National Library of Energy BETA

Sample records for atlas relativistic heavy

  1. Relativistic Heavy Ion Collider (RHIC) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relativistic Heavy Ion Collider (RHIC) Nuclear Physics (NP) NP Home About Research Facilities User Facilities Argonne Tandem Linac Accelerator System (ATLAS) Continuous Electron Beam Accelerator Facility (CEBAF) Relativistic Heavy Ion Collider (RHIC) Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown

  2. Jets in relativistic heavy ion collisions

    SciTech Connect (OSTI)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  3. Femtoscopy in Relativistic Heavy Ion Collisions

    SciTech Connect (OSTI)

    Lisa, M; Pratt, S; Soltz, R A; Wiedemann, U

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  4. COMMISSIONING OF THE RELATIVISTIC HEAVY ION COLLIDER.

    SciTech Connect (OSTI)

    TRBOJEVIC,D.; AHRENS,L.; BLASKIEWICZ,M.; BRENNAN,M.; BAI,M.; CAMERON,P.; CARDONA,J.; CONNOLLY,R.; ET AL; TSOUPAS,N.; VAN ZEIJTS,J.

    2001-06-18

    This report describes in detail steps performed in bringing the Relativistic Heavy Ion Collider (RHIC) from the commissioning into the operational stage when collisions between 60 bunches of fully striped gold ions, were routinely provided. Corrections of the few power supplies connections by the beam measurements are described. Beam lifetime improvements at injection, along the acceleration are shown. The beam diagnostic results; like Schottky detector, beam profile monitor, beam position monitors, tune meter and others, are shown [1].

  5. (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions...

    Office of Scientific and Technical Information (OSTI)

    (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions Citation Details In-Document Search Title: (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions ...

  6. Relativistic Heavy-Ion Collider (RHIC) physics overview

    SciTech Connect (OSTI)

    Ruan, L.J.; Ruan, L.; n /a

    2010-02-08

    The results from data taken during the last several years at the Relativistic Heavy-Ion Collider (RHIC) will be reviewed in the paper. Several selected topics that further our understanding of constituent quark scaling, jet quenching and color screening effect of heavy quarkonia in the hot dense medium will be presented. Detector upgrades will further probe the properties of Quark Gluon Plasma. Future measurements with upgraded detectors will be presented. The discovery perspectives from future measurements will also be discussed.

  7. Parton equilibration in relativistic heavy ion collisions

    SciTech Connect (OSTI)

    Biro, T.S.; van Doorn, E.; Mueller, B.; Thoma, M.H.; Wang, X. Institut fuer Theoretische Physik, Universitaet Giessen, D-6300 Giessen Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 )

    1993-09-01

    We investigate the processes leading to phase-space equilibration of parton distributions in nuclear interactions at collider energies. We derive a set of rate equations describing the chemical equilibration of gluons and quarks including medium effects on the relevant QCD transport coefficients, and discuss their consequences for parton equilibration in heavy ion collisions.

  8. Final Report for Project ``Theory of ultra-relativistic heavy-ion

    Office of Scientific and Technical Information (OSTI)

    collisions'' (Technical Report) | SciTech Connect Final Report for Project ``Theory of ultra-relativistic heavy-ion collisions'' Citation Details In-Document Search Title: Final Report for Project ``Theory of ultra-relativistic heavy-ion collisions'' In the course of this project the Ohio State University group led by the PI, Professor Ulrich Heinz, developed a comprehensive theoretical picture of the dynamical evolution of ultra-relativistic heavy-ion collisions and of the numerous

  9. Modeling and Analysis of Ultra-Relativistic Heavy-Ion Collisions

    SciTech Connect (OSTI)

    Bass, Steffen A

    2008-06-02

    This document contains the final report for DOE grant DE-FG02-03ER41239: Modeling and Analysis of Ultra-Relativistic Heavy-Ion Collisions

  10. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  11. Observation of snake resonances at Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Bai, M.; Ahrens, L.; Alekseev, I.G.; Alessi, J.; et al

    2010-09-27

    The Siberian snakes are powerful tools in preserving polarization in high energy accelerators has been demonstrated at the Brookhaven Relativistic Heavy Ion Collider (RHIC). Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the Siberian snakes also introduce a new set of depolarization resonances, i.e. snake resonances as first discovered by Lee and Tepikian. The intrinsic spin resonances above 100 GeV are about a factor of two stronger than those below 100 GeV which raises the challenge to preserve the polarization up to 250 GeV. In 2009, polarized protons collided for the first time at the RHIC design store energy of 250 GeV. This paper presents the experimental measurements of snake resonances at RHIC. The plan for avoiding these resonances is also presented.

  12. Charmonium production in relativistic heavy-ion collisions

    SciTech Connect (OSTI)

    Song, Taesoo; Han, Kyong Chol; Ko, Che Ming

    2011-09-15

    Using the two-component model that includes charmonium production from both initial nucleon-nucleon hard scattering and regeneration in the produced quark-gluon plasma, we study J/{psi} production in heavy-ion collisions at the Super Proton Synchrotron (SPS), Relativistic Heavy Ion Collider (RHIC), and Large Hadron Collider (LHC). For the expansion dynamics of produced hot dense matter, we use a schematic viscous hydrodynamic model with the specific shear viscosity in the quark-gluon plasma and the hadronic matter taken, respectively, to be two and ten times the lower bound of 1/4{pi} suggested by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence. For the initial dissociation and the subsequent thermal decay of charmonia in the hot dense matter, we use the screened Cornell potential to describe the properties of charmonia and perturbative QCD to calculate their dissociation cross sections. Including regeneration of charmonia in the quark-gluon plasma via a kinetic equation with in-medium chamonium decay widths, we obtain a good description of measured J/{psi} nuclear modification factors in Pb + Pb collisions at {radical}(s{sub NN})=1.73 GeV at SPS and in Au + Au collisions at {radical}(s{sub NN})=200 GeV at RHIC. A reasonable description of the measured nuclear modification factor of high transverse momenta J/{psi} in Pb + Pb collisions at {radical}(s{sub NN})=2.76 TeV at LHC is also obtained.

  13. ATLAS DISCOVERY POTENTIAL FOR A HEAVY CHARGED HIGGS BOSON.

    SciTech Connect (OSTI)

    ASSAMAGAN,K.A.; COADOU,Y.; DEANDREA,A.

    2002-02-01

    The sensitivity of the ATLAS detector to the discovery of a heavy charged Higgs boson is presented. Assuming a heavy SUSY spectrum, the most promising channels above the top quark mass are H{sup {+-}} {yields} tb and h{sup {+-}} {yields} {tau}{sup {+-}}{nu}{sub {tau}} which provide coverage in the low and high tan {beta} regions up to {approx} 600 GeV. The achievable precisions on the charged Higgs mass and tan {beta} determination are also discussed. The H{sup {+-}} {yields} W{sup {+-}}h{sup 0} channel, though restricted to a small MSSM parameter space, shows a viable signal in NMSSM where the parameter space is less constrained. The observation of the channel H{sup -} {yields} {tau}{sub L}{sup -} {nu}{sub {tau}} + c.c. may constitute a distinctive evidence for models with singlet neutrinos in large extra dimensions.

  14. Triangularity and dipole asymmetry in relativistic heavy ion collisions

    SciTech Connect (OSTI)

    Teaney, Derek; Yan Li

    2011-06-15

    We introduce a cumulant expansion to parametrize possible initial conditions in relativistic heavy ion collisions. We show that the cumulant expansion converges and that it can systematically reproduce the results of Glauber type initial conditions. At third order in the gradient expansion the cumulants characterize the triangularity and the dipole asymmetry of the initial entropy distribution. We show that for midperipheral collisions the orientation angle of the dipole asymmetry {psi}{sub 1,3} has a 20% preference out of plane. This leads to a small net v{sub 1} out of plane. In peripheral and midcentral collisions the orientation angles {psi}{sub 1,3} and {psi}{sub 3,3} are strongly correlated, but this correlation disappears towards central collisions. We study the ideal hydrodynamic response to these cumulants and determine the associated v{sub 1}/{epsilon}{sub 1} and v{sub 3}/{epsilon}{sub 3} for a massless ideal gas equation of state. The space time development of v{sub 1} and v{sub 3} is clarified with figures. These figures show that v{sub 1} and v{sub 3} develop toward the edge of the nucleus, and consequently the final spectra are more sensitive to the viscous dynamics of freezeout. The hydrodynamic calculations for v{sub 3} are provisionally compared to Alver and Roland fit of STAR inclusive two-particle correlation functions. Finally, we propose to measure the v{sub 1} associated with the dipole asymmetry and the correlations between {psi}{sub 1,3} and {psi}{sub 3,3} by measuring a two-particle correlation with respect to the participant plane . The hydrodynamic prediction for this correlation function is several times larger than a correlation currently measured by the STAR collaboration . This experimental measurement would provide

  15. Measurements of {phi} meson production in relativistic heavy-ion collisions at the BNL relativistic heavy ion collider (RHIC).

    SciTech Connect (OSTI)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H.; Underwood, D. G.; High Energy Physics; Univ. of Illinois; Kent State Univ.; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physics Lab.; STAR Collaboration

    2009-01-01

    We present results for the measurement of {phi} meson production via its charged kaon decay channel {phi} {yields} K{sup +}K{sup -} in Au+Au collisions at {radical}S{sub NN} = 62.4, 130, and 200 GeV, and in p+p and d+Au collisions at {radical}s{sub NN} = 200 GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity (|y| < 0.5) {phi} meson transverse momentum (p{sub T}) spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the p{sub T} spectra from p+p, d+Au, and peripheral Au+Au collisions show power-law tails at intermediate and high p{sub T} and are described better by Levy distributions. The constant {phi}/K{sup -} yield ratio vs beam species, collision centrality, and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for {phi} production at RHIC. The {Omega}/{phi} yield ratio as a function of p{sub T} is consistent with a model based on the recombination of thermal s quarks up to p{sub T} {approx} 4 GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, R{sub dAu}, for the {phi} meson increases above unity at intermediate p{sub T}, similar to that for pions and protons, while R{sub AA} is suppressed due to the energy loss effect in central Au+Au collisions. Number of constituent quark scaling of both R{sub cp} and v{sub 2} for the {phi} meson with respect to other hadrons in Au+Au collisions at {radical}s{sub NN} = 200 GeV at intermediate p{sub T} is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate p{sub T} region at RHIC.

  16. Measurements of {phi} meson production in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.; Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.; Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.

    2009-06-15

    We present results for the measurement of {phi} meson production via its charged kaon decay channel {phi}{yields}K{sup +}K{sup -} in Au+Au collisions at {radical}(s{sub NN})=62.4,130, and 200 GeV, and in p+p and d+Au collisions at {radical}(s{sub NN})=200 GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity (|y|<0.5) {phi} meson transverse momentum (p{sub T}) spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the p{sub T} spectra from p+p, d+Au, and peripheral Au+Au collisions show power-law tails at intermediate and high p{sub T} and are described better by Levy distributions. The constant {phi}/K{sup -} yield ratio vs beam species, collision centrality, and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for {phi} production at RHIC. The {omega}/{phi} yield ratio as a function of p{sub T} is consistent with a model based on the recombination of thermal s quarks up to p{sub T}{approx}4 GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, R{sub dAu}, for the {phi} meson increases above unity at intermediate p{sub T}, similar to that for pions and protons, while R{sub AA} is suppressed due to the energy loss effect in central Au+Au collisions. Number of constituent quark scaling of both R{sub cp} and v{sub 2} for the {phi} meson with respect to other hadrons in Au+Au collisions at {radical}(s{sub NN})=200 GeV at intermediate p{sub T} is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate p{sub T} region at RHIC.

  17. Relativistic description of pair production of doubly heavy baryons in e{sup +}e{sup −} annihilation

    SciTech Connect (OSTI)

    Martynenko, A. P.; Trunin, A. M.

    2015-05-15

    Relativistic corrections in the pair production of S-wave doubly heavy diquarks in electron-positron annihilation were calculated on the basis of perturbative QCD and the quark model. The relativistic corrections to the wave functions for quark bound states were taken into account with the aid of the Breit potential in QCD. Relativistic effects change substantially the nonrelativistic cross sections for pair diquark production. The yield of pairs of (ccq) doubly heavy baryons at B factories was estimated.

  18. Ground state heavy baryon production in a relativistic quark-diquark model

    SciTech Connect (OSTI)

    Gomshi Nobary, M. A.; Sepahvand, R.

    2007-12-01

    We use current-current interaction to calculate the fragmentation functions to describe the production of spin-1/2, spin-1/2{sup '}, and spin-3/2 baryons with massive constituents in a relativistic quark-diquark model. Our results are in their analytic forms and are applicable for singly, doubly, and triply heavy baryons. We discuss the production of {omega}{sub bbc}, {omega}{sub bcc}, and {omega}{sub ccc} baryons in some detail. The results are satisfactorily compared with those obtained for triply heavy baryons calculated in a perturbative regime within reasonable values of the parameters involved.

  19. Multi Module Modeling of Ultra-Relativistic Heavy Ion Collisions.

    SciTech Connect (OSTI)

    Magas, V. K.; Csernai, L. P.; Keranen, A.; Manninen, J.; Strottman, D. D.

    2002-01-01

    Multi Module Model is required for the realistic and detailed description of an ultrarelativistic heavy ion reaction. We are working in the framework of such a model: initial stages are described by Effective String Rope Model with expanding final streaks; hydrodynamical approach is used for the intermediate stages. This paper is mainly devoted to Third Module - the one dealing with Freeze Out (FO). Two possibilities are discussed in details: (A) freeze out at the constant time hypersurface, where the statistical production model is used to describe post FO particle species; and (B) simultaneous hadronization and freeze out from supercooled QGP. For the last case the ALCOR-like algorithm for calculation of the post FO particle species is presented, due to the fact that these do not have time to reach chemical equilibrium.

  20. Production of photons in relativistic heavy-ion collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jean -Francois Paquet; Denicol, Gabriel S.; Shen, Chun; Luzum, Matthew; Schenke, Bjorn; Jeon, Sangyong; Gale, Charles

    2016-04-18

    In this work it is shown that the use of a hydrodynamical model of heavy-ion collisions which incorporates recent developments, together with updated photon emission rates, greatly improves agreement with both ALICE and PHENIX measurements of direct photons, supporting the idea that thermal photons are the dominant source of direct photon momentum anisotropy. The event-by-event hydrodynamical model uses the impact parameter dependent Glasma model (IP-Glasma) initial states and includes, for the first time, both shear and bulk viscosities, along with second-order couplings between the two viscosities. Furthermore, the effect of both shear and bulk viscosities on the photon rates ismore » studied, and those transport coefficients are shown to have measurable consequences on the photon momentum anisotropy.« less

  1. B*Bπ coupling using relativistic heavy quarks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Flynn, J. M.; Fritzsch, P.; Kawanai, T.; Lehner, C.; Sachrajda, C. T.; Samways, B.; Van de Water, R. S.; Witzel, O.

    2016-01-27

    Here, we report on a calculation of the B*Bπ coupling in three-flavor lattice QCD. This coupling, defined from the strong-interaction matrix element , is related to the leading order low-energy constant in heavy meson chiral perturbation theory. We carry out our calculation directly at the b-quark mass using a nonperturbatively tuned clover action that controls discretization effects of order |more » $$\\vec{p}$$a| and (ma)n for all n. Our analysis is performed on RBC/UKQCD gauge configurations using domain-wall fermions and the Iwasaki gauge action at two lattice spacings of a-1=1.729(25) GeV, a-1=2.281(28) GeV, and unitary pion masses down to 290 MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final result for the coupling gb=0.56(3)stat(7)sys in the continuum and at the physical light-quark masses. Moreover, this is the first calculation performed directly at the physical b-quark mass and lies in the region one would expect from carrying out an interpolation between previous results at the charm mass and at the static point.« less

  2. B*Bπ coupling using relativistic heavy quarks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Flynn, J. M.; Fritzsch, P.; Kawanai, T.; Lehner, C.; Samways, B.; Sachrajda, C. T.; Van de Water, R. S.; Witzel, O.

    2016-01-27

    We report on a calculation of the B*Bπ coupling in lattice QCD. The strong matrix element (Bπ|B*) is directly related to the leading order low-energy constant in heavy meson chiral perturbation theory (HMΧPT) for B mesons. We carry out our calculation directly at the b-quark mass using a non-perturbatively tuned clover action that controls discretization effects of order |p→a| and (ma)n for all n. Our analysis is performed on RBC/UKQCD gauge configurations using domain-wall fermions and the Iwasaki gauge action at two lattice spacings of a–1 = 1.729(25) GeV, a–1 = 2.281 (28) GeV, and unitary pion masses down tomore » 290 MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final result for the HMΧPT coupling gb = 0.56(3)stat(7)sys in the continuum and at the physical light-quark masses. Furthermore, this is the first calculation performed directly at the physical b-quark mass and lies in the region one would expect from carrying out an interpolation between previous results at the charm mass and at the static point.« less

  3. The B*Bπ coupling using relativistic heavy quarks

    SciTech Connect (OSTI)

    Flynn, J. M.; Fritzsch, P.; Kawanai, T.; Lehner, C.; Samways, B.; Sachrajda, C. T.; Van de Water, R. S.; Witzel, O.

    2015-06-23

    We report on a calculation of the B*Bπ coupling in lattice QCD. The strong matrix element (Bπ|B*) is directly related to the leading order low-energy constant in heavy meson chiral perturbation theory (HMΧPT) for B mesons. We carry out our calculation directly at the b-quark mass using a non-perturbatively tuned clover action that controls discretization effects of order |pa| and (ma)n for all n. Our analysis is performed on RBC/UKQCD gauge configurations using domain-wall fermions and the Iwasaki gauge action at two lattice spacings of a–1 = 1.729(25) GeV, a–1 = 2.281 (28) GeV, and unitary pion masses down to 290 MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final result for the HMΧPT coupling gb = 0.56(3)stat(7)sys in the continuum and at the physical light-quark masses. Furthermore, this is the first calculation performed directly at the physical b-quark mass and lies in the region one would expect from carrying out an interpolation between previous results at the charm mass and at the static point.

  4. Final Report for Project ``Theory of ultra-relativistic heavy-ion collisions''

    SciTech Connect (OSTI)

    Ulrich W. Heinz

    2012-11-09

    In the course of this project the Ohio State University group led by the PI, Professor Ulrich Heinz, developed a comprehensive theoretical picture of the dynamical evolution of ultra-relativistic heavy-ion collisions and of the numerous experimental observables that can be used to diagnose the evolving and short-lived hot and dense fireball created in such collisions. Starting from a qualitative understanding of the main features based on earlier research during the last decade of the twentieth century on collisions at lower energies, the group exploited newly developed theoretical tools and the stream of new high-quality data from the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (which started operations in the summer of the year 2000) to arrive at an increasingly quantitative description of the experimentally observed phenomena. Work done at Ohio State University (OSU) was instrumental in the discovery during the years 2001-2003 that quark-gluon plasma (QGP) created in nuclear collisions at RHIC behaves like an almost perfect liquid with minimal viscosity. The tool of relativistic fluid dynamics for viscous liquids developed at OSU in the years 2005-2007 opened the possibility to quantitatively determine the value of the QGP viscosity empirically from experimental measurements of the collective flow patterns established in the collisions. A first quantitative extraction of the QGP shear viscosity, with controlled theoretical uncertainty estimates, was achieved during the last year of this project in 2010. OSU has paved the way for a transition of the field of relativistic heavy-ion physics from a qualitative discovery stage to a new stage of quantitative precision in the description of quark-gluon plasma properties. To gain confidence in the precision of our theoretical understanding of quark-gluon plasma dynamics, one must test it on a large set of experimentally measured observables. This achievement report demonstrates that we have, at

  5. Fourth workshop on experiments and detectors for a relativistic heavy ion collider

    SciTech Connect (OSTI)

    Fatyga, M.; Moskowitz, B.

    1990-01-01

    This report contains papers on the following topics: physics at RHIC; flavor flow from quark-gluon plasma; space-time quark-gluon cascade; jets in relativistic heavy ion collisions; parton distributions in hard nuclear collisions; experimental working groups, two-arm electron/photon spectrometer collaboration; total and elastic pp cross sections; a 4{pi} tracking TPC magnetic spectrometer; hadron spectroscopy; efficiency and background simulations for J/{psi} detection in the RHIC dimuon experiment; the collision regions beam crossing geometries; Monte Carlo simulations of interactions and detectors; proton-nucleus interactions; the physics of strong electromagnetic fields in collisions of relativistic heavy ions; a real time expert system for experimental high energy/nuclear physics; the development of silicon multiplicity detectors; a pad readout detector for CRID/tracking; RHIC TPC R D progress and goals; development of analog memories for RHIC detector front-end electronic systems; calorimeter/absorber optimization for a RHIC dimuon experiment; construction of a highly segmented high resolution TOF system; progress report on a fast, particle-identifying trigger based on ring-imaging and highly integrated electronics for a TPC detector.

  6. Search for metastable heavy charged particles with large ionisation energy loss in pp collisions at ${\\sqrt{s} = 8}$ s = 8 TeV using the ATLAS experiment

    SciTech Connect (OSTI)

    Aad, G.

    2015-09-03

    Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as R-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of \\(18.4\\) fb\\(^{-1}\\) of pp collisions at \\(\\sqrt{s} = 8\\) TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on R-hadrons and chargino production are set. Gluino R-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95 \\(\\%\\) confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.

  7. Search for metastable heavy charged particles with large ionisation energy loss in pp collisions at $${\\sqrt{s} = 8}$$ s = 8 TeV using the ATLAS experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-09-03

    Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as R-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data samplemore » corresponding to an integrated luminosity of \\(18.4\\) fb\\(^{-1}\\) of pp collisions at \\(\\sqrt{s} = 8\\) TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on R-hadrons and chargino production are set. Gluino R-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95 \\(\\%\\) confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.« less

  8. Quark-gluon plasma in the early Universe and in ultra-relativistic heavy-ion collisions

    SciTech Connect (OSTI)

    Greco, V.

    2014-05-09

    We briefly give an elementary introduction to the expansion of the Early Universe till when the phase transition of the quark-gluon plasma to a hadronic matter takes place. Then we describe some main element of the study of QGP by mean of ultra-relativistic heavy-ion collisions (uRHIC's)

  9. Relativistic heavy ion physics. Progress report, November 15, 1992--November 14, 1993

    SciTech Connect (OSTI)

    Hill, J.C.; Wohn, F.K.

    1993-11-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ``Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ``Physics Research Progress``, is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the {sup 197}Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given.

  10. Dynamical heavy-quark recombination and the nonphotonic single-electron puzzle at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Ayala, Alejandro; Magnin, J.; Montano, Luis Manuel; Sanchez, G. Toledo

    2009-12-15

    We show that the single, nonphotonic electron nuclear modification factor R{sub AA}{sup e} is affected by the thermal enhancement of the heavy-baryon-to-heavy-meson ratio in relativistic heavy-ion collisions with respect to proton-proton collisions. We make use of the dynamical quark recombination model to compute such a ratio and show that this produces a sizable suppression factor for R{sub AA}{sup e} at intermediate transverse momenta. We argue that this suppression factor needs to be considered, in addition to the energy loss contribution, in calculations of R{sub AA}{sup e}.

  11. ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Basics The basics of ATLAS computing at PDSF Read More » Data Transfer DQ2 is the ATLAS data management and transfer tool. Read More » File Systems ATLAS has space on 4 elizas: 35TB on /eliza1, 35TB on /eliza2, 12TB on /eliza4 and 142TB on /eliza18. Read More » Running on Carver ATLAS software is obtained via cvmfs which is installed on PDSF nodes. There is presently no cvmfs installation available on Carver so it is not possible to run ATLAS jobs on Carver at this time. However, the

  12. Constraining the viscous freeze-out distribution function with data obtained at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Luzum, Matthew; Ollitrault, Jean-Yves

    2010-07-15

    We investigate the form of the viscous correction to the equilibrium distribution function in the context of a Cooper-Frye freeze-out prescription for viscous hydrodynamic simulations of relativistic heavy ion collisions. The standard quadratic ansatz used by all groups for the case of shear viscosity is found to be disfavored by experimental data for v{sub 4}/(v{sub 2}){sup 2} at the Relativistic Heavy Ion Collider and is unlikely to be correct for the hadron resonance gas present at freeze-out. Instead, data for v{sub 2}(p{sub t}) along with v{sub 4}/(v{sub 2}){sup 2} favor a momentum dependence between linear and quadratic.

  13. Operational head-on beam-beam compensation with electron lenses in the Relativistic Heavy Ion Collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fischer, W.; Gu, X.; Altinbas, Z.; Costanzo, M.; Hock, J.; Liu, C.; Luo, Y.; Marusic, A.; Michnoff, R.; Miller, T. A.; et al

    2015-12-23

    Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider (RHIC) in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. As of this date the implemented compensation scheme approximately doubled the peak and average luminosities.

  14. (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions

    SciTech Connect (OSTI)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2010-07-15

    We present music, an implementation of the Kurganov-Tadmor algorithm for relativistic 3+1 dimensional fluid dynamics in heavy-ion collision scenarios. This Riemann-solver-free, second-order, high-resolution scheme is characterized by a very small numerical viscosity and its ability to treat shocks and discontinuities very well. We also incorporate a sophisticated algorithm for the determination of the freeze-out surface using a three dimensional triangulation of the hypersurface. Implementing a recent lattice based equation of state, we compute p{sub T}-spectra and pseudorapidity distributions for Au+Au collisions at sq root(s)=200 GeV and present results for the anisotropic flow coefficients v{sub 2} and v{sub 4} as a function of both p{sub T} and pseudorapidity eta. We were able to determine v{sub 4} with high numerical precision, finding that it does not strongly depend on the choice of initial condition or equation of state.

  15. Two-photon interactions with nuclear breakup in relativistic heavy ion collisions

    SciTech Connect (OSTI)

    Baltz, Anthony J.; Gorbunov, Yuri; Klein, Spencer R.; Nystrand, Joakim

    2009-10-15

    Highly charged relativistic heavy ions have high cross sections for two-photon interactions. The photon flux is high enough that two-photon interactions may be accompanied by additional photonuclear interactions. Except for the shared impact parameter, these interactions are independent. Additional interactions like mutual Coulomb excitation are of experimental interest, because the neutrons from the nuclear dissociation provide a simple, relatively unbiased trigger. We calculate the cross sections, rapidity, mass, and transverse momentum (p{sub T}) distributions for exclusive {gamma}{gamma} production of mesons and lepton pairs and for {gamma}{gamma} reactions accompanied by mutual Coulomb dissociation. The cross sections for {gamma}{gamma} interactions accompanied by multiple neutron emission (XnXn) and single-neutron emission (1n1n) are about 1/10 and 1/100 of that for the unaccompanied {gamma}{gamma} interactions. We discuss the accuracy with which these cross sections may be calculated. The typical p{sub T} of {gamma}{gamma} final states is several times smaller than for comparable coherent photonuclear interactions, so p{sub T} may be an effective tool for separating the two classes of interactions.

  16. Two-Photon Interactions with Nuclear Breakup in Relativistic Heavy Ion Collisions

    SciTech Connect (OSTI)

    Baltz, Anthony J.; Gorbunov, Yuri; R Klein, Spencer; Nystrand, Joakim

    2010-07-07

    Highly charged relativistic heavy ions have high cross-sections for two-photon interactions. The photon flux is high enough that two-photon interactions may be accompanied by additional photonuclear interactions. Except for the shared impact parameter, these interactions are independent. Additional interactions like mutual Coulomb excitation are of experimental interest, since the neutrons from the nuclear dissociation provide a simple, relatively unbiased trigger. We calculate the cross sections, rapidity, mass and transverse momentum (p{sub T}) distributions for exclusive {gamma}{gamma} production of mesons and lepton pairs, and for {gamma}{gamma} reactions accompanied by mutual Coulomb dissociation. The cross-sections for {gamma}{gamma} interactions accompanied by multiple neutron emission (XnXn) and single neutron emission (1n1n) are about 1/10 and 1/100 of that for the unaccompanied {gamma}{gamma} interactions. We discuss the accuracy with which these cross-sections may be calculated. The typical p{sub T} of {gamma}{gamma} final states is several times smaller than for comparable coherent photonuclear interactions, so p{sub T} may be an effective tool for separating the two classes of interactions.

  17. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Liu, C.; Marusic, A.; Minty, M.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  18. Heavy element effects in the diagonal Born–Oppenheimer correction within a relativistic spin-free Hamiltonian

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Imafuku, Yuji; Abe, Minori; Schmidt, Michael W.; Hada, Masahiko

    2016-03-22

    Methodologies beyond the Born–Oppenheimer (BO) approximation are nowadays important to explain high precision spectroscopic measurements. Most previous evaluations of the BO correction are, however, focused on light-element molecules and based on a nonrelativistic Hamiltonian, so no information about the BO approximation (BOA) breakdown in heavy-element molecules is available. The present work is the first to investigate the BOA breakdown for the entire periodic table, by considering scalar relativistic effects in the Diagonal BO correction (DBOC). In closed shell atoms, the relativistic EDBOC scales as Z1.25 and the nonrelativistic EDBOC scales as Z1.17, where Z is the atomic number. Hence, wemore » found that EDBOC becomes larger in heavy element atoms and molecules, and the relativistic EDBOC increases faster than nonrelativistic EDBOC. We have further investigated the DBOC effects on properties such as potential energy curves, spectroscopic parameters, and various energetic properties. The DBOC effects for these properties are mostly affected by the lightest atom in the molecule. Furthermore, in X2 or XAt molecule (X = H, Li, Na, K, Rb, and Cs) the effect of DBOC systematically decreases when X becomes heavier but in HX molecules, the effect of DBOC seems relatively similar among all the molecules.« less

  19. J/{psi} production and elliptic flow in relativistic heavy-ion collisions

    SciTech Connect (OSTI)

    Song Taesoo; Xu Jun; Ko, Che Ming; Lee, Su Houng

    2011-01-15

    Using the two-component model for charmonium production, which includes contributions from both initial hard nucleon-nucleon scattering and from regeneration in the quark-gluon plasma, we study the nuclear modification factor R{sub AA} and elliptic flow v{sub 2} of J/{psi} in relativistic heavy-ion collisions. For the expansion dynamics of produced hot, dense matter, we introduce a schematic fireball model with its transverse acceleration determined from the pressure gradient inside the fireball and azimuthally anisotropic expansion parametrized to reproduce measured v{sub 2} of light hadrons. We assume that light hadrons freeze out at the temperature of 120 MeV while charmonia freeze out at 160 MeV, similar to the kinetic and chemical freeze-out temperatures in the statistical model, respectively. For the properties of charmonia in the quark-gluon plasma, we use the screening mass between their charm and anticharm quarks and their dissociation cross sections given by the perturbative quantum chromodynamical (pQCD) calculations in the leading order and up to the next-to-leading order, respectively. For the relaxation time of charm and anticharm quarks in the quark-gluon plasma, we also use the one calculated in the leading-order pQCD. Modeling the effect of higher-order corrections in pQCD by introducing multiplicative factors to the dissociation cross sections of charmonia and the elastic scattering cross sections of charm and anticharm quarks, we find that this effect is small for the R{sub AA} of J/{psi} as they suppress the number of initially produced J/{psi} but enhance the number of regenerated ones. The higher-order corrections increase, however, the v{sub 2} of J/{psi}. Our results suggest that the v{sub 2} of J/{psi} can play an important role in discriminating between J/{psi} production from initial hard collisions and from regeneration in the quark-gluon plasma.

  20. Argonne Tandem Linac Accelerator System (ATLAS) | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Argonne Tandem Linac Accelerator System (ATLAS) Nuclear Physics (NP) NP Home About Research Facilities User Facilities Argonne Tandem Linac Accelerator System (ATLAS) Continuous Electron Beam Accelerator Facility (CEBAF) Relativistic Heavy Ion Collider (RHIC) Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of

  1. Jet energy loss, photon production, and photon-hadron correlations at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Qin Guangyou; Ruppert, Joerg; Gale, Charles; Jeon, Sangyong; Moore, Guy D.

    2009-11-15

    Jet energy loss, photon production, and photon-hadron correlations are studied together at high transverse momentum in relativistic heavy-ion collisions at Relativistic Heavy Ion Collider (RHIC) energies. The modification of hard jets traversing a hot and dense nuclear medium is evaluated by consistently taking into account induced gluon radiation and elastic collisions. The production of high-transverse-momentum photons in Au+Au collisions at RHIC is calculated by incorporating a complete set of photon-production channels. Comparison with experimental photon production and photon-hadron correlation data is performed, using a (3+1)-dimensional relativistic hydrodynamic description of the thermalized medium created in these collisions. Our results demonstrate that the interaction between the hard jets and the soft medium is important for the study of photon production and of photon-hadron correlation at RHIC.

  2. Effects of momentum conservation and flow on angular correlations observed in experiments at the BNL Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Pratt, Scott; Schlichting, Soeren; Gavin, Sean

    2011-08-15

    Correlations of azimuthal angles observed at the Relativistic Heavy Ion Collider have gained great attention due to the prospect of identifying fluctuations of parity-odd regions in the field sector of QCD. Whereas the observable of interest related to parity fluctuations involves subtracting opposite-sign from same-sign correlations, the STAR collaboration reported the same-sign and opposite-sign correlations separately. It is shown here how momentum conservation combined with collective elliptic flow contributes significantly to this class of correlations, although not to the difference between the opposite- and same-sign observables. The effects are modeled with a crude simulation of a pion gas. Although the simulation reproduces the scale of the correlation, the centrality dependence is found to be sufficiently different in character to suggest additional considerations beyond those present in the pion gas simulation presented here.

  3. Early anisotropic hydrodynamics and thermalization and Hanbury-Brown-Twiss puzzles in the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Ryblewski, Radoslaw; Florkowski, Wojciech

    2010-08-15

    We address the problem of whether the early thermalization and Hanbury-Brown-Twiss (HBT) puzzles in relativistic heavy-ion collisions may be solved by the assumption that the early dynamics of the produced matter is locally anisotropic. The hybrid model describing the purely transverse hydrodynamic evolution followed by the perfect-fluid hydrodynamic stage is constructed. The transition from the transverse to perfect-fluid hydrodynamics is described by the Landau matching conditions applied at a fixed proper time {tau}{sub tr}. The global fit to the RHIC data reproduces the soft hadronic observables (the pion, kaon, and the proton spectra, the pion and kaon elliptic flow, and the pion HBT radii) with the accuracy of about 20%. These results indicate that the assumption of the very fast thermalization may be relaxed. In addition, the presented model suggests that a large part of the inconsistencies between the theoretical and experimental HBT results may be removed.

  4. Search for type-III seesaw heavy leptons in pp collisions at s=8 TeVwith the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2015-08-03

    A search for the pair production of heavy leptons (N⁰,L±) predicted by the type-III seesaw theory formulated to explain the origin of small neutrino masses is presented. The decay channels N⁰→W±l∓ (ℓ=e,μ,τ) and L±→W±ν (ν=νe,νμ,ντ) are considered. The analysis is performed using the final state that contains two leptons (electrons or muons), two jets from a hadronically decaying W boson and large missing transverse momentum. The data used in the measurement correspond to an integrated luminosity of 20.3 fb⁻¹ of pp collisions at s√=8 TeV collected by the ATLAS detector at the LHC. No evidence of heavy lepton pair productionmore » is observed. Heavy leptons with masses below 325–540 GeV are excluded at the 95% confidence level, depending on the theoretical scenario considered.« less

  5. Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider

    SciTech Connect (OSTI)

    Bruce, R.; Blaskiewicz, M.; Jowett, J.M.; Fischer, W.

    2010-09-07

    We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC stores (from Run 7), colliding 100 GeV/nucleon {sup 197}Au{sup 79}+ beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multi-particle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the RF bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future {sup 208}Pb+{sup 82+} beams in the LHC at injection and collision energy. For this machine, the two methods agree well.

  6. Bulk matter evolution and extraction of jet transport parameters in heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Chen Xiaofang; Greiner, Carsten; Wang Enke; Wang Xinnian; Xu Zhe

    2010-06-15

    Within the picture of jet quenching induced by multiple parton scattering and gluon bremsstrahlung, medium modification of parton fragmentation functions and therefore the suppression of large transverse-momentum hadron spectra are controlled by both the value and the space-time profile of the jet transport parameter along the jet propagation path. Experimental data on single-hadron suppression in high-energy heavy-ion collisions at the Relativistic Heavy Ion Collider energy are analyzed within the higher-twist (HT) approach to the medium-modified fragmentation functions and the next-to-leading order perturbative QCD parton model. Assuming that the jet transport parameter q is proportional to the particle number density in both quark gluon plasma (QGP) and hadronic phase, experimental data on jet quenching in deeply inelastic scattering off nuclear targets can provide guidance on q{sub h} in the hot hadronic matter. One can then study the dependence of the extracted initial value of jet-quenching parameter q{sub 0} at initial time tau{sub 0} on the bulk medium evolution. Effects of transverse expansion, radial flow, phase transition, and nonequilibrium evolution are examined. The extracted values are found to vary from q{sub 0}tau{sub 0}=0.54 GeV{sup 2} in the (1+3)d ideal hydrodynamic model to 0.96 GeV{sup 2} in a cascade model, with the main differences coming from the initial nonequilibrium evolution and the later hadronic evolution. The overall contribution to jet quenching from the hadronic phase, about 22%-44%, is found to be significant. Therefore, a realistic description of the early nonequilibrium parton evolution and later hadronic interaction will be critical for accurate extraction of the jet transport parameter in the strongly interacting QGP phase in high-energy heavy-ion collisions.

  7. Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at √s = 8 TeV

    SciTech Connect (OSTI)

    Aad, G.

    2015-07-29

    A search for heavy Majorana neutrinos in events containing a pair of high-pT leptons of the same charge and high-pT jets is presented. The search uses 20.3 fb-1 of pp collision data collected with the ATLAS detector at the CERN Large Hadron Collider with a centre-of-mass energy of √s = 8 TeV. The data are found to be consistent with the background-only hypothesis based on the Standard Model expectation. In the context of a Type-I seesaw mechanism, limits are set on the production cross-section times branching ratio for production of heavy Majorana neutrinos in the mass range between 100 and 500 GeV. The limits are subsequently interpreted as limits on the mixing between the heavy Majorana neutrinos and the Standard Model neutrinos. In the context of a left-right symmetric model, limits on the production cross-section times branching ratio are set with respect to the masses of heavy Majorana neutrinos and heavy gauge bosons WR and Z'.

  8. Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at √s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-07-29

    A search for heavy Majorana neutrinos in events containing a pair of high-pT leptons of the same charge and high-pT jets is presented. The search uses 20.3 fb-1 of pp collision data collected with the ATLAS detector at the CERN Large Hadron Collider with a centre-of-mass energy of √s = 8 TeV. The data are found to be consistent with the background-only hypothesis based on the Standard Model expectation. In the context of a Type-I seesaw mechanism, limits are set on the production cross-section times branching ratio for production of heavy Majorana neutrinos in the mass range between 100 andmore » 500 GeV. The limits are subsequently interpreted as limits on the mixing between the heavy Majorana neutrinos and the Standard Model neutrinos. In the context of a left-right symmetric model, limits on the production cross-section times branching ratio are set with respect to the masses of heavy Majorana neutrinos and heavy gauge bosons WR and Z'.« less

  9. Initial conditions dependency in heavy-quarks suppression in ultra-relativistic collisions

    SciTech Connect (OSTI)

    Alves Garcia Prado, Caio; Alarcon do Passo Suaide, Alexandre

    2013-05-06

    Heavy quark suppression in central Au+Au collisions is expected to be smaller than that of light quarks. However experimental data suggest that they are evenly suppressed. We propose considering fluctuations in the medium as they may lead to high-density regions which in turn can cause a considerable quark suppression at the early stages of the collision evolution. To analyse the overall effect of these fluctuations we perform computer simulations of charm and bottom propagating through the quark-gluon plasma and obtain estimates of the nuclear modification factor R{sub AA}. This quantity gives us information about the heavy quark suppression that can be compared to published experimental data from the STAR experiment.

  10. Event-shape fluctuations and flow correlations in ultra-relativistic heavy-ion collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jia, Jiangyong

    2014-12-01

    I review recent measurements of a large set of flow observables associated with event-shape fluctuations and collective expansion in heavy ion collisions. First, these flow observables are classified and experiment methods are introduced. The experimental results for each type of observables are then presented and compared to theoretical calculations. A coherent picture of initial condition and collective flow based on linear and non-linear hydrodynamic responses is derived, which qualitatively describe most experimental results. I discuss new types of fluctuation measurements that can further our understanding of the event-shape fluctuations and collective expansion dynamics.

  11. Vector meson production in coherent hadronic interactions: Update on predictions for energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    SciTech Connect (OSTI)

    Goncalves, V. P.; Machado, M. V. T.

    2011-07-15

    In this Rapid Communication we update our predictions for the photoproduction of vector mesons in coherent pp and AA collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies using the color dipole approach and the Color Glass Condensate formalism. In particular, we present our predictions for the first run of the LHC at half energy and for the rapidity dependence of the ratio between the J/{Psi} and {rho} cross sections at RHIC energies.

  12. The Smallest Drops of the Hottest Matter? New Investigations at the Relativistic Heavy Ion Collider (493rd Brookhaven Lecture)

    SciTech Connect (OSTI)

    Sickles, Anne

    2014-03-19

    Pool sharks at the billiards hall know that sometimes you aim to rocket the cue ball for a head-on collision, and other times, a mere glance will do. Physicists need to know more than a thing or two about collision geometry too, as they sift through data from the billions of ions that smash together at the Relativistic Heavy Ion Collider (RHIC). Determining whether ions crash head-on or just glance is crucial for the physicists analyzing data to study quark-gluon plasmathe ultra-hot, "perfect" liquid of quarks and gluons that existed more than 13 billion years ago, before the first protons and neutrons formed. For these physicists, collision geometry data provides insights about quark-gluon plasma's extremely low viscosity and other unusual properties, which are essential for understanding more about the "strong force" that holds together the nucleus, protons, and neutrons of every atom in the universe. Dr. Sickles explains how physicists use data collected at house-sized detectors like PHENIX and STAR to determine what happens before, during, and after individual particle collisions among billions at RHIC. She also explains how the ability to collide different "species" of nuclei at RHICincluding protons and gold ions today and possibly more with a proposed future electron-ion collider upgrade (eRHIC)enables physicists to probe deeper into the mysteries of quark-gluon plasma and the strong force.

  13. Charge conservation at energies available at the BNL Relativistic Heavy Ion Collider and contributions to local parity violation observables

    SciTech Connect (OSTI)

    Schlichting, Soeren; Pratt, Scott

    2011-01-15

    Relativistic heavy ion collisions provide laboratory environments from which one can study the creation of a novel state of matter, the quark-gluon plasma. The existence of such a state is postulated to alter the mechanism and evolution of charge production, which then becomes manifest in charge correlations. We study the separation of balancing charges at kinetic freeze-out by analyzing recent results on balancing charge correlations for Au + Au collisions at {radical}(s{sub NN})=200 GeV. We find that in central collisions, the spatial points from which balancing charges are emitted are characterized by smaller relative angles. These results are consistent with the expectation that charge production occurred later in the collision, as would be expected for delayed hadronization. An alternative explanation would be that the charges were produced early, perhaps with a different mechanism where the charge production mechanism was altered from string breaking which tends to separate the charges in relative rapidity. The alternative explanation would also rely on the diffusion of charges being small. In addition we calculate the contributions from charge-balance correlations to STAR's local parity violation observable. We find that local charge conservation, when combined with elliptic flow, explains the bulk of STAR's measurement.

  14. A tale of tails: Photon rates and flow in ultra-relativistic heavy ion collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLerran, Larry; Schenke, Björn

    2016-02-01

    We consider the possibility that quark and gluon distributions in the medium created in high energy heavy ion collisions may be modified by a power law tail at energies much higher than the temperature. We parametrize such a tail by Tsallis distributions with an exponent motivated by phenomenology. These distributions are characterized by an effective temperature scale that we assume to evolve in time like the temperature for thermal distributions. We find that including such a tail increases the rates for photon production and significantly delays the emission times for photons of a fixed energy. Finally, we argue that thesemore » effects should modify photon yields and flow patterns in a way that will help the agreement of theoretical calculations with data from LHC and RHIC experiments.« less

  15. Relativistic heavy ion research. [Dept. of Physics and Astronomy, Wayne State Univ. , Detroit, Michigan

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Experimental work is reported on the following topics: transverse energy production in 10.7-GeV/c/u Au on Au collisions; first results on delta ray production and charged particle multiplicities with the Au beam at 10.7 GeV/c/A; preliminary studies on the feasibility of flow measurement with the E814 participant calorimeter; preliminary results from the E877 telescope; and low-p[sub t] baryon distribution in Si+Al, Pb collisions at the AGS. Then the status of the Hadronic Calorimeter project of AGS Experiment E864 (ECOS--Exotic Composite Object Spectrometer) is reviewed. Next, the same is done for work of the STAR RHIC collaboration (Silicon Vertex Tracker (SVT) project evolution and development in FY92, SVT software results from 1992, SVT instrumentation, FY93 SVT pion test beam). The instrumentation section deals with the design and installation of a target rapidity telescope for BNL experiment 814/877 and a repair scheme for the E814/E877 participant calorimeter. Finally, the theory part addresses bosonic kinetics: thermalization of mesons and the pion p[sub perpendicular] spectrum in ultrarelativistic heavy-ion collisions and non-equilibrium properties of hadronic mixtures.

  16. Relativistic heavy ion research. Annual report, October 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Experimental work is reported on the following topics: transverse energy production in 10.7-GeV/c/u Au on Au collisions; first results on delta ray production and charged particle multiplicities with the Au beam at 10.7 GeV/c/A; preliminary studies on the feasibility of flow measurement with the E814 participant calorimeter; preliminary results from the E877 telescope; and low-p{sub t} baryon distribution in Si+Al, Pb collisions at the AGS. Then the status of the Hadronic Calorimeter project of AGS Experiment E864 (ECOS--Exotic Composite Object Spectrometer) is reviewed. Next, the same is done for work of the STAR RHIC collaboration (Silicon Vertex Tracker (SVT) project evolution and development in FY92, SVT software results from 1992, SVT instrumentation, FY93 SVT pion test beam). The instrumentation section deals with the design and installation of a target rapidity telescope for BNL experiment 814/877 and a repair scheme for the E814/E877 participant calorimeter. Finally, the theory part addresses bosonic kinetics: thermalization of mesons and the pion p{sub perpendicular} spectrum in ultrarelativistic heavy-ion collisions and non-equilibrium properties of hadronic mixtures.

  17. PHENIX Conceptual Design Report. An experiment to be performed at the Brookhaven National Laboratory Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e{mu} coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study {pi}{sup 0} and {eta} production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the {phi} meson (via K{sup +}K{sup {minus}} decay), jets, and two-boson correlations. The measurements are made down to small cross sections to allow the study of high p{sub T} spectra, and J/{psi} and {Upsilon} production. The PHENIX collaboration consists of over 300 scientists, engineers, and graduate students from 43 institutions in 10 countries. This large international collaboration is supported by US resources and significant foreign resources.

  18. v{sub 4} from ideal and viscous hydrodynamic simulations of nuclear collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC)

    SciTech Connect (OSTI)

    Luzum, Matthew; Gombeaud, Clement; Ollitrault, Jean-Yves

    2010-05-15

    We compute v{sub 4}/(v{sub 2}){sup 2} in ideal and viscous hydrodynamics. We investigate its sensitivity to details of the hydrodynamic model and compare the results to experimental data from the BNL Relativistic Heavy Ion Collider (RHIC). Whereas v{sub 2} has a significant sensitivity only to initial eccentricity and viscosity while being insensitive to freeze-out temperature, we find that v{sub 4}/(v{sub 2}){sup 2} is quite insensitive to initial eccentricity. On the other hand, it can still be sensitive to shear viscosity in addition to freeze-out temperature, although viscous effects do not universally increase v{sub 4}/(v{sub 2}){sup 2} as originally predicted. Consistent with data, we find no dependence on particle species. We also make a prediction for v{sub 4}/(v{sub 2}){sup 2} in heavy ion collisions at the CERN Large Hadron Collider (LHC).

  19. Photoproduction of {rho}{sup 0} mesons in ultraperipheral heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC)

    SciTech Connect (OSTI)

    Goncalves, V. P.; Machado, M. V. T.

    2009-11-15

    We investigate the photoproduction of {rho} mesons in ultraperipheral heavy ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) energies in the dipole approach and within two phenomenological models based on the color glass condensate (CGC) formalism. We estimate the integrated cross section and rapidity distribution for meson production and compare our predictions with the data from the STAR Collaboration. In particular, we demonstrate that the total cross section at RHIC is strongly dependent on the energy behavior of the dipole-target cross section at low energies, which is not well determined in the dipole approach. In contrast, the predictions at midrapidities at RHIC and in the full rapidity at LHC are under theoretical control and can be used to test QCD dynamics at high energies.

  20. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    SciTech Connect (OSTI)

    Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku; Kawanai, Taichi; Lehner, Christoph; Soni, Amarjit; Van de Water, Ruth S.; Witzel, Oliver

    2015-03-10

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as Mπ ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(αsa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0 = 196.2(15.7) MeV, fB+ = 195.4(15.8) MeV, fBs = 235.4(12.2) MeV, fBs/fB0 = 1.193(59), and fBs/fB+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.

  1. A new scheme of causal viscous hydrodynamics for relativistic heavy-ion collisions: A Riemann solver for quarkgluon plasma

    SciTech Connect (OSTI)

    Akamatsu, Yukinao; Inutsuka, Shu-ichiro; Nonaka, Chiho; Department of Physics, Nagoya University, Nagoya 464-8602 ; Takamoto, Makoto; Max-Planck-Institut fr Kernphysik, Postfach 103980, 69029 Heidelberg

    2014-01-01

    In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamics equation with the QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which is crucial in describing of quarkgluon plasma in high-energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In sound wave propagation, the intrinsic numerical viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of physical viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.

  2. Strange quark suppression and strange hadron production in pp collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    SciTech Connect (OSTI)

    Long Haiyan; Feng Shengqin; Zhou Daimei; Yan Yuliang; Ma Hailiang; Sa Benhao

    2011-09-15

    The parton and hadron cascade model PACIAE based on PYTHIA is utilized to systematically investigate strange particle production in pp collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). Globally speaking, the PACIAE results of the strange particle rapidity density at midrapidity and the transverse momentum distribution are better than those of PYTHIA (default) in comparison with STAR and ALICE experimental data. This may represent the importance of the parton and hadron rescatterings, as well as the reduction mechanism of strange quark suppression, added in the PACIAE model. The K/{pi} ratios as a function of reaction energy in pp collisions from CERN Super Proton Synchrotron (SPS) to LHC energies are also analyzed in this paper.

  3. Medium-modified jets and initial state fluctuations as sources of charge correlations measured at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Petersen, Hannah; Bass, Steffen A.; Renk, Thorsten

    2011-01-15

    We investigate the contribution of medium-modified jets and initial state fluctuations to the asymmetry in charged-particle production with respect to the reaction plane. This asymmetry has been suggested as a compelling signature for the chiral magnetic effect in QCD and makes the study of conventional scenarios for the creation of such charged-particle multiplicity fluctuations a timely endeavor. The different path-length combinations of jets through the medium in noncentral heavy ion collisions result in finite correlations of like and different charged particles emitted in the different hemispheres. Our calculation is based on the combination of jet events from Yet another Jet Energy-Loss Model (YaJEM) and a bulk-medium evolution. It is found that the jet production probabilities are too small to observe this effect. The influence of initial state fluctuations on this observable is explored by using an event-by-event (3+1)-dimensional hybrid approach that is based on Ultra-relativistic Quantum Molecular Dynamics (UrQMD) with an ideal hydrodynamic evolution. In this calculation, momentum conservation and elliptic flow are explicitly taken into account. The asymmetries in the initial state are translated to a final state momentum asymmetry by the hydrodynamic flow profile. Dependent on the size of the initial state fluctuations, the resulting charged-particle asymmetries are in qualitative agreement with the preliminary STAR (solenoid tracker at the Relativistic Heavy Ion Collider) results. The multiparticle correlation as proposed by the PHENIX Collaboration can, in principle, be used to disentangle the different contributions, however, in practice, is affected substantially by the procedure to subtract trivial resonance decay contributions.

  4. Search for heavy long-lived multi-charged particles in pp collisions at √s = 8  TeV using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    None

    2015-08-08

    A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data collected in 2012 at √s = 8 TeV from pp collisions corresponding to an integrated luminosity of 20.3 fb-1 are examined. Particles producing anomalously high ionisation, consistent with long-lived massive particles with electric charges from |q| = 2e to |q| = 6e are searched for. No signal candidate events are observed, and 95 % confidence level cross-section upper limits are interpreted as lower mass limits for a Drell–Yan production model. The mass limits range between 660 and 785 GeV.

  5. Azimuthally sensitive femtoscopy in hydrodynamics with statistical hadronization from the BNL Relativistic Heavy Ion Collider to the CERN Large Hadron Collider

    SciTech Connect (OSTI)

    Kisiel, Adam; Broniowski, Wojciech; Florkowski, Wojciech; Chojnacki, Mikolaj

    2009-01-15

    Azimuthally sensitive femtoscopy for heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) is explored within the approach consisting of the hydrodynamics of perfect fluid followed by statistical hadronization. It is found that for the RHIC initial conditions, employing the Gaussian shape of the initial energy density, the very same framework that reproduces the standard soft observables [including the transverse-momentum spectra, the elliptic flow, and the azimuthally averaged Hanbury-Brown-Twiss (HBT) radii] leads to a proper description of the azimuthally sensitive femtoscopic observables; we find that the azimuthal variation of the side and out HBT radii as well as out-side cross term are very well reproduced for all centralities. Concerning the dependence of the femtoscopic parameters on k{sub T} we find that it is very well reproduced. The model is then extrapolated to the LHC energy. We predict the overall moderate growth of the HBT radii and the decrease of their azimuthal oscillations. Such effects are naturally caused by longer evolution times. In addition, we discuss in detail the space-time patterns of particle emission. We show that they are quite complex and argue that the overall shape seen by the femtoscopic methods cannot be easily disentangled on the basis of simple-minded arguments.

  6. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Floorplan ATLAS Floorplan

  7. Conservation laws and multiplicity evolution of spectra at energies available at the BNL Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Chajecki, Zbigniew; Lisa, Mike

    2009-03-15

    Transverse momentum distributions in ultrarelativistic heavy ion collisions carry considerable information about the dynamics of the hot system produced. Direct comparison with the same spectra from p+p collisions has proved invaluable in identifying novel features associated with the larger system, in particular, the 'jet quenching' at high momentum and the apparently much stronger collective flow dominating the spectral shape at low momentum. We point out possible hazards of ignoring conservation laws in the comparison of high- and low-multiplicity final states. We argue that the effects of energy and momentum conservation actually dominate many of the observed systematics, and that p+p collisions may be much more similar to heavy ion collisions than generally thought.

  8. THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) CRYOGENIC SYSTEM AT BNL: REVIEW OF THE MODIFICATIONS AND UPGRADES SINCE 2002 AND PLANNED IMPROVEMENTS.

    SciTech Connect (OSTI)

    THAN,Y.R.; TUOZZOLO, J.; SIDI-YAKHLEF, A.; GANNI, V.; KNUDSEN, P.; ARENIUS, D.

    2007-07-16

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system which also resulted in improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases by balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid helium storage tanks, insulation of the third liquid helium storage tank, compressor bypass flow reduction and the addition of a load turbine (Joule-Thompson expander) with associated heat exchangers at the cold end of the plant. Also, liquid helium pumps used for forced circulation of the sub-cooled helium through the magnet loops were eliminated by an accelerator supply flow reconfiguration. Planned future upgrades include the resizing of expanders 5 and 6 to increase their efficiencies.

  9. Strangeness signals in heavy ion collisions

    SciTech Connect (OSTI)

    Remsberg, L.P.

    1992-11-01

    The experimental data on strange meson and strange baryon production in relativistic heavy ion collisions are reviewed.

  10. Strangeness signals in heavy ion collisions

    SciTech Connect (OSTI)

    Remsberg, L.P.

    1992-01-01

    The experimental data on strange meson and strange baryon production in relativistic heavy ion collisions are reviewed.

  11. ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at √s = 7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2012-12-08

    The ATLAS detector at the LHC is used to search for high-mass states, such as heavy charged gauge bosons (W'), decaying to a charged lepton (electron or muon) and a neutrino. Results are presented based on the analysis of pp collisions at a centre-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.7 fb-1. No excess beyond Standard Model expectations is observed. A W' with Sequential Standard Model couplings is excluded at the 95% credibility level for masses up to 2.55 TeV. Excited chiral bosons (W*) with equivalent coupling strength are excluded for masses up to 2.42 TeV.

  12. Search for heavy long-lived multi-charged particles in pp collisions at $$\\sqrt{s}=8$$ s = 8  TeV using the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D’Auria, S.; D’Onofrio, M.; Cunha Sargedas De Sousa, M. J. Da; Via, C. Da; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell’Acqua, A.; Dell’Asta, L.; Dell’Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn’ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R. W.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G. -Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J-P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O’Brien, B. J.; O’grady, F.; O’Neil, D. C.; O’Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F-W.; Sadykov, R.; Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Denis, R. D. St.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, L.; Yao, W-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-08-01

    A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data collected in 2012 at √s=8 TeV TeV from pp collisions corresponding to an integrated luminosity of 20.3 fb-1 are examined. Particles producing anomalously high ionisation, consistent with long-lived massive particles with electric charges from |q|=2e to |q|=6e are searched for. No signal candidate events are observed, and 95 % confidence level cross-section upper limits are interpreted as lower mass limits for a Drell–Yan production model. The mass limits range between 660 and 785 GeV.

  13. Search for heavy long-lived multi-charged particles in pp collisions at ?s = 8 TeV using the ATLAS detector

    SciTech Connect (OSTI)

    2015-08-08

    A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data collected in 2012 at ?s = 8 TeV from pp collisions corresponding to an integrated luminosity of 20.3 fb-1 are examined. Particles producing anomalously high ionisation, consistent with long-lived massive particles with electric charges from |q| = 2e to |q| = 6e are searched for. No signal candidate events are observed, and 95 % confidence level cross-section upper limits are interpreted as lower mass limits for a DrellYan production model. The mass limits range between 660 and 785 GeV.

  14. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    SciTech Connect (OSTI)

    Zhao, X. J.; Xue, X. L.; Jia, Yu; Guo, Z. X.; Li, S. F.; Zhang, Zhenyu; Gao, Y. F.

    2015-11-07

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  15. Kaon and pion femtoscopy at the highest energies available at the BNL Relativistic Heavy Ion Collider (RHIC) in a hydrokinetic model

    SciTech Connect (OSTI)

    Karpenko, Iu. A.; Sinyukov, Yu. M.

    2010-05-15

    The hydrokinetic approach that incorporates hydrodynamic expansion of the systems formed in A+A collisions and their dynamical decoupling is applied to restore the initial conditions and space-time picture of the matter evolution in central Au+Au collisions at the top Relativistic Heavy Ion Collider energy. The analysis is based on the detailed reproduction of the pion and kaon momentum spectra and femtoscopic data in whole interval of the transverse momenta studied by both the STAR and the PHENIX collaborations. The fitting procedure utilizes the two parameters: the maximal energy density at supposed thermalization time 1 fm/c and the strength of the prethermal flows developed to this time. The quark-gluon plasma and hadronic gas is supposed to be in complete local equilibrium above the chemical freeze-out temperature T{sub ch}=165 MeV with the equation of states (EoS) at high temperatures as in the lattice QCD. Below T{sub ch} the EoS in the expanding and gradually decoupling fluid depends on the composition of the hadron-resonance gas at each space-time point and accounts for decays of resonances into the nonequilibrated medium. A good description of the pion and kaon transverse momentum spectra and interferometry radii is reached at both used initial energy density profiles motivated by the Glauber and color glass condensate models, however, at different initial energy densities. The discussion as for the approximate pion and kaon m{sub T} scaling for the interferometry radii is based on a comparison of the emission functions for these particles.

  16. Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at \\( \\sqrt{s}=8 \\) TeV with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.

    2015-09-16

    In this study, a search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at \\( \\sqrt{s}=8 \\) TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb⁻¹. Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances are derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114–176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100–468 GeV are excluded.

  17. Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at \\( \\sqrt{s}=8 \\) TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-09-16

    In this study, a search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at \\( \\sqrt{s}=8 \\) TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb⁻¹. Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances aremore » derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114–176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100–468 GeV are excluded.« less

  18. Breaking of the number-of-constituent-quark scaling for identified-particle elliptic flow as a signal of phase change in low-energy data taken at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Tian, J.; Jin, F.; Zhang, S.; Chen, J. H.; Ma, Y. G.; Cai, X. Z.; Ma, G. L.; Zhong, C.

    2009-06-15

    We argue that measurements of identified-particle elliptic flow in a wide energy range could shed light on the possible phase change in high-energy heavy ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC). When the hadronization process is dominated by quark coalescence, the number-of-constituent-quark (NCQ) scaling for the identified-particle elliptic flow can serve as a probe for studying the strong interacting partonic matter. In the upcoming RHIC low-energy runs, the NCQ scaling behavior may be broken because of the change of the effective degrees of freedom of the hot dense matter, which corresponds to the transition from the dominant partonic phase to the dominant hadronic phase. A multiphase transport model is used to present the dependence of NCQ scaling behavior on the different hadronization mechanisms.

  19. Search for a heavy Standard Model Higgs boson in the channel H→ZZ→ℓ⁺ℓ⁻qq¯ using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al

    2012-01-01

    A search for a heavy Standard Model Higgs boson decaying via H → ZZ → ℓ⁺ℓ⁻qq¯, where ℓ = e,μ, is presented. The search is performed using a data set of pp collisions at √s = 7 TeV, corresponding to an integrated luminosity of 1.04 fb⁻¹ collected in 2011 by the ATLAS detector at the CERN LHC collider. No significant excess of events above the estimated background is found. Upper limits at 95% confidence level on the production cross section (relative to that expected from the Standard Model) of a Higgs boson with a mass in the range between 200more » and 600 GeV are derived. Within this mass range, there is at present insufficient sensitivity to exclude a Standard Model Higgs boson. For a Higgs boson with a mass of 360 GeV, where the sensitivity is maximal, the observed and expected cross section upper limits are factors of 1.7 and 2.7, respectively, larger than the Standard Model prediction.« less

  20. Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at √s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-01-14

    Searches for heavy long-lived charged particles are performed using a data sample of 19.1 fb-1 from proton-proton collisions at a centre-of-mass energy of \\( \\sqrt{s}=8 \\) TeV collected by the ATLAS detector at the Large Hadron Collider. No excess is observed above the estimated background and limits are placed on the mass of long-lived particles in various supersymmetric models. Long-lived tau sleptons in models with gauge-mediated symmetry breaking are excluded up to masses between 440 and 385 GeV for tan β between 10 and 50, with a 290 GeV limit in the case where only direct tau slepton production ismore » considered. In the context of simplified LeptoSUSY models, where sleptons are stable and have a mass of 300 GeV, squark and gluino masses are excluded up to a mass of 1500 and 1360 GeV, respectively. Directly produced charginos, in simplified models where they are nearly degenerate to the lightest neutralino, are excluded up to a mass of 620 GeV. As a result, R-hadrons, composites containing a gluino, bottom squark or top squark, are excluded up to a mass of 1270, 845 and 900 GeV, respectively, using the full detector; and up to a mass of 1260, 835 and 870 GeV using an approach disregarding information from the muon spectrometer.« less

  1. Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at ?s = 8 TeV

    SciTech Connect (OSTI)

    Aad, G.

    2015-01-14

    Searches for heavy long-lived charged particles are performed using a data sample of 19.1 fb-1 from proton-proton collisions at a centre-of-mass energy of \\( \\sqrt{s}=8 \\) TeV collected by the ATLAS detector at the Large Hadron Collider. No excess is observed above the estimated background and limits are placed on the mass of long-lived particles in various supersymmetric models. Long-lived tau sleptons in models with gauge-mediated symmetry breaking are excluded up to masses between 440 and 385 GeV for tan ? between 10 and 50, with a 290 GeV limit in the case where only direct tau slepton production is considered. In the context of simplified LeptoSUSY models, where sleptons are stable and have a mass of 300 GeV, squark and gluino masses are excluded up to a mass of 1500 and 1360 GeV, respectively. Directly produced charginos, in simplified models where they are nearly degenerate to the lightest neutralino, are excluded up to a mass of 620 GeV. As a result, R-hadrons, composites containing a gluino, bottom squark or top squark, are excluded up to a mass of 1270, 845 and 900 GeV, respectively, using the full detector; and up to a mass of 1260, 835 and 870 GeV using an approach disregarding information from the muon spectrometer.

  2. Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-02-24

    This article reports on a search for dark matter pair production in association with bottom or top quarks in 20.3 fb–1 of pp collisions collected at √s=8 TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing b-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the massmore » scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter–nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a colored mediator suitable to explain a possible signal of annihilating dark matter.« less

  3. Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.

    2015-02-24

    This article reports on a search for dark matter pair production in association with bottom or top quarks in 20.3 fb–1 of pp collisions collected at √s=8 TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing b-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter–nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a colored mediator suitable to explain a possible signal of annihilating dark matter.

  4. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Requirements Experimental Equipment Safety Data Management Users Group ATLAS Users Workshop 2009 25 Years of ATLAS Gretina Workshop ATLAS Users Workshop 2014 ATLAS...

  5. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Schedule CARIBU Schedule ATLAS Future CARIBU Future Scheduling Considerations ATLAS Archive CARIBU Archive ATLAS Schedules Beamtime at ATLAS is normally scheduled in two-month...

  6. Heavy Element Synthesis Reactions W. Loveland Oregon State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions W. Loveland Oregon State University The role of ATLAS in helping us understand heavy element synthesis reactions and heavy element properties * Hot (E*=35-60 MeV) and Cold (E*=15 MeV) fusion reactions * Multi-nucleon transfer reactions * Fission * Atomic physics and chemistry of the heaviest elements * Structure of the heaviest nuclei The challenge of studying the heaviest elements at ATLAS * ATLAS beam time is oversubscribed * Low cross section studies - High luminosity - ATLAS has

  7. The ATLAS Positron Experiment -- APEX

    SciTech Connect (OSTI)

    Ahmad, I.; Back, B.B.; Betts, R.R.; Dunford, R.; Kutschera, W.; Rhein, M.D.; Schiffer, J.P.; Wilt, P.; Wuosmaa, A.; Austin, S.M.; Kashy, E.; Winfield, J.S.; Yurkon, J.E.; Bazin, D.; Calaprice, F.P.; Young, A.; Chan, K.C.; Chisti, A.; Chowhury, P.; Greenberg, J.S.; Kaloskamis, N.; Lister, C.J.; Fox, J.D.; Roa, E.; Freedman, S.; Maier, M.R.; Freer, M.; Gazes, S.; Hallin, A.L.; Liu, M.; Happ, T.; Perera, A.; Wolfs, F.L.H.; Trainor, T.; Wolanski, M. |

    1994-03-01

    APEX -- the ATLAS Positron Experiment -- is designed to measure electrons and positrons emitted in heavy-ion collisions. Its scientific goal is to gain insight into the puzzling positron-line phenomena observed at the GSI Darmstadt. It is in operation at the ATLAS accelerator at Argonne National Lab. The assembly of the apparatus is finished and beginning 1993 the first positrons produced in heavy-ion collisions were observed. The first full scale experiment was carried out in December 1993, and the data are currently being analyzed. In this paper, the principles of operation are explained and a status report on the experiment is given.

  8. Tomography of quark gluon plasma at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC)

    SciTech Connect (OSTI)

    Gossiaux, P. B.; Bierkandt, R.; Aichelin, J.

    2009-04-15

    Using the recently published model [Gossiaux and Aichelin, Phys. Rev. C 78, 014904 (2008)] for the collisional energy loss of heavy quarks in a quark gluon plasma (QGP), based on perturbative QCD (pQCD) with a running coupling constant, we study the interaction between heavy quarks and plasma particles in detail. We discuss correlations between the simultaneously produced c and c quarks, study how central collisions can be experimentally selected, predict observable correlations, and extend our model to the energy domain of the Large Hadron Collider (LHC). We finally compare the predictions of our model with that of other approaches such as anti-de Sitter/conformal field theory (AdS/CFT)

  9. The "ripples" on relativistically expanding fluid

    SciTech Connect (OSTI)

    Shi, Shuzhe; Liao, Jinfeng; Zhuang, Pengfei

    2014-12-29

    Recent studies have shown that fluctuations of various types play important roles in the evolution of the fireball created in relativistic heavy ion collisions and bear many phenomenological consequences for experimental observables. The bulk dynamics of the fireball is well described by relativistic hydrodynamic expansion and the fluctuations on top of such expanding background can be studied within the linearized hydrodynamic framework. In this paper we present complete and analytic sound wave solutions on top of both Bjorken flow and Hubble flow backgrounds.

  10. Λb → pℓ¯ν¯ℓ and Λb → Λcℓ¯ν¯ℓ form factors from lattice QCD with relativistic heavy quarks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Detmold, William; Lehner, Christoph; Meinel, Stefan

    2015-08-04

    Measurements of the Λb → pℓ¯ν¯ℓ and Λb → Λcℓ¯ν¯ℓ decay rates can be used to determine the magnitudes of the Cabibbo-Kobayashi-Maskawa matrix elements Vub and Vcb, provided that the relevant hadronic form factors are known. Here we present a precise calculation of these form factors using lattice QCD with 2+1 flavors of dynamical domain-wall fermions. The b and c quarks are implemented with relativistic heavy-quark actions, allowing us to work directly at the physical heavy-quark masses. The lattice computation is performed for six different pion masses and two different lattice spacings, using gauge-field configurations generated by the RBC andmore » UKQCD Collaborations. The b → u and b → c currents are renormalized with a mostly nonperturbative method. We extrapolate the form factor results to the physical pion mass and the continuum limit, parametrizing the q² dependence using z expansions. The form factors are presented in such a way as to enable the correlated propagation of both statistical and systematic uncertainties into derived quantities such as differential decay rates and asymmetries. Using these form factors, we present predictions for the Λb → pℓ¯ν¯ℓ and Λb → Λcℓ¯ν¯ℓdifferential and integrated decay rates. Combined with experimental data, our results enable determinations of |Vub|, |Vcb|, and |Vub/Vcb| with theory uncertainties of 4.4%, 2.2%, and 4.9%, respectively.« less

  11. Significant in-medium {eta}{sup '} mass reduction in {radical}(s{sub NN}) = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Vertesi, R.; Sziklai, J.; Csoergo, T.

    2011-05-15

    In high-energy heavy ion collisions a hot and dense medium is formed, where the U{sub A}(1) or chiral symmetry may temporarily be restored. As a consequence, the mass of the {eta}{sup '}(958) mesons may be reduced to its quark model value, and the abundance of {eta}{sup '} mesons at low p{sub T} may be enhanced by more than a factor of 10. The intercept parameter {lambda}{sub *} of the charged pion Bose Einstein correlations provides a sensitive observable of the possibly enhanced {eta}{sup '} abundance. We have analyzed {lambda}{sub *}(m{sub T}) data from {radical}(s{sub N{sub N}})=200 GeV central Au+Au reactions measured at the BNL Relativistic Heavy Ion Collider (RHIC), using extensive Monte Carlo simulations based on six popular models for hadronic multiplicities. Based on the combined STAR and PHENIX data set, and on various systematic investigations of resonance multiplicities and model parameters, we conclude that in {radical}(s{sub N{sub N}})=200 GeV central Au+Au reactions the mass of the {eta}{sup '} meson is reduced by {Delta}m{sub {eta}}{sup '*}>200 MeV, at the 99.9% confidence level in the considered model class. Such a significant {eta}{sup '} mass modification may indicate the restoration of the U{sub A}(1) symmetry in a hot and dense hadronic matter and the return of the ninth ''prodigal'' Goldstone boson. A similar analysis of NA44 S+Pb data at top CERN Super Proton Synchroton (SPS) energies showed no significant in-medium {eta}{sup '} mass modification.

  12. Centrality-dependent direct photon p{sub t} spectra in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) energy {radical}(s{sub NN})=200 GeV

    SciTech Connect (OSTI)

    Liu Fuming; Zhu Yan; Hirano, Tetsufumi; Werner, Klaus

    2009-01-15

    We calculate the centrality dependence of transverse momentum (p{sub t}) spectra for direct photons in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) energy {radical}(s{sub NN})=200 GeV, based on a realistic data-constrained (3+1)-dimensional hydrodynamic description of the expanding hot and dense matter, a reasonable treatment of the propagation of partons and their energy loss in the fluid, and a systematic study of the main sources of direct photons. The resultant p{sub t} spectra agree with recent PHENIX data in a broad p{sub t} range. The competition among the different direct photon sources is investigated at various centralities. Parton energy loss in the plasma is considered for photons from fragmentation and jet-photon conversion, which causes about 40% decrease in the total contribution. In the high p{sub t} region, the observed R{sub AA} of photons is centrality independent at the accuracy of 5% based on a realistic treatment of energy loss. We also link the different behavior of R{sub AA} for central and peripheral collisions, in the low p{sub t} region, to the fact that the plasma in central collisions is hotter than that in peripheral ones.

  13. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy...

    Office of Scientific and Technical Information (OSTI)

    Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency Title: Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic ...

  14. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Years of ATLAS First Circulation Agenda Registration Attendees Presentations Photos of the Meeting Photos of History The ATLAS Research at ATLAS Dear Friend, This is the second...

  15. Characterizing Heavy Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Ion Reactions in the 1980's Is there Treasure at the end of the Rainbow? & What happens and how do different modes compete? John Schiffer One of the three research areas for ATLAS, as stated in a 1984 document to Congress: Are there some new marvelous symmetries, hidden in resonances in heavier nuclei, beyond 12 C+ 12 C and its immediate vicinity? (s.c. linac work, pre-ATLAS) Other attempts to chase the rainbow 180 o elastic scattering of 12 C on 40 Ca shows structure Fusion of 16 O on

  16. Relativistic electron beam generator

    DOE Patents [OSTI]

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  17. Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in s = 7     TeV p p collisions at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G; Abbott, B.; Abdallah, J; Abdelalim, A. A.; Abdesselam, A.; Abdinov, B; Abolins, M; Abramowicz, H.; Abreu, E.; Acharya, B. S.; et al

    2011-06-22

    This Letter presents the first search for a heavy particle decaying into an e±μ∓ final state in √s=7  TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35  pb⁻¹. No excess above the standard model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming all R-parity violating couplings are zero except λ′311=0.11 and λ312=0.07. In a lepton flavor violating model, a Z′-like vector bosonmore » with masses of 0.70–1.00 TeV and corresponding cross sections times branching ratios of 0.175–0.183 pb is excluded. These results extend to higher mass R-parity violating sneutrinos and lepton flavor violating Z’s than previous constraints from the Tevatron.« less

  18. Physics at Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Shuryak, E.V.

    1990-08-01

    This introductory talk contains a brief discussion of future experiments at RHIC related to physics of superdense matter. In particular, we consider the relation between space-time picture of the collision and spectra of the observed secondaries. We discuss where one should look for QGP signals and for possible manifestation of the phase transition. We pay more attention to a rather new topic: hadron modification in the gas phase, which is interesting by itself as a collective phenomenon, and also as a precursor indicating what happens with hadrons near the phase transition. We briefly review current understanding of the photon physics, dilepton production, charm and strangeness and J/{psi} suppression. At the end we try to classify all possible experiments. 47 refs., 3 figs.

  19. Targets for the APEX experiment at ATLAS

    SciTech Connect (OSTI)

    Greene, J.P.; Thomas, G.E.; Leonard, R.H.

    1994-12-31

    Targets of lead, tantalum, thorium and uranium have been produced for experiments with the APEX (Argonne Positron Experiment) apparatus at ATLAS (Argonne Tandem Linac Accelerator System). APEX is a device built at Argonne National Laboratory to investigate the anomalous positrons observed in collisions of very heavy ion beams on heavy targets. Both fixed and rotating targets have been used. The rotating target system involves a 4-quadrant wheel rotating at speeds up to 700 rpm with the position encoded into the data stream. In addition to the hundreds of targets produced for the heavy-ion reactions studied, a wide variety of targets were employed for beam diagnostics, detector calibration and target wheel development. The experiment used very heavy ion beams ({sup 238}U, {sup 206}Pb and {sup 208}Pb) from ATLAS and targets of {sup 206}Pb, {sup 208}Pb, {sup 232}Th and {sup 238}U produced in the laboratory.

  20. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGFA AIRIS.pdf CHICO2 DGS.pdf FMA GODDESS GRETINA HELIOS PhoswichWall TapeStation ATLAS Strategic Plan (2009) ATLAS Strategic Plan (2014) Registered Participants ATLAS USERS...

  1. Carbon Storage Atlas - Fifth Edition (Atlas V) (2015)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage Atlas - Fifth Edition (Atlas V) (2015) Atlas V Complete Document [PDF-73.1MB] Carbon Storage Atlas - Fifth Edition (Atlas V) (2015) The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is proud to release the fifth edition of the Carbon Storage Atlas (Atlas V). Production of Atlas V is the result of collaboration among carbon storage experts from local, State, and Federal agencies, as well as industry and academia. Atlas V provides a coordinated

  2. Relativistic Guiding Center Equations

    SciTech Connect (OSTI)

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  3. Relativistic Laser-Matter Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relativistic Laser-Matter Interactions Relativistic Laser-Matter Interactions Enabling the next generation of intense particle accelerators Contact Juan Fernandez (505) 667-6575 ...

  4. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS 25th Anniversary Celebration Presentations Summary of the History of ATLAS W. F. Henning Reminiscences 1: From Whence did ATLAS arise? J. P. Schiffer Reminiscences 2: ATLAS 25th Anniversary Celebration R. Pardo Reminiscences 3: The Argonne-Notre Dame Gamma-ray Facility U. Garg Reminiscences 4: Atom Trap at ATLAS Z. T. Lu The Impact of ATLAS on SRF Development and Applications R. E. Laxdel Technical Challenges in Low-velocity SRF Development M. Kelly Offsprings of ATLAS - the Florida State

  5. Initial eccentricity in deformed {sup 197}Au+{sup 197}Au and {sup 238}U+{sup 238}U collisions at {radical}(s{sub NN})=200 GeV at the BNL Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Filip, Peter; Lednicky, Richard; Masui, Hiroshi; Xu Nu

    2009-11-15

    Initial eccentricity and eccentricity fluctuations of the interaction volume created in relativistic collisions of deformed {sup 197}Au and {sup 238}U nuclei are studied using optical and Monte Carlo (MC) Glauber simulations. It is found that the nonsphericity noticeably influences the average eccentricity in central collisions, and eccentricity fluctuations are enhanced from deformation. Quantitative results are obtained for Au+Au and U+U collisions at energy {radical}(s{sub NN})=200 GeV.

  6. Upgrading the ATLAS control system

    SciTech Connect (OSTI)

    Munson, F.H.; Ferraretto, M.

    1993-09-01

    Heavy-ion accelerators are tools used in the research of nuclear and atomic physics. The ATLAS facility at the Argonne National Laboratory is one such tool. The ATLAS control system serves as the primary operator interface to the accelerator. A project to upgrade the control system is presently in progress. Since this is an upgrade project and not a new installation, it was imperative that the development work proceed without interference to normal operations. An additional criteria for the development work was that the writing of additional ``in-house`` software should be kept to a minimum. This paper briefly describes the control system being upgraded, and explains some of the reasons for the decision to upgrade the control system. Design considerations and goals for the new system are described, and the present status of the upgrade is discussed.

  7. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Safety Considerations at ATLAS For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Important general safety topics: ATLAS requires that everyone in the facility must have successfully completed the ATLAS Site Specific Training and the ATLAS Radiation Worker I equivalent training within the past two years. Please contact the ATLAS User Administrative Assistant (Barbara Weller) at extension 2-4044 if you need to take this training. The only exception to the

  8. Summary of heavy ion theory

    SciTech Connect (OSTI)

    Gavin, S.

    1994-09-01

    Can we study hot QCD using nuclear collisions? Can we learn about metallic hydrogen from the impact of comet Shoemaker-Levy 9 on Jupiter? The answer to both questions may surprise you! I summarize progress in relativistic heavy ion theory reported at DPF `94 in the parallel sessions.

  9. Weakly relativistic plasma expansion

    SciTech Connect (OSTI)

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  10. Relativistic Quantum Scars

    SciTech Connect (OSTI)

    Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard

    2009-07-31

    The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.

  11. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future ATLAS Schedule Please contact Mrs. Barbara Weller (bweller@anl.gov) or go to here for your travel arrangement as far in advance of your arrival as possible. Future ATLAS Schedule

  12. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAC and Proposals Call for Proposals PAC Members Proposal Info Approved Experiments ATLAS Proposal Submission A call for ATLAS Proposals is made 2-3 times per year, depending on...

  13. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Data Management Plan This information is provided to inform users of the data management policies of ATLAS. All proposals for funding to the Office of Science require a data management plan. The Principal Investigator (PI) of any experiment performed at ATLAS is the owner of the data produced in his/her specific experiment. In this capacity, the PI is the main point of contact for all aspects of an experiment including data handling and storage, record keeping, etc. ATLAS Users who

  14. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Requirements for ATLAS Users All ATLAS Users must fulfill certain training requirements before they are allowed to have unescorted access to the ATLAS facility. These requirements are: Argonne Radiation Worker I Training ATLAS Site Specific Safety Training These training courses are computer based and will need to be completed every two years. The material covered in the training and the tests that must be completed with passing scores of 80% are available only on computers in the

  15. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ATLAS User Group Executive Committee The current membership of the ATLAS User Group Executive Committee is: Dan Bardayan University of Notre Dame dbardaya@nd.edu Catherine Deibel Louisiana State University deibel@lsu.edu Nicholas Scielzo (chair) Lawrence Livermore National Lab scielzo1@llnl.gov Alan Wuosmaa University of Connecticut alan.wuosmaa@uconn.edu The ATLAS User Group Charter: The ATLAS User Group shall be formed from the members of the nuclear physics, nuclear chemistry and atomic

  16. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ATLAS Program Advisory Committee (PAC) Since ATLAS is a National User Facility and available for experiments to anyone in the world, all experiments to be performed at ATLAS must be reviewed and approved by the ATLAS PAC. The PAC consists of 5-7 internationally recognized nuclear physicists, most of whom come from outside Argonne. The PAC members are appointed by the Scientific Director of ATLAS and typically serve for a term of two years. The PAC normally meets twice per year. At roughly

  17. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This is the second announcement of the ATLAS User Group Meeting that will take place on August 8-9, 2009. As stated in our original message (http://www.phy.anl.gov/atlas/workshop09/FirstAnnouncement.html), the workshop will be an opportunity to: (1) update everyone on the new capabilities of ATLAS and (2) refine the vision of the future of ATLAS. It is essential that this workshop be attended by as many users as possible as it will define the very future of the facility. In other words, if ATLAS

  18. Relativistic Point Coupling Model for Vibrational Excitations in the Continuum

    SciTech Connect (OSTI)

    Ring, P.; Daoutidis, J.; Litvinova, E.; Niksic, T.; Paar, N.; Vretenar, D.

    2009-08-26

    An implementation of the relativistic random phase approximation with the proper treatment of the continuum has been developed for the relativistic point coupling model and applied to investigate collective excitations in spherical nuclei. The results are compared with the spectral implementation of the same model. In heavy nuclei, where the escape width is negligible, we find an excellent agreement between both methods in the region of giant resonance and some discrepancies in the region of low-lying pygmy resonance. The differences are more pronounced in light nuclei due to the larger values of the escape widths.

  19. “Ripples” on a relativistically expanding fluid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, Shuzhe; Liao, Jinfeng; Zhuang, Pengfei

    2014-12-29

    Recent studies have shown that fluctuations of various types play important roles in the evolution of the fireball created in relativistic heavy ion collisions and bear many phenomenological consequences for experimental observables. In addition, the bulk dynamics of the fireball is well described by relativistic hydrodynamic expansion and the fluctuations on top of such expanding background can be studied within the linearized hydrodynamic framework. In this paper we present complete and analytic sound wave solutions on top of both Bjorken flow and Hubble flow backgrounds.

  20. Relativistic effects on plasma expansion

    SciTech Connect (OSTI)

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  1. RE Atlas | Open Energy Information

    Open Energy Info (EERE)

    RE Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: RE Atlas AgencyCompany Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable...

  2. Atlas Material Testing Solutions | Open Energy Information

    Open Energy Info (EERE)

    Atlas Material Testing Solutions Jump to: navigation, search Name: Atlas Material Testing Solutions Place: Chicago, IL Zip: 60613 Website: atlas-mts.com Coordinates: 41.9529209,...

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scheduling Considerations Beamtime at ATLAS is normally scheduled in two-month blocks. We make every effort to produce an accurate schedule at least two weeks prior to its approval in a scheduling meeting. The scheduling process is continuously ongoing with communication between ATLAS personnel and the Principal Investigator (PI) of each experiment approved by the PAC. The overriding consideration in developing the ATLAS schedule is to optimize the productive use of beam time. This involves

  4. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposed ATLAS efficiency and intensity upgrade Guy Savard and Robert V. F. Janssens June 12, 2009 The ATLAS facility is on a constant quest to improve and increase the capabilities it offers to its Users. ATLAS currently provides beams of essentially all stable isotopes at energies in the vicinity of the Coulomb barrier. These can be used in conjunction with a suite of state-of-the-art instruments such as Gammasphere, the Fragment Mass Analyzer (FMA), the Canadian Penning Trap mass spectrometer

  5. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Tom Mullen, Physics Division Safety Engineer. Please Note: If you have any comments or concerns regarding safety at ATLAS, please contact the Physics Division Safety ...

  6. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ATLAS User Program - Visitor Information Site Access: Researchers who plan to come to Argonne for an ATLAS experiment are required to complete certain forms. All ATLAS Users need to have a Guest Facilities User Agreement completed and signed (click here). The amount of lead time needed and complexity involved will depend on their status. In any case, Users should contact either Mrs. Barbara Weller (bweller@anl.gov) or the ATLAS User Liaison Physicist, Shaofei Zhu (zhu@anl.gov) as far in

  7. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Talks FirstAnnouncement SecondAnnouncement Registration Form Registered Participants ATLAS Upgrade Equipment Initiatives Stable Beams Radioactive Beams CARIBU Beams Workshop...

  8. Relativistic Laser-Matter Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relativistic Laser-Matter Interactions Relativistic Laser-Matter Interactions Enabling the next generation of intense particle accelerators Contact Juan Fernandez (505) 667-6575 Email Short-pulse ion acceleration The Trident facility is a world-class performer in the area of ion acceleration from laser-solid target interactions. Trident has demonstrated over 100 MeV protons at intensities of 8x1020 W/cm2 with efficiencies approaching 5%. These intense relativistic interactions can be diagnosed

  9. BNL ATLAS Grid Computing

    ScienceCinema (OSTI)

    Michael Ernst

    2010-01-08

    As the sole Tier-1 computing facility for ATLAS in the United States and the largest ATLAS computing center worldwide Brookhaven provides a large portion of the overall computing resources for U.S. collaborators and serves as the central hub for storing,

  10. Diffusion and particle production in relativistic systems

    SciTech Connect (OSTI)

    Wolschin, Georg

    2008-08-29

    The short parton production phase in high-energy heavy-ion collisions is treated analytically as a nonlinear diffusion process. The initial buildup of the rapidity density distributions of produced charged hadrons within {tau}{sub p}{approx_equal}0.25 fm/c occurs in three sources during the colored partonic phase. In a two-step approach, the subsequent diffusion in pseudorapidity space during the interaction time of {tau}{sub int}{approx_equal}7-10 fm/c (mean duration of the collision) is essentially linear as expressed in the Relativistic Diffusion Model (RDM) which yields excellent agreement with the data at RHIC energies, and allows for predictions at LHC energies. Results for d+Au are discussed in detail.

  11. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety at ATLAS For onsite emergencies, call 911 on the internal phones (or 630-252-1911 on cell phones) Safety Aspects of radiation safety at ATLAS: Health Physics Coverage at ATLAS is provided by Argonne National Laboratory. Health Physics personnel must be notified if there is a possible contamination incident, or if target and/or detectors are to be removed from a beam line following an experiment. HP Contact information: Angel Garcia (HP Technician): 2-9179 (4-1352 pager) Dave

  12. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The purpose of this note is to announce an important workshop for the ATLAS users to be held at Argonne National Laboratory on AUGUST 8 and 9, 2009. As you are aware, major changes are in store for the ATLAS facility. First, the Energy Upgrade and the CARIBU (CAlifornium Rare Ion Breeder Upgrade) projects are nearing completion. In addition, the role of ATLAS for the low-energy nuclear physics community needs to be revisited in light of the decision to site the Facility for Rare Isotope Beams

  13. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REGISTRATION FORM Name: First Middle Last Organization: Department: Business Address: Street City State Zip Country Business Phone: Fax: E-mail: Citizenship: Additional information is needed for on-site access for non-US citizens who are not ATLAS Users. To download the form as a word document or pdf file, please go to the ATLAS user website (http://www.phy.anl.gov/atlas/users/visitor_info.html). Please return information to Barbara Weller by July 10, 2009. REGISTRATION Fees (If paying by check,

  14. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solenoid (i.e., MRI magnet). It has been commissioned, tested and used at ATLAS with secondary short-lived beams. It also has the potential of being moved to other...

  15. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Nuclear Physics at the Department of Energy to upgrade the capabilities of ATLAS in the area of physics with rare isotopes. A copy of the proposal for the CAlifornium...

  16. ATLAS Metadata Task Force

    SciTech Connect (OSTI)

    ATLAS Collaboration; Costanzo, D.; Cranshaw, J.; Gadomski, S.; Jezequel, S.; Klimentov, A.; Lehmann Miotto, G.; Malon, D.; Mornacchi, G.; Nemethy, P.; Pauly, T.; von der Schmitt, H.; Barberis, D.; Gianotti, F.; Hinchliffe, I.; Mapelli, L.; Quarrie, D.; Stapnes, S.

    2007-04-04

    This document provides an overview of the metadata, which are needed to characterizeATLAS event data at different levels (a complete run, data streams within a run, luminosity blocks within a run, individual events).

  17. BioPower Atlas and BioFuels Atlas | Open Energy Information

    Open Energy Info (EERE)

    Atlas and BioFuels Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BioPower Atlas and BioFuels Atlas AgencyCompany Organization: National Renewable Energy...

  18. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Recommended Vacuum Equipment This is the only vacuum equipment supported by the ATLAS Control System Cryo Pump Heater Blanket Temp/Controller 1 Temp/Controller 2 8200 Compressor 9600 Compressor Cryo Torr Interface Gate Valves All-Metal Hand Valves Foreline Valves Vac Gauge Modular Vac Gauge Controller Hand Valves Turbo Pumps (Ceramic) Turbo Pumps (MagLev) Turbo Pumps (Hybrid) Fore Pump (Scroll) Getter Pump Download Spreadsheet Category Manufacturer Model/Type Order Info Supplier Details

  19. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Safety Considerations at ATLAS For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Electricity will probably present the greatest hazard potential of your visit to Argonne. Argonne and ATLAS have very specific requirements concerning working on or near electrical equipment. This generally means that you cannot work on a piece of equipment if the cover is off and current carrying conductors or components at 50V or greater are exposed. The preferred way

  20. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Equipment Information There are several major pieces of experimental equipment at ATLAS. These are listed below along with contact information for the system experts: Gammasphere (Mike Carpenter) Fragment Mass Analyzer (Cary Davids or Darek Seweryniak ) Helical Orbit Spectrometer (Birger Back) Enge Split Pole Spectrograph (Ernst Rehm) Canadian Penning Trap (Guy Savard) Large Scattering Chamber (Shaofei Zhu) Atom Trap at ATLAS (Zheng-Tian Lu or Peter Mueller) There are additional

  1. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guest Facilities User Agreement All ATLAS Facility Users must have an appointment at Argonne to work at the facility. In order for a non-Argonne person to perform research at ATLAS the Department of Energy requires that a Guest Facilities User Agreement be executed. The purpose of the User Agreement is to define administrative obligations such as safety, liability, ownership of property, and intellectual property rights. These rights and obligations vary based upon category of use.

  2. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Initiatives at ATLAS Birger B. Back June 10, 2009. HELIOS Description: The Helical Orbit Spectrometer (HELIOS) is a novel spectrometer that will enable us to carry out detailed nuclear structure studies via inverse kinematics reactions using re-accelerated, neutron-rich beams from the new CARIBU injector as well as radioactive beams produced by the in-flight method at ATLAS. The spectrometer design has several advantages over conventional techniques using large-area Si detectors. These

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 ATLAS User’s Meeting: May 15-16, 2014 Dear Colleagues, The ATLAS accelerator complex at Argonne National Laboratory restarted operation after an extended shutdown to complete its intensity and efficiency upgrade. This upgrade project consisted of a reconfigured injection line and a positive-ion injector that now includes a high-intensity CW RFQ for initial acceleration. In addition, a major reconfiguration of the booster section was also part of the project. A new cryostat with

  4. Viscous photons in relativistic heavy ion collisions (Journal...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2011-12-02 OSTI Identifier: 1098343 Type: Publisher's Accepted Manuscript Journal Name: Physical Review C Additional Journal Information: Journal Volume: 84; ...

  5. Production of photons in relativistic heavy-ion collisions (Journal...

    Office of Scientific and Technical Information (OSTI)

    GrantContract Number: AC02-05CH11231; SC0012704 Type: Publisher's Accepted Manuscript Journal Name: Physical Review C Additional Journal Information: Journal Volume: 93; Journal ...

  6. Copper vs. Copper at the Relativistic Heavy Ion Collider (2005)

    ScienceCinema (OSTI)

    Brookhaven Lab - Fulvia Pilat

    2010-01-08

    To investigate a new form of matter not seen since the Big Bang, scientists are using a new experimental probe: collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density - not as

  7. Copper vs. Copper at the Relativistic Heavy Ion Collider (2005)

    SciTech Connect (OSTI)

    Brookhaven Lab - Fulvia Pilat

    2009-06-09

    To investigate a new form of matter not seen since the Big Bang, scientists are using a new experimental probe: collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density - not as

  8. Final Report for Project ``Theory of ultra-relativistic heavy...

    Office of Scientific and Technical Information (OSTI)

    discovery during the years 2001-2003 that quark-gluon plasma (QGP) created in nuclear ... a new stage of quantitative precision in the description of quark-gluon plasma properties. ...

  9. Triangularity and dipole asymmetry in relativistic heavy ion...

    Office of Scientific and Technical Information (OSTI)

    Publisher: American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text ...

  10. Triangularity and dipole asymmetry in relativistic heavy ion...

    Office of Scientific and Technical Information (OSTI)

    Finally, we propose to measure the vsub 1 associated with the dipole asymmetry and the correlations between psisub 1,3 and psisub 3,3 by measuring a two-particle ...

  11. Final Report for Project ``Theory of ultra-relativistic heavy...

    Office of Scientific and Technical Information (OSTI)

    and short-lived hot and dense fireball created in such collisions. Starting from a qualitative understanding of the main features based on earlier research during the last...

  12. MARTINI: An event generator for relativistic heavy-ion collisions...

    Office of Scientific and Technical Information (OSTI)

    Its main components are a time-evolution model for the soft background, PYTHIA 8.1, and the McGill-Arnold, Moore, and Yaffe (AMY) parton-evolution scheme, including radiative as ...

  13. Viscous photons in relativistic heavy ion collisions (Journal...

    Office of Scientific and Technical Information (OSTI)

    Publisher: American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text ...

  14. Production of photons in relativistic heavy-ion collisions (Journal...

    Office of Scientific and Technical Information (OSTI)

    Publisher: American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text This ...

  15. NETL NATCARB - Atlas | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATCARB/Atlas Carbon Storage Atlas - Fifth Edition (Atlas V) (2015) Carbon Storage Atlas The primary purpose of the U.S. Department of Energy (DOE) Carbon Storage Atlas is to provide a coordinated update of carbon capture and storage (CCS) potential across the United States and other portions of North America. DOE has released five versions of the atlas with the most recent, "DOE's Carbon Storage Atlas - Fifth Edition (Atlas V)," made publicly available in August 2015. Atlas V contains

  16. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect (OSTI)

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  17. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dear Friend, Please, mark the dates of Friday October 22 and Saturday October 23, 2010! We are planning a symposium to celebrate the 25th anniversary of the dedication of ATLAS which took place on June 25, 1985. ATLAS was the world's first superconducting linac for ions. Since its dedication as a National User Facility, more than a thousand experiments by well over 2000 users world-wide, have taken advantage of the unique capabilities it provides. The 1-1/2 day symposium will highlight the

  18. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS USERS WORKSHOP: AGENDA Saturday, August 8 (Bldg. 203 Auditorium) 8:45 - 9:15 Registration & Coffee 9:15 - 9:30 Welcome & introduction to the meeting: W. Loveland An updated Strategic Plan: Why? R. Janssens 9:30 - 10:00 Status of ATLAS (& Energy Upgrade) R. Pardo 10:00 - 10:30 Status of CARIBU R. Pardo & G. Savard 10:30 - 10:45 Coffee 10:45 - 12:45 Status report on existing equipment & Planned Upgrades*: 10:45 - 11:00 HELIOS A. Wuosmaa 11:00 - 11:15 Gammasphere M.

  19. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 ATLAS User’s Meeting: May 15-16, 2014 Dear Colleagues, The ATLAS accelerator complex at Argonne National Laboratory is restarting operation after an extended shutdown to complete its intensity and efficiency upgrade. This upgrade project consisted of a reconfigured injection line and a positive-ion injector that now includes a high-intensity CW RFQ for initial acceleration. In addition, a major reconfiguration of the booster section was also part of the project. A new cryostat with

  20. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2-3, 2010 ATLAS PAC Meeting Please note: Because of the pressure on ATLAS beam time, the PAC ranked the approved experiments in two categories. Priority I experiments are those that must be run at all costs. Priority II experiments are those that should be granted beam time (indicated in parenthesis) if at all possible. Priority I experiments are approved for the present cycle of experiments, but can be run during the next PAC cycle as well if scheduling conflicts occur. Priority II

  1. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 22-23, 2011 ATLAS PAC Meeting Please note: Because of the pressure on ATLAS beam time, the PAC ranked the approved experiments in two categories. Priority I experiments are those that must be run at all costs. Priority II experiments are those that should be granted beam time (indicated in parenthesis) if at all possible. Priority I experiments are approved for the present cycle of experiments, but can be run during the next PAC cycle as well if scheduling conflicts occur. Priority II

  2. Biofuels Atlas (United States) | Open Energy Information

    Open Energy Info (EERE)

    Atlas (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biofuels Atlas (United States) Focus Area: Clean Transportation Topics: Potentials & Scenarios...

  3. Atlas Solar Innovations | Open Energy Information

    Open Energy Info (EERE)

    Innovations Jump to: navigation, search Logo: Atlas Solar Innovations Name: Atlas Solar Innovations Address: 2640 NW 15th Court Place: Pompano Beach, Florida Zip: 33069 Sector:...

  4. River Hydrokinetic Resource Atlas | Open Energy Information

    Open Energy Info (EERE)

    dress":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English River Hydrokinetic Resource Atlas Screenshot References: EPRI1 River Atlas2 The...

  5. Template:AtlasTabs | Open Energy Information

    Open Energy Info (EERE)

    AtlasTabs Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleTemplate:AtlasTabs&oldid686795...

  6. Automated Transportation Logistics and Analysis System (ATLAS...

    Office of Environmental Management (EM)

    Automated Transportation Logistics and Analysis System (ATLAS) ATLAS is an integrated web-based logistics management system allowing users to manage inbound and outbound freight ...

  7. A relativistic constituent quark model

    SciTech Connect (OSTI)

    Schlumpf, F.

    1993-08-01

    We investigate the predictive power of a relativistic quark model formulated on the light-front. The nucleon electromagnetic form factors, the semileptonic weak decays of the hyperons and the magnetic moments of both baryon octet and decuplet are calculated and found to be in excellent agreement with experiment.

  8. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  9. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ATLAS Program Advisory Committee (PAC) Current PAC Membership: Gordon Ball TRIUMF Dan Bardayan University of Notre Dame Peter Butler University of Liverpool Michael Carpenter Argonne National Laboratory Alexandra Gade Michigan State University Walter Loveland (Chair) Oregon State University Thomas Papenbrock The University of Tennessee, Knoxville Nicolas Scielzo (UEC Chair) Lawrence Livermore National Laboratory Ingo Wiedenhoever Florida State University

  10. K/pi Fluctuations at Relativistic Energies

    SciTech Connect (OSTI)

    STAR Collaboration; Abelev, B.I.

    2009-08-24

    We report results for K/{pi} fluctuations from Au+Au collisions at {radical}sNN = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for K/{pi} fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at {radical}sNN = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of K/{pi} fluctuations as well as results for K{sup +}/{pi}{sup +}, K{sup -}/{pi}{sup -}, K{sup +}/{pi}{sup -}, and K{sup -}/{pi}{sup +} fluctuations. We observe that the K/{pi} fluctuations scale with the multiplicity density, dN/d{eta}, rather than the number of participating nucleons.

  11. Carbon Sequestration Atlas IV Video

    SciTech Connect (OSTI)

    Rodosta, Traci

    2013-04-19

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  12. Carbon Sequestration Atlas IV Video

    ScienceCinema (OSTI)

    Rodosta, Traci

    2014-06-27

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  13. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  14. ATLAS Support Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Support Center Our mission is to support ATLAS physics analyses and hardware R&D, in particular for U.S. ATLAS physicists. We are one of the three ATLAS Support Centers in the U.S. We offer for ATLAS users: A model Tier-3 (T3g) for ATLAS analysis Meeting and office space for visitors A dedicated video conference facility Computer accounts ATLAS software expertise and consultation T3g setup expertise and consultation Analysis expertise and consultation The support center is operated by

  15. WESTCARB Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  16. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stable Beams Available from ATLAS Updated August, 2009 Beam currents listed in the table were obtained with naturally occurring material for the given isotope. The maximum energy quoted corresponds to the that computed with the optimal charge state. Higher energies are possible by using another charge state or by double stripping. a Other isotopes available with currents proportional to their abundance. For more beam current isotopically enriched material may be used, but the User should, in

  17. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stable Beams Available from ATLAS Updated August, 2009 Beam currents listed in the table were obtained with naturally occurring material for the given isotope. The maximum energy quoted corresponds to the that computed with the optimal charge state. Higher energies are possible by using another charge state or by double stripping. a Other isotopes available with currents proportional to their abundance. For more beam current isotopically enriched material may be used, but the User should, in

  18. Mesoscopic Superposition States in Relativistic Landau Levels

    SciTech Connect (OSTI)

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-09-21

    We show that a linear superposition of mesoscopic states in relativistic Landau levels can be built when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily superpositions of coherent states involving the particle orbital quanta in a well-defined mesoscopic regime. We demonstrate that these mesoscopic superpositions have a purely relativistic origin and disappear in the nonrelativistic limit.

  19. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect (OSTI)

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ?50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  20. Project: Modeling Relativistic Electrons from Nuclear Explosions...

    Office of Scientific and Technical Information (OSTI)

    Electrons from Nuclear Explosions in the Magnetosphere Citation Details In-Document Search Title: Project: Modeling Relativistic Electrons from Nuclear Explosions in the ...

  1. Scaling of Magnetic Reconnection in Relativistic Collisionless...

    Office of Scientific and Technical Information (OSTI)

    Title: Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas Authors: Liu, Yi-Hsin ; Guo, Fan ; Daughton, William ; Li, Hui ; Hesse, Michael Publication Date: ...

  2. Relativistic atomic beam spectroscopy II

    SciTech Connect (OSTI)

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  3. Heavy loads

    SciTech Connect (OSTI)

    Metz, D.

    1982-01-01

    The extreme pressures on the roof and walls of an earth-sheltered residential home are discussed and the need for careful planning is stressed. Pertinent terms are defined. Footings and wall structure (reinforced concrete walls and concrete block walls) are described. Roofing systems are discussed in detail and illustrated: (1) poured-in-place concrete roof slabs; (2) pre-cast concrete planks; and (3) heavy timber roofs. Insulation of earth-sheltered homes is reviewed in terms of using: (1) urethanes; (2) extruded polystyrene; and (3) expanded polystyrene. Advantages, disadvantages, R-factors, costs, and installation are discussed. (MJJ)

  4. Relativistic self-focusing in underdense plasma

    SciTech Connect (OSTI)

    Feit, M. D.; Garrison, J. C.; Rubenchik, A. M.; Komashko, A.; Musher, S. L.; Turitsyn, S. K.

    1997-04-15

    An improved cavitation model shows that stable beam channeling and electron cavitation occur for relativistic laser intensities even at powers hundreds of times larger than the critical power for self-focusing. Numerical calculations for long pulses (100 ps) demonstrate strong self-focusing at weakly relativistic intensities. The destructive effects of self-focusing are increasingly suppressed at high intensity.

  5. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive Beams Delivered by ATLAS Updated July, 2009 a Beams produced using the "In-flight" method (Rev. Sci. Instrum. 71, 380 (2008)) (see below). b Beams produced using the "Two-accelerator" or "Batch" method (see below). c Allowed maximum radiation may limit beam current. d Used so far for implantation only. Ion Half-Life Reaction Intensity (ions/sec/pnA) Opening Angle (degrees) Production Energy (MeV) Max. Rate (ions/sec) 6Hea,c 0.807 sec d(7Li,6He)3He 150 19

  6. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Considerations at ATLAS For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Equipment Safety Reviews are required whenever new equipment is brought in for an experiment. The review is conducted by the Physics Division safety committee. If you plan to bring in your own detectors or other equipment for an experiment, it will need to reviewed. If a safety review is required for your equipment, you will need to fill out a Hazard Analysis form. Forms

  7. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Shaofei Zhu ATLAS User Liaison Physicist zhu@anl.gov (630) 252-4412 Shaofei Zhu Barbara Weller Administrative Secretary bweller@anl.gov (630) 252-4044 Barbara Weller Tom Mullen Safety Engineer tpmullen@anl.gov (630) 252-2879 Tom Mullen John P. Greene Target Making greene@anl.gov (630) 252-5364 Target Lab Homepage John Greene Beamline and Equipment Support John Rohrer rohrer@phy.anl.gov (630) 252-4047 John Rohrer Detector Support Dale Henderson (STA) henderson@phy.anl.gov

  8. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive Beams Delivered by ATLAS Updated July, 2009 a Beams produced using the "In-flight" method (see below). b Beams produced using the "Two-accelerator" or "Batch" method (see below). c Allowed maximum radiation may limit beam current. d Used so far for implantation only. Ion Half-Life Reaction Intensity (ions/sec/pnA) Opening Angle (degrees) Production Energy (MeV) Max. Rate (ions/sec) 6Hea,c 0.807 sec d(7Li,6He)3He 150 19 75 1 x 104 8Lia,c 0.838 sec

  9. Chiral asymmetry in relativistic matter in a magnetic field

    SciTech Connect (OSTI)

    Shovkovy, I. A.

    2009-12-17

    We show that the normal phase of dense relativistic matter in a magnetic field is characterized by a nonzero relative shift of the longitudinal momenta in the dispersion relations of the left-handed and right-handed fermions. The presence of such a shift in the ground state does not break any symmetries of the action. To leading order, the corresponding parameter, dubbed the chiral shift, is linear in the coupling constant. Because of the chiral shift, a dynamical contribution to the axial current is induced. The induced axial current and the shift of the Fermi surfaces of the opposite chirality fermions are expected to play an important role in transport and emission properties of matter in various types of compact stars as well as in heavy ion collisions.

  10. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  11. From whence did ATLAS arise?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    whence did ATLAS arise? (the quarter century: 1960-85) Once upon a time, there was an Argonne tandem (started 1960) Here is a typical schedule from the 60-s. 2 We even had an...

  12. ATLAS upgrade June09_v3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS efficiency and intensity upgrade Guy Savard and Robert V. F. Janssens June 12, 2009 The ATLAS facility is on a constant quest to improve and increase the capabilities it...

  13. Global Atlas | OpenEI Community

    Open Energy Info (EERE)

    Global Atlas Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 11 February, 2013 - 15:18 IRENA launches global atlas of renewable energy potential data...

  14. Atlas Lighting: Order (2015-CE-48001)

    Broader source: Energy.gov [DOE]

    DOE ordered Atlas Lighting Products to pay a $6,000 civil penalty after finding Atlas Lighting had failed to certify that certain models of illuminated exit signs comply with the applicable energy conservation standards.

  15. ATLAS_Strategic_Plan_14_August _9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Accelerator Facility Physics Division Argonne National Laboratory Argonne, IL June 2014 2 Introduction This strategic plan is developed jointly by the ATLAS user community and the Physics Division at Argonne National Laboratory. This plan is a public document, hence available to the entire ATLAS user community, and is updated as the need arises. In practice, the community discusses this plan at regular ATLAS Users Workshops, the most recent of which was held on May 15-16, 2014. The users'

  16. European Wind Atlas: Offshore | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-offshore,http:c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  17. European Wind Atlas: Onshore | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-onshore,http:cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  18. European Wind Atlas: France | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-france,http:cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  19. Supersymmetry across the light and heavy-light hadronic spectrum

    SciTech Connect (OSTI)

    Dosch, Hans Gunter; de Teramond, Guy F.; Brodsky, Stanley J.

    2015-10-07

    Relativistic light-front bound-state equations for mesons and baryons can be constructed in the chiral limit from the supercharges of a superconformal algebra which connect baryon and meson spectra. Quark masses break the conformal invariance, but the basic underlying supersymmetric mechanism, which transforms meson and baryon wave functions into each other, still holds and gives remarkable connections across the entire spectrum of light and heavy-light hadrons. As a result, we also briefly examine the consequences of extending the supersymmetric relations to double-heavy mesons and baryons.

  20. Relativistic Thomson Scatter from Factor Calculation

    Energy Science and Technology Software Center (OSTI)

    2009-11-01

    The purpose of this program is calculate the fully relativistic Thomson scatter from factor in unmagnetized plasmas. Such calculations are compared to experimental diagnoses of plasmas at such facilities as the Jupiter laser facility here a LLNL.

  1. Relativistic electron beam crossed-field device

    DOE Patents [OSTI]

    Bekefi, George; Orzechowski, Thaddeus J.

    1980-01-01

    An intense relativistic crossed field device in a nested configuration wherein a field emission cathode is nested within a segmented annular anode with an annular gap separating the two.

  2. Consumer Energy Atlas

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This first edition of the Atlas provides, in reference form, a central source of information to consumers on key contacts concerned with energy in the US. Energy consumers need information appropriate to local climates and characteristics - best provided by state and local governments. The Department of Energy recognizes the authority of state and local governments to manage energy programs on their own. Therefore, emphasis has been given to government organizations on both the national and state level that influence, formulate, or administer policies affecting energy production, distribution, and use, or that provide information of interest to consumers and non-specialists. In addition, hundreds of non-government energy-related membership organizations, industry trade associations, and energy publications are included.

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approved ATLAS Experiments Sorted by PAC meetings: November 6-7, 2015 March 8-9, 2015 September 19, 2014 November 22-23, 2013 December 14-15, 2012 January 13-14, 2012 April 22-23, 2011 April 2-3, 2010 June 26-27, 2009 June 27-28, 2008 November 2-3, 2007 September 15-16, 2006 January 20-21, 2006 May 20-21, 2005 June 4-5, 2004 September 19-20, 2003 February 7-8, 2003 May 3, 2002 October 5, 2001 March 2, 2001 Sep 11, 2000 March 3, 2000 October 11, 1999 May 21, 1999 November 9. 1998 May 8, 1998

  4. Relativistic self-focusing in underdense plasma

    SciTech Connect (OSTI)

    Feit, M.D.; Garrison, J.C.; Rubenchik, A.M.; Musher, S.L.; Turitsyn, S.K.

    1997-04-01

    An improved cavitation model shows that stable beam channeling and electron cavitation occur for relativistic laser intensities even at powers hundreds of times larger than the critical power for self-focusing. Numerical calculations for long pulses (100 ps) demonstrate strong self-focusing at weakly relativistic intensities. The destructive effects of self-focusing are increasingly suppressed at high intensity. {copyright} {ital 1997 American Institute of Physics.}

  5. Relativistic klystron research at SLAC and LLNL

    SciTech Connect (OSTI)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Barletta, W.A.; Birx, D.L.; Boyd, J.K.; Houck, T.; Westenskow, G.A.; Yu, S.S.

    1988-06-01

    We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab.

  6. Heavy Vehicle Simulator

    SciTech Connect (OSTI)

    2015-03-09

    Idaho National Laboratory Heavy Vehicle Simulator located at the Center for Advanced Energy Studies.

  7. Heavy metal biosensor

    DOE Patents [OSTI]

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  8. Kinetically balanced Gaussian basis-set approach to relativistic Compton profiles of atoms

    SciTech Connect (OSTI)

    Jaiswal, Prerit; Shukla, Alok

    2007-02-15

    Atomic Compton profiles (CPs) are a very important property which provide us information about the momentum distribution of atomic electrons. Therefore, for CPs of heavy atoms, relativistic effects are expected to be important, warranting a relativistic treatment of the problem. In this paper, we present an efficient approach aimed at ab initio calculations of atomic CPs within a Dirac-Hartree-Fock (DHF) formalism, employing kinetically balanced Gaussian basis functions. The approach is used to compute the CPs of noble gases ranging from He to Rn, and the results have been compared to the experimental and other theoretical data, wherever possible. The influence of the quality of the basis set on the calculated CPs has also been systematically investigated.

  9. High energy Coulomb-scattered electrons for relativistic particle beams and diagnostics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thieberger, P.; Altinbas, Z.; Carlson, C.; Chasman, C.; Costanzo, M.; Degen, C.; Drees, K. A.; Fischer, W.; Gassner, D.; Gu, X.; et al

    2016-03-29

    A new system used for monitoring energetic Coulomb-scattered electrons as the main diagnostic for accurately aligning the electron and ion beams in the new Relativistic Heavy Ion Collider (RHIC) electron lenses is described in detail. The theory of electron scattering from relativistic ions is developed and applied to the design and implementation of the system used to achieve and maintain the alignment. Commissioning with gold and 3He beams is then described as well as the successful utilization of the new system during the 2015 RHIC polarized proton run. Systematic errors of the new method are then estimated. Lastly, some possiblemore » future applications of Coulomb-scattered electrons for beam diagnostics are briefly discussed.« less

  10. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals

    SciTech Connect (OSTI)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian

    2014-10-28

    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same “direct relativistic mapping” between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  11. Document issued in preparation for the ATLAS User Workshop 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goals, in the context of long- term plans for the ATLAS facility. The current ATLAS Strategic Plan was crafted in 2009 by the Executive Committee of the ATLAS Users group and...

  12. Heavy-quark production in ultrarelativistic heavy-ion collisions within a partonic transport model

    SciTech Connect (OSTI)

    Uphoff, Jan; Fochler, Oliver; Greiner, Carsten; Xu Zhe

    2010-10-15

    The production and space-time evolution of charm and bottom quarks in nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are investigated with the partonic transport model BAMPS (Boltzmann approach of multiparton scatterings). Heavy quarks, produced in primary hard parton scatterings during nucleon-nucleon collisions, are sampled using the Monte Carlo event generator pythia or the leading-order minijet model in conjunction with the Glauber model, revealing a strong sensitivity on the parton distribution functions, scales, and heavy-quark mass. In a comprehensive study exploring different charm masses, K factors, and possible initial gluon conditions, secondary production and the evolution of heavy quarks are examined within a fully dynamic BAMPS simulation for central heavy-ion collisions at RHIC and LHC. Although charm production in the quark-gluon plasma can be neglected at RHIC, it is significant at LHC but very sensitive to the initial conditions and the charm mass. Bottom production in the quark-gluon plasma, however, is negligible both at RHIC and LHC.

  13. ATLAS Science and Technology Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    th Anniversary Celebration October 22-23, 2010 Physics Division, Argonne National Laboratory Building 203, Auditorium Friday, October 22: The Past as Prologue 8:00 - 8:30 Registration and coffee Chair: R.V.F. Janssens 8:30 - 8:45 Welcome by Laboratory Director and ALD E. Isaacs/S. Streiffer 8:45 - 9:30 Summary of the History of ATLAS W.F. Henning Chair: B.B. Back 9:30 - 10:30 Reminiscences 10:30 - 10:50 Break Chair: J. Nolen 10:50 - 11:25 The Impact of ATLAS on SRF Development and Applications

  14. Solar Atlas (PACA Region - France) | Open Energy Information

    Open Energy Info (EERE)

    Atlas (PACA Region - France) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Atlas (PACA Region - France) AgencyCompany Organization: MINES ParisTech Sector:...

  15. Wind Energy Atlas of Brazil | Open Energy Information

    Open Energy Info (EERE)

    Atlas of Brazil Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Atlas of Brazil Focus Area: Renewable Energy Topics: Potentials & Scenarios Website:...

  16. Ontario Renewable Energy Atlas (Canada) | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Atlas (Canada) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ontario Renewable Energy Atlas (Canada) Focus Area: Renewable Energy Topics: Potentials &...

  17. 2010 Carbon Sequestration Atlas of the United States and Canada...

    Open Energy Info (EERE)

    10 Carbon Sequestration Atlas of the United States and Canada: Third Edition Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 2010 Carbon Sequestration Atlas of the...

  18. ATLAS diboson excesses from the stealth doublet model (Journal...

    Office of Scientific and Technical Information (OSTI)

    ATLAS diboson excesses from the stealth doublet model Title: ATLAS diboson excesses from the stealth doublet model Authors: Chao, Wei Search DOE PAGES for author "Chao, Wei" Search...

  19. Global Atlas for Solar and Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Atlas for Solar and Wind Energy Jump to: navigation, search Tool Summary Name: Global Atlas for Solar and Wind Energy AgencyCompany Organization: International Renewable Energy...

  20. Relativistic electron acceleration by oblique whistler waves

    SciTech Connect (OSTI)

    Yoon, Peter H.; School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 ; Pandey, Vinay S.; Lee, Dong-Hun

    2013-11-15

    Test-particle simulations of electrons interacting with finite-amplitude, obliquely propagating whistler waves are carried out in order to investigate the acceleration of relativistic electrons by these waves. According to the present findings, an efficient acceleration of relativistic electrons requires a narrow range of oblique propagation angles, close to the whistler resonance cone angle, when the wave amplitude is held constant at relatively low value. For a constant wave propagation angle, it is found that a range of oblique whistler wave amplitudes permits the acceleration of relativistic electrons to O(MeV) energies. An initial distribution of test electrons is shown to form a power-law distribution when plotted in energy space. It is also found that the acceleration is largely uniform in electron pitch-angle space.

  1. Ab initio and relativistic DFT study of spin–rotation and NMR shielding constants in XF{sub 6} molecules, X = S, Se, Te, Mo, and W

    SciTech Connect (OSTI)

    Ruud, Kenneth; Demissie, Taye B.; Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 ; Jaszuński, Michał

    2014-05-21

    We present an analysis of the spin–rotation and absolute shielding constants of XF{sub 6} molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin–rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin–rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin–rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin–rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  2. DOE - NNSA/NFO -- Photo Library ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - ATLAS Pulsed-Power Generator The ATLAS pulsed-power generator is one of many alternatives to underground nuclear testing. Pulsed power can concentrate high total energies on larger (centimeter-scale) experimental targets for relatively long periods of times compared to other Stockpile Stewardship experiments. Instructions: Click the photograph THUMBNAIL to view the photograph details Click the Category, Number,

  3. Wind Energy Resource Atlas of Armenia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G. Scott, S. Haymes, D. Heimiller, R. George National Renewable Energy Laboratory Wind Energy Resource Atlas of Armenia July 2003 * NRELTP-500-33544 Wind Energy Resource...

  4. ATLAS_Strategic_Plan_09_v5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IL November 2009 2 Introduction This strategic plan is developed jointly by the ATLAS user community and the Physics Division at Argonne National Laboratory. This plan is a...

  5. ATLAS APPROVED IN-BEAM EXPERIMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 785 Baktash Band Termination, Superdeformation and Complex Clusters in 32S 5 TOTAL 82 ATLAS APPROVED SOURCE EXPERIMENTS (Depending on Gammasphere Availability) Exp Spokesperson...

  6. Carbon Storage Atlas, Employee Newsletter Earn International...

    Broader source: Energy.gov (indexed) [DOE]

    internal employee newsletter, inTouch, earned 2013 National Association of Government Communicators awards. NETL's Carbon Storage Atlas IV and FE's internal employee newsletter, ...

  7. Commissioning of the ATLAS pixel detector

    SciTech Connect (OSTI)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  8. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    SciTech Connect (OSTI)

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur-

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  9. Crystallization and collapse in relativistically degenerate matter

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2013-04-15

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  10. World Bank eAtlas of Global Development | Open Energy Information

    Open Energy Info (EERE)

    World Bank eAtlas of Global Development1 "This eAtlas, a new online companion to Atlas of Global Development, third edition, builds on the Atlas topics, allowing you to...

  11. Heavy flavor in heavy-ion collisions at RHIC and RHIC II

    SciTech Connect (OSTI)

    Frawley, A D; Ullrich, T; Vogt, R

    2008-03-30

    In the initial years of operation, experiments at the Relativistic Heavy Ion Collider (RHIC) have identified a new form of matter formed in nuclei-nuclei collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time, has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about twice the critical temperature predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a 'perfect liquid' that appears to flow with a near-zero viscosity to entropy ratio--lower than any previously observed fluid and perhaps close to a universal lower bound. However, a fundamental understanding of the medium seen in heavy-ion collisions at RHIC does not yet exist. The most important scientific challenge for the field in the next decade is the quantitative exploration of the new state of nuclear matter. That will require new data that will, in turn, require enhanced capabilities of the RHIC detectors and accelerator. In this report we discuss the scientific opportunities for an upgraded RHIC facility --RHIC II--in conjunction with improved capabilities of the two large RHIC detectors, PHENIX and STAR. We focus solely on heavy flavor probes. Their production rates are calculable using the well-established techniques of perturbative QCD and their sizable interactions with the hot QCD medium provide unique and sensitive measurements of its crucial properties making them one of the key diagnostic tools available to us.

  12. Philippines Wind Energy Resource Atlas Development

    SciTech Connect (OSTI)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  13. atlasUserMeeting14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GRETINA Mario Cromaz, LBNL Work supported under contract number DE-AC02-05CH11231. 2014 ATLAS User's Meeting ANL - May 15-16, 2014 The GRETINA Spectrometer 2 * first generation gamma-ray tracking array * spherical shell of Ge covering 25% of available solid angle (scalable to full 4 coverage) * consists of seven 4-crystal modules (quads), 36-way segmented HPGe crystals (1000 segments) * tracking ability removes need for active suppression, scales to very high efficiencies * physics runs now

  14. Renewable Energy Atlas of the United States

    SciTech Connect (OSTI)

    Kuiper, J.; Hlava, K.; Greenwood, H.; Carr, A.

    2013-12-13

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. This report explains how to add the Atlas to your computer and install the associated software. The report also includes: A description of each of the components of the Atlas; Lists of the Geographic Information System (GIS) database content and sources; and A brief introduction to the major renewable energy technologies. The Atlas includes the following: A GIS database organized as a set of Environmental Systems Research Institute (ESRI) ArcGIS Personal GeoDatabases, and ESRI ArcReader and ArcGIS project files providing an interactive map visualization and analysis interface.

  15. Heavy Higgs bosons and the 2 TeV $W'$ boson

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dobrescu, Bogdan A.; Liu, Zhen

    2015-10-19

    The hints from the LHC for the existence of a W' boson of mass around 1.9 TeV point towards a certain SU(2) L × SU(2) R × U(1) B-L gauge theory with an extended Higgs sector. We show that the decays of the W' boson into heavy Higgs bosons have sizable branching fractions. Interpreting the ATLAS excess events in the search for same-sign lepton pairs plus b jets as arising from W' cascade decays, we then estimate that the masses of the heavy Higgs bosons are in the 400-700 GeV range.

  16. Heavy Mobile Equipment Mechanic

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Heavy Mobile Equipment Mechanic (HMEM)...

  17. Distinct optical properties of relativistically degenerate matter

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2014-06-15

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  18. Kinetic Simulations of Relativistic Radiative Magnetic Reconnection |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility This visualization shows the increased plasma density inside flux ropes In three dimensions, magnetic reconnection occurs between "ropes" of magnetic flux; this figure, from a supercomputer simulation of reconnection in ultra-relativistic electron-positron plasma, shows the increased plasma density inside flux ropes. During reconnection, magnetic energy is transferred to plasma particles; the accelerated particles emit high-energy X-rays and

  19. ATLAS at the LHC | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS at the LHC ATLAS at the LHC The Large Hadron Collider in Geneva, Switzerland is the largest physics machine on Earth, and involves a collaboration of thousands of scientists who have used it to investigate the structure and properties of the tiniest building blocks of matter. At one of the experiments being performed on the LHC, called ATLAS, more than 3,000 scientists have undertaken the search for new discoveries based upon the head-on collisions of protons of extraordinarily high

  20. Measuring fast electron spectra and laser absorption in relativistic...

    Office of Scientific and Technical Information (OSTI)

    Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors Citation Details In-Document Search ...

  1. Laser-to-hot-electron conversion limitations in relativistic...

    Office of Scientific and Technical Information (OSTI)

    and differing trends across multiple target types acquired from two separate laser ... edge of the main pulse measurably alters target evolution and relativistic electron ...

  2. Ionized channel generation of an intense-relativistic electron beam

    DOE Patents [OSTI]

    Frost, Charles A.; Leifeste, Gordon T.; Shope, Steven L.

    1988-01-01

    A foilless intense relativistic electron beam generator uses an ionized cnel to guide electrons from a cathode passed an anode to a remote location.

  3. Super-Heavy Element Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Targets for Super-Heavy Element Research Presented at International Workshop on Super-Heavy Element Research SHE-15 J. B. Roberto Oak Ridge National Laboratory Oak Ridge,...

  4. Study of heavy-ion collisions in the PHENIX experiment: Survey of the most recent results

    SciTech Connect (OSTI)

    Riabov, V. G. Samsonov, V. M.

    2011-03-15

    The first experimental results obtained at the Relativistic Heavy Ion Collider (RHIC) over the period between 2000 and 2005 are indicative of the production of dense and hot partonic matter in relativistic heavy-ion collisions. Investigations performed in recent years make it possible to extend the list of measured signatures and to study their dependence on the greater number of variables. The most recent results obtained in the PHENIX experiment by studying proton-proton and nucleus-nucleus collisions are surveyed. Particular attention is given to studying the properties of the initial state, dynamical evolution of the product medium, and its response to the propagation of high-energy partons through it. The aforementioned effects are studied via measuring the properties of identified hadrons and leptons over a broad region of transverse momenta at various rapidities.

  5. Selected experimental results from heavy-ion collisions at LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Ranbir; Kumar, Lokesh; Netrakanti, Pawan Kumar; Mohanty, Bedangadas

    2013-01-01

    We reviewmore » a subset of experimental results from the heavy-ion collisions at the Large Hadron Collider (LHC) facility at CERN. Excellent consistency is observed across all the experiments at the LHC (at center of mass energysNN=2.76 TeV) for the measurements such as charged particle multiplicity density, azimuthal anisotropy coefficients, and nuclear modification factor of charged hadrons. Comparison to similar measurements from the Relativistic Heavy Ion Collider (RHIC) at lower energy (sNN=200 GeV) suggests that the system formed at LHC has a higher energy density and larger system size and lives for a longer time. These measurements are compared to model calculations to obtain physical insights on the properties of matter created at the RHIC and LHC.« less

  6. Finite volume effects for nucleon and heavy meson masses

    SciTech Connect (OSTI)

    Colangelo, Gilberto; Fuhrer, Andreas; Lanz, Stefan

    2010-08-01

    We apply the resummed version of the Luescher formula to analyze finite volume corrections to the mass of the nucleon and of heavy mesons. We show that by applying the subthreshold expansion of the scattering amplitudes one can express the finite volume corrections in terms of only a few physical observables and the size of the box. In the case of the nucleon, the available information about the quark mass dependence of these physical quantities is discussed and used to assess the finite volume corrections to the nucleon mass as a function of the quark mass including a detailed analysis of the remaining uncertainties. For heavy mesons, the Luescher formula is derived both fully relativistically and in a nonrelativistic approximation and a first attempt at a numerical analysis is made.

  7. Upgrading heavy gas oils

    SciTech Connect (OSTI)

    Ferguson, S.; Reese, D.D.

    1986-05-20

    A method is described of neutralizing the organic acidity in heavy gas oils to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the heavy gas oils with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized heavy gas oil at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  8. DECELERATING RELATIVISTIC TWO-COMPONENT JETS

    SciTech Connect (OSTI)

    Meliani, Z.; Keppens, R. E-mail: Rony.Keppens@wis.kuleuven.b

    2009-11-10

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin and launching mechanism, making their effective inertia, magnetization, associated energy flux, and angular momentum content different as well. Their interface will develop differential rotation, where disruptions may occur. Here we investigate the stability of rotating, two-component relativistic outflows typical for jets in radio galaxies. For this purpose, we parametrically explore the long-term evolution of a transverse cross section of radially stratified jets numerically, extending our previous study where a single, purely hydrodynamic evolution was considered. We include cases with poloidally magnetized jet components, covering hydro and magnetohydrodynamic (MHD) models. With grid-adaptive relativistic MHD simulations, augmented with approximate linear stability analysis, we revisit the interaction between the two jet components. We study the influence of dynamically important poloidal magnetic fields, with varying contributions of the inner component jet to the total kinetic energy flux of the jet, on their non-linear azimuthal stability. We demonstrate that two-component jets with high kinetic energy flux and inner jet effective inertia which is higher than the outer jet effective inertia are subject to the development of a relativistically enhanced, rotation-induced Rayleigh-Taylor-type instability. This instability plays a major role in decelerating the inner jet and the overall jet decollimation. This novel deceleration scenario can partly explain the radio source dichotomy, relating it directly to the efficiency of the central engine in launching the inner jet component. The FRII/FRI transition could then occur when the relative kinetic energy flux of the

  9. Atlas Lighting: Proposed Penalty (2015-CE-48001)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Atlas Lighting Products failed to certify a variety of illuminated exit sign basic models as compliant with the applicable energy conservation standards.

  10. Heavy Ion Collisions at the LHC - Last Call for Predictions

    SciTech Connect (OSTI)

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d'Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise document, we required that