Sample records for atmosphere ocean buoys

  1. Tellus 000, 000000 (0000) Printed 3 May 2004 (Tellus LATEX style file v2.2) Resonant Inertial Oscillations in Moored Buoy Ocean

    E-Print Network [OSTI]

    Oscillations in Moored Buoy Ocean Surface Winds By R.G. Stockwell1 , W.G. Large2 and R.F. Milliff1 1 Colorado-3000 (Manuscript received 26 February 2004; ) ABSTRACT The surface winds from the moored buoy dataset available from the National Data Buoy Center are examined for the occurrence of inertial range oscillations

  2. Experimental Testing and Model Validation for Ocean Wave Energy Harvesting Buoys

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    harvesting buoy systems, using the heave motion of the buoys to produce useful electrical power. Two energy that can be used to indefinitely power remote buoys, equipped with sensors arrays, as well as electronics for processing and communications. These power sources can be integrated with buoy systems

  3. Experimental analysis of an energy self sufficient ocean buoy utilizing a bi-directional turbine

    E-Print Network [OSTI]

    Gruber, Timothy J. (Timothy James)

    2012-01-01T23:59:59.000Z

    An experimental analysis of a Venturi shrouded hydro turbine for wave energy conversion. The turbine is designed to meet the specific power requirements of a, Woods Hole Oceanographic Institute offshore monitoring buoy ...

  4. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wood, Robert [VOCALS-REx PI, University of Washington; Bretherton, Christopher [GEWEX/GCSS Representative, University of Washington; Huebert, Barry [SOLAS Representative, University of Hawaii; Mechoso, Roberto C. [VOCALS Science Working Group Chair, UCLA; Weller, Robert [Woods Hole Oceanographic Institution

    VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international CLIVAR program the major goal of which is to develop and promote scientific activities leading to improved understanding of the Southeast Pacific (SEP) coupled ocean-atmosphere-land system on diurnal to inter-annual timescales. The principal program objectives are: 1) the improved understanding and regional/global model representation of aerosol indirect effects over the SEP; 2) the elimination of systematic errors in the region of coupled atmospheric-ocean general circulation models, and improved model simulations and predictions of the coupled climate in the SEP and global impacts of the system variability. VOCALS is organized into two tightly coordinated components: 1) a Regional Experiment (VOCALSREx), and 2) a Modeling Program (VOCALS-Mod). Extended observations (e.g. IMET buoy, satellites, EPIC/PACS cruises) will provide important additional contextual datasets that help to link the field and the modeling components. The coordination through VOCALS of observational and modeling efforts (Fig. 3) will accelerate the rate at which field data can be used to improve simulations and predictions of the tropical climate variability [Copied from the Vocals Program Summary of June 2007, available as a link from the VOCALS web at http://www.eol.ucar.edu/projects/vocals/]. The CLIVAR sponsored program to under which VOCALS falls is VAMOS, which stands for Variability of the American Monsoon Systems.

  5. Ocean Atmosphere Sea Ice Soil User's Guide

    E-Print Network [OSTI]

    OASIS3 Ocean Atmosphere Sea Ice Soil User's Guide oasis3 prism 2­2, June 2004 Sophie Valcke 1 to realize a coupled simulation with OASIS3. The aim of OASIS3 is to provide a flexible and user friendly. OASIS3 synchronizes the exchanges of coupling fields between the models being coupled, and performs 2D

  6. Ocean Atmosphere Sea Ice Soil User's Guide

    E-Print Network [OSTI]

    OASIS3 Ocean Atmosphere Sea Ice Soil User's Guide oasis3 prism 2­3, August 2004 Sophie Valcke 1 to realize a coupled simulation with OASIS3. The aim of OASIS3 is to provide a flexible and user friendly. OASIS3 synchronizes the exchanges of coupling fields between the models being coupled, and performs 2D

  7. Ocean Atmosphere Sea Ice Soil User's Guide

    E-Print Network [OSTI]

    OASIS 2.0 Ocean Atmosphere Sea Ice Soil User's Guide and Reference Manual November 1995 Laurent for the straightforward use of OASIS 2.0. As far as we know, it is the best way to use it! The aim of OASIS is to provide been particularly emphasized in the OASIS design. The use of OASIS does not change the way the models

  8. Exploring the Deep... Ocean-Atmosphere

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Climate oscillations 97 #12;Storing energy To understand how solar radiation affects large-scale processes), and biosphere (living organisms) that are driven by solar energy. The ocean and the atmosphere have the greatest on the others. To fully understand the dynamics of our climate, we must examine the global energy balance

  9. Mesoscale coupled ocean-atmosphere feedbacks in boundary current systems

    E-Print Network [OSTI]

    Putrasahan, Dian Ariyani

    2012-01-01T23:59:59.000Z

    Isolating Mesoscale Coupled Ocean-Atmosphere in the KuroshioSST coupler . . . . Chapter 3 Mesoscale Ocean-Atmosphere4.2 Impact of Mesoscale SST on Precipitation Chapter 4 vi

  10. ECMWF workshop on Ocean-Atmosphere Interactions, 10-12 Nov 2008 A revised ocean-atmosphere

    E-Print Network [OSTI]

    interface #12;1*- Sensible heat flux 6*- Evaporation + int. energy [+ Qlat] ECMWF workshop on Ocean layer) 5- Surface ocean current 7- Surface height 7 1- Continental runoff + internal Energy 8 1*- SurfECMWF workshop on Ocean-Atmosphere Interactions, 10-12 Nov 2008 A revised ocean-atmosphere physical

  11. Freeze resistant buoy system

    DOE Patents [OSTI]

    Hill, David E [Knoxville, TN; Greenbaum, Elias [Knoxville, TN

    2007-08-21T23:59:59.000Z

    A freeze resistant buoy system includes a tail-tube buoy having a thermally insulated section disposed predominantly above a waterline, and a thermo-siphon disposed predominantly below the waterline.

  12. NATIONAL DATA BUOY CAPABILITIES AND REQUIREMENTS 8.1. General.

    E-Print Network [OSTI]

    CHAPTER 8 NATIONAL DATA BUOY CAPABILITIES AND REQUIREMENTS 8.1. General. 8.1.1. Automated Reporting Stations. The National Data Buoy Center (NDBC) maintains automated reporting stations in the coastal and deep ocean areas of the Gulf of Mexico, the Atlantic and Pacific Oceans, and in the Great Lakes

  13. CollegeofEarth,Ocean, andAtmosphericSciences

    E-Print Network [OSTI]

    Kurapov, Alexander

    Chemistry for Environmental Sciences 490 Environmental Conservation & Sustainability 577 Environmental, and Atmospheric Sciences Environmental Sciences Earth Sciences Geology Option Geography Option Earth Systems Sciences or Environmental Sciences** The new College of Earth Ocean and Atmospheric Sciences (CEOAS) has

  14. 4 -Coastal Ocean Processes The Oregon Coastal Ocean: A Sink for Atmospheric CO

    E-Print Network [OSTI]

    Pierce, Stephen

    4 - Coastal Ocean Processes The Oregon Coastal Ocean: A Sink for Atmospheric CO 2 ? As part of the Coastal Ocean Processes (CoOP)-sponsored Coastal Ocean Advances in Shelf Transport project (COAST) we laboratory, we developed analytical sys- tems that were capable of measuring nutrient con- centrations and CO

  15. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations

    E-Print Network [OSTI]

    Boyer, Edmond

    Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface Abstract. A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model current. In order to analyze the eect of mesoscale coupling, three simulations are compared: the ®rst one

  16. AUTOMATED UNDERWAY OCEANIC AND ATMOSPHERIC MEASUREMENTS FROM Shawn R. Smith

    E-Print Network [OSTI]

    Sprintall, Janet

    AUTOMATED UNDERWAY OCEANIC AND ATMOSPHERIC MEASUREMENTS FROM SHIPS Shawn R. Smith (1) , Mark A 32306-2840, USA, Emails: smith@coaps.fsu.edu, mbourassa@coaps.fsu.edu (2) CSIRO Land and Water, PO Box

  17. 12.003 Physics of Atmospheres and Oceans, Fall 2007

    E-Print Network [OSTI]

    Marshall, John C.

    The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and ...

  18. Wind-driven changes in Southern Ocean residual circulation, ocean carbon reservoirs and atmospheric CO[subscript 2

    E-Print Network [OSTI]

    Lauderdale, Jonathan M.

    The effect of idealized wind-driven circulation changes in the Southern Ocean on atmospheric CO[subscript 2] and the ocean carbon inventory is investigated using a suite of coarse-resolution, global coupled ocean circulation ...

  19. Atmosphere and Ocean: Earth's Heat Engine: GFD Lab notes

    E-Print Network [OSTI]

    Atmosphere and Ocean: Earth's Heat Engine: GFD Lab notes 18 May 2012 UW Hon220c Energy' of water vapor, CO2 and cloud, makes us much warmer than a Marsian (almost no atmosphere. -550C average 2002 clouds, snow, ice, deserts are bright absorbing areas are dark

  20. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01T23:59:59.000Z

    2000: A Coupled Air-Sea Mesoscale Model: Experiments inWind Stress Curl from a Mesoscale Model. Mon. Wea. Rev. ,2006: Effect of Ocean Mesoscale Variability on the Mean

  1. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01T23:59:59.000Z

    2000: A Coupled Air-Sea Mesoscale Model: Experiments inWind Stress Curl from a Mesoscale Model. Mon. Wea. Rev. ,2006: Effect of Ocean Mesoscale Variability on the Mean

  2. Doctoral Programs Atmospheric, Oceanic & Space Sciences

    E-Print Network [OSTI]

    Eustice, Ryan

    University of Michigan Space Research Building 2455 Hayward Street Ann Arbor, MI 48109-2143 aoss Katherine E. White, Ann Arbor ©The Regents of the University of Michigan Research areas Atmospheric Science Atmospheric Dynamics Climate, Climate Modeling & Climate Change Clouds & Precipitation Paleoclimate, Ice

  3. National Oceanic and Atmospheric Administration Weather Bureau Hurricane Series

    E-Print Network [OSTI]

    #12;#12;National Oceanic and Atmospheric Administration Weather Bureau Hurricane Series ERRATA Beltsville, MD 20704-1387 November 6,2007 #12;YRKLXMINARY RET'OHT ON HURRICANE CLEO AUGUST 1.4-~9,1958 The existence af Hurricane "Cleo" i n the Atlantic som 900 milee e a ~ tof the Antflles (near 1 4 . 6 ~ ,47

  4. National Oceanic and Atmospheric Administration Weather Bureau Hurricane Series

    E-Print Network [OSTI]

    #12;#12;National Oceanic and Atmospheric Administration Weather Bureau Hurricane Series ERRATA Beltsville, MD 20704-1387 November 6,2007 #12;FRELLMINARY REPORT ON HURRICANE HANNAH SEPJCEMBEIi 28-OCTOBER 6, 1959 !Phe Weather Bureau Hurricane Warning Center at M i d issued the f i r a t advisory on Hurricane

  5. Surface OceanLower Atmosphere Processes Geophysical Research Series 187

    E-Print Network [OSTI]

    Kohfeld, Karen

    , British Columbia, Canada Andy Ridgwell Bristol Research Initiative for the Dynamic Global Environment251 Surface Ocean­Lower Atmosphere Processes Geophysical Research Series 187 Copyright 2009, and processes have been identified that have improved our understanding of the modern and future carbon cycle

  6. Water and Climate 2. Circulation of ocean and atmosphere; climate

    E-Print Network [OSTI]

    to high latitude and part of that thermal energy is FW: latent heat Gill Atmosphere-Ocean Dynamics integrated vertically (annual mean) ERA40 Atlas ECMWF HIGH: ICTZ, monsoon regions, Amazon.... convergent March 2005 from satellite radiometer AMSR-E. Ranges up to 6.5 cm FW in tropics #12;#12;Relative humidity

  7. OceanAtmosphere Interactions on Interannual to Decadal

    E-Print Network [OSTI]

    Vuille, Mathias

    , and the land surface and the biosphere. Ocean­atmosphere interac- tions include exchanges of energy (i.e., radia- tive transfer and heat fluxes), momentum (i.e., wind stress), water (i.e., precipitation temperature shows high power at all time scales. This variation in behavior is the funda- mental cause of many

  8. Ch.6 Atmospheric and Oceanic Circulations

    E-Print Network [OSTI]

    Pan, Feifei

    ;Learning Objective Four: Driving forces of wind #12;Driving Forces within the Atmosphere Gravity. #12;Pressure gradient determines wind speed #12; The Coriolis force is an effect of Earth's rotation direction due to the pressure gradient force alone #12;Geostrophic Wind Pressure gradient force + Coriolis

  9. Effect of Atlantic Meridional Overturning Circulation Changes on Tropical Coupled Ocean-Atmosphere System

    E-Print Network [OSTI]

    Wan, Xiuquan

    2010-01-14T23:59:59.000Z

    The objective of this study is to investigate the effect of Atlantic meridional overturning circulation (AMOC) changes on tropical coupled ocean-atmosphere system via oceanic and atmospheric processes. A suite of numerical simulations have been...

  10. Explorations of Atmosphere–Ocean–Ice Climates on an Aquaplanet and Their Meridional Energy Transports

    E-Print Network [OSTI]

    Marshall, John C.

    The degree to which total meridional heat transport is sensitive to the details of its atmospheric and oceanic components is explored. A coupled atmosphere, ocean, and sea ice model of an aquaplanet is employed to simulate ...

  11. Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing

    E-Print Network [OSTI]

    Taylor, Stephen V.

    2006-01-01T23:59:59.000Z

    atmosphere over the eastern Pacific Ocean in summer, volumeover the eastern North Pacific Ocean: Spatial distribution,winds over the eastern North Pacific Ocean in spring and

  12. Reprinted from JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, Vol. 12, No. 3, June 1995 American Meteorological Society

    E-Print Network [OSTI]

    Smith, Jerome A.

    to estimate the frequency-wavenumber power content for each sonar beam. The directional information is converted into the first four circular Fourier components at each frequency (including the mean power in the open ocean. A work- horse of most such data sets to date has been the tilt and roll buoy. While much

  13. A Coupled AtmosphereOcean Radiative Transfer System Using the Analytic Four-Stream Approximation

    E-Print Network [OSTI]

    Liou, K. N.

    of the ocean. Shortwave radiation from the sun contributes most of the heat fluxes that penetrate the airA Coupled Atmosphere­Ocean Radiative Transfer System Using the Analytic Four-Stream Approximation WEI-LIANG LEE AND K. N. LIOU Department of Atmospheric and Oceanic Sciences, University of California

  14. Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    of Ocean Engineering, University of Rhode Island, Narragansett, RI, USA 2. Electro Standards Laboratories. These systems are targeted for powering distributed marine surveillance and instrumentation networks, and should climates, of two new types of buoy systems equipped with an embedded Linear Electric Generator (LEG; made

  15. Evolving research directions in Surface OceanLower Atmosphere (SOLAS) science

    E-Print Network [OSTI]

    Evolving research directions in Surface Ocean­Lower Atmosphere (SOLAS) science Cliff S. Law­Lower Atmosphere Study (SOLAS) coordinates multi-disciplinary ocean­ atmosphere research projects that quantify and characterise this exchange. This article details five new SOLAS research strategies ­ upwellings and associated

  16. TROPICAL ATMOSPHERE-OCEAN (TAO) PROGRAM FINAL CRUISE REPORT

    E-Print Network [OSTI]

    /Tubes Downloaded: All sensors downloaded successfully except T125, dead battery. General Comments: None Site Sensor battery Buoy Site: 8N 170W Refresh Mooring Depth: 5535 m Mooring Operation: Deployment Mooring ID#: DM038A: Dive op to replace T25 aborted due to unsafe sea conditions. Site Sensor Failures Date Data Flagged Why

  17. Universite Paul Sabatier Toulouse III Formation Doctorale Ocean, Atmosph`ere et Environnement

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Universit´e Paul Sabatier ­ Toulouse III Formation Doctorale Oc´ean, Atmosph`ere et Environnement Ecole Doctorale de Sciences de l'Univers de l'Environnement et de l'Espace Assimilation de donn´ees de t-27Jun2007 #12;Universit´e Paul Sabatier ­ Toulouse III Formation Doctorale Oc´ean, Atmosph`ere et

  18. Overturning and wind driven circulation in a low-order ocean-atmosphere model

    E-Print Network [OSTI]

    van Veen, Lennaert

    july 2002 Abstract A low-order ocean-atmosphere model is presented which combines coupling through heat exchange at the interface and wind stress forcing. The coupling terms are derived from the boundary conditions and the forcing terms of the constituents. Both the ocean and the atmosphere model are based

  19. Satellite observations of mesoscale ocean features and copropagating atmospheric surface fields in the tropical belt

    E-Print Network [OSTI]

    Xie, Shang-Ping

    Satellite observations of mesoscale ocean features and copropagating atmospheric surface fields speed and sea surface temperature (SST) over mesoscale ocean features in certain frontal regions. The aim of this study is to determine to what extent mesoscale ocean dynamics modifies the surface wind

  20. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing -comparisons with observations

    E-Print Network [OSTI]

    Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing] A global simulation of the ocean response to atmospheric wind and pressure forcing has been run during the barotropic response of the global ocean to atmospheric wind and pressure forcing - comparisons

  1. Analogies of Ocean/Atmosphere Rotating Fluid Dynamics with Gyroscopes: Teaching Opportunities

    E-Print Network [OSTI]

    Haine, Thomas W. N.

    The dynamics of the rotating shallow-water (RSW) system include geostrophic f low and inertial oscillation. These classes of motion are ubiquitous in the ocean and atmosphere. They are often surprising to people at first ...

  2. AUTOMATED UNDERWAY OCEANIC AND ATMOSPHERIC MEASUREMENTS FROM Shawn R. Smith (1)

    E-Print Network [OSTI]

    AUTOMATED UNDERWAY OCEANIC AND ATMOSPHERIC MEASUREMENTS FROM SHIPS Shawn R. Smith (1) , Mark A 32306-2840, USA, Emails: smith@coaps.fsu.edu, mbourassa@coaps.fsu.edu (2) CSIRO Land and Water, PO Box

  3. On the meridional heat transport and its partition between the atmosphere and oceans

    E-Print Network [OSTI]

    Enderton, Daniel

    2009-01-01T23:59:59.000Z

    In this thesis I study the meridional heat transport of the climate system and its partition between the atmosphere and oceans using models and data. I focus on three primary questions: (1) What is the total heat transport ...

  4. Sensitivity of an Ocean-Atmosphere Coupled Model to the Coupling Method : Study of Tropical Cyclone

    E-Print Network [OSTI]

    Recanati, Catherine

    Sensitivity of an Ocean-Atmosphere Coupled Model to the Coupling Method : Study of Tropical Cyclone) in a realistic configuration aiming at simulating the genesis and propagation of tropical cyclone Erica and Oceanic Coupled Models (AOCMs) which account for important air-sea feedbacks. Separate integrations

  5. Impacts of interruption of the Agulhas leakage on the tropical Atlantic in coupled ocean-atmosphere simulations

    E-Print Network [OSTI]

    Drijfhout, Sybren

    in Climate Dynamics October 2009 #12;2 ABSTRACT In this paper we use a coupled ocean-atmosphere model Indian ocean water temperature (cold) and salinity (fresh) anomalies of southern ocean origin propagate the closure of the "warm water path" in favor of the "cold water path". As part of the atmospheric response

  6. Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses

    E-Print Network [OSTI]

    Fasullo, John

    Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses KEVIN E energy and hydrological cycles from eight current atmospheric reanalyses and their depiction of changes over time. A brief evaluation of the water and energy cycles in the latest version of the NCAR climate

  7. Changes in the ocean mixed layer following extraordinary atmospheric forcing. Master's thesis

    SciTech Connect (OSTI)

    Mettlach, T.R.

    1985-12-01T23:59:59.000Z

    A one-dimensional ocean planetary boundary-layer model is used to predict the evolution of the thermal structure of the ocean mixed layer at six locations in the ocean following the hypothetical effects on the atmosphere of a major nuclear war. The inputs to the ocean model are the heat and momentum fluxes computed from a 3D climate model designed to simulate nuclear winter effects in the atmosphere. The experiment gives evidence that the summertime mixed layer can cool 5 C within 30 days and that the effect of increased wind along coastal regions due to sudden ocean-land temperture differences will deepen the mixed layer 20 to 30 meters. The scientific literature on the subject of nuclear winter is reviewed and interpreted to trace the evolution of the nuclear winter hypothesis and to assess the quality of the results of the mixed layer experiment.

  8. Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report

    SciTech Connect (OSTI)

    Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee; Padhraic Smyth, UC Irvine

    2006-08-04T23:59:59.000Z

    The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics through atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.

  9. Internal variability of the tropical Pacific ocean Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

    E-Print Network [OSTI]

    Jochum, Markus

    Internal variability of the tropical Pacific ocean M. Jochum Earth, Atmospheric and Planetary model of the tropical Pacific ocean is analyzed to quantify the interannual variability caused by internal variability of ocean dynamics. It is found that along the Pacific cold tongue internal variability

  10. Joint Institute for the Study of the Atmosphere & Ocean OPERATIONS MANUAL

    E-Print Network [OSTI]

    Rigor, Ignatius G.

    Joint Institute for the Study of the Atmosphere & Ocean OPERATIONS MANUAL 2009-2010 Joint Institute Operations Manual Revised October 2009---mcs 2 TABLE OF CONTENTS Page I. INTRODUCTION 4 A. Organization Chart Employees 14 I. Equipment Inventory and Property Activity 14 #12;JISAO Operations Manual Revised October

  11. Sensitivity of Ocean-Atmosphere Coupled Models to the Coupling Method : Example of Tropical Cyclone

    E-Print Network [OSTI]

    Sensitivity of Ocean-Atmosphere Coupled Models to the Coupling Method : Example of Tropical Cyclone and propagation of tropical cyclone Erica. Sensitiv- ity tests to the coupling method are carried out-sea feedbacks. Separate integrations of the Corresponding author. Phone: +33 (0)4 76 51 48 60 Fax: +33 (0)4 76

  12. Influence of transport and ocean ice extent on biogenic aerosol sulfur in the Arctic atmosphere

    E-Print Network [OSTI]

    Influence of transport and ocean ice extent on biogenic aerosol sulfur in the Arctic atmosphere S, such as methanesulfonic acid (MSA). This study examines relationships between changes in total sea ice extent north of 70. These results suggest that a decrease in seasonal ice cover influencing other mechanisms of DMS production could

  13. Parallel ocean-atmosphere coupling: from OASIS3 to OASIS4 Sophie Valcke1

    E-Print Network [OSTI]

    Parallel ocean-atmosphere coupling: from OASIS3 to OASIS4 Sophie Valcke1 , Eric Maisonnave1 , Laure Cedex 01, France Abstract OASIS est un logiciel développé depuis 1991 au CERFACS qui permet de coupler'information (des « champs de couplage ») de façon synchronisée à l'interface de ces composantes. Aujourd'hui, OASIS

  14. National Oceanic and Atmospheric Administration U.S. Department of Commerce

    E-Print Network [OSTI]

    National Oceanic and Atmospheric Administration U.S. Department of Commerce NOAA'sOilSpillResponse Ensuring the Safety of Your Seafood Crude oil has the potential to taint seafood with flavors and odors imparted by exposure to hydrocarbon chemicals. The U.S. Food and Drug Administration regulates the presence

  15. Explorations of AtmosphereOceanIce Climates on an Aquaplanet and Their Meridional Energy Transports

    E-Print Network [OSTI]

    Miami, University of

    Explorations of Atmosphere­Ocean­Ice Climates on an Aquaplanet and Their Meridional Energy climates--some with polar ice caps, some without--even though they are driven by the same incoming solar is a useful guide. In cold climates with significant polar ice caps, however, meridional gradients in albedo

  16. Low-Frequency Variability in the Midlatitude Baroclinic Atmosphere Induced by an Oceanic Thermal Front

    E-Print Network [OSTI]

    Ghil, Michael

    oscillatory modes dominate. As the two layers become nearly equal, antisymmetric oscillatory modes become of the atmospheric marine boundary layer (AMBL) to oceanic fronts has been studied in observations, as well's dynamics depends on the layer-depth ratio. When the model is nearly equivalent-barotropic, symmetric

  17. Home Atmosphere Sea Ice Ocean Land Greenland Biology , L.-S. Bai

    E-Print Network [OSTI]

    Box, Jason E.

    Home Atmosphere Sea Ice Ocean Land Greenland Biology Greenland J. E. Box 1 , L.-S. Bai 1 , R across the southern half of Greenland led to substantially higher west coast sea ice thickness and concentration. Even so, record-setting summer temperatures around Greenland, combined with an intense melt

  18. atmosphere-ocean thermal contrast: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmosphere-ocean thermal contrast First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Baroclinic Adjustment...

  19. Response of the upper ocean to a large summertime injection of smoke in the atmosphere

    SciTech Connect (OSTI)

    Mettlach, T.R.; Haney, R.L.; Garwood R.W. Jr.; Ghan, S.J.

    1987-02-15T23:59:59.000Z

    A one-dimensional oceanic planetary boundary layer model is used to investigate the response of the upper ocean to the atmospheric conditions which are predicted to develop following a hypothetical nuclear exchange. The ocean model is driven by the surface heat and momentum fluxes predicted by an atmospheric general circulation model following a summertime injection of 1.5 x 10/sup 14/ g of smoke from postwar fires over Europe, Asia, and North America. Although the specific response of the upper ocean is highly dependent on the geographic location, the mid-latitude summertime mixed layer typically cools 3/sup 0/ to 5/sup 0/C and deepens 25 m during the first 30 days following the smoke injection. Moreover, a large fraction of this response is found to take place during a short 2- to 3-day period of very intense winds and falling air temperatures, which occurs during the first week or two after the smoke injection. copyrightAmerican Geophysical Union 1987

  20. A Comparison of Atmospheric Reanalysis Surface Products over the Ocean and Implications for Uncertainties in Air–Sea Boundary Forcing

    E-Print Network [OSTI]

    Chaudhuri, Ayan H.

    This paper investigates the uncertainties related to atmospheric fields from reanalysis products used in forcing ocean models. Four reanalysis products, namely from 1) the interim ECMWF Re-Analysis (ERA-Interim), 2) version ...

  1. A Comparison of Atmospheric Reanalysis Products for the Arctic Ocean and Implications for Uncertainties in Air–Sea Fluxes

    E-Print Network [OSTI]

    Chaudhuri, Ayan H.

    The uncertainties related to atmospheric fields in the Arctic Ocean from commonly used and recently available reanalysis products are investigated. Fields from the 1) ECMWF Interim Re-Analysis (ERA-Interim), 2) Common ...

  2. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29T23:59:59.000Z

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  3. A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies

    E-Print Network [OSTI]

    Dutkiewicz, Stephanie.

    We describe the coupling of a three-dimensional ocean circulation model, with explicit thermodynamic seaice and ocean carbon cycle representations, to a two-dimensional atmospheric/land model. This coupled system has been ...

  4. Role of ocean-atmosphere interactions in tropical cooling during the last glacial maximum

    SciTech Connect (OSTI)

    Bush, A.B.G. [Univ. of Alberta, Edmonton (Canada)] [Univ. of Alberta, Edmonton (Canada); Philander, S.G.H. [Princeton Univ., NJ (United States)] [Princeton Univ., NJ (United States)

    1998-02-27T23:59:59.000Z

    A simulation with a coupled atmosphere-ocean general circulation model configured for the Last Glacial Maximum delivered a tropical climate that is much cooler than that produced by atmosphere-only models. The main reason is a decrease in tropical sea surface temperatures, up to 6{degree}C in the western tropical Pacific, which occurs because of two processes. The trade winds induce equatorial upwelling and zonal advection of cold water that further intensify the trade winds, and an exchange of water occurs between the tropical and extratropical Pacific in which the poleward surface flow is balanced by equatorward flow of cold water in the thermocline. Simulated tropical temperature depressions are of the same magnitude as those that have been proposed from recent proxy data. 25 refs., 4 figs.

  5. Response of the upper ocean to a large summertime injection of smoke in the atmosphere. Final report

    SciTech Connect (OSTI)

    Mettlach, T.R.; Haney, R.L.; Garwood, R.W.; Ghan, S.J.

    1987-02-15T23:59:59.000Z

    A one-dimensional oceanic planetary boundary-layer model is used to investigate the response of the upper ocean to the atmospheric conditions predicted to develop following a hypothetical nuclear exchange. The ocean model is driven by the surface heat and momentum fluxes predicted by an atmospheric general circulation model following a summertime injection of 1.5 X 10/sup 14/ g of smoke from postwar fires over Europe, Asia, and North America. Although the specific response of the upper ocean is highly dependent on the geographic location, the mid-latitude summertime mixed layer typically cools 3 to 5/degree/C and deepens 25 m during the first 30 days following the smoke injection. Moreover, a large fraction of this response is found to take place during a short 2- to 3-day period of very intense winds and falling air temperatures, which occurs during the first week or two after the smoke injection.

  6. Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model

    E-Print Network [OSTI]

    Stéphane Vannitsem; Jonathan Demaeyer; Lesley De Cruz; Michael Ghil

    2014-12-01T23:59:59.000Z

    We formulate and study a low-order nonlinear coupled ocean-atmosphere model with an emphasis on the impact of radiative and heat fluxes and of the frictional coupling between the two components. This model version extends a previous 24-variable version by adding a dynamical equation for the passive advection of temperature in the ocean, together with an energy balance model. The bifurcation analysis and the numerical integration of the model reveal the presence of low-frequency variability (LFV) concentrated on and near a long-periodic, attracting orbit. This orbit combines atmospheric and oceanic modes, and it arises for large values of the meridional gradient of radiative input and of frictional coupling. Chaotic behavior develops around this orbit as it loses its stability; this behavior is still dominated by the LFV on decadal and multi-decadal time scales that is typical of oceanic processes. Atmospheric diagnostics also reveals the presence of predominant low- and high-pressure zones, as well as of a subtropical jet; these features recall realistic climatological properties of the oceanic atmosphere. Finally, a predictability analysis is performed. Once the decadal-scale periodic orbits develop, the coupled system's short-term instabilities --- as measured by its Lyapunov exponents --- are drastically reduced, indicating the ocean's stabilizing role on the atmospheric dynamics. On decadal time scales, the recurrence of the solution in a certain region of the invariant subspace associated with slow modes displays some extended predictability, as reflected by the oscillatory behavior of the error for the atmospheric variables at long lead times.

  7. A study of atmosphere-ocean interaction using a one-dimensional numerical air-sea boundary layer model

    E-Print Network [OSTI]

    Hebenstreit, Gerald Thomas

    1974-01-01T23:59:59.000Z

    surface with no allowance for exchange induced by wave action. The model does produce reasonable solutions, in comparison with oceanic data, for the response of the lower atmosphere and the upper ocean to specific. sets of meteorological and oceanic.../2 this function is of the form f(Ri) = (1 + b Ri) , then one obtains ? 3 1/2 2 -1 K (z) = K 62 (gX ) exp(z/W) (z/I + rdI) (1 + b Ri) hw 1 (61) Although KITAIGORODSKII (1961) does not give a specific value of b, it would appear that b = 10/3 would be in line...

  8. Sea ice loss and the changing atmospheric CO2 uptake capacity of the Arctic Ocean: Insights1 from the southeastern Canada Basin2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Sea ice loss and the changing atmospheric CO2 uptake capacity of the Arctic Ocean: Insights1 from (Arctic Ocean) to act as an atmospheric CO2 sink under the summertime ice-free conditions12 expected in the near future. Beneath a heavily decayed ice cover, we found surprisingly high13 pCO2sw (~290-320 atm

  9. E-Print Network 3.0 - atmosphere ocean heat Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 The Oceans and Climate Change LuAnne Thompson Summary: it takes vastly more energy to heat up the ocean, ocean temperature is much more resistant to change than... dioxide is...

  10. Multiscale dynamics of atmospheric and oceanic variability in the climate system

    E-Print Network [OSTI]

    Subramanian, Aneesh C.

    2012-01-01T23:59:59.000Z

    applied to the Oceanic Mesoscale in the South Eastassimilation at the oceanic mesoscale: A review. JOURNAL-scale circulations and mesoscale convective activity in

  11. Prospects for Simulating Macromolecular Surfactant Chemistry at the Ocean-Atmosphere Boundary

    SciTech Connect (OSTI)

    Elliott, S.; Burrows, Susannah M.; Deal, C.; Liu, Xiaohong; Long, M.; Ogunro, O.; Russell, Lynn M.; Wingenter, O.

    2014-05-01T23:59:59.000Z

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water-air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea-air interface into aerosol-cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties in the surfactant logic distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.

  12. Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planet’s remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energy’s GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities’ pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

  13. The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves R. PINKEL, M. A. GOLDIN, J. A. SMITH, O. M. SUN, A. A. AJA, M. N. BUI, AND T. HUGHEN

    E-Print Network [OSTI]

    Smith, Jerome A.

    The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves R. PINKEL, M. A­time record. The elements of the WW system in- clude a surface buoy, a wire suspended from the buoy, a weight at the end of the wire, and the profiler itself. The wire and weight follow the surface motion of the buoy

  14. Oceanic and atmospheric response to climate change over varying geologic timescales

    E-Print Network [OSTI]

    Woodard, Stella C.

    2012-07-16T23:59:59.000Z

    are assumed to reflect global ocean processes. We analyzed radiogenic isotopes in biogenic apatite along a North American transect to constrain the degree of geochemical coupling between the epicontinental seas and the open ocean. Our results argue strongly...

  15. Near-inertial and thermal to atmospheric forcing in the North Atlantic Ocean

    E-Print Network [OSTI]

    Silverthorne, Katherine E

    2010-01-01T23:59:59.000Z

    Observational and modeling techniques are employed to investigate the thermal and inertial upper ocean response to wind and buoyancy forcing in the North Atlantic Ocean. First, the seasonal kinetic energy variability of ...

  16. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    E-Print Network [OSTI]

    Thornton, P. E.; Doney, S. C.; Lindsay, Keith; Moore, J. K.; Mahowald, N. M.; Randerson, J. T.; Fung, I.; Lamarque, J. F.; Feddema, Johannes J.

    2009-01-01T23:59:59.000Z

    Biogeosciences, 6, 2099–2120, 2009 www.biogeosciences.net/6/2099/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Biogeosciences Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks.... Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO2 fertil- ization, and increased carbon...

  17. Atlantic Oceanographic and Meteorological LaboratoryNovember-December 2009 Volume 13, Number 6 AOML is an environmental research laboratory of NOAA's Office of Oceanic and Atmospheric

    E-Print Network [OSTI]

    is an environmental research laboratory of NOAA's Office of Oceanic and Atmospheric Research located on Virginia KeyAtlantic With an estimated 40% of the carbon dioxide (CO2 ) from fossil fuels having entered the oceans since the start studies in the Atlantic and equatorial Pacific performed by NOAA researchers and their affiliates. Carbon

  18. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations

    SciTech Connect (OSTI)

    Wood, R.; Springston, S.; Mechoso, C. R.; Bretherton, C. S.; A.Weller, R.; Huebert, B.; Straneo, F.; Albrecht, B. A.; Coe, H.; Allen, G.; Vaughan, G.; Daum, P.; Fairall, C.; Chand, D.; Klenner, L. G.; Garreaud, R.; Grados, C.; Covert, D. S.; Bates, T. S.; Krejci, R.; Russell, L. M.; Szoeke, S. d.; Brewer, A.; Yuter, S. E.; Chaigneau, A.; Toniazzo, T.; Minnis, P.; Palikonda, R.; Abel, S. J.; Brown, W. O. J.; Williams, S.; Fochesatto, J.; Brioude, J.; Bower, K. N

    2011-01-21T23:59:59.000Z

    The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted.

  19. The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current

    E-Print Network [OSTI]

    Thompson, Andrew

    in sea surface height across the basin. Similar regions of surface pumping and suction occur in the ACC motions that `pump down' or `suck up' on the water column, respectively. In ocean basins, this surface) is the longest and the strongest oceanic current on the Earth and is the primary means of inter-basin exchange

  20. Lifetime and Spectral Evolution of a Magma Ocean with a Steam Atmosphere: Its Detectability by Future Direct Imaging

    E-Print Network [OSTI]

    Hamano, Keiko; Abe, Yutaka; Onishi, Masanori; Hashimoto, George L

    2015-01-01T23:59:59.000Z

    We present the thermal evolution and emergent spectra of solidifying terrestrial planets along with the formation of steam atmospheres. The lifetime of a magma ocean and its spectra through a steam atmosphere depends on the orbital distance of the planet from the host star. For a type-I planet, which is formed beyond a certain critical distance from the host star, the thermal emission declines on a timescale shorter than approximately $10^6$ years. Therefore, young stars should be targets when searching for molten planets in this orbital region. In contrast, a type-II planet, which is formed inside the critical distance, will emit significant thermal radiation from near-infrared atmospheric windows during the entire lifetime of the magma ocean. The Ks and L bands will be favorable for future direct imaging because the planet-to-star contrasts of these bands are higher than approximately 10$^{-7}$-10$^{-8}$. Our model predicts that, in the type-II orbital region, molten planets would be present over the main s...

  1. Bromocarbons in the tropical coastal and open ocean atmosphere during the 2009 Prime Expedition Scientific Cruise (PESC-09)

    E-Print Network [OSTI]

    Mohd Nadzir, M. S.; Phang, S. M.; Abas, M. R.; Abdul Rahman, N.; Abu Samah, A.; Sturges, W. T.; Oram, D. E.; Mills, G. P.; Leedham, E. C.; Pyle, J. A.; Harris, N. R. P.; Robinson, A. D.; Ashfold, M. J.; Mead, M. I.; Latif, M. T.; Khan, M. F.; Amiruddin, A. M.; Banan, N.; Hanafiah, M. M.

    2014-08-14T23:59:59.000Z

    , Norwich, NR4 7TJ, UK 5Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK 6Department of Environmental Management, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400... deck, with the inlet ? 10 m above the ocean sur- face and adjusted at each sampling time to face the prevail- ing wind. Air was pumped into a pre-evacuated 3 L canis- ter (Restek SilcoCan™) using a compact, battery-operated diaphragm pump (Rasmussen...

  2. Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth

    E-Print Network [OSTI]

    Reinhard, Christopher Thomas

    2012-01-01T23:59:59.000Z

    northeastern Baltic Shield. Earth Sci Rev 36:205- 241. B81.Earth.DC, Claire MW (2005) How Earth’s atmosphere evolved to an

  3. Century Climate Change Scenario for the Mediterranean using a coupled Atmosphere-Ocean

    E-Print Network [OSTI]

    21st Century Climate Change Scenario for the Mediterranean using a coupled Atmosphere The SAMM (Sea Atmosphere Mediterranean Model) has been developed to study the climate evolution significantly amplifies the climate change signal over large parts of Europe with respect to the corresponding

  4. Implications of SSM/I observations for retrievals of ocean surface and marine atmospheric parameters

    E-Print Network [OSTI]

    Nelkin, Eric Jason

    1992-01-01T23:59:59.000Z

    such restrictions. These algorithms appear to be applicable over half of the time over the global oceans. DEDICATION This thesis is dedicated to the memory of my two grandmothers, Bessie Dvoretsky and Bessie Nelkin, both of whom found pleasure in seeing me... of absorption and scattering are compared for various land and ocean areas. While it has been demonstrated that an increase in the amount of scattering by ice particles leads to an increase in estimated rainfall rate over land, it has not been conclusively...

  5. The feasibility of sodar wind profile measurements from an oceanographic buoy

    E-Print Network [OSTI]

    Berg, Allison M. (Allison May)

    2006-01-01T23:59:59.000Z

    This thesis explores the feasibility of making wind speed profile measurements from an oceanographic buoy using a Doppler sodar. In the fall of 2005, we deployed a Scintec SFAS sodar on an ASIS buoy. Roughly one week of ...

  6. DOE Launches High-Tech Research Buoys to Advance U.S. Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches High-Tech Research Buoys to Advance U.S. Offshore Wind Development DOE Launches High-Tech Research Buoys to Advance U.S. Offshore Wind Development May 18, 2015 - 3:18pm...

  7. ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 25, NO. 5, 2008, 805814 Diagnosing Ocean Tracer Transport from Sellafield

    E-Print Network [OSTI]

    Drange, Helge

    2 Bjerknes Centre for Climate Research, Bergen, Norway 3 Nansen-Zhu International Research Centre of biogeochemi- cal tracers influencing the oceanic carbon cycle are just two examples of where such information tracer concentration from idealized pulse releases from the British nuclear fuel reprocessing plants

  8. Academic Area Guide -Discipline Groups COLLEGE OF EARTH, OCEAN & ATMOSPHERIC SCIENCES

    E-Print Network [OSTI]

    Kurapov, Alexander

    ) Indicates faculty member's second choice] Ocean Ecology and Biogeochemistry (OE&B) Abbott, Mark, Prof, Hannah, Assoc. Prof. Grubesic, Tony, Assoc. Prof. Harte, M. Prof Jarvis, Todd, Asst. Prof. (Sr. Res, Asst. Prof. (Sr. Res.) Meyers, S. Mark, Instructor (SFRA) Nolin, Anne, Prof. Santelmann, Mary, Assoc

  9. National Oceanic and Atmospheric Administration U.S. Department of Commerce

    E-Print Network [OSTI]

    oil (or a heavier refined product) floats on the ocean surface, its physical characteristics change crude oils mix with water to form an emulsion that often looks like chocolate pudding. This emulsion, including the hydrocarbons found in crude oil and petroleum products. They may have an allergic reaction

  10. Millennial-scale oscillations in the Southern Ocean in response to atmospheric CO2 increase

    E-Print Network [OSTI]

    Álvarez-Solas, Jorge

    time scale under several global warming long-term scenarios, stabilized at different levels ranging: millennial oscillations climate variability abrupt change global warming ice sheets ocean behaviour Southern from 2 to 7 times the pre-industrial CO2 level. The climate response is mainly analyzed in terms

  11. Dynamics of Atmospheres and Oceans 52 (2011) 322340 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    of the 2010 Gulf of Mexico Oil Spill A.J. Marianoa, , V.H. Kourafaloua , A. Srinivasana,d , H. Kanga , G Horizon Oil Spill in the Gulf of Mexico. Both systems use ocean current fields from high in the water column and that most of the oil is below 800 m. © 2011 Elsevier B.V. All rights reserved. 1

  12. The Role of the Ocean in the Atmospheric Budgets of Methyl Bromide, Methyl Chloride and Methane

    E-Print Network [OSTI]

    Hu, Lei

    2012-10-19T23:59:59.000Z

    , which was 700 (490 to 920) Gg yr^-1 and -370 (-440 to -280) Gg yr^-1, respectively. The ocean accounts for 10 - 19 % in the global CH3Cl emission and 6 - 9 % in its global sinks. Methane (CH4) is a potent greenhouse gas, which has a warming potential...

  13. On a revised ocean-atmosphere physical coupling interface and about technical coupling software

    E-Print Network [OSTI]

    linking the main model components of present-day Earth System models (ESMs), i.e. the atmosphere constraints of Earth System Models (ESMs) as a whole and each component individually, including laws

  14. Ice Mass Balance Buoy: An Instrument to Measure and Attribute Changes in Ice Thickness

    E-Print Network [OSTI]

    Geiger, Cathleen

    Ice Mass Balance Buoy: An Instrument to Measure and Attribute Changes in Ice Thickness Jacqueline A the Ice Mass Balance buoy (IMB) in response to the need for monitoring changes in the thickness of the Arctic sea ice cover. The IMB is an autonomous, ice-based system. IMB buoys provide a time series of ice

  15. Bragg scattering and wave-power extraction by an array of small buoys

    E-Print Network [OSTI]

    Boyer, Edmond

    Bragg scattering and wave-power extraction by an array of small buoys By Xavier Garnaud & Chiang C to power-takeoff devices. The spacing between buoys is assumed to be comparable to the incident wavelength to the potential of power extraction from sea waves by an isolated unit such as a buoy, a raft or an oscillating

  16. #061212-008 1 Abstract A new type of surface vehicle/buoy is needed for

    E-Print Network [OSTI]

    Wood, Stephen L.

    is a completely redesigned NOMAD buoy with the ability to pull up anchor and traverse under power to a new#061212-008 1 Abstract ­ A new type of surface vehicle/buoy is needed for marine biological studies, and fluorescein. Index Terms-- Autonomous Marine Vehicle, Autonomous Mobile Buoy, Coastal Observatories, Self

  17. Comparing TRMM rainfall retrieval with NOAA buoy rain gauge data

    E-Print Network [OSTI]

    Phillips, Amy Blackmore

    2002-01-01T23:59:59.000Z

    to December of 2001. TRMM's 3G68 product provides instantaneous rain rate data averaged over 0.5? x 0.5? latitude-longitude grid boxes for the TRMM Microwave Imager (TMI), Precipitation Radar (PR), and a combined algorithm (COMB). The buoy's rain rate data...

  18. Hybrid Renewable Energy Systems for a Dynamically Positioned Buoy

    E-Print Network [OSTI]

    Wood, Stephen L.

    of the vessel and environmental conditions, power requirements for DP tend to be quite substantial and costly of powering a low cost, simple, dynamic positioning system. This system was implemented on a dynamically a theoretical hybrid renewable energy system to power it, thereby improving on the station keeping buoy (SKB

  19. Radiative transfer in the earth's atmosphere-ocean system using Monte Carlo techniques

    E-Print Network [OSTI]

    Bradley, Paul Andrew

    1987-01-01T23:59:59.000Z

    TRANSFER PROBLEM MONTE CARLO METHOD Assumptions of the Model Photon Pathlength Emulation Techniques Sampling Scattering Functions: Angles and Probabilities Emulation of an Interface Computing the Radiance by Statistical Estimation Determination... of Direction Cosines After Scattering Flux Estimation into Detectors Determination of a New Scattering Point Photon Trajectories Direct Flux and Radiance From the Ocean Bottonr Accounting for Multiple Orders of Scattering With the Bottom Computation...

  20. Ice at the Interface: Atmosphere-Ice-Ocean Boundary Layer Processes and Their Role in Polar Change---Workshop Report

    SciTech Connect (OSTI)

    Hunke, Elizabeth C. [Los Alamos National Laboratory

    2012-07-23T23:59:59.000Z

    The atmosphere-ocean boundary layer in which sea ice resides includes many complex processes that require a more realistic treatment in GCMs, particularly as models move toward full earth system descriptions. The primary purpose of the workshop was to define and discuss such coupled processes from observational and modeling points of view, including insight from both the Arctic and Antarctic systems. The workshop met each of its overarching goals, including fostering collaboration among experimentalists, theorists and modelers, proposing modeling strategies, and ascertaining data availability and needs. Several scientific themes emerged from the workshop, such as the importance of episodic or extreme events, precipitation, stratification above and below the ice, and the marginal ice zone, whose seasonal Arctic migrations now traverse more territory than in the past.

  1. ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 21, NO. 1, 2004, 112 1 A Possible Role of Solar Radiation and Ocean in the

    E-Print Network [OSTI]

    ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 21, NO. 1, 2004, 1­12 1 A Possible Role of Solar Radiation to simulate the climate of the mid-Holocene period. The role of the solar radiation and ocean in the mid solar radiation induced by the changed orbital parameters and the changed SST simulated by the OGCM

  2. The hydrological cycle tirelessly distributes water between land, ocean, atmosphere and cryosphere. Stefan Hagemann and his colleagues at the Max Planck Institute for Meteorology

    E-Print Network [OSTI]

    substance across the globe, but they also carry along thermal energy in the process ­ albeit hidden into liquid water or freezes to form ice. Conversely, energy input is necessary for ice to melt or sublimeThe hydrological cycle tirelessly distributes water between land, ocean, atmosphere and cryosphere

  3. Radiative interactions: I. Light scattering and emission from irregular particles. II. Time dependent radiative coupling of an atmosphere-ocean system

    E-Print Network [OSTI]

    Li, Changhui

    2006-10-30T23:59:59.000Z

    and fluorescence. In the second part of the dissertation, we study radiative interactions in an atmosphere-ocean system. By using the so called Matrix operator method, not only the radiance of the radiation field, but also the polarization of the radiation field...

  4. ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2013, VOL. 6, NO. 1, 39-43 Effects of Clouds and Aerosols on Surface Radiation Budget Inferred from

    E-Print Network [OSTI]

    Dong, Xiquan

    , the effects of clouds and aerosols on the surface radiation budget during the period Octo- ber­December 2008 clouds have the smallest cooling effect and LW warming on the surface radiation budget. Comparing the twoATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2013, VOL. 6, NO. 1, 39-43 Effects of Clouds and Aerosols

  5. Ocean-atmosphere-land feedbacks on the western North Pacific-East Asian summer climate

    E-Print Network [OSTI]

    Chou, Chia

    . They include local processes associated with net heat flux into the atmosphere and soil moisture, ventilation, ventilation and the IRH mechanism, also induce an east-west asymmetry of the summer monsoon rain zones. In Asia, ventilation by moisture advection is particularly important and the IRH mechanism tends to favor

  6. The response of Petermann Glacier to large calving events and its future stability in the context of atmospheric and oceanic warming

    E-Print Network [OSTI]

    van der Veen, Cornelis J.; Nick, F. M.; Luckman, A.; Vieli, A.; Van As, D.; Van De Wal, R.S.W.; Pattyn, F.; Hubbard, A. L.; Floricioiu, D.

    2012-11-05T23:59:59.000Z

    The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming F.M. NICK,1,2 A. LUCKMAN,3 A. VIELI,4 C.J. VAN DER VEEN,5 D. VAN AS,6 R.S.W. VAN DE WAL,1 F. PATTYN,2 A... 2010 calving event on the current and future stability of Petermann Glacier, Greenland, and ascertains the glacier’s interaction with different components of the climate and ocean system. We use a numerical ice-flow model that captures the major aspects...

  7. North Pacific atmosphere-ocean variability over the past millennium inferred from coastal glaciers and tree rings

    SciTech Connect (OSTI)

    Wiles, G. [Macalester College, St. Paul, MN (United States)

    1997-11-01T23:59:59.000Z

    Ocean-atmosphere system fluctuations from annual to centennial time scales in the North Pacific are recorded in histories of coastal glacier advances and in temperature records inferred from coastal tree-ring series. Calendar dates obtained by dating glacially overrun forests with tree rings, show two major intervals of ice expansion over the last millennium. The first occurred between AD 1250 and 1300 and the second between AD 1650 and 1750. This glacial record indicates the onset of the Little Ice Age by AD 1250 and the most widespread advance of the past millennium from the mid 17th to the mid 18th century. Moreover, temperature variations inferred from tree-ring records since AD 1600 show multiple decade-long changes in the climate system, suggesting that lower frequency variation can be derived from these records. Decade-long cool intervals are most frequent between AD 1650 and 1750, a time of general glacier expansion. The warmest decades occur in the 20th century, a time of glacier retreat. 16 refs., 4 figs.

  8. MHK Technologies/AquaBuoy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:Energy InformationSEAREVAquaBuoy < MHK

  9. MHK Technologies/Electric Buoy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlaneElectric Buoy.jpg Technology Profile

  10. MHK Technologies/Finavera Buoy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlaneElectricBuoy.jpg Technology Profile

  11. MHK Technologies/WAG Buoy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHK Technologies Jump to:

  12. Dynamic Ping Optimization for Surveillance in Multistatic Sonar Buoy Networks with Energy Constraints

    E-Print Network [OSTI]

    Amir, Yair

    Dynamic Ping Optimization for Surveillance in Multistatic Sonar Buoy Networks with Energy optimization of ping schedule in an active sonar buoy network deployed to provide persistent surveillance management of power consumption for pinging is important to support the required lifetime of the network

  13. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    2009 P. E. Thornton et al. : Carbon-nitrogen interactionsregulate climate-carbon cycle feedbacks Monfray, P. ,T. H. : A global ocean carbon climatology: Results from

  14. Atmospheric Model Ocean Model

    E-Print Network [OSTI]

    Marshall, Andrew

    -Seasonal Prediction of Remote Drivers of Australian Climate Variability using POAMA Andrew G Marshall, Debbie Hudson index at 140°°°°E for OBS and POAMA hindcasts > http://poama.bom.gov.au andrew.marshall@bom.gov.au #12;

  15. NATIONAL OCEANIC AND ATMOSPHERIC

    E-Print Network [OSTI]

    Kuligowski, Bob

    -2008) Arctic Fall Temperature Anomalies Greater Than +5° C 2. CAUSES for Reduced Sea Ice #12;[Woodgate et al to the Beaufort Sea Marbled eelpout Walleye pollock Salmon snailfishBigeye sculpin Pacific cod Bering flounder Baseline Observatory Barrow Arctic Haze Air Pollution (Decrease Since the Fall of the USSR) >50% Decrease

  16. The sensitivity of a coupled atmospheric-oceanic model to variations in the albedo and absorptivity of a stratospheric aerosol layer

    SciTech Connect (OSTI)

    Walsh, K.; Pittock, A.B. (Commonwealth Scientific and Industrial Research Organization, Victoria (Australia))

    1990-06-20T23:59:59.000Z

    Considerable uncertainty exists regarding the precise physical parameters of a smoke or aerosol cloud that would be injected into the lower stratosphere by a catastrophic event such as a nuclear war, a major volcanic eruption, or an asteroid impact. In this paper, the sensitivity of the sea surface temperature of a one-dimensional coupled atmospheric-oceanic model to variations in the albedo and absorptivity of an aerosol cloud introduced into the lower stratosphere is examined. Zonally averaged results are produced for two latitudes in the southern hemisphere. The temperature response of the oceans to forcings by a cloud with realistic aerosol properties is examined, with particular emphasis on the impact on the surface climate on time scales of 6 months to 2 years.

  17. Coupling of a regional atmospheric model (RegCM3) and a regional oceanic model (FVCOM) over the maritime continent

    E-Print Network [OSTI]

    Wei, Jun

    Climatological high resolution coupled climate model simulations for the maritime continent have been carried out using the regional climate model (RegCM) version 3 and the finite volume coastal ocean model (FVCOM) ...

  18. M.S. Economic Geology, Oregon State University College of Earth, Ocean, and Atmospheric Sciences, Corvallis, OR Expected Spring, 2015

    E-Print Network [OSTI]

    Kurapov, Alexander

    EDUCATION M.S. Economic Geology, Oregon State University College of Earth, Ocean. Dilles Relevant Courses Interpretation of Geologic Maps Igneous Petrology Tectonic Geomorphology B.S. Geology, University of Idaho College of Science, Moscow, ID; GPA: 3

  19. Integration and Ocean-Based Prelaunch Validation of GOES-R Advanced Baseline Imager Legacy Atmospheric Products

    E-Print Network [OSTI]

    Li, Jun

    Administration (NOAA) Aerosols and Ocean Science Expeditions (AEROSE). The NOAA AEROSE data include dedicated comparisons. The GOES-R LAP retrievals are found to agree reasonably with the AEROSE RAOB observations

  20. Tropical Moored Buoy Implementation Panel (TIP) Report Michael J. McPhaden, TIP Chairman

    E-Print Network [OSTI]

    CLIVAR and IOC/WMO panels) to advance the implementation of a moored buoy network in the context of other), which advises the Administrator of NOAA on management and policy issues, has requested submission

  1. Accessing the Energy Department’s Lidar Buoy Data off Virginia Beach

    Broader source: Energy.gov [DOE]

    In December 2014, Pacific Northwest National Laboratory (PNNL) deployed the Energy Department’s floating lidar buoy off of Virginia Beach, Virginia, in less than 30 meters (m) of water,...

  2. Numerical Simulations of a Wave Energy Conversion Device Used for Oceanographic Buoys

    E-Print Network [OSTI]

    Lee, Yongseok

    2014-07-24T23:59:59.000Z

    oceanographic ships prior to transmission land based research facilities. Most buoy designs are powered by battery systems that provide ballast and some can be recharged by solar panels. At-sea maintenance may include regular battery replacement or repairs...

  3. regulation. Buoys and ship-based sensors are normally used to measure the amount of

    E-Print Network [OSTI]

    Heller, Eric

    regulation. Buoys and ship-based sensors are normally used to measure the amount of water of many neurons at once. But researchers based in Cambridge, Massachusetts, have painstakingly mapped

  4. Long-range propagation of ocean waves

    E-Print Network [OSTI]

    Young, William R.

    hours. Friday, February 22, 2013 #12;OceanPowerTechnologies A 103 foot long, 260ton buoy being tested #12;Wave Power? PelamisWavePower With T=10sec and a = 1 meter, the energy flux is 40kW/meter. An average 40kW/meter of wave power is typical of good sites. Energy Flux = cg × Energy Density = g2 Ta2 8

  5. Multi-year observations of the tropical Atlantic atmosphere: Multidisciplinary applications of the NOAA Aerosols and Ocean

    E-Print Network [OSTI]

    of the NOAA Aerosols and Ocean Science Expeditions (AEROSE) Nicholas R. Nalli Dell Services, Federal Science Expedition (AEROSE) field campaigns. Following the original 2004 campaign onboard the Ronald H. Brown, AEROSE has operated on a yearly basis since 2006 in collaboration with the NOAA Prediction

  6. Atmospheric three-dimensional inverse modeling of regional industrial emissions and global oceanic uptake of carbon tetrachloride

    E-Print Network [OSTI]

    Xiao, X.

    Carbon tetrachloride (CCl4) has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CCl4 ...

  7. Is the basinwide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global warming?

    E-Print Network [OSTI]

    Wang, Chunzai

    to atmospheric carbon dioxide and global warming? Chunzai Wang1 and Shenfu Dong1,2 Received 31 January 2010 is controversial. Some studies argued that the warming is due to global warming in association with the secular sea surface temperature. Here we show that both global warming and AMO variability make a contribution

  8. Air Resources Laboratory The Air Resources Laboratory (ARL) is a research laboratory within the National Oceanic and Atmospheric Administration

    E-Print Network [OSTI]

    in West Texas. The data collected and analyzed by ARL will improve forecasts of winds at heights more research and development in the fields of atmospheric dispersion, air quality, climate change, and boundary of hazardous chemicals and materials; developing, evaluating, and applying air quality models; conducting

  9. Texas Automated Buoy System Sustainable Ocean Observations to Help Protect the Environment

    E-Print Network [OSTI]

    of Campeche in the Gulf of Mexico. Some were too young to remember the Exxon Valdez disaster in 1989

  10. Autonomous buoy for seismic reflection data acquisition in the inaccessible parts of the Arctic Ocean

    E-Print Network [OSTI]

    Kristoffersen, Yngve

    . Remaining challenges - power supplied by batteries charged by solar panels and wind mill has proven & electronics battery solar panels Field tests Results Deployment on the ice north of Svalbard Test locations

  11. MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNAREC <Air Piston < MHKOWEC

  12. The effect of atmospheric forcing resolution on delivery of ocean heat to the2 Antarctic floating ice shelves3

    E-Print Network [OSTI]

    Howat, Ian M.

    floating ice shelves3 4 5 by6 7 Michael S. Dinniman1 8 John M. Klinck1 9 Le-Sheng Bai2 10 David H. Bromwich melting of the base of the floating Antarctic ice shelves is now thought to38 be a more significant cause heat to the base of the ice41 shelves. The atmospheric forcing comes from the ERA-Interim reanalysis

  13. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K. [Lawrence Livermore National Lab., CA (United States); Hoffert, M.I. [New York Univ., NY (United States). Dept. of Earth System Sciences; Siegenthaler, U. [Bern Univ. (Switzerland). Inst. fuer Physik

    1994-02-01T23:59:59.000Z

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  14. On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean-atmosphere-land system

    SciTech Connect (OSTI)

    Ma, Hsi-Yen; Mechoso, C. R.; Xue, Yongkang; Xiao, Heng; Neelin, David; Ji, Xuan

    2013-11-15T23:59:59.000Z

    The impact of global tropical climate to perturbations in land surface processes (LSP) are evaluated using perturbations given by different LSP representations of continental-scale in a global climate model that includes atmosphere-ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes. The results demonstrate that LSP processes such as interactive soil moisture and vegetation biophysical processes have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific. To explore the mechanisms for such impact, different LSP representations are confined to selected continental-scale regions where strong interactions of climate-vegetation biophysical processes are present. We find that the largest impact is mainly from LSP perturbations over the tropical African continent. The impact is through anomalous convective heating in tropical Africa due to changes in the surface heat fluxes, which in turn affect basinwide teleconnections in the Pacific through equatorial wave dynamics. The modifications in the equatorial Pacific climate are further enhanced by strong air-sea coupling between surface wind stress and upwelling, as well as effect of ocean memory. Our results further suggest that correct representations of land surface processes, land use change and the associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty when performing future climate projections under different climate change scenarios.

  15. Om Ocean Energy Centre Vrt uppdrag r att frmja havsenergiindustrin i Sverige

    E-Print Network [OSTI]

    Lemurell, Stefan

    #12;De fyra industriella medlemmarna i OEC utvecklar dessa koncept Waves4Power och Minesto har haft test med uppankring av "slangen" i havet) Waves4Power Vigor WaveEnergy Ocean Harvester Deep Green förtöjningar (Med SP) Prof Jonas Ringsberg Ett industriprojekt: SP Från boj till nät (From Buoy to Grid) Lars

  16. composition of putative oceans on

    E-Print Network [OSTI]

    Treiman, Allan H.

    point · Warm/hot ocean · Water-saturated atmosphere · Consumption of liquid water · hydration: continents and oceans Hot oceanic water Quartz Hydrated, oxidized rock Partially altered rock Unaltered rock · CO2, ~0.3-0.9 (volume fraction) · H2O, ~0.01-0.6 · N2, ~0.02-0.15 · High temperature corresponds

  17. Coastal ocean variability off the coast of Taiwan in response to typhoon Morakot : river forcing, atmospheric forcing, and cold dome dynamics

    E-Print Network [OSTI]

    Landry, Jennifer Jacobs

    2014-01-01T23:59:59.000Z

    The ocean is a complex, constantly changing, highly dynamical system. Prediction capabilities are constantly being improved in order to better understand and forecast ocean properties for applications in science, industry, ...

  18. 1992 Invited speaker, Coral records of ocean-atmosphere variability, La Parguera, Puerto Rico (NOAA) 1996 Invited speaker, Annual Records of Tropical Systems Workshop, Hawaii (PAGES-CLIVAR)

    E-Print Network [OSTI]

    Yang, Zong-Liang

    for Best Practices in the Development of Scientific Drilling Projects, Minneapolis on the future of Ocean Scientific Drilling, Vancouver, Canada. 1997 Invited speaker Chair, Conference on Alternate Platforms as part of the Integrated Ocean Drilling

  19. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NDBC National Data Buoy Center NOAA National Oceanic and Atmospheric Administration PTO Power take-off RCW Relative capture width SNL Sandia National Laboratories SWAN Simulating...

  20. Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO 2

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    dioxide emissions from fossil fuel consumption and cementannual variations in fossil fuel emissions, J. Geophys.2008 Contribution of ocean, fossil fuel, land biosphere, and

  1. Atlantic Oceanographic and Meteorological LaboratoryJuly-August 2009 Volume13,Number4 AOML is an environmental research laboratory of NOAA's Office of Oceanic and Atmospheric

    E-Print Network [OSTI]

    hurricanes with winds above 110 mph (categories 3, 4, and 5 on the Saffir- Simpon hurricane scale). In May been shown to curb hurricane activity in the Atlantic basin by increasing vertical wind shear, which of the Lesser Antilles. Ocean Surface Wind Product Derived from Satellite Data A new ocean surface wind product

  2. Modelling of partially-resolved oceanic symmetric instability

    E-Print Network [OSTI]

    Bachman, S. D.; Taylor, J. R.

    2014-08-04T23:59:59.000Z

    –27 Contents lists availab Ocean Mo els2008a,b,c; Fox-Kemper et al., 2008; Klein et al., 2008), (3) the Rossby (Ro) and Richardson (Ri) numbers are Oð1Þ, meaning that balanced models are not appropriate to describe the motion As computational power increases... sign of f (Hoskins, 1974). Fronts in the surface mixed layer of the ocean feature strong lateral density gradients, which in conjunction with wind forcing and/or buoy- ancy fluxes create conditions favorable to the development of SI (Thomas and Taylor...

  3. Pacific Ocean Contribution to the Asymmetry in Eastern Indian Ocean Variability CAROLINE C. UMMENHOFER*

    E-Print Network [OSTI]

    Ummenhofer, Caroline C.

    Pacific Ocean Contribution to the Asymmetry in Eastern Indian Ocean Variability CAROLINE C is restricted to the Indian or Pacific Ocean only, support the interpretation of forcing mechanisms for large Indian Ocean atmospheric forcing versus remote influences from Pacific wind forcing: low events develop

  4. A Biochemical Ocean State Estimate in the Southern1 Ocean Gas Exchange Experiment2

    E-Print Network [OSTI]

    Haine, Thomas W. N.

    of the oceanic31 carbon pool. It influences light penetration with consequences for primary productivity1 A Biochemical Ocean State Estimate in the Southern1 Ocean Gas Exchange Experiment2 S. Dwivedi1 , T. W. N. Haine2 and C. E. Del Castillo3 3 1 Department of Atmospheric and Ocean Sciences, University

  5. atmospheric modeling system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models University of California eScholarship Repository Summary: Atmosphere and Ocean...

  6. Atmospheric Dynamics II Instructor

    E-Print Network [OSTI]

    AT602 Atmospheric Dynamics II 2 credits Instructor: David W. J. Thompson davet: An Introduction to Dynamic Meteorology, 5th Edition, Academic Press (recommended) · Marshall, J., and Plumb, R. A., 2008: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, Academic Press. · Vallis, G. K

  7. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss

    E-Print Network [OSTI]

    Boyer, Edmond

    decayed ice cover, we found surprisingly high pCO2sw (~290­320 matm), considering that surface waterFurther observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic as an atmospheric CO2 sink under the summertime ice-free conditions expected in the near future. Beneath a heavily

  8. Contribution of Ocean, Fossil Fuel, Land Biosphere and Biomass Burning Carbon1 Fluxes to Seasonal and Interannual Variability in Atmospheric CO22

    E-Print Network [OSTI]

    Mahowald, Natalie

    1 Contribution of Ocean, Fossil Fuel, Land Biosphere and Biomass Burning Carbon1 Fluxes to Seasonal et al., 1989].18 Anthropogenic fossil fuel combustion and cement manufacture drive most of the recent by deforestation, discussed below) over the last 50 years. The fossil fuel plus4 cement input, in contrast

  9. Role of the Atmospheric and Oceanic Circulation in the Tropical Pacific SST Changes Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China,

    E-Print Network [OSTI]

    , Beijing, China, and Nansen Environmental and Remote Sensing Center, Bergen, Norway HUIJUN WANG Nansen Physics, Chinese Academy of Sciences, Beijing, China, and Nansen Environmental and Remote Sensing Center ocean and, furthermore, lead to anomalous positive convergences of heat transport, which is the main

  10. Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO 2

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    C. Sutherland (1999), Net sea-air CO 2 flux over the globalvariability of regional CO 2 fluxes, 1988 – 2003, Globalvariations of atmospheric CO 2 and climate, Tellus, Ser. B,

  11. The Antarctic Circumpolar Productivity Belt Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington, USA

    E-Print Network [OSTI]

    Follows, Mick

    The Antarctic Circumpolar Productivity Belt T. Ito Joint Institute for the Study of the Atmosphere] We illustrate the mechanisms controlling the spatial patterns of biological productivity of enhanced export production, figuratively termed as the Antarctic Circumpolar Productivity Belt. As observed

  12. An investigation of Bjerknes Compensation in the Southern Ocean in the CCSM4

    SciTech Connect (OSTI)

    Weijer, Wilbert [Los Alamos National Laboratory; Kinstle, Caroline M. [Los Alamos National Laboratory

    2012-08-28T23:59:59.000Z

    This project aims to understand the relationship between poleward oceanic and atmospheric heat transport in the Southern Ocean by analyzing output from the community Climate System Model Version 4 (CCSM4). In particular, time series of meridional heat transport in both the atmosphere and the ocean are used to study whether variability in ocean heat transport is balanced by opposing changes in atmospheric heat transport, called Bjerknes Compensation. It is shown that the heat storage term in the Southern Ocean has a significant impact on the oceanic heat budget; as a result, no robust coherences between oceanic and atmospheric heat transports could be found at these southern latitudes.

  13. Atlantic Ocean circulation at the last glacial maximum : inferences from data and models

    E-Print Network [OSTI]

    Dail, Holly Janine

    2012-01-01T23:59:59.000Z

    This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO? ...

  14. High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    and validation of ocean–atmosphere energy flux fields. WCRP-exchange of energy and material between the ocean and lowerexplained by a mean energy flux into the ocean of just 0.86

  15. Climate-Driven Basin-Scale Decadal Oscillations of Oceanic Phytoplankton

    E-Print Network [OSTI]

    Antoine, David

    Antoine, Fabrizio D'Ortenzio, Bernard Gentili Phytoplankton--the microalgae that populate the upper lit layers of the ocean--fuel the oceanic food web and affect oceanic and atmospheric carbon dioxide levels

  16. Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy Annette R. Grilli

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Experimental and Numerical Study of Spar Buoy-magnet/spring Oscillators Used as Wave Energy.g., latching) of the SSLG, in order to further improve power generation. KEYWORDS : Wave energy systems networks), based on captur- ing renewable wave energy. To do so, we design and optimize a new type

  17. BRUCE HOWE Chair and Professor , PhD 1986, UC San Diego. Ocean observatories, ocean acoustic tomography, sensor webs

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    . NIHOUS Associate Professor, PhD 1983, UC Berkeley. Ocean Thermal Energy Conversion (OTEC), marineFaculty BRUCE HOWE Chair and Professor , PhD 1986, UC San Diego. Ocean observatories, ocean in the ocean, atmospheric and ionospheric tomography. KWOK FAI CHEUNG Professor , PhD 1991, British Columbia

  18. E. Guilyardi G. Madec L. Terray The role of lateral ocean physics in the upper ocean thermal balance

    E-Print Network [OSTI]

    Guilyardi, Eric

    inertia and to its opacity, the ocean stores vast amounts of energy, away from a direct contactE. Guilyardi á G. Madec á L. Terray The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean-atmosphere GCM Received: 24 January 2000 / Accepted: 11 September 2000 Abstract

  19. Effect of ocean temperature on southwestern U.S. climate analyzed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Visualization Laboratory depicts sea surface temperatures around Greenland from October 2010. Image from National Oceanic and Atmospheric Administration's...

  20. Shipboard Measurements and Estimations of AirSea Fluxes in the Western Tropical Pacific Ocean

    E-Print Network [OSTI]

    California at Irvine, University of

    Ship­board Measurements and Estimations of Air­Sea Fluxes in the Western Tropical Pacific Ocean E dur­ ing the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean and Atmospheric Response of the surface­layer turbulence properties are compared with those from previous land and ocean results. Momentum

  1. ATOC/CHEM 5151 Problem 27 Oceanic Uptake of CO2

    E-Print Network [OSTI]

    Toohey, Darin W.

    ATOC/CHEM 5151 ­ Problem 27 Oceanic Uptake of CO2 Answers will be posted Thursday, December 11, 2014 It is well known that as abundances of CO2 increase in the atmosphere, the pH of the oceans' of CO2 in the ocean begins with exchange between the atmosphere and ocean, a process that can be written

  2. Separating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method

    E-Print Network [OSTI]

    the atmosphere to the ocean on a similar time scale and that they penetrate into the ocean in a similar mannerSeparating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method M. Key Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey, USA

  3. K. SHAFER SMITH AND ROSS TULLOCH Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York

    E-Print Network [OSTI]

    Smith, K. Shafer

    of Mathematical Sciences, New York University, New York, New York (Manuscript received 17 November 2008, in final the Corresponding author address: K. Shafer Smith, Courant Insti- tute of Mathematical Sciences, New York Universit perplexing features of the observed atmospheric energy spectrum (Nastrom and Gage 1985). In the first paper

  4. Woods Hole Oceanographic Institution Upper Ocean Processes Group

    E-Print Network [OSTI]

    Wind -1400 Meters of 300 lbs Spectra Line -Davit and Block -Mounting Pedestal -Power Supply -UCTD while underway between the SHOA DART buoy and the STRATUS IMET buoy. The probe was deployed every half buoys. Figure 6. Individual cast from SHOA DART and WHOI ORS buoys. Conclusion With proper training

  5. Antarctic ice sheet fertilises the Southern Ocean

    E-Print Network [OSTI]

    Death, R.

    Southern Ocean (SO) marine primary productivity (PP) is strongly influenced by the availability of iron in surface waters, which is thought to exert a significant control upon atmospheric CO2 concentrations on glacial/interglacial ...

  6. Ocean Currents, Marine Debris, and

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    paper bag cardboard box milk carton tin can styrofoam buoys Aluminum can 6-pack ring plastic bottles #12: styrofoam buoys 200 ­ 400 yrs: Aluminum can 400 yrs: 6-pack ring 450 yrs: plastic bottles #12;Biological ·!Up to 80% of marine debris is plastic United Nations Environment Programme #12;How does debris get

  7. Implementation Plan for the Hybrid Ocean Modeling Environment

    E-Print Network [OSTI]

    in the atmosphere and cryosphere. The oceans operate in the climate system to transfer information (heat, saltImplementation Plan for the Hybrid Ocean Modeling Environment HOME R. Hallberg (NOAA/GFDL), A Recent advances in simulating the ocean through the use of generalized hybrid coordinate modeling

  8. Transport across 48N in the Atlantic Ocean RICK LUMPKIN

    E-Print Network [OSTI]

    . Introduction The partition of energy and freshwater flux between the ocean and the atmosphere and among various decomposition of ocean heat transport into thermal wind, gyre, and Ekman components for a rough estimateTransport across 48°N in the Atlantic Ocean RICK LUMPKIN NOAA/Atlantic Oceanographic

  9. atmospheric administration key: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    warming, ocean chemistry, carbon cycle Abstract CO2 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere Matsumoto,...

  10. Comprehensive Ocean Drilling

    E-Print Network [OSTI]

    Comprehensive Ocean Drilling Bibliography containing citations related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program Last updated: May 2014 #12;Comprehensive Bibliography Comprehensive Ocean Drilling Bibliography

  11. Laboratory Investigations in Support of Dioxide-Limestone Sequestration in the Ocean

    SciTech Connect (OSTI)

    Dan Golomb; Eugene Barry; David Ryan; Stephen Pennell; Carl Lawton; Peter Swett; Devinder Arora; John Hannon; Michael Woods; Huishan Duan; Tom Lawlor

    2008-09-30T23:59:59.000Z

    Research under this Project has proven that liquid carbon dioxide can be emulsified in water by using very fine particles as emulsion stabilizers. Hydrophilic particles stabilize a CO{sub 2}-in-H{sub 2}O (C/W) emulsion; hydrophobic particles stabilize a H{sub 2}O-in-CO{sub 2} (W/C) emulsion. The C/W emulsion consists of tiny CO{sub 2} droplets coated with hydrophilic particles dispersed in water. The W/C emulsion consists of tiny H{sub 2}O droplets coated with hydrophobic particles dispersed in liquid carbon dioxide. The coated droplets are called globules. The emulsions could be used for deep ocean sequestration of CO{sub 2}. Liquid CO{sub 2} is sparsely soluble in water, and is less dense than seawater. If neat, liquid CO{sub 2} were injected in the deep ocean, it is likely that the dispersed CO{sub 2} droplets would buoy upward and flash into vapor before the droplets dissolve in seawater. The resulting vapor bubbles would re-emerge into the atmosphere. On the other hand, the emulsion is denser than seawater, hence the emulsion plume would sink toward greater depth from the injection point. For ocean sequestration a C/W emulsion appears to be most practical using limestone (CaCO{sub 3}) particles of a few to ten ?m diameter as stabilizing agents. A mix of one volume of liquid CO{sub 2} with two volumes of H{sub 2}O, plus 0.5 weight of pulverized limestone per weight of liquid CO{sub 2} forms a stable emulsion with density 1087 kg m{sup -3}. Ambient seawater at 500 m depth has a density of approximately 1026 kg m{sup -3}, so the emulsion plume would sink by gravity while entraining ambient seawater till density equilibrium is reached. Limestone is abundant world-wide, and is relatively cheap. Furthermore, upon disintegration of the emulsion the CaCO{sub 3} particles would partially buffer the carbonic acid that forms when CO{sub 2} dissolves in seawater, alleviating some of the concerns of discharging CO{sub 2} in the deep ocean. Laboratory experiments showed that the CaCO{sub 3} emulsion is slightly alkaline, not acidic. We tested the release of the CO{sub 2}-in-H{sub 2}O emulsion stabilized by pulverized limestone in the DOE National Energy Technology Laboratory High Pressure Water Tunnel Facility (HPWTF). Digital photographs showed the sinking globules in the HPWTF, confirming the concept of releasing the emulsion in the deep ocean. We modeled the release of an emulsion from the CO{sub 2} output of a 1000 MW coal-fired power plant at 500 m depth. The emulsion would typically sink several hundred meters before density equilibration with ambient seawater. The CO{sub 2} globules would rain out from the equilibrated plume toward the ocean bottom where they would disintegrate due to wave action and bottom friction. Conceptual release systems are described both for an open ocean release and a sloping seabed release of the emulsion.

  12. Quaternary Science Reviews 20 (2001) 15611576 Millennial scale climate variability of the northeast Pacific Ocean and

    E-Print Network [OSTI]

    Kurapov, Alexander

    2001-01-01T23:59:59.000Z

    of the northeast Pacific Ocean and northwest North America based on radiolaria and pollen N.G. Pisiasa, *, A in the Northeast Pacific and the northwestern United States. 2. Study region 2.1. Ocean climate and biota.C. Mixa , L. Heusserb a College of Oceanic and Atmospheric Sciences, Oregon State University, 104 Ocean

  13. MIDDLE ATMOSPHERE DYNAMICS AT707 (3 credits)

    E-Print Network [OSTI]

    ., Holton, J. R., Leovy, C. B., Academic Press, 489 pp. · Atmospheric and Oceanic Fluid Dynamics, 2006 Review Articles: · Haynes, P. H., 2005: Stratospheric Dynamics. Annu. Rev. Fluid Mech., 37, 263­ 293

  14. Science DMZ National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOAA Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  15. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01T23:59:59.000Z

    surface currents on wind stress, heat flux, and wind powerflux components (wind stress, heat flux and fresh-waterWest Coast Surface Heat Fluxes, Wind Stress, and Wind Stress

  16. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01T23:59:59.000Z

    surface currents on wind stress, heat flux, and wind powerflux components (wind stress, heat flux and fresh-waterWest Coast Surface Heat Fluxes, Wind Stress, and Wind Stress

  17. Science DMZ National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office of ScienceActivitiesNOAA Science

  18. National Oceanic and Atmospheric Administration, Honolulu, Hawaii |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIRE BUILDSEnergy 1Department ofNational MarineDepartment

  19. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy H s Significant wave height MWD Mean wave direction NDBC National Data Buoy Center NOAA National Oceanic and Atmospheric Administration NWW3 WaveWatch III PTO...

  20. Space Science: Atmosphere Thermal Structure

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science: Atmosphere Part -2 Thermal Structure Review tropospheres Absorption of Radiation Adiabatic Lapse Rate ~ 9 K/km Slightly smaller than our estimate Pressure ~3000ft under ocean surface thickness (positive up) is the solar zenith angle Fs is the solar energy flux at frequency (when

  1. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool S.L. Jaccard a,d,

    E-Print Network [OSTI]

    Gilli, Adrian

    Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool S.L. Jaccard of the overturning circulation. Volumetrically the Pacific Ocean dominates the world ocean (it is three times larger of Atmospheric and Oceanic Sciences, Princeton University, Princeton, USA c Department of Geosciences, Princeton

  2. Bulletin of the Australian Meteorological and Oceanographic Society Vol.18 page 104 BLUElink> Progress on operational ocean prediction for Australia

    E-Print Network [OSTI]

    Oke, Peter

    physics are also simpler in the ocean than in the atmosphere. Ocean attenuation of penetrative solar BLUElink> Progress on operational ocean prediction for Australia Gary B. Brassington1 , Graham Warren1 are now on standby. At their disposal are analyses and forecasts from the Bureau's new operational ocean

  3. How ocean color can steer Pacific tropical cyclones

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter ...

  4. www.hboi.fau.edu Ocean Energy

    E-Print Network [OSTI]

    Fernandez, Eduardo

    by Executive Director Sue Skemp, they are helping to investigate and develop power extraction from particularly approximately 12 miles offshore of Fort Lauderdale, the cornerstone of which is a moored boat-like buoy filled oversaw a series of tow tests to assess how the buoy would perform in the current, which led to design

  5. Accomplishments and future perspective of coastal ocean observing systems Coastal oceans are the most densely urbanized regions on the

    E-Print Network [OSTI]

    to sample, the turbulent nature of the coastal ocean makes it difficult to model. This has lead to repeated understanding of sediment resuspension and transport during storms, circulation in enclosed seas, atmosphere

  6. Izvestiya, Atmospheric and Oceanic Physics, Vol. 40, No. 3, 2004, pp. 313322. Translated from Izvestiya AN. Fizika Atmosfery i Okeana, Vol. 40, No. 3, 2004, pp. 355365. Original Russian Text Copyright 2004 by Makarova, Poberovskii, Timofeev.

    E-Print Network [OSTI]

    information about them is used in global atmospheric models for the prediction of climate change. The annual major factors that cause the observed changes in gas contents over northwestern Russia. Temporal /Interperiodica" (Russia). 1. INTRODUCTION Anthropogenic impacts on the atmospheric compo- sition have enhanced

  7. Coastal ocean margins program

    SciTech Connect (OSTI)

    Not Available

    1988-12-01T23:59:59.000Z

    The marine research program supported by the Office of Energy Research, Ecological Research Division, is focused to provide scientific information on major environmental issues facing development and expansion of most energy technologies and energy policy. These issues include waste disposal, siting/operations, and possible long term effects on global systems. The research is concentrated along the United States coastal margins where marine waters provide abundant food and resources while assimilating discharges from atmospheric, terrestrial, and aquatic sources. The program focuses on the formation and transport of particles within the waters of the continental shelf and the fate of these particles, whether on the shelf, on the slope, or in the open ocean. The program is conducted with multidisciplinary teams of researchers who investigate water mass movements, biological productivity, and naturally forming particles, as well as contaminant transport, to develop a clear understanding of the exchanges of contaminants and other materials that take place between continental shelf and open ocean waters. Seventy-five percent of the projects are funded to university grantees and twenty-five percent to National Laboratories.

  8. atmosphere-sea hydro-ecological model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Information Sciences Websites Summary: Oscillation (ENSO) or the greenhouse gases global warming effect. The models can possibly run on variousOASIS 2.0 Ocean Atmosphere...

  9. advanced open-path atmospheric: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interface Geosciences Websites Summary: is driven? 12;Global Climate Change: Greenhouse Effect How the atmosphere-ocean-land system is driven? 12;Greenhouse Effect How the...

  10. Model Wind over the Central and Southern California Coastal Ocean HSIAO-MING HSU

    E-Print Network [OSTI]

    Model Wind over the Central and Southern California Coastal Ocean HSIAO-MING HSU National Center of high-resolution wind in coastal ocean modeling. This paper tests the Coupled Ocean­Atmosphere Mesoscale Prediction System (COAMPS) at the 9-, 27-, and 81-km grid resolutions in simulating wind off the central

  11. On the Wind Power Input to the Ocean General Circulation XIAOMING ZHAI

    E-Print Network [OSTI]

    Johnson, Helen

    On the Wind Power Input to the Ocean General Circulation XIAOMING ZHAI Atmospheric, Oceanic January 2012, in final form 3 May 2012) ABSTRACT The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using

  12. Intermediate Zonal Jets in the Tropical Pacific Ocean Observed by Argo Floats* SOPHIE CRAVATTE

    E-Print Network [OSTI]

    Boyer, Edmond

    Intermediate Zonal Jets in the Tropical Pacific Ocean Observed by Argo Floats* SOPHIE CRAVATTE´veloppement, LEGOS, Toulouse, France WILLIAM S. KESSLER National Oceanic and Atmospheric Administration/Pacific Argo float data in the tropical Pacific Ocean during January 2003­August 2011 are analyzed to obtain

  13. An energy-diagnostics intercomparison of coupled ice-ocean Arctic models

    E-Print Network [OSTI]

    Zhang, Jinlun

    An energy-diagnostics intercomparison of coupled ice-ocean Arctic models Petteri Uotila a,*, David. Understanding the Arctic Ocean energy balance is important because it can strengthen our understanding for Atmosphere-Ocean Science, Courant Institute of Mathematical Sciences, New York University, NYU, 200 Water

  14. 10-Ch09-N51893 [13:43 2008/9/13] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 377 377434 Data Assimilation for Geophysical

    E-Print Network [OSTI]

    Navon, Michael

    and the Oceans Page: 377 377­434 Data Assimilation for Geophysical Fluids Jacques Blum Laboratoire Jean of a flow. In the first part, the mathematical models governing geophysical flows are presented together of information on geophysical flows is provided by satellites displaying images of their evolution

  15. Oceans. Europe2005 An Acoustically-Linked Deep-Ocean Observatory

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    to communications power efficiency and cost of the acoustic and satellite telemetry systems. The efficiency ship servicing. Solarcells on the buoy provide enough power for many hours of Iridium terminalHole Oceano a hicKnstitution A6slmei - A buoy-based observatory that uses acoustic communication to retrieve

  16. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11T23:59:59.000Z

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  17. Antarctic Circumpolar Current System and its Response to Atmospheric Variability

    E-Print Network [OSTI]

    Kim, Yong Sun 1976-

    2012-08-16T23:59:59.000Z

    in the meridional location of ACC fronts is observed in the Pacific sector in association to minor sea surface cooling trends. Therefore, unlike in the Indian sector, the regional Pacific Ocean response is significantly sensitive to dominant atmospheric forcing...

  18. Izvestiya, Atmospheric and Oceanic Physics, Vol. 37, No. 3, 2001, pp. 314319. Translated from Izvestiya AN. Fizika Atmosfery i Okeana, Vol. 37, No. 3, 2001, pp. 339345. Original Russian Text Copyright 2001 by Kashin, Kamenogradskii, Grechko, Dzhola, Pobe

    E-Print Network [OSTI]

    and, thus, in changes of the earth's climate. That is why, at present, there are different (first © 2001 by åAIK "Nauka /Interperiodica" (Russia). INTRODUCTION An increase in the content of greenhouse gases (CO2, H2O, CH4, N2O, and others) results in changes of the radiative properties of the atmosphere

  19. Moisture budget of the Arctic atmosphere from TOVS satellite data David G. Groves

    E-Print Network [OSTI]

    Francis, Jennifer

    and radiative heating of the atmosphere. These, in turn, affect surface temperature, ice growth and melt and hemispheric atmospheric processes affect the Arctic Ocean. The lack of humidity data over the Arctic Ocean. Our method yields an average annual net precipitation of 15.1 cm yrÀ1 over the polar cap (poleward

  20. Oceanic nutrient and oxygen transports and bounds on export production during the World Ocean Circulation Experiment

    E-Print Network [OSTI]

    Wunsch, Carl

    'Etudes Ge´ophysiques et d'Oce´anographie Spatiale, Toulouse, France Carl Wunsch Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Received 31 July 2000; revised 4 September 2001; accepted 2 to and from the atmosphere, the ocean plays a major role in climate regulation. One of the main objectives

  1. On detecting biospheres from thermodynamic disequilibrium in planetary atmospheres

    E-Print Network [OSTI]

    Krissansen-Totton, Joshua; Catling, David C

    2015-01-01T23:59:59.000Z

    Atmospheric chemical disequilibrium has been proposed as a method for detecting extraterrestrial biospheres from exoplanet observations. Chemical disequilibrium is potentially a generalized biosignature since it makes no assumptions about particular biogenic gases or metabolisms. Here, we present the first rigorous calculations of the thermodynamic chemical disequilibrium in the atmospheres of Solar System planets, in which we quantify the difference in Gibbs free energy of an observed atmosphere compared to that of all the atmospheric gases reacted to equilibrium. The purely gas phase disequilibrium in Earth's atmosphere, as measured by this available Gibbs free energy, is not unusual by Solar System standards and smaller than that of Mars. However, Earth's atmosphere is in contact with a surface ocean, which means that gases can react with water, and so a multiphase calculation that includes aqueous species is required. We find that the disequilibrium in Earth's atmosphere-ocean system (in joules per mole o...

  2. Ocean and Sea Ice SAF ASCAT NWP Ocean Calibration

    E-Print Network [OSTI]

    Stoffelen, Ad

    Ocean and Sea Ice SAF ASCAT NWP Ocean Calibration Jeroen Verspeek Anton Verhoef Ad Stoffelen Version 1.5 2011-03-16 #12;ASCAT NWP Ocean Calibration Contents 1 Introduction ....................................................................................................................3 2 NWP Ocean Calibration

  3. A study of the abundance and {sup 13}C/{sup 12}C ratio of atmospheric carbon dioxide and oceanic carbon in relation to the global carbon cycle. Final technical report, February 15, 1990--July 31, 1995

    SciTech Connect (OSTI)

    Keeling, C.D.

    1995-12-31T23:59:59.000Z

    Knowledge can be gained about the fluxes and storage of carbon in natural systems and their relation to climate by detecting temporal and spatial patterns in atmospheric CO{sub 2}. When patterns in its {sup 13}C/{sup 12}C isotopic ratio are included in the analysis, there is also a basis for distinguishing organic and inorganic processes. The authors systematically measured the concentration and {sup 13}C/{sup 12}C ratio of atmospheric CO{sub 2} to produce time series data essential to reveal these temporal and spatial patterns. To pursue the significance of these patterns further, the result also involved measurements of inorganic carbon in sea water and of CO{sub 2} in air near growing land plants. The study was coordinated with a study of the same title concurrently funded by the National Science Foundation (NSF). The study called for continued atmospheric measurements at an array of ten stations from the Arctic Basin to the South Pole. Air was collected in flasks brought back to the laboratory for analysis, except at Mauna Loa. Observatory, Hawaii, where continuous measurements were also carried out.

  4. Ocean Engineering Development Team

    E-Print Network [OSTI]

    Wood, Stephen L.

    Ocean Engineering Hydrofoil Development Team Justin Eickmeier Mirela Dalanaj Jason Gray Matt test bed for future hydrofoil designs. 5) To create future student interest in the Ocean Engineering Efficiency and Acceleration. #12;Design Team Justin Eickmeier Team Leader Major: Ocean Engineering, Junior

  5. The mean molecular mass of Titan's atmosphere

    E-Print Network [OSTI]

    Withers, Paul

    , Mars, Mars #12;Science Questions · Mean molecular mass (µ) -> Chemical composition · How did Titan form? · Current reservoirs of volatiles · Ethane/methane puddles/ocean · Thermal structure of atmosphere #12, delicate, etc ­ T/p sensors are simple, cheap, reliable · Is it possible to know µ based on simple

  6. MIDDLE ATMOSPHERE DYNAMICS ATS 708 (3 credits)

    E-Print Network [OSTI]

    Academic Integrity Policy as found in the General Catalog (http://www.catalog.colostate.edu/FrontPDF/1, 1987, Andrews, Holton, Leovy, Academic Press. · Atmospheric and Oceanic Fluid Dynamics, 2006, Vallis Articles (alphabetically): · Baldwin et al., 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 1979

  7. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    SciTech Connect (OSTI)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16T23:59:59.000Z

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  8. Atmospheric response to solar radiation absorbed by phytoplankton

    E-Print Network [OSTI]

    Shell, Karen M.

    Atmospheric response to solar radiation absorbed by phytoplankton K. M. Shell and R. Frouin Scripps the absorption of solar radiation, affecting upper ocean temperature and circulation. These changes, in turn: phytoplankton, atmospheric general circulation model (AGCM), absorption of solar radiation, seasonal cycle, sea

  9. 7. Saturn Atmospheric Structure and Dynamics Anthony D. Del Genio

    E-Print Network [OSTI]

    Atmospheric, Oceanic & Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom in the equatorial zone and slightly stronger winds occur at deeper levels. Eddies supply energy to the jets atmospheres similar to Jupiter. Zonal winds have remained fairly steady since the time of Voyager except

  10. INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT covering citations related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from Geo Drilling Program Publication Services September 2011 #12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE

  11. CoastWatch/OceanWatch Proving Ground: VIIRS Ocean Color

    E-Print Network [OSTI]

    ;VIIRS Operational Ocean Color User: NWS/EMC · Phytoplankton alter the penetration of solar radiationCoastWatch/OceanWatch Proving Ground: VIIRS Ocean Color User Engagement, Quality Assessment Science Seminar #12;Outline Overview of VIIRS Ocean Color Proving Ground (Hughes) VIIRS Ocean Color

  12. Using Computer Simulations to Help Understand Flow Statistics and Structures at the Air-Ocean Interface

    E-Print Network [OSTI]

    Shen, Lian

    The interaction among atmosphere, oceans, and surface waves is an important process with many oceanographic and environmental applications. It directly affects the motion and fate of pollutants such as oil spills. The ...

  13. Fluid dynamics of sinking carbon dioxide hydrate particle releases for direct ocean carbon sequestration

    E-Print Network [OSTI]

    Chow, Aaron C. (Aaron Chunghin), 1978-

    2008-01-01T23:59:59.000Z

    One strategy to remove anthropogenic CO? from the atmosphere to mitigate climate change is by direct ocean injection. Liquid CO? can react with seawater to form solid partially reacted CO? hydrate composite particles (pure ...

  14. Oceanic control of the sea ice edge and multiple equilibria in the climate system

    E-Print Network [OSTI]

    Rose, Brian E. J. (Brian Edward James)

    2010-01-01T23:59:59.000Z

    I study fundamental mechanisms of atmosphere-ocean-sea ice interaction. Hierarchies of idealized models are invoked to argue that multiple equilibria and abrupt change are robust features of the climate system. The main ...

  15. The Role of Oceans and Sea Ice in Abrupt Transitions between Multiple Climate States

    E-Print Network [OSTI]

    Rose, Brian E. J.

    The coupled climate dynamics underlying large, rapid, and potentially irreversible changes in ice cover are studied. A global atmosphere–ocean–sea ice general circulation model with idealized aquaplanet geometry is forced ...

  16. Soil moisture regulates the biological response of elevated atmospheric CO2 concentrations in a coupled

    E-Print Network [OSTI]

    Niyogi, Dev

    and Atmospheric Sciences, Purdue University, United States b Departments of Geography and Atmospheric and Oceanic Sciences, University of California at Los Angeles, United States Received 16 March 2005; received surface model, dynamically coupled to an atmospheric boundary layer and surface energy balance scheme

  17. Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies

    E-Print Network [OSTI]

    Moore, John

    Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies A. Rinke,1,2 K depend on regional and decadal variations in the coupled atmosphere-ocean-sea ice system. Citation: Rinke to investigate feedbacks between September sea ice anomalies in the Arctic and atmospheric conditions in autumn

  18. Mixing and diapycnal advection in the ocean Louis C. St. Laurent

    E-Print Network [OSTI]

    Cambridge, University of

    . Introduction The sun heats the Earth's atmosphere and ocean, driving the winds, evaporation, and rain. These act over global scales to input mechanical energy and variance to the scalar fields of the ocean insight into the mechanisms driving abyssal circulations. Observations of turbulence across the Brazil

  19. On the non-linear response of the ocean thermohaline circulation to global deforestation

    E-Print Network [OSTI]

    Renssen, Hans

    On the non-linear response of the ocean thermohaline circulation to global deforestation H. Renssen-dimensional coupled atmosphere-sea-ice- ocean-vegetation model to study the transient effect of global deforestation deforestation, Geophys. Res. Lett., 30(2), 1061, doi:10.1029/ 2002GL016155, 2003. 1. Introduction [2] It has

  20. Vertical Heat Transport by Ocean Circulation and the Role of Mechanical and Haline Forcing

    E-Print Network [OSTI]

    England, Matthew

    suggest that heat can be pumped downward by the upper limb of the meridional overturning circulation the earth's climate, with the upper 2.5 m of the ocean able to store as much heat as the entire atmosphereVertical Heat Transport by Ocean Circulation and the Role of Mechanical and Haline Forcing JAN D

  1. Atmospheric Aerosols Workshop | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosols Workshop Atmospheric Aerosols Workshop EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality. Baer DR, BJ...

  2. Arnold Schwarzenegger CALIFORNIA OCEAN WAVE

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California this report as follows: Previsic, Mirko. 2006. California Ocean Wave Energy Assessment. California Energy Systems Integration · Transportation California Ocean Wave Energy Assessment is the final report

  3. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01T23:59:59.000Z

    Using satellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyllaconcentration ([Chl-a]) and liquid cloud effective radii over productive areas of the oceans varies between?0.2and?0.6. Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted seamore »salt aerosol optical depth,AODdiff) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550?nmAODdiff(sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl-a] over the productive waters of the Southern Ocean. Since [Chl-a] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  4. Estimating Sea Surface Temperature From Infrared Satellite and In Situ Temperature Data

    E-Print Network [OSTI]

    the exchanges of heat, momentum and gases between the ocean and the atmosphere. As the most widely observed variable in oceanography, SST is used in many different studies of the ocean and its coupling to adjust the satellite SSTs to match a selection of buoy SSTs. This forces the satellite skin SSTs

  5. Ocean General Circulation Models

    SciTech Connect (OSTI)

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30T23:59:59.000Z

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  6. Mesoscale ocean dynamics modeling

    SciTech Connect (OSTI)

    mHolm, D.; Alber, M.; Bayly, B.; Camassa, R.; Choi, W.; Cockburn, B.; Jones, D.; Lifschitz, A.; Margolin, L.; Marsden, L.; Nadiga, B.; Poje, A.; Smolarkiewicz, P. [Los Alamos National Lab., NM (United States); Levermore, D. [Arizona Univ., Tucson, AZ (United States)

    1996-05-01T23:59:59.000Z

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ocean is a very complex nonlinear system that exhibits turbulence on essentially all scales, multiple equilibria, and significant intrinsic variability. Modeling the ocean`s dynamics at mesoscales is of fundamental importance for long-time-scale climate predictions. A major goal of this project has been to coordinate, strengthen, and focus the efforts of applied mathematicians, computer scientists, computational physicists and engineers (at LANL and a consortium of Universities) in a joint effort addressing the issues in mesoscale ocean dynamics. The project combines expertise in the core competencies of high performance computing and theory of complex systems in a new way that has great potential for improving ocean models now running on the Connection Machines CM-200 and CM-5 and on the Cray T3D.

  7. Atmospheric Aerosol Systems | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

  8. Model Predictability-Form Lorenz System to Operational Ocean and

    E-Print Network [OSTI]

    Chu, Peter C.

    Model Predictability- Form Lorenz System to Operational Ocean and Atmospheric Models Peter C Chu. Poberezhny, 2002: Power law decay in model predictability skill. Geophysical Research Letters, 29 (15), 10 Six Months Four-Times Daily Data From July 9, 1998 for Verification #12;Model Generated Velocity

  9. Interannual variability of Caribbean rainfall, ENSO and the Atlantic Ocean

    E-Print Network [OSTI]

    Columbia University

    Interannual variability of Caribbean rainfall, ENSO and the Atlantic Ocean Alessandra Giannini the interannual variability of Caribbean­Central American rainfall are examined. The atmospheric circulation over) and sea surface temper­ ature (SST) variability associated with Caribbean rainfall, as selected

  10. 255FEBRUARY 2002AMERICAN METEOROLOGICAL SOCIETY | he Surface Heat Budget of the Arctic Ocean

    E-Print Network [OSTI]

    Shupe, Matthew

    that determine the surface energy budget and the sea­ice mass balance in the Arctic (Moritz et al. 1993; Perovich of the vertical and horizontal energy exchanges within the ocean­ice­atmosphere system. The SHEBA pro- gram for Atmospheric Research, Boulder, Colorado; TURENNE--Canadian Coast Guard, Quebec City, Quebec, Canada; SERREZE

  11. A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    and communications, in Ocean Engineering Planning and Designmicropro?ler, Engineering in the Ocean Environment, Ocean ’engineering diagnostic data will be transmitted. 5. GLOBAL OCEAN

  12. 156 | Triennial Scientific Report ADAGUC Atmospheric Data Access for the Geospatial User Community

    E-Print Network [OSTI]

    Stoffelen, Ad

    Advanced Very High Resolution Radiometer BBC British Broadcasting Company BJEPB Beijing Environmental Radiometer AOGCM Atmosphere-Ocean General Circulation Model AOT Aerosol Optical Thickness API Application Potential Energy CERC Cambridge Environmental Research Consultants CESAR Cabauw Experimental Site

  13. Autonomous observing strategies for the ocean carbon cycle

    SciTech Connect (OSTI)

    Bishop, James K.; Davis, Russ E.

    2000-07-26T23:59:59.000Z

    Understanding the exchanges of carbon between the atmosphere and ocean and the fate of carbon delivered to the deep sea is fundamental to the evaluation of ocean carbon sequestration options. An additional key requirement is that sequestration must be verifiable and that environmental effects be monitored and minimized. These needs can be addressed by carbon system observations made from low-cost autonomous ocean-profiling floats and gliders. We have developed a prototype ocean carbon system profiler based on the Sounding Oceanographic Lagrangian Observer (SOLO; Davis et al., 1999). The SOLO/ carbon profiler will measure the two biomass components of the carbon system and their relationship to physical variables, such as upper ocean stratification and mixing. The autonomous observations within the upper 1500 m will be made on daily time scales for periods of months to seasons and will be carried out in biologically dynamic locations in the world's oceans that are difficult to access with ships (due to weather) or observe using remote sensing satellites (due to cloud cover). Such an observational capability not only will serve an important role in carbon sequestration research but will provide key observations of the global ocean's natural carbon cycle.

  14. Deep Pacific CaCO3 compensation and glacialinterglacial atmospheric CO2

    E-Print Network [OSTI]

    Lynch-Stieglitz, Jean

    Deep Pacific CaCO3 compensation and glacial­interglacial atmospheric CO2 Thomas M. Marchittoa into the deep ocean during the last glacial period. According to the dCaCO3 compensationT hypothesis dissolution of CaCO3. The resulting increase in whole-ocean pH may have had a significant impact

  15. Flexible ocean upwelling pipe

    DOE Patents [OSTI]

    Person, Abraham (Los Alamitos, CA)

    1980-01-01T23:59:59.000Z

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  16. INTRODUCTIONTOTHE SOLAR ATMOSPHERE

    E-Print Network [OSTI]

    ? #12;WHAT ISTHE SOLAR ATMOSPHERE? #12;#12;1-D MODEL ATMOSPHERE · Averaged over space and time · GoodINTRODUCTIONTOTHE SOLAR ATMOSPHERE D. Shaun Bloomfield Trinity College Dublin #12;OUTLINE · What is the solar atmosphere? · How is the solar atmosphere observed? · What structures exist and how do they evolve

  17. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

  18. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftin Ocean Thermal Energy Conversion (OTEC) technology haveThe Ocean Thermal Energy Conversion (OTEC) 2rogrammatic

  19. David C. Noone Department of Atmospheric and Oceanic Sciences, and

    E-Print Network [OSTI]

    Kurapov, Alexander

    Research 1998 Visiting Research Scholar, British Antarctic Survey Honors and Awards (select) 2012 for Research in Environmental Sciences Campus Box 216, University of Colorado Boulder, CO 80309-0216 Phone: +1, polar and past climate, cycles of water and carbon, and stable isotopes. Biographical narrative: Dr

  20. TROPICAL ATMOSPHERE-OCEAN (TAO) PROGRAM FINAL CRUISE REPORT

    E-Print Network [OSTI]

    John Dobbins (618) 453-3734 Quigley 413 jdobbins@siu.edu Art Ms Diane McClain-Inman (618) 453 Security Mgmt Mr Gary Kistner (618) 453-7277 Quigley 402 siufire@siu.edu Food and Nutrition Mr Terry

  1. NOAA National Climatic Data Center National Oceanic and Atmospheric Administration

    E-Print Network [OSTI]

    of NASA's Suomi National Polar-orbiting Program Satellite 10 Facilitating Accessibility to Climate Model a Next-Generation Quality Control System for U.S. Summary of the Day Data 21 Enhancing Data Producer Creating Regional Climate Services Steering Committees 28 Supporting the National Climate Assessment 29

  2. College of Earth, Ocean, and Atmospheric Sciences Oregon State University

    E-Print Network [OSTI]

    Jenny, Bernhard

    expertise in geospatial analysis, physical aspects of climate systems, and a specialization in social, graduate, and post-graduate levels. This Assistant Professor unites expertise in geospatial analysis Announcement Posting 0013318 ASSISTANT PROFESSOR Geospatial Analytics, Climate Change Adaptation, and Coastal

  3. College of Earth, Ocean, and Atmospheric Sciences Oregon State University

    E-Print Network [OSTI]

    Jenny, Bernhard

    for leadership and strong expertise in geospatial analysis including expertise in working with large spatial in geospatial intelligence linking large spatial datasets, decision making and policy analysis. Special Announcement Posting 0013321 ASSISTANT PROFESSOR Geospatial Intelligence and Planning Leader Position

  4. at Exchange Between Ocean and Atmosphere in the

    E-Print Network [OSTI]

    construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry industry through marketing service and economic analysis programs, and mortgage insurance and vessel 1963 to June 1965. By Gunter R. Seckel, June 1970. iii + 66 pp.. 5 figs. 636. Oil pollution on Wake

  5. I .-i r ' National Oceanic and Atmospheric Administration

    E-Print Network [OSTI]

    and a hazard to shipping i n its path. U5 11dle8per hour and the central pressure dropped to 28.02 inches (949

  6. National Oceanic and Atmospheric Administration US Department of Commerce

    E-Print Network [OSTI]

    Series. IAEA. 1980. Impacts of Radionuclide Releases Into the Marine Environment (Vienna, 6-10 Oct. 1980 Radionuclides in the Marine Environment: A Selected Bibliography Compiled and edited by: Chris Belter: NOAA's Fukushima Daiichi nuclear power plant, librarians at the NOAA Central Library, in collaboration with NOAA

  7. Thomas H Zurbuchen, Department of Atmospheric, Oceanic and Space Sciences

    E-Print Network [OSTI]

    ! - Dipole centered on planet and aligned ! #12;15! Bow shock! Magnetopause! Cusp! #12;"Open Field"! 16! #12 and thermal speeds! ! · Two stage recovery ­ find best fit model E/q spectrum! ­ Stage 1: thermal speed

  8. NOAA's Office of Oceanic and Atmospheric Research ROUNDTABLE

    E-Print Network [OSTI]

    Chippewas #12;Mr. David Naftzger Executive Director, Council of Great Lakes Governors Ms. Melanie Napoleon

  9. Ocean color and atmospheric dimethyl sulfide: On their mesoscale variability

    E-Print Network [OSTI]

    Matrai, Patricia A; Balch, William M; Cooper, David J; Saltzman, Eric S

    1993-01-01T23:59:59.000Z

    periods of' time, covering mesoscale Campbell, J. W. and W.Dimethyl Sulfide' On Their Mesoscale Variability PATRICIA A.Miami, Miami, Florida The mesoscale variability of dimethyl

  10. Professor Brian Toon Department of Atmospheric and Oceanic Sciences

    E-Print Network [OSTI]

    Robock, Alan

    @envsci.rutgers.edu (732) 881-1610 Climatic Effects of Nuclear Conflict Nuclear winter is a term that describes winter research, we now can say several new things about this topic. · Nuclear arsenals with 50 nuclear the climatic effects of nuclear war. In the 1980's, work conducted jointly by Western and Soviet scientists

  11. Atmosphere and Ocean: Water (drought topic begins at slide 26)

    E-Print Network [OSTI]

    Eon rate F=5.2 x 1014 m3/year...16 Sverdrups stock of water in the air: M= 1Etude 20 to 30 north and south. The Earth s rotaEon takes this pa

  12. Ernest S. Colantonio College of Earth, Ocean, and Atmospheric Sciences

    E-Print Network [OSTI]

    Kurapov, Alexander

    and application software for psychology research projects. May 1982 ­ Oct 1983: Illinois State Geological Survey

  13. College of Earth, Ocean, and Atmospheric Sciences Oregon State University

    E-Print Network [OSTI]

    of Earth history, Stratigraphy and Sedimentology, geology field methods, and graduate courses in their area through significant contributions to the fields of Stratigraphy, Sedimentology, #12;and/or Earth Systems

  14. LARGE-SCALE ATMOSPHERE-OCEAN Geometric Methods and Models

    E-Print Network [OSTI]

    Morrison, Philip J.,

    , 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http to be essentially energy criteria. The finite degree-of- freedom version of these criteria would amount to showing of these criteria are versions of Dirichlet's energy criterion for stabil- ity of Hamiltonian systems. Researchers

  15. NATIONAL GEOPHYSICAL DATA CENTER NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

    E-Print Network [OSTI]

    survey operation. Generally each survey operation is a port-to-port operation of a survey vessel, but in some cases several port-to-port operations of the same vessel are combined into a single survey Record(s) and the data records will be contained in separate files. 3. Each survey operation shall have

  16. ARM - Field Campaign - Tropical Ocean Global Atmosphere Coupled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP

  17. National Oceanic and Atmospheric Administration (NOAA) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question)8/14/2007NCPVEnergy

  18. Technical Sessions B. E. Manner National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag:8,, 20153 To.T. J. Kulp J.A Study ofB.

  19. Ocean Observatories Initiative: Pacific Northwest The Endurance Array

    E-Print Network [OSTI]

    Kurapov, Alexander

    . Global Scale Nodes (GSN) Autonomous moored buoy platforms at four deep water, high-latitude locations spanning multiple geological and oceanographic features and processes. The RSN also provides power

  20. A Community Atmosphere Model with Superparameterized Clouds

    SciTech Connect (OSTI)

    Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

    2013-06-18T23:59:59.000Z

    In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

  1. Testing Components of New Community Isopycnal Ocean Circulation Model

    SciTech Connect (OSTI)

    Bryan, Kirk

    2008-05-09T23:59:59.000Z

    The ocean and atmosphere are both governed by the same physical laws and models of the two media have many similarities. However, there are critical differences that call for special methods to provide the best simulation. One of the most important difference is that the ocean is nearly opaque to radiation in the visible and infra-red part of the spectrum. For this reason water mass properties in the ocean are conserved along trajectories for long distances and for long periods of time. For this reason isopycnal coordinate models would seem to have a distinct advantage in simulating ocean circulation. In such a model the coordinate surfaces are aligned with the natural paths of near adiabatic, density conserving flow in the main thermocline. The difficulty with this approach is at the upper and lower boundaries of the ocean, which in general do not coincide with density surfaces. For this reason hybrid coordinate models were proposed by Bleck and Boudra (1981) in which Cartesian coordinates were used near the ocean surface and isopycnal coordinates were used in the main thermocline. This feature is now part of the HICOM model (Bleck, 2002).

  2. Journal of the Atmospheric Sciences EARLY ONLINE RELEASE

    E-Print Network [OSTI]

    Corbosiero, Kristen L.

    to cite this EOR in a separate work, please use the following full citation: Bu, Y., R. Fovell, and K. Corbosiero, 2013: Influence of cloud-radiative forcing on tropical cyclone structure. J. Atmos. Sci. doi:10 on tropical cyclone structure1 Yizhe Peggy Bu and Robert G. Fovell Department of Atmospheric and Oceanic

  3. Massachusetts Ocean Management Plan (Massachusetts)

    Broader source: Energy.gov [DOE]

    The Massachusetts Ocean Act of 2008 required the state’s Secretary of Energy and Environmental Affairs to develop a comprehensive ocean management plan for the state by the end of 2009. That plan...

  4. Discriminating robust and non-robust atmospheric circulation responses to global warming

    E-Print Network [OSTI]

    Discriminating robust and non-robust atmospheric circulation responses to global warming Michael response to global warming in a set of atmospheric general circulation models (AGCMs) is investigated. The global-warmed climate is forced by a global pattern of warmed ocean surface temperatures

  5. Ninth Annual Ocean Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The future of clean, renewable ocean wave energy will be discussed in depth at the 2014 Ocean Renewable Energy Conference.

  6. 6, 51375162, 2006 Oceanic ozone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 5137­5162, 2006 Oceanic ozone deposition velocity C. W. Fairall et al. Title Page Abstract Discussions Water-side turbulence enhancement of ozone deposition to the ocean C. W. Fairall1 , D. Helmig2 , L. Fairall (chris.fairall@noaa.gov) 5137 #12;ACPD 6, 5137­5162, 2006 Oceanic ozone deposition velocity C. W

  7. November 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    November 2002 OCEAN DRILLING PROGRAM LEG 208 SCIENTIFIC PROSPECTUS EARLY CENOZOIC EXTREME CLIMATES -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  8. December 2001 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    December 2001 OCEAN DRILLING PROGRAM LEG 203 SCIENTIFIC PROSPECTUS DRILLING AT THE EQUATORIAL -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University. Acton Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  9. Fourier spectra from exoplanets with polar caps and ocean glint

    E-Print Network [OSTI]

    Visser, P M

    2015-01-01T23:59:59.000Z

    The weak orbital-phase dependent reflection signal of an exoplanet contains information on the planet surface, such as the distribution of continents and oceans on terrestrial planets. This light curve is usually studied in the time domain, but because the signal from a stationary surface is (quasi)periodic, analysis of the Fourier series may provide an alternative, complementary approach. We study Fourier spectra from reflected light curves for geometrically simple configurations. Depending on its atmospheric properties, a rotating planet in the habitable zone could have circular polar ice caps. Tidally locked planets, on the other hand, may have symmetric circular oceans facing the star. These cases are interesting because the high-albedo contrast at the sharp edges of the ice-sheets and the glint from the host star in the ocean may produce recognizable light curves with orbital periodicity, which could also be interpreted in the Fourier domain. We derive a simple general expression for the Fourier coeffici...

  10. DECREASING ATMOSPHERE CO2 BY INCREASING OCEAN THE OCEAN DIMENSION: WOULD THE CONCEPT WORK

    E-Print Network [OSTI]

    Henderson, Gideon

    at which inorganic CaCO3 precipitation occurs, because such precipitation would reverse the initial effect- . The safe level of saturation to avoid CaCO3 precipitation is not well known. If Ca(OH)2 is spread uniformly increases in saturation. The rate at which Ca(OH)2 can be added at such locations without CaCO3

  11. A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    transports from ocean to land and global energy ?ows inof Earth energy imbal- ance, ocean warming, and thermostericthe ther- mal energy of the ocean, it remains a challenging

  12. Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum

    E-Print Network [OSTI]

    Conway, T. M.; Wolff, E. W.; Röthlisberger, R.; Mulvaney, R.; Elderfield, H. E.

    2015-06-17T23:59:59.000Z

    that an increase in bioavailable atmospheric Fe supply of 5-10x could double export 207 production40, meaning the LGM EDC soluble Fe flux could be large enough to drive big changes in 208 primary productivity, nutrient utilization and carbon sequestration... of iron-limitation in the Southern Ocean during ice ages, with potentially increased carbon storage 3 in the ocean, has been invoked as one driver of glacial-interglacial atmospheric CO2 cycles. Ice and 4 marine sediment records demonstrate...

  13. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean: National Science Foundation _______________________________ David L. Divins Director, Ocean Drilling

  14. Ocean dynamics and thermodynamics in the tropical Indo- Pacific region

    E-Print Network [OSTI]

    Drushka, Kyla

    2011-01-01T23:59:59.000Z

    Pacific Oceans . . . . . . . . . . . . . . . . . . . . . . . . . . . . .in the eastern tropical Pacific Ocean associated with thethe western equatorial Pacific Ocean. J. Geophys. Res. , 96,

  15. Atmospheric Transport of Radionuclides

    SciTech Connect (OSTI)

    Crawford, T.V.

    2003-03-03T23:59:59.000Z

    The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

  16. ISSN 0001-4338, Izvestiya, Atmospheric and Oceanic Physics, 2006, Vol. 42, No. 2, pp. 215227. Pleiades Publishing, Inc., 2006. Original Russian Text M.V. Makarova, A.V. Poberovskii, S.V. Yagovkina, I.L. Karol', V.E. Lagun, N.N. Paramonova, A.I. Reshetni

    E-Print Network [OSTI]

    in the prediction of pos- sible climate changes is a correct consideration of the spatiotemporal variability in the atmosphere over northwestern Russia. The study was based on analysis of measurement results [2­4], air to examine changes in TM and atmospheric methane concentra- tions at a qualitatively new level [1, 6

  17. How atmospheric ice forms | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric ice forms How atmospheric ice forms Released: September 08, 2014 New insights into atmospheric ice formation could improve climate models This study advances our...

  18. Atmospheric Pressure Reactor System | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Pressure Reactor System Atmospheric Pressure Reactor System The atmospheric pressure reactor system is designed for testing the efficiency of various catalysts for the...

  19. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. ______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

  20. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

  1. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

  2. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    Assessment. 1978. Renewable ocean energy sources, Part I.on aquaculture and ocean energy systems for the county of310, the Ocean the Ocean Energy Thermal Energy Conversion

  3. Comparison of the Carbon System Parameters at the Global CO2 Survey Crossover Locations in the North and South Pacific Ocean, 1990-1996

    SciTech Connect (OSTI)

    Feely, Richard A [NOAA, Pacific Marine Environmental Laboratory (PMEL); Lamb, Marilyn F. [NOAA, Pacific Marine Environmental Laboratory (PMEL); Greeley, Dana J. [NOAA, Pacific Marine Environmental Laboratory (PMEL); Wanninkhof, Rik [NOAA, Atlantic Oceanographic and Meteorological Laboratory (AOML)

    1999-10-01T23:59:59.000Z

    As a collaborative program to measure global ocean carbon inventories and provide estimates of the anthropogenic carbon dioxide (C02) uptake by the oceans. the National Oceanic and Atmospheric Administration and the U.S. Department of Energy have sponsored the collection of ocean carbon measurements as part of the World Ocean Circulation Experiment and Ocean-Atmosphere Carbon Exchange Study cruises. The cruises discussed here occurred in the North and South Pacific from 1990 through 1996. The carbon parameters from these 30 crossover locations have been compared to ensure that a consistent global data set emerges from the survey cruises. !'he results indicate that for dissolved inorganic carbon. fugacity of C02• and pH. the a~:,rreements at most crossover locations are well within the design specifications for the global CO) survey: whereas. in the case of total alkaliniry. the agreement between crossover locations is not as close.

  4. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    SciTech Connect (OSTI)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

    2011-06-01T23:59:59.000Z

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

  5. Climate Sciences: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    1 Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http://aerosol.ucsd.edu/courses.html Text: Curry & Webster Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 Energy Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http

  6. Status of the ANTARES Underwater Neutrino Telescope G. D. Hallewell

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    between a sea anchor and a submerged buoy subject to movement by deep ocean currents, the positions an acoustic triangulation system. The line was powered from and read out to the shore through an electro-optical cable with a single power conductor and return electrodes. More than 50,000 downgoing atmospheric muon

  7. MID-ATLANTIC REGIONAL OCEAN RESEARCH PLAN

    E-Print Network [OSTI]

    ................................................................................. 24 #12;v ASMFC Atlantic States Marine Fisheries Commission BOEM Bureau of Ocean Energy Management BMPMID-ATLANTIC REGIONAL OCEAN RESEARCH PLAN SEPTEMBER 2012 Sea Grant Mid-Atlantic Ocean Research #12;MID-ATLANTIC REGIONAL OCEAN RESEARCH PLAN SEPTEMBER 2012 Sea Grant Mid-Atlantic Ocean Research

  8. Atmospheric rivers as Lagrangian coherent structures

    E-Print Network [OSTI]

    Garaboa, Daniel; Huhn, Florian; Perez-Muñuzuri, Vicente

    2015-01-01T23:59:59.000Z

    We show that filamentous Atmospheric Rivers (ARs) over the Northern Atlantic Ocean are closely linked to attracting Lagrangian Coherent Structures (LCSs) in the large scale wind field. LCSs represent lines of attraction in the evolving flow with a significant impact on all passive tracers. Using Finite-Time Lyapunov Exponents (FTLE), we extract LCSs from a two-dimensional flow derived from water vapor flux of atmospheric reanalysis data and compare them to the three-dimensional LCS obtained from the wind flow. We correlate the typical filamentous water vapor patterns of ARs with LCSs and find that LCSs bound the filaments on the back side. Passive advective transport of water vapor from tropical latitudes is potentially possible.

  9. Terrestrial Planet Atmospheres. The Moon's Sodium Atmosphere

    E-Print Network [OSTI]

    Walter, Frederick M.

    ;Origins of Atmospheres · Outgassing ­ Volcanoes expel water, CO2, N2, H2S, SO2 removed by the Fme convecFon reaches deserts #12;Water and Ice Clouds #12;H2SO4

  10. Ocean Engineering at UNH THE OCEAN ENGINEERING program at UNH provides students with hands-on

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    -on opportunities for research in ocean renewable energy, remotely operated vehicles, ocean mapping, ocean acousticsOcean Engineering at UNH THE OCEAN ENGINEERING program at UNH provides students with hands, and coastal processes. The Jere A. Chase Ocean Engineering Laboratory is equipped with state

  11. Wave Energy Extraction from buoys

    E-Print Network [OSTI]

    Garnaud, Xavier

    2009-01-01T23:59:59.000Z

    Different types of Wave Energy Converters currently tested or under development are using the vertical movement of floating bodies to generate electricity. For commercial applications, arrays have to be considered in order ...

  12. ARM - Oceanic Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat fluxChinaNews : AMFAlaskaNews from theOceanic

  13. Ocean | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwestOakdale ElectricOcean Flow

  14. Ocean 420 Physical Processes in the Ocean Project 6: Waves

    E-Print Network [OSTI]

    Thompson, LuAnne

    generates an upwelling internal wave at 30N with a positive deviation in interface height of size 30m. What long would it take for this internal wave to propagate to 40N? c) At the same time that the wave passesOcean 420 Physical Processes in the Ocean Project 6: Waves Due: Thursday, March 1 1. A two layer

  15. OCEAN DRILLING PROGRAM LEG 190 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    164 Japan __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions) Natural Environment Research Council (United Kingdom) European Science Foundation Consortium for the Ocean

  16. Pelagic Polychaetes of the Pacific Ocean

    E-Print Network [OSTI]

    Dales, K Phillips

    1957-01-01T23:59:59.000Z

    Polyc'kaetes of the Pacific Ocean CLAPARtDE,E. 1868. LesPolyc'haetes of the Pacific Ocean KINBERG, J. G. H. 1866.Polyc'kaetes of the Pacific Ocean TREADWELL, A. L. 1906.

  17. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01T23:59:59.000Z

    near-inertial energy in an eddying ocean channel model. Geo-maximum integrated kinetic energy when the ocean was forcedto the the transfer of energy in the ocean from large scales

  18. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    Presented at the 7th Ocean Energy Conference, Washington,Power Applications, Division of Ocean Energy Systems, UnitedSands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)

  19. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftof ocean thermal energy conversion technology. U.S. Depart~June 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

  20. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftr:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

  1. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

  2. On the relationship between Synoptic Wintertime Atmospheric Variability and path shifts in the Gulf Stream and the Kuroshio Extension

    E-Print Network [OSTI]

    Joyce, Terrence M.

    to a few years due to propagation of wind-forced variability within the ocean. Yet these shiftsOn the relationship between Synoptic Wintertime Atmospheric Variability and path shifts in the Gulf of wintertime atmospheric variability in the synoptic band (2:8 days) using a relatively new data set for air

  3. HOW TO COOK OCEAN PERCH

    E-Print Network [OSTI]

    , is an excellent food fish with firm fle h. When cooked, the meat is white and flaky, with a delicate flavor. Ocean to the consumer until 1935. At that time, the indlu;try began experimenting with filleting and freezing ocean pel

  4. November 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    November 2002 OCEAN DRILLING PROGRAM LEG 209 SCIENTIFIC PROSPECTUS DRILLING MANTLE PERIDOTITE ALONG Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. D. Jay Miller Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University

  5. January 2003 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    January 2003 OCEAN DRILLING PROGRAM LEG 210 SCIENTIFIC PROSPECTUS DRILLING THE NEWFOUNDLAND HALF OF THE NEWFOUNDLAND­IBERIA TRANSECT: THE FIRST CONJUGATE MARGIN DRILLING IN A NON-VOLCANIC RIFT Brian E. Tucholke Co Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery

  6. The Plastic Ocean Michael Gonsior

    E-Print Network [OSTI]

    Boynton, Walter R.

    The Plastic Ocean Michael Gonsior Bonnie Monteleone, William Cooper, Jennifer O'Keefe, Pamela Seaton, and Maureen Conte #12;#12;#12;Plastic does not biodegrade it photo-degrades breaking down is the plastic cheese wrap? Unfortunately, marine creatures mistake plastics in the ocean for food #12

  7. February 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE, Italy, The Netherlands, Norway, Spain, Sweden, and Switzerland) Institut National des Sciences de l States) Natural Environment Research Council (United Kingdom) Ocean Research Institute of the University

  8. California Small Hydropower and Ocean Wave Energy

    E-Print Network [OSTI]

    California Small Hydropower and Ocean Wave Energy Resources IN SUPPORT OF THE 2005 INTEGRATED....................................................................................................................... 9 Ocean Wave Energy............................................................................................................. 20 Wave Energy Conversion Technology

  9. Use of SF6 to estimate anthropogenic CO2 in the upper ocean Toste Tanhua,1

    E-Print Network [OSTI]

    Waugh, Darryn W.

    Use of SF6 to estimate anthropogenic CO2 in the upper ocean Toste Tanhua,1 Darryn W. Waugh,2s. Here we apply SF6, a tracer that continues to increase in the atmosphere, as a basis for the Cant water mass transit time distributions (TTDs) calculated with SF6 are compared to those based on CFC-12

  10. Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral

    E-Print Network [OSTI]

    to be facing a significant increase in local and global stressors [1,3]. Global warming and ocean acidification, Townsville, Queensland, Australia, 5 Global Change Institute, The University of Queensland, St Lucia, Queensland, Australia Abstract As atmospheric levels of CO2 increase, reef-building corals are under greater

  11. COPYRIGHT NOTICE: Jorge L. Sarmiento and Nicolas Gruber: Ocean Biogeochemical Dynamics

    E-Print Network [OSTI]

    Landweber, Laura

    of carbon between the two other important reservoirs of the global carbon cycle: the terrestrial biosphere that substantial changes must have occured in the distribution of carbon between the different reservoirs. Several with the oceanic carbon cycle, since this reservoir controls atmospheric CO2 on any timescale longer than a few

  12. Journal of Oceanography, Vol. 62, pp. 887 to 902, 2006 Ocean carbon

    E-Print Network [OSTI]

    Matsumoto, Katsumi

    , anthropogenic carbon, sequestration, numerical model, biogeochemistry. * E-mail address: katsumi@umn.edu Copyright©The Oceanographic Society of Japan/TERRAPUB/Springer Model Simulations of Carbon Sequestration from the atmosphere into the oceans. The chain of events amounts to carbon sequestration, because

  13. The role of nutricline depth in regulating the ocean carbon cycle

    E-Print Network [OSTI]

    The role of nutricline depth in regulating the ocean carbon cycle Pedro Cermen~ oa , Stephanie, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Cambridge, MA 02139-4307; c play key roles in the regulation of atmospheric pCO2 and the maintenance of upper trophic levels (1

  14. Ice-ocean boundary conditions for coupled models Gavin A. Schmidt

    E-Print Network [OSTI]

    Bitz, Cecilia

    that must be simulated in any comprehensive earth system model incorporating ocean, atmosphere, sea ice different groups (a central fo- cus in the ongoing PRogramme for Integrated earth System Modelling (PRISM) and Earth System Modeling Framework (ESMF) projects). This paper addresses developments in coupling at sea

  15. The role of ocean gateways on cooling climate on long time scales Willem P. Sijp a,

    E-Print Network [OSTI]

    Sijp, Willem

    The role of ocean gateways on cooling climate on long time scales Willem P. Sijp a, , Anna S. von Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia b Institute for Marine and Atmospheric Research (IMAU), Department of Physics and Astronomy

  16. The relative importance of tropical variability forced from the North Pacific through ocean pathways

    E-Print Network [OSTI]

    Solomon, Amy

    forced through the atmosphere? To address this question, in this study we use an anomaly-coupled model), and with coupling con- fined to the Tropics and wind stress and heat fluxes in the North Pacific specified by output impact the tropics through ocean pathways. These two signals are forced by wind stress and surface heat

  17. Scatterometer observations of wind variations induced by oceanic islands: Implications for

    E-Print Network [OSTI]

    Scatterometer observations of wind variations induced by oceanic islands: Implications for wind-driven of the Hawaiian and Cabo Verde islands on the mean atmospheric flow. A wake of weak winds, flanked by accelerated winds, appears for each major island of both archipelagos. The resulting wind stress curl displays

  18. Changes in Cloud Cover and Cloud Types Over the Ocean from Surface

    E-Print Network [OSTI]

    Hochberg, Michael

    Total cloud cover 54 68 Clear sky (frequency) 22 3 #12;Low Clouds & Solar Radiation Low clouds scatterChanges in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, 1954-2008 Ryan This produces a weak net warming effect in the atmosphere, since more radiation comes in, and less goes out

  19. EMSL - Atmospheric Aerosol Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scienceatmospheric The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model...

  20. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18T23:59:59.000Z

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  1. "Towards Optics-Based Measurements in Ocean Observatories"

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    /JPSS ­ UAV ­ Ocean optics, Biological ­ Laser penetration New opportunity · Insitu Sensors ­ (Gliders"Towards Optics-Based Measurements in Ocean Observatories" "Ocean Observatories Contributions to Ocean Models and Data Assimilation For Ecosystems" Ocean Optics 2012 Glasgow Scotland Robert Arnone

  2. Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification

    SciTech Connect (OSTI)

    Balaguru, Karthik; Chang, P.; Saravanan, R.; Leung, Lai-Yung R.; Xu, Zhao; Li, M.; Hsieh, J.

    2012-09-04T23:59:59.000Z

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  3. Environmental impacts of ocean disposal of CO{sub 2}. Final report volume 2, September 1994--August 1996

    SciTech Connect (OSTI)

    Herzog, H.J.; Adams, E.E. [eds.

    1996-12-01T23:59:59.000Z

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2}. Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. Technically, the term `disposal` is really a misnomer because the atmosphere and ocean eventually equilibrate on a time scale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. In this project, we examined these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. In the process, we have developed a comprehensive method to assess the impacts of pH changes on passive marine organisms. This final report addresses the following six topics: CO{sub 2} loadings and scenarios, impacts of CO{sub 2} transport, near-field perturbations, far-field perturbations, environmental impacts of CO{sub 2} release, and policy and legal implications of CO{sub 2} release.

  4. Southern Ocean Iron Experiment (SOFex)

    SciTech Connect (OSTI)

    Coale, Kenneth H.

    2005-07-28T23:59:59.000Z

    The Southern Ocean Iron Experiment (SOFeX) was an experiment decades in the planning. It's implementation was among the most complex ship operations that SIO has been involved in. The SOFeX field expedition was successful in creating and tracking two experimentally enriched areas of the Southern Ocean, one characterized by low silicic acid, one characterized by high silicic acid. Both experimental sites were replete with abundant nitrate. About 100 scientists were involved overall. The major findings of this study were significant in several ways: (1) The productivity of the southern ocean is limited by iron availability. (2) Carbon uptake and flux is therefore controlled by iron availability (3) In spite of low silicic acid, iron promotes non-silicious phytoplankton growth and the uptake of carbon dioxide. (4) The transport of fixed carbon from the surface layers proceeds with a C:N ratio that would indicate differential remineralization of nitrogen at shallow depths. (5) These finding have major implications for modeling of carbon export based on nitrate utilization. (6) The general results of the experiment indicate that, beyond other southern ocean enrichment experiments, iron inputs have a much wider impact of productivity and carbon cycling than previously demonstrated. Scientific presentations: Coale, K., Johnson, K, Buesseler, K., 2002. The SOFeX Group. Eos. Trans. AGU 83(47) OS11A-0199. Coale, K., Johnson, K. Buesseler, K., 2002. SOFeX: Southern Ocean Iron Experiments. Overview and Experimental Design. Eos. Trans. AGU 83 (47) OS22D-01. Buesseler, K.,et al. 2002. Does Iron Fertilization Enhance Carbon Sequestration? Particle flux results from the Southern Ocean Iron Experiment. Eos. Trans. AGU 83 (47), OS22D-09. Johnson, K. et al. 2002. Open Ocean Iron Fertilization Experiments From IronEx-I through SOFeX: What We Know and What We Still Need to Understand. Eos. Trans. AGU 83 (47), OS22D-12. Coale, K. H., 2003. Carbon and Nutrient Cycling During the Southern Ocean Iron Enrichment Experiments. Seattle, WA. Geological Society of America. Coale, K., 2003. Open Ocean Iron Enrichment Experiments: What they have told us, what they have not. American Society for Limnology and Oceanography and The Oceanography Society, Honolulu, February 2004. Coale, K., 2004. Recent Research from the Southern Ocean Iron Experiment (SOFeX), in Taking the Heat: What is the impact of ocean fertilization on climate and ocean ecology? Science of earth and sky. AAAS, February 12-16, Seattle, WA

  5. Atmospheric Thermodynamics Composition

    E-Print Network [OSTI]

    Russell, Lynn

    1 Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 EnergyBalance Ch4 Water Ch Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http #12;2 Review from Ch. 1 · Thermodynamic quantities · Composition · Pressure · Density · Temperature

  6. n CAPABILITY STATEMENT Centre for Ocean Engineering,

    E-Print Network [OSTI]

    Liley, David

    n CAPABILITY STATEMENT Centre for Ocean Engineering, Science and Technology Overview The Centre for Ocean Engineering, Science and Technology (COEST) is dedicated to the ocean, the most fascinating and the most challenging environment for human endeavour. COEST brings together the disciplines of ocean

  7. 4, 709732, 2007 Ice-shelf ocean

    E-Print Network [OSTI]

    Boyer, Edmond

    OSD 4, 709­732, 2007 Ice-shelf ­ ocean interactions at Fimbul Ice Shelf M. R. Price Title Page published in Ocean Science Discussions are under open-access review for the journal Ocean Science Ice-shelf ­ ocean interactions at Fimbul Ice Shelf, Antarctica from oxygen isotope ratio measurements M. R. Price 1

  8. OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS CARIBBEAN OCEAN HISTORY AND THE CRETACEOUS Scientist, Leg 165 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College of any portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University

  9. OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS NORWEGIAN SEA Olav Eldholm Co-Chief Scientist Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Pni±ip o Rabinowitz Director Ocean Drilling Program Robert B Kidd Manager of Science Operations Ocean Drilling Program Louis E

  10. OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS LESSER ANTILLES FOREARC J. Casey Moore Staff Science Representative, Leg 110 Ocean Drilling Program Texas A&M University College Station, TX 77843-3469 Philip D. Direct* Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean

  11. INSTRUCTIONS INTEGRATED OCEAN DRILLING PROGRAM (IODP)

    E-Print Network [OSTI]

    INSTRUCTIONS FOR THE INTEGRATED OCEAN DRILLING PROGRAM (IODP) MANUSCRIPT AND PHOTOGRAPH COPYRIGHT, Integrated Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845, USA A signed copyright of the Integrated Ocean Drilling Program or any other publications of the Integrated Ocean Drilling Program. Author

  12. OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 109 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 Philip D. Rabinowitz Director Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean Drilling Program Louis E

  13. Heat Content Changes in the Pacific Ocean

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Heat Content Changes in the Pacific Ocean The Acoustic Thermometry of Ocean Cli- mate (ATOC assimilating ocean observations and changes expected from surface heat fluxes as measured by the daily National are a result of advection of heat by ocean currents. We calculate that the most likely cause of the discrepancy

  14. OCEAN DRILLING PROGRAM LEG 136 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    and lithosphere evolution, earthquake source mechanisms, oceanic crustal structure, tsunami warning and monitoring

  15. Ocean Studies Board annual report 1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    Activities of the Ocean Studies Board fall into three broad categories: promoting the health of ocean sciences in the United States, encouraging the protection and wise use of the ocean and its resources, and applying ocean science to improve national security.

  16. Ocean Studies Board annual report 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Activities of the Ocean Studies Board fall into three broad categories: promoting the health of ocean sciences in the United States, encouraging the protection and wise use of the ocean and its resources, and applying ocean science to improve national security.

  17. Dept. of Ocean and Resources Engineering School of Ocean and Earth Science and Technology

    E-Print Network [OSTI]

    ) Only Indian and Pacific Ocean GlobalEEZ100km from shorelineAtlantic OceanIndo-Pacific #12;OTEC MODELINGDept. of Ocean and Resources Engineering School of Ocean and Earth Science and Technology of deep layers, Increase in THC strength 1) Global 2) EEZ 3)100km from Shoreline 4) Only Atlantic Ocean 5

  18. Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters

    E-Print Network [OSTI]

    Lee, Zhongping

    Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters in the upper ocean, the vertical distribution of solar radiation (ESR) in the shortwave domain plays (2005), Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal

  19. Mercury in the Anthropocene Ocean

    E-Print Network [OSTI]

    Lamborg, Carl

    The toxic metal mercury is present only at trace levels in the ocean, but it accumulates in fish at concentrations high enough to pose a threat to human and environmental health. Human activity has dramatically altered the ...

  20. "What Controls the Structure and Stability of the Ocean Meridional Overturning Circulation: Implications for Abrupt Climate Change?"

    SciTech Connect (OSTI)

    Fedorov, Alexey [Yale University] [Yale University

    2013-11-23T23:59:59.000Z

    The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.

  1. The Atmospheric Signatures of Super-Earths: How to Distinguish Between Hydrogen-Rich and Hydrogen-Poor Atmospheres

    E-Print Network [OSTI]

    E. Miller-Ricci; D. Sasselov; S. Seager

    2008-08-13T23:59:59.000Z

    Extrasolar super-Earths (1-10 M$_{\\earth}$) are likely to exist with a wide range of atmospheres. Some super-Earths may be able to retain massive hydrogen-rich atmospheres. Others might never accumulate hydrogen or experience significant escape of lightweight elements, resulting in atmospheres more like those of the terrestrial planets in our Solar System. We examine how an observer could differentiate between hydrogen-rich and hydrogen-poor atmospheres by modeling super-Earth emission and transmission spectra, and we find that discrimination is possible by observing the transmission spectrum alone. An Earth-like atmosphere, composed of mostly heavy elements and molecules, will have a very weak transmission signal due to its small atmospheric scale height (since the scale height is inversely proportional to molecular weight). On the other hand, a large hydrogen-rich atmosphere reveals a relatively large transmission signal. The super Earth emission spectrum can additionally contrain the atmospheric composition and temperature structure. Super-Earths with massive hydrogen atmospheres will reveal strong spectral features due to water, whereas those that have lost most of their hydrogen (and have no liquid ocean) will be marked by CO$_2$ features and a lack of H$_2$O. We apply our study specifically to the low-mass planet orbiting an M star, Gl 581c ($M sin i$ = 5 M$_{\\earth}$), although our conclusions are relevant for super-Earths in general. The ability to distinguish hydrogen-rich atmospheres might be essential for interpreting mass and radius observations of planets in the transition between rocky super-Earths and Neptune-like planets.

  2. Open ocean DMS air/sea fluxes over the eastern South Pacific Ocean

    E-Print Network [OSTI]

    Marandino, C. A; De Bruyn, W. J; Miller, S. D; Saltzman, E. S

    2009-01-01T23:59:59.000Z

    over the North Pacific Ocean, J. Geophys. Res. - Atmos. ,air/sea fluxes over S. Pacific Ocean References Asher, W.in the equa- torial Pacific Ocean ( 1982 to 1996): Evidence

  3. ATMOSPHERIC SCIENCES Observations from

    E-Print Network [OSTI]

    Pierce, Stephen

    samples from the recovery cruise and Bob O'Malley for evaluation of the CTD sensors used on the deployment p. 8 b. Instrument Calibration p. 9 Ocean Temperature and Salinity Sensors p. 9 Met Sensors p. 10 Doppler Profiler Compass p. 10 ADCP/ADP Battery Capacity p. 11 Pressure Sensors p. 11 CTD Sensors p. 12 c

  4. Wave-Turbulence Mixing for Upper Ocean Multifractal Thermal

    E-Print Network [OSTI]

    Chu, Peter C.

    ) width ~ 0.8 km #12;Data Observation · Coastal Monitoring Buoy (CMB) - U.S. Naval Oceanographic Office) Frequency is around 4 CPH #12;Isopycnal Displacement turbulence-Dominated (00-05 GMT Aug 1) #12;Power depth #12;Structure Function (Power Law) IW-T type #12;Structure Function (Power Law) T type #12

  5. Monitoring the coastal ocean surface -The poten-tial use of HF radar for the design and operational

    E-Print Network [OSTI]

    Wyatt, Lucy

    is needed when deciding where to locate and how to esti- mate the efficiency of a wave or tidal stream power cases these needs are being met by single point in situ measurement sys- tems for example wave buoys this trial for 5- 9th April 2005 measured at the location of the buoy. This was the last major storm (a low

  6. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  7. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  8. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    SciTech Connect (OSTI)

    Koracin, Darko; Cerovecki, Ivana; Vellore, Ramesh; Mejia, John; Hatchett, Benjamin; McCord, Travis; McLean, Julie; Dorman, Clive

    2013-04-11T23:59:59.000Z

    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes within the WRF model needs more evaluation and analysis.

  9. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling

  10. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling Programs

  11. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1 environmental of the Seventh Ocean Energy Michel, H. B. ,of the Seventh Ocean Energy Conference, Washington, DC.of the Seventh Ocean Energy Conference. Sponsored by the

  12. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    Presented at the 7th Ocean Energy Conference, Washington,Power Applications, Division of Ocean Energy Systems, UnitedM.D. (editor). 1980. Ocean Thermal Energy Conversion Draft

  13. Dynamics of a Submesoscale Surface Ocean Density Front

    E-Print Network [OSTI]

    Abramczyk, Marshall

    2012-01-01T23:59:59.000Z

    dominant portion of the ocean energy [Capet et al. , 2008a].are important for the ocean energy budget and biogeochemicalrelevance for the ocean energy budget and nutrient

  14. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1 environmental Seventh Ocean Energy Michel, H. B. , and M.of the Seventh Ocean Energy Conference, Washington, DC.1979. Commercial ocean thermal energy conversion ( OTEC)

  15. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants byand M.D. Sands. Ocean thermal energy conversion (OTEC) pilotfield of ocean thermal energy conversion discharges. I~. L.

  16. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryof the Fifth Ocean Thermal Energy Conversion Conference,

  17. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Sands. 1980. Ocean thermal energy conversion (OTEC) pilotCommercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,

  18. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALM.D. (editor). 1980. Ocean Thermal Energy Conversion DraftDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  19. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  20. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryCompany. Ocean thermal energy conversion mission analysis

  1. Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large

  2. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  3. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion (OTEC) plants bySands. 1980. Ocean thermal energy conversion (OTEC) pilotof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

  4. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    of the Ocean Thermal Energy Conversion (OTEC) Biofouling,development of ocean thermal energy conversion (OTEC) plant-impact assessment ocean thermal energy conversion (OTEC)

  5. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants bySands. Ocean thermal energy conversion (OTEC) pilot plantof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

  6. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  7. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  8. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  9. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    for the commercialization of ocean thermal energy conversionE. Hathaway. Open cycle ocean thermal energy conversion. AElectric Company. Ocean thermal energy conversion mission

  10. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion ( OTEC)the intermediate field of ocean thermal energy conversionII of the Sixth Ocean Thermal Energy conversion Conference.

  11. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,and M.D. Sands. 1980. Ocean thermal energy conversion (OTEC)

  12. Atmospheric Science: An introductory survey 1. Introduction to the atmosphere

    E-Print Network [OSTI]

    Folkins, Ian

    Sound Convergence Zone #12;Terrain effects #12;Von Karman vortex streets #12;Atmosphere in Earth system

  13. Wave-driven wind jets in the marine atmospheric boundary layer

    E-Print Network [OSTI]

    Reading, University of

    Wave-driven wind jets in the marine atmospheric boundary layer Kirsty E. Hanley Stephen E. Belcher;Abstract The interaction between ocean surface waves and the overlying wind leads to a transfer of momentum can also be transferred upwards when long wavelength waves, characteristic of re- motely generated

  14. 01/14 Ver. 4.1 Atmospheric,OceanicandSpaceSciences

    E-Print Network [OSTI]

    Eustice, Ryan

    Arbor ©The Regents of the University of Michigan Mark Schlissel, ex officio Master of engineering Space Dynamics Climate, Climate Modeling & Climate Change Clouds & Precipitation Paleoclimate, Ice Dynamics in these research areas: http://aoss.engin.umich.edu/pages/research Atmospheric, Oceanic & Space Sciences University

  15. Mercury in the Atmosphere, Snow and Melt Water Ponds in the North

    E-Print Network [OSTI]

    Jacob, Daniel J.

    . Introduction Compared to most heavy metals, mercury behaves excepMercury in the Atmosphere, Snow and Melt Water Ponds in the North Atlantic Ocean during Arctic dominant species, with a northern hemispheric back- ground concentration of 1.7 ng/m3 (3). Under these same

  16. The Atmospheric General Circulation in Thermodynamical Coordinates JOAKIM KJELLSSON AND KRISTOFER DO O S

    E-Print Network [OSTI]

    Döös, Kristofer

    that the cycle has a peak transport of 428 Sv (Sv [ 109 kg s21 ). The thermodynamic cycle encapsulates a globally. Introduction The atmospheric general circulation forms as a re- sponse to differential solar heating (solar heating and ocean heat fluxes) vary. El Ni~no­Southern Oscillation (ENSO) is one of the dominant

  17. OCEAN DRILLING PROGRAM LEG 207 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    3E3 Canada -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract Foundation (United States) Natural Environment Research Council (United Kingdom) Ocean Research Institute

  18. Mechanistic models of oceanic nitrogen fixation

    E-Print Network [OSTI]

    Monteiro, Fanny

    2009-01-01T23:59:59.000Z

    Oceanic nitrogen fixation and biogeochemical interactions between the nitrogen, phosphorus and iron cycles have important implications for the control of primary production and carbon storage in the ocean. The biological ...

  19. Dynamics of global ocean heat transport variability

    E-Print Network [OSTI]

    Jayne, Steven Robert

    1999-01-01T23:59:59.000Z

    A state-of-the-art, high-resolution ocean general circulation model is used to estimate the time-dependent global ocean heat transport and investigate its dynamics. The north-south heat transport is the prime manifestation ...

  20. Ocean and Sea Ice SAF ASCAT-B NWP Ocean Calibration

    E-Print Network [OSTI]

    Haak, Hein

    Ocean and Sea Ice SAF ASCAT-B NWP Ocean Calibration and Validation Technical Report SAF/OSI/CDOP2 #12;SAF/OSI/CDOP2/KNMI/TEC/RP/199 ASCAT-B NWP Ocean Calibration and Validation Summary On September 17 launched. For the ASCAT-B scatterometer, corrections are derived with the use of the NWP ocean calibration

  1. AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program

    E-Print Network [OSTI]

    AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program U ANNUAL REPORT #12;#12;Integrated Ocean Drilling Program United States Implementing Organization JOI T his Integrated Ocean Drilling Program (IODP)-U.S. Implementing Organization (USIO) Fiscal Year 2006

  2. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 19971998

    E-Print Network [OSTI]

    Wang, Yuqing

    Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997 Abstract. An anomalous climatic event occurred in the Indian Ocean (IO) region during 1997­1998, which 1997, warm SSTAs appeared in the western IO, and they peaked in February 1998. An ocean general

  3. Ocean and Resources Engineering is the application of ocean science and engineering to the challenging conditions

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    engineering, mixing and transport, water quality, ocean thermal energy conversion, hydrogen. GENO PAWLAK

  4. A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    oceans; their extensive total volume and large thermal capacity require a larger injection of energy

  5. Career Opportunity in Ocean Energy POSITION TITLE: Director of Renewable Ocean Energy Research Program

    E-Print Network [OSTI]

    Career Opportunity in Ocean Energy POSITION TITLE: Director of Renewable Ocean Energy Research: The Coastal Studies Institute (CSI) is seeking a dynamic individual to lead its Renewable Ocean Energy Program for a multi-institutional and multi-disciplinary renewable ocean energy research program. The position

  6. Ocean Sci., 3, 337344, 2007 www.ocean-sci.net/3/337/2007/

    E-Print Network [OSTI]

    Boyer, Edmond

    1/3 of the total tidal energy dissipation, in the ocean basins through "internal" waves breaking, eOcean Sci., 3, 337­344, 2007 www.ocean-sci.net/3/337/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Ocean Science Unpredictability of internal M2 H. van Haren Netherlands

  7. Ocean Sci., 3, 461482, 2007 www.ocean-sci.net/3/461/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Ocean Sci., 3, 461­482, 2007 www.ocean-sci.net/3/461/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Ocean Science Effects of mesoscale eddies on global ocean Environment Laboratories, International Atomic Energy Agency, Monaco *now at: Institute of Biogeochemistry

  8. Call title: "The ocean of tomorrow" Call identifier: FP7-OCEAN-2010

    E-Print Network [OSTI]

    Milano-Bicocca, Università

    challenges in ocean management Theme 5 ­ Energy Area ENERGY.10.1 Call "The ocean of tomorrow" ­ Joining1 Call title: "The ocean of tomorrow" · Call identifier: FP7-OCEAN-2010 · Date of publication: 30, and Biotechnology (KBBE) - EUR 6 million from Theme 5 ­ Energy - EUR 10.5 million from Theme 6 ­ Environment

  9. The effect of ocean mixed layer depth on climate in slab ocean aquaplanet experiments

    E-Print Network [OSTI]

    Battisti, David

    a severely reduced (&50 %) meridi- onal energy transport relative to the deep ocean runs. As a resultThe effect of ocean mixed layer depth on climate in slab ocean aquaplanet experiments Aaron Donohoe online: 28 June 2013 Ã? Springer-Verlag Berlin Heidelberg 2013 Abstract The effect of ocean mixed layer

  10. Development and Demonstration of a Relocatable Ocean OSSE System: Optimizing Ocean Observations for Hurricane Forecast

    E-Print Network [OSTI]

    forecasts for individual storms and improved seasonal forecast of the ocean thermal energy availableDevelopment and Demonstration of a Relocatable Ocean OSSE System: Optimizing Ocean Observations in the Gulf of Mexico is being extended to provide NOAA the ability to evaluate new ocean observing systems

  11. Climate variability and ocean production in the Leeuwin Current system off the west coast of Western Australia

    E-Print Network [OSTI]

    Feng, Ming

    of Western Australia M Feng1 , A M Waite2 , P A Thompson3 1 CSIRO Marine & Atmospheric Research, Floreat, WA 6014 Ming.Feng@csiro.au 2 School of Environmental Systems Engineering, University of Western Australia coast of Western Australia (WA), as well as the upper ocean stratification (mixing) and the nutrient

  12. On the Variability of Wind Power Input to the Oceans with a Focus on the Subpolar North Atlantic

    E-Print Network [OSTI]

    Wunsch, Carl

    WUNSCH Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology on the North Atlantic Ocean, where the database is somewhat more secure, it is found that the input power with both the eddy kinetic energy there and the Atlantic multidecadal oscillation (AMO), although

  13. OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS FLUID FLOW AND SUBDUCTION FLUXES ACROSS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  14. OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS SOUTHEAST PACIFIC PALEOCEANOGRAPHIC TRANSECTS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  15. OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS MARIANA CONVERGENT MARGIN/ WEST PHILIPPINE SEA Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX

  16. OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS IZU-MARIANA MARGIN Dr. Terry Plank Co France Dr. Carlota Escutia Staff Scientist Ocean Drilling Program Texas A&M University Research Park 1000 the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

  17. OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS SHAKEDOWN AND SEA TRIALS CRUISE Philip D. Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station

  18. SHIPBOARD SCIENTISTS1 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    SHIPBOARD SCIENTISTS1 HANDBOOK OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY TECHNICAL NOTE 3 portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University be obtained from the Director, Ocean Drilling Program, Texas A & M University Research Park, 1000 Discovery

  19. OCEAN DRILLING PROGRAM LEG 100 REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 100 REPORT NORTHEASTERN GULF OF MEXICO Philip D Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843

  20. OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS DRILLING AT THE H2O LONG-TERM SEAFLOOR Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

  1. OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS THE COTE D'IVOIRE - GHANA TRANSFORM MARGIN, Leg 159 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station requires the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park

  2. OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT HOLE 504B Dr. Henry Dick Dr. Jörg Erzinger Co Giessen Federal Republic of Germany Dr. Laura Stokking Staff Scientist, Leg 140 Ocean Drilling Program Copies of this publication may be obtained from the Director, Ocean Drilling Program, Texas A

  3. OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS PALEOGENE EQUATORIAL TRANSECT Dr. Mitchell __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive

  4. OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS LOGGING WHILE DRILLING AND ADVANCED CORKS Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

  5. OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS LABRADOR SEA - BAFFIN BAY Dr. Michael A. Bradford Clement Staff Science Representative, Leg 105 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469" Philip Director Ocean Drilling Program Robert B. Kidd Manager of Science

  6. OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS NORTHWEST AFRICA Dr. William Ruddiman Co Federal Republic of Germany Dr. Jack G. Baldauf Staff Scientist, Leg 108 Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Philip W Rabin Direct Ocean Drilling Program

  7. OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS FRACTURE ZONE DRILLING ON THE SOUTHWEST INDIAN Oceanographic Institution Woods Hole, MA 02543 Andrew C. Adamson Staff Scientist, Leg 118 Ocean Drilling Program the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

  8. Ocean Optics Environmental Optics, Nanoscience Division

    E-Print Network [OSTI]

    Strathclyde, University of

    suspended solids swept up from the floor of the Gulf of Mexico The right picture shows a phytoplankton bloom and changes observed. This can be used to monitor pollution in our oceans and methods taken when levels become such as ocean pollution, currents and warming, and to see how the oceans are affecting the health of our planet

  9. Ocean viscosity and climate M. Jochum,1

    E-Print Network [OSTI]

    Jochum, Markus

    Ocean viscosity and climate M. Jochum,1 G. Danabasoglu,1 M. Holland,1 Y.-O. Kwon,1 and W. G. Large1] The impacts of parameterized lateral ocean viscosity on climate are explored using three 120-year integrations of a fully coupled climate model. Reducing viscosity leads to a generally improved ocean circulation

  10. Oceanic Origins of Southwest Tropical Atlantic Biases

    E-Print Network [OSTI]

    Xu, Zhao

    2013-05-03T23:59:59.000Z

    Oceanic General Circulation Model POP Parallel Ocean Program ROMS Regional Ocean Modeling System SEC South Equatorial Current SECC South Equatorial Counter Current SETA Southeast Tropical Atlantic SEUC South Equatorial UnderCurrent SLP Sea Level... SST bias ................................................................................... 5 1.3.2 SST bias in SETA ...................................................................................... 8 1.4 Objectives and Approach...

  11. Menghua Wang NOAA STAR Ocean Color Team

    E-Print Network [OSTI]

    .g., BOUSSOLE, Chesapeake Bay, etc., will be added) Regional ocean color EDR monitoring Hawaii South PacificLw551, and nLw671. #12;VIIRS ocean color EDR regional time- series monitoring at South Pacific Gyre (SPG) #12;Online interactive plot of SPG time-series #12;Global deep-water (>1000 m) ocean color EDR

  12. LABORATORY EXPERIMENTS TO SIMULATE CO2 OCEAN DISPOSAL

    SciTech Connect (OSTI)

    Stephen M. Masutani

    1999-12-31T23:59:59.000Z

    This Final Technical Report summarizes the technical accomplishments of an investigation entitled ''Laboratory Experiments to Simulate CO{sub 2} Ocean Disposal'', funded by the U.S. Department of Energy's University Coal Research Program. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation was to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. A number of critical technical uncertainties of ocean disposal of CO{sub 2} were addressed by performing laboratory experiments on liquid CO{sub 2} jet break-up into a dispersed droplet phase, and hydrate formation, under deep ocean conditions. Major accomplishments of this study included: (1) five jet instability regimes were identified that occur in sequence as liquid CO{sub 2} jet disintegration progresses from laminar instability to turbulent atomization; (2) linear regression to the data yielded relationships for the boundaries between the five instability regimes in dimensionless Ohnesorge Number, Oh, and jet Reynolds Number, Re, space; (3) droplet size spectra was measured over the full range of instabilities; (4) characteristic droplet diameters decrease steadily with increasing jet velocity (and increasing Weber Number), attaining an asymptotic value in instability regime 5 (full atomization); and (5) pre-breakup hydrate formation appears to affect the size distribution of the droplet phase primary by changing the effective geometry of the jet.

  13. Dynamics of Atmospheres

    E-Print Network [OSTI]

    Read, Peter L.

    transfer ­ Solar heating of surface, and atmosphere via dust absorption ­ Infrared CO2 band cooling (especially around 667 cm-1) ­ nonLTE near-infrared heating of CO2 and nonLTE cooling effects above ~60-80 km. Baroclinic waves, scales, heat and momentum transport, seasonal occurrence. Qualitative treatment

  14. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    . Along with this growth came a new building on campus and a new name: the Laboratory for Atmospheric of the Sun to the outermost fringes of the solar system. With LASP's continuing operations role in the planet traditional and stable approach based on federal agency funding of research grant

  15. Global Climate network evolves with North Atlantic Oscillation phases: Coupling to Southern Pacific Ocean

    E-Print Network [OSTI]

    Guez, Oded; Berezin, Yehiel; Wang, Yang; Havlin, Shlomo

    2013-01-01T23:59:59.000Z

    We construct a network from climate records of atmospheric temperature at surface level, at different geographical sites in the globe, using reanalysis data from years 1948-2010. We find that the network correlates with the North Atlantic Oscillation (NAO), both locally in the north Atlantic, and through coupling to the southern Pacific Ocean. The existence of tele-connection links between those areas and their stability over time allows us to suggest a possible physical explanation for this phenomenon.

  16. Interaction between surface wind and ocean circulation in the Carolina Capes in a coupled low-order model

    SciTech Connect (OSTI)

    Xie, L.; Pietrafesa, L.J.; Raman, S.

    1997-03-18T23:59:59.000Z

    Interactions between surface winds and ocean currents over an east-coast continental shelf are studied using a simple mathematical model. The model physics include cross-shelf advection of sea surface temperature (SST) by Ekman drift, upwelling due to Ekman transport divergence, differential heating of the low-level atmosphere by a cross-shelf SST gradient, and the Coriolis effect. Additionally, the effects of diabatic cooling of surface waters due to air-sea heat exchange and of the vertical density stratification on the thickness of the upper ocean Ekman layer are considered. The model results are qualitatively consistent with observed wind-driven coastal ocean circulation and surface wind signatures induced by SST. This simple model also demonstrates that two-way air-sea interaction plays a significant role in the subtidal frequency variability of coastal ocean circulation and mesoscale variability of surface wind fields over coastal waters.

  17. 78 The Open Atmospheric Science Journal, 2010, 4, 78-87 1874-2823/10 2010 Bentham Open

    E-Print Network [OSTI]

    Wm-2 in some cases. Given the low cost, low weight, and low power consumption of the SPN1 total Unmanned Aerial Vehicles and solar powered buoys now become feasible using our methodology. The increase are sorely needed and must be made on ships and buoys. Keywords: Tilt correction, shortwave irradiance, solar

  18. SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics Course Syllabus and Lecture Schedule Instructor: Lynn Russell, 343 NH, 534-4852, lmrussell@ucsd.edu Text: Thermodynamics of Atmospheres of Thermodynamics (Work, Heat, First Law, Second Law, Heat Capacity, Adiabatic Processes) 5-Oct F Hurricane Example

  19. Pluto's Atmosphere Does Not Collapse

    E-Print Network [OSTI]

    Olkin, C B; Borncamp, D; Pickles, A; Sicardy, B; Assafin, M; Bianco, F B; Buie, M W; de Oliveira, A Dias; Gillon, M; French, R G; Gomes, A Ramos; Jehin, E; Morales, N; Opitom, C; Ortiz, J L; Maury, A; Norbury, M; Ribas, F B; Smith, R; Wasserman, L H; Young, E F; Zacharias, M; Zacharias, N

    2013-01-01T23:59:59.000Z

    Combining stellar occultation observations probing Pluto's atmosphere from 1988 to 2013 and models of energy balance between Pluto's surface and atmosphere, we conclude that Pluto's atmosphere does not collapse at any point in its 248-year orbit. The occultation results show an increasing atmospheric pressure with time in the current epoch, a trend present only in models with a high thermal inertia and a permanent N2 ice cap at Pluto's north rotational pole.

  20. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  1. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

    1990-01-01T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  2. Impact of the Southern ocean winds on sea-ice - ocean interaction and its associated global ocean circulation in a warming world

    E-Print Network [OSTI]

    Cheon, Woo Geunn

    2009-05-15T23:59:59.000Z

    This dissertation discusses a linkage between the Southern Ocean (SO) winds and the global ocean circulation in the framework of a coarse-resolution global ocean general circulation model coupled to a sea-ice model. In addition to reexamination...

  3. Surface Wave Effects in the NEMO Ocean Model: Forced and Coupled Experiments

    E-Print Network [OSTI]

    Breivik, Øyvind; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A E M

    2015-01-01T23:59:59.000Z

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wave field), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extra-tropics, but the sea-state dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total oce...

  4. On the World-wide Circulation of the Deeper Waters of the World Ocean

    E-Print Network [OSTI]

    Reid, Joseph L

    2009-01-01T23:59:59.000Z

    circulation of the Pacific Ocean: Flow patterns, tracers,in preparing the figures. Fig. 1 Pacific Ocean winds Fig.2 Pacific Ocean circulation Fig. 4 Pacific Ocean potential

  5. Horizontal stirring in the global ocean

    E-Print Network [OSTI]

    Hernández-Carrasco, I; Hernández-García, E; Turiel, A

    2011-01-01T23:59:59.000Z

    Horizontal mixing and the distribution of coherent structures in the global ocean are analyzed using Finite-Size Lyapunov Exponents (FSLE), computed for the surface velocity field derived from the Ocean general circulation model For the Earth Simulator (OFES). FSLEs measure horizontal stirring and dispersion; additionally, the transport barriers which organize the oceanic flow can roughly be identified with the ridges of the FSLE field. We have performed a detailed statistical study, particularizing for the behaviour of the two hemispheres and different ocean basins. The computed Probability Distributions Functions (PDFs) of FSLE are broad and asymmetric. Horizontal mixing is generally more active in the northern hemisphere than in the southern one. Nevertheless the Southern Ocean is the most active ocean, and the Pacific the less active one. A striking result is that the main currents can be classified in two 'activity classes': Western Boundary Currents, which have broad PDFs with large FSLE values, and Eas...

  6. Ocean Sci., 10, 281322, 2014 www.ocean-sci.net/10/281/2014/

    E-Print Network [OSTI]

    Ashkenazy, Yossi "Yosef"

    28020, Spain 15Department of Solar Energy & Environmental Physics, The Jacob Blaustein Institutes of Environmental Physics, Ocean Physics and Modeling Group, Athens, Greece 12GEOMAR Helmholz Center for Ocean

  7. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    SciTech Connect (OSTI)

    Burtis, M.D. [comp.] [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W. [Oak Ridge National Lab., TN (United States)

    1995-03-01T23:59:59.000Z

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  8. Abrupt changes in atmospheric methane at the MIS 5b5a transition Alexi M. Grachev,1

    E-Print Network [OSTI]

    Severinghaus, Jeffrey P.

    Abrupt changes in atmospheric methane at the MIS 5b­5a transition Alexi M. Grachev,1 Edward J, as was previously described for the last deglaciation. Citation: Grachev, A. M., E. J. Brook, and J. P. Severinghaus by more than 25% [Valdes et al., 2005], and the oceanic methane hydrate source appears to be stable

  9. Coral Radiocarbon Records of Indian Ocean Water Mass Mixing and Wind-Induced Upwelling Along the Coast of Sumatra, Indonesia

    SciTech Connect (OSTI)

    Guilderson, T P; Grumet, N S; Abram, N J; Beck, J W; Dunbar, R B; Gagan, M K; Hantoro, W S; Suwargadi, B W

    2004-02-06T23:59:59.000Z

    Radiocarbon ({sup 14}C) in the skeletal aragonite of annually banded corals track radiocarbon concentrations in dissolved inorganic carbon (DIC) in surface seawater. As a result of nuclear weapons testing in the 1950s, oceanic uptake of excess {sup 14}C in the atmosphere has increased the contrast between surface and deep ocean {sup 14}C concentrations. We present accelerator mass spectrometric (AMS) measurements of radiocarbon isotope ({Delta}{sup 14}C) in Porites corals from the Mentawai Islands, Sumatra (0 S, 98 E) and Watamu, Kenya (3 S, 39 E) to document the temporal and spatial evolution of the {sup 14}C gradient in the tropical Indian Ocean. The rise in {Delta}{sup 14}C in the Sumatra coral, in response to the maximum in nuclear weapons testing, is delayed by 2-3 years relative to the rise in coral {Delta}{sup 14}C from the coast of Kenya. Kenya coral {Delta}{sup 14}C values rise quickly because surface waters are in prolonged contact with the atmosphere. In contrast, wind-induced upwelling and rapid mixing along the coast of Sumatra entrains {sup 14}C-depleted water from the subsurface, which dilutes the effect of the uptake of bomb-laden {sup 14}C by the surface-ocean. Bimonthly AMS {Delta}{sup 14}C measurements on the Mentawai coral reveal mainly interannual variability with minor seasonal variability. The interannual signal may be a response to changes in the Walker circulation, the development of easterly wind anomalies, shoaling of the eastern thermocline, and upwelling of {sup 14}C-depleted water along the coast of Sumatra. Singular spectrum analysis of the Sumatra coral {Delta}{sup 14}C record reveals a significant 3-year periodicity. The results lend support to the concept that ocean atmosphere interactions between the Pacific and Indian Oceans operate in concert with the El Ni{tilde n}o-Southern Oscillation (ENSO).

  10. Technical and philosophical aspects of ocean disposal

    E-Print Network [OSTI]

    Zapatka, Marchi Charisse

    1976-01-01T23:59:59.000Z

    ting Permissible Concentrations Alternatives to Ocean Oisposal. Deep-well injection. Incineration Land-based storage Land disposal. Rocycling. Advanced treatment Trends 55 56 58 58 61 61 62 65 66 71 83 87 90 91 TABLE OF CONTENTS... of Ocean Disposal. (August 1976) Plarchi Charisse Zapatka, B. S. , Texas ASM University Chairman of Advisory Committee: Dr. Roy W. Harm, Jr. The ocean disposal of waste materials is a controversial subject. People d1sagree as to whether this method...

  11. Introduction to the Ocean Drilling Program JOIDES RESOLUTION

    E-Print Network [OSTI]

    Introduction to the Ocean Drilling Program JOIDES RESOLUTION OCEAN DRILLING PROGRAM TECHNICAL NOTE 11 1989 #12;TEXAS A&M UNIVERSITY #12;INTRODUCTION TO THE OCEAN DRILLING PROGRAM Ocean Drilling Program Texas A&M University Technical Note No. 11 Anne Gilbert Graham Ocean Drilling Program Texas A

  12. 2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project-

    E-Print Network [OSTI]

    2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project- and Ocean Drilling Program Services on behalf of the Integrated Ocean Drilling Program September 2007 #12;#12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE The Ocean Drilling Citation Database, which in February 2007 contained

  13. Short Communication Three ocean state indices implemented in

    E-Print Network [OSTI]

    Ribes, Aurélien

    ), the tropical cyclone heat potential, showing the thermal energy available in the ocean to enhance or decreaseShort Communication Three ocean state indices implemented in the Mercator-Ocean operational suite L., and Soulat, F. 2008. Three ocean state indices implemented in the Mercator-Ocean operational suite. ­ ICES

  14. Response of a boundless two-layer ocean to atmospheric disturbancesResponse of a boundless two-layer ocean to atmospheric disturbances

    E-Print Network [OSTI]

    Kajiura, Kinjiro; Kajiura, Kinjiro

    1958-01-01T23:59:59.000Z

    - ----- H(C . T-p) k d k2 j 271 P However, the following integral formula can be utilized : oo cos (KVC2T2 - p2)7 p J (kp) ? .i - --- --- H (CT-p) dp = 0 Vc2 T2 - p2 sin C T V k 2 + K2 v'k2 + K2 Thus we have an alternative expression of the solution...: of Kp * Furthermore, the above relations show that for a barotropic wave in deep water (large C), the first peak arrives Top (38) Thus, we have Top 4 ? C (38a) and (38b) The response time T decreases with increasing distance,op p as shown...

  15. OceanObs 1999 G GRIFFITHS et al. OceanObs 99

    E-Print Network [OSTI]

    Griffiths, Gwyn

    , telecoms, defence, science, monitoring Hugin, Odyssey, OE X, R-One Robot, Martin, LDUUV, Autosub #12;Ocean

  16. Atmospheric Climate Model Experiments Performed at Multiple Horizontal Resolutions

    SciTech Connect (OSTI)

    Phillips, T; Bala, G; Gleckler, P; Lobell, D; Mirin, A; Maxwell, R; Rotman, D

    2007-12-21T23:59:59.000Z

    This report documents salient features of version 3.3 of the Community Atmosphere Model (CAM3.3) and of three climate simulations in which the resolution of its latitude-longitude grid was systematically increased. For all these simulations of global atmospheric climate during the period 1980-1999, observed monthly ocean surface temperatures and sea ice extents were prescribed according to standard Atmospheric Model Intercomparison Project (AMIP) values. These CAM3.3 resolution experiments served as control runs for subsequent simulations of the climatic effects of agricultural irrigation, the focus of a Laboratory Directed Research and Development (LDRD) project. The CAM3.3 model was able to replicate basic features of the historical climate, although biases in a number of atmospheric variables were evident. Increasing horizontal resolution also generally failed to ameliorate the large-scale errors in most of the climate variables that could be compared with observations. A notable exception was the simulation of precipitation, which incrementally improved with increasing resolution, especially in regions where orography plays a central role in determining the local hydroclimate.

  17. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01T23:59:59.000Z

    M . , and Yang, E. , 2007: Mesoscale eddies drive increasedIV The interaction of mesoscale and steady wind driven 1.ocean in presence of mesoscale eddies. Geophysical Research

  18. Ocean Viral Metagenomics (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Rohwer, Forest

    2011-04-26T23:59:59.000Z

    Forest Rohwer from San Diego State University talks about "Ocean Viral Metagenomics" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  19. Sandia National Laboratories: ocean energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ocean energy converters DOE-Sponsored Reference Model Project Results Released On January 28, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

  20. Hydropower and Ocean Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

  1. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric Heat

  2. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric

  3. Atmospheric PSF Interpolation

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BYAbrasion andArticle)Atmospheric

  4. Research on Ocean Resources, Marine Geo-Engineering and Climate Change -New Regulations: Implications for Ocean

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Research on Ocean Resources, Marine Geo-Engineering and Climate Change - New Regulations: Implications for Ocean Engineers Dr. Philomène Verlaan Visiting Colleague, Department of Oceanography & Senior Framework for Scientific Research Involving Ocean Fertilization", a definition of marine geo-engineering

  5. Comparisons of optical properties of the coastal ocean derived from satellite ocean color and

    E-Print Network [OSTI]

    Chang, Grace C.

    Comparisons of optical properties of the coastal ocean derived from satellite ocean color Laboratory, Ocean Optics Section, Code 7333, Stennis Space Center, MS 39529 gould@nrlssc.navy.mil Abstract: Satellite-derived optical properties are compared to in situ mooring and ship-based measurements

  6. Summer Courses in Ocean Optics and Biogeochemistry: "Monitoring the Oceans with Coastal Observatories" and

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    Summer Courses in Ocean Optics and Biogeochemistry: "Monitoring the Oceans with Coastal integration of optical approaches into oceanographic research in general. OBJECTIVES These two courses created and optical oceanography and ocean color remote sensing to learn the fundamentals of optics in a coastal

  7. DETECTING AND TRACKING OF MESOSCALE OCEANIC FEATURES IN THE MIAMI ISOPYCNIC CIRCULATION OCEAN MODEL

    E-Print Network [OSTI]

    Tandon, Amit

    DETECTING AND TRACKING OF MESOSCALE OCEANIC FEATURES IN THE MIAMI ISOPYCNIC CIRCULATION OCEAN MODEL developed to automatically detect, locate and track mesoscale eddies spatially and temporally. Using an invaluable tool to assess mesoscale oceanic features. Key Words ­ Scientific Visualization, Eddy Detection

  8. Author's personal copy A novel ocean color index to detect oating algae in the global oceans

    E-Print Network [OSTI]

    Meyers, Steven D.

    Author's personal copy A novel ocean color index to detect oating algae in the global oceans December 2008 Received in revised form 15 May 2009 Accepted 23 May 2009 Keywords: Floating Algae Index (FAI Remote sensing Ocean color Climate data record Various types of oating algae have been reported in open

  9. 2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database

    E-Print Network [OSTI]

    2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database The Ocean Drilling Citation Database, which contained almost 22,000 citation records related to the Deep Sea Drilling Institute (AGI). The database has been on line since August 2002. Beginning in 2006, citation records

  10. Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu Ocean Thermal Resources

    E-Print Network [OSTI]

    Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu 1 Ocean Thermal Resources The vast size of the ocean thermal resource and the baseload capability of OTEC systems of Hawaii throughout the year and at all times of the day. This is an indigenous renewable energy resource

  11. Effect of global ocean temperature change on deep ocean ventilation A. M. de Boer,1,2

    E-Print Network [OSTI]

    Sigman, Daniel M.

    Effect of global ocean temperature change on deep ocean ventilation A. M. de Boer,1,2 D. M. Sigman suggest that the ocean's deep ventilation is stronger in warm climates than in cold climates. Here we use that a dynamically cold ocean is globally less ventilated than a dynamically warm ocean. With dynamic cooling

  12. ARM - Lesson Plans: Ocean Currents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska OutreachMaking CloudsMovingOcean

  13. Ocean Thermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource HistoryFractures belowOasisEnergyTheJump to:Ocean

  14. atmospheres thin atmospheres: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  15. 2138 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 4, APRIL 2014 HF Bistatic Ocean Doppler Spectra: Simulation

    E-Print Network [OSTI]

    with in situ buoy measurements. Experimental and simulated Doppler spectra agree generally well, except Terms--Bistatic high-frequency surface wave radar (HFSWR), Doppler spectrum [power spectral density (PSD

  16. Oceanic alkyl nitrates as a natural source of tropospheric ozone

    E-Print Network [OSTI]

    Neu, Jessica L; Lawler, Michael J; Prather, Michael J; Saltzman, Eric S

    2008-01-01T23:59:59.000Z

    over the equatorial Pacific Ocean during Saga 3, J. Geophys.the troposphere over the Pacific Ocean during PEM- Tropics Ain the tropical Pacific Ocean, Geophys. Res. Lett. , 32,

  17. Jere Chase Ocean Engineering Lab, Durham, NH Directions & Parking

    E-Print Network [OSTI]

    Jere Chase Ocean Engineering Lab, Durham, NH Directions & Parking Jere Chase Ocean Engineering Lab of the University of New Hampshire. Parking is available at the Jere A. Chase Ocean Engineering Building. Directions

  18. Graduate Study and Research in Ocean and Resources Engineering

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Guide to Graduate Study and Research in Ocean and Resources Engineering University of Hawaii REQUIREMENTS ............................................... 16 Ocean and Resources Engineering Page 3 #12;Page 4 Ocean and Resources Engineering BACKGROUND Hawaii's unique location, climate and marine

  19. ORE 601 Ocean and Resources Engineering Laboratory Designation

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    ORE 601 Ocean and Resources Engineering Laboratory Designation Core course Catalog Description This course aims to provide ocean and resources engineering students with the fundamentals necessary Program Outcome 2: Basic science, mathematics, & engineering Program Outcome 3: Ocean engineering core

  20. Effects of variable wind stress on ocean heat content

    E-Print Network [OSTI]

    Klima, Kelly

    2008-01-01T23:59:59.000Z

    Ocean heat content change (ocean heat uptake) has an important role in variability of the Earth's heat balance. The understanding of which methods and physical processes control ocean heat uptake needs improvement in order ...

  1. Incorporating Phaeocystis into a Southern Ocean ecosystem model

    E-Print Network [OSTI]

    Wang, Shanlin; Moore, J. Keith

    2011-01-01T23:59:59.000Z

    2004), A coupled ocean?ecosystem model of the Ross Sea: 1.2003), A coupled ocean?ecosystem model of the Ross Sea: 2.global upper ocean ecosystem?biogeochemistry models against

  2. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs of work for Integrated Ocean Drilling Program (IODP) activities and deliverables for the current fiscal

  3. Biological and physical regulation of the oceanic fixed nitrogen reservoir

    E-Print Network [OSTI]

    Weber, Thomas Smith

    2013-01-01T23:59:59.000Z

    2 in the subtropical North Pacific Ocean. Nature 412: 635-38in the eastern tropical Pacific Ocean. Marine Chemistry 16:and N 2 fixation in the Pacific Ocean. Global Biogeochemical

  4. Ocean dynamics and thermodynamics in the tropical Indo- Pacific region

    E-Print Network [OSTI]

    Drushka, Kyla

    2011-01-01T23:59:59.000Z

    vertically, carrying energy into the ocean interior with aas a beam of energy into the ocean interior, observations ofKelvin wave energy from the Indian Ocean bypasses the gap in

  5. Advanced Prediction of the Intra-Americas Sargassum Season through Analysis of the Sargassum Loop System Using Remote Sensing Technology

    E-Print Network [OSTI]

    Frazier, Jeffrey

    2014-09-29T23:59:59.000Z

    to maneuver. However being pelagic and residing at the surface, it migrates under the power of the prevailing wind and oceanic surface currents. It has the ability to rapidly spread and invade new areas because of a few key traits that allows it to travel... as it is published in sixteen day cycles, the SEAS program could effectively monitor for Sargassum. Wind and ocean current data gathered from Texas Automated Buoy System (or TABS) and National Oceanic and Atmospheric Administration (NOAA) were then applied...

  6. Sandia National Laboratories: atmospheric chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and atmospheric chemistry that is expected to benefit auto and engine manufacturers, oil and gas utilities, and other industries that employ combustion models. A paper...

  7. OCEAN DRILLING PROGRAM LEG 136 PRELIMINARY REPORT

    E-Print Network [OSTI]

    Operations ODP/TAI Timothy J.G. Francis Deputy Director ODP/TAMU May 1991 #12;This informal report Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract Environment Research Council (United Kingdom) Ocean Research Institute of the University of Tokyo (Japan) Any

  8. OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A & M University College Manager of Engineering and Drilling Operations ODP/TAMU Louis E. Garrison Deputy Director ODP

  9. Ocean Engineering 33 (2006) 22092223 Technical Note

    E-Print Network [OSTI]

    Mohseni, Kamran

    Ocean Engineering 33 (2006) 2209­2223 Technical Note Pulsatile vortex generators for low-speed maneuvering of small underwater vehicles Kamran Mohseni� Department of Aerospace Engineering Sciences, science writer). #12;1. Introduction Oceans hold the key to the origin and continuity of life on the Earth

  10. Legal Implications of CO2 Ocean Storage

    E-Print Network [OSTI]

    Legal Implications of CO2 Ocean Storage Jason Heinrich Working Paper Laboratory for Energy the deployment of CO2 storage technologies used in the marine environment. This paper will address some of the legal issues involved in ocean storage of carbon dioxide from a US perspective. The following paragraphs

  11. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23T23:59:59.000Z

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  12. OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS HAMMER DRILLING and NERO Dr. Jack Casey Chief.S.A. Tom Pettigrew Chief Engineer, Leg 179 Ocean Drilling Program Texas A&M University Research Park 1000 Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

  13. OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT ENGINEERING II: WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A&M University and Drilling Operations ODP/TAMU Timothy J.G. Francis Deputy Director ODP/TAMU September 1990 #12;This informal

  14. ESF Consortium for Ocean Drilling White Paper

    E-Print Network [OSTI]

    Purkis, Sam

    ESF Consortium for Ocean Drilling (ECOD) White Paper An ESF Programme September 2003 #12;The, maintains the ship over a specific location while drilling into water depths up to 27,000 feet. A seven Amsterdam, The Netherlands #12;1 ESF Consortium for Ocean Drilling (ECOD) White Paper Foreword 3

  15. OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS NORTHWEST PACIFIC SEISMIC OBSERVATORY AND HAMMER DRILL ENGINEERING TESTS Dr. Toshihiko Kanazawa Co-Chief Scientist Earthquake Research Institute Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  16. OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS BASEMENT DRILLING OF THE ONTONG JAVA PLATEAU of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 U.S.A. May 2000

  17. OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS CENTRAL KERGUELEN PLATEAU Dr. Roland Schlich Drilling Program Texas A&M University College Station, TX 77841 Philip D.VRabinowitz Director ^^~-- ODP of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000 Discovery Drive, College Station

  18. OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 106 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 ±nuwiLZ" ector ODP Drilling Program, Texas A & M University, College Station, Texas 77843-3469. In some cases, orders

  19. LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM ENGINEERING PRELIMINARY REPORT NO. 3 EAST PACIFIC RISE 1992 #12;OCEAN DRILLING PROGRAM LEG 142 PRELIMINARY REPORT East Pacific Rise Dr. Rodey Batiza Co 96822 Mr. Michael A. Storms Operations Superintendent/ Assistant Manager of Engineering and Drilling

  20. Ocean Conditions, Salmon, and Climate Change

    E-Print Network [OSTI]

    Ocean Conditions, Salmon, and Climate Change John Ferguson1 NOAA Fisheries Northwest Fisheries're finding - adult forecasts and climate change) #12;1. Past (for context) · The coastal pelagic ecosystem/survival #12;NE Pacific Ocean fisheries productivity, 200 BC to 2000 AD (by Finney et al. 2002 Nature) Main

  1. Ocean Climate Change: Comparison of Acoustic

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Ocean Climate Change: Comparison of Acoustic Tomography, Satellite Altimetry, and Modeling The ATOC to thermal expansion. Interpreting climate change signals from fluctuations in sea level is therefore in the advective heat flux. Changes in oceanic heat storage are a major expected element of future climate shifts

  2. OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT ACTIVE CONTINENTAL EXTENSION IN THE WESTERN WOODLARK BASIN, PAPUA NEW GUINEA Dr. Philippe Huchon CNRS, Laboratoire de Géologie �cole Normale Supérieure and Technology University of Hawaii at Manoa 2525 Correa Road Honolulu, HI 96822-2285 U.S.A. Dr. Adam Klaus Ocean

  3. OCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    under the international Ocean Drilling Program which is managed by Joint Oceanographic Institutions, Inc by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche ForschungsgemeinschaftOCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS DSDP HOLE 504B REVISITED Keir Becker

  4. Assistant Professor, Ocean Engineering The Department of Ocean Engineering at the University of Rhode Island (URI) invites

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Assistant Professor, Ocean Engineering The Department of Ocean Engineering at the University of Rhode Island (URI) invites applications for a tenure-track faculty position in ocean energy systems

  5. ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC

    E-Print Network [OSTI]

    Moelders, Nicole

    ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC RESEARCH On the parameterization of ice and water substance mixing ratio fields were only strongly altered by turning off the ice phase of these schemes includes ice processes. But in mid- latitudes and also in tropics the ice phase is an important

  6. ATMOSPHERIC ELSEVIER AtmosphericResearch 44 (1997) 231-241

    E-Print Network [OSTI]

    Reading, University of

    ATMOSPHERIC RESEARCH ELSEVIER AtmosphericResearch 44 (1997) 231-241 Error analysis of backscatter;accepted 14 February 1997 Abstract Ice sphere backscatter has been calculated using both Mie theory as a reasonable approximation for rv 1997 Elsevier Science B.V. 1. Introduction Cirrus clouds play

  7. Autonomous observations of the ocean biological carbon pump

    E-Print Network [OSTI]

    Bishop, James K.B.

    2009-01-01T23:59:59.000Z

    efficiency of biological pump in the global ocean. JournalOcean Biological Carbon Pump Carbon Flux Explorerocean’s “biological carbon pump” (Broecker and Peng, 1982;

  8. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs

  9. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint, Ocean Drilling Programs Joint Oceanographic Institutions, Inc. Washington DC 20005 19 July 2005 #12

  10. arctic ocean expedition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oceans contain a complex mixture of micro Bermingham, Eldredge 5 Integrated Ocean Drilling Program Expedition 301 Scientific Prospectus Geosciences Websites Summary: .tamu.edu...

  11. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs Joint Oceanographic

  12. Assessment of Energy Production Potential from Ocean Currents...

    Energy Savers [EERE]

    Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of...

  13. Mapping and Assessment of the United States Ocean Wave Energy...

    Office of Environmental Management (EM)

    States Ocean Wave Energy Resource Mapping and Assessment of the United States Ocean Wave Energy Resource This report describes the analysis and results of a rigorous assessment of...

  14. Before the Subcommittee on Water, Power, and Oceans House Natural...

    Energy Savers [EERE]

    Water, Power, and Oceans House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans House Natural Resources Committee Testimony of Elliot E. Mainzer,...

  15. Before the Subcommittee on Water, Power, and Oceans - House Natural...

    Energy Savers [EERE]

    Water, Power, and Oceans - House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee Testimony of Kenneth E. Legg,...

  16. The Subcommittee on Water, Power, and Oceans House Committee...

    Energy Savers [EERE]

    The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources Testimony of...

  17. Hydropower and Ocean Energy Resources and Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Photo of water flowing from several openings in a hydropower dam....

  18. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) • Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) • Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 – 081103) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) • Global Ocean Data Analysis Project GLODAP: Results and Data • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 – 120596) and A24, A20, and A22 (053097 – 090397) • Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 – 012296) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) • Global Distribution of Total Inorganic Carbon and Total Alkalinity below the deepest winter mixed layer depths • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, 080492 – 102192) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean (WOCE Section A5, 071492 - 081592) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean (WOCE Section P10, 100593 – 111093) • The International Intercomparison Exercise of Underway fCO2 Systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean • Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, Dec. 1992-Jan, 1993) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr , Oct. 1992-April 1993) • Surface Water and Atmospheric Underway Carbon Data Obtained During the World Ocean Circulation Experiment Indian Ocean Survey Cruises (R/V Knorr, Dec. 1994 – Jan, 1996) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (WOCE Section S4P, Feb.-April 1992) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-1 in the Equatorial Pacific Ocean (WOCE section P17C) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-3 in the Equatorial Pacific Ocean (WOCE section P16C) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the Central South Pacific Ocean (WOCE Sections P17S and P16S) during the TUNES-2 Expedition of the R/V Th

  19. Final Report for DOE grant DE-FG02-07ER64432 "New Grid and Discretization Technologies for Ocean and Ice Simulations"

    SciTech Connect (OSTI)

    Gunzburger, Max

    2013-03-12T23:59:59.000Z

    The work reported is in pursuit of these goals: high-quality unstructured, non-uniform Voronoi and Delaunay grids; improved finite element and finite volume discretization schemes; and improved finite element and finite volume discretization schemes. These are sought for application to spherical and three-dimensional applications suitable for ocean, atmosphere, ice-sheet, and other climate modeling applications.

  20. NEW VIEW of the young earth covered in oceans of liquid water as early as 4.4 billion years ago

    E-Print Network [OSTI]

    Carlson, Anders

    sun. Averaging 75 times the speed of sound, each impactor scorched the surface--shattering, meltingNEW VIEW of the young earth covered in oceans of liquid water as early as 4.4 billion years ago into a crust, before continents could form, be- fore the dense, steamy atmosphere could pool as liquid water