National Library of Energy BETA

Sample records for atlas type term

  1. ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Basics The basics of ATLAS computing at PDSF Read More » Data Transfer DQ2 is the ATLAS data management and transfer tool. Read More » File Systems ATLAS has space on 4 elizas: 35TB on /eliza1, 35TB on /eliza2, 12TB on /eliza4 and 142TB on /eliza18. Read More » Running on Carver ATLAS software is obtained via cvmfs which is installed on PDSF nodes. There is presently no cvmfs installation available on Carver so it is not possible to run ATLAS jobs on Carver at this time. However, the

  2. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Floorplan ATLAS Floorplan

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ATLAS Program Advisory Committee (PAC) Since ATLAS is a National User Facility and available for experiments to anyone in the world, all experiments to be performed at ATLAS must be reviewed and approved by the ATLAS PAC. The PAC consists of 5-7 internationally recognized nuclear physicists, most of whom come from outside Argonne. The PAC members are appointed by the Scientific Director of ATLAS and typically serve for a term of two years. The PAC normally meets twice per year. At roughly

  4. Estimating the releasable source term for Type B packages

    SciTech Connect (OSTI)

    Anderson, B.L.; Carlson, R.W.; Osgood, N.

    1995-11-01

    The release rate criteria for Type B packages designed to transport radioactive materials is given in Title 10 of the Code of Federal Regulations (10 CFR 71). Before the maximum allowable volumetric leakage rate that corresponds to the regulatory release rate can be calculated, estimation of the releasable source term activity density (concentration of releasable radioactive material) is required. This work provides methods for estimating the releasable source term for packages holding various contents types. The contents types considered include: (1) radioactive liquids; (2) radioactive gases; (3) radioactive powders and dispersible solids; (4) non-dispersible radioactive solids and (5) irradiated nuclear fuel rods. The numbers given, especially as related to the source term for packages transporting irradiated fuel rods, are preliminary and are subject to change upon development of improved methods and/or upon review of additional experimental data.

  5. Document issued in preparation for the ATLAS User Workshop 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goals, in the context of long- term plans for the ATLAS facility. The current ATLAS Strategic Plan was crafted in 2009 by the Executive Committee of the ATLAS Users group and...

  6. Search for type-III seesaw heavy leptons in pp collisions at s=8 TeVwith the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2015-08-03

    A search for the pair production of heavy leptons (N⁰,L±) predicted by the type-III seesaw theory formulated to explain the origin of small neutrino masses is presented. The decay channels N⁰→W±l∓ (ℓ=e,μ,τ) and L±→W±ν (ν=νe,νμ,ντ) are considered. The analysis is performed using the final state that contains two leptons (electrons or muons), two jets from a hadronically decaying W boson and large missing transverse momentum. The data used in the measurement correspond to an integrated luminosity of 20.3 fb⁻¹ of pp collisions at s√=8 TeV collected by the ATLAS detector at the LHC. No evidence of heavy lepton pair productionmore » is observed. Heavy leptons with masses below 325–540 GeV are excluded at the 95% confidence level, depending on the theoretical scenario considered.« less

  7. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Requirements Experimental Equipment Safety Data Management Users Group ATLAS Users Workshop 2009 25 Years of ATLAS Gretina Workshop ATLAS Users Workshop 2014 ATLAS...

  8. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Schedule CARIBU Schedule ATLAS Future CARIBU Future Scheduling Considerations ATLAS Archive CARIBU Archive ATLAS Schedules Beamtime at ATLAS is normally scheduled in two-month...

  9. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Recommended Vacuum Equipment This is the only vacuum equipment supported by the ATLAS Control System Cryo Pump Heater Blanket Temp/Controller 1 Temp/Controller 2 8200 Compressor 9600 Compressor Cryo Torr Interface Gate Valves All-Metal Hand Valves Foreline Valves Vac Gauge Modular Vac Gauge Controller Hand Valves Turbo Pumps (Ceramic) Turbo Pumps (MagLev) Turbo Pumps (Hybrid) Fore Pump (Scroll) Getter Pump Download Spreadsheet Category Manufacturer Model/Type Order Info Supplier Details

  10. Estimating Source Terms for Diverse Spent Nuclear Fuel Types

    SciTech Connect (OSTI)

    Brett Carlsen; Layne Pincock

    2004-11-01

    The U.S. Department of Energy (DOE) National Spent Nuclear Fuel Program is responsible for developing a defensible methodology for determining the radionuclide inventory for the DOE spent nuclear fuel (SNF) to be dispositioned at the proposed Monitored Geologic Repository at the Yucca Mountain Site. SNF owned by DOE includes diverse fuels from various experimental, research, and production reactors. These fuels currently reside at several DOE sites, universities, and foreign research reactor sites. Safe storage, transportation, and ultimate disposal of these fuels will require radiological source terms as inputs to safety analyses that support design and licensing of the necessary equipment and facilities. This paper summarizes the methodology developed for estimating radionuclide inventories associated with DOE-owned SNF. The results will support development of design and administrative controls to manage radiological risks and may later be used to demonstrate conformance with repository acceptance criteria.

  11. High Statistics Study of Nearby Type 1a Supernovae. QUEST Camera Short Term

    Office of Scientific and Technical Information (OSTI)

    Maintenance: Final Technical Report (Technical Report) | SciTech Connect High Statistics Study of Nearby Type 1a Supernovae. QUEST Camera Short Term Maintenance: Final Technical Report Citation Details In-Document Search Title: High Statistics Study of Nearby Type 1a Supernovae. QUEST Camera Short Term Maintenance: Final Technical Report The Quest Camera was installed at the Palomar Obervatory in California. The camera was used to carry out a survey of low redshift Type 1a supernovae.The

  12. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Years of ATLAS First Circulation Agenda Registration Attendees Presentations Photos of the Meeting Photos of History The ATLAS Research at ATLAS Dear Friend, This is the second...

  13. Microsoft PowerPoint - ATLAS_upgrade_physics_program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guy Savard Argonne National Laboratory and University of Chicago Science with the ATLAS Efficiency and Intensity Upgrade ATLAS Users Meeting August 8-9 2009 2 G. Savard 2009 ATLAS S&T Review May 18-19, 2009 Outline Evolving landscape for low-energy nuclear physics Self-assessment of ATLAS present and near future program Process followed to evaluate near and longer term physics program needs and role in community Option proposed - Physics - Machine - Instrumentation 3 G. Savard 2009 ATLAS

  14. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGFA AIRIS.pdf CHICO2 DGS.pdf FMA GODDESS GRETINA HELIOS PhoswichWall TapeStation ATLAS Strategic Plan (2009) ATLAS Strategic Plan (2014) Registered Participants ATLAS USERS...

  15. Carbon Storage Atlas - Fifth Edition (Atlas V) (2015)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage Atlas - Fifth Edition (Atlas V) (2015) Atlas V Complete Document [PDF-73.1MB] Carbon Storage Atlas - Fifth Edition (Atlas V) (2015) The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is proud to release the fifth edition of the Carbon Storage Atlas (Atlas V). Production of Atlas V is the result of collaboration among carbon storage experts from local, State, and Federal agencies, as well as industry and academia. Atlas V provides a coordinated

  16. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS 25th Anniversary Celebration Presentations Summary of the History of ATLAS W. F. Henning Reminiscences 1: From Whence did ATLAS arise? J. P. Schiffer Reminiscences 2: ATLAS 25th Anniversary Celebration R. Pardo Reminiscences 3: The Argonne-Notre Dame Gamma-ray Facility U. Garg Reminiscences 4: Atom Trap at ATLAS Z. T. Lu The Impact of ATLAS on SRF Development and Applications R. E. Laxdel Technical Challenges in Low-velocity SRF Development M. Kelly Offsprings of ATLAS - the Florida State

  17. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Safety Considerations at ATLAS For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Important general safety topics: ATLAS requires that everyone in the facility must have successfully completed the ATLAS Site Specific Training and the ATLAS Radiation Worker I equivalent training within the past two years. Please contact the ATLAS User Administrative Assistant (Barbara Weller) at extension 2-4044 if you need to take this training. The only exception to the

  18. Long-term in vitro, cell-type-specific genome-wide reprogramming of gene expression

    SciTech Connect (OSTI)

    Hakelien, Anne-Mari; Gaustad, Kristine G.; Taranger, Christel K.; Skalhegg, Bjorn S.; Kuentziger, Thomas; Collas, Philippe . E-mail: philippe.collas@medisin.uio.no

    2005-09-10

    We demonstrate a cell extract-based, genome-wide and heritable reprogramming of gene expression in vitro. Kidney epithelial 293T cells have previously been shown to take on T cell properties following a brief treatment with an extract of Jurkat T cells. We show here that 293T cells exposed for 1 h to a Jurkat cell extract undergo genome-wide, target cell-type-specific and long-lasting transcriptional changes. Microarray analyses indicate that on any given week after extract treatment, {approx}2500 genes are upregulated >3-fold, of which {approx}900 are also expressed in Jurkat cells. Concomitantly, {approx}1500 genes are downregulated or repressed, of which {approx}500 are also downregulated in Jurkat cells. Gene expression changes persist for over 30 passages ({approx}80 population doublings) in culture. Target cell-type specificity of these changes is shown by the lack of activation or repression of Jurkat-specific genes by extracts of 293T cells or carcinoma cells. Quantitative RT-PCR analysis confirms the long-term transcriptional activation of genes involved in key T cell functions. Additionally, growth of cells in suspended aggregates, expression of CD3 and CD28 T cell surface markers, and interleukin-2 secretion by 293T cells treated with extract of adult peripheral blood T cells illustrate a functional nuclear reprogramming. Therefore, target cell-type-specific and heritable changes in gene expression, and alterations in cell function, can be promoted by extracts derived from transformed cells as well as from adult primary cells.

  19. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future ATLAS Schedule Please contact Mrs. Barbara Weller (bweller@anl.gov) or go to here for your travel arrangement as far in advance of your arrival as possible. Future ATLAS Schedule

  20. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAC and Proposals Call for Proposals PAC Members Proposal Info Approved Experiments ATLAS Proposal Submission A call for ATLAS Proposals is made 2-3 times per year, depending on...

  1. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Data Management Plan This information is provided to inform users of the data management policies of ATLAS. All proposals for funding to the Office of Science require a data management plan. The Principal Investigator (PI) of any experiment performed at ATLAS is the owner of the data produced in his/her specific experiment. In this capacity, the PI is the main point of contact for all aspects of an experiment including data handling and storage, record keeping, etc. ATLAS Users who

  2. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Requirements for ATLAS Users All ATLAS Users must fulfill certain training requirements before they are allowed to have unescorted access to the ATLAS facility. These requirements are: Argonne Radiation Worker I Training ATLAS Site Specific Safety Training These training courses are computer based and will need to be completed every two years. The material covered in the training and the tests that must be completed with passing scores of 80% are available only on computers in the

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ATLAS User Group Executive Committee The current membership of the ATLAS User Group Executive Committee is: Dan Bardayan University of Notre Dame dbardaya@nd.edu Catherine Deibel Louisiana State University deibel@lsu.edu Nicholas Scielzo (chair) Lawrence Livermore National Lab scielzo1@llnl.gov Alan Wuosmaa University of Connecticut alan.wuosmaa@uconn.edu The ATLAS User Group Charter: The ATLAS User Group shall be formed from the members of the nuclear physics, nuclear chemistry and atomic

  4. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This is the second announcement of the ATLAS User Group Meeting that will take place on August 8-9, 2009. As stated in our original message (http://www.phy.anl.gov/atlas/workshop09/FirstAnnouncement.html), the workshop will be an opportunity to: (1) update everyone on the new capabilities of ATLAS and (2) refine the vision of the future of ATLAS. It is essential that this workshop be attended by as many users as possible as it will define the very future of the facility. In other words, if ATLAS

  5. RE Atlas | Open Energy Information

    Open Energy Info (EERE)

    RE Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: RE Atlas AgencyCompany Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable...

  6. Atlas Material Testing Solutions | Open Energy Information

    Open Energy Info (EERE)

    Atlas Material Testing Solutions Jump to: navigation, search Name: Atlas Material Testing Solutions Place: Chicago, IL Zip: 60613 Website: atlas-mts.com Coordinates: 41.9529209,...

  7. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scheduling Considerations Beamtime at ATLAS is normally scheduled in two-month blocks. We make every effort to produce an accurate schedule at least two weeks prior to its approval in a scheduling meeting. The scheduling process is continuously ongoing with communication between ATLAS personnel and the Principal Investigator (PI) of each experiment approved by the PAC. The overriding consideration in developing the ATLAS schedule is to optimize the productive use of beam time. This involves

  8. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposed ATLAS efficiency and intensity upgrade Guy Savard and Robert V. F. Janssens June 12, 2009 The ATLAS facility is on a constant quest to improve and increase the capabilities it offers to its Users. ATLAS currently provides beams of essentially all stable isotopes at energies in the vicinity of the Coulomb barrier. These can be used in conjunction with a suite of state-of-the-art instruments such as Gammasphere, the Fragment Mass Analyzer (FMA), the Canadian Penning Trap mass spectrometer

  9. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Tom Mullen, Physics Division Safety Engineer. Please Note: If you have any comments or concerns regarding safety at ATLAS, please contact the Physics Division Safety ...

  10. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ATLAS User Program - Visitor Information Site Access: Researchers who plan to come to Argonne for an ATLAS experiment are required to complete certain forms. All ATLAS Users need to have a Guest Facilities User Agreement completed and signed (click here). The amount of lead time needed and complexity involved will depend on their status. In any case, Users should contact either Mrs. Barbara Weller (bweller@anl.gov) or the ATLAS User Liaison Physicist, Shaofei Zhu (zhu@anl.gov) as far in

  11. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Talks FirstAnnouncement SecondAnnouncement Registration Form Registered Participants ATLAS Upgrade Equipment Initiatives Stable Beams Radioactive Beams CARIBU Beams Workshop...

  12. BNL ATLAS Grid Computing

    ScienceCinema (OSTI)

    Michael Ernst

    2010-01-08

    As the sole Tier-1 computing facility for ATLAS in the United States and the largest ATLAS computing center worldwide Brookhaven provides a large portion of the overall computing resources for U.S. collaborators and serves as the central hub for storing,

  13. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  14. ATLAS note ATL-COM-PHYS-2009.

    SciTech Connect (OSTI)

    Chekanov, S.; Boomsma, J.; High Energy Physics

    2009-12-22

    The program InvMass has been developed to perform a general model-independent search for new particles using the ATLAS detector at the Large Hadron Collider (LHC), a proton-proton collider at CERN. The search is performed by examining statistically significant variations from the Standard Model predictions in exclusive event classes classified according to the number of identified objects. The program, called InvMass, finds all relevant particle groups identified with the ATLAS detector and analyzes their production rates, invariant masses and the total transverse momenta. The generic code of InvMass can easily be adapted for any particle types identified with the ATLAS detector. Several benchmark tests are presented.

  15. Communication: Cosolvency and cononsolvency explained in terms of a Flory-Huggins type theory

    SciTech Connect (OSTI)

    Dudowicz, Jacek Freed, Karl F.; Douglas, Jack F.

    2015-10-07

    Standard Flory-Huggins (FH) theory is utilized to describe the enigmatic cosolvency and cononsolvency phenomena for systems of polymers dissolved in mixed solvents. In particular, phase boundaries (specifically upper critical solution temperature spinodals) are calculated for solutions of homopolymers B in pure solvents and in binary mixtures of small molecule liquids A and C. The miscibility (or immiscibility) patterns for the ternary systems are classified in terms of the FH binary interaction parameters (χ{sub αβ}) and the ratio r = ϕ{sub A}/ϕ{sub C} of the concentrations ϕ{sub A} and ϕ{sub C} of the two solvents. The trends in miscibility are compared to those observed for blends of random copolymers (A{sub x}C{sub 1−x}) with homopolymers (B) and to those deduced for A/B/C solutions of polymers B in liquid mixtures of small molecules A and C that associate into polymeric clusters (A{sub p}C{sub q}){sub i}, (i = 1, 2, …, ∞). Although the classic FH theory is able to explain cosolvency and cononsolvency phenomena, the theory does not include a consideration of the mutual association of the solvent molecules and the competitive association between the solvent molecules and the polymer. These interactions can be incorporated in refinements of the FH theory, and the present paper provides a foundation for such extensions for modeling the rich thermodynamics of polymers in mixed solvents.

  16. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety at ATLAS For onsite emergencies, call 911 on the internal phones (or 630-252-1911 on cell phones) Safety Aspects of radiation safety at ATLAS: Health Physics Coverage at ATLAS is provided by Argonne National Laboratory. Health Physics personnel must be notified if there is a possible contamination incident, or if target and/or detectors are to be removed from a beam line following an experiment. HP Contact information: Angel Garcia (HP Technician): 2-9179 (4-1352 pager) Dave

  17. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The purpose of this note is to announce an important workshop for the ATLAS users to be held at Argonne National Laboratory on AUGUST 8 and 9, 2009. As you are aware, major changes are in store for the ATLAS facility. First, the Energy Upgrade and the CARIBU (CAlifornium Rare Ion Breeder Upgrade) projects are nearing completion. In addition, the role of ATLAS for the low-energy nuclear physics community needs to be revisited in light of the decision to site the Facility for Rare Isotope Beams

  18. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REGISTRATION FORM Name: First Middle Last Organization: Department: Business Address: Street City State Zip Country Business Phone: Fax: E-mail: Citizenship: Additional information is needed for on-site access for non-US citizens who are not ATLAS Users. To download the form as a word document or pdf file, please go to the ATLAS user website (http://www.phy.anl.gov/atlas/users/visitor_info.html). Please return information to Barbara Weller by July 10, 2009. REGISTRATION Fees (If paying by check,

  19. An atlas of thermal data for biomass and other fuels

    SciTech Connect (OSTI)

    Gaur, S.; Reed, T.B.

    1995-06-01

    Biomass is recognized as a major source of renewable energy. In order to convert biomass energy to more useful forms, it is necessary to have accurate scientific data on the thermal properties of biomass. This Atlas has been written to supply a uniform source of that information. In the last few decades Thermal analysis (TA) tools such as thermogravimetry, differential thermal analysis, thermo mechanical analysis, etc. have become more important. The data obtained from these techniques can provide useful information in terms of reaction mechanism, kinetic parameters, thermal stability, phase transformation, heat of reaction, etc. for gas-solid and gas-liquid systems. Unfortunately, there are no ASTM standards set for the collection of these types of data using TA techniques and therefore, different investigators use different conditions which suit their requirements for measuring this thermal data. As a result, the information obtained from different laboratories is not comparable. This Atlas provides the ability to compare new laboratory results with a wide variety of related data available in the literature and helps ensure consistency in using these data.

  20. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solenoid (i.e., MRI magnet). It has been commissioned, tested and used at ATLAS with secondary short-lived beams. It also has the potential of being moved to other...

  1. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Nuclear Physics at the Department of Energy to upgrade the capabilities of ATLAS in the area of physics with rare isotopes. A copy of the proposal for the CAlifornium...

  2. ATLAS Metadata Task Force

    SciTech Connect (OSTI)

    ATLAS Collaboration; Costanzo, D.; Cranshaw, J.; Gadomski, S.; Jezequel, S.; Klimentov, A.; Lehmann Miotto, G.; Malon, D.; Mornacchi, G.; Nemethy, P.; Pauly, T.; von der Schmitt, H.; Barberis, D.; Gianotti, F.; Hinchliffe, I.; Mapelli, L.; Quarrie, D.; Stapnes, S.

    2007-04-04

    This document provides an overview of the metadata, which are needed to characterizeATLAS event data at different levels (a complete run, data streams within a run, luminosity blocks within a run, individual events).

  3. BioPower Atlas and BioFuels Atlas | Open Energy Information

    Open Energy Info (EERE)

    Atlas and BioFuels Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BioPower Atlas and BioFuels Atlas AgencyCompany Organization: National Renewable Energy...

  4. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Safety Considerations at ATLAS For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Electricity will probably present the greatest hazard potential of your visit to Argonne. Argonne and ATLAS have very specific requirements concerning working on or near electrical equipment. This generally means that you cannot work on a piece of equipment if the cover is off and current carrying conductors or components at 50V or greater are exposed. The preferred way

  5. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Equipment Information There are several major pieces of experimental equipment at ATLAS. These are listed below along with contact information for the system experts: Gammasphere (Mike Carpenter) Fragment Mass Analyzer (Cary Davids or Darek Seweryniak ) Helical Orbit Spectrometer (Birger Back) Enge Split Pole Spectrograph (Ernst Rehm) Canadian Penning Trap (Guy Savard) Large Scattering Chamber (Shaofei Zhu) Atom Trap at ATLAS (Zheng-Tian Lu or Peter Mueller) There are additional

  6. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guest Facilities User Agreement All ATLAS Facility Users must have an appointment at Argonne to work at the facility. In order for a non-Argonne person to perform research at ATLAS the Department of Energy requires that a Guest Facilities User Agreement be executed. The purpose of the User Agreement is to define administrative obligations such as safety, liability, ownership of property, and intellectual property rights. These rights and obligations vary based upon category of use.

  7. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Initiatives at ATLAS Birger B. Back June 10, 2009. HELIOS Description: The Helical Orbit Spectrometer (HELIOS) is a novel spectrometer that will enable us to carry out detailed nuclear structure studies via inverse kinematics reactions using re-accelerated, neutron-rich beams from the new CARIBU injector as well as radioactive beams produced by the in-flight method at ATLAS. The spectrometer design has several advantages over conventional techniques using large-area Si detectors. These

  8. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 ATLAS User’s Meeting: May 15-16, 2014 Dear Colleagues, The ATLAS accelerator complex at Argonne National Laboratory restarted operation after an extended shutdown to complete its intensity and efficiency upgrade. This upgrade project consisted of a reconfigured injection line and a positive-ion injector that now includes a high-intensity CW RFQ for initial acceleration. In addition, a major reconfiguration of the booster section was also part of the project. A new cryostat with

  9. NETL NATCARB - Atlas | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATCARB/Atlas Carbon Storage Atlas - Fifth Edition (Atlas V) (2015) Carbon Storage Atlas The primary purpose of the U.S. Department of Energy (DOE) Carbon Storage Atlas is to provide a coordinated update of carbon capture and storage (CCS) potential across the United States and other portions of North America. DOE has released five versions of the atlas with the most recent, "DOE's Carbon Storage Atlas - Fifth Edition (Atlas V)," made publicly available in August 2015. Atlas V contains

  10. Type B Accident Investigation of the Mineral Oil Leak Discovered on January 8, 2001, Resulting in Property Damage at the Atlas Facility, Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is an independent product of the Type B Accident Investigation Board appointed by Acting Chief Operating Officer for Defense Programs, Ralph E. Erickson.

  11. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    SciTech Connect (OSTI)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio.

  12. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dear Friend, Please, mark the dates of Friday October 22 and Saturday October 23, 2010! We are planning a symposium to celebrate the 25th anniversary of the dedication of ATLAS which took place on June 25, 1985. ATLAS was the world's first superconducting linac for ions. Since its dedication as a National User Facility, more than a thousand experiments by well over 2000 users world-wide, have taken advantage of the unique capabilities it provides. The 1-1/2 day symposium will highlight the

  13. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS USERS WORKSHOP: AGENDA Saturday, August 8 (Bldg. 203 Auditorium) 8:45 - 9:15 Registration & Coffee 9:15 - 9:30 Welcome & introduction to the meeting: W. Loveland An updated Strategic Plan: Why? R. Janssens 9:30 - 10:00 Status of ATLAS (& Energy Upgrade) R. Pardo 10:00 - 10:30 Status of CARIBU R. Pardo & G. Savard 10:30 - 10:45 Coffee 10:45 - 12:45 Status report on existing equipment & Planned Upgrades*: 10:45 - 11:00 HELIOS A. Wuosmaa 11:00 - 11:15 Gammasphere M.

  14. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 ATLAS User’s Meeting: May 15-16, 2014 Dear Colleagues, The ATLAS accelerator complex at Argonne National Laboratory is restarting operation after an extended shutdown to complete its intensity and efficiency upgrade. This upgrade project consisted of a reconfigured injection line and a positive-ion injector that now includes a high-intensity CW RFQ for initial acceleration. In addition, a major reconfiguration of the booster section was also part of the project. A new cryostat with

  15. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2-3, 2010 ATLAS PAC Meeting Please note: Because of the pressure on ATLAS beam time, the PAC ranked the approved experiments in two categories. Priority I experiments are those that must be run at all costs. Priority II experiments are those that should be granted beam time (indicated in parenthesis) if at all possible. Priority I experiments are approved for the present cycle of experiments, but can be run during the next PAC cycle as well if scheduling conflicts occur. Priority II

  16. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 22-23, 2011 ATLAS PAC Meeting Please note: Because of the pressure on ATLAS beam time, the PAC ranked the approved experiments in two categories. Priority I experiments are those that must be run at all costs. Priority II experiments are those that should be granted beam time (indicated in parenthesis) if at all possible. Priority I experiments are approved for the present cycle of experiments, but can be run during the next PAC cycle as well if scheduling conflicts occur. Priority II

  17. Biofuels Atlas (United States) | Open Energy Information

    Open Energy Info (EERE)

    Atlas (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biofuels Atlas (United States) Focus Area: Clean Transportation Topics: Potentials & Scenarios...

  18. Atlas Solar Innovations | Open Energy Information

    Open Energy Info (EERE)

    Innovations Jump to: navigation, search Logo: Atlas Solar Innovations Name: Atlas Solar Innovations Address: 2640 NW 15th Court Place: Pompano Beach, Florida Zip: 33069 Sector:...

  19. River Hydrokinetic Resource Atlas | Open Energy Information

    Open Energy Info (EERE)

    dress":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English River Hydrokinetic Resource Atlas Screenshot References: EPRI1 River Atlas2 The...

  20. Template:AtlasTabs | Open Energy Information

    Open Energy Info (EERE)

    AtlasTabs Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleTemplate:AtlasTabs&oldid686795...

  1. Automated Transportation Logistics and Analysis System (ATLAS...

    Office of Environmental Management (EM)

    Automated Transportation Logistics and Analysis System (ATLAS) ATLAS is an integrated web-based logistics management system allowing users to manage inbound and outbound freight ...

  2. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ATLAS Program Advisory Committee (PAC) Current PAC Membership: Gordon Ball TRIUMF Dan Bardayan University of Notre Dame Peter Butler University of Liverpool Michael Carpenter Argonne National Laboratory Alexandra Gade Michigan State University Walter Loveland (Chair) Oregon State University Thomas Papenbrock The University of Tennessee, Knoxville Nicolas Scielzo (UEC Chair) Lawrence Livermore National Laboratory Ingo Wiedenhoever Florida State University

  4. Carbon Sequestration Atlas IV Video

    SciTech Connect (OSTI)

    Rodosta, Traci

    2013-04-19

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  5. Carbon Sequestration Atlas IV Video

    ScienceCinema (OSTI)

    Rodosta, Traci

    2014-06-27

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  6. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  7. THE AKARI 2.5-5.0 ?m SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOR, LINE RATIO, AND HOT DUST TEMPERATURE

    SciTech Connect (OSTI)

    Kim, Dohyeong; Im, Myungshin; Kim, Ji Hoon; Jun, Hyunsung David; Lee, Seong-Kook; Woo, Jong-Hak; Lee, Hyung Mok; Lee, Myung Gyoon; Nakagawa, Takao; Matsuhara, Hideo; Wada, Takehiko; Takagi, Toshinobu; Oyabu, Shinki; Ohyama, Youichi E-mail: mim@astro.snu.ac.kr

    2015-01-01

    We present 2.5-5.0?m spectra of 83 nearby (0.002 < z < 0.48) and bright (K < 14 mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0?m spectral region contains emission lines such as Br? (2.63?m), Br? (4.05?m), and polycyclic aromatic hydrocarbons (3.3?m), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson etal. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ?1100 K and ?220 K, respectively, rather than the commonly cited hot dust temperature of 1500 K.

  8. ATLAS Support Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Support Center Our mission is to support ATLAS physics analyses and hardware R&D, in particular for U.S. ATLAS physicists. We are one of the three ATLAS Support Centers in the U.S. We offer for ATLAS users: A model Tier-3 (T3g) for ATLAS analysis Meeting and office space for visitors A dedicated video conference facility Computer accounts ATLAS software expertise and consultation T3g setup expertise and consultation Analysis expertise and consultation The support center is operated by

  9. WESTCARB Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  10. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stable Beams Available from ATLAS Updated August, 2009 Beam currents listed in the table were obtained with naturally occurring material for the given isotope. The maximum energy quoted corresponds to the that computed with the optimal charge state. Higher energies are possible by using another charge state or by double stripping. a Other isotopes available with currents proportional to their abundance. For more beam current isotopically enriched material may be used, but the User should, in

  11. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stable Beams Available from ATLAS Updated August, 2009 Beam currents listed in the table were obtained with naturally occurring material for the given isotope. The maximum energy quoted corresponds to the that computed with the optimal charge state. Higher energies are possible by using another charge state or by double stripping. a Other isotopes available with currents proportional to their abundance. For more beam current isotopically enriched material may be used, but the User should, in

  12. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive Beams Delivered by ATLAS Updated July, 2009 a Beams produced using the "In-flight" method (Rev. Sci. Instrum. 71, 380 (2008)) (see below). b Beams produced using the "Two-accelerator" or "Batch" method (see below). c Allowed maximum radiation may limit beam current. d Used so far for implantation only. Ion Half-Life Reaction Intensity (ions/sec/pnA) Opening Angle (degrees) Production Energy (MeV) Max. Rate (ions/sec) 6Hea,c 0.807 sec d(7Li,6He)3He 150 19

  13. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Considerations at ATLAS For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Equipment Safety Reviews are required whenever new equipment is brought in for an experiment. The review is conducted by the Physics Division safety committee. If you plan to bring in your own detectors or other equipment for an experiment, it will need to reviewed. If a safety review is required for your equipment, you will need to fill out a Hazard Analysis form. Forms

  14. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Shaofei Zhu ATLAS User Liaison Physicist zhu@anl.gov (630) 252-4412 Shaofei Zhu Barbara Weller Administrative Secretary bweller@anl.gov (630) 252-4044 Barbara Weller Tom Mullen Safety Engineer tpmullen@anl.gov (630) 252-2879 Tom Mullen John P. Greene Target Making greene@anl.gov (630) 252-5364 Target Lab Homepage John Greene Beamline and Equipment Support John Rohrer rohrer@phy.anl.gov (630) 252-4047 John Rohrer Detector Support Dale Henderson (STA) henderson@phy.anl.gov

  15. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive Beams Delivered by ATLAS Updated July, 2009 a Beams produced using the "In-flight" method (see below). b Beams produced using the "Two-accelerator" or "Batch" method (see below). c Allowed maximum radiation may limit beam current. d Used so far for implantation only. Ion Half-Life Reaction Intensity (ions/sec/pnA) Opening Angle (degrees) Production Energy (MeV) Max. Rate (ions/sec) 6Hea,c 0.807 sec d(7Li,6He)3He 150 19 75 1 x 104 8Lia,c 0.838 sec

  16. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  17. From whence did ATLAS arise?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    whence did ATLAS arise? (the quarter century: 1960-85) Once upon a time, there was an Argonne tandem (started 1960) Here is a typical schedule from the 60-s. 2 We even had an...

  18. ATLAS upgrade June09_v3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS efficiency and intensity upgrade Guy Savard and Robert V. F. Janssens June 12, 2009 The ATLAS facility is on a constant quest to improve and increase the capabilities it...

  19. Global Atlas | OpenEI Community

    Open Energy Info (EERE)

    Global Atlas Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 11 February, 2013 - 15:18 IRENA launches global atlas of renewable energy potential data...

  20. Atlas Lighting: Order (2015-CE-48001)

    Broader source: Energy.gov [DOE]

    DOE ordered Atlas Lighting Products to pay a $6,000 civil penalty after finding Atlas Lighting had failed to certify that certain models of illuminated exit signs comply with the applicable energy conservation standards.

  1. ATLAS_Strategic_Plan_14_August _9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Accelerator Facility Physics Division Argonne National Laboratory Argonne, IL June 2014 2 Introduction This strategic plan is developed jointly by the ATLAS user community and the Physics Division at Argonne National Laboratory. This plan is a public document, hence available to the entire ATLAS user community, and is updated as the need arises. In practice, the community discusses this plan at regular ATLAS Users Workshops, the most recent of which was held on May 15-16, 2014. The users'

  2. European Wind Atlas: Offshore | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-offshore,http:c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  3. European Wind Atlas: Onshore | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-onshore,http:cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  4. European Wind Atlas: France | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-france,http:cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  5. Consumer Energy Atlas

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This first edition of the Atlas provides, in reference form, a central source of information to consumers on key contacts concerned with energy in the US. Energy consumers need information appropriate to local climates and characteristics - best provided by state and local governments. The Department of Energy recognizes the authority of state and local governments to manage energy programs on their own. Therefore, emphasis has been given to government organizations on both the national and state level that influence, formulate, or administer policies affecting energy production, distribution, and use, or that provide information of interest to consumers and non-specialists. In addition, hundreds of non-government energy-related membership organizations, industry trade associations, and energy publications are included.

  6. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approved ATLAS Experiments Sorted by PAC meetings: November 6-7, 2015 March 8-9, 2015 September 19, 2014 November 22-23, 2013 December 14-15, 2012 January 13-14, 2012 April 22-23, 2011 April 2-3, 2010 June 26-27, 2009 June 27-28, 2008 November 2-3, 2007 September 15-16, 2006 January 20-21, 2006 May 20-21, 2005 June 4-5, 2004 September 19-20, 2003 February 7-8, 2003 May 3, 2002 October 5, 2001 March 2, 2001 Sep 11, 2000 March 3, 2000 October 11, 1999 May 21, 1999 November 9. 1998 May 8, 1998

  7. Atlas Multimedia Educational Lab for Interactive Analysis

    Energy Science and Technology Software Center (OSTI)

    2008-04-01

    AMELIA is an application with focus on particle physics processes in ATLAS. This will allow students and othe users to decode the collision events that unfold after the head-on collisions of protons at the Large hadron Collider. AMELIA uses the Irrlicht engine for the 3D graphics and wxWidgets for the interface. It uses the best aspects of technical animation and allows users to control 3D representations of collision events and to manipulate 3D models ofmore » the detector and see how particles are detected as they pass through. It allows the user to rotate, zoom and select virtual pieces of the ATLAS detector and events. The characteristics of the events (momentum etc.) can also be read, and one can select tracks for analysis, activate context-oriented media, etc. This framework intends to integrate different types of media into a single product. This way, videos, animations, sound, interactive visualization and data analysis will be bound together in the same package.-« less

  8. Atlas Multimedia Educational Lab for Interactive Analysis

    SciTech Connect (OSTI)

    Pequenao, Joao

    2008-04-01

    AMELIA is an application with focus on particle physics processes in ATLAS. This will allow students and othe users to decode the collision events that unfold after the head-on collisions of protons at the Large hadron Collider. AMELIA uses the Irrlicht engine for the 3D graphics and wxWidgets for the interface. It uses the best aspects of technical animation and allows users to control 3D representations of collision events and to manipulate 3D models of the detector and see how particles are detected as they pass through. It allows the user to rotate, zoom and select virtual pieces of the ATLAS detector and events. The characteristics of the events (momentum etc.) can also be read, and one can select tracks for analysis, activate context-oriented media, etc. This framework intends to integrate different types of media into a single product. This way, videos, animations, sound, interactive visualization and data analysis will be bound together in the same package.-

  9. Energy Datapalooza Community | OpenEI Community

    Open Energy Info (EERE)

    > Energy Datapalooza Community Content Group Activity By term Q & A Feeds Term: Global Atlas Type Term Title Author Replies Last Post sort icon Blog entry Global Atlas IRENA...

  10. The ATLAS Positron Experiment -- APEX

    SciTech Connect (OSTI)

    Ahmad, I.; Back, B.B.; Betts, R.R.; Dunford, R.; Kutschera, W.; Rhein, M.D.; Schiffer, J.P.; Wilt, P.; Wuosmaa, A.; Austin, S.M.; Kashy, E.; Winfield, J.S.; Yurkon, J.E.; Bazin, D.; Calaprice, F.P.; Young, A.; Chan, K.C.; Chisti, A.; Chowhury, P.; Greenberg, J.S.; Kaloskamis, N.; Lister, C.J.; Fox, J.D.; Roa, E.; Freedman, S.; Maier, M.R.; Freer, M.; Gazes, S.; Hallin, A.L.; Liu, M.; Happ, T.; Perera, A.; Wolfs, F.L.H.; Trainor, T.; Wolanski, M. |

    1994-03-01

    APEX -- the ATLAS Positron Experiment -- is designed to measure electrons and positrons emitted in heavy-ion collisions. Its scientific goal is to gain insight into the puzzling positron-line phenomena observed at the GSI Darmstadt. It is in operation at the ATLAS accelerator at Argonne National Lab. The assembly of the apparatus is finished and beginning 1993 the first positrons produced in heavy-ion collisions were observed. The first full scale experiment was carried out in December 1993, and the data are currently being analyzed. In this paper, the principles of operation are explained and a status report on the experiment is given.

  11. ATLAS Science and Technology Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    th Anniversary Celebration October 22-23, 2010 Physics Division, Argonne National Laboratory Building 203, Auditorium Friday, October 22: The Past as Prologue 8:00 - 8:30 Registration and coffee Chair: R.V.F. Janssens 8:30 - 8:45 Welcome by Laboratory Director and ALD E. Isaacs/S. Streiffer 8:45 - 9:30 Summary of the History of ATLAS W.F. Henning Chair: B.B. Back 9:30 - 10:30 Reminiscences 10:30 - 10:50 Break Chair: J. Nolen 10:50 - 11:25 The Impact of ATLAS on SRF Development and Applications

  12. Solar Atlas (PACA Region - France) | Open Energy Information

    Open Energy Info (EERE)

    Atlas (PACA Region - France) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Atlas (PACA Region - France) AgencyCompany Organization: MINES ParisTech Sector:...

  13. Wind Energy Atlas of Brazil | Open Energy Information

    Open Energy Info (EERE)

    Atlas of Brazil Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Atlas of Brazil Focus Area: Renewable Energy Topics: Potentials & Scenarios Website:...

  14. Ontario Renewable Energy Atlas (Canada) | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Atlas (Canada) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ontario Renewable Energy Atlas (Canada) Focus Area: Renewable Energy Topics: Potentials &...

  15. 2010 Carbon Sequestration Atlas of the United States and Canada...

    Open Energy Info (EERE)

    10 Carbon Sequestration Atlas of the United States and Canada: Third Edition Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 2010 Carbon Sequestration Atlas of the...

  16. ATLAS diboson excesses from the stealth doublet model (Journal...

    Office of Scientific and Technical Information (OSTI)

    ATLAS diboson excesses from the stealth doublet model Title: ATLAS diboson excesses from the stealth doublet model Authors: Chao, Wei Search DOE PAGES for author "Chao, Wei" Search...

  17. Global Atlas for Solar and Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Atlas for Solar and Wind Energy Jump to: navigation, search Tool Summary Name: Global Atlas for Solar and Wind Energy AgencyCompany Organization: International Renewable Energy...

  18. DOE - NNSA/NFO -- Photo Library ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - ATLAS Pulsed-Power Generator The ATLAS pulsed-power generator is one of many alternatives to underground nuclear testing. Pulsed power can concentrate high total energies on larger (centimeter-scale) experimental targets for relatively long periods of times compared to other Stockpile Stewardship experiments. Instructions: Click the photograph THUMBNAIL to view the photograph details Click the Category, Number,

  19. Wind Energy Resource Atlas of Armenia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G. Scott, S. Haymes, D. Heimiller, R. George National Renewable Energy Laboratory Wind Energy Resource Atlas of Armenia July 2003 * NRELTP-500-33544 Wind Energy Resource...

  20. ATLAS_Strategic_Plan_09_v5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IL November 2009 2 Introduction This strategic plan is developed jointly by the ATLAS user community and the Physics Division at Argonne National Laboratory. This plan is a...

  1. ATLAS APPROVED IN-BEAM EXPERIMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 785 Baktash Band Termination, Superdeformation and Complex Clusters in 32S 5 TOTAL 82 ATLAS APPROVED SOURCE EXPERIMENTS (Depending on Gammasphere Availability) Exp Spokesperson...

  2. Carbon Storage Atlas, Employee Newsletter Earn International...

    Broader source: Energy.gov (indexed) [DOE]

    internal employee newsletter, inTouch, earned 2013 National Association of Government Communicators awards. NETL's Carbon Storage Atlas IV and FE's internal employee newsletter, ...

  3. Commissioning of the ATLAS pixel detector

    SciTech Connect (OSTI)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  4. World Bank eAtlas of Global Development | Open Energy Information

    Open Energy Info (EERE)

    World Bank eAtlas of Global Development1 "This eAtlas, a new online companion to Atlas of Global Development, third edition, builds on the Atlas topics, allowing you to...

  5. Upgrading the ATLAS control system

    SciTech Connect (OSTI)

    Munson, F.H.; Ferraretto, M.

    1993-09-01

    Heavy-ion accelerators are tools used in the research of nuclear and atomic physics. The ATLAS facility at the Argonne National Laboratory is one such tool. The ATLAS control system serves as the primary operator interface to the accelerator. A project to upgrade the control system is presently in progress. Since this is an upgrade project and not a new installation, it was imperative that the development work proceed without interference to normal operations. An additional criteria for the development work was that the writing of additional ``in-house`` software should be kept to a minimum. This paper briefly describes the control system being upgraded, and explains some of the reasons for the decision to upgrade the control system. Design considerations and goals for the new system are described, and the present status of the upgrade is discussed.

  6. Philippines Wind Energy Resource Atlas Development

    SciTech Connect (OSTI)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  7. atlasUserMeeting14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GRETINA Mario Cromaz, LBNL Work supported under contract number DE-AC02-05CH11231. 2014 ATLAS User's Meeting ANL - May 15-16, 2014 The GRETINA Spectrometer 2 * first generation gamma-ray tracking array * spherical shell of Ge covering 25% of available solid angle (scalable to full 4 coverage) * consists of seven 4-crystal modules (quads), 36-way segmented HPGe crystals (1000 segments) * tracking ability removes need for active suppression, scales to very high efficiencies * physics runs now

  8. Renewable Energy Atlas of the United States

    SciTech Connect (OSTI)

    Kuiper, J.; Hlava, K.; Greenwood, H.; Carr, A.

    2013-12-13

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. This report explains how to add the Atlas to your computer and install the associated software. The report also includes: A description of each of the components of the Atlas; Lists of the Geographic Information System (GIS) database content and sources; and A brief introduction to the major renewable energy technologies. The Atlas includes the following: A GIS database organized as a set of Environmental Systems Research Institute (ESRI) ArcGIS Personal GeoDatabases, and ESRI ArcReader and ArcGIS project files providing an interactive map visualization and analysis interface.

  9. ATLAS at the LHC | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS at the LHC ATLAS at the LHC The Large Hadron Collider in Geneva, Switzerland is the largest physics machine on Earth, and involves a collaboration of thousands of scientists who have used it to investigate the structure and properties of the tiniest building blocks of matter. At one of the experiments being performed on the LHC, called ATLAS, more than 3,000 scientists have undertaken the search for new discoveries based upon the head-on collisions of protons of extraordinarily high

  10. Atlas Lighting: Proposed Penalty (2015-CE-48001)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Atlas Lighting Products failed to certify a variety of illuminated exit sign basic models as compliant with the applicable energy conservation standards.

  11. Canadian Wind Energy Atlas Potential Website | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentcanadian-wind-energy-atlas-potential- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance...

  12. Renewable energy atlas of the United States.

    SciTech Connect (OSTI)

    Kuiper, J.A.; Hlava, K.Greenwood, H.; Carr, A.

    2012-05-01

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. It is designed for the U.S. Department of Agriculture Forest Service (USFS) and other federal land management agencies to evaluate existing and proposed renewable energy projects. Much of the content of the Atlas was compiled at Argonne National Laboratory (Argonne) to support recent and current energy-related Environmental Impact Statements and studies, including the following projects: (1) West-wide Energy Corridor Programmatic Environmental Impact Statement (PEIS) (BLM 2008); (2) Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2010); (3) Supplement to the Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2011); (4) Upper Great Plains Wind Energy PEIS (WAPA/USFWS 2012, in progress); and (5) Energy Transport Corridors: The Potential Role of Federal Lands in States Identified by the Energy Policy Act of 2005, Section 368(b) (in progress). This report explains how to add the Atlas to your computer and install the associated software; describes each of the components of the Atlas; lists the Geographic Information System (GIS) database content and sources; and provides a brief introduction to the major renewable energy technologies.

  13. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    SciTech Connect (OSTI)

    1997-03-01

    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff`s review of Atlas Corporation`s proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs.

  14. Energy Data Jam | OpenEI Community

    Open Energy Info (EERE)

    Global Atlas Type Term Title Author Replies Last Post sort icon Blog entry Global Atlas IRENA launches global atlas of renewable energy potential Graham7781 11 Feb 2013 - 15:18...

  15. United States Atlas of Renewable Resources

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atlas is an interactive application of the renewable energy resources in the contiguous United States, Alaska and Hawaii. It illustrates the geographic distribution of wind, solar, geothermal, and biomass resources, as well as other pertinent information such as transportation network and administrative boundaries.[Copied from http://www.nrel.gov/gis/maps.html

  16. NREL Releases BioEnergy Atlas - a Comprehensive Biomass Mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application - News Releases | NREL NREL Releases BioEnergy Atlas - a Comprehensive Biomass Mapping Application September 28, 2010 BioEnergy Atlas, a Web portal that provides access to two bioenergy analysis and mapping tools, was released today by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The visualization screening tools, BioPower and BioFuels Atlas, allow users to layer related bioenergy data onto a single map to gather information on biomass feedstocks,

  17. Argonne Tandem Linac Accelerator System (ATLAS) Fact Sheet | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) Fact Sheet The ATLAS facility is a leading facility for nuclear structure research in the United States. Any stable ion can be accelerated in ATLAS, the world's first superconducting linear accelerator for ions, and delivered to one of its several target stations. It provides a wide range of beams for nuclear reaction and structure research to a large community of users from the United States and abroad. About 20% of

  18. Wind Resource Atlas of Oaxaca | Open Energy Information

    Open Energy Info (EERE)

    characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas...

  19. Microsoft PowerPoint - CJC_ATLAS09 [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transfer using RIB + 7 Li ti t ATLAS reactions at ATLAS W. B. Walters, C. J. Chiara ATLAS Workshop 8 August 2009 * Investigation of single-particle and i l h l t t single-hole states in neutron-rich nuclei e g near nuclei, e.g. near N=82 (energies, spins parities ) spins, parities...). * Idea presented here is "borrowed", but serves as a reminder of how recently developed techniques y p q can be extended to future ATLAS use. Pioneering work by D. C. Radford: highly selective study of n

  20. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Global Atlas Type Term Title Author Replies Last Post sort icon Blog entry Global Atlas IRENA...

  1. Two-stage atlas subset selection in multi-atlas based image segmentation

    SciTech Connect (OSTI)

    Zhao, Tingting Ruan, Dan

    2015-06-15

    Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors

  2. Targets for the APEX experiment at ATLAS

    SciTech Connect (OSTI)

    Greene, J.P.; Thomas, G.E.; Leonard, R.H.

    1994-12-31

    Targets of lead, tantalum, thorium and uranium have been produced for experiments with the APEX (Argonne Positron Experiment) apparatus at ATLAS (Argonne Tandem Linac Accelerator System). APEX is a device built at Argonne National Laboratory to investigate the anomalous positrons observed in collisions of very heavy ion beams on heavy targets. Both fixed and rotating targets have been used. The rotating target system involves a 4-quadrant wheel rotating at speeds up to 700 rpm with the position encoded into the data stream. In addition to the hundreds of targets produced for the heavy-ion reactions studied, a wide variety of targets were employed for beam diagnostics, detector calibration and target wheel development. The experiment used very heavy ion beams ({sup 238}U, {sup 206}Pb and {sup 208}Pb) from ATLAS and targets of {sup 206}Pb, {sup 208}Pb, {sup 232}Th and {sup 238}U produced in the laboratory.

  3. Term Appointments

    Broader source: Energy.gov [DOE]

    A term appointment is a non-permanent time limited appointment for a period of more than 1 year but not more than 4 years. The appointment allows eiligibility for benefits and retirement coverage.

  4. Recent Higgs results from the ATLAS experiment

    SciTech Connect (OSTI)

    Brendlinger, Kurt; Collaboration: ATLAS Collaboration

    2014-06-24

    This paper presents recent results on the Higgs boson from the ATLAS experiment at the Large Hadron Collider. The Collaboration reports on measurements of the signal strength, couplings, and spin of the Higgs in several decay channels. We find all measurements to be consistent with Standard Model predictions. The Higgs branching fraction to invisible particles is constrained and no evidence of physics beyond the Standard Model is found.

  5. Clean and Renewable Energy | OpenEI Community

    Open Energy Info (EERE)

    > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Global Atlas Type Term Title Author Replies Last Post sort icon Blog entry Global Atlas IRENA...

  6. Energy Data Initiative (EDI) | OpenEI Community

    Open Energy Info (EERE)

    > Energy Data Initiative (EDI) Content Group Activity By term Q & A Feeds Term: Global Atlas Type Term Title Author Replies Last Post sort icon Blog entry Global Atlas IRENA...

  7. Enhancing atlas based segmentation with multiclass linear classifiers

    SciTech Connect (OSTI)

    Sdika, Michaël

    2015-12-15

    Purpose: To present a method to enrich atlases for atlas based segmentation. Such enriched atlases can then be used as a single atlas or within a multiatlas framework. Methods: In this paper, machine learning techniques have been used to enhance the atlas based segmentation approach. The enhanced atlas defined in this work is a pair composed of a gray level image alongside an image of multiclass classifiers with one classifier per voxel. Each classifier embeds local information from the whole training dataset that allows for the correction of some systematic errors in the segmentation and accounts for the possible local registration errors. The authors also propose to use these images of classifiers within a multiatlas framework: results produced by a set of such local classifier atlases can be combined using a label fusion method. Results: Experiments have been made on the in vivo images of the IBSR dataset and a comparison has been made with several state-of-the-art methods such as FreeSurfer and the multiatlas nonlocal patch based method of Coupé or Rousseau. These experiments show that their method is competitive with state-of-the-art methods while having a low computational cost. Further enhancement has also been obtained with a multiatlas version of their method. It is also shown that, in this case, nonlocal fusion is unnecessary. The multiatlas fusion can therefore be done efficiently. Conclusions: The single atlas version has similar quality as state-of-the-arts multiatlas methods but with the computational cost of a naive single atlas segmentation. The multiatlas version offers a improvement in quality and can be done efficiently without a nonlocal strategy.

  8. The ATLAS Experiment: Getting Ready for the LHC

    SciTech Connect (OSTI)

    Jenni, Peter

    2006-05-15

    At CERN the Large Hadron Collider (LHC) project is well advanced. First proton-proton collisions at the high-energy frontier are expected for the second half of 2007. In parallel to the collider construction the powerful general-purpose ATLAS detector is being assembled in its underground cavern by a world-wide collaboration. ATLAS will explore new domains of particle physics. After briefly overviewing the LHC construction and installation progress, the status of the ATLAS experiment will be presented, including examples of the exciting prospects for new physics.

  9. Wind Energy Resource Atlas of the Dominican Republic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2001 * NRELTP-500-27602 Wind Energy Resource Atlas of the Dominican Republic D. Elliott M. Schwartz R. George S. Haymes D. Heimiller G. Scott National Renewable Energy...

  10. Wind Energy Resource Atlas of Armenia (CD-ROM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Atlas of Armenia (CD-ROM) http:www.nrel.govdocsfy03osti33877CD.zip (ZIP 31.9 MB) NRELCD-500-33877 July 2003 Instructions: The URL above links to a zipped archive...

  11. Vermont Agency of Natural Resources Natural Resources Atlas ...

    Open Energy Info (EERE)

    Vermont Agency of Natural Resources Natural Resources Atlas Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Vermont Agency of Natural Resources Natural...

  12. PROJECT PROFILE: Abengoa Solar, LLC - ATLAS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INNOVATION The Advanced Trough with Lower-cost System-Architecture design (ATLAS) builds upon the state-of-the-art SpaceTube large-aperture collector and SolarMat innovative ...

  13. Argonne Physics Division - ATLAS - PAC September 19, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 19, 2014 ATLAS PAC Meeting Please note: Because of the pressure on ATLAS beam time, the PAC ranked the approved experiments in two categories. Priority I experiments are those that must be run at all costs. Priority II experiments are those that should be granted beam time (indicated in parenthesis) if at all possible. Priority I experiments are approved for the present cycle of experiments, but can be run during the next PAC cycle as well if scheduling conflicts occur. Priority II

  14. An energy atlas of five Central American countries. Un atlas energetico de cinco paises Centroamericanos

    SciTech Connect (OSTI)

    Trocki, L.; Newman, C.K.; Gurule, F.; Aragon, P.C.; Peck, C.

    1988-08-01

    In a series of maps and figures, this atlas summarizes what is known about the energy resources and how these resources and oil imports supply the energy needs of five Central American countries: Guatemala, El Salvador, Honduras, Costa Rica, and Panama. The main exploited energy resources are firewood, hydroelectric energy, bagasse from sugar cane residues, and geothermal energy. Limited oil exploration in the region has uncovered modest oil resources only in Guatemala. Peat and small coal deposits are also known to exist but are not presently being exploited. After the description of energy resources, this atlas describes energy supply and demand patterns in each country. It concludes with a description of socioeconomic data that strongly affect energy demand. 4 refs.

  15. A New ATLAS Muon CSC Readout System with System on Chip Technology...

    Office of Scientific and Technical Information (OSTI)

    A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform Citation Details In-Document Search Title: A New ATLAS Muon CSC Readout System with System on...

  16. Wind Atlas Analysis and Application Program (WAsP) | Open Energy...

    Open Energy Info (EERE)

    Atlas Analysis and Application Program (WAsP) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Atlas Analysis and Application Program (WAsP) AgencyCompany...

  17. Coeur d Alene Fiber Fuels Inc aka Atlas | Open Energy Information

    Open Energy Info (EERE)

    Coeur d Alene Fiber Fuels Inc aka Atlas Jump to: navigation, search Name: Coeur d' Alene Fiber Fuels, Inc. (aka Atlas) Place: Hauser, Idaho Zip: ID 83854 Product: Coeur...

  18. NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage Potential NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage Potential September 28, 2015 - ...

  19. Key Terms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Terms Key Terms Three Door Keys data-key-571156_960_720.png Key Terms Low Vision: non-correctable reduced vision Blindness: lack of visual perception Hearing Impairment: full or partial decrease in the ability to detect or understand sounds Physical Impairment: a physical condition that permanently prevents normal body movement or control Cognitive Disabilities: difficulty with one or more types of mental tasks

  20. Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 -- interpreted in the phenomenological MSSM

    SciTech Connect (OSTI)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D’Auria, S.; D’Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell’Acqua, A.; Dell’Asta, L.; Dell’Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn’ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G. -Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O’Brien, B. J.; O’grady, F.; O’Neil, D. C.; O’Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; St. Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzo, T. G.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-10-21

    A summary of the constraints from the ATLAS experiment on R -parity-conserving supersymmetry is presented. Results from 22 separate ATLAS searches are considered, each based on analysis of up to 20.3 fb–1 of proton-proton collision data at centre-of-mass energies of √s =7 and 8 TeV at the Large Hadron Collider. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, in which the lightest supersymmetric particle is a neutralino, taking into account constraints from previous precision electroweak and flavour measurements as well as from dark matter related measurements. The results are presented in terms of constraints on supersymmetric particle masses and are compared to limits from simplified models. The impact of ATLAS searches on parameters such as the dark matter relic density, the couplings of the observed Higgs boson, and the degree of electroweak fine-tuning is also shown. As a result, spectra for surviving supersymmetry model points with low fine-tunings are presented.

  1. Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 -- interpreted in the phenomenological MSSM

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2015-10-21

    A summary of the constraints from the ATLAS experiment on R -parity-conserving supersymmetry is presented. Results from 22 separate ATLAS searches are considered, each based on analysis of up to 20.3 fb–1 of proton-proton collision data at centre-of-mass energies of √s =7 and 8 TeV at the Large Hadron Collider. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, in which the lightest supersymmetric particle is a neutralino, taking into account constraints from previous precision electroweak and flavour measurements as well as from dark matter related measurements. The results are presented in terms ofmore » constraints on supersymmetric particle masses and are compared to limits from simplified models. The impact of ATLAS searches on parameters such as the dark matter relic density, the couplings of the observed Higgs boson, and the degree of electroweak fine-tuning is also shown. As a result, spectra for surviving supersymmetry model points with low fine-tunings are presented.« less

  2. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    SciTech Connect (OSTI)

    Akerstedt, Henrik; Muschter, Steffen; Drake, Gary; Anderson, Kelby; Bohm, Christian; Oreglia, Mark; Tang, Fukun

    2015-10-01

    The Tile Calorimeter at ATLAS [1] is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links, will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new readout system will be installed in one slice of the ATLAS Tile Calorimeter. This will allow the proposed upgrade to be thoroughly evaluated well before the planned 2023 deployment in all slices, especially with regard to long term reliability. Different firmware strategies alongside with their integration in the demonstrator are presented in the context of high reliability protection against hardware malfunction and radiation induced errors.

  3. Preliminary Results of 3D-DDTC Pixel Detectors for the ATLAS Upgrade

    SciTech Connect (OSTI)

    La Rosa, Alessandro; /CERN; Boscardin, M.; /Fond. Bruno Kessler, Povo; Dalla Betta, G.-F.; /Trento U. /INFN, Trento; Darbo, G.; Gemme, C.; /INFN, Genoa; Pernegger, H.; /CERN; Piemonte, C.; /Fond. Bruno Kessler, Povo; Povoli, M.; /Trento U. /INFN, Trento; Ronchin, S.; /Fond. Bruno Kessler, Povo; Zoboli, A.; /Trento U. /INFN, Trento; Zorzi, N.; /Fond. Bruno Kessler, Povo; Bolle, E.; /Oslo U.; Borri, M.; /INFN, Turin /Turin U.; Da Via, C.; /Manchester U.; Dong, S.; /SLAC; Fazio, S.; /Calabria U.; Grenier, P.; /SLAC; Grinstein, S.; /Barcelona, IFAE; Gjersdal, H.; /Oslo U.; Hansson, P.; /SLAC; Huegging, F.; /Bonn U. /SLAC /INFN, Turin /Turin U. /Oslo U. /Bergen U. /Oslo U. /Prague, Tech. U. /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

    2012-04-04

    3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180 GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200 {mu}m, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110 {mu}m to 150 {mu}m. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am{sup 241} {gamma}-ray sources, charge collection tests with Sr90 {beta}-source and an overview of preliminary results from the CERN beam test.

  4. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    SciTech Connect (OSTI)

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; /SUNY, Albany /Alberta U. /Ankara U. /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington /Athens U. /Natl. Tech. U., Athens /Baku, Inst. Phys. /Barcelona, IFAE /Belgrade U. /VINCA Inst. Nucl. Sci., Belgrade /Bergen U. /LBL, Berkeley /Humboldt U., Berlin /Bern U., LHEP /Birmingham U. /Bogazici U. /INFN, Bologna /Bologna U.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. In this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of

  5. Types of Lighting in Commercial Buildings - Lighting Types

    U.S. Energy Information Administration (EIA) Indexed Site

    is termed fluorescence). A ballast is required to regulate and control the current and voltage. Two types of ballasts are used, magnetic and electronic. Electronic ballasts have...

  6. Status of the AFP project in the ATLAS experiment

    SciTech Connect (OSTI)

    Taevsk, Marek

    2015-04-10

    Status of the AFP project in the ATLAS experiment is summarized. The AFP system is composed of a tracker to detect intact, diffractively scattered protons, and of a time-of-flight detector serving to suppress background from pile-up interactions. The whole system, located around 210?m from the main ATLAS detector, is placed in Roman Pots which move detectors from and to the incident proton beams. A typical distance of the closest approach of the tracker to these beams is 23?mm. The main physics motivation lies in measuring diffractive processes in runs with not a very high amount of pile-up.

  7. Argonne Physics Division - ATLAS - PAC December 14-15, 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 14-15, 2012 ATLAS PAC Meeting Please note: Because of the pressure on ATLAS beam time, the PAC ranked the approved experiments in two categories. Priority I experiments are those that must be run at all costs. Priority II experiments are those that should be granted beam time (indicated in parenthesis) if at all possible. Priority I experiments are approved for the present cycle of experiments, but can be run during the next PAC cycle as well if scheduling conflicts occur. Priority II

  8. Argonne Physics Division - ATLAS - PAC December 14-15, 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 22-23, 2013 ATLAS PAC Meeting Please note: Because of the pressure on ATLAS beam time, the PAC ranked the approved experiments in two categories. Priority I experiments are those that must be run at all costs. Priority II experiments are those that should be granted beam time (indicated in parenthesis) if at all possible. Priority I experiments are approved for the present cycle of experiments, but can be run during the next PAC cycle as well if scheduling conflicts occur. Priority II

  9. Argonne Physics Division - ATLAS - PAC January 13-14, 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 13-14, 2012 ATLAS PAC Meeting Please note: Because of the pressure on ATLAS beam time, the PAC ranked the approved experiments in two categories. Priority I experiments are those that must be run at all costs. Priority II experiments are those that should be granted beam time (indicated in parenthesis) if at all possible. Priority I experiments are approved for the present cycle of experiments, but can be run during the next PAC cycle as well if scheduling conflicts occur. Priority II

  10. Argonne Physics Division - ATLAS - PAC March 08, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 08-09, 2015 ATLAS PAC Meeting Please note: Because of the pressure on ATLAS beam time, the PAC ranked the approved experiments in two categories. Priority I experiments are those that must be run at all costs. Priority II experiments are those that should be granted beam time (indicated in parenthesis) if at all possible. Priority I experiments are approved for the present cycle of experiments, but can be run during the next PAC cycle as well if scheduling conflicts occur. Priority II

  11. Argonne Physics Division - ATLAS - PAC November 6, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 06-07, 2015 ATLAS PAC Meeting Please note: Because of the pressure on ATLAS beam time, the PAC ranked the approved experiments in two categories. Priority I experiments are those that must be run at all costs. Priority II experiments are those that should be granted beam time (indicated in parenthesis) if at all possible. Priority I experiments are approved for the present cycle of experiments, but can be run during the next PAC cycle as well if scheduling conflicts occur. Priority II

  12. Atlas of solar hidden photon emission

    SciTech Connect (OSTI)

    Redondo, Javier

    2015-07-20

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0–1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.

  13. Report to users of ATLAS - September 1998.

    SciTech Connect (OSTI)

    Ahmad, I.; Hofman, D.

    1998-11-18

    The ATLAS facility has provided a total of 5749 hours of beam for research in FY1998. The accelerator operation had a very high 93% reliability factor during that period. With the startup of Gammasphere in January, our schedule has attempted to minimize scheduled downtime and maximize beam-time for research. Our best performance so far occurred during the month of May when a total of 639 hours was provided for research. From the accelerator point-of-view, recent major highlights have included first operation of a new production configuration for our {sup 17}F beams which increased the beam current on-target to 2 x 10{sup 6} {sup 17}F ions/see. The {sup 17}F production target was moved approximately 4 meters upstream and a new superconducting solenoid was added to the system to refocus the highly divergent secondary beam. This new location also places the target upstream of a new superconducting resonator which was used to reduce the energy spread of the beam delivered to the spectrograph to less than 300 keV (FWHM). An improved, liquid nitrogen cooled, multiple gas cell has also significantly contributed to better performance.

  14. Failure Atlas for Rolling Bearings in Wind Turbines

    SciTech Connect (OSTI)

    Tallian, T. E.

    2006-01-01

    This Atlas is structured as a supplement to the book: T.E. Tallian: Failure Atlas for Hertz Contact Machine Elements, 2nd edition, ASME Press New York, (1999). The content of the atlas comprises plate pages from the book that contain bearing failure images, application data, and descriptions of failure mode, image, and suspected failure causes. Rolling bearings are a critical component of the mainshaft system, gearbox and generator in the rapidly developing technology of power generating wind turbines. The demands for long service life are stringent; the design load, speed and temperature regimes are demanding and the environmental conditions including weather, contamination, impediments to monitoring and maintenance are often unfavorable. As a result, experience has shown that the rolling bearings are prone to a variety of failure modes that may prevent achievement of design lives. Morphological failure diagnosis is extensively used in the failure analysis and improvement of bearing operation. Accumulated experience shows that the failure appearance and mode of failure causation in wind turbine bearings has many distinguishing features. The present Atlas is a first effort to collect an interpreted database of specifically wind turbine related rolling bearing failures and make it widely available. This Atlas is structured as a supplement to the book: T. E. Tallian: Failure Atlas for Hertz Contact Machine Elements, 2d edition, ASME Press New York, (1999). The main body of that book is a comprehensive collection of self-contained pages called Plates, containing failure images, bearing and application data, and three descriptions: failure mode, image and suspected failure causes. The Plates are sorted by main failure mode into chapters. Each chapter is preceded by a general technical discussion of the failure mode, its appearance and causes. The Plates part is supplemented by an introductory part, describing the appearance classification and failure classification

  15. ATLAS/BNL Physicist Marc-Andre Pleier Explains the Higgs Mechanism

    SciTech Connect (OSTI)

    Pleier,Marc-Andre

    2013-10-07

    ATLAS/BNL Physicist Marc-Andre Pleier explains his role in analyzing data from the Large Hadron Collider and the search for the Higgs boson

  16. IRENA launches global atlas of renewable energy potential | OpenEI...

    Open Energy Info (EERE)

    IRENA launches global atlas of renewable energy potential Home > Groups > Utility Rate Graham7781's picture Submitted by Graham7781(2017) Super contributor 11 February, 2013 -...

  17. Electronic Atlas Maps U.S. Renewable Energy Resources - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Electronic Atlas Maps U.S. Renewable Energy Resources January 6, 2012 A new geospatial application developed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) allows users to easily and accurately map potential renewable energy resources in the United States. The interactive tool, RE Atlas, is free to use and available online at http://maps.nrel.gov/re_atlas. "Ease of use and breadth of data make RE Atlas an excellent tool for policymakers, planners,

  18. ATLAS/BNL Physicist Marc-Andre Pleier Explains the Higgs Mechanism

    ScienceCinema (OSTI)

    Pleier,Marc-Andre

    2014-06-04

    ATLAS/BNL Physicist Marc-Andre Pleier explains his role in analyzing data from the Large Hadron Collider and the search for the Higgs boson

  19. NETL’s 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage Potential

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) today released the fifth edition of the Carbon Storage Atlas (Atlas V), which shows prospective carbon dioxide (CO2) storage resources of at least 2,600 billion metric tons – an increase over the findings of the 2012 Atlas.

  20. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (83/3Q) Short-Term Energy Outlook iuarterly Projections August 1983 Energy Information Administration Washington, D.C. 20585 t rt jrt- .ort- iort- iort- iort- nort- lort- '.ort- ort- Tt- .-m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term Term .-Term -Term xrm Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy -OJ.UUK Outlook Outlook Outlook Outlook Outlook Outlook

  1. Vector and Scalar Bosons at DØ and ATLAS

    SciTech Connect (OSTI)

    Lammers, Sabine Sabine

    2014-09-26

    Vector Boson Fusion (VBF) has never been measured in hadron collisions, but it is one of the most sensitive modes for low mass Standard Model Higgs production at ATLAS. The objective of this proposal is to measure VBF production of W and Z bosons at the DØ Experiment taking place at the Tevatron Collider near Chicago, Illinois, and at the ATLAS Experiment, running at the Large Hadron Collider in Geneva, Switzerland. The framework developed in these measurements will be used to discover and study the Higgs Boson produced through the same mechanism (VBF) at ATLAS. The 10 f b−1 dataset recently collected by the DØ experiment provides a unique opportunity to observe evidence of VBF production of W Bosons, which will provide the required theoretical knowledge - VBF cross sections - and experimental knowledge - tuning of measurement techniques - on which to base the VBF measurements at the LHC. At the time of this writing, the ATLAS experiment has recorded 5 fb−1 of data at √s = 7 TeV, and expects to collect at least another 5 in 2012. Assuming Standard Model cross sections, this dataset will allow for the observation of VBF production of W, Z and Higgs bosons. The major challenges for the first observation of VBF interactions are: developing highly optimized forward jet identification algorithms, and accurately modeling both rates and kinematics of background processes. With the research program outlined in this grant proposal, I plan to address each of these areas, paving the way for VBF observation. The concentration on VBF production for the duration of this grant will be at ATLAS where the anticipated high pileup rates necessitates a cleaner signal. My past experience with forward jet identification at the ZEUS experiment, and with W+(n)Jets measurements at DØ , puts me in a unique position to lead this effort. The proposed program will have a dual focus: on DØ where the VBF analysis effort is mature and efforts of a postdoc will be required to bring the

  2. Searches for scalar leptoquarks in pp collisions at √s = 8 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2016-01-05

    In this study, searches for pair-produced scalar leptoquarks are performed using 20 fb-1 of proton–proton collision data provided by the LHC and recorded by the ATLAS detector at √s = 8 TeV. Events with two electrons (muons) and two or more jets in the final state are used to search for first (second)-generation leptoquarks. The results from two previously published ATLAS analyses are interpreted in terms of third-generation leptoquarks decaying to bντb¯ν¯τ and tντt¯ν¯τ final states. No statistically significant excess above the Standard Model expectation is observed in any channel and scalar leptoquarks are excluded at 95 % CL withmore » masses up to mLQ1 < 1050 GeV for first-generation leptoquarks, mLQ2 < 1000 GeV for second-generation leptoquarks, mLQ3 < 625 GeV for third-generation leptoquarks in the bντb¯ν¯τ channel, and 200 mLQ3 < 640 GeV in the tντt¯ν¯τ.« less

  3. Measurement of the properties of the Higgs boson at ATLAS

    SciTech Connect (OSTI)

    Bristow, Timothy; Collaboration: ATLAS Collaboration

    2014-03-05

    An update on the Higgs boson search in the decay channels H???, H?ZZ{sup (*)}?4l, H?WW{sup (*)}?lvlv, H??{sup +}?{sup ?} and H?bb{sup } at the ATLAS detector is presented. Proton-proton collision data recorded by the ATLAS experiment corresponding to an integrated luminosity of up to 25/fb at centre-of-mass energies of 7 and 8 TeV are used for these results. The latest combined and individual channel measurements of the mass, signal strength, spin and parity, coupling constants and Higgs boson production are reported. Results on the measurements of the properties of the Higgs boson are all consistent with the Standard Model.

  4. Research on data from the ATLAS experiment at CERN

    SciTech Connect (OSTI)

    Purohit, Milind V.

    2015-07-31

    In this report senior investigator Prof. Milind V. Purohit describes research done with data from the ATLAS experiment at CERN. This includes preparing papers on the performance of the CSC detector, searches for SUSY using a new modern ''big data'' technique, and a search for supersymmetry (SUSY) using the "zero leptons razor" (0LRaz) technique. The prediction of the W=Z+jets background processes by the ATLAS simulation prior to the fit is found to be overestimated in the phase space of interest. In all new signal regions presented in this analysis the number of events observed is consistent with the post-fit SM expectations. Assuming R-parity conservation, the limit on the gluino mass exceeds 1150 GeV at 95% confidence level, for an LSP mass smaller than 100 GeV. Other USC personnel who participated in this project during the period of this grant were a graduate student, Anton Kravchenko.

  5. SUSY searches at the LHC with the ATLAS experiment

    ScienceCinema (OSTI)

    None

    2011-04-25

    First ATLAS searches for signals of Supersymmetry in proton-proton collisions at the LHC are presented. These searches are performed in various channels containing different lepton and jet multiplicities in the final states; the full data sample recorded in the 2010 LHC run, corresponding to an integrated luminosity of 35 pb-1, has been analysed. Limits on squarks and gluins are the most stringent to date.

  6. Microsoft Word - ATLAS WS 2014 FS report fnl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting - Fundamental Interaction Working Group Report Convenors: N. Scielzo, P. Mueller The Standard Model description of the electroweak interaction and fundamental neutrino properties can be investigated in detail by performing low-energy beta-decay measurements at ATLAS and CARIBU. For these efforts, experiments take advantage of specific decay properties of certain radioactive nuclei that can be produced with sufficient yield either by in-flight techniques or by the new CARIBU facility and

  7. Glossary of Hydropower Terms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glossary of Hydropower Terms Glossary of Hydropower Terms The glossary of terms defines the components that make up hydro turbines and hydropower plants. Visit Types of Hydropower Plants to view hydropower plant illustrations. Alternating current (AC): Electric current that reverses direction many times per second. Ancillary services: Capacity and energy services provided by power plants that are able to respond on short notice, such as hydropower plants, and are used to ensure stable

  8. Award Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards Team (505) 667-7824 Email Types of Awards The Awards Office, sponsored by the Technology Transfer Division and the Science and Technology Base Program Office, coordinates...

  9. GENERAL TERMS & CONDITIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 3 1.12 PAYMENT ......in delivery schedule obligations. 1.12 PAYMENT Unless otherwise provided, terms of ...

  10. New Carbon Storage Atlas Shows Hundreds of Years of CO2 Storage Potential |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbon Storage Atlas Shows Hundreds of Years of CO2 Storage Potential New Carbon Storage Atlas Shows Hundreds of Years of CO2 Storage Potential December 21, 2012 - 9:58am Addthis Atlas IV was created by the National Energy Technology Laboratory (NETL), and includes input from the more than 400 organizations in 43 states and four Canadian provinces that make up the Department’s seven Regional Carbon Sequestration Partnerships (as shown above). <a

  11. Meet a Machine: ATLAS turns NNSA operators into heavylifting heroes |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) ATLAS turns NNSA operators into heavylifting heroes Thursday, July 14, 2016 - 10:27am The United States doesn't explosively test nuclear weapons, but NNSA is still charged with making sure the U.S. nuclear arsenal is safe and secure, and effective. This is why the U.S. nuclear security enterprise is home to the most brilliant minds and cutting-edge technologies for extreme physics and energy science. Learn about one of the members of NNSA's

  12. Gateways to the FANTOM5 promoter level mammalian expression atlas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lizio, Marina; Harshbarger, Jayson; Shimoji, Hisashi; Severin, Jessica; Kasukawa, Takeya; Sahin, Serkan; Abugessaisa, Imad; Fukuda, Shiro; Hori, Fumi; Ishikawa-Kato, Sachi; et al

    2015-01-05

    The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource (http://fantom.gsc.riken.jp/5/). In conclusion, this resource contains web-based tools and data-access points for the research community to search and extract data related to samples, genes, promoter activities, transcription factors and enhancers across the FANTOM5 atlas.

  13. METALLURGICAL CHARACTERIZATION OF ATLAS CYLINDRICALLY CONVERGENT SPALLATION EXPERIMENTS.

    SciTech Connect (OSTI)

    Thissell, W. R.; Cerreta, E. K.; Anderson, W. A.; Atchison, W. A.; Cochrane, J. C.; Kaul, Ann M.; Keinigs, R. K.; Ladish, J. S.; Lindemuth, I. R.; Oro, D. M.; Paisley, D.; G. Rodriguez,; Salazar, M. A.; Stokes, J. L.; Taylor, A. J.; Tonks, D. L.

    2003-07-18

    The microstructural distribution and nature of damage from three different cylindrically convergent spallation experiments performed on the pulsed power machine named Atlas are presented. Longitudinal momentum trapping was used to minimize the influence of release waves and thereby decrease the dimensionality of the experiments. Two of the experiments involved soft capture of the spalled piece. The material used is a proprietary directionally cast Al alloy with a mostly equiaxed grain morphology and essentially random texture in the region of spallation. The damage was most distributed in the lowest impact velocity shot and became progressively more narrow with increasing impact velocity. The effectiveness of the momentum trap design increased with increasing impact velocity.

  14. A New ATLAS Muon CSC Readout System with System on Chip Technology...

    Office of Scientific and Technical Information (OSTI)

    Conference: A New ATLAS Muon CSC Readout System with System on Chip Technology on ATCA Platform Citation ... Sponsoring Org: US DOE Office of Science (DOE SC);High Energy ...

  15. A comparison of NNLO QCD predictions with 7 TeV ATLAS and CMS...

    Office of Scientific and Technical Information (OSTI)

    with 7 TeV ATLAS and CMS data for V+jet processes Authors: Boughezal, Radja ; Liu, Xiaohui ; Petriello, Frank Publication Date: 2016-09-01 OSTI Identifier: 1258296 Grant...

  16. Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In 2012, the partnership between Sandia and Atlas-Copco Secoroc was awarded a 3.4M DOE grant to develop a down-the-hole (DTH) hammer capable of low-cost, high-production drilling ...

  17. ATLAS experimental equipment. November 1983 workshop and present status

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The latest workshop was held in November 1983 with the purpose of presenting an overview of the experimental stations planned for ATLAS, describing the current status of each individual apparatus, soliciting final input on devices of the first phase (i.e. on those that will be ready when beams from ATLAS become available in late Spring of 1985), and discussing and collecting new ideas on equipment for the second phase. There were short presentations on the status of the various projects followed by informal discussions. The presentations mainly concentrated on new equipment for target area III, but included some descriptions of current apparatus in target area II that might also be of interest for experiments with the higher-energy beams available in area III. The meeting was well attended with approx. 50 scientists, approximately half of them from institutions outside Argonne. The present proceedings summarize the presentations and discussions of this one-day meeting. In addition we take the opportunity to include information about developments since this meeting and an update of the current status of the various experimental stations. We would like to emphasize again that outside-user input is extremely welcome.

  18. Argonne Tandem Linac Accelerator System (ATLAS) | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Argonne Tandem Linac Accelerator System (ATLAS) Nuclear Physics (NP) NP Home About Research Facilities User Facilities Argonne Tandem Linac Accelerator System (ATLAS) Continuous Electron Beam Accelerator Facility (CEBAF) Relativistic Heavy Ion Collider (RHIC) Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of

  19. Preparation of northern mid-continent petroleum atlas. Quarterly report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Gerhard, L.C.; Carr, T.R.; Watney, W.L.

    1997-02-04

    As proposed, the second year program will continue and expand upon the Kansas elements of the original program, and provide improved on-line access to the prototype atlas. The second year of the program will result in a prototype digital atlas sufficient to demonstrate the approach and to provide a permanent improvement in data access to Kansas operators. The ultimate goal of providing an interactive history-matching interface with a regional data base remains for future development as the program covers more geographic territory and the data base expands. As part of the first year project ``Pages`` and data schema for the atlas overview and field studies were developed and made accessible through the world-wide-web. The atlas structure includes access to geologic, geophysical and production information at levels from the natural, to the regional, to the field to the individual well. Several approaches have been developed that provide efficient and flexible screening and search procedures. The prototype of the digital atlas is accessible through the Kansas Geological Survey Petroleum Research Section (PRS) HomePage (the Universal Resource locator [URL] is http://www.kgs.ukans. edu/PRS/PRS.html). The Digital Petroleum Atlas (DPA) HomePage is available directly at http://www.kgs.ukans.edu/DPA/dpaHome.html.

  20. Type: Renewal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National

  1. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  2. Standard Terms and Conditions | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standard Terms and Conditions Documents related to NREL's standard terms and conditions for subcontracts or purchase orders are available below. Standard Terms and Conditions - ...

  3. Terms and Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terms and Conditions Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds 100G SDN Testbed Testbed Description Proposal Process Terms and Conditions Dark Fiber Testbed Test Circuit Service Testbed Results Current Testbed Research Previous Testbed Research Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600

  4. Long Term Innovative Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Hydrogen and Fuel Cell Technologies, Fuel Cell Presolicitation Workshop Bryan Pivovar With Input/Feedback from Rod Borup (LANL), Debbie Myers (ANL), DOE and others as noted in presentation Lakewood, CO March 16, 2010 Long Term Innovative Technologies National Renewable Energy Laboratory Innovation for Our Energy Future Innovative/Long Term and RELEVANT Mission of DOE Mission of EERE (Applied Program) Mission of HFCT To enable the widespread commercialization of hydrogen and fuel cells in

  5. Glossary of Terms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glossary of Terms Glossary of Terms The glossary features an alphabetical listing of terms used on this website. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 1603 Grant For nearly all technologies and project types that qualify under either the Production Tax Credit or the Investment Tax Credit, section 1603 of the American Recovery and Reinvestment Act of 2009 provides funding to reimburse applicants for a portion (either 10% or 30%) of the cost of eligible property under the Internal

  6. Type here

    Office of Environmental Management (EM)

    Injury at the Savannah River National Laboratory | Department of Energy January 10, 2006, Flash Fire and Injury at the Savannah River National Laboratory Type B Accident Investigation of the January 10, 2006, Flash Fire and Injury at the Savannah River National Laboratory February 1, 2006 On January 10, 2006, at approximately 7:47 a.m., a first-line manager (FLM) at the Savannah River National Laboratory (SRNL) received first- and second-degree burns to his head, face, neck, and left hand

  7. A Multiphase Validation of Atlas-Based Automatic and Semiautomatic Segmentation Strategies for Prostate MRI

    SciTech Connect (OSTI)

    Martin, Spencer; Rodrigues, George; Department of Epidemiology Patil, Nikhilesh; Bauman, Glenn; Department of Radiation Oncology, London Regional Cancer Program, London ; D'Souza, David; Sexton, Tracy; Palma, David; Louie, Alexander V.; Khalvati, Farzad; Tizhoosh, Hamid R.; Segasist Technologies, Toronto, Ontario ; Gaede, Stewart

    2013-01-01

    Purpose: To perform a rigorous technological assessment and statistical validation of a software technology for anatomic delineations of the prostate on MRI datasets. Methods and Materials: A 3-phase validation strategy was used. Phase I consisted of anatomic atlas building using 100 prostate cancer MRI data sets to provide training data sets for the segmentation algorithms. In phase II, 2 experts contoured 15 new MRI prostate cancer cases using 3 approaches (manual, N points, and region of interest). In phase III, 5 new physicians with variable MRI prostate contouring experience segmented the same 15 phase II datasets using 3 approaches: manual, N points with no editing, and full autosegmentation with user editing allowed. Statistical analyses for time and accuracy (using Dice similarity coefficient) endpoints used traditional descriptive statistics, analysis of variance, analysis of covariance, and pooled Student t test. Results: In phase I, average (SD) total and per slice contouring time for the 2 physicians was 228 (75), 17 (3.5), 209 (65), and 15 seconds (3.9), respectively. In phase II, statistically significant differences in physician contouring time were observed based on physician, type of contouring, and case sequence. The N points strategy resulted in superior segmentation accuracy when initial autosegmented contours were compared with final contours. In phase III, statistically significant differences in contouring time were observed based on physician, type of contouring, and case sequence again. The average relative timesaving for N points and autosegmentation were 49% and 27%, respectively, compared with manual contouring. The N points and autosegmentation strategies resulted in average Dice values of 0.89 and 0.88, respectively. Pre- and postedited autosegmented contours demonstrated a higher average Dice similarity coefficient of 0.94. Conclusion: The software provided robust contours with minimal editing required. Observed time savings were seen

  8. Wind energy resource atlas. Volume 7. The south central region

    SciTech Connect (OSTI)

    Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  9. Wind energy resource atlas. Volume 10. Alaska region

    SciTech Connect (OSTI)

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  10. Wind energy resource atlas. Volume 9. The Southwest Region

    SciTech Connect (OSTI)

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  11. Wind energy resource atlas. Volume 2. The North Central Region

    SciTech Connect (OSTI)

    Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

  12. Examples from the atlas of major Appalachian Gas Plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Nuttall, B.C.; Smosna, R.A.

    1993-12-31

    The objectives of this contract are to produce a panted atlas of major Appalachian basin gas plays and to compile a machine-readable database of reservoir data. The Appalachian Oil and Natural Gas Research Consortium (AONGRC or the Consortium), a partnership of the state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and the departments of Geology and Petroleum and Natural Gas Engineering at West Virginia University (WVU), agrees with the need to classify gas reservoirs by geologic plays. During meetings with industry representatives, the small independents in the basin emphasized that one of their prime needs was to place each producing reservoir within a stratigraphic framework subdivided by environment of deposition to enable them to develop exploration and development strategies. The text for eight of the 31 play descriptions has been completed, drafting of illustrations for these plays is underway (or complete for some plays), and the review process is ongoing.

  13. ATLAS DISCOVERY POTENTIAL FOR A HEAVY CHARGED HIGGS BOSON.

    SciTech Connect (OSTI)

    ASSAMAGAN,K.A.; COADOU,Y.; DEANDREA,A.

    2002-02-01

    The sensitivity of the ATLAS detector to the discovery of a heavy charged Higgs boson is presented. Assuming a heavy SUSY spectrum, the most promising channels above the top quark mass are H{sup {+-}} {yields} tb and h{sup {+-}} {yields} {tau}{sup {+-}}{nu}{sub {tau}} which provide coverage in the low and high tan {beta} regions up to {approx} 600 GeV. The achievable precisions on the charged Higgs mass and tan {beta} determination are also discussed. The H{sup {+-}} {yields} W{sup {+-}}h{sup 0} channel, though restricted to a small MSSM parameter space, shows a viable signal in NMSSM where the parameter space is less constrained. The observation of the channel H{sup -} {yields} {tau}{sub L}{sup -} {nu}{sub {tau}} + c.c. may constitute a distinctive evidence for models with singlet neutrinos in large extra dimensions.

  14. Evaluation of atlas-based auto-segmentation software in prostate cancer patients

    SciTech Connect (OSTI)

    Greenham, Stuart; Dean, Jenna; Fu, Cheuk Kuen Kenneth; Goman, Joanne; Mulligan, Jeremy; Tune, Deanna; Sampson, David; Westhuyzen, Justin; McKay, Michael

    2014-09-15

    The performance and limitations of an atlas-based auto-segmentation software package (ABAS; Elekta Inc.) was evaluated using male pelvic anatomy as the area of interest. Contours from 10 prostate patients were selected to create atlases in ABAS. The contoured regions of interest were created manually to align with published guidelines and included the prostate, bladder, rectum, femoral heads and external patient contour. Twenty-four clinically treated prostate patients were auto-contoured using a randomised selection of two, four, six, eight or ten atlases. The concordance between the manually drawn and computer-generated contours were evaluated statistically using Pearson's product–moment correlation coefficient (r) and clinically in a validated qualitative evaluation. In the latter evaluation, six radiation therapists classified the degree of agreement for each structure using seven clinically appropriate categories. The ABAS software generated clinically acceptable contours for the bladder, rectum, femoral heads and external patient contour. For these structures, ABAS-generated volumes were highly correlated with ‘as treated’ volumes, manually drawn; for four atlases, for example, bladder r = 0.988 (P < 0.001), rectum r = 0.739 (P < 0.001) and left femoral head r = 0.560 (P < 0.001). Poorest results were seen for the prostate (r = 0.401, P < 0.05) (four atlases); however this was attributed to the comparison prostate volume being contoured on magnetic resonance imaging (MRI) rather than computed tomography (CT) data. For all structures, increasing the number of atlases did not consistently improve accuracy. ABAS-generated contours are clinically useful for a range of structures in the male pelvis. Clinically appropriate volumes were created, but editing of some contours was inevitably required. The ideal number of atlases to improve generated automatic contours is yet to be determined.

  15. Implementation and Performance of the Tau Trigger in the ATLAS Experiment

    SciTech Connect (OSTI)

    Bosman, M.; Casado, P.; Dam, M.; Demers, S.; Igonkina, O.; Osuna, C.; Perez, E.; Soluk, R.; Strom, D.; Torrence, E.; Watson, A.; Xella, S.; /Copenhagen U.

    2011-11-15

    Triggering on hadronic taus at the LHC is a difficult task due to the high rate and occupancy of the events. On the other hand, the tau trigger increases the discovery potential of ATLAS in many physics channels, among others the Standard Model or SuperSymmetric Higgs (charged or neutrals) production. In order to cope with the rate and optimize the efficiency on important physics channels, the results of the current simulation studies indicate that the ATLAS tau trigger should be used either with relatively high transverse momentum thresholds alone, or with more relaxed threshold requirements in combination with other triggers, like the missing transverse energy trigger or a leptonic or jet trigger. In this contribution we describe the ATLAS tau trigger, and we present some of the current results from the simulation studies, focusing both on early physics and on physics at high luminosity.

  16. Webinar: Demonstration of NREL’s BioEnergy Atlas Tools

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) will host a free webinar on December 16 demonstrating how to use the BioEnergy Atlas tools. The U.S. Department of Energy’s Bioenergy Technologies Office funded the BioEnergy Atlas tools, which include the BioFuels and BioPower Atlases. These tools are designed as first-pass visualization tools that allow users to view many bioenergy and related datasets in Google Maps. Users can query and download map data and view incentives and state energy data, as well as select an area on the map for estimated biofuels or biopower production potential. The webinar will review the data source and date of bioenergy data layers. The NREL team will show users how to view and download data behind the map, how to view state energy data and incentives, and how to view and edit potential biofuel or biopower production in a geographical location.

  17. Search for strong gravity in multijet final states produced in pp collisions at √s = 13 TeV using the ATLAS detector at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; et al

    2016-03-07

    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13 TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1 TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. As a result, limits aremore » also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions.« less

  18. Identification of high transverse momentum top quarks in pp collisions at $$$ \\sqrt{s}=8 $$$ TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2016-06-16

    This study presents studies of the performance of several jet-substructure techniques, which are used to identify hadronically decaying top quarks with high transverse momentum contained in large-radius jets. The efficiency of identifying top quarks is measured using a sample of top-quark pairs and the rate of wrongly identifying jets from other quarks or gluons as top quarks is measured using multijet events collected with the ATLAS experiment in 20.3 fb-1 of 8 TeV proton-proton collisions at the Large Hadron Collider. Predictions from Monte Carlo simulations are found to provide an accurate description of the performance. The techniques are compared inmore » terms of signal efficiency and background rejection using simulations, covering a larger range in jet transverse momenta than accessible in the dataset. Finally and additionally, a novel technique is developed that is optimized to reconstruct top quarks in events with many jets.« less

  19. DIORAMA Location Type User's Guide

    SciTech Connect (OSTI)

    Terry, James Russell

    2015-01-29

    The purpose of this report is to present the current design and implementation of the DIORAMA location type object (LocationType) and to provide examples and use cases. The LocationType object is included in the diorama-app package in the diorama::types namespace. Abstractly, the object is intended to capture the full time history of the location of an object or reference point. For example, a location may be speci ed as a near-Earth orbit in terms of a two-line element set, in which case the location type is capable of propagating the orbit both forward and backward in time to provide a location for any given time. Alternatively, the location may be speci ed as a xed set of geodetic coordinates (latitude, longitude, and altitude), in which case the geodetic location of the object is expected to remain constant for all time. From an implementation perspective, the location type is de ned as a union of multiple independent objects defi ned in the DIORAMA tle library. Types presently included in the union are listed and described in subsections below, and all conversions or transformation between these location types are handled by utilities provided by the tle library with the exception of the \\special-values" location type.

  20. DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metric Tons of U.S. CO2 Storage Resource | Department of Energy DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource December 19, 2012 - 12:00pm Addthis Washington, DC - The United States has at least 2,400 billion metric tons of possible carbon dioxide (CO2) storage resource in saline formations, oil and gas

  1. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    SciTech Connect (OSTI)

    Sabine, Christopher; Hankin, S.; Koyuk, H; Bakker, D C E; Pfeil, B; Olsen, A; Metzl, N; Fassbender, A; Manke, A; Malczyk, J; Akl, J; Alin, S R; Bellerby, R G J; Borges, A; Boutin, J; Cai, W-J; Chavez, F P; Chen, A; Cosa, C; Feely, R A; Gonzalez-Davila, M; Goyet, C; Hardman-Mountford, N; Heinze, C; Hoppema, M; Hunt, C W; Hydes, D; Ishii, M; Johannessen, T; Key, R M; Kortzinger, A; Landschutzer, P; Lauvset, S K; Lefevre, N; Lourantou, A; Mintrop, L; Miyazaki, C; Murata, A; Nakadate, A; Nakano, Y; Nakaoka, S; Nojiri, Y; et al.

    2013-01-01

    A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968 2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.

  2. Earth's mysterious atmosphere. ATLAS 1: Teachers guide with activities

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    One of our mission's primary goals is to better understand the physics and chemistry of our atmosphere, the thin envelope of air that provides for human life and shields us from the harshness of space. The Space Shuttle Atlantis will carry the ATLAS 1 science instruments 296 km above Earth, so that they can look down into and through the various layers of the atmosphere. Five solar radiometers will precisely measure the amount of energy the Sun injects into Earth's environment. The chemistry at different altitudes will be measured very accurately by five other instruments called spectrometers. Much of our time in the cockpit of Atlantis will be devoted to two very exciting instruments that measure the auroras and the atmosphere's electrical characteristics. Finally, our ultraviolet telescope will probe the secrets of fascinating celestial objects. This Teacher's Guide is designed as a detective story to help you appreciate some of the many questions currently studied by scientists around the world. Many complex factors affect our atmosphere today, possibly even changing the course of global climate. All who live on Earth must recognize that they play an ever-growing role in causing some of these changes. People must solve this great atmospheric mystery if they are to understand all these changes and know what to do about them.

  3. Integration of the Trigger and Data Acquisition Systems in ATLAS

    SciTech Connect (OSTI)

    Abolins, M.; Adragna, P.; Aleksandrov, E.; Aleksandrov, I.; Amorim, A.; Anderson, K.; Anduaga, X.; Aracena, I.; Asquith, L.; Avolio, G.; Backlund, S.; Badescu, E.; Baines, J.; Barria, P.; Bartoldus, R.; Batreanu, S.; Beck, H.P.; Bee, C.; Bell, P.; Bell, W.H.; Bellomo, M.; /more authors..

    2011-11-09

    During 2006 and the first half of 2007, the installation, integration and commissioning of trigger and data acquisition (TDAQ) equipment in the ATLAS experimental area have progressed. There have been a series of technical runs using the final components of the system already installed in the experimental area. Various tests have been run including ones where level 1 preselected simulated proton-proton events have been processed in a loop mode through the trigger and dataflow chains. The system included the readout buffers containing the events, event building, level 2 and event filter trigger algorithms. The scalability of the system with respect to the number of event building nodes used has been studied and quantities critical for the final system, such as trigger rates and event processing times, have been measured using different trigger algorithms as well as different TDAQ components. This paper presents the TDAQ architecture, the current status of the installation and commissioning and highlights the main test results that validate the system.

  4. High Statistics Study of Nearby Type 1a Supernovae. QUEST Camera...

    Office of Scientific and Technical Information (OSTI)

    QUEST Camera Short Term Maintenance: Final Technical Report Citation Details In-Document Search Title: High Statistics Study of Nearby Type 1a Supernovae. QUEST Camera Short Term ...

  5. Preparations for Physics Studies with ATLAS During the First Years of the LHC

    ScienceCinema (OSTI)

    Fabiola Gianotti

    2010-01-08

    I will review the status of the ATLAS detector installation and commissioning, and discuss the preparation for physics with test-beam studies, detailed simulations, and runs with cosmics. I will then show examples of physics opportunities with the first LHC data.   

  6. Limited Groundwater Investigation of The Atlas Corporation Moab Mill, Moab, Utah

    SciTech Connect (OSTI)

    Easterly, CE

    2001-11-05

    The project described in this report was conducted by personnel from Oak Ridge National Laboratory's Grand Junction Office (ORNL/GJ). The purpose was to refine information regarding groundwater contamination emanating from the Atlas Corporation's former uranium mill in Moab, Utah.

  7. High Statistics Study of Nearby Type 1a Supernovae. QUEST Camera...

    Office of Scientific and Technical Information (OSTI)

    Statistics Study of Nearby Type 1a Supernovae. QUEST Camera Short Term Maintenance: Final Technical Report Baltay, Charles 79 ASTRONOMY AND ASTROPHYSICS Study of Type 1a Supernovae...

  8. Long-Term Stewardship Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) has prepared this Long-term Stewardship Study (“Study” or “Final Study”) to comply with the terms of a settlement agreement between DOE, the Natural Resources Defense...

  9. Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at √s = 8 TeV

    SciTech Connect (OSTI)

    Aad, G.

    2015-07-29

    A search for heavy Majorana neutrinos in events containing a pair of high-pT leptons of the same charge and high-pT jets is presented. The search uses 20.3 fb-1 of pp collision data collected with the ATLAS detector at the CERN Large Hadron Collider with a centre-of-mass energy of √s = 8 TeV. The data are found to be consistent with the background-only hypothesis based on the Standard Model expectation. In the context of a Type-I seesaw mechanism, limits are set on the production cross-section times branching ratio for production of heavy Majorana neutrinos in the mass range between 100 and 500 GeV. The limits are subsequently interpreted as limits on the mixing between the heavy Majorana neutrinos and the Standard Model neutrinos. In the context of a left-right symmetric model, limits on the production cross-section times branching ratio are set with respect to the masses of heavy Majorana neutrinos and heavy gauge bosons WR and Z'.

  10. Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at √s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-07-29

    A search for heavy Majorana neutrinos in events containing a pair of high-pT leptons of the same charge and high-pT jets is presented. The search uses 20.3 fb-1 of pp collision data collected with the ATLAS detector at the CERN Large Hadron Collider with a centre-of-mass energy of √s = 8 TeV. The data are found to be consistent with the background-only hypothesis based on the Standard Model expectation. In the context of a Type-I seesaw mechanism, limits are set on the production cross-section times branching ratio for production of heavy Majorana neutrinos in the mass range between 100 andmore » 500 GeV. The limits are subsequently interpreted as limits on the mixing between the heavy Majorana neutrinos and the Standard Model neutrinos. In the context of a left-right symmetric model, limits on the production cross-section times branching ratio are set with respect to the masses of heavy Majorana neutrinos and heavy gauge bosons WR and Z'.« less

  11. Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)

    SciTech Connect (OSTI)

    Timothy R. Carr; Scott W. White

    2002-06-01

    This annual report describes progress of the project entitled ''Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)''. This project, funded by the Department of Energy, is a cooperative project that assembles a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide geologic sequestration (http://www.midcarb.org). The system links the five states in the consortium into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project is working to provide advanced distributed computing solutions to link database servers across the five states into a single system where data is maintained at the local level but is accessed through a single Web portal and can be queried, assembled, analyzed and displayed. Each individual state has strengths in data gathering, data manipulation and data display, including GIS mapping, custom application development, web development, and database design. Sharing of expertise provides the critical mass of technical expertise to improve CO{sub 2} databases and data access in all states. This project improves the flow of data across servers in the five states and increases the amount and quality of available digital data. The MIDCARB project is developing improved online tools to provide real-time display and analyze CO{sub 2} sequestration data. The system links together data from sources, sinks and transportation within a spatial database that can be queried online. Visualization of high quality and current data can assist decision makers by providing access to common sets of high quality data in a consistent manner.

  12. NEW ATLAS9 AND MARCS MODEL ATMOSPHERE GRIDS FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT (APOGEE)

    SciTech Connect (OSTI)

    Meszaros, Sz.; Allende Prieto, C.; De Vicente, A.; Edvardsson, B.; Gustafsson, B.; Castelli, F.; Garcia Perez, A. E.; Majewski, S. R.; Plez, B.; Schiavon, R.; Shetrone, M.

    2012-10-01

    We present a new grid of model photospheres for the SDSS-III/APOGEE survey of stellar populations of the Galaxy, calculated using the ATLAS9 and MARCS codes. New opacity distribution functions were generated to calculate ATLAS9 model photospheres. MARCS models were calculated based on opacity sampling techniques. The metallicity ([M/H]) spans from -5 to 1.5 for ATLAS and -2.5 to 0.5 for MARCS models. There are three main differences with respect to previous ATLAS9 model grids: a new corrected H{sub 2}O line list, a wide range of carbon ([C/M]) and {alpha} element [{alpha}/M] variations, and solar reference abundances from Asplund et al. The added range of varying carbon and {alpha}-element abundances also extends the previously calculated MARCS model grids. Altogether, 1980 chemical compositions were used for the ATLAS9 grid and 175 for the MARCS grid. Over 808,000 ATLAS9 models were computed spanning temperatures from 3500 K to 30,000 K and log g from 0 to 5, where larger temperatures only have high gravities. The MARCS models span from 3500 K to 5500 K, and log g from 0 to 5. All model atmospheres are publicly available online.

  13. European Atlas of Soil Biodiversity | Open Energy Information

    Open Energy Info (EERE)

    Resource assessment Resource Type: Publications, Guidemanual Website: eusoils.jrc.ec.europa.eulibrarymapsbiodiversityatlasDocumentsBio UN Region: "Western & Eastern Europe"...

  14. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums

    SciTech Connect (OSTI)

    Shakoor, N; Nair, R; Crasta, O; Morris, G; Feltus, A; Kresovich, S

    2014-01-23

    Background: Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results: This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e. g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions: Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.

  15. Short-Term Energy Outlook

    U.S. Energy Information Administration (EIA) Indexed Site

    ... power Liquid biofuels Wood biomass Hydropower Source: Short-Term Energy Outlook, August 2016. Note: Hydropower excludes pumped storage generation. Liquid biofuels include ...

  16. Long-Term Surveillance Plan...

    Office of Legacy Management (LM)

    ... Demonstration that licensing provisions were met. Information needed to forecast future ... Guidance for Implementing the Long-Term Surveillance Program for UMTRA Project Title I ...

  17. Long-Term Stewardship Study

    Broader source: Energy.gov (indexed) [DOE]

    ... changed the EPA regulatory terms - "active" controls are now ... DOE may need to enter into specific agreements ... property owners may not search the deed records ...

  18. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  19. The ATLAS Experiment: Mapping the Secrets of the Universe (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Barnett, Michael

    2011-04-28

    Summer Lecture Series 2007: Michael Barnett of Berkeley Lab's Physics Division discusses the ATLAS Experiment at the European Laboratory for Particle Physics' (CERN) Large Hadron Collider. The collider will explore the aftermath of collisions at the highest energy ever produced in the lab, and will recreate the conditions of the universe a billionth of a second after the Big Bang. The ATLAS detector is half the size of the Notre Dame Cathedral and required 2000 physicists and engineers from 35 countries for its construction. Its goals are to examine mini-black holes, identify dark matter, understand antimatter, search for extra dimensions of space, and learn about the fundamental forces that have shaped the universe since the beginning of time and will determine its fate.

  20. Probing lepton flavour violation via neutrinoless τ→3μ decays with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2016-04-26

    This article presents the sensitivity of the ATLAS experiment to the lepton-flavour-violating decays of τ→3μ. A method utilising the production of τ leptons via W→τν decays is used. This method is applied to the sample of 20.3 fb-1 of pp collision data at a centre-of-mass energy of 8 TeV collected by the ATLAS experiment at the LHC in 2012. Lastly, no event is observed passing the selection criteria, and the observed (expected) upper limit on the τ lepton branching fraction into three muons, Br(τ→3μ), is 3.76×10-7 (3.94×10-7 ) at 90 % confidence level.

  1. L1 track triggers for ATLAS in the HL-LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lipeles, E.

    2012-01-01

    The HL-LHC, the planned high luminosity upgrade for the LHC, will increase the collision rate in the ATLAS detector approximately a factor of 5 beyond the luminosity for which the detectors were designed, while also increasing the number of pile-up collisions in each event by a similar factor. This means that the level-1 trigger must achieve a higher rejection factor in a more difficult environment. This presentation discusses the challenges that arise in this environment and strategies being considered by ATLAS to include information from the tracking systems in the level-1 decision. The main challenges involve reducing the data volumemore » exported from the tracking system for which two options are under consideration: a region of interest based system and an intelligent sensor method which filters on hits likely to come from higher transverse momentum tracks.« less

  2. Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential in U.S. and Portions of Canada

    Broader source: Energy.gov [DOE]

    There could be as much as 5,700 years of carbon dioxide storage potential available in geologic formations in the United States and portions of Canada, according to the latest edition of the U.S. Department of Energy’s Carbon Sequestration Atlas (Atlas III).

  3. Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Project and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  4. Tailings Pile Seepage Model The Atlas Corporation Moab Mill Moab, Utah

    SciTech Connect (OSTI)

    Easterly, CE

    2001-11-05

    The project described in this report was conducted by personnel from Oak Ridge National Laboratory's Grand Junction Office (ORNL/GJ). This report has been prepared as a companion report to the Limited Groundwater Investigation of the Atlas Corporation Moab Mill, Moab, Utah. The purpose of this report is to present the results of the tailings pile seepage modeling effort tasked by the U.S. Nuclear Regulatory Commission (NRC).

  5. Supplemental Modeling and Analysis Report, Atlas Corporation Moab Mill, Moab, Utah

    SciTech Connect (OSTI)

    Easterly, CE

    2001-11-05

    The purpose of this report is to provide additional numerical modeling and data evaluation for the Atlas tailings pile near Moab, Utah. A previous report (Tailings Pile Seepage Model: The Atlas Corporation Moab Mill, Moab, Utah, January 9, 1998) prepared for the Nuclear Regulatory Commission (NRC) by Oak Ridge National Laboratory/Grand Junction (ORNL/GJ) presented the results of steady-state modeling of water flow and subsequent discharge to the underlying groundwater system. At the request of the Fish and Wildlife Service (FWS), this model was expanded to evaluate the impact of drainage from the tailings pile in addition to recharge from precipitation in a transient mode simulation. In addition, the FWS requested transient simulations of contaminant transport in the alluvial aquifer. Subsequently, NRC requested an evaluation of additional hydrologic issues related to the results presented in the Tailings Pile Seepage Model (ORNL/GJ 1998a) and the Limited Groundwater Investigation (ORNL/GJ 1998b). Funding for the report was provided by the U.S. Department of Energy. The following section lists the individual tasks with subsequent sections providing the results. A map for the Atlas Moab Mill site is presented in Fig. 1.1.

  6. Study of (W/Z)H production and Higgs boson couplings using H→ W W * decays with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-08-27

    A search for Higgs boson production in association with a W or Z boson, in the H→ W W * decay channel, is performed with a data sample collected with the ATLAS detector at the LHC in proton-proton collisions at centre-of-mass energies \\( \\sqrt{s}=7 \\) TeV and 8 TeV, corresponding to integrated luminosities of 4.5 fb-1 and 20.3 fb-1, respectively. The WH production mode is studied in two-lepton and three-lepton final states, while two- lepton and four-lepton final states are used to search for the ZH production mode. The observed significance, for the combined W H and ZH production, ismore » 2.5 standard deviations while a significance of 0.9 standard deviations is expected in the Standard Model Higgs boson hypothesis. The ratio of the combined W H and ZH signal yield to the Standard Model expectation, μV H , is found to be μ V H = 3.0-1.1+1.3 (stat.)-0.7 +1.0 (sys.) for the Higgs boson mass of 125.36 GeV. The W H and ZH production modes are also combined with the gluon fusion and vector boson fusion production modes studied in the H → W W * → ℓνℓν decay channel, resulting in an overall observed significance of 6.5 standard deviations and μggF + VBF + VH = 1.16-0.15+0.16 (stat.) -0.15+0.18 (sys.). The results are interpreted in terms of scaling factors of the Higgs boson couplings to vector bosons (κV ) and fermions (κF ); the combined results are: |κ V | = 1.06-0.10+0.10, |κ F| = 0.85-0.20+0.26.« less

  7. Experimental and code simulation of a station blackout scenario for APR1400 with test facility ATLAS and MARS code

    SciTech Connect (OSTI)

    Yu, X. G.; Kim, Y. S.; Choi, K. Y.; Park, H. S.; Cho, S.; Kang, K. H.; Choi, N. H.

    2012-07-01

    A SBO (station blackout) experiment named SBO-01 was performed at full-pressure IET (Integral Effect Test) facility ATLAS (Advanced Test Loop for Accident Simulation) which is scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this study, the transient of SBO-01 is discussed and is subdivided into three phases: the SG fluid loss phase, the RCS fluid loss phase, and the core coolant depletion and core heatup phase. In addition, the typical phenomena in SBO-01 test - SG dryout, natural circulation, core coolant boiling, the PRZ full, core heat-up - are identified. Furthermore, the SBO-01 test is reproduced by the MARS code calculation with the ATLAS model which represents the ATLAS test facility. The experimental and calculated transients are then compared and discussed. The comparison reveals there was malfunction of equipments: the SG leakage through SG MSSV and the measurement error of loop flow meter. As the ATLAS model is validated against the experimental results, it can be further employed to investigate the other possible SBO scenarios and to study the scaling distortions in the ATLAS. (authors)

  8. Key Terms | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    sounds Physical Impairment: a physical condition that permanently prevents normal body movement or control Cognitive Disabilities: difficulty with one or more types of mental tasks...

  9. HERSCHEL-ATLAS GALAXY COUNTS AND HIGH-REDSHIFT LUMINOSITY FUNCTIONS: THE FORMATION OF MASSIVE EARLY-TYPE GALAXIES

    SciTech Connect (OSTI)

    Lapi, A.; Gonzalez-Nuevo, J.; Fan, L.; Bressan, A.; De Zotti, G.; Danese, L.; Negrello, M.; Dunne, L.; Maddox, S.; Eales, S.; Auld, R.; Dariush, A.; Dye, S.; Baes, M.; Fritz, J.; Bonfield, D. G.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooray, A.

    2011-11-20

    Exploiting the Herschel Astrophysical Terahertz Large Area Survey Science Demonstration Phase survey data, we have determined the luminosity functions (LFs) at rest-frame wavelengths of 100 and 250 {mu}m and at several redshifts z {approx}> 1, for bright submillimeter galaxies with star formation rates (SFRs) {approx}> 100 M{sub Sun} yr{sup -1}. We find that the evolution of the comoving LF is strong up to z Almost-Equal-To 2.5, and slows down at higher redshifts. From the LFs and the information on halo masses inferred from clustering analysis, we derived an average relation between SFR and halo mass (and its scatter). We also infer that the timescale of the main episode of dust-enshrouded star formation in massive halos (M{sub H} {approx}> 3 Multiplication-Sign 10{sup 12} M{sub Sun }) amounts to {approx}7 Multiplication-Sign 10{sup 8} yr. Given the SFRs, which are in the range of 10{sup 2}-10{sup 3} M{sub Sun} yr{sup -1}, this timescale implies final stellar masses of the order of 10{sup 11}-10{sup 12} M{sub Sun }. The corresponding stellar mass function matches the observed mass function of passively evolving galaxies at z {approx}> 1. The comparison of the statistics for submillimeter and UV-selected galaxies suggests that the dust-free, UV bright phase is {approx}> 10{sup 2} times shorter than the submillimeter bright phase, implying that the dust must form soon after the onset of star formation. Using a single reference spectral energy distribution (SED; the one of the z Almost-Equal-To 2.3 galaxy SMM J2135-0102), our simple physical model is able to reproduce not only the LFs at different redshifts >1 but also the counts at wavelengths ranging from 250 {mu}m to Almost-Equal-To 1 mm. Owing to the steepness of the counts and their relatively broad frequency range, this result suggests that the dispersion of submillimeter SEDs of z > 1 galaxies around the reference one is rather small.

  10. Flowsheets and source terms for radioactive waste projections

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

  11. Energy Exchange Terms and Conditions

    Office of Energy Efficiency and Renewable Energy (EERE)

    We will be requesting that participants acknowledge that they have read these terms and conditions at the time of registration (also included in the online registration form) and at the time of printing their badges on-site.

  12. Long-Term Surveillance Plan

    Office of Legacy Management (LM)

    ... UMTRCA, establishing the terms and conditions of the ... A field search and inquiries in 1993 did not identify any ... For each set, enter date taken, scale, and if interpreted. ...

  13. Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at \\( \\sqrt{s}=8 \\) TeV with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.

    2015-09-16

    In this study, a search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at \\( \\sqrt{s}=8 \\) TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb⁻¹. Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances are derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114–176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100–468 GeV are excluded.

  14. Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at \\( \\sqrt{s}=8 \\) TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-09-16

    In this study, a search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at \\( \\sqrt{s}=8 \\) TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb⁻¹. Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances aremore » derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114–176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100–468 GeV are excluded.« less

  15. Types of Reuse

    Broader source: Energy.gov [DOE]

    The following provides greater detail regarding the types of reuse pursued for LM sites. It should be noted that many actual reuses combine several types of the uses listed below.

  16. Production summary for extended barrel module fabrication at Argonne for the ATLAS tile calorimeter.

    SciTech Connect (OSTI)

    Guarino, V.; Hill, N.; Petereit, E.; Skrzecz, F.; Wood, K.; Proudfoot, J.; Anderson, S.; Caird, A.; Keyser, C.; Kocenko, L.; Matijas, Z.; Nephew, T.; Stanek, R.; Franchini, F.; High Energy Physics

    2007-11-14

    The Tile Calorimeter is one of the main hadronic calorimeters to be used in the ATLAS experiment at CERN [1,2]. It is a steel/scintillator sampling calorimeter which is built by stacking 64 segments in azimuth and 3 separate cylinders to provide a total structure whose length is approximately 12m and whose diameter is a little over 8.4m. It has a total weight of about 2630 metric tons. Important features of this calorimeter are: A minimum gap (1.5mm) between modules in azimuth; Pockets in the structure to hold the scintillator tiles; Recessed channels at the edges of the module into which the readout fibers will sit; and Holes in the structure through which a radioactive source will pass. The mechanical structure for one of the 3 calorimeter sections, the Extended Barrel (EBA) was constructed at Argonne. A schematic of the calorimeter sampling structure and the layout of one of the 64 segments, termed a module, are shown in figure 1. Each module comprises mechanically of a precision machined, structural girder to which 10 submodules are bolted. One of these submodules, the ITC, has a customized shape to accommodate services for other detector elements. Each submodule weighs 850Kg and the assembled mechanical structure of the module weighs approximately 9000Kg (a fully instrumented Extended Barrel modules weighs {approx}9600Kg). A crucial issue for the tile calorimeter assembly is the minimization of the un-instrumented gap between modules when they are stacked on top of each other during final assembly. The design goal was originally 1mm gap which was eventually relaxed to 1.5mm following a careful evaluation of all tolerances in the construction and assembly process as shown in figure 2 [3]. Submodules for this assembly were produced at 4 locations [4] using tooling and procedures which were largely identical [5]. An important issue was the height of each submodule on the stacking fixture on which they were fabricated as this defines the length along the girder

  17. Search for a new resonance decaying to a W or Z boson and a Higgs boson in the ℓℓ/ℓν/νν + bb¯ final states with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-06-16

    A search for a new resonance decaying to a W or Z boson and a Higgs boson in the ℓℓ/ℓν/νν+bb¯ final states is performed using 20.3 fb-1 of pp collision data recorded at √s = 8 TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the WH / ZH invariant mass distribution for a localized excess. Thus, no significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian ofmore » Heavy Vector Triplets.« less

  18. Search for a new resonance decaying to a W or Z boson and a Higgs boson in the ℓℓ/ℓν/νν + bb¯ final states with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.

    2015-06-16

    A search for a new resonance decaying to a W or Z boson and a Higgs boson in the ℓℓ/ℓν/νν+bb¯ final states is performed using 20.3 fb-1 of pp collision data recorded at √s = 8 TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the WH / ZH invariant mass distribution for a localized excess. Thus, no significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian of Heavy Vector Triplets.

  19. Types of Radiation Exposure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    External Irradiation Contamination Incorporation Biological Effects of Acute, Total Body Irradiation Managing Radiation Emergencies Procedure Demonstration Types of radiation ...

  20. Postdoc Appointment Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appointment Types Postdoc Appointment Types Most postdocs will be offered a postdoctoral research associate appointment. Each year, approximately 30 Postdoctoral Fellow appointments, including the Distinguished Fellows, are awarded. Postdoc appointment types offer world of possibilities Meet the current LANL Distinguished Postdocs Research Associates Research Associates pursue research as part of ongoing LANL science and engineering programs. Sponsored postdoctoral candidate packages are

  1. Types of Hydropower Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines Types of Hydropower Turbines There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water-referred to as "head"-and the flow, or volume of water, at the site. Other deciding factors include how deep the turbine must be set, efficiency, and cost. Terms used on this page are defined in the glossary. Impulse Turbine The impulse turbine generally uses the velocity of the water to

  2. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    3 1 Short-Term Energy Outlook April 2003 Overview World Oil Markets. Crude oil prices fell sharply at the onset of war in Iraq, but the initial declines probably overshot levels that we consider to be generally consistent with fundamental factors in the world oil market. Thus, while near-term price averages are likely to be below our previous projections, the baseline outlook for crude oil prices (while generally lower) is not drastically different and includes an average for spot West Texas

  3. THE INFRARED PROPERTIES OF SOURCES MATCHED IN THE WISE ALL-SKY AND HERSCHEL ATLAS SURVEYS

    SciTech Connect (OSTI)

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Amblard, Alexandre; Blain, Andrew W.; Dunne, Loretta; Maddox, Steve J.; Hoyos, Carlos; Bourne, Nathan; Smith, Daniel J. B.; Bonfield, David; Baes, Maarten; Bridge, Carrie; Buttiglione, Sara; De Zotti, Gianfranco; Cava, Antonio; Clements, David; Cooray, Asantha; Dariush, Ali; and others

    2012-05-01

    We describe the infrared properties of sources detected over {approx}36 deg{sup 2} of sky in the GAMA 15 hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5{sigma} point-source depths of 34 and 0.048 mJy at 250 {mu}m and 3.4 {mu}m, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of {approx}630 deg{sup -2}. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 {mu}m and that at 250 {mu}m, with {+-}50% scatter over {approx}1.5 orders of magnitude in luminosity, {approx}10{sup 9}-10{sup 10.5} L{sub Sun }. By contrast, the matched sources without previously measured redshifts (r {approx}> 20.5) have 250-350 {mu}m flux density ratios which suggest either high-redshift galaxies (z {approx}> 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T {approx}< 20). Their small 3.4-250 {mu}m flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large active galactic nucleus fraction ({approx}30%) in a 12 {mu}m flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.

  4. Evaluation of Automatic Atlas-Based Lymph Node Segmentation for Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Stapleford, Liza J.; Lawson, Joshua D.; Perkins, Charles; Edelman, Scott; Davis, Lawrence

    2010-07-01

    Purpose: To evaluate if automatic atlas-based lymph node segmentation (LNS) improves efficiency and decreases inter-observer variability while maintaining accuracy. Methods and Materials: Five physicians with head-and-neck IMRT experience used computed tomography (CT) data from 5 patients to create bilateral neck clinical target volumes covering specified nodal levels. A second contour set was automatically generated using a commercially available atlas. Physicians modified the automatic contours to make them acceptable for treatment planning. To assess contour variability, the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm was used to take collections of contours and calculate a probabilistic estimate of the 'true' segmentation. Differences between the manual, automatic, and automatic-modified (AM) contours were analyzed using multiple metrics. Results: Compared with the 'true' segmentation created from manual contours, the automatic contours had a high degree of accuracy, with sensitivity, Dice similarity coefficient, and mean/max surface disagreement values comparable to the average manual contour (86%, 76%, 3.3/17.4 mm automatic vs. 73%, 79%, 2.8/17 mm manual). The AM group was more consistent than the manual group for multiple metrics, most notably reducing the range of contour volume (106-430 mL manual vs. 176-347 mL AM) and percent false positivity (1-37% manual vs. 1-7% AM). Average contouring time savings with the automatic segmentation was 11.5 min per patient, a 35% reduction. Conclusions: Using the STAPLE algorithm to generate 'true' contours from multiple physician contours, we demonstrated that, in comparison with manual segmentation, atlas-based automatic LNS for head-and-neck cancer is accurate, efficient, and reduces interobserver variability.

  5. Diffraction and forward physics results of the ATLAS experiment from the Run I

    SciTech Connect (OSTI)

    Taevsk, Marek

    2015-04-10

    Various aspects of forward physics have been studied by the ATLAS collaboration using data from Run I at the LHC. In this text, main results of four published analyses are summarized, all based on data from proton-proton collisions at ?(s)=7 TeV collected in 2010 or 2011. Two analyses deal with the diffractive signature, one based on single-sided events, the other on large rapidity gaps in soft events. In addition, a recent measurement of the total pp cross section using the ALFA subdetector and a recent study of higher-order QCD effects using a jet veto are discussed.

  6. SPACE code simulation of cold leg small break LOCA in the ATLAS integral test

    SciTech Connect (OSTI)

    Kim, B. J.; Kim, H. T.; Kim, J.; Kim, K. D.

    2012-07-01

    SPACE code is a system analysis code for pressurized water reactors. This code uses a two-fluid and three-field model. For a few years, intensive validations have been performed to secure the prediction accuracy of models and correlations for two-phase flow and heat transfer. Recently, the code version 1.0 was released. This study is to see how well SPACE code predicts thermal hydraulic phenomena of an integral effect test. The target experiment is a cold leg small break LOCA in the ATLAS facility, which has the same two-loop features as APR1400. Predicted parameters were compared with experimental observations. (authors)

  7. HERSCHEL-ATLAS: TOWARD A SAMPLE OF {approx}1000 STRONGLY LENSED GALAXIES

    SciTech Connect (OSTI)

    Gonzalez-Nuevo, J.; Lapi, A.; Bressan, S.; Danese, L.; De Zotti, G.; Cai, Z.-Y.; Fan, L.; Fleuren, S.; Sutherland, W.; Negrello, M.; Baes, M.; Baker, A. J.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Dunne, L.; Dye, S.; Eales, S.; Frayer, D. T.; Harris, A. I.; and others

    2012-04-10

    While the selection of strongly lensed galaxies (SLGs) with 500 {mu}m flux density S{sub 500} > 100 mJy has proven to be rather straightforward, for many applications it is important to analyze samples larger than the ones obtained when confining ourselves to such a bright limit. Moreover, only by probing to fainter flux densities is it possible to exploit strong lensing to investigate the bulk of the high-z star-forming galaxy population. We describe HALOS (the Herschel-ATLAS Lensed Objects Selection), a method for efficiently selecting fainter candidate SLGs, reaching a surface density of {approx_equal} 1.5-2 deg{sup -2}, i.e., a factor of about 4-6 higher than that at the 100 mJy flux limit. HALOS will allow the selection of up to {approx}1000 candidate SLGs (with amplifications {mu} {approx}> 2) over the full H-ATLAS survey area. Applying HALOS to the H-ATLAS Science Demonstration Phase field ({approx_equal} 14.4 deg{sup 2}) we find 31 candidate SLGs, whose candidate lenses are identified in the VIKING near-infrared catalog. Using the available information on candidate sources and candidate lenses we tentatively estimate a {approx_equal} 72% purity of the sample. As expected, the purity decreases with decreasing flux density of the sources and with increasing angular separation between candidate sources and lenses. The redshift distribution of the candidate lensed sources is close to that reported for most previous surveys for lensed galaxies, while that of candidate lenses extends to redshifts substantially higher than found in the other surveys. The counts of candidate SLGs are also in good agreement with model predictions. Even though a key ingredient of the method is the deep near-infrared VIKING photometry, we show that H-ATLAS data alone allow the selection of a similarly deep sample of candidate SLGs with an efficiency close to 50%; a slightly lower surface density ({approx_equal} 1.45 deg{sup -2}) can be reached with a {approx}70% efficiency.

  8. Saturn's inner satellites: Orbits, masses, and the chaotic motion of atlas from new Cassini imaging observations

    SciTech Connect (OSTI)

    Cooper, N. J.; Murray, C. D.; Renner, S.; Evans, M. W.

    2015-01-01

    We present numerically derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus, and Epimetheus from a fit to 2580 new Cassini Imaging Science Subsystem astrometric observations spanning 2004 February to 2013 August. The observations are provided as machine-readable and Virtual Observatory tables. We estimate GM{sub Atlas} = (0.384 0.001) 10{sup ?3} km{sup 3} s{sup ?2}, a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. We also find GM{sub Prometheus} = (10.677 0.006) 10{sup ?3} km{sup 3} s{sup ?2}, GM{sub Pandora} = (9.133 0.009) 10{sup ?3} km{sup 3} s{sup ?2}, GM{sub Janus} = (126.51 0.03) 10{sup ?3} km{sup 3} s{sup ?2}, and GM{sub Epimetheus} = (35.110 0.009) 10{sup ?3} km{sup 3} s{sup ?2}, consistent with previously published values, but also with significant reductions in uncertainties. We show that Atlas is currently librating in both the 54:53 co-rotation-eccentricity resonance (CER) and the 54:53 inner Lindblad (ILR) resonance with Prometheus, making it the latest example of a coupled CER-ILR system, in common with the Saturnian satellites Anthe, Aegaeon, and Methone, and possibly Neptune's ring arcs. We further demonstrate that Atlas's orbit is chaotic, with a Lyapunov time of ?10 years, and show that its chaotic behavior is a direct consequence of the coupled resonant interaction with Prometheus, rather than being an indirect effect of the known chaotic interaction between Prometheus and Pandora. We provide an updated analysis of the second-order resonant perturbations involving Prometheus, Pandora, and Epimetheus based on the new observations, showing that these resonant arguments are librating only when Epimetheus is the innermost of the co-orbital pair, Janus and Epimetheus. We also find evidence that the known chaotic changes in the orbits of Prometheus and Pandora are not confined to times of apse anti-alignment.

  9. Priority I and II Experiments Approved at the June 26-27, 2009 ATLAS PAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting 6-27, 2009 ATLAS PAC Meeting Proposal # PI Name Title Days 1032-5 S. Marley Study of Excited States in 13O II (8) 1062-2 J. Snyder DSAM Lifetimes and RIV g-factor measurements for fission fragments using GAMMASPHERE and HERCULES 14 1205x-2 M. Paul (gamma,n) production of p-process nuclide 146Sm 5 1207-2 R. Segel Electroweak interaction tests using trapped 8Li ions 10 1253-2 P. Chowdhury Collective oblate rotation at high spins in neutron-rich 184,186W 6 1260-2 J. F. Smith Non-yrast

  10. Priority I and II Experiments Approved at the June 27-28, 2008 ATLAS PAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting 7-28, 2008 ATLAS PAC Meeting Proposal # PI Name Title Days 1183-2 A. A. Hecht Towards 100Sn: measuring the masses of the light tin isotopes 4 1206-2 B. S. N. Singh Quantifying oblate collectivity in the N = Z nucleus 68Se 4 1219-2 A. Lopez-Martens Superdeformed ridge properties in 192Hg: probing the new phenomena of ergodic bands and motional narrowing 7 1228X W. Loveland The Synthesis of Superheavy Nuclei Using Damped Collisions--A Test 1 1230 X. Wang Lifetimes of the TSD candidate