Site Characterization for CO2Geological Storage  

SciTech Connect (OSTI)

Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

Tsang, Chin-Fu

2006-02-23T23:59:59.000Z

205

Impact of Solar Resource and Atmospheric Constituents on Energy Yield Models for Concentrated Photovoltaic Systems .  

E-Print Network [OSTI]

??Global economic trends suggest that there is a need to generate sustainable renewable energy to meet growing global energy demands. Solar energy harnessed by concentrated (more)

Mohammed, Jafaru

2013-01-01T23:59:59.000Z

206

E-Print Network 3.0 - atmospheric radon-222 concentration Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1. Radon-222... concentrations in air include ... Source: Baskaran, Mark - Department of Geology, Wayne State University Collection: Geosciences ; Chemistry 30 1.0 MAJOR STUDIES...

207

Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems  

E-Print Network [OSTI]

Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response storage potential of all the geological CO2 storage options and are widely distributed throughout the globe in all sedimentary basins.ForCO2 storage tohaveasignificantimpact on atmospheric levels

Zhou, Quanlin

208

Published in: Journal of Geophysical ResearchVOL.100E10 21,119--21,234, October 25, 1995. Low brightness temperatures of Martian Polar caps : CO 2  

E-Print Network [OSTI]

to the condensation of CO 2 in the atmosphere. We have used a combination of data analysis and modeling to compare to the frost point of CO 2 gas, CO 2 condenses, and polar ice caps are formed. The surface temperature which have directly condensed on the ground could have an emissivity close to unity and in any case much

Forget, François

209

A PILOT STUDY OF THE ACCURACY OF CO2 SENSORS IN COMMERCIAL BUILDINGS  

SciTech Connect (OSTI)

Carbon dioxide (CO2) sensors are often deployed in commercial buildings to obtain CO2 data that are used to automatically modulate rates of outdoor air supply. The goal is to keep ventilation rates at or above design requirements and to save energy by avoiding ventilation rates exceeding design requirements. However, there have been many anecdotal reports of poor CO2 sensor performance in actual commercial building applications. This study evaluated the accuracy of 44 CO2 sensors located in nine commercial buildings to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. CO2 measurement errors varied widely and were sometimes hundreds of parts per million. Despite its small size, this study provides a strong indication that the accuracy of CO2 sensors, as they are applied and maintained in commercial buildings, is frequently less than needed to measure typical values of maximum one-hour-average indoor-outdoor CO2 concentration differences with less than a 20percent error. Thus, we conclude that there is a need for more accurate CO2 sensors and/or better sensor maintenance or calibration procedures.

Fisk, William; Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

2007-09-01T23:59:59.000Z

210

Version 3.0 SOP 4 --p(CO2) October 12, 2007 (p(CO2))  

E-Print Network [OSTI]

Version 3.0 SOP 4 -- p(CO2) October 12, 2007 91 SOP 4 (p(CO2)) - 1. . microatmospheres . (20°C 250-2000 µatm) (mole fraction) . 2. CO2 (mole fraction) . 2 2(CO ) (CO( ) . . Frit . #12;October 12, 2007 SOP 4 -- p(CO2) Version 3.0 92 CO2 CO2 2 . p(CO2) (1) . 4. 3

211

From CO2 to Methanol via Novel Nanocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTour theFrom CO2 to Methanol via

212

From CO2 to Methanol via Novel Nanocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTour theFrom CO2 to Methanol

213

From CO2 to Methanol via Novel Nanocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTour theFrom CO2 to MethanolFrom

214

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolution Enhanced Oil Recovery with Concurrent CO2

215

co2 capture meeting | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery of θ1cmarquardt2013 NETL CO2

216

High CO2 levels in the Proterozoic atmosphere estimated from  

E-Print Network [OSTI]

............................................................................................................................................................................. Solar luminosity on the early Earth was significantly lower than today. Therefore, solar luminosity a Proterozoic (,1.4-gigayear-old) shale in North China. Calculated magnitudes of the carbon isotope that carbon dioxide was an important greenhouse gas during periods of lower solar luminosity, probably

Kaufman, Alan Jay

217

atmospheric co2 sensing: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exploitation of the huge reservoirs of coal and unconventional fossil fuels incorporates carbon capture and sequestration. Existing coal-fired power plants, without sequestration,...

218

atmospheric co2 signals: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exploitation of the huge reservoirs of coal and unconventional fossil fuels incorporates carbon capture and sequestration. Existing coal-fired power plants, without sequestration,...

219

Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling  

SciTech Connect (OSTI)

Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.81014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.21016 to 2.51016 Bq and estimates for the facility in Indonesia vary from 6.11013 to 3.61014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

2014-04-06T23:59:59.000Z

220

Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: Implications for monitoring of CO2 sequestration  

SciTech Connect (OSTI)

Predicting and quantifying impacts of potential carbon dioxide (CO2) leakage into shallow aquifers that overlie geologic CO2 storage formations is an important part of developing reliable carbon storage techniques. Leakage of CO2 through fractures, faults or faulty wellbores can reduce groundwater pH, inducing geochemical reactions that release solutes into the groundwater and pose a risk of degrading groundwater quality. In order to help quantify this risk, predictions of metal concentrations are needed during geologic storage of CO2. Here, we present regional-scale reactive transport simulations, at relatively fine-scale, of CO2 leakage into shallow aquifers run on the PFLOTRAN platform using high-performance computing. Multiple realizations of heterogeneous permeability distributions were generated using standard geostatistical methods. Increased statistical anisotropy of the permeability field resulted in more lateral and vertical spreading of the plume of impacted water, leading to increased Pb2+ (lead) concentrations and lower pH at a well down gradient of the CO2 leak. Pb2+ concentrations were higher in simulations where calcite was the source of Pb2+ compared to galena. The low solubility of galena effectively buffered the Pb2+ concentrations as galena reached saturation under reducing conditions along the flow path. In all cases, Pb2+ concentrations remained below the maximum contaminant level set by the EPA. Results from this study, compared to natural variability observed in aquifers, suggest that bicarbonate (HCO3) concentrations may be a better geochemical indicator of a CO2 leak under the conditions simulated here.

Navarre-Sitchler, Alexis K.; Maxwell, Reed M.; Siirila, Erica R.; Hammond, Glenn E.; Lichtner, Peter C.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment  

E-Print Network [OSTI]

Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment C H R, Laboratory of Soil Science and Geology, Wageningen University and Research Centre, PO Box 37, 6700 AA Abstract Soil C sequestration may mitigate rising levels of atmospheric CO2. However, it has yet

van Kessel, Chris

222

A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales  

E-Print Network [OSTI]

A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time (received for review February 15, 2008) Global silicate weathering drives long-time-scale fluctuations in atmospheric CO2. While tectonics, climate, and rock-type influence silicate weathering, it is unclear how

Hilley, George

223

Impact of monsoons, temperature, and CO2 on the rainfall and ecosystems of Mt. Kenya during the Common Era  

E-Print Network [OSTI]

Impact of monsoons, temperature, and CO2 on the rainfall and ecosystems of Mt. Kenya during Leaf waxes Glacial and early Holocene-age sediments from lakes on Mt. Kenya have documented strong and atmospheric CO2 concentra- tions. However, little is known about climate and ecosystem variations on Mt. Kenya

Vuille, Mathias

224

A Computationally Efficient Approach to Applying the SAFT Equation for CO2 + H2O Phase Equilibrium  

E-Print Network [OSTI]

into oil (hydrocarbon) reservoirs is a recognized technology for enhancing oil production and CO2 injection into depleted oil and/or natural gas reservoirs is already underway to reduce CO2 emission to the atmosphere [4]. Predicting the sequestration potential and long term behavior of man-made geologic reservoirs requires

Patzek, Tadeusz W.

225

Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy  

SciTech Connect (OSTI)

For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and conductivity sensors is suitable for process control of algae cultivation in an open pond systems. This project concluded that the Hopewell wastewater is very suitable for algal cultivation but the potential for significant CO2 sequestration from the plant stack gas emissions was minimal due to the high endogenous CO2 generation in the wastewater from the organic wastewater content. Algae cultivation was found to be promising, however, for nitrogen remediation in the Hopewell wastewater.

UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions; Aquaflow Bionomics Ltd

2010-09-30T23:59:59.000Z

226

System-level modeling for geological storage of CO2  

E-Print Network [OSTI]

of Geologic Storage of CO2, in Carbon Dioxide Capture forFormations - Results from the CO2 Capture Project: GeologicBenson, Process Modeling of CO2 Injection into Natural Gas

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-01-01T23:59:59.000Z

227

Author's personal copy CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc)  

E-Print Network [OSTI]

improvements will lead to global energy savings [1]. Additionally, carbon capture and storage is an exciting possibility for preventing the release of anthropogenic carbon dioxide into the atmosphere and hinges on gas be a step in one method for reducing carbon dioxide emissions from power plants. In pre- combustion CO2 cap

228

Micromodel Investigations of CO2 Exsolution from Carbonated Water...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micromodel Investigations of CO2 Exsolution from Carbonated Water in Sedimentary Rocks. Micromodel Investigations of CO2 Exsolution from Carbonated Water in Sedimentary Rocks....

229

Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive Layer Assisted Deposition. Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive...

230

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

231

Reaction of Water-Saturated Supercritical CO2 with Forsterite...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for...

232

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

CONSTRAIN CO2 INJECTION FEASIBILITY: TEAPOT DOME EOR PILOTEOR, and coupled process modeling will investigate the total system including preliminary estimates of CO2

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

233

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

F Monitoring studies above EOR-CO2 fields Weyburn-MidaleTexas ? Over 30 years of CO2-EOR ? Sampled outside of

Varadharajan, C.

2013-01-01T23:59:59.000Z

234

numerical methodology to model and monitor co2 sequestration  

E-Print Network [OSTI]

CO2 sequestration is a means of mitigating the greenhouse effect [1]. Geologic sequestration involves injecting CO2 into a target geologic formation at depths...

santos,,,

235

Semi-analytical Solution for Multiphase Fluid Flow Applied to CO2 Sequestration in Geologic Porous Media  

E-Print Network [OSTI]

atmospheric emissions of CO_(2). Feasibility assessments of proposed sequestration sites require realistic and computationally efficient models to simulate the subsurface pressure response and monitor the injection process, and quantify the risks of leakage...

Mohamed, Ahmed Mohamed Anwar Sayed

2013-08-01T23:59:59.000Z

236

Aquifer Management for CO2 Sequestration  

E-Print Network [OSTI]

Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers...

Anchliya, Abhishek

2010-07-14T23:59:59.000Z

237

Porous Hexacyanometalates for CO2 capture applications  

SciTech Connect (OSTI)

Prussian blue analogues of M3[Fe(CN)6]2 x H2O (where M=Fe, Mn and Ni) were synthesized, characterized and tested for their gas sorption capabilities. The sorption studies reveal that, these Prussian blue materials preferentially sorb CO2 over N2 and CH4 at low pressure (1bar).

Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter

2013-07-30T23:59:59.000Z

238

Projecting human development and CO2 emissions  

E-Print Network [OSTI]

We estimate cumulative CO2 emissions during the period 2000 to 2050 from developed and developing countries based on the empirical relationship between CO2 per capita emissions (due to fossil fuel combustion and cement production) and corresponding HDI. In order to project per capita emissions of individual countries we make three assumptions which are detailed below. First, we use logistic regressions to fit and extrapolate the HDI on a country level as a function of time. This is mainly motivated by the fact that the HDI is bounded between 0 and 1 and that it decelerates as it approaches 1. Second, we employ for individual countries the correlations between CO2 per capita emissions and HDI in order to extrapolate their emissions. This is an ergodic assumption. Third, we let countries with incomplete data records evolve similarly as their close neighbors (in the emissions-HDI plane, see Fig. 1 in the main text) with complete time series of CO2 per capita emissions and HDI. Country-based emissions estimates a...

Costa, Lus; Kropp, Jrgen P

2012-01-01T23:59:59.000Z

239

Dynamics of Atmospheres  

E-Print Network [OSTI]

transfer ­ Solar heating of surface, and atmosphere via dust absorption ­ Infrared CO2 band cooling (especially around 667 cm-1) ­ nonLTE near-infrared heating of CO2 and nonLTE cooling effects above ~60-80 km. Baroclinic waves, scales, heat and momentum transport, seasonal occurrence. Qualitative treatment

Read, Peter L.

240

ANEMOS: A computer code to estimate air concentrations and ground deposition rates for atmospheric nuclides emitted from multiple operating sources  

SciTech Connect (OSTI)

This code estimates concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operating Sources. ANEMOS is one component of an integrated Computerized Radiological Risk Investigation System (CRRIS) developed for the US Environmental Protection Agency (EPA) for use in performing radiological assessments and in developing radiation standards. The concentrations and deposition rates calculated by ANEMOS are used in subsequent portions of the CRRIS for estimating doses and risks to man. The calculations made in ANEMOS are based on the use of a straight-line Gaussian plume atmospheric dispersion model with both dry and wet deposition parameter options. The code will accommodate a ground-level or elevated point and area source or windblown source. Adjustments may be made during the calculations for surface roughness, building wake effects, terrain height, wind speed at the height of release, the variation in plume rise as a function of downwind distance, and the in-growth and decay of daughter products in the plume as it travels downwind. ANEMOS can also accommodate multiple particle sizes and clearance classes, and it may be used to calculate the dose from a finite plume of gamma-ray-emitting radionuclides passing overhead. The output of this code is presented for 16 sectors of a circular grid. ANEMOS can calculate both the sector-average concentrations and deposition rates at a given set of downwind distances in each sector and the average of these quantities over an area within each sector bounded by two successive downwind distances. ANEMOS is designed to be used primarily for continuous, long-term radionuclide releases. This report describes the models used in the code, their computer implementation, the uncertainty associated with their use, and the use of ANEMOS in conjunction with other codes in the CRRIS. A listing of the code is included in Appendix C.

Miller, C.W.; Sjoreen, A.L.; Begovich, C.L.; Hermann, O.W.

1986-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Well Technologies for CO2 Geological Storage: CO2-Resistant Cement  

E-Print Network [OSTI]

Rsum Technologies de puits pour le stockage gologique du CO2: ciment rsistant au CO2 Le stockage souterrain du CO2 est actuellement considr comme la voie la plus efficace pour une squestration sure et faible cot. Cette nouvelle application exige une tanchit du puits trs long terme. La rupture de la gaine de ciment dans lintervalle entre le cuvelage et la formation gologique peut crer des chemins prfrentiels favorisant la fuite du CO2 vers la surface avec des vitesses probablement suprieures celles pouvant tre provoques par les fuites au travers des formations gologiques. Il en rsultera une perte conomique, une rduction de lefficacit du stockage de CO2 et la remise en cause du champ pour le stockage de CO2. Ce risque potentiel de fuites soulve des questions quant la bonne iso-lation du puits long terme et la durabilit du ciment hydrat utilis pour isoler lannulaire entre les intervalles de production et dinjection dans les puits de CO2. Nous proposons une nouvelle procdure exprimentale et une mthodologie pour tudier la ractivit des systmes CO2-Eau-Ciment en simulant les interactions du ciment pris avec le CO2 inject ltat supercritique dans des conditions de fond de puits. Les conditions utilises pour ces expriences sont de 90C et 280 bars. Lvolution des proprits mcaniques et physico-chimiques du ciment Portland est mesure dans le temps sur une priode maxi-male de six mois. Les rsultats sont compars ceux obtenus par une tude similaire sur un nouveau

V. Barlet-goudard; G. Rimmel; B. Goff; O. Porcherie

242

CO2 as a raw material for chemistry : an  

E-Print Network [OSTI]

intermediates from biomass CO2 accelerates production of biomass Ex microalgae biofuel, chemicals, .. Ex

Canet, Lonie

243

CO2 enrichment increases carbon and nitrogen input from  

E-Print Network [OSTI]

CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest Colleen2 Ecological Society of America, 2008 #12;#12;#12;#12;#12;+ [CO2] #12;+ Net primary production + [CO2] #12;+ Net primary production + [CO2] + C and N storage in biomass #12;+ Net primary production

244

Original article Limitation of photosynthetic activity by CO2  

E-Print Network [OSTI]

Original article Limitation of photosynthetic activity by CO2 availability in the chloroplasts to resistances opposing the CO2 fluxes in the mesophyll of tree leaves. To validate this assertion, values of CO2 CO2 assimilation and respiration rate measurement, and using the known electron requirements (four

Paris-Sud XI, Université de

245

CO2 Sequestration Modeling Using Pattern Recognition and Data Mining;  

E-Print Network [OSTI]

carbon dioxide (CO2) sequestration process is to ensure a sustained confinement of the injected CO2CO2 Sequestration Modeling Using Pattern Recognition and Data Mining; Case Study of SACROC field, USA Abstract Capturing carbon dioxide (CO2) from industrial and energy-related sources and depositing

Mohaghegh, Shahab

246

Cost Assessment of CO2 Sequestration by Mineral Carbonation  

E-Print Network [OSTI]

Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

2006-01-01T23:59:59.000Z

247

CO2e Capital Limited | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in ChittendenPartners LLC JumpCO2e Capital Limited

248

PUBLISHED ONLINE: 30 SEPTEMBER 2012 | DOI: 10.1038/NCLIMATE1694 Decade-long soil nitrogen constraint on the CO2  

E-Print Network [OSTI]

. Continued emissions of CO2 from fossil-fuel combustion and deforestation are likely to further increase constraint on the CO2 fertilization of plant biomass Peter B. Reich1,2 * and Sarah E. Hobbie3 The stimulation of plant growth by elevated CO2 concentration has been widely observed. Such fertilization, and associated

Minnesota, University of

249

Measurement of Atmospheric Sea Salt Concentration in the Dry Storage Facility of the Spent Nuclear Fuel  

SciTech Connect (OSTI)

Spent nuclear fuel coming from a Japanese nuclear power plant is stored in the interim storage facility before reprocessing. There are two types of the storage methods which are wet and dry type. In Japan, it is anticipated that the dry storage facility will increase compared with the wet type facility. The dry interim storage facility using the metal cask has been operated in Japan. In another dry storage technology, there is a concrete overpack. Especially in USA, a lot of concrete overpacks are used for the dry interim storage. In Japan, for the concrete cask, the codes of the Japan Society of Mechanical Engineers and the governmental technical guidelines are prepared for the realization of the interim storage as well as the code for the metal cask. But the interim storage using the concrete overpack has not been in progress because the evaluation on the stress corrosion cracking (SCC) of the canister is not sufficient. Japanese interim storage facilities would be constructed near the seashore. The metal casks and concrete overpacks are stored in the storage building in Japan. On the other hand, in USA they are stored outside. It is necessary to remove the decay heat of the spent nuclear fuel in the cask from the storage building. Generally, the heat is removed by natural cooling in the dry storage facility. Air including the sea salt particles goes into the dry storage facility. Concerning the concrete overpack, air goes into the cask body and cools the canister. Air goes along the canister surface and is in contact with the surface directly. In this case, the sea salt in the air attaches to the surface and then there is the concern about the occurrence of the SCC. For the concrete overpack, the canister including the spent fuel is sealed by the welding. The loss of sealability caused by the SCC has to be avoided. To evaluate the SCC for the canister, it is necessary to make clear the amount of the sea salt particles coming into the storage building and the concentration on the canister. In present, the evaluation on that point is not sufficient. In this study, the concentration of the sea salt particles in the air and on the surface of the storage facility are measured inside and outside of the building. For the measurement, two sites of the dry storage facility using the metal cask are chosen. This data is applicable for the evaluation on the SCC of the canister to realize the interim storage using the concrete overpack. (authors)

Masumi Wataru; Hisashi Kato; Satoshi Kudo; Naoko Oshima; Koji Wada [Central Research Institute of Electric Power Industry - CRIEPI (Japan); Hirofumi Narutaki [Electric Power Engineering Systems Co. Ltd. (Japan)

2006-07-01T23:59:59.000Z

250

CO2 http://andrew.ucsd.edu/co2qc/ University of California, San Diego  

E-Print Network [OSTI]

by sublimation and the CO2 is transferred into an electronic constant-volume manometer [ECM]. There its pressure of total alkalinity. Marine Chemistry 80, 185­197). Nutrients Nutrient levels were determined using

251

Study of CO2 Mobility Control Using Cross-linked Gel Conformance Control and CO2 Viscosifiers in Heterogeneous Media  

E-Print Network [OSTI]

result, early gas breakthrough has been a very common problem in CO2-related projects, reducing the overall sweep efficiency of CO2 flooding. This research aims at improving the CO2 flood efficiency using cross-linked gel conformance control and CO2...

Cai, Shuzong

2011-10-21T23:59:59.000Z

252

Continuous CO2 extractor and methods  

SciTech Connect (OSTI)

The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

None listed

2010-06-15T23:59:59.000Z

253

Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers  

SciTech Connect (OSTI)

In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

2014-08-01T23:59:59.000Z

254

Soil Biology & Biochemistry 40 (2008) 978985 Belowground nematode herbivores are resistant to elevated atmospheric  

E-Print Network [OSTI]

of Biology, Colorado State University, Fort Collins, CO 80523, USA c Department of Global Ecology, Carnegie of belowground grassland herbivores have rarely been investigated. Here, we report the response of a range are resistant to rising atmospheric CO2 concentrations. r 2007 Elsevier Ltd. All rights reserved. Keywords

Wall, Diana

255

IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS  

SciTech Connect (OSTI)

Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Charlton 6 pinnacle reef (Otsego County) in the Michigan Basin. Contract negotiations by our industry partner to gain access to this CO2 that would otherwise be vented to the atmosphere are near completion. A new method of subsurface characterization, log curve amplitude slicing, is being used to map facies distributions and reservoir properties in two reefs, the Belle River Mills and Chester 18 Fields. The Belle River Mills and Chester18 fields are being used as typefields because they have excellent log-curve and core data coverage. Amplitude slicing of the normalized gamma ray curves is showing trends that may indicate significant heterogeneity and compartmentalization in these reservoirs. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding the log curve amplitude slicing technique and a booth at the Midwest PTTC meeting.

James R. Wood; W. Quinlan; A. Wylie

2003-07-01T23:59:59.000Z

256

Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers  

SciTech Connect (OSTI)

This report is the final scientific one for the award DE- FE0000988 entitled Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers. The work has been divided into six tasks. In task, Development of a Three-Phase Non-Isothermal CO2 Flow Module, we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary parasitic reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, Development of a Rock Mechanical Module, we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of the Mandel-Cryer effect. For the latter, we obtained a good match of temperature and gas saturation profiles, and surface uplift, after injection of hot fluid into a model of a caldera structure. In task, Incorporation of Geochemical Reactions of Selected Important Species, we developed a novel mathematical model of THMC processes in porous and fractured saline aquifers, simulating geo-chemical reactions associated with CO2 sequestration in saline aquifers. Two computational frameworks, sequentially coupled and fully coupled, were used to simulate the reactions and transport. We verified capabilities of the THMC model to treat complex THMC processes during CO2 sequestration by analytical solutions and we constructed reactive transport models to analyze the THMC process quantitatively. Three of these are 1D reactive transport under chemical equilibrium, a batch reaction model with equilibrium chemical reactions, and a THMC model with CO2 dissolution. In task Study of Instability in CO2 Dissolution-Diffusion-Convection Processes, We reviewed literature related to the study of density driven convective flows and on the instability of CO2 dissolution-diffusion-convection processes. We ran simulations that model the density-driven flow instability that would occur during CO2 sequestration. CO2 diffused through the top of the system and dissolved in the aqueous phase there, increasing its density. Density fingers formed along the top boundary, and coalesced into a few prominent ones, causing convective flow that forced the fluid to the system bottom. These simulations were in two and three dimensions. We ran additional simulations of convective mixing with density contrast caused by variable dissolved CO2 concentration in saline water, modeled after laboratory experiments in which supercritical CO2 was circulated in the headspace above a brine saturated packed sand in a pressure vessel. As CO2 dissolved into the upper part of the saturated sand, liquid phase density increases causing instability and setting off convective mixing. We obtained good agreement

Wu, Yu-Shu; Chen, Zizhong; Kazemi, Hossein; Yin, Xiaolong; Pruess, Karsten; Oldenburg, Curt; Winterfeld, Philip; Zhang, Ronglei

2014-09-30T23:59:59.000Z

257

Gulf of Mexico Miocene CO2 Site Characterization Mega Transect  

SciTech Connect (OSTI)

This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO2) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration leads and prospects with associated dynamic capacity estimates, experimental studies of CO2-brine-rock interaction, best practices for site characterization, a large-format Atlas of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO2 storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO2 injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial?scale CCS will require storage capacity utilizing well?documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine?filled) closures. No assessment was made of potential for CO2 utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO2 leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably

Meckel, Timothy; Trevino, Ramon

2014-09-30T23:59:59.000Z

258

PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP  

SciTech Connect (OSTI)

During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

2006-01-01T23:59:59.000Z

259

co2 capture | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean Energy Projects SolicitationscivilCO2

260

CO2 Conference Presentation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |Laboratory, June 2011TO0CNG and3, 2015CO2

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CO2 Heat Pump Water Heater  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |Laboratory, June 2011TO0CNG and3, 2015CO2CO

262

CO2 Compression | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, andAnalysis15 CNMS Userpulse injectionCO2

263

CO2 capture processes in power plants - Le captage du CO2 dans les centrales thermiques  

E-Print Network [OSTI]

This review is devoted to assess and compare various processes aiming at recover CO2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post combustion CO2 capture using chemical solvents, natural gas reforming for pre-combustion capture and oxy-fuel combustion with cryogenic recovery of CO2. These processes were evaluated to give some clues for choosing the best option for each type of power plant. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents.

Chakib Bouallou

2010-08-12T23:59:59.000Z

264

Is the northern high latitude land-based CO2 sink weakening?  

SciTech Connect (OSTI)

Studies indicate that, historically, terrestrial ecosystems of the northern high latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations that estimate a 41 Tg C yr-1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th Century. Our results suggest that CO2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of 1) weakening sinks due to warming-induced increases in soil organic matter decomposition and 2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets.

Mcguire, David [University of Alaska; Kicklighter, David W. [Ecosystem Center, The; Gurney, Kevin R [Arizona State University; Burnside, Todd [University of Alaska, Fairbanks; Melillo, Jerry [Marine Biological Laboratory

2011-01-01T23:59:59.000Z

265

Hybrid Solvent-Membrane CO2 Capture: A Solvent/Membrane Hybrid Post-combustion CO2 Capture Process for Existing Coal-Fired Power Plants  

SciTech Connect (OSTI)

IMPACCT Project: The University of Kentucky is developing a hybrid approach to capturing CO2 from the exhaust gas of coal-fired power plants. In the first, CO2 is removed as flue gas is passed through an aqueous ammonium-based solvent. In the second, carbon-rich solution from the CO2 absorber is passed through a membrane that is designed to selectively transport the bound carbon, enhancing its concentration on the permeate side. The teams approach would combine the best of both membrane- and solventbased carbon capture technologies. Under the ARPA-E award, the team is enabling the membrane operation to be a drop-in solution.

None

2010-07-01T23:59:59.000Z

266

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

157 WELL INTEGRITY IN CO 2 ENVIRONMENTS: PERFORMANCE, RISK,of CO 2 injection, wells integrity and long term behavior ofcan compromise the well integrity and thus its functional

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

267

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

2 exposure in both CO 2 -EOR and natural CO 2 reservoirs (as enhanced oil recovery (EOR) and enhanced gas recovery (2 field injections for CCS-EOR, where the water quality of

Varadharajan, C.

2013-01-01T23:59:59.000Z

268

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

projects based CO 2 enhanced oil recovery in the US. Energydeveloped for CO 2 -enhanced oil recovery. In: 16th SPE/DOEpurposes such as enhanced oil recovery (EOR) and enhanced

Varadharajan, C.

2013-01-01T23:59:59.000Z

269

Chemical Impact of Elevated CO2on Geothermal Energy Production...  

Broader source: Energy.gov (indexed) [DOE]

Chemical Impact of Elevated CO2on Geothermal Energy Production Chemical Impact of Elevated CO2on Geothermal Energy Production This is a two phase project to assess the geochemical...

270

Near Miscible CO2 Application to Improve Oil Recovery  

E-Print Network [OSTI]

Carbon dioxide (CO2) injection for enhanced oil recovery is a proven technology. CO2 injection is normally operated at a pressure above the minimum miscibility pressure (MMP), which is determined by crude oil composition and reservoir conditions...

Bui, Ly H.

2010-07-26T23:59:59.000Z

271

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing

Rochelle, Gary T.

272

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing

Rochelle, Gary T.

273

CHARACTERIZATION OF MIXED CO2-TBPB HYDRATE FOR REFRIGERATION APPLICATIONS  

E-Print Network [OSTI]

in a dynamic loop and an Ostwald-de Waele model was obtained. Keywords: CO2, TBPB, mixed hydrates, solubility

Paris-Sud XI, Université de

274

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Marchetti, C. , On geoengineering and the CO2 prob- lem.to the location of geoengineering activities seems to be

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

275

CO2 stabilization, climate change and the terrestrial carbon sink  

E-Print Network [OSTI]

CO2 stabilization, climate change and the terrestrial carbon sink A N D R E W W H I T E , * M E L V, Hybrid v4.1, with a subdaily timestep, was driven by increasing CO2 and transient climate output from scenarios were used: (i) IS92a, giving 790 ppm CO2 by 2100, (ii) CO2 stabilization at 750 ppm by 2225

White, Andrew

276

Gravity monitoring of CO2 movement during sequestration: Model studies  

E-Print Network [OSTI]

combined CO 2 enhanced oil recovery (EOR) and sequestrationMODEL The enhanced oil recovery (EOR)/sequestration

Gasperikova, E.

2008-01-01T23:59:59.000Z

277

results and benefits... Birmingham Cutting your CO2  

E-Print Network [OSTI]

results and benefits... Birmingham Cutting your CO2 Birmingham City Council July 2007 c a s e s t u of the BirminghamCutting CO2 campaign, news items, display materials etc. · Advising on pledge gathering materials system was launched in July 2007 as part of the `Birmingham Cutting Your CO2' campaign. By the end

Everest, Graham R

278

Central serotonin neurons are required for arousal to CO2  

E-Print Network [OSTI]

Central serotonin neurons are required for arousal to CO2 Gordon F. Buchanana,b,1 and George B neurons are stimulated by CO2, and sero- tonin activates thalamocortical networks, we hypothesized any arousal response to inhalation of 10% CO2 (with 21% O2 in balance N2) but had normal arousal

279

A Numerical Investigation of Wettability Alteration during Immiscible CO2  

E-Print Network [OSTI]

A Numerical Investigation of Wettability Alteration during Immiscible CO2 Flooding Process, April 2012 #12;2 Table of Contest Abstract 3 Introduction 3 Literature Review 5 CO2 Flooding 7 New alteration during CO2 flooding. However, limited research on numerical and/or analytical modeling

Hossain, M. Enamul

280

Original article Interactive effects of elevated CO2, O3,  

E-Print Network [OSTI]

Original article Interactive effects of elevated CO2, O3, and soil water deficit on spring wheat of elevated carbon dioxide (CO2), ozone (O3), and soil water deficit on spring wheat (Triticum aestivum L. cv consisting of two O3levels (ambient and 1.5-times ambient) in combination with two CO2levels (ambient

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2006 Quarterly Progress the process for CO2 capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous.................................................................................................................................... 8 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

Rochelle, Gary T.

282

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing...................................................................................................................................11 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

Rochelle, Gary T.

283

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Second Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing.................................................................................................................................. 10 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

Rochelle, Gary T.

284

Reduction of CO2 emissions and utilization of slag  

E-Print Network [OSTI]

Reduction of CO2 emissions and utilization of slag products by producing calcium-based products-free calcium-based ma- terial, such as steelmaking slags, significant re- ductions in CO2 emissions may of the CO2 emissions reduction achieved. However, the pu- rity and crystal structure of the PCC produced

Zevenhoven, Ron

285

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry  

E-Print Network [OSTI]

ModelInputs EmissionsFactors CO2EmissionfactorforgridtonneCO2/MWh) CO2Emissionfactorforfuel (tonneCO2/TJ)Improvements and CO2 Emission Reduction Potentials in the

Morrow III, William R.

2014-01-01T23:59:59.000Z

286

Directed Technical Change and the Adoption of CO2 Abatement Technology: The Case of CO2 Capture and Storage  

E-Print Network [OSTI]

This paper studies the cost effectiveness of combining traditional environmental policy, such as CO2 trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO2 abatement ...

Otto, Vincent M.

287

Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage  

E-Print Network [OSTI]

within 15% of nominal P. EPM2-SPC/E DZ- SPC/E PPL-SPC/EEPM2- TIP4P2005 PPL- TIP4P2005 Predicted (f) a P ? CO2 2SE ?to C and O atoms (Table 1). The PPL model (In Het Panhuis et

Nielsen, L.C.

2013-01-01T23:59:59.000Z

288

How secure is CO2 storage? Leakage mechanisms of natural CO2 reservoirs  

E-Print Network [OSTI]

technology available to reduce greenhouse gas emissions from large point sources such as power plants and the burial of organic rich rocks such as coal seams.2 We have compiled the first global dataset on natural CO ­ but not necessarily leaking. Figure 4: Diagram showing the state of CO2 in the studied reservoirs. Supercritical

289

Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater  

E-Print Network [OSTI]

Changes in Response to CO2 Leakage from Deep Geologicalstudy mineral trapping for CO2 disposal in deep arenaceousconstituents as function of P(CO2)? function of P(CO2)?

Birkholzer, Jens

2008-01-01T23:59:59.000Z

290

A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.  

SciTech Connect (OSTI)

The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland

2013-04-01T23:59:59.000Z

291

Selection of coals of different maturities for CO2 Storage by modelling of CH4 and CO2 adsorption isotherms  

E-Print Network [OSTI]

of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane; Coals; Methane and carbon dioxide adsorption; Modelling isotherms 1. Introduction CO2 is a greenhouse

Paris-Sud XI, Université de

292

Ambient-atmosphere glow discharge for determination of elemental concentration in solutions in a high-throughput or transient fashion  

DOE Patents [OSTI]

An ambient atmosphere glow discharge spectrometer is disclosed having a capillary, two electrodes and a means for recording the atomic emissions.

Webb, Michael R. (Somerville, MA); Hieftje, Gary M. (Bloomington, IN); Andrade, Francisco (Leeds, GB)

2011-04-19T23:59:59.000Z

293

Fuels from Water, CO2, and Solar Energy Prof. Aldo Steinfeld  

E-Print Network [OSTI]

Fuels from Water, CO2, and Solar Energy Prof. Aldo Steinfeld Department of Mechanical and Process fuels make use of concentrated solar radiation as the energy source of high-temperature process heat Engineering, ETH Zurich, Switzerland and Solar Technology Laboratory, Paul Scherrer Institute, Switzerland

Ponce, V. Miguel

294

Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles  

E-Print Network [OSTI]

Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles John Pye, Keith of the technical feasibility a solarised combined-cycle gas turbines with a dish concentrator, with several, optimised for the new SG4 collector. This study aims to determine whether a combined-cycle gas turbine (CCGT

295

Supersonic Technology for CO2 Capture: A High Efficiency Inertial CO2 Extraction System  

SciTech Connect (OSTI)

IMPACCT Project: Researchers at ATK and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATKs design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

None

2010-07-01T23:59:59.000Z

296

Alternations of Structure and Functional Activity of Below Ground Microbial Communities at Elevated Atmospheric Carbon Dioxide  

SciTech Connect (OSTI)

The global atmospheric concentration of CO2 has increased by more than 30percent since the industrial revolution. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been well studied, its influences on belowground microbial communities are poorly understood and controversial. In this study, we showed a significant change in the structure and functional potential of soil microbial communities at eCO2 in a grassland ecosystem, the BioCON (Biodiversity, CO2 and Nitrogen) experimental site (http://www.biocon.umn.edu/) using a comprehensive functional gene array, GeoChip 3.0, which contains about 28,0000 probes and covers approximately 57,000 gene variants from 292 functional gene families involved in carbon, nitrogen, phosphorus and sulfur cycles as well as other functional processes. GeoChip data indicated that the functional structure of microbial communities was markedly different between ambient CO2 (aCO2) and eCO2 by detrended correspondence analysis (DCA) of all 5001 detected functional gene probes although no significant differences were detected in the overall microbial diversity. A further analysis of 1503 detected functional genes involved in C, N, P, and S cycles showed that a considerable portion (39percent) of them were only detected under either aCO2 (14percent) or eCO2 (25percent), indicating that the functional characteristics of the microbial community were significantly altered by eCO2. Also, for those shared genes (61percent) detected, some significantly (p<0.05) changed their abundance at eCO2. Especially, genes involved in labile C degradation, such as amyA, egl, and ara for starch, cellulose, and hemicelluloses, respectively, C fixation (e.g., rbcL, pcc/acc), N fixation (nifH), and phosphorus utilization (ppx) were significantly increased under eCO2, while those involved in decomposing recalcitrant C, such as glx, lip, and mnp for lignin degradation remained unchanged. This study provides insights into our understanding of belowground microbial communities and their feedbacks to terrestrial ecosystems at eCO2.

He, Zhili; Xu, Meiying; Deng, Ye; Kang, Sanghoon; Wu, Liyou; Van Nostrand, Joy D.; Hobbie, Sarah E.; Reich, Peter B.; Zhou, Jizhong

2010-05-17T23:59:59.000Z

297

Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs  

SciTech Connect (OSTI)

The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

Grigg, Reid B.; Schechter, David S.

1999-10-15T23:59:59.000Z

298

10 MW Supercritical CO2 Turbine Project  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

299

Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas  

SciTech Connect (OSTI)

An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

2004-01-01T23:59:59.000Z

300

Legal Implications of CO2 Ocean Storage  

E-Print Network [OSTI]

role in naturally removing carbon dioxide from the atmosphere, the ocean is considered an essential dioxide in addition to the vast quantities already stored naturally. A few recent research to contradict each other regarding the use of the ocean as a "sink" or disposal area for carbon dioxide. On one

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Uncertainty quantification for CO2 sequestration and enhanced oil recovery  

E-Print Network [OSTI]

This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

2014-01-01T23:59:59.000Z

302

Estimation of CO2 Emissions from China's Cement Production: Methodologies and Uncertainties  

E-Print Network [OSTI]

L. , 2006. Discussion of CO2 emission reduction in ChineseFurther discussion of CO2 emission reduction in Chinesecalculation method of CO2 emissions of cement production.

Ke, Jing

2014-01-01T23:59:59.000Z

303

Net primary production of terrestrial ecosystems in China and its equilibrium response to changes in climate and atmospheric CO? concentration  

E-Print Network [OSTI]

The Terrestrial Ecosystem Model (TEM, version 4.0) was used to estimate net primary production (NPP) in China for contemporary climate and NPP responses to elevated CO? and climate changes projected by three atmospheric ...

Xiao, Xiangming.; Melillo, Jerry M.; Kicklighter, David W.; Pan, Yude.; McGuire, A. David.; Helfrich III, J.V.K.

304

Cimpor inventa nova frmula para reduzir pegada de CO2  

E-Print Network [OSTI]

Cimpor inventa nova fórmula para reduzir pegada de CO2 CIMENTO. A Cimpor descobriu uma nova fórmula para produzir ci- mento que lhe permitirá reduzir a pegada de CO 2 em 25%. Segundo as contas da as fábricas do grupo, seriam emitidos menos quatro milhões de toneladas de CO 2 por ano, o que permitiria uma

Instituto de Sistemas e Robotica

305

Aquatic primary production in a high-CO2 world  

E-Print Network [OSTI]

Aquatic primary production in a high-CO2 world Etienne Low-De´carie, Gregor F. Fussmann, and Graham-Penfield, Montreal, QC, H3A 1B1, Canada Here, we provide a review of the direct effect of increas- ing CO2 on aquatic: the assessment of theories about limitation of productivity and the integration of CO2 into the co

Fussman, Gregor

306

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

SciTech Connect (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

307

The Power to Reduce CO2 Emissions: the Full Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy- efficient CO 2 capture for pulverized coal and integrated gasification combined cycle plants. Both nuclear and advanced coal with CCS technologies are...

308

R & D Supercritiacl CO2/ Rock Chemicals Interactions  

Broader source: Energy.gov (indexed) [DOE]

model that couples chemical reactions of mineral dissolution precipitation with spatial and temporal flow variations in CO 2 brinerock systems Principal Investigator:...

309

Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Program eere.energy.gov * The project started in FY10 * Collaboration between LBNL (Pruess) and INL (Redden) - Berkeley leads modeling, CO 2 -brine flow and heat...

310

co2-use-reuse | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in addition to their conventional energy balances and life cycles. Read more about Carbon Use and Reuse research. Recent studies of current and potential CO2 use...

311

Consumption-based accounting of CO2 emissions  

E-Print Network [OSTI]

Soviet Union (Ukraine, Kazakhstan, Belarus, and Russia),kg CO 2 /$GDP FSS Ukraine Kazakhstan Iran East Asia BelarusAsia China South Africa Kazakhstan Malaysia Russia Thailand

Davis, S. J; Caldeira, K.

2010-01-01T23:59:59.000Z

312

Novel Processes for Power Plant with CO2 Capture.  

E-Print Network [OSTI]

?? The purpose of this thesis was to examine different technologies, which enhances the CO2 partial pressure in the flue gas from the natural gas (more)

Ekre, Kjetil Vinjerui

2012-01-01T23:59:59.000Z

313

Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission...  

Open Energy Info (EERE)

Targets Milestones - Test crucial predictions from theoretical models about the heat transfer and fluid flow properties of CO2; - Obtain essential data to be incorporated...

314

The geomechanics of CO2 storage in deep sedimentary formations  

E-Print Network [OSTI]

strain and microseismicity, well integrity, caprock sealingstrain and microseismicity, well integrity, caprock sealingactions. 7 WELLBORE INTEGRITY The well design of a deep CO 2

Rutqvist, J.

2013-01-01T23:59:59.000Z

315

Gravity monitoring of CO2 movement during sequestration: Model studies  

E-Print Network [OSTI]

CO 2 enhanced oil recovery (EOR) and sequestration in afor a coalbed methane formation. EOR/sequestration petroleumbut shallow compared to either EOR or brine formations. The

Gasperikova, E.

2008-01-01T23:59:59.000Z

316

Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission...  

Broader source: Energy.gov (indexed) [DOE]

precipitation with spatial and temporal flow variations in CO2brinerock systems Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS)...

317

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

EOR) and enhanced coalbed methane recovery (ECBMR) becauseand potential for coalbed methane. The Mannville coals areCO 2 injectivity and coalbed methane producibility. Thus,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

318

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

CO 2 Geological Storage and Ground Water Resources U.S.and Ground Water Protection Council (GWPC) State and Federal Statutes Storage,

Varadharajan, C.

2013-01-01T23:59:59.000Z

319

Chemical Impact of Elevated CO2on Geothermal Energy Production  

Broader source: Energy.gov (indexed) [DOE]

Chemical Impact of Elevated CO 2 on Geothermal Energy Production Principal Investigator Susan Carroll Lawrence Livermore National Lab Track Name May 18-20, 2010 This presentation...

320

Quantum Alloys Offer Prospects for CO2 Management Technologies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

radical new catalysts capable of converting CO2 emissions into fuels, chemicals, and plastics. Their unique discovery involves shrinking gold into a system consisting of just 25...

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Influence of capillary pressure on CO2 storage and monitoring  

E-Print Network [OSTI]

solutions to mitigate the greenhouse effect. We are interested in analyzing the influence of capillary pressure on CO2 in- jection, storage and monitoring in saline...

gabriela

322

Advanced Post-Combustion CO2 Capture Prepared for the  

E-Print Network [OSTI]

Advanced Post-Combustion CO2 Capture Prepared for the Clean Air Task Force under a grant from...................................................................................... 3 2. Current Status of Post-Combustion Capture

323

accelerating co2 emissions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

based on the empirical relationship between CO2 per capita emissions (due to fossil fuel combustion and cement production) and corresponding HDI. In order to project per capita...

324

CO2 exposure at pressure impacts metabolism and stress responses...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the model sulfate-reducing bacterium Desulfovibrio vulgaris Abstract: Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep...

325

Free Air CO2 Enrichment (FACE) Data Management System  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The DOE Biological and Environmental Research Program (BER) is responsible for four "core" FACE sites and projects. These are known as Aspen FACE, Duke FACE, ORNL FACE, and Nevada Deseret FACE. Brookhaven provides operational support to some of these sites, while The FACE Data Management System at ORNL and CDIAC serves as a data repository. In addition, DOE supports OTC experiments in conjunction with the Smithsonian Environmental Research Center (SERC) in Maryland and Florida. There are also FACE experiments ongoing in other countries. [Quoted from the home page of the FACE Data Management System and other pages within the web site.] The FACE Data Management System at ORNL provides links to all the FACE and SERC sites and to the data (both the data archived at CDIAC and data still residing on site-specific pages). Users are also given in-depth information on the concept, provided with a full, linked list of international projects, and guided to related research. The FACE projects were part of the CO2 research network fostered by the Global Change and Terrestrial Ecosystems core project of the International Geosphere-Biosphere Programme. Results from the experiment contribute to the Terrestrial Ecosystem Response to Atmospheric and Climatic Change (TERACC) project, a 5-year initiative integrating experimental data and global change modeling.

326

Inducinga CO2 leak into ashallow aquifer (CO2FieldLab EUROGIA+ project): Monitoring the CO2 plume in groundwaters.  

E-Print Network [OSTI]

(saline aquifer, depleted oil/gas reservoir), aquifers are ubiquitousin the overlying sedimentary pile in case of unwanted CO2leakages from a storage site. Independently from the nature of the reservoir

Paris-Sud XI, Université de

327

EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2  

SciTech Connect (OSTI)

EGS using CO2 as a working fluid will likely involve hydro-shearing low-permeability hot rock reservoirs with a water solution. After that process, the fractures will be flushed with CO2 that is maintained under supercritical conditions (> 70 bars). Much of the injected water in the main fracture will be flushed out with the initial CO2 injection; however side fractures, micro fractures, and the lower portion of the fracture will contain connate water that will interact with the rock and the injected CO2. Dissolution/precipitation reactions in the resulting scCO2/brine/rock systems have the potential to significantly alter reservoir permeability, so it is important to understand where these precipitates form and how are they related to the evolving free connate water in the system. To examine dissolution / precipitation behavior in such systems over time, we have conducted non-stirred batch experiments in the laboratory with pure minerals, sandstone, and basalt coupons with brine solution spiked with MnCl2 and scCO2. The coupons are exposed to liquid water saturated with scCO2 and extend above the water surface allowing the upper portion of the coupons to be exposed to scCO2 saturated with water. The coupons were subsequently analyzed using SEM to determine the location of reactions in both in and out of the liquid water. Results of these will be summarized with regard to significance for EGS with CO2 as a working fluid.

Earl D. Mattson; Travis L. McLing; William Smith; Carl Palmer

2013-02-01T23:59:59.000Z

328

Leakage and Sepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water  

E-Print Network [OSTI]

from geologic carbon sequestration sites: unsaturated zoneCO 2 from Geologic Carbon Sequestration Sites, Vadose Zoneseepage from geologic carbon sequestration sites may occur.

Oldenburg, Curt M.; Lewicki, Jennifer L.

2005-01-01T23:59:59.000Z

329

ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING  

SciTech Connect (OSTI)

Fossil fuels currently provide 85% of the world's energy needs, with the majority coming from coal, due to its low cost, wide availability, and high energy content. The extensive use of coal-fired power assumes that the resulting CO2 emissions can be vented to the atmosphere. However, exponentially increasing atmospheric CO2 levels have brought this assumption under critical review. Over the last decade, this discussion has evolved from whether exponentially increasing anthropogenic CO2 emissions will adversely affect the global environment, to the timing and magnitude of their impact. A variety of sequestration technologies are being explored to mitigate CO2 emissions. These technologies must be both environmentally benign and economically viable. Mineral carbonation is an attractive candidate technology as it disposes of CO2 as geologically stable, environmentally benign mineral carbonates, clearly satisfying the first criteria. The primary challenge for mineral carbonation is cost-competitive process development. CO2 mineral sequestration--the conversion of stationary-source CO2 emissions into mineral carbonates (e.g., magnesium and calcium carbonate, MgCO3 and CaCO3)--has recently emerged as one of the most promising sequestration options, providing permanent CO2 disposal, rather than storage. In this approach a magnesium-bearing feedstock mineral (typically serpentine or olivine; available in vast quantities globally) is specially processed and allowed to react with CO2 under controlled conditions. This produces a mineral carbonate which (1) is environmentally benign, (2) already exists in nature in quantities far exceeding those that could result from carbonating the world's known fossil fuel reserves, and (3) is stable on a geological time scale. Minimizing the process cost via optimization of the reaction rate and degree of completion is the remaining challenge. As members of the DOE/NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO2 mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH)2. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO2 mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach has provided a deeper understanding of the key reaction mechanisms than either individual approach can alone. We used ab initio techniques to significantly advance our understanding of atomic-level processes at the solid/solution interface by elucidating the origin of vibrational, electronic, x-ray and electron energy loss sp

A.V.G. Chizmeshya; M.J. McKelvy; G.H. Wolf; R.W. Carpenter; D.A. Gormley; J.R. Diefenbacher; R. Marzke

2006-03-01T23:59:59.000Z

330

Highlights of the 2009 SEG summer research workshop on "CO2 Sequestration Geophysics"  

E-Print Network [OSTI]

CO 2 saturation at the Weyburn CO 2 EOR injection project inMonitoring CO 2 storage during EOR at the Weyburn-Midalean excellent example of a CO 2 EOR (enhanced oil recovery)

Lumley, D.

2010-01-01T23:59:59.000Z

331

CO2_white_paper.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRIC CNMSMethanol SteamNOTICE: This report was

332

NETL CO2 Storage Frequently Asked Questions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison NERSC: RunningNERSC---8J NESEACO2

333

co2-transport | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery of θ1cmarquardt2013

334

QGESS: CO2 Impurity Design Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedlesAdvancedJanuary 13,PuttingEnergy QER PublicQER Report:QER

335

Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n,,H2O...m  

E-Print Network [OSTI]

Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n 2006; published online 20 October 2006 Pure neutral CO2 n clusters and mixed CO2 n H2O m clustersV. The distribution of pure CO2 n clusters decreases roughly exponentially with increasing cluster size. During

Rocca, Jorge J.

336

Enhanced practical photosynthetic CO2 mitigation  

DOE Patents [OSTI]

This process is unique in photosynthetic carbon sequestration. An on-site biological sequestration system directly decreases the concentration of carbon-containing compounds in the emissions of fossil generation units. In this process, photosynthetic microbes are attached to a growth surface arranged in a containment chamber that is lit by solar photons. A harvesting system ensures maximum organism growth and rate of CO.sub.2 uptake. Soluble carbon and nitrogen concentrations delivered to the cyanobacteria are enhanced, further increasing growth rate and carbon utilization.

Bayless, David J.; Vis-Chiasson, Morgan L.; Kremer, Gregory G.

2003-12-23T23:59:59.000Z

337

Chemical Impact of Elevated CO2on Geothermal Energy Production  

Broader source: Energy.gov [DOE]

This is a two phase project to assess the geochemical impact of CO2on geothermal energy production by: analyzing the geochemistry of existing geothermal fields with elevated natural CO2; measuring realistic rock-water rates for geothermal systems using laboratory and field-based experiments to simulate production scale impacts.

338

Implementation of the El Mar (Delaware) Unit CO2 flood  

SciTech Connect (OSTI)

Union Royalty, Inc., Amoco Production Company, and Enron Liquids Pipeline Company recently announced that they have commenced operations of an innovative enhanced oil recovery project at the El Mar (Delaware) Unit in Loving County, Texas, about 100 miles west of Midland, Texas. The project will convert the unit`s existing oil recovery system from a secondary (waterflood) system to a tertiary (CO2 flood) system designed to use carbon dioxide and water to increase crude oil production from the unit. What makes this EOR project unique is the creative deal structured by the partners involved. Amoco, Union Royalty, and Enron have worked out an unprecedented arrangement whereby Amoco essentially trades CO2 for an interest in Union Royalty`s future oil production from the unit. By pioneering this innovative deal new production life has been restored to a field that otherwise might dry up. Enron is participating in the project by transporting CO2 to the unit via a 40-mile expansion of its Central Basin Pipeline system from the Dollarhide oil field in Andrews county, Texas. The project will be implemented in four phases. The first phase in operation today comprises seven CO2 injection wells which have begun to process the reservoir with CO2. Plans now call for more CO2 injectors to be installed during the next three to five years until a total of 65 CO2 injectors and an on-site CO2 compression facility serve the unit`s 70 production wells.

McKnight, T.N. Jr. [Union Royalty, Inc., Midland, TX (United States); Merchant, D.L.

1995-12-31T23:59:59.000Z

339

THERMOCATALYTIC CO2-FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS  

E-Print Network [OSTI]

THERMOCATALYTIC CO2- FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS N. Muradov Florida Solar Energy Center 1679 Clearlake Road, Cocoa, Florida 32922 tel. 321-638-1448, fax. 321-638-1010, muradov (except for the start-up operation). This results in the following advantages: (1) no CO/CO2 byproducts

340

Distribution of anthropogenic CO2 in the Pacific Ocean  

E-Print Network [OSTI]

Distribution of anthropogenic CO2 in the Pacific Ocean C. L. Sabine,1 R. A. Feely,2 R. M. Key,3 J] This work presents an estimate of anthropogenic CO2 in the Pacific Ocean based on measurements from the WOCE tracers; 9355 Information Related to Geographic Region: Pacific Ocean; KEYWORDS: Pacific Ocean

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Comprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems  

E-Print Network [OSTI]

, carbon sequestration, ecosystem, multi-tier, multi-modal, multi-scale, self organized, sensor array to comprehensively monitor ecosystem carbon sequestration. The network consists of CO2, Weather (pressureComprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems and Its Relation

Han, Richard Y.

342

Oxidation in Environments with Elevated CO2 Levels  

SciTech Connect (OSTI)

Efforts to reduce greenhouse gas emissions from fossil energy power productions focus primarily on either pre- or post-combustion removal of CO2. The research presented here examines corrosion and oxidation issues associated with two types of post-combustion CO2 removal processesoxyfuel combustion in refit boilers and oxyfuel turbines.

Gordon H. Holcomb

2009-05-01T23:59:59.000Z

343

Energy solutions for CO2 emission peak and subsequent decline  

E-Print Network [OSTI]

Energy solutions for CO2 emission peak and subsequent decline Edited by Leif Sønderberg Petersen and Hans Larsen Risø-R-1712(EN) September 2009 Proceedings Risø International Energy Conference 2009 #12;Editors: Leif Sønderberg Petersen and Hans Larsen Title: Energy solutions for CO2 emission peak

344

Using CO2 & Algae to Treat Wastewater and  

E-Print Network [OSTI]

Using CO2 & Algae to Treat Wastewater and Produce Biofuel Feedstock Tryg Lundquist Cal Poly State School, UCSB March 23, 2007 #12;CO2 and Wastewater Treatment · WW Treatment Technologies · Scale Actinastrum sp. #12;Major Wastewater Treatment Technologies in U.S. Activated Sludge 6,800 Facilities 25

Keller, Arturo A.

345

HYDROMECHANICAL CHARACTERIZATION FOR SITE SELECTION IN CO2 PERMANENT  

E-Print Network [OSTI]

-BarcelonaTech), Barcelona, Spain 3 Energy City Foundation (CIUDEN), Spanish Government CO2 Geological Storage Programme (Vilarrasa et al., 2011, Energy Procedia) Trees killed by CO2 leakage in Mammoth Mountains (Farrar et al EQUATIONS Mass conservation equation Darcy's law Momentum balance Effective stress Hooke's law (linear

Politcnica de Catalunya, Universitat

346

Ex post evaluations of CO2 based taxes: a survey  

E-Print Network [OSTI]

of fossil fuels, and which are introduced with the explicit intention of abating CO2 emissions. This paper and, especially, subsidies, has been called into question. Secondly, the CO2-based taxes themselves and subsidies), it is unlikely that they have been cost-effective (in the sense of attaining their environmental

Watson, Andrew

347

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2005 Quarterly Progress absorption/stripping by developing an alternative solvent, aqueous K2CO3 promoted by piperazine. Modeling.................................................................................................................................. 11 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

Rochelle, Gary T.

348

CO2 Capture by Absorption with Potassium Carbonate  

E-Print Network [OSTI]

CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2005 Quarterly Progress absorption/stripping by developing an alternative solvent, aqueous K2CO3 promoted by piperazine. In Campaign.................................................................................................................................... 9 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

Rochelle, Gary T.

349

European and Global Perspectives for CO2 Capture and Storage  

E-Print Network [OSTI]

plants. Therefore, it is recommended to employ mixes of the different CO2 emission reduction options are compared in order to address the question how to achieve significant CO2 emission reductions through2 emission reductions through the application of CCS technologies. The analysis shows that CCS can

350

Intercomparison of simulation models for CO2 disposal in underground storage reservoirs  

E-Print Network [OSTI]

oil recovery (EOR) using CO2 requires an understanding ofexperience with using CO2 for EOR projects (SPE, 1999), and

Pruess, Karsten; Tsang, Chin-Fu; Law, David; Oldenburg, Curt

2001-01-01T23:59:59.000Z

351

Quantifying Regional Economic Impacts of CO2 Intensity Targets in China  

E-Print Network [OSTI]

To address rising energy use and CO2 emissions, Chinas leadership has enacted energy and CO2 intensity

Zhang, Da

2012-09-01T23:59:59.000Z

352

Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China  

E-Print Network [OSTI]

Others* Air Conditioner Frozen Scenario Total CO2 EmissionsCO2 Emissions (million tonnes CO2)Improvement Scenario Total CO2 Emissions *Others include:

Zhou, Nan

2011-01-01T23:59:59.000Z

353

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration  

SciTech Connect (OSTI)

A novel EOR method using carbonated water injection followed by depressurization is introduced. Results from micromodel experiments are presented to demonstrate the fundamental principles of this oil recovery method. A depressurization process (1 MPa/hr) was applied to a micromodel following carbonated water injection (Ca ? 10-5). The exsolved CO2 in water-filled pores blocked water flow in swiped portions and displaced water into oil-filled pores. Trapped oil after the carbonated water injection was mobilized by sequentially invading water. This method's self-distributed mobility control and local clogging was tested in a sandstone sample under reservoir conditions. A 10% incremental oil recovery was achieved by lowering the pressure 2 MPa below the CO2 liberation pressure. Additionally, exsolved CO2 resides in the pores of a reservoir as an immobile phase with a high residual saturation after oil production, exhibiting a potential synergy opportunity between CO2 EOR and CO2 sequestration

Zuo, Lin; Benson, Sally M.

2013-01-01T23:59:59.000Z

354

Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs  

E-Print Network [OSTI]

industry routinely injects CO2 underground to enhance oil recovery (CO2-EOR). A bit more than two thousand kilometers of CO2 pipelines have been laid in Texas to provide for CO2- EOR. In these operations the goal must pay for the CO2. Yet at the end of an EOR operation a major fraction of CO2 purchased remains

Paris-Sud XI, Université de

355

Impact of porous medium desiccation during anhydrous CO2 injection in deep saline aquifers: up scaling from experimental  

E-Print Network [OSTI]

into the atmosphere. CO2 is captured from exhaust gas in power plants or industrial units and then stored of the saturation profile evolution with two phase flow model integrating thermal effects. An up scaling on recent experiments and numerical simulations, the near-well injection zone is identified

Boyer, Edmond

356

Predicting PVT data for CO2brine mixtures for black-oil simulation of CO2 geological storage  

E-Print Network [OSTI]

Predicting PVT data for CO2brine mixtures for black-oil simulation of CO2 geological storage efficiency of the black-oil approach promote application of black-oil simulation for large-scale geological into geological formations has been considered as a potential method to mitigate climate change. Accurate

Santos, Juan

357

CO2 Tech | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in ChittendenPartners LLC Jump

358

Odors that Modify CO2 Receptor Activity in Insects and Their Effect on Innate CO2-Mediated Behavior and Neuronal Plasticity  

E-Print Network [OSTI]

Intermediates in Insect CO2 Sensory Systems. Science Certel,2007). The molecular basis of CO2 reception in Drosophila.J. (2004). Floral CO2 Reveals Flower Profitability to Moths.

Turner, Stephanie

2010-01-01T23:59:59.000Z

359

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network [OSTI]

Could Sequestration of CO2 be Combined with the DevelopmentTOUGH2 Code for Studies of CO2 Storage in Saline Aquifers,and J. Ennis- King. CO2-H2O Mixtures in the Geological

Pruess, K.

2010-01-01T23:59:59.000Z

360

atmospheric administration key: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

warming, ocean chemistry, carbon cycle Abstract CO2 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere Matsumoto,...

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

atmospheric emissions produced: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geosciences Websites Summary: -solid waste for CO2 mitigation and reduction of greenhouse effect gases into the atmosphere. ? 2008 ElsevierCarbonation of alkaline paper mill...

362

CO2 Capture with Liquid-to-Solid Absorbents: CO2 Capture Process Using Phase-Changing Absorbents  

SciTech Connect (OSTI)

IMPACCT Project: GE and the University of Pittsburgh are developing a unique CO2 capture process in which a liquid absorbent, upon contact with CO2, changes into a solid phase. Once in solid form, the material can be separated and the CO2 can be released for storage by heating. Upon heating, the absorbent returns to its liquid form, where it can be reused to capture more CO2. The approach is more efficient than other solventbased processes because it avoids the heating of extraneous solvents such as water. This ultimately leads to a lower cost of CO2 capture and will lower the additional cost to produce electricity for coal-fired power plants that retrofit their facilities to include this technology.

None

2010-10-01T23:59:59.000Z

363

Source Term Estimation of Radioxenon Released from the Fukushima Dai-ichi Nuclear Reactors Using Measured Air Concentrations and Atmospheric Transport Modeling  

SciTech Connect (OSTI)

Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout from the Fukushima Daiichi nuclear accident in March 2011. Atmospheric transport modeling (ATM) of plumes of noble gases and particulates were performed soon after the accident to determine plausible detection locations of any radioactive releases to the atmosphere. We combine sampling data from multiple International Modeling System (IMS) locations in a new way to estimate the magnitude and time sequence of the releases. Dilution factors from the modeled plume at five different detection locations were combined with 57 atmospheric concentration measurements of 133-Xe taken from March 18 to March 23 to estimate the source term. This approach estimates that 59% of the 1.241019 Bq of 133-Xe present in the reactors at the time of the earthquake was released to the atmosphere over a three day period. Source term estimates from combinations of detection sites have lower spread than estimates based on measurements at single detection sites. Sensitivity cases based on data from four or more detection locations bound the source term between 35% and 255% of available xenon inventory.

Eslinger, Paul W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Biegalski, S. [Univ. of Texas at Austin, TX (United States); Bowyer, Ted W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cooper, Matthew W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Haas, Derek A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hoffman, Ian [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Korpach, E. [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Yi, Jing [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Miley, Harry S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rishel, Jeremy P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ungar, R. Kurt [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); White, Brian [Radiation Protection Bureau, Health Canada, Ottawa, ON (Canada); Woods, Vincent T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

2014-01-01T23:59:59.000Z

364

Combustion-Assisted CO2 Capture Using MECC Membranes  

SciTech Connect (OSTI)

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO2 from power plant flue gas. Here a modified MECC CO2 capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO2 driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO2 in the flue gas may be captured, and a compressed CO2 product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO2 capture system, and has the potential to meet U.S. DOE s goal that deployment of a CO2 capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Sherman, Steven R [ORNL; Gray, Dr. Joshua R. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Brinkman, Dr. Kyle S. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Huang, Dr. Kevin [University of South Carolina, Columbia

2012-01-01T23:59:59.000Z

365

Free Air CO2 Enrichment (FACE) Research Data from the Nevada Desert FACE Facility (NDFF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at the Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. NDFF whole-ecosystem manipulation is a flagship experiment of the Terrestrial Carbon Process (TCP) research program of the US Dept. of Energy. It is also a core project of the International Geosphere-Biosphere Program (IGBP) and a contribution to the US Global Change Research Program. The NDFF was developed in conjunction with the National Science Foundation (NSF) and DOE-EPSCoR programs. FACE (Free-Air-Carbon dioxide-Enrichment) technology allows researchers to elevate the carbon dioxide level in large study plots while minimizing ecosystem disturbance. At the NDFF the concentration of CO2 was elevated by 50 percent above the present atmospheric levels in three plots in the Mojave Desert ecosystem, while six other plots remained at the current level. This experimental design provided a large area in which integrated teams of scientists could describe and quantify processes regulating carbon, nutrient, and water balances in desert ecosystems.

366

CO2 Europipe | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in ChittendenPartners LLC Jump JumpCLIMPAGCNTCO

367

The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol  

SciTech Connect (OSTI)

The influences of atmospheric aerosols on cloud properties (i.e., aerosol indirect effects) strongly depend on the aerosol CCN concentrations, which can be effectively predicted from detailed aerosol size distribution, mixing state, and chemical composition using Khler theory. However, atmospheric aerosols are complex and heterogeneous mixtures of a large number of species that cannot be individually simulated in global or regional models due to computational constraints. Furthermore, the thermodynamic properties or even the molecular identities of many organic species present in ambient aerosols are often not known to predict their cloud-activation behavior using Khler theory. As a result, simplified presentations of aerosol composition and mixing state are necessary for large-scale models. In this study, aerosol microphysics, CCN concentrations, and chemical composition measured at the T0 urban super-site in Mexico City during MILAGRO are analyzed. During the campaign in March 2006, aerosol size distribution and composition often showed strong diurnal variation as a result of both primary emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. The submicron aerosol composition was ~1/2 organic species. Closure analysis is first carried out by comparing CCN concentrations calculated from the measured aerosol size distribution, mixing state, and chemical composition using extended Khler theory to concurrent CCN measurements at five supersaturations ranging from 0.11% to 0.35%. The closure agreement and its diurnal variation are studied. CCN concentrations are also derived using various simplifications of the measured aerosol mixing state and chemical composition. The biases associated with these simplifications are compared for different supersaturations, and the variation of the biases is examined as a function of aerosol age. The results show that the simplification of internally mixed, size-independent particle composition leads to substantial overestimation of CCN concentration for freshly emitted aerosols in early morning, but can reasonably predict the CCN concentration after the aerosols underwent atmospheric processing for several hours. This analysis employing various simplifications provides insights into the essential information of particle chemical composition that needs to be represented in models to adequately predict CCN concentration and cloud microphysics.

Wang, J.; Cubison, M.; Aiken, A.; Jimenez, J.; Collins, D.; Gaffney, J.; Marley, N.

2010-03-15T23:59:59.000Z

368

Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms  

SciTech Connect (OSTI)

PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLAs designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

None

2012-01-01T23:59:59.000Z

369

Methanogenic Conversion of CO2 Into CH4  

SciTech Connect (OSTI)

This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

Stevens, S.H., Ferry, J.G., Schoell, M.

2012-05-06T23:59:59.000Z

370

Et notat til "det elektriske CO2 projekt". Med udgangspunkt i de studerendes CO2 tips analyseres CO2 emissionen i de forskellige belysningssituationer. De forskellige tips ses p projektets hjemmeside  

E-Print Network [OSTI]

1 Et notat til "det elektriske CO2 projekt". Med udgangspunkt i de studerendes CO2 tips analyseres CO2 emissionen i de forskellige belysningssituationer. De forskellige tips ses på projektets hjemmeside www.co2tips.dk Indholdsfortegnelse EL-FORBRUG TIL BELYSNING I HUSHOLDNINGER

371

HARNESSING THE CHEMISTRY OF CO2  

SciTech Connect (OSTI)

Our research program is broadly focused on activating CO{sub 2} through the use of organic and organometallic based catalysts. Some of our methods have centered on annulation reactions of unsaturated hydrocarbons (and carbonyl substrates) to provide a diverse array of carbocycles and heterocycles. We use a combination of catalyst discovery and optimization in conjunction with classical physical organic chemistry to elucidate the key mechanistic features of the cycloaddition reactions such that the next big advances in catalyst development can be made. Key to all of our cycloaddition reactions is the use of a sterically hindered, electron donating N heterocyclic carbene (NHC) ligand, namely IPr (or SIPr), in conjunction with a low valent nickel pre-catalyst. The efficacy of this ligand is two-fold: (1) the high {delta}-donating ability of the NHC increases the nucleophilicity of the metal center which thereby facilitates interaction with the electrophilic carbonyl and (2) the steric hindrance prevents an otherwise competitive side reaction involving only the alkyne substrate. Such a system has allowed for the facile cycloaddition to prepare highly functionalized pyrones, pyridones, pyrans, as well as novel carbocycles. Importantly, all reactions proceed under extremely mild conditions (room temperature, atmospheric pressures, and short reaction times), require only catalytic amounts of Ni/NHC and readily available starting materials, and afford annulated products in excellent yields. Our current focus revolves around understanding the fundamental processes that govern these cycloadditions such that the next big advance in the cyclization chemistry of CO{sub 2} can be made. Concurrent to our annulation chemistry is our investigation of the potential for imidazolylidenes to function as thermally-actuated CO{sub 2} sequestering and delivery agents.

Louie, Janis

2010-05-11T23:59:59.000Z

372

PASSIVE WIRELESS SURFACE ACOUSTIC WAVE SENSORS FOR MONITORING SEQUESTRATION SITES CO2 EMISSION  

SciTech Connect (OSTI)

University of Pittsburghs Transducer lab has teamed with the U.S. Department of Energys National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/?. The overall effect of temperature on nanocomposite resistance was -1000ppm/?. The gas response of the nanocomposite was about 10% resistance increase under pure CO2. The sensor frequency change was around 300ppm for pure CO2. With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

2012-11-30T23:59:59.000Z

373

System-level modeling for geological storage of CO2  

E-Print Network [OSTI]

CO 2 escapes the reservoir through the abandoned well. Theof the abandoned well and the gas reservoir is calculated by4 reservoir 1.e-12 1.e-14 8.4e-4 Fracture or abandoned well

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-01-01T23:59:59.000Z

374

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

in depleted or abandoned oil and gas reservoirs; how- ever,abandoned wells represent a potentially direct route from reservoirabandoned in the 1930s with no barrier installed after it encountered a natural CO 2 reservoir

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

375

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

in depleted or abandoned oil and gas reservoirs; how- ever,oil well abandoned in the 1930s with no barrier installed after it encountered a natural CO 2 reservoir

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

376

The geomechanics of CO2 storage in deep sedimentary formations  

E-Print Network [OSTI]

such as depleted oil and gas reservoirs, unminable coaltakes place in depleted oil or gas reservoirs (IAE, 2003).of CO 2 in depleted oil and gas reservoirs. J Can Pet

Rutqvist, J.

2013-01-01T23:59:59.000Z

377

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

IN DEPLETED AND NEAR- DEPLETED OIL RESERVOIRS V. A. KuuskraaDEPLETED AND NEAR-DEPLETED OIL RESERVOIRS Vello A. Kuuskraaof CO 2 in a depleted oil reservoir: an overview,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

378

Novel CO2-Thickeners for Improved Mobility Control  

SciTech Connect (OSTI)

The objective of this contract was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO2.

Enick, Dr. Robert M.; Beckman, Dr. Eric J.; Hamilton, Dr. Andrew

2002-01-15T23:59:59.000Z

379

CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS  

E-Print Network [OSTI]

Transactions 105(2). Emmerich, S. J. and A. K. Persily (Fisk and de Almeida 1998; Emmerich and Persily 2001), CO 2Fisk and de Almeida 1998; Emmerich and Persily 2001; Apte

Fisk, William J.

2010-01-01T23:59:59.000Z

380

Bees, Balloons, Pollen Used as Novel CO2 Monitoring Approach  

Broader source: Energy.gov [DOE]

Researchers at the Office of Fossil Energy's National Energy Technology Laboratory have discovered an innovative way to use bees, pollen, and helium-filled balloons to verify that no carbon dioxide (CO2) leaks from carbon sequestration sites.

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Canadas Bitumen Industry Under CO2 Constraints  

E-Print Network [OSTI]

We investigate the effects of implementing CO2 emissions reduction policies on Canadas oil sands industry, the largest of its kind in the world. The production of petroleum products from oils sands involves extraction of ...

Chen, Y.-H. Henry

382

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

FEASIBILITY: TEAPOT DOME EOR PILOT L. Chiaramonte, M.TO IDENTIFY OPTIMAL CO 2 EOR STORAGE SITES V. Nez Lopez,from a carbon dioxide EOR/sequestration project. Energy

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

383

From CO2 to Methanol via Novel Nanocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Here, Graciani et al. report on a new nanocatalyst that can do just that for CO2- in producing methanol, a key industrial chemical commonly used to make other chemicals and...

384

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

carbon dioxide-enhanced oil recovery project as a prototypeCO 2 injection for enhanced oil recovery. Indeed, most near-as well as Enhanced Oil Recovery projects. REFERENCES

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

385

Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs  

SciTech Connect (OSTI)

The work strived to improve industry understanding of CO2 flooding mechanisms with the ultimate goal of economically recovering more of the U.S. oil reserves. The principle interests are in the related fields of mobility control and injectivity.

Grigg, Reid B.; Svec, Robert K.

2003-03-10T23:59:59.000Z

386

Quantum Chemistry of CO2 Interaction with Swelling Clays | netl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantum Chemistry of CO2 Interaction with Swelling Clays Sep 2014 Aug 2014 Jul 2014 June 2014 May 2014 Apr 2014 Mar 2014 Feb 2014 Jan 2014 Dec 2013 Nov 2013 Oct 2013 Sep 2013 Aug...

387

Electron Transfer Dynamics in Photocatalytic CO2 Conversion ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Transfer Dynamics in Photocatalytic CO2 Conversion Sep 2014 Aug 2014 Jul 2014 June 2014 May 2014 Apr 2014 Mar 2014 Feb 2014 Jan 2014 Dec 2013 Nov 2013 Oct 2013 Sep 2013...

388

DOE Manual Studies 11 Major CO2 Geologic Storage Formations  

Broader source: Energy.gov [DOE]

A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

389

CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

Margaret Torn

390

Geologic controls influencing CO2 loss from a leaking well.  

SciTech Connect (OSTI)

Injection of CO2 into formations containing brine is proposed as a long-term sequestration solution. A significant obstacle to sequestration performance is the presence of existing wells providing a transport pathway out of the sequestration formation. To understand how heterogeneity impacts the leakage rate, we employ two dimensional models of the CO2 injection process into a sandstone aquifer with shale inclusions to examine the parameters controlling release through an existing well. This scenario is modeled as a constant-rate injection of super-critical CO2 into the existing formation where buoyancy effects, relative permeabilities, and capillary pressures are employed. Three geologic controls are considered: stratigraphic dip angle, shale inclusion size and shale fraction. In this study, we examine the impact of heterogeneity on the amount and timing of CO2 released through a leaky well. Sensitivity analysis is performed to classify how various geologic controls influence CO2 loss. A 'Design of Experiments' approach is used to identify the most important parameters and combinations of parameters to control CO2 migration while making efficient use of a limited number of computations. Results are used to construct a low-dimensional description of the transport scenario. The goal of this exploration is to develop a small set of parametric descriptors that can be generalized to similar scenarios. Results of this work will allow for estimation of the amount of CO2 that will be lost for a given scenario prior to commencing injection. Additionally, two-dimensional and three-dimensional simulations are compared to quantify the influence that surrounding geologic media has on the CO2 leakage rate.

Hopkins, Polly L.; Martinez, Mario J.; McKenna, Sean Andrew; Klise, Katherine A.

2010-12-01T23:59:59.000Z

391

Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use  

SciTech Connect (OSTI)

field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.

Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

2012-07-31T23:59:59.000Z

392

Modeling long-term CO2 storage, sequestration and cycling  

SciTech Connect (OSTI)

The application of numerical and analytical models to the problem of storage, sequestration and migration of carbon dioxide in geologic formations is discussed. A review of numerical and analytical models that have been applied to CO2 sequestration are presented, as well as a description of frameworks for risk analysis. Application of models to various issues related to carbon sequestration are discussed, including trapping mechanisms, density convection mixing, impurities in the CO2 stream, changes in formation porosity and permeability, the risk of vertical leakage, and the impacts on groundwater resources if leakage does occur. A discussion of the development and application of site-specific models first addresses the estimation of model parameters and the use of natural analogues to inform the development of CO2 sequestration models, and then surveys modeling that has been done at two commercial-scale CO2 sequestration sites, Sleipner and In Salah, along with a pilot-scale injection sites used to study CO2 sequestration in saline aquifers (Frio) and an experimental site designed to test monitoring of CO2 leakage in the vadose zone (ZERT Release Facility).

Bacon, Diana H.

2013-11-11T23:59:59.000Z

393

Dynamics of Planetary Atmospheres  

E-Print Network [OSTI]

pressure (bars) N2 82%; Ar 12%; CH4 6%CO2 96.5%; N2 3.5%Atmospheric composition 26177Orbital inclination (1992) orbiter ­ Winds from cloud-tracking and probe drifts ­ IR temperatures, solar-fixed tides, polar-Huygens mission (from 2005) ­ Doppler wind descent profile ­ IR temperature and composition maps ­ Visible, IR

Read, Peter L.

394

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry  

E-Print Network [OSTI]

Improvement and CO2 Emission Reduction Potentials in theUS $/GJ- saved) CO2 Emissions Reduction (Mt CO 2 ) CCF RankUS$/GJ- saved) CO2 Emissions Reduction (Mt CO 2 ) * The

Morrow III, William R.

2014-01-01T23:59:59.000Z

395

CO2 leakage up from a geological storage site to shallow fresh groundwater: CO2-water-rock interaction assessment and  

E-Print Network [OSTI]

CO2 leakage up from a geological storage site to shallow fresh groundwater: CO2-water repository requires the investigation of the potential CO2 leakage back into fresh groundwater, particularly sensitive monitoring techniques in order to detect potential CO2 leaks and their magnitude as well

Paris-Sud XI, Université de

396

Generation of a Doubly Bridging CO2 Ligand and Deoxygenation of CO2 by an (NHC)Ni(0) Complex  

E-Print Network [OSTI]

for CO2, µ-2,2-CO2, at a dinickel core. The reaction of [(IPr)Ni(µ-Cl)]2 18 (IPr ) 1,3-bis(2,6-diisopro, (IPr)- Ni(6-C6D6). We note that this symmetric pattern for the backbone protons is observed in reacted isolation of the product as a solid. Reaction of [(IPr)Ni(µ-Cl)]2 with Li(HBEt3) or with NaOt-Bu followed

Müller, Peter

397

Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers  

SciTech Connect (OSTI)

Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. Identify prevailing environmental conditions that would dictate one geochemical outcome over another. Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and competency. The results from these investigations will provide useful information to support site selection, risk assessment, and public education efforts associated with geological, deep subsurface CO2 storage and sequestration.

Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

2013-04-15T23:59:59.000Z

398

Enhanced Practical Photosynthetic CO2 Mitigation  

SciTech Connect (OSTI)

This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2003 through 7/01/2003. As indicated in the list of accomplishments below we have completed some long-term model scale bioreactor tests and are prepared to begin pilot scale bioreactor testing. Specific results and accomplishments for the second quarter of 2003 include: (1) Bioreactor support systems and test facilities: (a) Qualitative long-term survivability tests for S.C.1.2(2) on Omnisil have been successfully completed and results demonstrate a growth rate that appears to be acceptable. (b) Quantitative tests of long-term growth productivity for S.C.1.2(2) on Omnisil have been completed and initial results are promising. Initial results show that the mass of organisms doubled (from 54.9 grams to 109.8 grams) in about 5 weeks. Full results will be available as soon as all membranes and filters are completely dried. The growth rate should increase significantly with the initiation of weekly harvesting during the long term tests. (c) The phase 1 construction of the pilot scale bioreactor has been completed, including the solar collector and light distribution system. We are now in the phase of system improvement as we wait for CRF-2 results in order to be able to finalize the design and construction of the pilot scale system. (d) A mass transfer experimental setup was constructed in order to measure the mass transfer rate from the gas to the liquid film flowing over a membrane and to study the hydrodynamics of the liquid film flowing over a membrane in the bioreactor. Results were reported for mass transfer coefficient, film thickness, and fluid velocity over an Omnisil membrane with a ''drilled hole'' header pipe design. (2) Organisms and Growth Surfaces: (a) A selectivity approach was used to obtain a cyanobacterial culture with elevated resistance to acid pH. Microlonies of ''3.2.2 S.C.1 Positive'' migrated towards light along a light gradient, and against acid gradient, in whole. Nonetheless, some microcolonies were able to generate ''secondary'' microcolonies with increased ability to move towards acid area. These microcolonies with elevated resistance to acidity have been isolated and inoculated in BG-11 with pH 6. They are still under incubation. (b) We have continued our work on the genotyping of unialgal cyanobacterial cultures isolated in YNP. Because partial sequence of 16S rRNA gene of the isolate 5.2 S.C.1 did not appear to be more than 93% identical to published cyanobacterial sequences, we carried out entire sequence of this gene using the combination of different primers. It appears that we have found a representative of putative new genus. We expect to publish all sequences. (c) The new species (even probably new genus) of cyanobacteria, 5.2 s. c. 1 that was isolated from La Duke Spring in Great Yellowstone Basin demonstrate an elevated resistance to some compounds of iron. This might be very important for our project, because plant gases may have elevated amount of iron. Our study of the effect of different concentration of FeCl3 6H2O on the growth of 5.2 S.C.1 isolate showed that iron additions stimulated rather then inhibited the growth of 5.2. S.C.1 isolate. Because of this we would recommend this isolate for further experiments.

Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

2003-07-22T23:59:59.000Z

399

Intracranial Pressure Variation Associated with Changes in End-Tidal CO2  

E-Print Network [OSTI]

Intracranial Pressure Variation Associated with Changes in End-Tidal CO2 Sunghan Kim, James Mc that the partial pressure of arterial CO2 (PaCO2) can affect cerebral blood flow, cerebral blood volume, and therefore ICP. The end-tidal CO2 (ETCO2) is usually monitored by clinicians as a proxy for PaCO2. We show

400

CO2 on the Integrity of Well Cement | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRIC CNMSMethanol Steam Reforming.modelCO2 on

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Interaction of CO2 with Oxygen Adatoms on Rutile TiO2(110). | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land SurfaceVirus-InfectedIntelligentCO2 with Oxygen Adatoms on

402

Tropical forest responses to increasing [CO2]: current knowledge and opportunities for future research  

SciTech Connect (OSTI)

Elevated atmospheric [CO2] (ca) will undoubtedly affect the metabolism of tropical forests worldwide; however, critical aspects of how tropical forests will respond remain largely unknown. Here we review the current state of knowledge about physiological and ecological responses, with the aim of providing a framework that can help to guide future experimental research. Modelling studies have indicated that elevated ca can potentially stimulate photosynthesis more in the tropics than at higher latitudes, because suppression of photorespiration by elevated ca increases with temperature. However, canopy leaves in tropical forests could also potentially reach a high temperature threshold under elevated ca that will moderate the rise in photosynthesis. Belowground responses, including fine root production, nutrient foraging, and soil organic matter processing, will be especially important to the integrated ecosystem response to elevated CO2. Water-use efficiency will increase as ca rises, potentially impacting upon soil moisture status and nutrient availability. Recruitment may be differentially altered for some functional groups, potentially decreasing ecosystem carbon storage. Whole-forest CO2 enrichment experiments are urgently needed to test predictions of tropical forest functioning under elevated ca. Smaller scale experiments in the understory and in gaps would also be informative, and could provide stepping stones toward stand-scale manipulations.

Cernusak, Lucas [Australian National University, Canberra, Australia; Winter, Klaus [Smithsonian Tropical Research Institute; Dalling, James [University of Illinois, Urbana-Champaign; Holtum, Joseph [James Cook University; Jaramillo, Carlos [Smithsonian Tropical Research Institute; Korner, Christian [University of Basel; Leakey, Andrew D.B. [University of Illinois; Norby, Richard J [ORNL; Poulter, Benjamin [Laboratoire des Sciences du Climat et de l'Environement, France; Turner, Benjamin [Smithsonian Tropical Research Institute; Wright, S. Joseph [Smithsonian Tropical Research Institute

2013-01-01T23:59:59.000Z

403

CO2-selective, Hybrid Membranes by Silation of Alumina  

SciTech Connect (OSTI)

Hybrid membranes are feasible candidates for the separation of CO2 from gas produced in coal-based power generation since they have the potential to combine the high selectivity of polymer membranes and the high permeability of inorganic membranes. An interesting method for producing hybrid membranes is the silation of an inorganic membrane. In this method, trichloro- or alkoxy-silanes interact with hydroxyl groups on the surface of ?-AlO3 or TiO2, binding organic groups to that surface. By varying the length of these organic groups on the organosilane, it should be possible to tailor the effective pore size of the membrane. Similarly, the addition of CO2-phillic groups to the silating agent allows for the careful control of surface affinity and the enhancement of surface diffusion mechanisms. This method of producing hybrid membranes selective to CO2 was first attempted by Hyun [1] who silated TiO2 with phenyltriethoxysilane. Later, Way [2] silated ?-AlO3 with octadecyltrichlorosilane. Both researchers were successful in producing membranes with improved selectivity toward CO2, but permeability was not maintained at a commercially applicable level. XPS data indicated that the silating agent did not penetrate into the membrane pores and separation actually occurred in a thin polymer-like surface layer. The present study attempts to overcome the mass transfer problems associated with this technique by producing the desired monolayer coverage of silane, and thus develop a highly-permeable CO2-selective hybrid membrane.

Luebke, D.R.; Pennline, H.W.

2007-09-01T23:59:59.000Z

404

CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts  

SciTech Connect (OSTI)

An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

2005-09-01T23:59:59.000Z

405

Surface Ocean CO2 Atlas (SOCAT) gridded data products  

SciTech Connect (OSTI)

A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968 2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.

Sabine, Christopher [NOAA Pacific Marine Environmental Laboratory; Hankin, S. [Pacific Northwest National Laboratory (PNNL); Koyuk, H [Joint Institute for the Study of the Atmosphere and Ocean, University of Washington; Bakker, D C E [School of Environmental Sciences, University of East Anglia, Norwich, UK; Pfeil, B [Geophysical Institute, University of Bergen; Uni Research AS, Bergen, Norway; Olsen, A [Bjerknes Centre for Climate Research, UNIFOB AS, Bergen, Norway; Metzl, N [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Kozyr, Alexander [ORNL; Fassbender, A [School of Oceanography, University of Washington, Seattle, WA; Manke, A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Malczyk, J [Jetz Laboratory, Department of Ecology and Evolutionary Biology, Yale University; Akl, J [CSIRO Wealth from Oceans Flagship, Hobart, Tasmania, Australia; Alin, S R [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Bellerby, R G J [Geophysical Institute, University of Bergen, Bergen, Norway; Borges, A [University of Liege, Chemical Oceanography Unit, Institut de Physique, Liege, Belgium; Boutin, J [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Brown, P J [School of Environmental Sciences, University of East Anglia, Norwich, UK; Cai, W-J [Department of Marine Sciences, University of Georgia; Chavez, F P [Monterey Bay Aquarium Research Institute, Moss Landing, CA; Chen, A [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Cosa, C [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Feely, R A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Gonzalez-Davila, M [Universidad de Las Palmas de Gran Canaria, Facultad de Ciencias del Mar, Las Palmas de Gran Canaria,; Goyet, C [Institut de Modlisation et d'Analyse en Go-Environnement et Sant, Universit de Perpignan; Hardman-Mountford, N [CSIRO, Marine and Atmospheric Research, Wembley, Western Australia, Australia; Heinze, C [Geophysical Institute, University of Bergen, Bergen, Norway; Hoppema, M [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; Hunt, C W [Ocean Process Analysis Lab, University of New Hampshire, Durham, New Hampshire; Hydes, D [National Oceanography Centre, Southampton, UK; Ishii, M [Japan Meteorological Agency, Meteorological Research Institute, Tsukuba, Japan; Johannessen, T [Geophysical Institute, University of Bergen, Bergen, Norway; Key, R M [Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey; Kortzinger, A [GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany; Landschutzer, P [School of Environmental Sciences, University of East Anglia, Norwich, UK; Lauvset, S K [Geophysical Institute, University of Bergen, Bergen, Norway; Lefevre, N [Universit Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Lenton, A [Centre for Australian Weather and Climate Research, Hobart, Tasmania, Australia; Lourantou, A [Universit Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Merlivat, L [Universit Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Midorikawa, T [Nagasaki Marine Observatory, Nagasaki, Japan; Mintrop, L [MARIANDA, Kiel, Germany; Miyazaki, C [Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Japan; Murata, A [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakadate, A [Marine Division, Global Environment and Marine Department, Japan Meteorological Agency, Tokyo, Japan; Nakano, Y [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakaoka, S [National Institute for Environmental Studies (NIES), Tsukuba, Japan; Nojiri, Y [National Institute for Environmental Studies, Tsukuba, Japan; et al.

2013-01-01T23:59:59.000Z

406

Weeks Island gravity stable CO2 pilot: Final report  

SciTech Connect (OSTI)

The Weeks Island ''S'' sand Reservoir B (''S'' RB) gravity-stable CO2 field test was completed during February 1988. Injection started in October 1978 and production began in January 1981 in this high-permeability, steeply-dipping sandstone reservoir. About 264,000 barrels of oil or 65 percent of the starting volume has been recovered. A 24-percent pore-volume slug of CO2 mixed with about six mole percent of natural gas (mostly methane) was injected at the start of the pilot. Since 1983, produced CO2 plus hydrocarbon gases have been recycled. CO2 usage statistics are 9.34 MCF/BO with recycle and 3.24 MCF/BO based on purchased CO2. Previous annual reports document the pilot design, implementation, and early results for the 1977 to June 1981 time period. This report is a review of early pilot history and a more detailed account of the post June 1981 results and overall interpretation. A reservoir-simulation history match of pilot performance plus core and log data from a 1983 swept-zone evaluation well are described in this report. A brief description of the production facility and an account of the corrosion control program are also included. 11 refs., 34 figs.

Johnston, J.R.; Perry, G.E.

1989-01-01T23:59:59.000Z

407

Molecular Dynamics Simulations of CO2 Formation in Interstellar Ices  

E-Print Network [OSTI]

CO2 ice is one of the most abundant components in ice-coated interstellar ices besides H2O and CO, but the most favorable path to CO2 ice is still unclear. Molecular dynamics calculations on the ultraviolet photodissociation of different kinds of CO-H2O ice systems have been performed at 10 K in order to demonstrate that the reaction between CO and an OH molecule resulting from H2O photodissociation through the first excited state is a possible route to form CO2 ice. However, our calculations, which take into account different ice surface models, suggest that there is another product with a higher formation probability ((3.00+-0.07)x10-2), which is the HOCO complex, whereas the formation of CO2 has a probability of only (3.6+-0.7)x10-4. The initial location of the CO is key to obtain reaction and form CO2: the CO needs to be located deep into the ice. The HOCO complex becomes trapped in the cold ice surface in the trans-HOCO minimum because it quickly loses its internal energy to the surrounding ice, preventi...

Arasa, Carina; van Dishoeck, Ewine F; Kroes, Geert-Jan

2013-01-01T23:59:59.000Z

408

E-Print Network 3.0 - af co2 fra Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

co2 fra Search Powered by Explorit Topic List Advanced Search Sample search results for: af co2 fra Page: << < 1 2 3 4 5 > >> 1 En femtedel af verdens CO2-udslip stammer fra...

409

EIS-0429: Proposed IG CO2 Pipeline Route | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Proposed IG CO2 Pipeline Route EIS-0429: Proposed IG CO2 Pipeline Route Map of Proposed CO2 Pipeline Route More Documents & Publications EIS-0429: Amended Notice of Intent To...

410

E-Print Network 3.0 - abiotic co2 flows Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

co2 flows Search Powered by Explorit Topic List Advanced Search Sample search results for: abiotic co2 flows Page: << < 1 2 3 4 5 > >> 1 Preindustrial Air-Sea CO2 Flux: Sensitivity...

411

Regulation, Allocation, and Leakage in Cap-and-Trade Markets for CO2  

E-Print Network [OSTI]

and Philippe Quirion. Co2 abatement, competitiveness andDaniel Kahn. Allocation of co2 emissions al- lowances in theA short-run case analysis of co2 leakage and nox and so2

Bushnell, Jim B; Chen, Yihsu

2009-01-01T23:59:59.000Z

412

On CO2 Behavior in the Subsurface, Following Leakage from a Geologic Storage Reservoir  

E-Print Network [OSTI]

1 - 16, 1987. Skinner, L. CO2 Blowouts: An Emerging Problem,Assessment for Underground CO2 Storage, paper 234, presentedReservoir Performance Risk in CO2 Storage Projects, paper

Pruess, Karsten

2006-01-01T23:59:59.000Z

413

Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth  

E-Print Network [OSTI]

Large Releases from CO2 Storage Reservoirs: Analogs,S.T. Nelson. Natural Leaking CO2-charged Systems as AnalogsY. Sano, and H.U. Schmincke. CO2-rich Gases from Lakes Nyos

Pruess, K.

2008-01-01T23:59:59.000Z

414

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

Chinas 2008 Thermal Electricity Sector CO 2 Emissions byheat. Share of thermal electricity sectors CO 2 emissionsheat. Share of thermal electricity sectors CO 2 emissions

Fridley, David

2011-01-01T23:59:59.000Z

415

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

China's 2008 Total CO 2 Emissions from Energy Consumption:10. China's 2008 Total CO 2 Emissions from Energy: Sectoral16 Table 11. China's 2008 CO 2 Emissions from Energy:

Fridley, David

2011-01-01T23:59:59.000Z

416

DOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500  

E-Print Network [OSTI]

to capture CO2 produced at indus- trial facilities and approaches to inject the CO2 into geologic of buoyant CO2 in terrestrial reservoirs that often contain fractures, faults, and abandoned wells and may

Schrag, Daniel

417

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

Energy Savings and CO2 Emissions Implications. J. ofcommitment to reduce CO2 emissions from new passenger carsACEAs Commitment on CO2 Emission Reductions from Passenger

Schipper, Lee

2008-01-01T23:59:59.000Z

418

Regulation, Allocation, and Leakage in Cap-and-Trade Markets for CO2  

E-Print Network [OSTI]

Daniel Kahn. Allocation of co2 emissions al- lowances in theRasmussen. Allocation of co2 emissions permits: A generalthe aggregate annual CO2 emissions for each of the key

Bushnell, Jim B; Chen, Yihsu

2009-01-01T23:59:59.000Z

419

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

2050 China Energy and CO2 Emissions Report. Science Press,Energy Savings and CO2 Emissions Reduction of Chinas CementEnergy Savings and CO2 Emissions Reduction of Chinas Cement

Ke, Jing

2013-01-01T23:59:59.000Z

420

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

of unadjusted energy-related CO2 emissions is attributed toEMISSIONS- T C EMISSIONS -T CO2 TOTAL Energy EmissionsEMISSIONS- T C EMISSIONS -T CO2 Coal Coke and Other

Fridley, David

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network [OSTI]

China Energy and CO2 Emissions Report (CEACER). Beijing:Oil consumption and CO2 emissions in Chinas road transport:Growth, Oil Demand and CO2 Emissions through 2050. Report

G. Fridley, David

2010-01-01T23:59:59.000Z

422

Challenges and opportunities in accounting for non-energy use CO2 emissions: an editorial comment  

E-Print Network [OSTI]

carbon dioxide (NEU-CO2) emissions, represent a signi?cantSimply described, NEU-CO2 emissions are generated via twoData permitting, NEU-CO2 emissions arising from energy

Masanet, Eric; Sathaye, Jayant

2009-01-01T23:59:59.000Z

423

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

Energy Savings and CO2 Emissions Reduction of Chinas CementEnergy Savings and CO2 Emissions Reduction of Chinas Cementenergy savings and CO2 emission reduction potentials are

Ke, Jing

2013-01-01T23:59:59.000Z

424

Regulation for Underground Storage of CO2 Passed by U.S. States  

E-Print Network [OSTI]

generation. Its use, therefore, is necessary in order to achieve the CO2 emission reduction targetRegulation for Underground Storage of CO2 Passed by U.S. States Holly Javedan Massachusetts................................................................................................... 8 2.4 CO2 Ownership

425

Thermal desorption of CH4 retained in CO2 ice  

E-Print Network [OSTI]

CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

R. Luna; C. Millan; M. Domingo; M. A. Satorre

2008-01-21T23:59:59.000Z

426

SciTech Connect: Development of Novel CO2 Adsorbents for Capture of CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controllerAdditiveBetatronAerogel DeepThermal Processing of

427

CO2 Injection Begins in Illinois | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins in Illinois CO2 Injection Begins in

428

E-Print Network 3.0 - availability co2-quadrupling experiment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

co2-quadrupling experiment Search Powered by Explorit Topic List Advanced Search Sample search results for: availability co2-quadrupling experiment Page: << < 1 2 3 4 5 > >> 1...

429

Diesel Passenger Car Technology for Low Emissions and CO2 Compliance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Passenger Car Technology for Low Emissions and CO2 Compliance Diesel Passenger Car Technology for Low Emissions and CO2 Compliance Cost effective reduction of legislated emissions...

430

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

dioxide (CO2) emissions from fossil fuel combustion, as wellCO2 emissions (including cement process and fossil fuel combustion

Ke, Jing

2013-01-01T23:59:59.000Z

431

A Feasibility Study of Non-Seismic Geophysical Methods for Monitoring Geologic CO2 Sequestration  

E-Print Network [OSTI]

CO 2 enhanced oil recovery (EOR) and sequestration in athe measurement configuration. EOR/sequestration projects inshow that a CO 2 based EOR could increase oil recovery by

Gasperikova, Erika; Hoversten, G. Michael

2006-01-01T23:59:59.000Z

432

The Rosetta Resources CO2 Storage Project - A WESTCARB Geologic Pilot Test  

E-Print Network [OSTI]

of enhanced oil recovery (EOR) using injected CO 2 to driveof enhanced oil recovery (EOR) using injected CO 2 to swell

2006-01-01T23:59:59.000Z

433

The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings  

E-Print Network [OSTI]

The Influence of a CO2 Pricing Scheme on Distributed Energy5. Regional Results for the CO2 Pricing Scheme no-invest

Stadler, Michael

2010-01-01T23:59:59.000Z

434

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

2004. Experience curves for power plant emission controlassessments of fossil fuel power plants with CO 2 capturethe future cost of power plants with CO 2 capture Edward S.

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

435

Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth  

E-Print Network [OSTI]

adiabatic (= no external heat supply) expansion of CO 2 toCO 2 without external heat supply will cause temperatures toenables more sustained heat supply from the surroundings,

Pruess, K.

2008-01-01T23:59:59.000Z

436

A parametric study on reservoir cooling for enhanced oil recovery from CO2 injection.  

E-Print Network [OSTI]

??Whorton et al. (1952) received a patent for their development of an oil recovery method by CO2 injection. Since then, CO2 flooding for secondary and (more)

Wang, Zhenzhen

2013-01-01T23:59:59.000Z

437

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

s Commitment on CO2 Emission Reductions from Passenger Cars.is a small extra reduction in CO2 emissions per km due to a

Schipper, Lee

2008-01-01T23:59:59.000Z

438

Atmospheric Lifetime of Fossil Fuel Carbon Dioxide  

E-Print Network [OSTI]

Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

Scherer, Norbert F.

439

Comparative Reactivity Study of Forsterite and Antigorite in Wet Supercritical CO2 by In Situ Infrared Spectroscopy  

SciTech Connect (OSTI)

The carbonation reactions of forsterite (Mg2SiO4) and antigorite [Mg3Si2O5(OH)4], representatives of olivine and serpentine minerals, in dry and wet supercritical carbon dioxide (scCO2) at conditions relevant to geologic carbon sequestration (35 C and 100 bar) were studied by in-situ Fourier transform infrared (FT-IR) spectroscopy. Our results confirm that water plays a critical role in the reactions between metal silicate minerals and scCO2. For neat scCO2, no reaction was observed in 24 hr for either mineral. When water was added to the scCO2, a thin water film formed on the minerals surfaces, and the reaction rates and extents increased as the water saturation level was raised from 54% to 116% (excess water). For the first time, the presence of bicarbonate, a key reaction intermediate for metal silicate reactions with scCO2, was observed in a heterogeneous system where mineral solids, an adsorbed water film, and bulk scCO2 co-exist. In excess-water experiments, approximately 4% of forsterite and less than 2% of antigorite transformed into hydrated Mg-carbonates. A precipitate similar to nesquehonite (MgCO33H2O) was observed for forsterite within 6 hr of reaction time, but no such precipitate was formed from antigorite until after water was removed from the scCO2 following a 24-hr reaction period. The reduced reactivity and carbonate-precipitation behavior of antigorite was attributed to slower, incongruent dissolution of the mineral and lower concentrations of Mg2+ and HCO3- in the water film. The in situ measurements employed in this work make it possible to quantify metal carbonate precipitates and key reaction intermediates such as bicarbonate for the investigation of carbonation reaction mechanisms relevant to geologic carbon sequestration.

Thompson, Christopher J.; Loring, John S.; Rosso, Kevin M.; Wang, Zheming

2013-10-01T23:59:59.000Z

440

SecuestrodeCO2enestructurasgeolgicas Modelacin numrica de  

E-Print Network [OSTI]

Kioto Responsables del 55% de las emisiones se comprometen reducir en 5% el total de emisiones respecto forma diferente A España le corresponde no aumentar en mas de 15% sus emisiones respecto a 1990 En 2006enestructurasgeológicas Una forma de disminuir emisiones: Almacenamiento de CO2 en estructuras geológicas Yacimientos de

Politècnica de Catalunya, Universitat

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Center for By-Products Utilization CO2 SEQUESTRATION  

E-Print Network [OSTI]

Center for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik. Maximize environmental benefits: resource conservation, clean water, and clean air. #12;Center for By-Products, Italy, June 30, 2010. #12;Center for By-Products Utilization UWM Center for By-Products Utilization

Saldin, Dilano

442

UPDATE ON THE INTERNATIONAL EXPERIMENT ON CO2 OCEAN SEQUESTRATION  

E-Print Network [OSTI]

in the deep ocean, forming a buoyant plume. Sea water will be entrained into the rising droplet plume Center, Bergen, Norway 4 Norwegian Institute for Water Research (NIVA), Bergen, Norway 5 University objective of our project on CO2 ocean sequestration is to investigate its technical feasibility

443

ORIGINAL ARTICLE Navajo SandstonebrineCO2 interaction: implications  

E-Print Network [OSTI]

in the western US (Loope and Rowe 2003), and is thus potentially sig- nificant with respect to carbonORIGINAL ARTICLE Navajo Sandstone­brine­CO2 interaction: implications for geological carbon a source of carbon for the precipitation of carbonate minerals. Mineral trapping through the precipitation

Zhu, Chen

444

The contribution of CO2 capture and storage  

E-Print Network [OSTI]

The contribution of CO2 capture and storage to a sustainable energy system Policy brief of Energy Models for INtegrated Technology Systems' is partially funded by the EU under the Scientific.html. The following partners are involved in Part 2 of the CASCADE MINTS project: · Energy research Centre

445

The Energy and CO2 Emissions Impact of  

E-Print Network [OSTI]

centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy and Environmental reduction target of 40­45% relative to 2005 and a non-fossil primary energy target of 15% by 2020. DuringThe Energy and CO2 Emissions Impact of Renewable Energy Development in China Xiliang Zhang, Tianyu

446

Carbonation: An Efficient and Economical Process for CO2 Sequestration  

E-Print Network [OSTI]

Carbonation: An Efficient and Economical Process for CO2 Sequestration Tarun R Naik1 and Rakesh sequestration. Most of the studies related to the carbonation are limited to its effects on corrosion. The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet

Wisconsin-Milwaukee, University of

447

Chemical Looping Combustion for inherent CO2 capture in a  

E-Print Network [OSTI]

HRSG Stack Steam TurbineFuel Compr. Air Flue gas H2O CO2 to compression Depleted air HP Steam not possible with Ni/NiO 6 CLC in a combined cycle power plant Fuel Reactor Air Reactor Gas Turbine Gas Turbine) ­ adiabatic, 20 bar Stoichiometric MeO Air-fuel ratio Stoichiometric ­ 3*Stoicihometric Gas turbine

448

A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network [OSTI]

efficiency and CO2 Emission-reduction Technologies forefficiency and CO2 Emission- reduction Technologies forefficiency and CO2 Emission-reduction Technologies The

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

449

Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants  

SciTech Connect (OSTI)

One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

2001-01-01T23:59:59.000Z

450

The Influence of deep-sea bed CO2 sequestration on small metazoan (meiofaunal) community structure and function  

SciTech Connect (OSTI)

We conducted a series of experiments in Monterey Submarine Canyon to examine potential ecological impacts of deep-ocean CO2 sequestration. Our focus was on responses of meiofaunal invertebrates (< 1 mm body length) living within the sediment at depths ranging between 3000-3600 m. Our particular emphasis was on harpacticoid copepods and nematodes. In the first phase of our DOE funding, we reported findings that suggest substantial (~80%) mortality to harpacticoid copepods. In the second phase of our funding we published additional findings from phase one and conducted follow-up experiments in the Monterey Canyon and in the laboratory. In one experiment we looked for evidence that meiofauna seek to escape areas where CO2 concentrations are elevated. â??Emergence trapsâ? near the source of the CO2-rich seawater caught significantly more harpacticoids than those far from it. The harpacticoids apparently attempted to escape from the advancing front of carbon dioxide-rich seawater and therefore presumably found exposure to it to be stressful. Although most were adversely affected, species differed significantly in the degree of their susceptibility. Unexpectedly, six species showed no effect and may be resistant. The hypothesis that harpacticoids could escape the effects of carbon dioxide-rich seawater by moving deeper into the seabed was not supported. Exposure to carbon dioxide-rich seawater created partially defaunated areas, but we found no evidence that disturbance-exploiting harpacticoid species invaded during the recovery of the affected area. Based on a detailed analysis of nematode biovolumes, we postulated that the nematode community in Monterey Canyon throughout the upper 3 cm suffered a high rate of mortality after exposure to CO2, and that nematodes were larger because postmortem expansions in body length and width occurred. Decomposition rates were probably low and corpses did not disintegrate in 30 days. The observable effects of a reduction in pH to about 7.0 after 30 days were as great as an extreme pH reduction (5.4), suggesting that â??moderateâ?? CO2 exposure, compared to the range of exposures possible following CO2 release, causes high mortality rates in the two most abundant sediment-dwelling metazoans (nematodes and copepods). While we found evidence for negative impacts on deep-sea benthos, we also observed that small-scale experiments with CO2 releases were difficult to replicate in the deep sea. Specifically, in one CO2-release experiment in the Monterey Canyon we did not detect an adverse impacts on benthic meiofauan. In laboratory experiments, we manipulated seawater acidity by addition of HCl and by increasing CO2 concentration and observed that two coastal harpacticoid copepod species were both more sensitive to increased acidity when generated by CO2. Copepods living in environments more prone to hypercapnia, such as mudflats, may be less sensitive to future acidification. Ocean acidification is also expected to alter the toxicity of waterborne metals by influencing their speciation in seawater. CO2 enrichment did not affect the free-ion concentration of Cd but did increase the free-ion concentration of Cu. Antagonistic toxicities were observed between CO2 with Cd, Cu and Cu free-ion. This interaction could be due to a competition for H+ and metals for binding sites.

Carman, Kevin R; Fleeger, John W; Thistle, David

2013-02-17T23:59:59.000Z

451

ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS  

SciTech Connect (OSTI)

The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

Chialvo, Ariel A [ORNL] [ORNL; Vlcek, Lukas [ORNL] [ORNL; Cole, David [Ohio State University] [Ohio State University

2013-01-01T23:59:59.000Z

452

CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana  

SciTech Connect (OSTI)

The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC???????¢????????????????s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot???????¢????????????????s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5%

Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

2012-03-30T23:59:59.000Z

453

Ris Energy Report 6 CO2 capture and storage 2 6.1 What is CO2 capture and storage?  

E-Print Network [OSTI]

be burned in an engine or fuel cell, and a CO2 stream for storage (see chapters 7.3 and 7.6 for further2 Gas, oil Air O2 H2 Raw material Gas, ammonia, steel Air/O2 Steam Figure 15: the three main

454

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network [OSTI]

capture of CO 2 from gasifier process producing electricalPlaquemine, Louisiana. The gasifier is a proprietary designGasifier .

Apps, J.A.

2006-01-01T23:59:59.000Z

455

Measurements of 222Rn, 220Rn, and CO Emissions in Natural CO2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity  

SciTech Connect (OSTI)

An integrated field-laboratory program evaluated the use of radon and CO2 flux measurements to constrain source and timescale of CO2 fluxes in environments proximate to CO2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensure 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or tool was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO2-bearing environments. The field program also identified issues with radon and CO2-flux measurements in soil gases at a natural CO2 analog. A systematic survey of radon and CO2 flux in soil gases at the LaBarge CO2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO2 flux may not be a robust method for monitoring the integrity of a CO2 storage reservoir. The field program was also not able to correlate radon and CO2 flux in the CO2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a geologic consulting company. Measurement of radon in springs has improved significantly since the field program first began; however, in situ measurement of 222Rn and particularly 220Rn in springs is problematic. Future refinements include simultaneous salinity measurements and systematic corrections, or adjustments to the partition coefficient as needed for more accurate radon concentration determination. A graduate student earned a Master of Science degree for this part of the field program; he is currently employed with a geologic consulting company. Both graduate students are poised to begin work in a CCS technology area. Laboratory experiments evaluated important process-level fundamentals that effect measurements of radon and CO2. Laboratory tests established that fine-grained source minerals yield higher radon emissivity compared to coarser-sized source minerals; subtleties in the dataset suggest that grain size alone is not fully representative of all the processes controlling the ability of radon to escape its mineral host. Emissivity for both 222Rn and 220Rn increases linearly with temperature due to reaction of rocks with water, consistent with faster diffusion and enhanced mineral dissolution at higher temperatures. The presence of CO2 changes the relative importance of the factors that control release of radon. Emissivity for both 222Rn and 220Rn in CO2-bearing experiments is greater at all temperatures compared to the experiments without CO2, but emissivity does not increase as a simple function of temperature. Governing processes may include a balance between enhanced dissolution versus carbonate mineral formation in CO2-rich waters.

Kaszuba, John; Sims, Kenneth

2014-09-30T23:59:59.000Z

456

Mathematical models as tools for probing long-term safety of CO2 storage  

E-Print Network [OSTI]

reservoirs, with large capacity for CO 2 storage (Bradshaw and Dance, 2004; Bachu, 2008). Improperly abandoned

Pruess, Karsten

2010-01-01T23:59:59.000Z

457

Large CO2 disequilibria in tropical lakes Humberto Marotta,1,2  

E-Print Network [OSTI]

Large CO2 disequilibria in tropical lakes Humberto Marotta,1,2 Carlos M. Duarte,2 Sebastian Sobek,3 November 2009. [1] On the basis of a broad compilation of data on pCO2 in surface waters, we show tropical lakes to be, on average, far more supersaturated and variable in CO2 (geometric mean ± SE pCO2 = 1804

Wehrli, Bernhard

458

Physical controls on the isotopic composition of soil-respired CO2  

E-Print Network [OSTI]

Physical controls on the isotopic composition of soil-respired CO2 Nick Nickerson1 and Dave Risk1] Measurement of the isotopic composition of soil and soil-respired CO2 (d13 CO2) has become an invaluable tool in understanding the effects of diffusive transport on soil CO2 isotopic composition, it is crucial

459

Rcupration assiste d'hydrocarbures, conventionnels ou non, par injection de CO2.  

E-Print Network [OSTI]

· Récupération d' hydrocarbures conventionnels - CO2 ­ EOR enhanced oil recovery - CO2 ­ EGR enhanced gas-combustion (gas processing) 7 EOR 1986 Sleipner CO2 Injection Norway Pre-combustion (gas processing) 1 (+ 0 EOR 2000 Enid Fertilizer Plant United States Pre-combustion (fertiliser) 0.7 EOR 1982 In Salah CO2

Canet, Léonie

460

CO2 Capture and Utilization for Enhanced Oil Poul Jacob Vilhelmsen1  

E-Print Network [OSTI]

for Enhanced Oil Recovery (EOR). CO2 capture is to some extent a know technology but has not yet been optimised and commercialised for power plant utilisation. Correspondingly CO2 utilisation for EOR is a known method in other and utilisation of CO2. DONG E&P within DONG Energy has started work on the utilisation of CO2 for EOR

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Wavelength dependence of prepulse laser beams on EUV emission from CO2 reheated Sn plasma  

E-Print Network [OSTI]

Wavelength dependence of prepulse laser beams on EUV emission from CO2 reheated Sn plasma J. R. The expanding plume was then reheated by a 35 ns CO2 laser operating at 10.6 m. The role of prepulse wavelength, Tanaka et al.11 demonstrated the advantages of using a CO2 laser for generating higher CE. The CO2 LPP

Harilal, S. S.

462

1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing  

E-Print Network [OSTI]

1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances Mehdi Panahi Sigurd Skogestad 18.10.2011 AIChE Annual Meeting #12;2M. Panahi, S. Skogestad ' Optimal Operation of a CO2

Skogestad, Sigurd

463

ULTimateCO2 : A FP7 European Project dedicated to the understanding of the long term fate of geologically stored CO2  

E-Print Network [OSTI]

ULTimateCO2 : A FP7 European Project dedicated to the understanding of the long term fate of geologically stored CO2 Audigane, P.1 , Brown, S.2 , Dimier A.3 , Frykman P.4 , Gherardi F.5 , Le Gallo Y.6 Recherches Géologiques et minières - France 2 CO2SENSE limited, United Kingdom 3 EIFER, EIFER europaisches

Paris-Sud XI, Université de

464

E-Print Network 3.0 - atmospheric deposition microbial Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Sciences and Ecology 3 Transfers of materials among air, land, water, and Summary: fundamentally from those of non-urban ecosystems? Atmosphere PlantsCO2...

465

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry  

E-Print Network [OSTI]

Efficiency Improvement and CO2 Emission Reduction PotentialsModelInputs EmissionsFactors CO2Emissionfactorforgridelectricity(tonneCO2/MWh) CO2Emissionfactorforfuel(

Morrow III, William R.

2014-01-01T23:59:59.000Z

466

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network [OSTI]

function of CO2 taxes (or CO2 emission limits) 10 . b) Taxesrefinery process areas CO2 emissions from the control of COfertilizer use. CH4 and CO2 emissions from soil (parameters

Delucchi, Mark

2005-01-01T23:59:59.000Z

467

Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment  

SciTech Connect (OSTI)

Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 x temperature x soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatments with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr-1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.

Garten Jr, Charles T [ORNL; Classen, Aimee T [ORNL; Norby, Richard J [ORNL

2009-01-01T23:59:59.000Z

468

Separation of CO2 from flue gas using electrochemical cells  

SciTech Connect (OSTI)

ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

2010-06-01T23:59:59.000Z

469

Photodesorption of ices I: CO, N2 and CO2  

E-Print Network [OSTI]

A longstanding problem in astrochemistry is how molecules can be maintained in the gas phase in dense inter- and circumstellar regions. Photodesorption is a non-thermal desorption mechanism, which may explain the small amounts of observed cold gas in cloud cores and disk mid-planes. This paper aims to determine the UV photodesorption yields and to constrain the photodesorption mechanisms of three astrochemically relevant ices: CO, N2 and CO2. In addition, the possibility of co-desorption in mixed and layered CO:N2 ices is explored. The ice photodesorption is studied experimentally under ultra high vacuum conditions and at 15-60 K using a hydrogen discharge lamp (7-10.5 eV). The ice desorption during irradiation is monitored by reflection absorption infrared spectroscopy of the ice and simultaneous mass spectrometry of the desorbed molecules. Both the UV photodesorption yields per incident photon and the photodesorption mechanisms are molecule specific. CO photodesorbs without dissociation from the surface layer of the ice. N2, which lacks an electronic transition in this wavelength range, has a photodesorption yield that is more than an order of magnitude lower. This yield increases significantly due to co-desorption when N2 is mixed in with or layered on top of CO ice. CO2 photodesorbs through dissociation and subsequent recombination from the top 10 layers of the ice. At low temperatures (15-18 K) the derived photodesorption yields are 2.7x10^-3 and CO2 photodesorption yield is 1.2x10^-3x(1-e^(-X/2.9)) + 1.1x10^-3x(1-e^(-X/4.6)) molecules photon-1, where X is the ice thickness in monolayers and the two parts of the expression represent a CO2 and CO photodesorption pathway.

Karin I. Oberg; Ewine F. van Dishoeck; Harold Linnartz

2009-01-23T23:59:59.000Z

470

Meeting the CO2 Challenge DEER 2002 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | DepartmentADVISORYFinal Report onthe CO2

471

Grangemouth Advanced CO2 Capture Project GRACE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon, Alabama:5812144°Grangemouth Advanced CO2

472

Economically Efficient Operation of CO2 Capturing Process Part I: Self-optimizing Procedure for Selecting the Best Controlled Variables  

E-Print Network [OSTI]

the greenhouse gas CO2 that causes global warming. Due to the effect of CO2 emissions on global warming

Skogestad, Sigurd

473

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network [OSTI]

Improvement and CO2 Emission Reduction Potentials in theElectricity Saving and CO2 Emission Reduction in the Iron

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

474

Near-Infrared Spectroscopic Investigation of Water in Supercritical CO2 and the Effect of CaCl2  

SciTech Connect (OSTI)

Near-infrared (NIR) spectroscopy was applied to investigate the dissolution and chemical interaction of water dissolved into supercritical carbon dioxide (scCO2) and the influence of CaCl2 in the co-existing aqueous phase at fo empe e : 40 50 75 nd 100 C at 90 atm. Consistent with the trend of the vapor pressure of water, the solubility of pure water in scCO2 inc e ed f om 40 ?C (0.32 mole%) o 100 ?C (1.61 mole%). The presence of CaCl2 negatively affects the solubility of water in scCO2: at a given temperature and pressure the solubility of water decreased as the concentration of CaCl2 in the aqueous phase increased, following the trend of the activity of water. A 40 ?C, the water concentration in scCO2 in contact with saturated CaCl2 aqueous solution was only 0.16 mole%, a drop of more than 50% as compared to pure water while that a 100 ?C was 1.12 mole%, a drop of over 30% as compared to pure water, under otherwise the same conditions. Analysis of the spectral profiles suggested that water dissolved into scCO2 exists in the monomeric form under the evaluated temperature and pressure conditions, for both neat water and CaCl2 solutions. However, its rotational degrees of freedom decrease at lower temperatures due to higher fluid densities, leading to formation of weak H2O:CO2 Lewis acid-base complexes. Similarly, the nearly invariant spectral profiles of dissolved water in the presence and absence of saturated CaCl2 under the same experimental conditions was taken as evidence that CaCl2 dissolution in scCO2 was limited as the dissolved Ca2+/CaCl2 would likely be highly hydrated and would alter the overall spectra of waters in the scCO2 phase.

Wang, Zheming; Felmy, Andrew R.; Thompson, Christopher J.; Loring, John S.; Joly, Alan G.; Rosso, Kevin M.; Schaef, Herbert T.; Dixon, David A.

2013-01-25T23:59:59.000Z

475

Identification of Fragile Microscopic Structures during Mineral Transformations in Wet Supercritical CO2  

SciTech Connect (OSTI)

In this study we examine the nature of highly fragile reaction products that form in low water content super critical carbon dioxide (scCO2) using a combination of scanning electron microscopy/focus ion beam (SEM/FIB), confocal Raman spectroscopy, helium ion microscopy (HeIM), and transmission electron microscopy (TEM). HeIM images show these precipitates to be fragile rosettes that can readily decompose even under slight heating from an electron beam. Using the TEM revealed details on the interfacial structure between the newly formed surface precipitates and the underlying initial solid phases. The detailed microscopic analysis revealed that the growth of the precipitates either followed a tip growth mechanism with precipitates forming directly on the forsterite surface if the initial solid was non-porous (natural forsterite) or growth from the surface of the precipitates where fluid was conducted through the porous (nanoforsterite) agglomerates to the growth center. The mechanism of formation of the hydrated/hydroxylated magnesium carbonate compound (HHMC) phases offers insight into the possible mechanisms of carbonate mineral formation from scCO2 solutions which has recently received a great deal of attention as the result of the potential for CO2 to act as an atmospheric greenhouse gas and impact overall global warming. The techniques used here to examine these fragile structures an also be used to examine a wide range of fragile material surfaces. SEM and FIB technologies have now been brought together in a single instrument, which represents a powerful combination for the studies in biological, geological and materials science.

Arey, Bruce W.; Kovarik, Libor; Qafoku, Odeta; Wang, Zheming; Hess, Nancy J.; Felmy, Andrew R.

2013-04-01T23:59:59.000Z

476

IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS  

SciTech Connect (OSTI)

Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Dover 35 pinnacle reef (Otsego County) in the Michigan Basin. Contract negotiations by our industry partner to gain access to the CO2 supply have been completed and the State of Michigan has issued an order to allow operation of the project. Injection of CO2 is scheduled to begin in February, 2004. Subsurface characterization is being completed using well log tomography animations and 3D visualizations to map facies distributions and reservoir properties in two reefs, the Belle River Mills and Chester 18 Fields. The Belle River Mills and Chester18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the normalized gamma ray and core permeability and core porosity curves is showing trends that indicate significant heterogeneity and compartmentalization in these reservoirs associated with the original depositional fabric of the rocks. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding visualization of the heterogeneity of the Niagaran reefs. An oral presentation was given at the AAPG Eastern Section Meeting and a booth at the same meeting was used to meet one-on-one with operators.

James R. Wood; W. Quinlan; A. Wylie

2004-01-01T23:59:59.000Z

477

amount of CO2 ice in a martian polar cap can be set by the condition that it not liquefy at its base as a  

E-Print Network [OSTI]

amount of CO2 ice in a martian polar cap can be set by the condition that it not liquefy at its-particle irradiation experiments with 2.5% H2O in CH4-NH3 atmospheres, organic sol- ids are also plentifully produced

Capone, Douglas G.

478

Early detection of brine and CO2 leakage through abandoned wells using pressure and surface-deformation monitoring data: Concept and  

E-Print Network [OSTI]

and surface-deformation modeling tools to estimate the location and permeability of leaky features by Elsevier Ltd. 1. Introduction The ability to detect CO2 leakage is a key component of risk assessment storage for- mation to shallower groundwater aquifers, ultimately to the atmosphere, through abandoned

Zhou, Quanlin

479

Atmospheric chemistry impacts and feedbacks on the global carbon cycle  

E-Print Network [OSTI]

prediction. Issues to be addressed include the quantification of the impact of the atmospheric oxidation and the oxidative state of the atmosphere. The end goal is to create a model that can quantitatively predict is required to: Predict 3-D atmospheric CO2 production as a function of the CCSM3 atmospheric chemistry module

480

Developing a monitoring and verification plan with reference to the Australian Otway CO2 pilot project  

SciTech Connect (OSTI)

The Australian Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently injecting 100,000 tons of CO{sub 2} in a large-scale test of storage technology in a pilot project in southeastern Australia called the CO2CRC Otway Project. The Otway Basin, with its natural CO{sub 2} accumulations and many depleted gas fields, offers an appropriate site for such a pilot project. An 80% CO{sub 2} stream is produced from a well (Buttress) near the depleted gas reservoir (Naylor) used for storage (Figure 1). The goal of this project is to demonstrate that CO{sub 2} can be safely transported, stored underground, and its behavior tracked and monitored. The monitoring and verification framework has been developed to monitor for the presence and behavior of CO{sub 2} in the subsurface reservoir, near surface, and atmosphere. This monitoring framework addresses areas, identified by a rigorous risk assessment, to verify conformance to clearly identifiable performance criteria. These criteria have been agreed with the regulatory authorities to manage the project through all phases addressing responsibilities, liabilities, and to assure the public of safe storage.

Dodds, K.; Daley, T.; Freifeld, B.; Urosevic, M.; Kepic, A.; Sharma, S.

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "atmospheric co2 concentration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Conversion of CO2 into Commercial Materials Using Carbon Feedstocks  

SciTech Connect (OSTI)

In this project, our research focused on developing reaction chemistry that would support using carbon as a reductant for CO2 utilization that would permit CO2 consumption on a scale that would match or exceed anthropomorphic CO2 generation for energy production from fossil fuels. Armed with the knowledge that reactions attempting to produce compounds with an energy content greater than CO2 would be thermodynamically challenged and/or require significant amounts of energy, we developed a potential process that utilized a solid carbon source and recycled the carbon to effectively provide infinite time for the carbon to react. During testing of different carbon sources, we found a wide range of reaction rates. Biomass-derived samples had the most reactivity and coals and petcoke had the lowest. Because we had anticipated this challenge, we recognized that a catalyst would be necessary to improve reaction rates and conversion. From the data analysis of carbon samples, we recognized that alkali metals improved the reaction rate. Through parametric testing of catalyst formulations we were able to increase the reaction rate with petcoke by a factor of >70. Our efforts to identify the reaction mechanism to assist in improving the catalyst formulation demonstrated that the catalyst was catalyzing the extraction of oxygen from CO2 and using this extracted oxygen to oxidize carbon. This was a significant discovery in that if we could modify the catalyst formulation to permit controlled the oxidation, we would have a very power selective oxidation process. With selective oxidation, CO2 utilization could be effective used as one of the process steps in making many of the large volume commodity chemicals that support our m