National Library of Energy BETA

Sample records for atlanta ga usa

  1. Secretary Moniz's Keynote at the Sam Nunn Policy Forum in Atlanta, GA --

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As Delivered | Department of Energy Keynote at the Sam Nunn Policy Forum in Atlanta, GA -- As Delivered Secretary Moniz's Keynote at the Sam Nunn Policy Forum in Atlanta, GA -- As Delivered April 16, 2014 - 11:35am Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Well, thank you. Professor Bankoff, Provost Bras, I'll also acknowledge the Bank of America support of this symposium and also my monthly support of the Bank of America which is quite considerable with those credit

  2. Remarks by Federal Blue Ribbon Commission J. David Jameson Atlanta, GA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Blue Ribbon Commission J. David Jameson Atlanta, GA October 18, 2011 Good Morning. I am David Jameson. I am President and CEO of the Greater Aiken, South Carolina, Chamber of Commerce. I am here today in my capacity as current Chairman of the SRS Community Reuse Organization. The SRSCRO is a non-profit regional group supporting economic diversification and job creation in a five-county in Georgia and South Carolina near the Department of Energy's Savannah River Site. We are unique among

  3. USD E'16 ATLANTA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USD E'16 ATLANTA 2016 REGISTER NOW! 15th Annual DOE Small Business Forum & Expo MAY 23 - 25, 2016 Atlanta Marriott Marquis 265 Peachtree Center Avenue Atlanta, GA 30303 Government per diem $135.00/night (+taxes/fees) Register Now for USDOE16! smallbusinessconference.energy.gov CLICK HERE TO REGISTER

  4. EECBG Success Story: Atlanta Suburb Greases the Path to Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atlanta Suburb Greases the Path to Savings with Biodiesel EECBG Success Story: Atlanta ... of the City of Savannah, GA. EECBG Success Story: In Savannah, Georgia, Even the ...

  5. Advancing Residential Retrofits in Atlanta

    SciTech Connect (OSTI)

    Jackson, Roderick K; Kim, Eyu-Jin; Roberts, Sydney; Stephenson, Robert

    2012-07-01

    This report will summarize the home energy improvements performed in the Atlanta, GA area. In total, nine homes were retrofitted with eight of the homes having predicted source energy savings of approximately 30% or greater based on simulated energy consumption.

  6. 2009 National Electric Transmission Congestion Study- Atlanta Workshop

    Broader source: Energy.gov [DOE]

    On July 29, 2008, DOE hosted a regional pre-study workshop in Atlanta, GA to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda and full...

  7. WNRC diverting to Atlanta FRC | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon NOTICE - NARA Diversion Prgm re WNRC Transfers Routed to FRC-Atlanta, GA.pdf More Documents & Publications Denver FRC diverting to Kingsridge FRC (Dayton, OH) POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT Records Management POC Responsibilities

  8. Atlanta Chemical Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name: Atlanta Chemical Engineering LLC Place: Marietta, Georgia Country: United...

  9. Making Connections for Atlanta Students

    Broader source: Energy.gov [DOE]

    The Atlanta Students in Energy and Climate Forum, held in April 2013, brought together entrepreneurs, and professors to share experiences and motivations in their pursuit of environmental stewardship.

  10. Atlanta, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Solarity Sustainable World Capital TCE Energy Corporation Waspa Wheego Electric Cars Energy Incentives for Atlanta, Georgia City of Atlanta - Sustainable Home Initiative in...

  11. Atlanta TEC Meeting -- Tribal Group Summary 3-6-07

    Office of Environmental Management (EM)

    Atlanta, GA - January 31, 2007 Session Chaired by: Jay Jones (DOE, Office of Civilian Radioactive Waste Management, OCRWM) Regular Members in Attendance: Kenny Anderson (Las Vegas Paiute Tribe), Richard Arnold (Las Vegas Indian Center/Pahrump Paiute Tribe), Tony Boyd (Pueblo of Acoma), Rob Burnside (Confederated Tribes of the Umatilla Indian Reservation, CTUIR), Floyd Chaney (Mohegan Tribe), Sandra Covi (Union Pacific Railroad), Martha Crosland (DOE/Office of General Counsel, GC), Kristen Ellis

  12. Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Atlanta Airport Converts Shuttles to CNG to someone by E-mail Share Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Facebook Tweet about Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Twitter Bookmark Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Google Bookmark Alternative Fuels Data Center: Atlanta Airport Converts Shuttles to CNG on Delicious Rank Alternative Fuels Data Center: Atlanta Airport Converts

  13. Archive Reference Buildings by Climate Zone: 3A Atlanta, Georgia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Archive Reference Buildings by Climate Zone: 3A Atlanta, Georgia Archive Reference Buildings by Climate Zone: 3A Atlanta, Georgia Here you will find past versions of the reference ...

  14. Workplace Charging Challenge Partner: City of Atlanta | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Atlanta Workplace Charging Challenge Partner: City of Atlanta Workplace Charging Challenge Partner: City of Atlanta The City of Atlanta's provision of workplace charging builds upon a larger strategy to improve transportation in the region and provide sustainable transportation options. The first component focuses on increasing the adoption of alternative transportation methods including walking, biking, public transportation, car-sharing, and alternative workplace strategies such as

  15. Clark Atlanta Universities (CAU) Energy Related Research Capabilities |

    Office of Environmental Management (EM)

    Department of Energy Clark Atlanta Universities (CAU) Energy Related Research Capabilities Clark Atlanta Universities (CAU) Energy Related Research Capabilities How energy related research has helped Clark Atlanta University. PDF icon Clark Atlanta Universities (CAU) Energy Related Research Capabilities More Documents & Publications 2008-2009 Winter Fuels Outlook Conference Ronald Reagan Building and International Trade Center HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE

  16. City of Atlanta Video (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atlanta Video (Text Version) City of Atlanta Video (Text Version) Aaron Bastian: According to the U.S. EPA, Atlanta is one of the top ten cities in the country for green buildings. It is a city that is walk and bike friendly, and now Atlanta is second in the country for the sale of electric vehicles. Atlanta has seen tremendous adoption of plug-in electric vehicles amongst her residents, but to truly meet driver demand, chargers must be both accessible and available at major destinations such as

  17. Clark Atlanta Universities (CAU) Energy Related Research Capabilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Clark Atlanta Universities (CAU) Energy Related Research Capabilities More ... CALIFORNIA STATE UNIVERSITY, LOS ANGELES GATE Center for Automotive Fuel Cell Systems at ...

  18. Meeting Materials: Consent-Based Siting Public Meeting in Atlanta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department will host a public meeting on consent-based siting on April 11th in Atlanta ... in turn serve as a framework for working with potential host communities in the future. ...

  19. Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2001). 1 Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 19-23, 2001 From 1997 to 2001, ground-based remote sensing of thick clouds was performed at...

  20. Microsoft Word - Final TEC Notes Atlanta 07.doc

    Office of Environmental Management (EM)

    TRANSPORTATION EXTERNAL COORDINATION WORKING GROUP MEETING January 31-February 1, 2007 Atlanta, Georgia Welcome and Meeting Overview The U.S. Department of Energy (DOE), Transportation External Coordination Working Group (TEC) held its 27th meeting on January 31-February 1, 2007, in Atlanta, Georgia. One hundred thirteen participants, representing national, State, Tribal, and local government; industry; professional organizations; and other interested parties, met to address a variety of issues

  1. Building Efficiency Technologies by Tomorrow's Engineers and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Exchangers, AL - Advanced Renewable Energy - Emrgy Hydro - Atlanta, GA - Fox Theater - Atlanta, GA - Atlanta BeltLine - Atlanta, GA - Ford - Atlanta, GA - SawHorse - ...

  2. Meeting Materials: Consent-Based Siting Public Meeting in Atlanta (April

    Energy Savers [EERE]

    11, 2016) | Department of Energy Meeting Materials: Consent-Based Siting Public Meeting in Atlanta (April 11, 2016) Meeting Materials: Consent-Based Siting Public Meeting in Atlanta (April 11, 2016) The Department will host a public meeting on consent-based siting on April 11th in Atlanta at the Georgia Institute of Technology Conference Center. The meeting will include a presentation by John Kotek, Acting Assistant Secretary for Nuclear Energy at the Department of Energy; a speaker panel

  3. Better Buildings Challenge, Atlanta Nears Halfway Mark in Meeting Citywide Goal of 20% Energy Savings

    Broader source: Energy.gov [DOE]

    The Energy Department yesterday recognized Atlanta for its progress and leadership in meeting a citywide goal to improve the energy performance of its buildings by 20% by 2020.

  4. Autonomous Correction of Sensor Data Applied to Building Technologies...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference Resource Relation: Conference: Energy Informatics 2012, Atlanta, GA, USA, 20121006, 20121006 Research Org: Oak ...

  5. Registration Open for National Environmental Justice Advisory Council (NEJAC) Public Meeting, September 11-12, 2013, Atlanta, Georgia

    Broader source: Energy.gov [DOE]

    Registration Open for National Environmental Justice Advisory Council (NEJAC) Public Meeting, September 11-12, 2013, Atlanta, Georgia.

  6. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60tifrancis2012o.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  7. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vt060francis2010p.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  8. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60tifrancis2011p.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  9. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.

  10. EECBG Success Story: Atlanta Suburb Greases the Path to Savings with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel | Department of Energy Atlanta Suburb Greases the Path to Savings with Biodiesel EECBG Success Story: Atlanta Suburb Greases the Path to Savings with Biodiesel December 7, 2011 - 3:33pm Addthis Downtown Smyrna, Georgia, a town that's poised to see big savings thanks to their investment in biodiesel. | Photo by Ken Cook Downtown Smyrna, Georgia, a town that's poised to see big savings thanks to their investment in biodiesel. | Photo by Ken Cook Downtown Smyrna, Georgia is using

  11. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Project | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt060_ti_francis_2012_o.pdf More Documents & Publications DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project Puget Sound Clean Cities Petroleum Reduction Project

  12. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Project | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt060_ti_francis_2011_p.pdf More Documents & Publications DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project Clean Cities 2009 Petroleum Displacement Awards

  13. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Project | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt060_francis_2010_p.pdf More Documents & Publications DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project Clean Cities Recovery Act: Vehicle & Infrastructure Deployment

  14. DOE ZERH Case Study: Heirloom Design Build, Euclid Avenue, Atlanta, GA

    SciTech Connect (OSTI)

    none,

    2015-09-01

    Case study of a DOE 2015 Housing Innovation Award winning custom home in the mixed-humid climate that got a HERS 50 without PV, with 2x6 16” on center walls with R-19 ocsf; basement with R-28 ccsf, R-5 rigid foam under slab; sealed attic with R-28 ocsf under roof deck; 22.8 SEER; 12.5 HSPF heat pump.

  15. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  16. Summary of Needs and Opportunities from the 2011 Residential Energy Efficiency Stakeholders Meeting: Atlanta, Georgia -- March 16-18, 2011

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    This summary report outlines needs and issues for increasing energy efficiency of new and existing U.S homes, as identified at the U.S Department of Energy Building America program Spring 2011 stakeholder meeting in Atlanta, Georgia.

  17. Comparison of Daytime and Nighttime Populations Adjacent to Interstate Highways in Metropolitan Areas Using LandScan USA

    SciTech Connect (OSTI)

    Johnson, Paul E

    2007-01-01

    An article of similar title was published in the International Journal of Radioactive Materials Transport in 1999. The study concluded that the daytime and nighttime populations are not substantially different for the metropolitan areas examined. This study revisits the issue, but using the LandScan USA high resolution population distribution data, which includes daytime and night-time population. Segments of Interstate highway beltways, along with the direct route through the city, for Atlanta, St. Louis, and Kansas City are examined with an 800m buffer from either side of the highways. The day/night ratio of population is higher using the LandScan USA data. LandScan USA daytime and night-time data will be incorporated into the TRAGIS routing model in future.

  18. Vestas USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Name: Vestas USA Place: Rolling Meadows, Illinois Zip: IL 60008-4030 Sector: Wind energy Product: Vestas Wind Systems American arm. References:...

  19. Arlington, VA 22209 USA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    600, 1901 North Moore Street Arlington, VA 22209 USA Phone: (703) 522-0086 * Fax: (703) 522-0548 governmentaffairs@hpba.org www.hpba.org U.S. Department of Energy Mr. Daniel Cohen ...

  20. Arlington, VA 22209 USA

    Energy Savers [EERE]

    22209 USA Phone: (703) 522-0086 * Fax: (703) 522-0548 Email: governmentaffairs@hpba.org Web Site: www.hpba.org Before the Department of Energy Docket No. EERE-2014-BT-STD-0036 RIN ...

  1. Atlanta Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Fleets . . . . . . . . . . . . . . . 3,589 2,569 651 369 SIC Codes Ag.For.Fish. . . . . . . . . . . . . . . . . 140 65 31 Q Mining . . . . . . . . . . . . . . . . . ....

  2. Southface Energy Institute: Advanced Commercial Buildings Initiative |

    Energy Savers [EERE]

    Department of Energy Southface Energy Institute: Advanced Commercial Buildings Initiative Southface Energy Institute: Advanced Commercial Buildings Initiative Southface Energy Institute: Advanced Commercial Buildings Initiative Lead Performer: Southface Energy Institute - Atlanta, GA Partners: - City of Atlanta - Atlanta, GA - Georgia Institute of Technology - Atlanta, GA - Kendeda Fund - Atlanta, GA - Oak Ridge National Laboratory - Oak Ridge, TN - Acuity Brands Lighting - Atlanta, GA -

  3. Solar Unlimited USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Logo: Solar Unlimited USA Name: Solar Unlimited USA Address: 2353 Park Ave. Place: Cedar City, Utah Zip: 84721 Region: Rockies Area Sector: Solar...

  4. Geo processors USA | Open Energy Information

    Open Energy Info (EERE)

    processors USA Jump to: navigation, search Name: Geo-processors USA Place: California Zip: 91204 Sector: Carbon Product: California based Geo-procesors USA has developed an...

  5. Summary of Needs and Opportunities from the 2011 Residential Energy Efficiency Stakeholders Meeting: Atlanta, Georgia -- March 16-18, 2011

    Energy Savers [EERE]

    Needs and Opportunities from the 2011 Residential Energy Efficiency Stakeholders Meeting Atlanta, Georgia - March 16-18, 2011 May 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  6. Making it pay in Athens, GA

    SciTech Connect (OSTI)

    Malloy, M.G.

    1997-04-01

    The materials recovery facility (MRF) in Athens, GA, is a well-fed recycling facility. But, if the local government has its way, it will be even better fed in the near future. The Athens-Clarke County (ACC) regional municipality in which the facility resides has a put-or-pay contract with the plant`s owner/operator, under which the more it feeds the MRF, the more money it receives in return, through the sale of recycled end products. The ACC Solid Waste Department uses a volume-based waste collection system that encourages residents to recycle--the more they recycle, the less trash they have to put out, and the less they pay each month. The Athens facility, which will be a featured site tour at next month`s WasteExpo `97 in nearby Atlanta, had its ground-breaking two years ago, in April 1995. ACC is responsible for delivering material--or seeing that recyclables are delivered--to the MRF, which is owned and operated by Resource Recovery Systems (RRS, Centerbrook, Conn.). Over the past year, ACC has stepped up various incentives for businesses to recycle and send their recyclables to the facility, including instituting pilot programs for commercial interests that offer them versions of volume-based collection similar to that done by residents.

  7. LAPD Madison, Wisconsin USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 th LAPD Madison, Wisconsin USA Sunday, 22 September 2013 Varsity Hall III, Union South 18:00-20:00 Reception and Registration Monday, 23 September 2013 Session I (8:30-12:30) Varsity Hall III, Union South Chairs: J-P. Booth, E. E. Scime Time Speaker Title Index 7:30-8:30 Continental Breakfast 8:30-8:45 D. J. Den Hartog Welcome 8:45-9:35 N. C. Luhmann, Jr. Millimeter Wave and THz Plasma Diagnostic Development AK (1) 9:35-10:00 L. Lin Laser-Based Faraday-Effect Measurement of Magnetic

  8. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    and Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)...

  9. Scheuten Solar USA Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc Jump to: navigation, search Name: Scheuten Solar USA, Inc. Place: Rancho Santa Margarita, California Zip: 92688 Sector: Solar Product: Manufacturer of Solar PV systems...

  10. Energy Pro USA | Open Energy Information

    Open Energy Info (EERE)

    Pro USA Jump to: navigation, search Name: Energy Pro USA Place: Chesterfield, Missouri Zip: MO 63017 Product: Energy Pro funds and implements demand side energy savings programs to...

  11. Windkraft Nord USA | Open Energy Information

    Open Energy Info (EERE)

    Nord USA Jump to: navigation, search Name: Windkraft Nord USA Place: San Diego, California Zip: 92122 Product: Subsidiary of WKN AG based in North America. References: Windkraft...

  12. Solar Millennium LLC USA | Open Energy Information

    Open Energy Info (EERE)

    LLC USA Jump to: navigation, search Name: Solar Millennium LLC (USA) Place: Berkeley, California Sector: Solar Product: California-based STEG power plant developer, parabolic...

  13. Coaltec Energy USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Coaltec Energy USA Inc Jump to: navigation, search Name: Coaltec Energy USA, Inc. Place: Carterville, Illinois Zip: 62918 Sector: Biomass Product: Coaltec Energy provides energy...

  14. Think Solar USA | Open Energy Information

    Open Energy Info (EERE)

    Solar USA Jump to: navigation, search Name: Think Solar USA Product: Maker, installer and distributor of parabolic trough STEG power and hot water systems. References: Think Solar...

  15. Energy Optimizers USA | Open Energy Information

    Open Energy Info (EERE)

    Optimizers USA Jump to: navigation, search Name: Energy Optimizers USA Address: 6 S. 3rd Street Place: Tipp City, Ohio Zip: 45371 Sector: Biomass, Carbon, Geothermal energy,...

  16. AREA USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

  17. Usina Santo Angelo USA | Open Energy Information

    Open Energy Info (EERE)

    Santo Angelo USA Jump to: navigation, search Name: Usina Santo Angelo (USA) Place: Pirajuba, Minas Gerais, Brazil Product: Minas Gerais-based ethanol and energy producer company....

  18. BROAD USA Inc | Open Energy Information

    Open Energy Info (EERE)

    BROAD USA Inc Jump to: navigation, search Name: BROAD USA, Inc Place: Hackensack, New Jersey Zip: 7601 Product: BROAD manufactures absorption chillers powered by clean and...

  19. Norvento USA LLC | Open Energy Information

    Open Energy Info (EERE)

    USA LLC Jump to: navigation, search Name: Norvento USA LLC Place: Boston, Massachusetts Product: Boston-based engineering consultancy and division of Norvento SA. Coordinates:...

  20. Sharp Electronics Corporation USA | Open Energy Information

    Open Energy Info (EERE)

    Electronics Corporation USA Jump to: navigation, search Name: Sharp Electronics Corporation (USA) Place: Huntington Beach, California Zip: 92647 Product: North American division of...

  1. Urban airshed modeling of air quality impacts of alternative transportation fuel use in Los Angeles and Atlanta

    SciTech Connect (OSTI)

    NONE

    1997-12-01

    The main objective of NREL in supporting this study is to determine the relative air quality impact of the use of compressed natural gas (CNG) as an alternative transportation fuel when compared to low Reid vapor pressure (RVP) gasoline and reformulated gasoline (RFG). A table lists the criteria, air toxic, and greenhouse gas pollutants for which emissions were estimated for the alternative fuel scenarios. Air quality impacts were then estimated by performing photochemical modeling of the alternative fuel scenarios using the Urban Airshed Model Version 6.21 and the Carbon Bond Mechanism Version IV (CBM-IV) (Geary et al., 1988) Using this model, the authors examined the formation and transport of ozone under alternative fuel strategies for motor vehicle transportation sources for the year 2007. Photochemical modeling was performed for modeling domains in Los Angeles, California, and Atlanta, Georgia.

  2. DOE Zero Energy Ready Home Case Study: Heirloom Design Build...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heirloom Design Build, Euclid Avenue, Atlanta, GA DOE Zero Energy Ready Home Case Study: Heirloom Design Build, Euclid Avenue, Atlanta, GA Case study of a DOE 2015 Housing ...

  3. Euro Chef USA: Order (2014-CE-23004)

    Broader source: Energy.gov [DOE]

    DOE ordered Euro Chef USA Inc. to pay a $8,000 civil penalty after finding Euro Chef USA had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  4. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  5. FRONIUS USA LLC | Open Energy Information

    Open Energy Info (EERE)

    48116 USA, Michigan Sector: Solar Product: Focused on welding machines and solar inverters. References: FRONIUS USA LLC1 This article is a stub. You can help OpenEI by...

  6. Absolute Energy USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Name: Absolute Energy (USA) Place: St. Ansgar, Iowa Zip: 50472 Product: Absolute Energy has built a 100 million gallon per year ethanol plant on the...

  7. PNE Wind USA Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc Jump to: navigation, search Name: PNE Wind USA Inc Place: Chicago, Illinois Zip: 60601 Sector: Wind energy Product: Chicago-based subsidiary of wind farm project developer,...

  8. Hisense USA: Order (2010-CE-1211)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE issued an Order after entering into a Compromise Agreement with Hisense USA Corp. after finding Hisense USA had failed to certify that certain models of residential refrigerators, refrigerator-freezers, and freezers comply with the applicable energy conservation standards.

  9. OTB USA Inc | Open Energy Information

    Open Energy Info (EERE)

    OTB USA Inc Jump to: navigation, search Name: OTB USA Inc Address: 1871 Suffolk Rd. Place: Columbus, Ohio Zip: 43221 Sector: Solar Product: Other:Capital Equipment Phone Number:...

  10. A Computational Study of the Aerodynamics and Aeroacoustics of a Flatback Airfoil Using Hybrid RANS-LES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Study of the Aerodynamics and Aeroacoustics of a Flatback Airfoil Using Hybrid RANS-LES Christopher Stone ∗ Computational Science & Engineering, Athens, GA, 30606, USA Matthew Barone † Sandia National Laboratories, Albuquerque, NM, 87185-1124, USA C. Eric Lynch ‡ and Marilyn J. Smith § Georgia Institute of Technology, Atlanta, Georgia, 30332-0150, USA This work compares the aerodynamic and aeroacoustic predictions for flatback air- foil geometries obtained by applying

  11. H2USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA H2USA In 2013 many auto manufacturers announced fuel cell electric vehicle (FCEV) commercialization plans; Toyota, Hyundai, General Motors, Honda, Mercedes/Daimler, and others have committed to putting FCEVs on the road, some as early as the 2015-2017 timeframe. While the cars are coming, hydrogen infrastructure remains the greatest challenge to commercialization of FCEVs. To address this challenge, in 2013 DOE, along with automakers and other key stakeholders, launched H2USA, a new

  12. Semi-automated lab-on-a-chip for dispensing GA-68 radiotracers

    SciTech Connect (OSTI)

    Weinberg, Irving

    2014-03-12

    We solved a technical problem that is hindering American progress in molecular medicine, and restricting US citizens from receiving optimal diagnostic care. Specifically, the project deals with a mother/daughter generator of positron-emitting radiotracers (Ge-68/Ga-68). These generator systems are approved in Europe but cannot be used in the USA, because of safety issues related to possible breakthrough of long-lived Ge-68 (mother) atoms. Europeans have demonstrated abilities of Ga-68-labeled radiotracers to image cancer foci with high sensitivity and specificity, and to use such methods to effectively plan therapy.The USA Food and Drug Administration (FDA) and Nuclear Regulatory Commission (NRC) have taken the position that every patient administration of Ga-68 should be preceded by an assay demonstrated that Ge-68 breakthrough is within acceptable limits. Breakthrough of parent elements is a sensitive subject at the FDA, as evidenced by the recent recall of Rb-82 generators due to inadvertent administrations of Sr-82. Commercially, there is no acceptable rapid method for assaying breakthrough of Ge-68 prior to each human administration. The gamma emissions of daughter Ga-68 have higher energies than the parent Ge-68, so that the shielding assays typically employed for Mo-99/Tc-99m generators cannot be applied to Ga-68 generators. The half-life of Ga-68 is 68 minutes, so that the standard 10-half-life delay (used to assess breakthrough in Sr-82/Rb-82 generators) cannot be applied to Ga-68 generators. As a result of the aforementioned regulatory requirements, Ga-68 generators are sold in the USA for animal use only.The American clinical communitys inability to utilize Ga-68 generators impairs abilities to treat patients domestically, and puts the USA at a disadvantage in developing exportable products. The proposed DOE project aimed to take advantage of recent technological advances developed for lab-on-a-chip (LOC) applications. Based on our experiences constructing such devices, the proposed microfluidics-based approach could provide cost-effective validation of breakthrough compliance in minutes.

  13. Sol-Up USA, LLC | Open Energy Information

    Open Energy Info (EERE)

    Sol-Up USA, LLC Jump to: navigation, search Logo: Sol-Up USA, LLC Name: Sol-Up USA, LLC Address: 3355 West Spring Mountain Road, Suite 3 Place: Las Vegas, NV Zip: 89102 Sector:...

  14. China Solar Clean Energy Solutions Inc formerly Deli Solar USA...

    Open Energy Info (EERE)

    Inc formerly Deli Solar USA Inc Jump to: navigation, search Name: China Solar & Clean Energy Solutions Inc ( formerly Deli Solar (USA) Inc) Place: Connecticut Zip: 6039 Sector:...

  15. Naturener USA LLC formerly Great Plains Wind Energy | Open Energy...

    Open Energy Info (EERE)

    USA LLC formerly Great Plains Wind Energy Jump to: navigation, search Name: Naturener USA, LLC (formerly Great Plains Wind & Energy) Place: San Francisco, California Zip: 94111...

  16. USA Science and Engineering Festival: Inspiring and Educating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow USA Science and Engineering Festival: Inspiring and Educating the Clean Energy...

  17. HERA USA Inc formerly Ergenics Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc (formerly Ergenics Inc) Place: Ringwood, New Jersey Zip: 7456 Sector: Hydro, Hydrogen Product: Ergenics is a USA based company with extensive experience in the development...

  18. Mitsubishi Electric and Electronics USA Inc | Open Energy Information

    Open Energy Info (EERE)

    and Electronics USA Inc Jump to: navigation, search Name: Mitsubishi Electric and Electronics USA Inc Place: Cypress, California Zip: 90630 Sector: Solar Product: Markets and...

  19. E ON Climate Renewables North America formerly Airtricity USA...

    Open Energy Info (EERE)

    Climate Renewables North America formerly Airtricity USA Jump to: navigation, search Name: E.ON Climate & Renewables North America (formerly Airtricity USA) Place: Chicago,...

  20. FRV USA formerly Fotowatio Renewable Ventures LLC | Open Energy...

    Open Energy Info (EERE)

    USA formerly Fotowatio Renewable Ventures LLC Jump to: navigation, search Name: FRV USA (formerly Fotowatio Renewable Ventures LLC) Place: San Francisco, California Zip: 94104...

  1. Calyxo USA Solar Fields LLC | Open Energy Information

    Open Energy Info (EERE)

    USA Solar Fields LLC Jump to: navigation, search Name: Calyxo USA (Solar Fields LLC) Place: Perrysburg, Ohio Zip: 43551 Sector: Solar Product: Producer of cadmium telluride...

  2. Acciona Wind Energy USA LLC | Open Energy Information

    Open Energy Info (EERE)

    USA LLC Jump to: navigation, search Name: Acciona Wind Energy USA LLC Place: Chicago, Illinois Zip: 60631 Sector: Wind energy Product: US wind farms developer subsidiary of Acciona...

  3. Macquarie Funds Management USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Macquarie Funds Management USA Inc Jump to: navigation, search Name: Macquarie Funds Management (USA) Inc. Place: Carlsbad, California Zip: 92008 Product: Fund of funds arm of...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    IL (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric System Research Bartlesville Project Office, OK (United States) Battelle Memorial...

  5. Funds Awarded to Historically Black Colleges and Universities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Clark Atlanta University (Atlanta, Ga.) - Engineering Accessible Adsorption Sites in Metal Organic Frameworks for CO2 Capture. Metal organic frameworks (MOFs) are a newer class of ...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Photon Source, Argonne, IL (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric System Research Bartlesville Project Office, OK (United...

  7. Investigation of the GaN-on-GaAs interface for vertical power device applications

    SciTech Connect (OSTI)

    Mreke, Janina Uren, Michael J.; Kuball, Martin; Novikov, Sergei V.; Foxon, C. Thomas; Hosseini Vajargah, Shahrzad; Wallis, David J.; Humphreys, Colin J.; Haigh, Sarah J.; Al-Khalidi, Abdullah; Wasige, Edward; Thayne, Iain

    2014-07-07

    GaN layers were grown onto (111) GaAs by molecular beam epitaxy. Minimal band offset between the conduction bands for GaN and GaAs materials has been suggested in the literature raising the possibility of using GaN-on-GaAs for vertical power device applications. I-V and C-V measurements of the GaN/GaAs heterostructures however yielded a rectifying junction, even when both sides of the junction were heavily doped with an n-type dopant. Transmission electron microscopy analysis further confirmed the challenge in creating a GaN/GaAs Ohmic interface by showing a large density of dislocations in the GaN layer and suggesting roughening of the GaN/GaAs interface due to etching of the GaAs by the nitrogen plasma, diffusion of nitrogen or melting of Ga into the GaAs substrate.

  8. Paper Title (use style: paper title)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interconnection Risk Analysis through Distribution System Impact Signatures and Feeder Zones Matthew J. Reno, Kyle Coogan, Santiago Grijalva School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA, USA Robert J. Broderick, Jimmy E. Quiroz Photovoltaics and Distributed Grid Integration Sandia National Laboratories Albuquerque, NM, USA Abstract- High penetrations of PV on the distribution system can impact the operation of the grid and may require interconnection

  9. USA Manufacturing: Proposed Penalty (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  10. Solar Systems USA | Open Energy Information

    Open Energy Info (EERE)

    up":"","inlineLabel":"","visitedicon":"" Hide Map References: Solar Systems USA Online Solar Panel Retailer1 This article is a stub. You can help OpenEI by expanding it. Solar...

  11. Hisense USA: Proposed Penalty (2010-CE-1211)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE alleged in a Notice of Proposed Civil Penalty that Hisense USA Corp. failed to certify a variety of residential refrigerators, refrigerator-freezers, and freezers as compliant with the applicable energy conservation standards.

  12. LES' URENCO-USA Facility | Department of Energy

    Energy Savers [EERE]

    LES' URENCO-USA Facility LES' URENCO-USA Facility PowerPoint slides on LES's URENCO-USA Facility PDF icon LES' URENCO-USA Facility More Documents & Publications Excess Uranium Management 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the Commercial Markets Memorandum Memorializing Ex Parte Communication

  13. GA SNC Solar | Open Energy Information

    Open Energy Info (EERE)

    GA-SNC Solar Place: Nevada Sector: Solar Product: Nevada-based PV project developer and joint venture of GA-Solar North America and Sierra Nevada Corp. References: GA-SNC...

  14. NATIONAL GEODATABASE OF TIDAL STREAM POWER RESOURCE IN USA

    SciTech Connect (OSTI)

    Smith, Brennan T; Neary, Vincent S; Stewart, Kevin M

    2012-01-01

    A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m2 (corresponding to a current speed of ~1 m/s), total surface area larger than 0.5 km2 and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).

  15. GaInNAs laser gain

    SciTech Connect (OSTI)

    CHOW,WENG W.; JONES,ERIC D.; MODINE,NORMAND A.; KURTZ,STEVEN R.; ALLERMAN,ANDREW A.

    2000-05-23

    The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.

  16. General Atomics (GA) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Atomics (GA) Subscribe to RSS - General Atomics (GA) General Atomics Image: General Atomics (GA) The Scorpion's Strategy: "Catch and Subdue" Read more about The Scorpion's Strategy: "Catch and Subdue" Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment Read more about Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement Read more about General Atomics (GA) Fusion News: A

  17. DuraLamp USA: Order (2010-CE-0912)

    Broader source: Energy.gov [DOE]

    DOE ordered DuraLamp USA, Inc. to pay a $2,500 civil penalty after finding DuraLamp USA had failed to certify that model PAR 30, an incandescent reflector lamp, complies with the applicable energy conservation standards.

  18. Ultra Soy of America DBA USA Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Ultra Soy of America DBA USA Biofuels Jump to: navigation, search Name: Ultra Soy of America (DBA USA Biofuels) Place: Fort Wayne, Indiana Zip: 46898 Sector: Biofuels Product: An...

  19. Smeg USA: Order (2011-CE-14/1909)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered Smeg USA, Inc. to pay a $6,000 civil penalty after finding Smeg USA had failed to certify that certain models of dishwashers and refrigerators comply with the applicable energy conservation standards.

  20. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect (OSTI)

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  1. Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast Regional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit on July 9 in Atlanta, GA | Department of Energy Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast Regional Summit on July 9 in Atlanta, GA Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast Regional Summit on July 9 in Atlanta, GA June 25, 2015 - 8:19am Addthis On July 9, the U.S. Department of Energy will be holding the Clean Energy Manufacturing Initiative (CEMI) Southeast Regional Summit at the Renaissance Atlanta Midtown Hotel in Atlanta, Georgia. The

  2. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    SciTech Connect (OSTI)

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel; Que, Christopher T.; Yamamoto, Kohji; Tani, Masahiko

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  3. New GaInP/GaAs/GaInAs, Triple-Bandgap, Tandem Solar Cell for High-Efficiency Terrestrial Concentrator Systems

    SciTech Connect (OSTI)

    Kurtz, S.; Wanlass, M.; Kramer, C.; Young, M.; Geisz, J.; Ward, S.; Duda, A.; Moriarty, T.; Carapella, J.; Ahrenkiel, P.; Emery. K.; Jones, K.; Romero, M.; Kibbler, A.; Olson, J.; Friedman, D.; McMahon, W.; Ptak, A.

    2005-11-01

    GaInP/GaAs/GaInAs three-junction cells are grown in an inverted configuration on GaAs, allowing high quality growth of the lattice matched GaInP and GaAs layers before a grade is used for the 1-eV GaInAs layer. Using this approach an efficiency of 37.9% was demonstrated.

  4. InGaAsN/GaAs heterojunction for multi-junction solar cells

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Klem, John F. (Albuquerque, NM); Jones, Eric D. (Edgewood, NM)

    2001-01-01

    An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 0GaAs layer, with the InGaAsN and GaAs layers being lattice-matched to the substrate. The InGaAsN/GaAs p-n heterojunction can be epitaxially grown by either molecular beam epitaxy (MBE) or metalorganic chemical vapor deposition (MOCVD). The InGaAsN/GaAs p-n heterojunction provides a high open-circuit voltage of up to 0.62 volts and an internal quantum efficiency of >70%.

  5. USA Biomass Power Producers Alliance | Open Energy Information

    Open Energy Info (EERE)

    Biomass Power Producers Alliance Jump to: navigation, search Name: USA Biomass Power Producers Alliance Place: Sacramento, California Sector: Biomass Product: National trade...

  6. Ormat Technologies Inc. North Brawley, California USA | Open...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Ormat Technologies Inc. North Brawley, California USA Citation Ormat...

  7. Euro Chef USA: Proposed Penalty (2014-CE-23004)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Euro Chef USA Inc. failed to certify cooking products as compliant with the applicable energy conservation standards.

  8. DOE Analysis Related to H2USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Fuel Cell Technologies Program Overview: 2012 DOE Polymer and Composite ...

  9. International Energy Services USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: International Energy Services USA Inc Place: Washington, Washington, DC Sector: Renewable Energy Product: Owns various renewable energy...

  10. File:INL-geothermal-west-usa.pdf | Open Energy Information

    Open Energy Info (EERE)

    INL-geothermal-west-usa.pdf Jump to: navigation, search File File history File usage Western United States Geothermal Resources Size of this preview: 653 599 pixels. Other...

  11. Graphene induced remote surface scattering in graphene/AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Liu, Xiwen; Li, Dan; Wang, Bobo; Liu, Bin; Chen, Famin; Jin, Guangri; Lu, Yanwu

    2014-10-20

    The mobilities of single-layer graphene combined with AlGaN/GaN heterostructures on two-dimensional electron gases in graphene/AlGaN/GaN double heterojunction are calculated. The impact of electron density in single-layer graphene is also studied. Remote surface roughness (RSR) and remote interfacial charge (RIC) scatterings are introduced into this heterostructure. The mobilities limited by RSR and RIC are an order of magnitude higher than that of interface roughness and misfit dislocation. This study contributes to designing structures for generation of higher electron mobility in graphene/AlGaN/GaN double heterojunction.

  12. Magnetism and transport properties of epitaxial Fe-Ga thin films on GaAs(001)

    SciTech Connect (OSTI)

    Duong Anh Tuan; Shin, Yooleemi; Cho, Sunglae; Dang Duc Dung; Vo Thanh Son

    2012-04-01

    Epitaxial Fe-Ga thin films in disordered bcc {alpha}-Fe crystal structure (A2) have been grown on GaAs(001) by molecular beam epitaxy. The saturated magnetization (M{sub S}) decreased from 1371 to 1105 kA/m with increasing Ga concentration from 10.5 to 24.3 % at room temperature. The lattice parameter increased with the increase in Ga content because of the larger atomic radius of Ga atom than that of Fe. The increase in carrier density with Ga content caused in lower resistivity.

  13. Georgia and Arkansas Residential Energy Code Field Studies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Georgia and Arkansas Residential Energy Code Field Studies Georgia and Arkansas Residential Energy Code Field Studies Lead Performer: Southeast Energy Efficiency Alliance - Atlanta, GA Partners: - Advanced Energy - Raleigh, NC - Arkansas Economic Development Commission, Energy Office - Little Rock, AR - Georgia Department of Community Affairs - Atlanta, GA - Georgia Environmental Finance Authority - Atlanta, GA - Southface - Atlanta, GA DOE Total Funding: $1,399,999 Cost Share:

  14. Implementing Equipment Based Obligations Presentation

    National Nuclear Security Administration (NNSA)

    Implementation Workshop January 13, 2 Obligations Accounting Implementation Workshop January 13, 2004 004 Crowne Crowne Plaza Plaza Ravinia Ravinia Atlanta, GA Atlanta, GA page page 1 1 Implementation of Equipment Based Obligations Mark Laidlow Dominion January 13, 2004 Obligations Accounting Implementation Workshop January 13, 2 Obligations Accounting Implementation Workshop January 13, 2004 004 Crowne Crowne Plaza Plaza Ravinia Ravinia Atlanta, GA Atlanta, GA page page 2 2 Background

  15. Band Structure of Strain-Balanced GaAsBi/GaAsN Super-lattices on GaAs

    SciTech Connect (OSTI)

    Hwang, J.; Phillips, J. D.

    2011-05-31

    GaAs alloys with dilute content of Bi and N provide a large reduction in band-gap energy with increasing alloy composition. GaAsBi/GaAsN heterojunctions have a type-II band alignment, where superlattices based on these materials offer a wide range for designing effective band-gap energy by varying superlattice period and alloy composition. The miniband structure and effective band gap for strain-balanced GaAsBi/GaAsN superlattices with effective lattice match to GaAs are calculated for alloy compositions up to 5% Bi and N using the kp method. The effective band gap for these superlattices is found to vary between 0.89 and 1.32 eV for period thickness ranging from 10 to 100 . The joint density of states and optical absorption of a 40/40 GaAs0.96Bi0.04/GaAs0.98N0.02 superlattice are reported demonstrating a ground-state transition at 1.005 eV and first excited transition at 1.074 eV. The joint density of states is similar in magnitude to GaAs, while the optical absorption is approximately one order of magnitude lower due to the spatially indirect optical transition in the type-II structure. The GaAsBi/GaAsN system may provide a new material system with lattice match to GaAs in a spectral range of high importance for optoelectronic devices including solar cells, photodetectors, and light emitters.

  16. European American Solar Deployment Conference (PV Rollout), 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rd European American Solar Deployment Conference (PV Rollout), 2013 PV Distribution Interconnection Study Analysis Matthew J. Reno, Robert J. Broderick, Jimmy E. Quiroz, Santiago Grijalva 777 Atlantic Dr. NW, Atlanta, GA 30332, USA Phone: 505-620-6560 E-Mail: matthew.reno@gatech.edu Introduction Deployment of distributed PV systems is increasing rapidly. High penetration scenarios, which are becoming increasingly common, have the potential to affect the distribution feeder equipment [1] and the

  17. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground Source Heat Pump Research, TaC Studios Residence Atlanta, Georgia PROJECT INFORMATION Construction: New Home Type: Single-family Builder: TaC Studios, tacstudios.com Size: 3,570 ft 2 Price Range: about $750,000 Date completed: 2011 Climate zone: Mixed-humid PERFORMANCE DATA HERS index: 66 Builder standard practice = 75 Case study house 3,570 ft 2 Projected annual energy cost savings: $493 Incremental cost of energy efficiency measures: $51,036 Incremental annual mortgage: $1,449 Annual

  18. AlGaAsSb/GaSb Distributed Bragg Reflectors Grown by Organometallic Vapor Phase Epitaxy

    SciTech Connect (OSTI)

    C.A. Wang; C.J. Vineis; D.R. Calawa

    2002-02-13

    The first AlGaAsSb/GaSb quarter-wave distributed Bragg reflectors grown by metallic vapor phase epitaxy are reported. The peak reflectance is 96% for a 10-period structure.

  19. US SoAtl GA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per

  20. Influence of Barrier Design on Current Collapse in High Voltage AlGaN/GaN

    Office of Scientific and Technical Information (OSTI)

    HEMTs. (Conference) | SciTech Connect Influence of Barrier Design on Current Collapse in High Voltage AlGaN/GaN HEMTs. Citation Details In-Document Search Title: Influence of Barrier Design on Current Collapse in High Voltage AlGaN/GaN HEMTs. Abstract not provided. Authors: Biedermann, Laura Butler ; Kaplar, Robert James ; Marinella, Matthew ; Zavadil, Kevin Robert ; Atcitty, Stanley ; Sun, Min ; Palacios, Tomas Publication Date: 2012-10-01 OSTI Identifier: 1111316 Report Number(s):

  1. Influence of Barrier Design on Current Collapse in High Voltage AlGaN/GaN

    Office of Scientific and Technical Information (OSTI)

    HEMTs. (Conference) | SciTech Connect Conference: Influence of Barrier Design on Current Collapse in High Voltage AlGaN/GaN HEMTs. Citation Details In-Document Search Title: Influence of Barrier Design on Current Collapse in High Voltage AlGaN/GaN HEMTs. Abstract not provided. Authors: DasGupta, Sandeepan ; Biedermann, Laura Butler ; Kaplar, Robert ; Marinella, Matthew ; Zavadil, Kevin Robert ; Atcitty, Stanley ; Sun, Min ; Palacios, Tomas Publication Date: 2013-02-01 OSTI Identifier:

  2. Deputy Secretary Daniel Poneman USA Today Op-Ed September 13...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deputy Secretary Daniel Poneman USA Today Op-Ed September 13, 2011 Deputy Secretary Daniel Poneman USA Today Op-Ed September 13, 2011 PDF icon 091411Poneman USA Today op-ed.pdf...

  3. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  4. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  5. A hole modulator for InGaN/GaN light-emitting diodes

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei E-mail: VOLKAN@stanfordalumni.org; Demir, Hilmi Volkan E-mail: VOLKAN@stanfordalumni.org

    2015-02-09

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ?332?meV to ?294?meV at 80?A/cm{sup 2} and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.

  6. AlGaN/GaN heterostructure prepared on a Si (110) substrate via pulsed sputtering

    SciTech Connect (OSTI)

    Watanabe, T.; Ohta, J.; Kondo, T.; Ohashi, M.; Ueno, K.; Kobayashi, A.; Fujioka, H.

    2014-05-05

    GaN films were grown on Si (110) substrates using a low-temperature growth technique based on pulsed sputtering. Reduction of the growth temperature suppressed the strain in the GaN films, leading to an increase in the critical thickness for crack formation. In addition, an AlGaN/GaN heterostructure with a flat heterointerface was prepared using this technique. Furthermore, the existence of a two dimensional electron gas at the heterointerface with a mobility of 1360 cm{sup 2}/Vs and a sheet carrier density of 1.3??10{sup 13}?cm{sup ?2} was confirmed. Finally, the use of the AlGaN/GaN heterostructure in a high electron mobility transistor was demonstrated. These results indicate that low-temperature growth via pulsed sputtering is quite promising for the fabrication of GaN-based electronic devices.

  7. Atlanta Central UESC Pilot Project

    Energy Savers [EERE]

    Upgrade - VFD on Pumps 30,151 14 0 0 3,874 0 Heating System Upgrade - Replace Electric Boiler & Pumps 175,063 192 (6,087) 0 36,272 1,667 DDC Controls & Optimization 9,435 15...

  8. Structural and optical properties of InGaNGaN nanowire heterostructures grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Ho?fling, S.; Worschech, L.; Gru?tzmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, ?-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  9. Oxidation of ultrathin GaSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  10. Oxidation of ultrathin GaSe

    SciTech Connect (OSTI)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  11. Highly uniform, multi-stacked InGaAs/GaAs quantum dots embedded in a GaAs nanowire

    SciTech Connect (OSTI)

    Tatebayashi, J. Ota, Y.; Ishida, S.; Nishioka, M.; Iwamoto, S.; Arakawa, Y.

    2014-09-08

    We demonstrate a highly uniform, dense stack of In{sub 0.22}Ga{sub 0.78}As/GaAs quantum dot (QD) structures in a single GaAs nanowire (NW). The size (and hence emission energy) of individual QD is tuned by careful control of the growth conditions based on a diffusion model of morphological evolution of NWs and optical characterization. By carefully tailoring the emission energies of individual QD, dot-to-dot inhomogeneous broadening of QD stacks in a single NW can be as narrow as 9.3?meV. This method provides huge advantages over traditional QD stack using a strain-induced Stranski-Krastanow growth scheme. We show that it is possible to fabricate up to 200 uniform QDs in single GaAs NWs using this growth technique without degradation of the photoluminescence intensity.

  12. Chevron U.S.A. Inc.- 14-119-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed August 27, 2014 by Chevron U.S.A. Inc. (Chevron), requesting blanket authorization to export liquefied natural gas (LNG)...

  13. TianRun USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Sector: Wind energy Product: Minnesota-based investment arm of Goldwind Science & Technology, Beijing Tianrun invested USD 3m to set up the TianRun USA subsidiary in...

  14. DuraLamp USA: Proposed Penalty (2010-CE-0912)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE alleged in a Notice of Proposed Civil Penalty that DuraLamp USA, Inc. failed to certify a variety of general service fluorescent lamps as compliant with the applicable energy conservation standards.

  15. Smeg USA: Proposed Penalty (2011-CE-14/1909)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE alleged in a Notice of Proposed Civil Penalty that Smeg USA, Inc. failed to certify a variety of dishwashers and refrigerators as compliant with the applicable energy conservation standards.

  16. De'Longhi USA: Order (2010-CE-2114)

    Broader source: Energy.gov [DOE]

    DOE issued an Order after entering into a Compromise Agreement with De'Longhi USA, Inc. to resolve a case involving the failure to certify that a variety of dehumidifiers comply with the applicable energy conservation standards.

  17. De'Longhi USA: Proposed Penalty (2010-CE-2114)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that De'Longhi USA, Inc. failed to certify a variety of dehumidifiers as compliant with the applicable energy conservation standards.

  18. 2012 USA Science & Engineering Festival | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USA Science & Engineering Festival View larger image IMG 0658 View larger image IMG 0659 View larger image IMG 0664 View larger image IMG 0667 View larger image IMG 0682 View...

  19. PROJECT PROFILE: Fraunhofer USA, Center for Sustainable Energy Systems CSE

    Energy Savers [EERE]

    (SHINES) | Department of Energy Fraunhofer USA, Center for Sustainable Energy Systems CSE (SHINES) PROJECT PROFILE: Fraunhofer USA, Center for Sustainable Energy Systems CSE (SHINES) Title: SunDial - An Integrated SHINES System to Enable High-Penetration Feeder-Level Photovoltaics Fraunhofer logo.png Funding Opportunity: Sustainable and Holistic Integration of Energy Storage and Solar PV SunShot Subprogram: Systems Integration Location: Boston, Massachusetts Partners: National Grid, EnerNOC

  20. USA Science and Engineering Festival: Inspiring and Educating the Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Workforce of Tomorrow | Department of Energy USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow April 23, 2014 - 9:52am Addthis The Energy Department has several free resources that help educators teach students about clean energy including (clockwise, from top left) the <a

  1. EA-332 Nexen Marketing U.S.A. Inc. | Department of Energy

    Energy Savers [EERE]

    Nexen Marketing U.S.A. Inc. EA-332 Nexen Marketing U.S.A. Inc. Order authorizing Nexen Marketing U.S.A. Inc. to export electric energy to Canada PDF icon EA-332 Nexen Marketing U.S.A. Inc. More Documents & Publications EA-332-A

  2. EA-332-A Nexen Marketing U.S.A. Inc. | Department of Energy

    Energy Savers [EERE]

    -A Nexen Marketing U.S.A. Inc. EA-332-A Nexen Marketing U.S.A. Inc. Order authorizing Nexen Marketing U.S.A. Inc. to export electric energy to Canada PDF icon EA-332-A Nexen Marketing U.S.A. Inc. More Documents & Publications EA-332

  3. Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures

    SciTech Connect (OSTI)

    Kuppulingam, B. Singh, Shubra Baskar, K.

    2014-04-24

    Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

  4. High-performance InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Tsai, J.-H. Chiu, S.-Y.; Lour, W.-S.; Guo, D.-F.

    2009-07-15

    In this article, a novel InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor is first demonstrated. Though the valence band discontinuity at InGaP/GaAs heterojunction is relatively large, the addition of a {delta}-doped sheet between two spacer layers at the emitter-base (E-B) junction effectively eliminates the potential spike and increases the confined barrier for electrons, simultaneously. Experimentally, a high current gain of 25 and a relatively low E-B offset voltage of 60 mV are achieved. The offset voltage is much smaller than the conventional InGaP/GaAs pnp HBT. The proposed device could be used for linear amplifiers and low-power complementary integrated circuit applications.

  5. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    SciTech Connect (OSTI)

    Das, Palash Biswas, Dhrubes

    2014-04-24

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.

  6. Princeton Plasma Physics Lab - General Atomics (GA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    general-atomics-ga General Atomics en The Scorpion's Strategy: "Catch and Subdue" http:www.pppl.govnode1132

  7. GaTe semiconductor for radiation detection

    DOE Patents [OSTI]

    Payne, Stephen A.; Burger, Arnold; Mandal, Krishna C.

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  8. Accelerated aging of GaAs concentrator solar cells

    SciTech Connect (OSTI)

    Gregory, P.E.

    1982-04-01

    An accelerated aging study of AlGaAs/GaAs solar cells has been completed. The purpose of the study was to identify the possible degradation mechanisms of AlGaAs/GaAs solar cells in terrestrial applications. Thermal storage tests and accelerated AlGaAs corrosion studies were performed to provide an experimental basis for a statistical analysis of the estimated lifetime. Results of this study suggest that a properly designed and fabricated AlGaAs/GaAs solar cell can be mechanically rugged and environmentally stable with projected lifetimes exceeding 100 years.

  9. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram E-mail: rajan@ece.osu.edu; Akyol, Fatih; Rajan, Siddharth E-mail: rajan@ece.osu.edu

    2014-10-06

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450?nm) light emitting diode. A voltage drop of 5.3?V at 100?mA, forward resistance of 2 10{sup ?2} ? cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5??10{sup ?4} ? cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. The depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.

  10. Lattice-matched epitaxial GaInAsSb/GaSb thermophotovoltaic devices

    SciTech Connect (OSTI)

    Wang, C.A.; Choi, H.K.; Turner, G.W.; Spears, D.L.; Manfra, M.J.; Charache, G.W.

    1997-05-01

    The materials development of Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} alloys for lattice-matched thermophotovoltaic (TPV) devices is reported. Epilayers with cutoff wavelength 2--2.4 {micro}m at room temperature and lattice-matched to GaSb substrates were grown by both low-pressure organometallic vapor phase epitaxy and molecular beam epitaxy. These layers exhibit high optical and structural quality. For demonstrating lattice-matched thermophotovoltaic devices, p- and n-type doping studies were performed. Several TPV device structures were investigated, with variations in the base/emitter thicknesses and the incorporation of a high bandgap GaSb or AlGaAsSb window layer. Significant improvement in the external quantum efficiency is observed for devices with an AlGaAsSb window layer compared to those without one.

  11. Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100)

    SciTech Connect (OSTI)

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Wetzel, Christian, E-mail: wetzel@ieee.org [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Future Chips Constellation, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Lee, S. C.; Brueck, S. R. J. [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States)] [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States); Jiang, Y.-B. [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-12-02

    GaInN/GaN light-emitting diodes free of piezoelectric polarization were prepared on standard electronic-grade Si(100) substrates. Micro-stripes of GaN and GaInN/GaN quantum wells in the cubic crystal structure were grown on intersecting (111) planes of microscale V-grooved Si in metal-organic vapor phase epitaxy, covering over 50% of the wafer surface area. Crystal phases were identified in electron back-scattering diffraction. A cross-sectional analysis reveals a cubic structure virtually free of line defects. Electroluminescence over 20 to 100??A is found fixed at 487?nm (peak), 516?nm (dominant). Such structures therefore should allow higher efficiency, wavelength-stable light emitters throughout the visible spectrum.

  12. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    SciTech Connect (OSTI)

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  13. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less

  14. GA-AL-SC | Department of Energy

    Energy Savers [EERE]

    GA-AL-SC GA-AL-SC October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina October 1, 2012 Duke-1-E Wholesale Power Rate Schedule Area: Duke On-System System: Georgia-Alabama-South Carolina October 1, 2012 Duke-2-E Wholesale Power Rate Schedule Area: Central System: Georgia-Alabama-South Carolina October 1, 2012 Duke-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina October 1, 2012 Duke-4-E

  15. GaN: Defect and Device Issues

    SciTech Connect (OSTI)

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  16. GaAs photoconductive semiconductor switch

    DOE Patents [OSTI]

    Loubriel, Guillermo M. (Sandia Park, NM); Baca, Albert G. (Albuquerque, NM); Zutavern, Fred J. (Albuquerque, NM)

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  17. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore » to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less

  18. Structural and optical properties of InGaNGaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Ho?fling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmoreto higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, ?-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.less

  19. Investigation of surface-plasmon coupled red light emitting InGaN/GaN multi-quantum well with Ag nanostructures coated on GaN surface

    SciTech Connect (OSTI)

    Li, Yi; Liu, Bin E-mail: rzhang@nju.edu.cn; Zhang, Rong E-mail: rzhang@nju.edu.cn; Xie, Zili; Zhuang, Zhe; Dai, JiangPing; Tao, Tao; Zhi, Ting; Zhang, Guogang; Chen, Peng; Ren, Fangfang; Zhao, Hong; Zheng, Youdou

    2015-04-21

    Surface-plasmon (SP) coupled red light emitting InGaN/GaN multiple quantum well (MQW) structure is fabricated and investigated. The centre wavelength of 5-period InGaN/GaN MQW structure is about 620?nm. The intensity of photoluminescence (PL) for InGaN QW with naked Ag nano-structures (NS) is only slightly increased due to the oxidation of Ag NS as compared to that for the InGaN QW. However, InGaN QW with Ag NS/SiO{sub 2} structure can evidently enhance the emission efficiency due to the elimination of surface oxide layer of Ag NS. With increasing the laser excitation power, the PL intensity is enhanced by 25%53% as compared to that for the SiO{sub 2} coating InGaN QW. The steady-state electric field distribution obtained by the three-dimensional finite-difference time-domain method is different for both structures. The proportion of the field distributed in the Ag NS for the GaN/Ag NS/SiO{sub 2} structure is smaller as compared to that for the GaN/naked Ag NS structure. As a result, the energy loss of localized SP modes for the GaN/naked Ag NS structure will be larger due to the absorption of Ag layer.

  20. Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission

    SciTech Connect (OSTI)

    Lekhal, K.; Damilano, B. De Mierry, P.; Venngus, P.; Ngo, H. T.; Rosales, D.; Gil, B.; Hussain, S.

    2015-04-06

    Yellow/amber (570600?nm) emitting In{sub x}Ga{sub 1?x}N/Al{sub y}Ga{sub 1?y}N/GaN multiple quantum wells (QWs) have been grown by metal organic chemical vapor deposition on GaN-on- sapphire templates. When the (Al,Ga)N thickness of the barrier increases, the room temperature photoluminescence is red-shifted while its yield increases. This is attributed to an increase of the QW internal electric field and an improvement of the material quality due to the compensation of the compressive strain of the In{sub x}Ga{sub 1?x}N QWs by the Al{sub y}Ga{sub 1?y}N layers, respectively.

  1. Optical spectroscopy of quantum confined states in GaAs/AlGaAs quantum well tubes

    SciTech Connect (OSTI)

    Shi, Teng; Fickenscher, Melodie; Smith, Leigh; Jackson, Howard; Yarrison-Rice, Jan; Gao, Qiang; Tan, Hoe; Jagadish, Chennupati; Etheridge, Joanne; Wong, Bryan M.

    2013-12-04

    We have investigated the quantum confinement of electronic states in GaAs/Al{sub x}Ga{sub 1?x}As nanowire heterostructures which contain radial GaAs quantum wells of either 4nm or 8nm. Photoluminescence and photoluminescence excitation spectroscopy are performed on single nanowires. We observed emission and excitation of electron and hole confined states. Numerical calculations of the quantum confined states using the detailed structural information on the quantum well tubes show excellent agreement with these optical results.

  2. InGaAs/GaAs quantum dot interdiffiusion induced by cap layer overgrowth

    SciTech Connect (OSTI)

    Jasinski, J.; Babinski, A.; Czeczott, M.; Bozek, R.

    2000-06-28

    The effect of thermal treatment during and after growth of InGaAs/GaAs quantum dot (QD) structures was studied. Transmission electron microscopy and atomic force microscopy confirmed the presence of interacting QDs, as was expected from analysis of temperature dependence of QD photoluminescence (PL) peak. The results indicate that the effect of post-growth annealing can be similar to the effect of elevated temperature of capping layer growth. Both, these thermal treatments can lead to a similar In and Ga interdiffiusion resulting in a similar blue-shift of QD PL peak.

  3. Eni USA Gas Marketing LLC- FE Dkt. No.- 15-13-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed January 21, 2015 by Eni USA Gas Marketing LLC (ENI USA Gas Marketing), requesting blanket authorization to export...

  4. Solar World USA not SolarWorld AG | Open Energy Information

    Open Energy Info (EERE)

    World USA not SolarWorld AG Jump to: navigation, search Name: Solar World USA (not SolarWorld AG) Place: Colorado Springs, Colorado Zip: 80907 Sector: Solar Product: Solar World...

  5. SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 PDF icon October 2015 More ...

  6. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  7. FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S.A. Achieves Compressed Air System Energy-Reduction Goals with a Three-Phased Strategy FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System Energy-Reduction Goals...

  8. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings

    Broader source: Energy.gov [DOE]

    H2USA will host an online workshop about hydrogen fueling station component listings on April 22 from 2 to 3:30 p.m. Eastern Daylight Time. This workshop will focus on the need for components for hydrogen fueling stations to be listed by Nationally Recognized Testing Laboratories (NRTLs).

  9. On strongly GA-convex functions and stochastic processes

    SciTech Connect (OSTI)

    Bekar, Nurgl Okur; Akdemir, Hande Gnay; ??can, ?mdat

    2014-08-20

    In this study, we introduce strongly GA-convex functions and stochastic processes. We provide related well-known Kuhn type results and Hermite-Hadamard type inequality for strongly GA-convex functions and stochastic processes.

  10. National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. PDF icon National Fuel Cell and Hydrogen Energy Overview More Documents & Publications U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 Overview of Hydrogen and Fuel

  11. High-field quasi-ballistic transport in AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Danilchenko, B. A.; Tripachko, N. A.; Belyaev, A. E.; Vitusevich, S. A. Hardtdegen, H.; Lth, H.

    2014-02-17

    Mechanisms of electron transport formation in 2D conducting channels of AlGaN/GaN heterostructures in extremely high electric fields at 4.2?K have been studied. Devices with a narrow constriction for the current flow demonstrate high-speed electron transport with an electron velocity of 6.8??10{sup 7}?cm/s. Such a velocity is more than two times higher than values reported for conventional semiconductors and about 15% smaller than the limit value predicted for GaN. Superior velocity is attained in the channel with considerable carrier reduction. The effect is related to a carrier runaway phenomenon. The results are in good agreement with theoretical predictions for GaN-based materials.

  12. InGaAs/GaAs (110) quantum dot formation via step meandering

    SciTech Connect (OSTI)

    Diez-Merino, Laura; Tejedor, Paloma

    2011-07-01

    InGaAs (110) semiconductor quantum dots (QDs) offer very promising prospects as a material base for a new generation of high-speed spintronic devices, such as single electron transistors for quantum computing. However, the spontaneous formation of InGaAs QDs is prevented by two-dimensional (2D) layer-by-layer growth on singular GaAs (110) substrates. In this work we have studied, by using atomic force microscopy and photoluminescence spectroscopy (PL), the growth of InGaAs/GaAs QDs on GaAs (110) stepped substrates by molecular beam epitaxy (MBE), and the modification of the adatom incorporation kinetics to surface steps in the presence of chemisorbed atomic hydrogen. The as-grown QDs exhibit lateral dimensions below 100 nm and emission peaks in the 1.35-1.37 eV range. It has been found that a step meandering instability derived from the preferential attachment of In adatoms to [110]-step edges relative to [11n]-type steps plays a key role in the destabilization of 2D growth that leads to 3D mound formation on both conventional and H-terminated vicinal substrates. In the latter case, the driving force for 3D growth via step meandering is enhanced by H-induced upward mass transport in addition to the lower energy cost associated with island formation on H-terminated substrates, which results in a high density array of InGaAs/GaAs dots selectively nucleated on the terrace apices with reduced lateral dimensions and improved PL efficiency relative to those of conventional MBE-grown samples.

  13. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation

    SciTech Connect (OSTI)

    Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav; Luque, Antonio

    2014-09-26

    AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (? = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

  14. ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) PDF icon ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) More Documents & Publications DOE F 551.1 hd_hydrogen_2007.xls Energy Storage Systems 2010 Update Conference

  15. Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure

    SciTech Connect (OSTI)

    Chowdhury, S; Mishra, UK

    2013-10-01

    Power conversion losses are endemic in all areas of electricity consumption, including motion control, lighting, air conditioning, and information technology. Si, the workhorse of the industry, has reached its material limits. Increasingly, the lateral AlGaN/GaN HEMT based on gallium nitride (GaN-on-Si) is becoming the device of choice for medium power electronics as it enables high-power conversion efficiency and reduced form factor at attractive pricing for wide market penetration. The reduced form factor enabled by high-efficiency operation at high frequency further enables significant system price reduction because of savings in bulky extensive passive elements and heat sink costs. The high-power market, however, still remains unaddressed by lateral GaN devices. The current and voltage demand for high power conversion application makes the chip area in a lateral topology so large that it becomes more difficult to manufacture. Vertical GaN devices would play a big role alongside of silicon carbide (SiC) to address the high power conversion needs. In this paper, the development, performance, and status of lateral and vertical GaN devices are discussed.

  16. GaNPAs Solar Cells Lattice-Matched To GaP: Preprint

    SciTech Connect (OSTI)

    Geisz, J. F.; Friedman, D. J.; Kurtz, S.

    2002-05-01

    This conference paper describes the III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We propose the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct band-gaps in the range of 1.5 to 2.0 eV. We demonstrate the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and discuss the prospects for the development of monolithic high-efficiency multijunction solar cells based on silicon substrates.

  17. Structure and Magnetic Properties of Ce3(Ni/Al/Ga)11„A New Phase with the La3Al11 Structure Type

    Office of Scientific and Technical Information (OSTI)

    Crystals 2015, 5, 1-8; doi:10.3390/cryst5010001 crystals ISSN 2073-4352 www.mdpi.com/journal/crystals Article Structure and Magnetic Properties of Ce 3 (Ni/Al/Ga) 11 -A New Phase with the La 3 Al 11 Structure Type Oliver Janka 1,2,†, *, Tian Shang 3,4,† , Ryan E. Baumbach 3,5,† , Eric D. Bauer 3,† , Joe D. Thompson 3,† and Susan M. Kauzlarich 1,†, * 1 Department of Chemistry, University of California, Davis, CA 95616, USA 2 Institut für Anorganische und Analytische Chemie,

  18. Room-temperature mid-infrared "M"-type GaAsSb/InGaAs quantum...

    Office of Scientific and Technical Information (OSTI)

    Room-temperature mid-infrared "M"-type GaAsSbInGaAs quantum well lasers on InP substrate Citation Details In-Document Search Title: Room-temperature mid-infrared "M"-type GaAsSb...

  19. Lattice-Mismatched GaAs/InGaAs Two-Junction Solar Cells by Direct Wafer Bonding

    SciTech Connect (OSTI)

    Tanabe, K.; Aiken, D. J.; Wanlass, M. W.; Morral, A. F.; Atwater, H. A.

    2006-01-01

    Direct bonded interconnect between subcells of a lattice-mismatched III-V compound multijunction cell would enable dislocation-free active regions by confining the defect network needed for lattice mismatch accommodation to tunnel junction interfaces, while metamorphic growth inevitably results in less design flexibility and lower material quality than is desirable. The first direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs two-junction solar cell, is reported and demonstrates viability of direct wafer bonding for solar cell applications. The tandem cell open-circuit voltage was approximately the sum of the subcell open-circuit voltages. This achievement shows direct bonding enables us to construct lattice-mismatched III-V multijunction solar cells and is extensible to an ultrahigh efficiency InGaP/GaAs/InGaAsP/InGaAs four-junction cell by bonding a GaAs-based lattice-matched InGaP/GaAs subcell and an InP-based lattice-matched InGaAsP/InGaAs subcell. The interfacial resistance experimentally obtained for bonded GaAs/InP smaller than 0.10 Ohm-cm{sup 2} would result in a negligible decrease in overall cell efficiency of {approx}0.02%, under 1-sun illumination.

  20. Properties of (Ga,Mn)As codoped with Li

    SciTech Connect (OSTI)

    Miyakozawa, Shohei; Chen, Lin; Matsukura, Fumihiro; Ohno, Hideo

    2014-06-02

    We grow Li codoped (Ga,Mn)As layers with nominal Mn composition up to 0.15 by molecular beam epitaxy. The layers before and after annealing are characterized by x-ray diffraction, transport, magnetization, and ferromagnetic resonance measurements. The codoping with Li reduces the lattice constant and electrical resistivity of (Ga,Mn)As after annealing. We find that (Ga,Mn)As:Li takes similar Curie temperature to that of (Ga,Mn)As, but with pronounced magnetic moments and in-plane magnetic anisotropy, indicating that the Li codoping has nontrivial effects on the magnetic properties of (Ga,Mn)As.

  1. Three-junction solar cells comprised of a thin-film GaInP/GaAs tandem cell mechanically stacked on a Si cell

    SciTech Connect (OSTI)

    Yazawa, Y.; Tamura, K.; Watahiki, S.; Kitatani, T.; Ohtsuka, H.; Warabisako, T.

    1997-12-31

    Three-junction tandem solar cells were fabricated by mechanical stacking of a thin-film GaInP/GaAs monolithic tandem cell and a Si cell. The epitaxial lift-off (ELO) technique was used for the thinning of GaInP/GaAs tandem cells. Both spectral responses of the GaInP top cell and the GaAs middle cell in the thin-film GaInP/GaAs monolithic tandem cell were conserved. The Si cell performance has been improved by reducing the absorption loss in the GaAs substrate.

  2. Reactive codoping of GaAlInP compound semiconductors

    DOE Patents [OSTI]

    Hanna, Mark Cooper (Boulder, CO); Reedy, Robert (Golden, CO)

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  3. Chemical beam epitaxy growth of AlGaAs/GaAs tunnel junctions using trimethyl aluminium for multijunction solar cells

    SciTech Connect (OSTI)

    Paquette, B.; DeVita, M.; Turala, A.; Kolhatkar, G.; Boucherif, A.; Jaouad, A.; Aimez, V.; Ars, R.; Wilkins, M.; Wheeldon, J. F.; Walker, A. W.; Hinzer, K.; Fafard, S.

    2013-09-27

    AlGaAs/GaAs tunnel junctions for use in high concentration multijunction solar cells were designed and grown by chemical beam epitaxy (CBE) using trimethyl aluminium (TMA) as the p-dopant source for the AlGaAs active layer. Controlled hole concentration up to 4?10{sup 20} cm{sup ?3} was achieved through variation in growth parameters. Fabricated tunnel junctions have a peak tunneling current up to 6140 A/cm{sup 2}. These are suitable for high concentration use and outperform GaAs/GaAs tunnel junctions.

  4. Electron tunneling spectroscopy study of electrically active traps in AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Yang, Jie Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth

    2013-11-25

    We investigate the energy levels of electron traps in AlGaN/GaN high electron mobility transistors by the use of electron tunneling spectroscopy. Detailed analysis of a typical spectrum, obtained in a wide gate bias range and with both bias polarities, suggests the existence of electron traps both in the bulk of AlGaN and at the AlGaN/GaN interface. The energy levels of the electron traps have been determined to lie within a 0.5?eV band below the conduction band minimum of AlGaN, and there is strong evidence suggesting that these traps contribute to Frenkel-Poole conduction through the AlGaN barrier.

  5. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) Four-Junction Solar Cell

    SciTech Connect (OSTI)

    Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

    2006-01-01

    We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga{sub 0.5}In{sub 0.5} P/GaAs/Ga{sub 0.75}In{sub 0.25}As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga{sub 0.75}In{sub 0.25}As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap Ga{sub x}In{sub 1-x}As fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the Ga{sub x}In{sub 1-x}As fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

  6. Analysis of defects in GaAsN grown by chemical beam epitaxy on high index GaAs substrates

    SciTech Connect (OSTI)

    Bouzazi, Boussairi; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-09-27

    The lattice defects in GaAsN grown by chemical beam epitaxy on GaAs 311B and GaAs 10A toward [110] were characterized and discussed by using deep level transient spectroscopy (DLTS) and on the basis of temperature dependence of the junction capacitances (C{sub J}). In one hand, GaAsN films grown on GaAs 311B and GaAs 10A showed n-type and p-type conductivities, respectively although the similar and simultaneous growth conditions. This result is indeed in contrast to the common known effect of N concentration on the type of conductivity, since the surface 311B showed a significant improvement in the incorporation of N. Furthermore, the temperature dependence of C{sub J} has shown that GaAs 311B limits the formation of N-H defects. In the other hand, the energy states in the forbidden gap of GaAsN were obtained. Six electron traps, E1 to E6, were observed in the DLTS spectrum of GaAsN grown on GaAs 311B, with apparent activation energies of 0.02, 0.14, 0.16, 0.33, 0.48, and 0.74 eV below the bottom edge of the conduction band, respectively. In addition, four hole traps, H1 to H4, were observed in the DLTS spectrum of GaAsN grown on GaAs 10A, with energy depths of 0.13, 0.20, 0.39, and 0.52 eV above the valence band maximum of the alloy, respectively. Hence, the surface morphology of the GaAs substrate was found to play a key factor role in clarifying the electrical properties of GaAsN grown by CBE.

  7. Photocapacitance study of type-II GaSb/GaAs quantum ring solar cells

    SciTech Connect (OSTI)

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-01-07

    In this study, the density of states associated with the localization of holes in GaSb/GaAs quantum rings are determined by the energy selective charging of the quantum ring distribution. The authors show, using conventional photocapacitance measurements, that the excess charge accumulated within the type-II nanostructures increases with increasing excitation energies for photon energies above 0.9?eV. Optical excitation between the localized hole states and the conduction band is therefore not limited to the ?(k?=?0) point, with pseudo-monochromatic light charging all states lying within the photon energy selected. The energy distribution of the quantum ring states could consequently be accurately related from the excitation dependence of the integrated photocapacitance. The resulting band of localized hole states is shown to be well described by a narrow distribution centered 407?meV above the GaAs valence band maximum.

  8. Efficiency enhancement of InGaN/GaN solar cells with nanostructures

    SciTech Connect (OSTI)

    Bai, J.; Yang, C. C.; Athanasiou, M.; Wang, T.

    2014-02-03

    We demonstrate InGaN/GaN multi-quantum-well solar cells with nanostructures operating at a wavelength of 520?nm. Nanostructures with a periodic nanorod or nanohole array are fabricated by means of modified nanosphere lithography. Under 1 sun air-mass 1.5 global spectrum illumination, a fill factor of 50 and an open circuit voltage of 1.9?V are achieved in spite of very high indium content in InGaN alloys usually causing degradation of crystal quality. Both the nanorod array and the nanohole array significantly improve the performance of solar cells, while a larger enhancement is observed for the nanohole array, where the conversion efficiency is enhanced by 51%.

  9. A InGaN/GaN quantum dot green ({lambda}=524 nm) laser

    SciTech Connect (OSTI)

    Zhang Meng; Banerjee, Animesh; Lee, Chi-Sen; Hinckley, John M.; Bhattacharya, Pallab

    2011-05-30

    The characteristics of self-organized InGaN/GaN quantum dot lasers are reported. The laser heterostructures were grown on c-plane GaN substrates by plasma-assisted molecular beam epitaxy and the laser facets were formed by focused ion beam etching with gallium. Emission above threshold is characterized by a peak at 524 nm (green) and linewidth of 0.7 nm. The lowest measured threshold current density is 1.2 kA/cm{sup 2} at 278 K. The slope and wall plug efficiencies are 0.74 W/A and {approx}1.1%, respectively, at 1.3 kA/cm{sup 2}. The value of T{sub 0}=233 K in the temperature range of 260-300 K.

  10. Graphene in ohmic contact for both n-GaN and p-GaN

    SciTech Connect (OSTI)

    Zhong, Haijian; Liu, Zhenghui; Shi, Lin; Xu, Gengzhao; Fan, Yingmin; Huang, Zengli; Wang, Jianfeng; Ren, Guoqiang; Xu, Ke

    2014-05-26

    The wrinkles of single layer graphene contacted with either n-GaN or p-GaN were found both forming ohmic contacts investigated by conductive atomic force microscopy. The local IV results show that some of the graphene wrinkles act as high-conductive channels and exhibiting ohmic behaviors compared with the flat regions with Schottky characteristics. We have studied the effects of the graphene wrinkles using density-functional-theory calculations. It is found that the standing and folded wrinkles with zigzag or armchair directions have a tendency to decrease or increase the local work function, respectively, pushing the local Fermi level towards n- or p-type GaN and thus improving the transport properties. These results can benefit recent topical researches and applications for graphene as electrode material integrated in various semiconductor devices.

  11. Photoluminescence studies of individual and few GaSb/GaAs quantum rings

    SciTech Connect (OSTI)

    Young, M. P.; Woodhead, C. S.; Roberts, J.; Noori, Y. J.; Noble, M. T.; Krier, A.; Hayne, M.; Young, R. J.; Smakman, E. P.; Koenraad, P. M.

    2014-11-15

    We present optical studies of individual and few GaSb quantum rings embedded in a GaAs matrix. Contrary to expectation for type-II confinement, we measure rich spectra containing sharp lines. These lines originate from excitonic recombination and are observed to have resolution-limited full-width at half maximum of 200 ?eV. The detail provided by these measurements allows the characteristic type-II blueshift, observed with increasing excitation power, to be studied at the level of individual nanostructures. These findings are in agreement with hole-charging being the origin of the observed blueshift.

  12. Application of the ASME code in the design of the GA-4 and GA-9 casks

    SciTech Connect (OSTI)

    Mings, W.J. ); Koploy, M.A. )

    1992-01-01

    General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption.

  13. Application of the ASME code in the design of the GA-4 and GA-9 casks

    SciTech Connect (OSTI)

    Mings, W.J.; Koploy, M.A.

    1992-08-01

    General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption.

  14. Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots

    SciTech Connect (OSTI)

    Braun, T.; Schneider, C.; Maier, S.; Forchel, A.; Hfling, S.; Kamp, M.; Igusa, R.; Iwamoto, S.; Arakawa, Y.

    2014-09-15

    In this letter we study the influence of temperature and excitation power on the emission linewidth from site-controlled InGaAs/GaAs quantum dots grown on nanoholes defined by electron beam lithography and wet chemical etching. We identify thermal electron activation as well as direct exciton loss as the dominant intensity quenching channels. Additionally, we carefully analyze the effects of optical and acoustic phonons as well as close-by defects on the emission linewidth by means of temperature and power dependent micro-photoluminescence on single quantum dots with large pitches.

  15. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    SciTech Connect (OSTI)

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Sofferman, D. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Adelphi University, Garden City, New York 11530-0701 (United States); Beskin, I. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2013-08-12

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport.

  16. Foreign Obligations Implementation Status Presentation

    National Nuclear Security Administration (NNSA)

    January 13, 2004 Crowne Plaza Ravinia Atlanta, January 13, 2004 Crowne Plaza Ravinia Atlanta, Georgia Georgia Obligations Accounting Implementation Workshop Obligations Accounting Implementation Workshop Foreign Obligations Implementation Status Brian G. Horn U.S. Nuclear Regulatory Commission January 13, 2004 Obligations Accounting Implementation Workshop January 13, 2 Obligations Accounting Implementation Workshop January 13, 2004 Crowne Plaza Ravinia Atlanta, GA 004 Crowne Plaza Ravinia

  17. Distributed bragg reflector using AIGaN/GaN

    DOE Patents [OSTI]

    Waldrip, Karen E.; Lee, Stephen R.; Han, Jung

    2004-08-10

    A supported distributed Bragg reflector or superlattice structure formed from a substrate, a nucleation layer deposited on the substrate, and an interlayer deposited on the nucleation layer, followed by deposition of (Al,Ga,B)N layers or multiple pairs of (Al,Ga,B)N/(Al,Ga,B)N layers, where the interlayer is a material selected from AlN, Al.sub.x Ga.sub.1-x N, and AlBN with a thickness of approximately 20 to 1000 angstroms. The interlayer functions to reduce or eliminate the initial tensile growth stress, thereby reducing cracking in the structure. Multiple interlayers utilized in an AlGaN/GaN DBR structure can eliminate cracking and produce a structure with a reflectivity value greater than 0.99.

  18. High-Efficiency GaInP/GaAs Tandem Solar Cells

    SciTech Connect (OSTI)

    Bertness, K. A.; Friedman, D. J.; Kurtz, S. R.; Kibbler, A. E.; Cramer, C.; Olson, J. M.

    1996-09-01

    GaInP/GaAs tandem solar cells have achieved efficiencies between 25.7-30.2%, depending on illumination conditions. The efficiencies are the highest confirmed two-terminal values measured for any solar cell within each standard illumination category. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance.

  19. High-efficiency GaInP/GaAs tandem solar cells

    SciTech Connect (OSTI)

    Bertness, K.A.; Friedman, D.J.; Kurtz, S.R.; Kibbler, A.E.; Kramer, C.; Olson, J.M.

    1994-12-01

    GaInP/GaAs tandem solar cells have achieved new record efficiencies, specifically 25.7% under air-mass 0 (AM0) illumination, 29.5% under AM 1.5 global (AM1.5G) illumination, and 30.2% at 140-180x concentration under AM 1.5 direct (AM1.5D) illumination. These values are the highest two-terminal efficiencies achieved by any solar cell under these illumination conditions. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance. 31 refs.

  20. Localized corrosion of GaAs surfaces and formation of porous GaAs

    SciTech Connect (OSTI)

    Schmuki, P.; Vitus, C.M.; Isaacs, H.S.; Fraser, J.; Graham, M.J.

    1995-12-01

    The present work deals with pitting corrosion of p- and n-type GaAs (100). Pit growth can be electrochemically initiated on both conduction types in chloride-containing solutions and leads after extended periods of time to the formation of a porous GaAs structure. In the case of p-type material, localized corrosion is only observed if a passivating film is present on the surface, otherwise -- e.g. in acidic solutions -- the material suffers from a uniform attack (electropolishing) which is independent of the anion present. In contrast, pitting corrosion of n-type material can be triggered independent of the presence of an oxide film. This is explained in terms of the different current limiting factor for the differently doped materials (oxide film in the case of the p- and a space charge layer in the case of the n-GaAs). The porous structure was characterized by SEM, EDX and AES, and consists mainly of GaAs. From scratch experiments it is clear that the pit initiation process is strongly influenced by surface defects. For n-type material, AFM investigations show that light induced roughening of the order of several hundred nm occurs under non-passivating conditions. This nm- scale roughening however does not affect the pitting process.

  1. TJ Solar Cell (GaInP/GaAs/Ge Ultrahigh-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Friedman, Daniel

    2002-04-17

    This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

  2. Multijunction GaInP/GaInAs/Ge solar cells with Bragg reflectors

    SciTech Connect (OSTI)

    Emelyanov, V. M. Kalyuzhniy, N. A.; Mintairov, S. A.; Shvarts, M. Z.; Lantratov, V. M.

    2010-12-15

    Effect of subcell parameters on the efficiency of GaInP/Ga(In)As/Ge tandem solar cells irradiated with 1-MeV electrons at fluences of up to 3 x 10{sup 15} cm{sup -2} has been theoretically studied. The optimal thicknesses of GaInP and GaInAs subcells, which provide the best photocurrent matching at various irradiation doses in solar cells with and without built-in Bragg reflectors, were determined. The dependences of the photoconverter efficiency on the fluence of 1-MeV electrons and on the time of residence in the geostationary orbit were calculated for structures optimized to the beginning and end of their service lives. It is shown that the optimization of the subcell heterostructures for a rated irradiation dose and the introduction of Bragg reflectors into the structure provide a 5% overall increase in efficiency for solar cells operating in the orbit compared with unoptimized cells having no Bragg reflector.

  3. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

    SciTech Connect (OSTI)

    SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

  4. Photoluminescence from GaAs nanodisks fabricated by using combination...

    Office of Scientific and Technical Information (OSTI)

    GaAs nanodisks fabricated by using combination of neutral beam etching and atomic hydrogen-assisted molecular beam epitaxy regrowth Citation Details In-Document Search Title:...

  5. Inverse spin Hall effect in Pt/(Ga,Mn)As

    SciTech Connect (OSTI)

    Nakayama, H.; Chen, L.; Chang, H. W.; Ohno, H.; Matsukura, F.

    2015-06-01

    We investigate dc voltages under ferromagnetic resonance in a Pt/(Ga,Mn)As bilayer structure. A part of the observed dc voltage is shown to originate from the inverse spin Hall effect. The sign of the inverse spin Hall voltage is the same as that in Py/Pt bilayer structure, even though the stacking order of ferromagnetic and nonmagnetic layers is opposite to each other. The spin mixing conductance at the Pt/(Ga,Mn)As interface is determined to be of the order of 10{sup 19 }m{sup −2}, which is about ten times greater than that of (Ga,Mn)As/p-GaAs.

  6. Deep level centers and their role in photoconductivity transients of InGaAs/GaAs quantum dot chains

    SciTech Connect (OSTI)

    Kondratenko, S. V. Vakulenko, O. V.; Mazur, Yu. I. Dorogan, V. G.; Marega, E.; Benamara, M.; Ware, M. E.; Salamo, G. J.

    2014-11-21

    The in-plane photoconductivity and photoluminescence are investigated in quantum dot-chain InGaAs/GaAs heterostructures. Different photoconductivity transients resulting from spectrally selecting photoexcitation of InGaAs QDs, GaAs spacers, or EL2 centers were observed. Persistent photoconductivity was observed at 80?K after excitation of electron-hole pairs due to interband transitions in both the InGaAs QDs and the GaAs matrix. Giant optically induced quenching of in-plane conductivity driven by recharging of EL2 centers is observed in the spectral range from 0.83?eV to 1.0?eV. Conductivity loss under photoexcitation is discussed in terms of carrier localization by analogy with carrier distribution in disordered media.

  7. Deep level defects in n-type GaAsBi and GaAs grown at low temperatures

    SciTech Connect (OSTI)

    Mooney, P. M.; Watkins, K. P.; Jiang, Zenan; Basile, A. F.; Lewis, R. B.; Bahrami-Yekta, V.; Masnadi-Shirazi, M.; Beaton, D. A.; Tiedje, T.

    2013-04-07

    Deep level defects in n-type GaAs{sub 1-x}Bi{sub x} having 0 < x < 0.012 and GaAs grown by molecular beam epitaxy (MBE) at substrate temperatures between 300 and 400 Degree-Sign C have been investigated by Deep Level Capacitance Spectroscopy. Incorporating Bi suppresses the formation of an electron trap with activation energy 0.40 eV, thus reducing the total trap concentration in dilute GaAsBi layers by more than a factor of 20 compared to GaAs grown under the same conditions. We find that the dominant traps in dilute GaAsBi layers are defect complexes involving As{sub Ga}, as expected for MBE growth at these temperatures.

  8. Au impact on GaAs epitaxial growth on GaAs (111){sub B} substrates in molecular beam epitaxy

    SciTech Connect (OSTI)

    Liao, Zhi-Ming; Chen, Zhi-Gang; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Lu, Zhen-Yu; Chen, Ping-Ping; Lu, Wei; Zou, Jin; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072

    2013-02-11

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {l_brace}111{r_brace}{sub B} substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {l_brace}113{r_brace}{sub B} faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  9. Room-temperature mid-infrared "M"-type GaAsSb/InGaAs quantum well

    Office of Scientific and Technical Information (OSTI)

    lasers on InP substrate (Journal Article) | SciTech Connect Room-temperature mid-infrared "M"-type GaAsSb/InGaAs quantum well lasers on InP substrate Citation Details In-Document Search Title: Room-temperature mid-infrared "M"-type GaAsSb/InGaAs quantum well lasers on InP substrate We have demonstrated experimentally the InP-based "M"-type GaAsSb/InGaAs quantum-well (QW) laser lasing at 2.41 μm at room temperature by optical pumping. The threshold power density

  10. Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson PDF icon Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA More Documents & Publications Smooth Brome Monitoring at Rocky Flats-2005 Results EA-0847: Final Environmental Assessment Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site

  11. MOU signed between CIAE and Jefferson National Lab, USA. (China Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry News, General News) | Jefferson Lab https://www.jlab.org/news/articles/mou-signed-between-ciae-and-jefferson-national-lab-usa-china-nuclear-industry-news-ge... MOU signed between CIAE and Jefferson National Lab, USA. (News) Recently, the deputy director of Jefferson National Lab, USA visited the China Institute of Atomic Energy (CIAE). An MOU on the collaboration between the two institutions were signed during the visit. The medium-and-high energy physics group at CIAE has been

  12. EXC-12-0010 - In the Matter of DLU Lighting USA | Department of Energy

    Office of Environmental Management (EM)

    10 - In the Matter of DLU Lighting USA EXC-12-0010 - In the Matter of DLU Lighting USA On September 6, 2012, OHA issued a decision denying an Application for Exception filed by DLU Lighting USA (DLU) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception request, DLU asserted that it will suffer a

  13. Recent Photovoltaic Performance Data in the USA (Presentation)

    SciTech Connect (OSTI)

    Jordan, D.

    2014-03-01

    This paper presents performance data from nearly 50,000 Photovoltaic systems totaling 1.7 Gigawatts installed capacity in the USA from 2009 to 2012. 90% of the systems performed to within 10% or better of expected performance. Only 2-4% of the data indicate issues significantly affecting the system performance. Special causes of underperformance and their impacts are delineated by reliability category. Delays and interconnections dominate project-related issues particularly in the first year, but total less than 0.5% of all systems. Hardware-related issues are dominated by inverter problems totaling less than 0.4% and underperforming modules to less than 0.1%.

  14. DOW CHEMICAL U.S.A. + WESTERN DIVISION

    Office of Legacy Management (LM)

    DOW CHEMICAL U.S.A. + WESTERN DIVISION 2855 MITCHELL DRIVE WALNUT CREEK. CtyLlFORNlA 94598 October 29,1976 415 944-2300 (., L,'; ! - J. 022 . William J. Thornton Health Protection Branch Safety and Environmental Control Division U.S. Energy Research and Development Administration Oak Ridge Operations P. 0. Box E Oak Ridge, Tennessee 37830 Dear Mr. Thornton: This letter is in response to your request of September 24,1976 for information on records of radiological condition of the laboratories at

  15. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell

    SciTech Connect (OSTI)

    Venkatasubramanian, R. )

    1993-01-01

    This report describes work to develop inverted-grown Al[sub 0.34]Ga[sub 0.66]As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al[sub 0.34]Ga[sub 0.66]As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The cycled'' organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

  16. Comparison of the ENERGYGAUGE USA and BEopt Building Energy Simulation Programs

    SciTech Connect (OSTI)

    Parker, Danny S.; Cummings, Jamie E.

    2009-08-01

    This report compares two hourly energy simulation softwares, BEopt and Energy Gauge USA, to ensure accuracy and evaluate agreement on the impact of various energy efficiency improvements.

  17. Building America Technology Solutions for New and Existing Homes: Ground

    Energy Savers [EERE]

    Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), | Department of Energy Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), Building America Technology Solutions for New and Existing Homes: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), This case study describes the construction of a new test home in Atlanta, GA, that demonstrates current best practices for the mixed-humid climate,

  18. DC characteristics of OMVPE-grown N-p-n InGaP/InGaAsN DHBTs

    SciTech Connect (OSTI)

    Li, N.Y.; Chang, P.C.; Baca, A.G.; Xie, X.M.; Sharps, P.R.; Hou, H.Q.

    2000-01-04

    The authors demonstrate, for the first time, a functional N-p-n heterojunction bipolar transistor using a novel material, InGaAsN, with a bandgap energy of 1.2eV as the p-type base layer. A 300{angstrom}-thick In{sub x}Ga{sub 1-x}As graded layer was introduced to reduce the conduction band offset at the p-type InGaAsN base and n-type GaAs collector junction. For an emitter size of 500 {mu}m{sup 2}, a peak current gain of 5.3 has been achieved.

  19. SR0005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program (EMSP) National Workshop in Atlanta, GA on April 24-27 at the Westin Peachtree Plaza. Hosted by DOE's Office of Environmental Management, Office of Science, Idaho...

  20. app_d

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31 DOE/EIS-0287 Idaho HLW & FD EIS Document 23, Department of Health & Human Services (Kenneth W. Holt), Atlanta, GA Page 10 of 21 Document 23, Department of Health & Human Services (Kenneth W. Holt), Atlanta, GA Page 11 of 21 - New Information - DOE/EIS-0287 D-32 Appendix D Document 23, Department of Health & Human Services (Kenneth W. Holt), Atlanta, GA Page 12 of 21 Document 23, Department of Health & Human Services (Kenneth W. Holt), Atlanta, GA Page 13 of 21 - New

  1. A high-resolution imaging X-ray crystal spectrometer for intense...

    Office of Scientific and Technical Information (OSTI)

    Conference Resource Relation: Conference: Presented at: 20th Topical Conference on High-Temperature Plasma Diagnostics Conference, Atlanta, GA, United States, Jun 01 - Jun 05, 2014...

  2. System for Calibrating the Energy-Dependent Response of an Elliptical...

    Office of Scientific and Technical Information (OSTI)

    Topical Conference on High Temperature Plasma Diagnostics, Atlanta, GA, United States, Jun 01 - Jun 05, 2014 Research Org: Lawrence Livermore National Laboratory (LLNL),...

  3. Development of a TIM-based, flexible, broadband two-crystal spectromet...

    Office of Scientific and Technical Information (OSTI)

    Presented at: High Temperature Plasma Diagnostics, Atlanta, GA, United States, Jun 01 - Jun 05, 2014 Research Org: Lawrence Livermore National Laboratory (LLNL),...

  4. Coarse-grained Energy Modeling of Rollback/Recovery Mechanisms...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: Fault Tolerance for HPC at eXtreme Scale (FTXS) Workshop held June 23-24, 2014 in Atlanta, GA.; Related...

  5. QER- Comment of Stephen Arthur 1

    Broader source: Energy.gov [DOE]

    Good morning, I simply was curious if the Atlanta, GA meeting on Business/Economic Development was still on schedule and going to take place?

  6. 2015 University Turbine Systems Research Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Turbine Systems Research Workshop November 3-5, 2015 Accommodations Georgian Terrace Hotel 659 Peachtree Street, NE Atlanta, GA 30308 The Georgian Terrace Hotel will be...

  7. Benchmarking & Transparency Policy and Program Impact Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Therefore, more advanced- and generally more expensive -evaluation methods are included in ... Montgomery County, MD; San Francisco; Cambridge, MA; Chicago; Portland, OR; Atlanta, GA; ...

  8. Industrial Feedstock Flexibility Workshop Results

    SciTech Connect (OSTI)

    Ozokwelu, Dickson; Margolis, Nancy; Justiniano, Mauricio; Monfort, Joe; Brueske, Sabine; Sabouni, Ridah

    2009-08-01

    This report (PDF 649 KB) summarizes the results of the 2009 Industrial Feedstock Flexibility Workshop, which took place in Atlanta, GA on August 19-20, 2009.

  9. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    163 Praxair, Inc. Tonawanda, WV Georgia Institute of Technology, 505 10th Street, NW, Atlanta, GA 30332 FESCCAESD Kenneth David Lyons Improving Energy Efficiency of Air...

  10. Search for: All records | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atlanta, GA (United States) Atmospheric System Research Bartlesville Project Office, OK (United States) Battelle Memorial Institute (United States) Bechtel Hanford Inc. (BHI),...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Regional Office, Atlanta, GA (United States) Atmospheric System Research Bartlesville Project Office, OK (United States) Battelle Memorial Institute (United States) Bechtel...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Atlanta, GA (United States) Atmospheric System Research Bartlesville Project Office, OK ... We consider the R-axion which has relatively heavy mass in order to complement our ...

  13. Microfabricated Optical Compressive Load Sensors (Conference...

    Office of Scientific and Technical Information (OSTI)

    W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: IEEE Sensors 2007, Atlanta, GA, United States, Oct 28 - Oct 31, 2007 Research Org: Lawrence...

  14. About Us - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GA and Aiken, SC and is less than three hours drive from Atlanta, Charlotte, the Blue Ridge Mountains and the Atlantic Ocean beaches of Savannah, Charleston, Myrtle Beach...

  15. Microfabricated Optical Compressive Load Sensors (Conference...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: IEEE Sensors 2007, Atlanta, GA, United States, Oct 28 - Oct 31, 2007 ...

  16. A new pre-processing method for scanning X-ray microdiffraction...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS);Oct. 22-24, 205;Atlanta, GA Publisher: 2015 IEEE Biomedical ...

  17. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matthew J. Reno, Abraham Ellis, Jeff Smith, and Roger Dugan Prepared by Sandia ... of Technology Atlanta, GA, 30332 Jeff Smith and Roger Dugan Electric Power Research ...

  18. A monolithic white LED with an active region based on InGaN QWs separated by short-period InGaN/GaN superlattices

    SciTech Connect (OSTI)

    Tsatsulnikov, A. F. Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Usov, S. O.; Nikolaev, A. E.; Kryzhanovskaya, N. V.; Synitsin, M. A.; Sizov, V. S.; Zakgeim, A. L.; Mizerov, M. N.

    2010-06-15

    A new approach to development of effective monolithic white-light emitters is described based on using a short-period InGaN/GaN superlattice as a barrier layer in the active region of LED structures between InGaN quantum wells emitting in the blue and yellow-green spectral ranges. The optical properties of structures of this kind have been studied, and it is demonstrated that the use of such a superlattice makes it possible to obtain effective emission from the active region.

  19. Long-wavelength shift and enhanced room temperature photoluminescence efficiency in GaAsSb/InGaAs/GaAs-based heterostructures emitting in the spectral range of 1.01.2??m due to increased charge carrier's localization

    SciTech Connect (OSTI)

    Kryzhkov, D. I. Yablonsky, A. N.; Morozov, S. V.; Aleshkin, V. Ya.; Krasilnik, Z. F.; Zvonkov, B. N.; Vikhrova, O. V.

    2014-11-28

    In this work, a study of the photoluminescence (PL) temperature dependence in quantum well GaAs/GaAsSb and double quantum well InGaAs/GaAsSb/GaAs heterostructures grown by metalorganic chemical vapor deposition with different parameters of GaAsSb and InGaAs layers has been performed. It has been demonstrated that in double quantum well InGaAs/GaAsSb/GaAs heterostructures, a significant shift of the PL peak to a longer-wavelength region (up to 1.2??m) and a considerable reduction in the PL thermal quenching in comparison with GaAs/GaAsSb structures can be obtained due to better localization of charge carriers in the double quantum well. For InGaAs/GaAsSb/GaAs heterostructures, an additional channel of radiative recombination with participation of the excited energy states in the quantum well, competing with the main ground-state radiative transition, has been revealed.

  20. Photoeffects in WO{sub 3}/GaAs electrode

    SciTech Connect (OSTI)

    Yoon, K.H.; Lee, J.W.; Cho, Y.S.; Kang, D.H.

    1996-12-01

    Photoeffects of a {ital p}-type GaAs coated with WO{sub 3} thin film have been investigated as a function of film thickness and photoresponse transients of the WO{sub 3}/GaAs electrode were studied. Also, these results were compared to those for a single {ital p}-type GaAs electrode. The photocurrent of the WO{sub 3}/GaAs electrode depended on the film thickness of the WO{sub 3}, showing an optimum photon efficiency for specimens of 800 A thickness. This is due to the existence of an effective interface state within the band gap which reduces trapping of carriers and facilitates carrier movement. For an 800-A-thick WO{sub 3} thin film deposited {ital p}-GaAs photoelectrode, the photogenerated electrons were found to move to an electrolyte at a higher positive onset potential compared with that of single {ital p}-type GaAs, which was confirmed as a result of transient behavior. {ital I}{endash}{ital V} and {ital C}{endash}{ital V} characteristics of the WO{sub 3}/GaAs electrode were also compared with those of a single {ital p}-type GaAs electrode. {copyright} {ital 1996 American Institute of Physics.}

  1. Growth of GaN@InGaN Core-Shell and Au-GaN Hybrid Nanostructures for Energy Applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuykendall, Tevye; Aloni, Shaul; Jen-La Plante, Ilan; Mokari, Taleb

    2009-01-01

    We demonstrated a method to control the bandgap energy of GaN nanowires by forming GaN@InGaN core-shell hybrid structures using metal organic chemical vapor deposition (MOCVD). Furthermore, we show the growth of Au nanoparticles on the surface of GaN nanowires in solution at room temperature. The work shown here is a first step toward engineering properties that are crucial for the rational design and synthesis of a new class of photocatalytic materials. The hybrid structures were characterized by various techniques, including photoluminescence (PL), energy dispersive x-ray spectroscopy (EDS), transmission and scanning electron microscopy (TEM and SEM), and x-ray diffraction (XRD).

  2. Elastic properties of Pu metal and Pu-Ga alloys

    SciTech Connect (OSTI)

    Soderlind, P; Landa, A; Klepeis, J E; Suzuki, Y; Migliori, A

    2010-01-05

    We present elastic properties, theoretical and experimental, of Pu metal and Pu-Ga ({delta}) alloys together with ab initio equilibrium equation-of-state for these systems. For the theoretical treatment we employ density-functional theory in conjunction with spin-orbit coupling and orbital polarization for the metal and coherent-potential approximation for the alloys. Pu and Pu-Ga alloys are also investigated experimentally using resonant ultrasound spectroscopy. We show that orbital correlations become more important proceeding from {alpha} {yields} {beta} {yields} {gamma} plutonium, thus suggesting increasing f-electron correlation (localization). For the {delta}-Pu-Ga alloys we find a softening with larger Ga content, i.e., atomic volume, bulk modulus, and elastic constants, suggest a weakened chemical bonding with addition of Ga. Our measurements confirm qualitatively the theory but uncertainties remain when comparing the model with experiments.

  3. General Atomics (GA) Fusion News: A New Spin on Understanding Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Confinement | Princeton Plasma Physics Lab General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement American Fusion News Category: General Atomics (GA) Link: General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement

  4. Room temperature spin transport in undoped (110) GaAs/AlGaAs quantum wells

    SciTech Connect (OSTI)

    Yokota, Nobuhide Aoshima, Yohei; Ikeda, Kazuhiro; Kawaguchi, Hitoshi

    2014-02-17

    We are reporting on our first observation of a micrometer-order electron spin transport in a (110) GaAs/AlGaAs multiple quantum well (QW) at room temperature using a space- and time-resolved Kerr rotation technique. A 37-μm transport was observed within an electron spin lifetime of 1.2 ns at room temperature when using an in-plane electric field of 1.75 kV/cm. The spatio-temporal profiles of electron spins were well reproduced by the spin drift-diffusion equations coupled with the Poisson equation, supporting the validity of the measurement. The results suggest that (110) QWs are useful as a spin transport layer for semiconductor spintronic devices operating at room temperature.

  5. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    SciTech Connect (OSTI)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); You, Guanjun; Liu, Jie; Wang, Li; Xu, Jian, E-mail: jianxu@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage current and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.

  6. Evaluation of the two-photon absorption characteristics of GaSb/GaAs quantum rings

    SciTech Connect (OSTI)

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-07-28

    The optical parameters describing the sub-bandgap response of GaSb/GaAs quantum rings solar cells have been obtained from photocurrent measurements using a modulated pseudo-monochromatic light source in combination with a second, continuous photo-filling source. By controlling the charge state of the quantum rings, the photoemission cross-sections describing the two-photon sub-bandgap transitions could be determined independently. Temperature dependent photo-response measurements also revealed that the barrier for thermal hole emission from the quantum rings is significantly below the quantum ring localisation energy. The temperature dependence of the sub-bandgap photo-response of the solar cell is also described in terms of the photo- and thermal-emission characteristics of the quantum rings.

  7. Large linear magnetoresistance in a GaAs/AlGaAs heterostructure

    SciTech Connect (OSTI)

    Aamir, Mohammed Ali, E-mail: aamir@physics.iisc.ernet.in; Goswami, Srijit, E-mail: aamir@physics.iisc.ernet.in; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Baenninger, Matthias; Farrer, Ian; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Tripathi, Vikram [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Pepper, Michael [Department of Electrical and Electronic Engineering, University College, London WC1E 7JE (United Kingdom)

    2013-12-04

    We report non-saturating linear magnetoresistance (MR) in a two-dimensional electron system (2DES) at a GaAs/AlGaAs heterointerface in the strongly insulating regime. We achieve this by driving the gate voltage below the pinch-off point of the device and operating it in the non-equilibrium regime with high source-drain bias. Remarkably, the magnitude of MR is as large as 500% per Tesla with respect to resistance at zero magnetic field, thus dwarfing most non-magnetic materials which exhibit this linearity. Its primary advantage over most other materials is that both linearity and the enormous magnitude are retained over a broad temperature range (0.3 K to 10 K), thus making it an attractive candidate for cryogenic sensor applications.

  8. Optical properties of multi-stacked InGaAs/GaNAs quantum dot solar cell fabricated on GaAs (311)B substrate

    SciTech Connect (OSTI)

    Shoji, Yasushi; Akimoto, Katsuhiro; Okada, Yoshitaka

    2012-09-15

    Quantum dot solar cells (QDSCs) comprised of 10 stacked pairs of strain-compensated InGaAs/GaNAs QD structure have been fabricated by atomic hydrogen-assisted molecular beam epitaxy. A homogeneous and high-density QD array structure with improved in-plane ordering and total density of {approx}10{sup 12} cm{sup -2} has been achieved on GaAs (311)B grown at 460 Degree-Sign C after stacking. The external quantum efficiency (EQE) of InGaAs/GaNAs QDSC increases in the longer wavelength range due to additive contribution from QD layers inserted in the intrinsic region. The short-circuit current density measured for QDSC is 17.2 mA/cm{sup 2} compared to 14.8 mA/cm{sup 2} of GaAs reference cell. Further, an increase in EQE due to photocurrent production by 2-step photon absorption has been observed at room temperature though it is still small at around 0.1%.

  9. Transport properties of InGaAs/GaAs Heterostructures with {delta}-doped quantum wells

    SciTech Connect (OSTI)

    Baidus, N. V.; Vainberg, V. V.; Zvonkov, B. N.; Pylypchuk, A. S. Poroshin, V. N.; Sarbey, O. G.

    2012-05-15

    The lateral transport of electrons in single- and double-well pseudomorphic GaAs/n-InGaAs/GaAs heterostructures with quantum wells 50-100 meV deep and impurity {delta}-layers in the wells, with concentrations in the range 10{sup 11} < N{sub s} < 10{sup 12} cm{sup -2}, has been investigated. Single-well structures with a doped well at the center exhibit a nonmonotonic temperature dependence of the Hall coefficient and an increase in low-temperature electron mobility with an increase in the impurity concentration. The results obtained indicate that the impurity-band electron states play an important role in the conductivity of these structures. Involvement of the impurity band also allows to explain adequately the characteristics of the conductivity of double-well structures; in contrast to single-well structures, band bending caused by asymmetric doping is of great importance. The numerical calculations of conductivity within the model under consideration confirm these suggestions.

  10. Germanium subcells for multijunction GaInP/GaInAs/Ge solar cells

    SciTech Connect (OSTI)

    Kalyuzhnyy, N. A.; Gudovskikh, A. S.; Evstropov, V. V.; Lantratov, V. M.; Mintairov, S. A.; Timoshina, N. Kh.; Shvarts, M. Z.; Andreev, V. M.

    2010-11-15

    Photovoltaic converters based on n-GaInP/n-p-Ge heterostructures grown by the OMVPE under different conditions of formation of the p-n junction are studied. The heterostructures are intended for use as narrow-gap subcells of the GaInP/GaInAs/Ge three-junction solar cells. It is shown that, in Ge p-tn junctions, along with the diffusion mechanism, the tunneling mechanism of the current flow exists; therefore, the two-diode electrical equivalent circuit of the Ge p-n junction is used. The diode parameters are determined for both mechanisms from the analysis of both dark and 'light' current-voltage dependences. It is shown that the elimination of the component of the tunneling current allows one to increase the efficiency of the Ge subcell by {approx}1% with conversion of nonconcentrated solar radiation. The influence of the tunneling current on the efficiency of the Ge-based devices can be in practice reduced to zero at photogenerated current density of {approx}1.5 A/cm{sup 2} due to the use of the concentrated solar radiation.

  11. Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3??m

    SciTech Connect (OSTI)

    Goldmann, Elias Jahnke, Frank; Paul, Matthias; Kettler, Jan; Jetter, Michael; Michler, Peter; Krause, Florian F.; Mller, Knut; Mehrtens, Thorsten; Rosenauer, Andreas

    2014-10-13

    A combined experimental and theoretical study of InGaAs/GaAs quantum dots (QDs) emitting at 1.3??m under the influence of a strain-reducing InGaAs quantum well is presented. We demonstrate a red shift of 2040?nm observed in photoluminescence spectra due to the quantum well. The InGaAs/GaAs QDs grown by metal organic vapor phase epitaxy show a bimodal height distribution (1?nm and 5?nm) and indium concentrations up to 90%. The emission properties are explained with combined tight-binding and configuration-interaction calculations of the emission wavelengths in conjunction with high-resolution scanning transmission electron microscopy investigations of QD geometry and indium concentrations in the QDs, which directly enter the calculations. QD geometries and concentration gradients representative for the ensemble are identified.

  12. Progress toward technology transition of GaInP{sub 2}/GaAs/Ge multijunction solar cells

    SciTech Connect (OSTI)

    Keener, D.N.; Marvin, D.C.; Brinker, D.J.; Curtis, H.B.; Price, P.M.

    1997-12-31

    The objective of the joint WL/PL/NASA Multijunction Solar Cell Manufacturing Technology (ManTech) Program is to scale up high efficiency GaInP{sub 2}/GaAs/Ge multijunction solar cells to production size, quantity, and yield while limiting the production cost/Watt ($/W) to 15% over GaAs cells. Progress made by the program contractors, Spectrolab and TECSTAR, include, respectively, best cell efficiencies of 25.76% and 24.7% and establishment of 24.2% and 23.8% lot average efficiency baseline designs. The paper also presents side-by-side testing results collected by Phillips Laboratory and NASA Lewis on Phase 1 deliverable cells, which shows compliance with program objectives. Cell performance, pre- and post-radiation, and temperature coefficient results on initial production GaInP{sub 2}/GaAs/Ge solar cells will be presented.

  13. Ferromagnetism in undoped One-dimensional GaN Nanowires

    SciTech Connect (OSTI)

    Jeganathan, K. E-mail: jagan@physics.bdu.ac.in; Purushothaman, V.; Debnath, R.; Arumugam, S.

    2014-05-15

    We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW) fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ?0.75 emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 10{sup ?8} mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

  14. Characterization of Zns-GaP Naon-composites

    SciTech Connect (OSTI)

    Todd, V.

    1993-12-09

    It proved possible to produce consistent, high-quality nanocrystalline ZnS powders with grain sizes as small as 8 nm. These powders are nano-porous and are readily impregnated with GaP precursor, although inconsistently. Both crystal structure and small grain size of the ZnS can be maintained through the use of GaP. Heat treatment of the impregnated powders results in a ZnS-GaP composite structure where the grain sizes of the phases are on the order of 10--20 nm. Conventional powder processing should be able to produce optically dense ceramic compacts with improved mechanical properties and suitable IR transmission.

  15. Outdoor Testing of GaInP2/GaAs Tandem Cells with Top Cell Thickness Varied

    SciTech Connect (OSTI)

    McMahon, W. E.; Emergy, K. E.; Friedman, D. J.; Ottoson, L.; Young, M. S.; Ward, J. S.; Kramer, C. M.; Duda, A.; Kurtz, S.

    2005-08-01

    In this study, we measure the performance of GaInP2/GaAs tandem cells under direct beam sunlight outdoors in order to quantify their sensitivity to both spectral variation and GaInP2 top-cell thickness. A set of cells with five different top-cell thicknesses was mounted on a two-axis tracker with the incident sunlight collimated to exclude all except the direct beam. Current-voltage (I-V) curves were taken throughout the course of several days, along with measurements of the direct solar spectrum. Our two major conclusions are: (1) GaInP2/GaAs tandem cells designed for either the ASTM G-173 direct (G-173D) spectrum or the "air mass 1.5 global" (AM1.5G) spectrum perform the best, and (2) cells can be characterized indoors and modeled using outdoor spectra with the same result. These results are equally valid for GaInP2/GaAs/Ge triple-junction cells.

  16. Local Structures and Interface Morphology of InGaAsN Thin Films Grown on GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Chen, J.G.; Geisz, J.F.; Huang, S.; Hulbert, S.L.; Jones, E.D.; Kao, Y.H.; Kurtz, S.; Kurtz, S.R.; Olson, J.M.; Soo, Y.L.

    1999-02-23

    The compound semiconductor system InGaAsN exhibits many intriguing properties which are particularly useful for the development of innovative high efficiency thin film solar cells and long wavelength lasers. The bandgap in these semiconductors can be varied by controlling the content of N and In and the thin films can yet be lattice-matched to GaAs. In the present work, x-ray absorption fine structure (XAFS) and grazing incidence x-ray scattering (GIXS) techniques have been employed to probe the local environment surrounding both N and In atoms as well as the interface morphology of InGaAsN thin films epitaxially grown on GaAs. The soft x-ray XAFS results around nitrogen K-edge reveal that N is in the sp{sup 3} hybridized bonding configuration in InGaAsN and GaAsN, suggesting that N impurities most likely substitute for As sites in these two compounds. The results of In K-edge XAFS suggest a possible trend of a slightly larger coordination number of As nearest neighbors around In atoms in InGaAsN samples with a narrower bandgap whereas the In-As interatomic distance remains practically the same as in InAs within the experimental uncertainties. These results combined suggest that N-substitution of the As sites plays an important role of bandgap-narrowing while in the meantime counteracting the compressive strain caused by In-doping. Grazing incidence x-ray scattering (GIXS) experiments verify that InGaAsN thin films can indeed form very smooth interfaces with GaAs yielding an average interfacial roughness of 5-20{angstrom}.

  17. Electrical spin injection using GaCrN in a GaN based spin light emitting diode

    SciTech Connect (OSTI)

    Banerjee, D.; Ganguly, S.; Saha, D.; Adari, R.; Sankaranarayan, S.; Kumar, A.; Aldhaheri, R. W.; Hussain, M. A.; Balamesh, A. S.

    2013-12-09

    We have demonstrated electrical spin-injection from GaCrN dilute magnetic semiconductor (DMS) in a GaN-based spin light emitting diode (spin-LED). The remanent in-plane magnetization of the thin-film semiconducting ferromagnet has been used for introducing the spin polarized electrons into the non-magnetic InGaN quantum well. The output circular polarization obtained from the spin-LED closely follows the normalized in-plane magnetization curve of the DMS. A saturation circular polarization of ?2.5% is obtained at 200?K.

  18. Effects of light illumination on electron velocity of AlGaN/GaN heterostructures under high electric field

    SciTech Connect (OSTI)

    Guo, Lei; Yang, Xuelin Cheng, Jianpeng; Sang, Ling; Xu, Fujun; Tang, Ning; Feng, Zhihong; Lv, Yuanjie; Wang, Xinqiang; Shen, B.; Ge, Weikun

    2014-12-15

    We have investigated the variation of electron velocity in AlGaN/GaN heterostructures depending on illuminating light intensity and wavelength. It is shown that the electron velocity at high electric field increases under above-band light illumination. This electron velocity enhancement is found to be related to the photo-generated cold holes which interact with hot electrons and thus accelerate the energy relaxation at high electric field. The results suggest an alternative way to improve the electron energy relaxation rate and hence the electron velocity in GaN based heterostructures.

  19. Microscopic, electrical and optical studies on InGaN/GaN quantum wells based LED devices

    SciTech Connect (OSTI)

    Mutta, Geeta Rani; Venturi, Giulia; Castaldini, Antonio; Cavallini, Anna

    2014-02-21

    We report here on the micro structural, electronic and optical properties of a GaN-based InGaN/GaN MQW LED grown by the MOVPE method. The present study shows that the threading dislocations present in these LED structures are terminated as V pits at the surface and have an impact on the electrical and optical activity of these devices. It has been pointed that these dislocations were of edge, screw and mixed types. EBIC maps suggest that the electrically active defects are screw and mixed dislocations and behave as nonradiative recombinant centres.

  20. High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission

    SciTech Connect (OSTI)

    Wang, Huolei; Yu, Hongyan; Zhou, Xuliang; Kan, Qiang; Yuan, Lijun; Wang, Wei; Pan, Jiaoqing; Chen, Weixi; Ding, Ying

    2014-10-06

    We report the demonstration of an InGaAs/GaAs quantum well (QW) broadband stimulated emission laser with a structure that integrated a GaAs tunnel junction with two QW active regions. The laser exhibits ultrabroad lasing spectral coverage of ?51?nm at a center wavelength of 1060?nm with a total emission power of 790 mW, corresponding to a high average spectral power density of 15.5 mW/nm, under pulsed current conditions. Compared to traditional lasers, this laser with an asymmetric separate-confinement heterostructure shows broader lasing bandwidth and higher spectral power density.

  1. Atlanta, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Global Energy Holdings Group formerly Xethanol Corporation Navajo Wind Energy Plum Combustion Radiance Solar Servidyne SilvaGas Corporation FERCO Enterprises Inc Solar Systems...

  2. Atlanta Community Leaders' Institute Conference | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economic development; housing; and health disparities and health issues, especially the combined effects of diabetes, hypertension, and obesity known as metabolic syndrome. Dr. ...

  3. Evaporation-based Ge/.sup.68 Ga Separation

    DOE Patents [OSTI]

    Mirzadeh, Saed (Albuquerque, NM); Whipple, Richard E. (Los Alamos, NM); Grant, Patrick M. (Los Alamos, NM); O'Brien, Jr., Harold A. (Los Alamos, NM)

    1981-01-01

    Micro concentrations of .sup.68 Ga in secular equilibrium with .sup.68 Ge in strong aqueous HCl solution may readily be separated in ionic form from the .sup.68 Ge for biomedical use by evaporating the solution to dryness and then leaching the .sup.68 Ga from the container walls with dilute aqueous solutions of HCl or NaCl. The chloro-germanide produced during the evaporation may be quantitatively recovered to be used again as a source of .sup.68 Ga. If the solution is distilled to remove any oxidizing agents which may be present as impurities, the separation factor may easily exceed 10.sup.5. The separation is easily completed and the .sup.68 Ga made available in ionic form in 30 minutes or less.

  4. Linear and nonlinear optical properties of GaAs/Al{sub x}Ga{sub 1?x}As/GaAs/Al{sub y}Ga{sub 1?y}As multi-shell spherical quantum dot

    SciTech Connect (OSTI)

    Emre Kavruk, Ahmet E-mail: aekavruk@gmail.com; Koc, Fatih; Sahin, Mehmet E-mail: mehsahin@gmail.com

    2013-11-14

    In this work, the optical properties of GaAs/Al{sub x}Ga{sub 1?x}As/GaAs/Al{sub y}Ga{sub 1?y}As multi-shell quantum dot heterostructure have been studied as a function of Al doping concentrations for cases with and without a hydrogenic donor atom. It has been observed that the absorption coefficient strength and/or resonant absorption wavelength can be adjusted by changing the Al content of inner-barrier and/or outer-barrier regions. Besides, it has been shown that the donor atom has an important effect on the control of the electronic and optical properties of the structure. The results have been presented as a function of the Al contents of the inner-barrier x and outer-barrier y regions and probable physical reasons have been discussed.

  5. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt001_es_koo_2012_p.pdf More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  6. Reply Comments of T-Mobile USA, Inc. | Department of Energy

    Energy Savers [EERE]

    T-Mobile USA, Inc. Reply Comments of T-Mobile USA, Inc. T-Mobile USA, Inc. ("T-Mobile") hereby submits these reply comments in response to the above-captioned Request for Information ("RFI")1 issued by the Department of Energy ("DOE"). T-Mobile appreciates the opportunity to submit reply comments and commends the DOE for undertaking a comprehensive examination of the communications requirements necessary to deploy smart grid technology so consumers can experience

  7. Characterization of Cu(In,Ga)Se2 (CIGS) films with varying gallium ratios

    SciTech Connect (OSTI)

    Claypoole, Jesse; Peace, Bernadette; Sun, Neville; Dwyer, Dan; Eisaman, Matthew D.; Haldar, Pradeep; Efstathiadis, Harry

    2015-09-05

    Cu(In1-x,Gax)Se2 (CIGS) absorber layers were deposited on molybdenum (Mo) coated soda-lime glass substrates with varying Ga content (described as Ga/(In+Ga) ratios) with respect to depth. As the responsible mechanisms for the limitation of the performance of the CIGS solar cells with high Ga contents are not well understood, the goal of this work was to investigate different properties of CIGS absorber films with Ga/(In+Ga) ratios varied between 0.29 and 0.41 (as determined by X-ray florescence spectroscopy (XRF)) in order to better understand the role that the Ga content has on film quality. The Ga grading in the CIGS layer has the effect causing a higher bandgap toward the surface and Mo contact while the band gap in the middle of the CIGS layer is lower. Also, a wider and larger Ga/(In+Ga) grading dip located deeper in the CIGS absorber layers tend to produce larger grains in the regions of the films that have lower Ga/(In+Ga) ratios. It was found that surface roughness decreases from 51.2 nm to 41.0 nm with increasing Ga/(In+Ga) ratios. However, the surface roughness generally decreases if the Ga grading occurs deeper in the absorber layer.

  8. Quaternary AlInGaN/InGaN quantum well on vicinal c-plane substrate for high emission intensity of green wavelengths

    SciTech Connect (OSTI)

    Park, Seoung-Hwan; Pak, Y. Eugene; Park, Chang Young; Mishra, Dhaneshwar; Yoo, Seung-Hyun; Cho, Yong-Hee Shim, Mun-Bo; Kim, Sungjin

    2015-05-14

    Electronic and optical properties of non-trivial semipolar AlInGaN/InGaN quantum well (QW) structures are investigated by using the multiband effective-mass theory and non-Markovian optical model. On vicinal c-plane GaN substrate miscut by a small angle (??GaN/InGaN system is shown to have ?3 times larger spontaneous emission peak intensity than the conventional InGaN/GaN system at green wavelength. It is attributed to much larger optical matrix element of the quaternary AlInGaN/InGaN system, derived from the reduction of internal electric field induced by polarizations. This effect exceeds the performance-degrading factor of smaller quasi-Fermi-level separation for the quaternary AlInGaN/InGaN system than that for the conventional InGaN/GaN system. Results indicate that the use of quaternary III-nitride QWs on vicinal substrates may be beneficial in improving the performance of optical devices emitting green light.

  9. A new InGaP/GaAs tunneling heterostructure-emitter bipolar transistor (T-HEBT)

    SciTech Connect (OSTI)

    Tsai, Jung-Hui; Lee, Ching-Sung; Lour, Wen-Shiung; Ma, Yung-Chun; Ye, Sheng-Shiun

    2011-05-15

    Excellent characteristics of an InGaP/GaAs tunneling heterostructure-emitter bipolar transistor (T-HEBT) are first demonstrated. The insertion of a thin n-GaAs emitter layer between tynneling confinement and base layers effectivelty eliminates the potential spike at base-emitter junction and reduces the collector-emitter offset voltage, while the thin InGaP tunneling confinement layer is employed to reduce the transporting time across emitter region for electrons and maintain the good confinement effect for holes. Experimentally, the studied T-HEBN exhibits a maximum current gain of 285, a relatively low offset voltage of 40 mW, and a current-gain cutoff frequency of 26.4 GHz.

  10. The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa

    SciTech Connect (OSTI)

    zduran, Mustafa; Turgut, Kemal; Arikan, Nihat; ?yigr, Ahmet; Candan, Abdullah

    2014-10-06

    We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso program package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.

  11. Development & Industrialization of InGaN/GaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flemish, Lumileds joe.flemish@philips.com Development & Industrialization of InGaN/GaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture 2015 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: August 1, 2013 Planned end date: July 31, 2015 Key Milestones: 1. Repeatable demonstration of PSS emitter performance within 1.5% of the TFFC counterpart; - met January 2014 2. Demonstration of PSS emitter performance exceeding TFFC counterpart by 2%:

  12. Effects of high-temperature AIN buffer on the microstructure of AlGaN/GaN HEMTs

    SciTech Connect (OSTI)

    Coerekci, S.; Oeztuerk, M. K.; Yu, Hongbo; Cakmak, M.; Oezcelik, S.; Oezbay, E.

    2013-06-15

    Effects on AlGaN/GaN high-electron-mobility transistor structure of a high-temperature AlN buffer on sapphire substrate have been studied by high-resolution x-ray diffraction and atomic force microscopy techniques. The buffer improves the microstructural quality of GaN epilayer and reduces approximately one order of magnitude the edge-type threading dislocation density. As expected, the buffer also leads an atomically flat surface with a low root-mean-square of 0.25 nm and a step termination density in the range of 10{sup 8} cm{sup -2}. Due to the high-temperature buffer layer, no change on the strain character of the GaN and AlGaN epitaxial layers has been observed. Both epilayers exhibit compressive strain in parallel to the growth direction and tensile strain in perpendicular to the growth direction. However, an high-temperature AlN buffer layer on sapphire substrate in the HEMT structure reduces the tensile stress in the AlGaN layer.

  13. p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Tiam Tan, Swee; Kyaw, Zabu; Liu, Wei; Ji, Yun; Ju, Zhengang; Zhang, Xueliang [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore) [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wei Sun, Xiao, E-mail: EXWSUN@ntu.edu.sg [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electronics and Electrical Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Volkan Demir, Hilmi, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey); Department of Physics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey)

    2013-12-23

    Here, GaN/Al{sub x}Ga{sub 1-x}N heterostructures with a graded AlN composition, completely lacking external p-doping, are designed and grown using metal-organic-chemical-vapour deposition (MOCVD) system to realize three-dimensional hole gas (3DHG). The existence of the 3DHG is confirmed by capacitance-voltage measurements. Based on this design, a p-doping-free InGaN/GaN light-emitting diode (LED) driven by the 3DHG is proposed and grown using MOCVD. The electroluminescence, which is attributed to the radiative recombination of injected electrons and holes in InGaN/GaN quantum wells, is observed from the fabricated p-doping-free devices. These results suggest that the 3DHG can be an alternative hole source for InGaN/GaN LEDs besides common Mg dopants.

  14. Pieridae Energy (USA) Ltd. FE Dkt. No. 14-179-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on October 24, 2014, by Pieridae Energy (USA) Ltd (Pieridae) requesting long-term, multi-contract authority as further...

  15. U.S. Department of Energy Awards a Contract to USA Repository...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Awards a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project October 30, 2008 - 4:14pm ...

  16. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  17. M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford

    Office of Scientific and Technical Information (OSTI)

    the 2 MeV microwave gun for the SSRL 150 MeV linac Borland, M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford Synchrotron Radiation Lab.); Green, M.C.; Nelson,...

  18. EXS-16-0009- In the Matter of Alcatel-Lucent USA

    Broader source: Energy.gov [DOE]

    On February 23, 2016, OHA granted an Application for Stay filed by Alcatel-Lucent USA (Alcatel).  Alcatel requested a stay of enforcement of DOE's February 2014 Energy Conservation Standards for...

  19. Overview of Station Analysis Tools Developed in Support of H2USA

    Broader source: Energy.gov [DOE]

    Access the recording and download presentation slides from the Fuel Cell Technologies Office webinar "Overview of Station Analysis Tools Developed in Support of H2USA" held on May 12, 2015.

  20. Intermixing of InGaAs/GaAs Quantum Well Using Multiple Cycles Annealing Cu-doped SiO2

    SciTech Connect (OSTI)

    Hongpinyo, V; Ding, Y H; Dimas, C E; Wang, Y; Ooi, B S; Qiu, W; Goddard, L L; Behymer, E M; Cole, G D; Bond, T C

    2008-06-11

    The authors investigate the effect of intermixing in InGaAs/GaAs quantum well structure using Cu-doped SiO{sub 2}. The incorporation of Cu into the silica film yields larger bandgap shift than typical impurity-free vacancy diffusion (IFVD) method at a lower activation temperature. We also observe enhancement of the photoluminescence (PL) signal from the intermixed InGaAs/GaAs quantum well structure after being cycle-annealed at 850 C.

  1. Radiation damage of GaAs thin-film solar cells on Si substrates

    SciTech Connect (OSTI)

    Itoh, Y.; Yamaguchi, M.; Nishioka, T.; Yamamoto, A.

    1987-01-15

    1-MeV electron irradiation damages in GaAs thin-film solar cells on Si substrates are examined for the first time. Damage constant for minority-carrier diffusion length in GaAs heteroepitaxial films on Si substrates is found to be the same as that in GaAs homoepitaxial films on GaAs substrates. This agreement suggests that GaAs/Si has the same defect introduction rate with radiation as GaAs/GaAs. The degradation of GaAs solar cells on Si with electron irradiation is less than that of GaAs solar cells on GaAs, because in the present, GaAs films on Si substrates have lower minority-carrier diffusion length compared to GaAs films on GaAs and these films are insensitive to radiation. The p/sup +/-p/sup +/-n AlGaAs-GaAs heteroface solar cell with junction depth of about 0.3 ..mu..m is concluded to be useful for a high-efficiency and radiation-resistant solar cell fabricated on a Si substrate.

  2. Characterization of Cu(In,Ga)Se2 (CIGS) films with varying gallium ratios

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Claypoole, Jesse; Peace, Bernadette; Sun, Neville; Dwyer, Dan; Eisaman, Matthew D.; Haldar, Pradeep; Efstathiadis, Harry

    2015-09-05

    Cu(In1-x,Gax)Se2 (CIGS) absorber layers were deposited on molybdenum (Mo) coated soda-lime glass substrates with varying Ga content (described as Ga/(In+Ga) ratios) with respect to depth. As the responsible mechanisms for the limitation of the performance of the CIGS solar cells with high Ga contents are not well understood, the goal of this work was to investigate different properties of CIGS absorber films with Ga/(In+Ga) ratios varied between 0.29 and 0.41 (as determined by X-ray florescence spectroscopy (XRF)) in order to better understand the role that the Ga content has on film quality. The Ga grading in the CIGS layer hasmore » the effect causing a higher bandgap toward the surface and Mo contact while the band gap in the middle of the CIGS layer is lower. Also, a wider and larger Ga/(In+Ga) grading dip located deeper in the CIGS absorber layers tend to produce larger grains in the regions of the films that have lower Ga/(In+Ga) ratios. It was found that surface roughness decreases from 51.2 nm to 41.0 nm with increasing Ga/(In+Ga) ratios. However, the surface roughness generally decreases if the Ga grading occurs deeper in the absorber layer.« less

  3. 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy -2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2002 DEER Conference Presentation: Southwest Research Institute PDF icon 2002_deer_leet.pdf More Documents & Publications Low Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations - A Progress Report State-of-the-Art and Emergin Truck Engine Technologies Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines

  4. Waste-to-energy: A review of the status and benefits in USA

    SciTech Connect (OSTI)

    Psomopoulos, C.S. Bourka, A.; Themelis, N.J.

    2009-05-15

    The USA has significant experience in the field of municipal solid waste management. The hierarchy of methodologies for dealing with municipal solid wastes consists of recycling and composting, combustion with energy recovery (commonly called waste-to-energy) and landfilling. This paper focuses on waste-to-energy and especially its current status and benefits, with regard to GHG, dioxin and mercury emissions, energy production and land saving, on the basis of experience of operating facilities in USA.

  5. Laser Gain and Threshold Properties in Compressive-Strained and Lattice-Matched GaInNAs/GaAs Quantum Wells

    SciTech Connect (OSTI)

    Chow, W.W.; Jones, E.D.; Modine, N.A.; Allerman, A.A.; Kurtz, S.R.

    1999-08-04

    The optical gain spectra for compressive-strained and lattice-matched GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of lasing threshold current density for different GAInNAs/GaAs laser structures.

  6. Radiation resistance of GaAs-GaAlAs vertical cavity surface emitting lasers

    SciTech Connect (OSTI)

    Jabbour, J.; Zazoui, M.; Sun, G.C.; Bourgoin, J.C.; Gilard, O.

    2005-02-15

    The variations of the optical and electrical characteristics of a vertical cavity surface emitting laser based on GaAs quantum wells have been monitored versus irradiation with 1 MeV electrons. The results are understood by the introduction of nonradiative recombination centers in the wells whose characteristics, capture cross section for minority carriers times their introduction rate, can be determined. A similar study performed for proton irradiation shows that the results can be explained in the same way when the introduction rate of the defects is replaced by the proton energy loss into atomic collisions. These results allow us to deduce the equivalence between electron and proton irradiations: A flux of 1 proton cm{sup -2} which loses an energy E{sub nl} (eV) into atomic collisions is equivalent to a fluence of about 9x10{sup -2} E{sub nl} cm{sup -2}, 1 MeV electrons.

  7. Listeriosis Prevention Knowledge Among Pregnant Women in the USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogunmodede, Folashade; Jones, Jeffery L.; Scheftel, Joni; Kirkland, Elizabeth; Schulkin, Jay; Lynfield, Ruth

    2005-01-01

    Background: Listeriosis is a food-borne disease often associated with ready-to-eat foods. It usually causes mild febrile gastrointestinal illness in immunocompetent persons. In pregnant women, it may cause more severe infection and often crosses the placenta to infect the fetus, resulting in miscarriage, fetal death or neonatal morbidity. Simple precautions during pregnancy can prevent listeriosis. However, many women are unaware of these precautions and listeriosis education is often omitted from prenatal care. Methods: Volunteer pregnant women were recruited to complete a questionnaire to assess their knowledge of listeriosis and its prevention, in two separate studies. One study was a nationalmore » survey of 403 women from throughout the USA, and the other survey was limited to 286 Minnesota residents. Results: In the multi-state survey, 74 of 403 respondents (18%) had some knowledge of listeriosis, compared with 43 of 286 (15%) respondents to the Minnesota survey. The majority of respondents reported hearing about listeriosis from a medical professional. In the multi-state survey, 33% of respondents knew listeriosis could be prevented by not eating delicatessen meats, compared with 17% in the Minnesota survey ( p = 0.01). Similarly, 31% of respondents to the multi-state survey compared with 19% of Minnesota survey respondents knew listeriosis could be prevented by avoiding unpasteurized dairy products (p = 0.05). As for preventive behaviors, 18% of US and 23% of Minnesota respondents reported avoiding delicatessen meats and ready-to-eat foods during pregnancy, whereas 86% and 88%, respectively, avoided unpasteurized dairy products. Conclusions: Most pregnant women have limited knowledge of listeriosis prevention. Even though most respondents avoided eating unpasteurized dairy products, they were unaware of the risk associated with ready-to-eat foods. Improved education of pregnant women regarding the risk and sources of listeriosis in pregnancy is needed.« less

  8. Nano-scale luminescence characterization of individual InGaN/GaN quantum wells stacked in a microcavity using scanning transmission electron microscope cathodoluminescence

    SciTech Connect (OSTI)

    Schmidt, Gordon Mller, Marcus; Veit, Peter; Bertram, Frank; Christen, Jrgen; Glauser, Marlene; Carlin, Jean-Franois; Cosendey, Gatien; Butt, Raphal; Grandjean, Nicolas

    2014-07-21

    Using cathodoluminescence spectroscopy directly performed in a scanning transmission electron microscope at liquid helium temperatures, the optical and structural properties of a 62 InGaN/GaN multiple quantum well embedded in an AlInN/GaN based microcavity are investigated at the nanometer scale. We are able to spatially resolve a spectral redshift between the individual quantum wells towards the surface. Cathodoluminescence spectral linescans allow directly visualizing the critical layer thickness in the quantum well stack resulting in the onset of plastic relaxation of the strained InGaN/GaN system.

  9. Quaternary InGaAsSb Thermophotovoltaic Diode Technology

    SciTech Connect (OSTI)

    M Dashiell; J Beausang; H Ehsani; G Nichols; D DePoy; L Danielson; P Talamo; K Rahner; E Brown; S Burger; P Fourspring; W Topper; P Baldasaro; C Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; Jizhong Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryl

    2005-01-26

    Thermophotovoltaic (TPV) diodes fabricated from InGaAsSb alloys lattice-matched to GaSb substrates are grown by Metal Organic Vapor Phase Epitaxy (MOVPE). 0.53eV InGaAsSb TPV diodes utilizing front-surface spectral control filters have been tested in a vacuum cavity and a TPV thermal-to-electric conversion efficiency ({eta}{sub TPV}) and a power density (PD) of {eta}{sub TPV} = 19% and PD=0.58 W/cm{sup 2} were measured for T{sub radiator} = 950 C and T{sub diode} = 27 C. Recombination coefficients deduced from minority carrier measurements and the theory reviewed in this article predict a practical limit to the maximum achievable conversion efficiency and power density for 0.53eV InGaAsSb TPV. The limits for the above operating temperatures are projected to be {eta}{sub TPV} = 26% and PD = 0.75 W/cm{sup 2}. These limits are extended to {eta}{sub TPV} = 30% and PD = 0.85W/cm{sup 2} if the diode active region is bounded by a reflective back surface to enable photon recycling and a two-pass optical path length. The internal quantum efficiency of the InGaAsSb TPV diode is close to the theoretically predicted limits, with the exception of short wavelength absorption in GaSb contact layers. Experiments show that the open circuit voltage of the 0.53eV InGaAsSb TPV diodes is not strongly dependent on the device architectures studied in this work where both N/P and P/N double heterostructure diodes have been grown with various acceptor and donor doping levels, having GaSb and AlGaAsSb confinement, and also partial back surface reflectors. Lattice matched InGaAsSb TPV diodes were fabricated with bandgaps ranging from 0.6 to 0.5eV without significant degradation of the open circuit voltage factor, quantum efficiency, or fill factor as the composition approached the miscibility gap. The key diode performance parameter which is limiting efficiency and power density below the theoretical limits in InGaAsSb TPV devices is the open circuit voltage. The open circuit voltages of state-of-the-art 0.53eV InGaAsSb TPV diode are {approx}10% lower than the predicted semi-empirical limit to open circuit voltage for a device having absorbing substrate; the voltages are {approx}17% below that for an Auger-limited device having back surface reflector and two-pass optical design.

  10. Alloy inhomogeneity and carrier localization in AlGaN sections and AlGaN/AlN nanodisks in nanowires with 240350?nm emission

    SciTech Connect (OSTI)

    Himwas, C.; Hertog, M. den; Dang, Le Si; Songmuang, R.; Monroy, E.

    2014-12-15

    We present structural and optical studies of AlGaN sections and AlGaN/AlN nanodisks (NDs) in nanowires grown by plasma-assisted molecular beam epitaxy. The Al-Ga intermixing at Al(Ga)N/GaN interfaces and the chemical inhomogeneity in AlGaN NDs evidenced by scanning transmission electron microscopy are attributed to the strain relaxation process. This interpretation is supported by the three-dimensional strain distribution calculated by minimizing the elastic energy in the structure. The alloy inhomogeneity increases with the Al content, leading to enhanced carrier localization signatures in the luminescence characteristics, i.e., red shift of the emission, s-shaped temperature dependence, and linewidth broadening. Despite these effects, the emission energy of AlGaN/AlN NDs can be tuned in the 240350?nm range with internal quantum efficiencies around 30%.

  11. Polycrystalline MBE-grown GaAs for solar cells

    SciTech Connect (OSTI)

    Friedman, D.J.; Kurtz, S.R.; Kibbler, A.E.; Al-Jassim, M.; Jones, K.; Keyes, B.; Matson, R.

    1997-02-01

    This paper will discuss initial studies of thin-film GaAs grown by molecular-beam epitaxy for use in developing a thin-film GaAs solar cell. Photocurrent and photoluminescence intensity are related to the material morphology as a function of growth conditions. Growth temperature and V/III ratio have a dramatic effect on the photocurrent. However, it seems likely that even after optimizing such growth parameters, it will be necessary to provide substrates that can provide templates to enhance grain size from the start of thin-film growth. {copyright} {ital 1997 American Institute of Physics.}

  12. Polycrystalline MBE-grown GaAs for solar cells

    SciTech Connect (OSTI)

    Friedman, D. J.; Kurtz, Sarah R.; Kibbler, A. E.; Al-Jassim, M.; Jones, K.; Keyes, B.; Matson, R.

    1997-02-15

    This paper will discuss initial studies of thin-film GaAs grown by molecular-beam epitaxy for use in developing a thin-film GaAs solar cell. Photocurrent and photoluminescence intensity are related to the material morphology as a function of growth conditions. Growth temperature and V/III ratio have a dramatic effect on the photocurrent. However, it seems likely that even after optimizing such growth parameters, it will be necessary to provide substrates that can provide templates to enhance grain size from the start of thin-film growth.

  13. Graphene/GaN diodes for ultraviolet and visible photodetectors

    SciTech Connect (OSTI)

    Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Shen, Bo; Liao, Zhi-Min, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn; Yu, Da-Peng, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-08-18

    The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ?mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

  14. Simple intrinsic defects in GaAs : numerical supplement.

    SciTech Connect (OSTI)

    Schultz, Peter Andrew

    2012-04-01

    This Report presents numerical tables summarizing properties of intrinsic defects in gallium arsenide, GaAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz and O.A. von Lilienfeld, 'Simple intrinsic defects in GaAs', Modelling Simul. Mater. Sci Eng., Vol. 17, 084007 (2009), and intended for use as reference tables for a defect physics package in device models. The numerical results for density functional theory calculations of properties of simple intrinsic defects in gallium arsenide are presented.

  15. Electronic contribution to friction on GaAs

    SciTech Connect (OSTI)

    Applied Science and Technology Graduate Group, UC Berkeley; Dept. of Materials Sciences and Engineering, UC Berkeley; Salmeron, Miquel; Qi, Yabing; Park, J.Y.; Hendriksen, B.L.M.; Ogletree, D.F.; Salmeron, Miquel

    2008-04-15

    The electronic contribution to friction at semiconductor surfaces was investigated by using a Pt-coated tip with 50nm radius in an atomic force microscope sliding against an n-type GaAs(100) substrate. The GaAs surface was covered by an approximately 1 nm thick oxide layer. Charge accumulation or depletion was induced by the application of forward or reverse bias voltages. We observed a substantial increase in friction force in accumulation (forward bias) with respect to depletion (reverse bias). We propose a model based on the force exerted by the trapped charges that quantitatively explains the experimental observations of excess friction.

  16. GA Hot Cell D&D Closeout Report

    Office of Legacy Management (LM)

    GENERAL ATOMICS HOT CELL FACILITY DECONTAMINATION & DECOMMISSIONING PROJECT FINAL PROJECT CLOSEOUT REPORT prepared for GA HOT CELL D&D PROJECT CONTRACT NUMBERS DE-AC03-84SF11962 and DE-AC03-95SF20798 PBS VL-GA-0012 Approvals Prepared by: James Davis, III Date Project Manager, Oakland Environmental Programs Office Reviewed by: John Lee Date Deputy, Oakland Environmental Programs Office Approved by: Laurence McEwen Date Acting Director, Oakland Environmental Programs Office General Atomics

  17. Highly transparent ammonothermal bulk GaN substrates

    SciTech Connect (OSTI)

    Jiang, WK; Ehrentraut, D; Downey, BC; Kamber, DS; Pakalapati, RT; Do Yoo, H; D'Evelyn, MP

    2014-10-01

    A novel apparatus has been employed to grow ammonothermal (0001) gallium nitride (GaN) with diameters up to 2 in The crystals have been characterized by x-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), and optical spectroscopy. High crystallinity GaN with FWHM values about 20-50 arcsec and dislocation densities below 1 x 10(5) cm(-2) have been obtained. High optical transmission was achieved with an optical absorption coefficient below 1 cm(-1) at a wavelength of 450 nm. (C) 2014 Elsevier B.V. All rights reserved.

  18. Operating Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operating Strategies and Design Recommendations for Mitigating Local Damage Effects in Offshore Turbine Blades Phillip W. Richards phillip@gatech.edu Graduate Research Assistant Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA D. Todd Griffith dgriffi@sandia.gov Principal Member of the Technical Staff Sandia National Laboratories Albuquerque, New Mexico, USA Dewey H. Hodges dhodges@gatech.edu Professor Daniel Guggenheim School of Aerospace Engineering Atlanta, Georgia, USA

  19. Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures

    SciTech Connect (OSTI)

    Estacio, Elmer; Pham, Minh Hong; Takatori, Satoru; Cadatal-Raduban, Marilou; Nakazato, Tomoharu; Shimizu, Toshihiko; Sarukura, Nobuhiko; Somintac, Armando; Defensor, Michael; Awitan, Fritz Christian B.; Jaculbia, Rafael B.; Salvador, Arnel; Garcia, Alipio

    2009-06-08

    We report on the intense terahertz emission from InAs/GaAs quantum dot (QD) structures grown by molecular beam epitaxy. Results reveal that the QD sample emission was as high as 70% of that of a p-type InAs wafer, the most intense semiconductor emitter to date. Excitation wavelength studies showed that the emission was due to absorption in strained undoped GaAs, and corresponds to a two order-of-magnitude enhancement. Moreover, it was found that multilayer QDs emit more strongly compared with a single layer QD sample. At present, we ascribe the intense radiation to huge strain fields at the InAs/GaAs interface.

  20. Fabrication and Characterization of a Single Hole Transistor in p-type GaAs/AlGaAs Heterostructures

    SciTech Connect (OSTI)

    Tracy, Lisa A; Reno, John L.; Hargett, Terry W.

    2015-09-01

    Most spin qubit research to date has focused on manipulating single electron spins in quantum dots. However, hole spins are predicted to have some advantages over electron spins, such as reduced coupling to host semiconductor nuclear spins and the ability to control hole spins electrically using the large spin-orbit interaction. Building on recent advances in fabricating high-mobility 2D hole systems in GaAs/AlGaAs heterostructures at Sandia, we fabricate and characterize single hole transistors in GaAs. We demonstrate p-type double quantum dot devices with few-hole occupation, which could be used to study the physics of individual hole spins and control over coupling between hole spins, looking towards eventual applications in quantum computing. Intentionally left blank

  1. Characteristics of InGaP/InGaAs pseudomorphic high electron mobility transistors with triple delta-doped sheets

    SciTech Connect (OSTI)

    Chu, Kuei-Yi; Chiang, Meng-Hsueh Cheng, Shiou-Ying; Liu, Wen-Chau

    2012-02-15

    Fundamental and insightful characteristics of InGaP/InGaAs double channel pseudomorphic high electron mobility transistors (DCPHEMTs) with graded and uniform triple {delta}-doped sheets are coomprehensively studied and demonstrated. To gain physical insight, band diagrams, carrier densities, and direct current characteristics of devices are compared and investigated based on the 2D semiconductor simulator, Atlas. Due to uniform carrier distribution and high electron density in the double InGaAs channel, the DCPHEMT with graded triple {delta}-doped sheets exhibits better transport properties, higher and linear transconductance, and better drain current capability as compared with the uniformly triple {delta}-doped counterpart. The DCPHEMT with graded triple {delta}-doped structure is fabricated and tested, and the experimental data are found to be in good agreement with simulated results.

  2. Terahertz intersubband absorption in non-polar m-plane AlGaN/GaN quantum wells

    SciTech Connect (OSTI)

    Edmunds, C.; Malis, O.; Shao, J.; Shirazi-HD, M.; Manfra, M. J.

    2014-07-14

    We demonstrate THz intersubband absorption (15.626.1?meV) in m-plane AlGaN/GaN quantum wells. We find a trend of decreasing peak energy with increasing quantum well width, in agreement with theoretical expectations. However, a blue-shift of the transition energy of up to 14?meV was observed relative to the calculated values. This blue-shift is shown to decrease with decreasing charge density and is, therefore, attributed to many-body effects. Furthermore, a??40% reduction in the linewidth (from roughly 8 to 5?meV) was obtained by reducing the total sheet density and inserting undoped AlGaN layers that separate the wavefunctions from the ionized impurities in the barriers.

  3. High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration

    SciTech Connect (OSTI)

    Young, N. G. Farrell, R. M.; Iza, M.; Speck, J. S.; Perl, E. E.; Keller, S.; Bowers, J. E.; Nakamura, S.; DenBaars, S. P.

    2014-04-21

    We demonstrate InGaN/GaN multiple quantum well solar cells grown by metalorganic chemical vapor deposition on a bulk (0001) substrate with high-performance broadband optical coatings to improve light absorption. A front-side anti-reflective coating and a back-side dichroic mirror were designed to minimize front surface reflections across a broad spectral range and maximize rear surface reflections only in the spectral range absorbed by the InGaN, making the cells suitable for multijunction solar cell integration. Application of optical coatings increased the peak external quantum efficiency by 56% (relative) and conversion efficiency by 37.5% (relative) under 1 sun AM0 equivalent illumination.

  4. Airports & Lodging | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Airports and Lodging AIRPORTS Augusta, GA Augusta Regional Airport (Bush Field) - closest commercial airport; Delta and U.S. Express. Daniel Field - private planes, rentals, or chartered flights. Columbia, SC Columbia Metropolitan Airport - all major carriers; 1.5-2h drive to SREL. Atlanta, GA Hartsfield Airport - all major carriers; 2.5-3 hour drive from Atlanta, GA, to Aiken, SC. LODGING No lodging is available at SREL. However, hotels and motels are available in Aiken, SC, and Augusta, GA.

  5. Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode

    SciTech Connect (OSTI)

    Hu, J. Groeseneken, G.; Stoffels, S.; Lenci, S.; Venegas, R.; Decoutere, S.; Bakeroot, B.

    2015-02-23

    This paper presents a combined technique of high voltage off-state stress and current transient measurements to investigate the trapping/de-trapping characteristics of Au-free AlGaN/GaN Schottky barrier diodes. The device features a symmetric three-terminal structure with a central anode contact surrounded by two separate cathodes. Under the diode off-state stress conditions, the two separate cathodes were electrically shorted. The de-trapping dynamics was studied by monitoring the recovery of the two-dimensional electron gas (2DEG) current at different temperatures by applying 0.5?V at cathode 2 while grounding cathode 1. During the recovery, the anode contact acts as a sensor of changes in diode leakage current. This leakage variation was found to be mainly due to the barrier height variation. With this method, the energy level and capture cross section of different traps in the AlGaN/GaN Schottky barrier diode can be extracted. Furthermore, the physical location of different trapping phenomena is indicated by studying the variation of the diode leakage current during the recovery. We have identified two distinct trapping mechanisms: (i) electron trapping at the AlGaN surface in the vicinity of the Schottky contact which results in the leakage reduction (barrier height ?{sub B} increase) together with R{sub ON} degradation; (ii) the electron trapping in the GaN channel layer which partially depletes the 2DEG. The physical origin of the two different traps is discussed in the text.

  6. InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells

    SciTech Connect (OSTI)

    Alonso-lvarez, D.; Thomas, T.; Fhrer, M.; Hylton, N. P.; Ekins-Daukes, N. J.; Lackner, D.; Philipps, S. P.; Bett, A. W.; Sodabanlu, H.; Fujii, H.; Watanabe, K.; Sugiyama, M.; Nasi, L.; Campanini, M.

    2014-08-25

    Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6 misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1??s, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.

  7. Defect-Reduction Mechanism for Improving Radiative Efficiency in InGaN/GaN Light-Emitting Diodes using InGaN Underlayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Armstrong, Andrew M.; Bryant, Benjamin N.; Crawford, Mary H.; Koleske, Daniel D.; Lee, Stephen R.; Wierer, Jr., Jonathan J.

    2015-04-01

    The influence of a dilute InxGa1-xN (x~0.03) underlayer (UL) grown below a single In0.16Ga0.84N quantum well (SQW), within a light-emitting diode(LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than theLED without an UL, while the radiative recombination rates were nearly identical. This, then, suggests that the improved radiative efficiency resultedmore » from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Furthermore, quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.« less

  8. Properties of H, O and C in GaN

    SciTech Connect (OSTI)

    Pearton, S.J.; Abernathy, C.R.; Lee, J.W.

    1996-04-01

    The electrical properties of the light ion impurities H, O and C in GaN have been examined in both as-grown and implanted material. H is found to efficiently passivate acceptors such as Mg, Ca and C. Reactivation occurs at {ge} 450 C and is enhanced by minority carrier injection. The hydrogen does not leave the GaN crystal until > 800 C, and its diffusivity is relatively high ({approximately} 10{sup {minus}11} cm{sup 2}/s) even at low temperatures (< 200 C) during injection by wet etching, boiling in water or plasma exposure. Oxygen shows a low donor activation efficiency when implanted into GaN, with an ionization level of 30--40 meV. It is essentially immobile up to 1,100 C. Carbon can produce low p-type levels (3 {times} 10{sup 17} cm{sup {minus}3}) in GaN during MOMBE, although there is some evidence it may also create n-type conduction in other nitrides.

  9. Multiscale twin hierarchy in NiMnGa shape memory alloys with...

    Office of Scientific and Technical Information (OSTI)

    Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu Citation Details In-Document Search Title: Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe ...

  10. Surface Chemistry of GaP(001) and InP(001) in Contact with Water...

    Office of Scientific and Technical Information (OSTI)

    Surface Chemistry of GaP(001) and InP(001) in Contact with Water Citation Details In-Document Search Title: Surface Chemistry of GaP(001) and InP(001) in Contact with Water You...

  11. ScGaN alloy growth by molecular beam epitaxy: Evidence for a...

    Office of Scientific and Technical Information (OSTI)

    ScGaN alloy growth by molecular beam epitaxy: Evidence for a metastable layered hexagonal phase Citation Details In-Document Search Title: ScGaN alloy growth by molecular beam...

  12. Improved InGaN LED System Efficacy and Cost via Droop Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved InGaN LED System Efficacy and Cost via Droop Reduction Improved InGaN LED System Efficacy and Cost via Droop Reduction Lead Performer: Lumileds, LLC - San Jose, CA DOE ...

  13. Ge doped GaN with controllable high carrier concentration for...

    Office of Scientific and Technical Information (OSTI)

    Ge doped GaN with controllable high carrier concentration for plasmonic applications Citation Details In-Document Search Title: Ge doped GaN with controllable high carrier...

  14. Bismuth-induced phase control of GaAs nanowires grown by molecular...

    Office of Scientific and Technical Information (OSTI)

    Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy Citation Details In-Document Search Title: Bismuth-induced phase control of GaAs nanowires grown by ...

  15. Testing a GaAs cathode in SRF gun

    SciTech Connect (OSTI)

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-03-28

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10{sup -12} Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to {approx}10{sup -9} Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high accelerating gradient of the RF guns, potentially offering a long lived cathode with very low emittance. Testing this concept requires preparation of the cathode, transportation to the SRF gun and evaluation of the performance of the cathode and the gun at cryogenic temperatures. In our work at BNL, we successfully activated the bulk GaAs in the preparation chamber. The highest quantum efficient was 10% at 532 nm that fell to 0.5% after 100 hours. We explored three different ways to activate the GaAs. We verified that the GaAs photocathode remains stable for 30 hours in a 10{sup -11} Torr vacuum. Passing the photocathode through the low 10{sup -9} Torr transfer section in several seconds caused the QE to drop to 0.8%. The photocathode with 0.8% QE can be tested for the SRF gun. The gun and beam pipe were prepared and assembled. After baking at 200 C baking, the vacuum of the gun and beam pipe can sustain a low 10{sup -11} Torr at room temperature. The final test to extract electrons from the gun is ongoing. In this paper, we discuss our progress with this SRF gun and the results of the photocathode in preparation chamber and in magnet transfer line.

  16. EIS-0476: Vogtle Electric Generating Plant in Burke County, GA | Department

    Office of Environmental Management (EM)

    of Energy 6: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Vogtle Electric Generating Plant in Burke County, GA February 8, 2012 EIS-0476: Final Environmental Impact Statement Department of Energy Loan Guarantees for Proposed Units 3 and 4 at the Vogtle Electric Generating Plant, Burke County, GA February 25, 2014 EIS-0476: Record of Decision Department of Energy Loan Guarantees for Proposed Units 3 and 4 at the Vogtle Electric Generating Plant, Burke County, GA

  17. Quaternary InGaAsSb Thermophotovoltaic Diodes

    SciTech Connect (OSTI)

    MW Dashiell; JF Beausang; H Ehsani; GJ Nichols; DM Depoy; LR Danielson; P Talamo; KD Rahner; EJ Brown; SR Burger; PM Foruspring; WF Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; J Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryi

    2006-03-09

    In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y} thermophotovoltaic (TPV) diodes were grown lattice-matched to GaSb substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) in the bandgap range of E{sub G} = 0.5 to 0.6eV. InGaAsSb TPV diodes, utilizing front-surface spectral control filters, are measured with thermal-to-electric conversion efficiency and power density of {eta}{sub TPV} = 19.7% and PD =0.58 W/cm{sup 2} respectively for a radiator temperature of T{sub radiator} = 950 C, diode temperature of T{sub diode} = 27 C, and diode bandgap of E{sub G} = 0.53eV. Practical limits to TPV energy conversion efficiency are established using measured recombination coefficients and optical properties of front surface spectral control filters, which for 0.53eV InGaAsSb TPV energy conversion is {eta}{sub TPV} = 28% and PD = 0.85W/cm{sup 2} at the above operating temperatures. The most severe performance limits are imposed by (1) diode open-circuit voltage (VOC) limits due to intrinsic Auger recombination and (2) parasitic photon absorption in the inactive regions of the module. Experimentally, the diode V{sub OC} is 15% below the practical limit imposed by intrinsic Auger recombination processes. Analysis of InGaAsSb diode electrical performance vs. diode architecture indicate that the V{sub OC} and thus efficiency is limited by extrinsic recombination processes such as through bulk defects.

  18. On the redox origin of surface trapping in AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Gao, Feng; Chen, Di; Tuller, Harry L.; Thompson, Carl V.; Palacios, Toms

    2014-03-28

    Water-related redox couples in ambient air are identified as an important source of the surface trapping states, dynamic on-resistance, and drain current collapse in AlGaN/GaN high electron mobility transistors (HEMTs). Through in-situ X-ray photoelectron spectroscopy (XPS), direct signature of the water-related specieshydroxyl groups (OH) was found at the AlGaN surface at room temperature. It was also found that these species, as well as the current collapse, can be thermally removed above 200?C in vacuum conditions. An electron trapping mechanism based on the H{sub 2}O/H{sub 2} and H{sub 2}O/O{sub 2} redox couples is proposed to explain the 0.5?eV energy level commonly attributed to the surface trapping states. Finally, the role of silicon nitride passivation in successfully removing current collapse in these devices is explained by blocking the water molecules away from the AlGaN surface.

  19. Plasmonic terahertz detectors based on a high-electron mobility GaAs/AlGaAs heterostructure

    SciTech Connect (OSTI)

    Bia?ek, M. Witowski, A. M.; Grynberg, M.; ?usakowski, J.; Orlita, M.; Potemski, M.; Czapkiewicz, M.; Umansky, V.

    2014-06-07

    In order to characterize magnetic field (B) tunable THz plasmonic detectors, spectroscopy experiments were carried out at liquid helium temperatures and high magnetic fields on devices fabricated on a high electron mobility GaAs/AlGaAs heterostructure. The samples were either gated (the gate of a meander shape) or ungated. Spectra of a photovoltage generated by THz radiation were obtained as a function of B at a fixed THz excitation from a THz laser or as a function of THz photon frequency at a fixed B with a Fourier spectrometer. In the first type of measurements, the wave vector of magnetoplasmons excited was defined by geometrical features of samples. It was also found that the magnetoplasmon spectrum depended on the gate geometry which gives an additional parameter to control plasma excitations in THz detectors. Fourier spectra showed a strong dependence of the magnetoplasmon resonance amplitude on the conduction-band electron filling factor which was explained within a model of the electron gas heating with THz radiation. The study allows to define both the advantages and limitations of plasmonic devices based on high-mobility GaAs/AlGaAs heterostructures for THz detection at low temperatures and high magnetic fields.

  20. High 400?C operation temperature blue spectrum concentration solar junction in GaInN/GaN

    SciTech Connect (OSTI)

    Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian

    2014-12-15

    Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1?V is achieved. Of the photons absorbed in the limited spectral range of <450?nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49?mW/cm{sup 2} to 0.51?mW/cm{sup 2} at 40?suns and then falls 0.42?mW/cm{sup 2} at 150?suns. Under external heating, a maximum of 0.59?mW/cm{sup 2} is reached at 250?C. Even at 400?C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.

  1. UCRL-JC- I250 M. Dreicer, USA; A. Aaricrog, Riso National Laboratory,

    Office of Scientific and Technical Information (OSTI)

    ? . UCRL-JC- I250 M. Dreicer, USA; A. Aaricrog, Riso National Laboratory, Radiology and Agroecoiogy, Russia; L. Anspaugh, LLNL, USA; N . P . Arkhipov the RIA "Pripyate," Ukraine; K J. Johansson, University of Agricul fic and Technical Cen This paper was prepared for submittal to the European Commission, M A , WHO International Conference, Vienna, Austria "One Decade After Chernobyl: Summing up the Consequences of the Accide April 8-12, 1996 u64211tVl.O (3.96) ON O f W f S DOCU 2 .

  2. U.S. Department of Energy Awards a Contract to USA Repository Services for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management and Operating Contractor Support for the Yucca Mountain Project | Department of Energy a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project U.S. Department of Energy Awards a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project October 30, 2008 - 4:14pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) today awarded a $2.5 billion management

  3. Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps1_pvusa_pineda.pdf More Documents & Publications Cost of Capital Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Vehicle Technologies Office Merit Review 2014: Trip

  4. SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ORDER 3253 | Department of Energy GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG - ORDER 3253 SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG - ORDER 3253 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORTS FOR - EOS LNG - FTA - FE DKT. NO.

  5. SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG -

    Energy Savers [EERE]

    ORDER 3639 | Department of Energy PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR DOMINION COVE POINT, LP - DKt. NO. 11-115-LNG - ORDER 3019 SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163 SEMI-ANNUAL REPORTS FOR DOWNEAST LNG, INC. - FT DKT. NO. 14-172-LNG - ORDER NO. 3600

  6. ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC |

    Energy Savers [EERE]

    Department of Energy 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC OPINION AND ORDER GRANTING LONG-TERM, MULTI-CONTRACT AUTHORIZATION TO EXPORT U.S.-SOURCED NATURAL GAS BY PIPELINE TO CANADA FOR LIQUEFACTION AND RE-EXPORT IN THE FORM OF LIQUEFIED NATURAL GAS TO NON-FREE TRADE AGREEMENT COUNTRIES On February 5, 2016, the Energy Department issued an authorization to Bear Head LNG Corporation and Bear Head LNG

  7. Webinar: DOE Analysis Related to H2USA | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE Analysis Related to H2USA," originally presented on July 24, 2013. In addition to this text version of the audio, you can access the presentation slides. Sunita Satyapal: [Audio starts mid-sentence] ...companies typically have internal models that cannot be shared publically while the focus of the DOE model is on transparency and accessibility of the analysis as well as the assumption. [Next slide] So if we go to the next slide as a quick overview of H2USA, which many know is being

  8. Ultrasensitive detection of Hg{sup 2+} using oligonucleotide-functionalized AlGaN/GaN high electron mobility transistor

    SciTech Connect (OSTI)

    Cheng, Junjie; Li, Jiadong; Miao, Bin; Wu, Dongmin; Wang, Jine; Pei, Renjun; Wu, Zhengyan

    2014-08-25

    An oligonucleotide-functionalized ion sensitive AlGaN/GaN high electron mobility transistor (HEMT) was fabricated to detect trace amounts of Hg{sup 2+}. The advantages of ion sensitive AlGaN/GaN HEMT and highly specific binding interaction between Hg{sup 2+} and thymines were combined. The current response of this Hg{sup 2+} ultrasensitive transistor was characterized. The current increased due to the accumulation of Hg{sup 2+} ions on the surface by the highly specific thymine-Hg{sup 2+}-thymine recognition. The dynamic linear range for Hg{sup 2+} detection has been determined in the concentrations from 10{sup ?14} to 10{sup ?8} M and a detection limit below 10{sup ?14} M level was estimated, which is the best result of AlGaN/GaN HEMT biosensors for Hg{sup 2+} detection till now.

  9. GaN Initiative for Grid Applications (GIGA)

    SciTech Connect (OSTI)

    Turner, George

    2015-07-03

    For nearly 4 years, MIT Lincoln Laboratory (MIT/LL) led a very successful, DoE-funded team effort to develop GaN-on-Si materials and devices, targeting high-voltage (>1 kV), high-power, cost-effective electronics for grid applications. This effort, called the GaN Initiative for Grid Applications (GIGA) program, was initially made up of MIT/LL, the MIT campus group of Prof. Tomas Palacios (MIT), and the industrial partner M/A Com Technology Solutions (MTS). Later in the program a 4th team member was added (IQE MA) to provide commercial-scale GaN-on-Si epitaxial materials. A basic premise of the GIGA program was that power electronics, for ubiquitous utilization -even for grid applications - should be closer in cost structure to more conventional Si-based power electronics. For a number of reasons, more established GaN-on-SiC or even SiC-based power electronics are not likely to reach theses cost structures, even in higher manufacturing volumes. An additional premise of the GIGA program was that the technical focus would be on materials and devices suitable for operating at voltages > 1 kV, even though there is also significant commercial interest in developing lower voltage (< 1 kV), cost effective GaN-on-Si devices for higher volume applications, like consumer products. Remarkable technical progress was made during the course of this program. Advances in materials included the growth of high-quality, crack-free epitaxial GaN layers on large-diameter Si substrates with thicknesses up to ~5 ?m, overcoming significant challenges in lattice mismatch and thermal expansion differences between Si and GaN in the actual epitaxial growth process. Such thick epilayers are crucial for high voltage operation of lateral geometry devices such as Schottky barrier (SB) diodes and high electron mobility transistors (HEMTs). New Normally-Off device architectures were demonstrated for safe operation of power electronics circuits. The trade-offs between lateral and vertical devices were explored, with the conclusion that lateral devices are superior for fundamental thermal reasons, as well as for the demonstration of future generations of monolithic power circuits. As part of the materials and device investigations breakdown mechanisms in GaN-on-Si structures were fully characterized and effective electric field engineering was recognized as critical for achieving even higher voltage operation. Improved device contact technology was demonstrated, including the first gold-free metallizations (to enable processing in CMOS foundries) while maintaining low specific contact resistance needed for high-power operation and 5-order-of magnitude improvement in device leakage currents (essential for high power operation). In addition, initial GaN-on-Si epitaxial growth was performed on 8/200 mm Si starting substrates.

  10. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell. Final subcontract report, 1 January 1991--31 August 1992

    SciTech Connect (OSTI)

    Venkatasubramanian, R.

    1993-01-01

    This report describes work to develop inverted-grown Al{sub 0.34}Ga{sub 0.66}As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al{sub 0.34}Ga{sub 0.66}As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The ``cycled`` organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al{sub 0.34}Ga{sub 0.66}As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

  11. Absorption enhancement through Fabry-Prot resonant modes in a 430?nm thick InGaAs/GaAsP multiple quantum wells solar cell

    SciTech Connect (OSTI)

    Behaghel, B.; Tamaki, R.; Watanabe, K.; Sodabanlu, H.; Vandamme, N.; Dupuis, C.; Bardou, N.; Cattoni, A.; Okada, Y.; Sugiyama, M.; Collin, S.; Guillemoles, J.-F.

    2015-02-23

    We study light management in a 430?nm-thick GaAs p-i-n single junction solar cell with 10 pairs of InGaAs/GaAsP multiple quantum wells (MQWs). The epitaxial layer transfer on a gold mirror improves light absorption and increases the external quantum efficiency below GaAs bandgap by a factor of four through the excitation of Fabry-Perot resonances. We show a good agreement with optical simulation and achieve around 10% conversion efficiency. We demonstrate numerically that this promising result can be further improved by anti-reflection layers. This study paves the way to very thin MQWs solar cells.

  12. Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN

    Office of Scientific and Technical Information (OSTI)

    nanostructure arrays on GaN/sapphire template (Journal Article) | SciTech Connect Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN nanostructure arrays on GaN/sapphire template Citation Details In-Document Search Title: Nanoscale selective area growth of thick, dense, uniform, In-rich, InGaN nanostructure arrays on GaN/sapphire template Authors: Sundaram, S. [1] ; Puybaret, R. [2] ; El Gmili, Y. [1] ; Li, X. [2] ; Bonanno, P. L. [1] ; Pantzas, K. [3] Search SciTech

  13. Ultra High p-doping Material Research for GaN Based Light Emitters

    SciTech Connect (OSTI)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

  14. ESR Detection of optical dynamic nuclear polarization in GaAs/Al{sub

    Office of Scientific and Technical Information (OSTI)

    x}Ga{sub 1-x}As quantum wells at unity filling factor in the quantum Hall effect (Journal Article) | SciTech Connect ESR Detection of optical dynamic nuclear polarization in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells at unity filling factor in the quantum Hall effect Citation Details In-Document Search Title: ESR Detection of optical dynamic nuclear polarization in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells at unity filling factor in the quantum Hall effect This paper presents a study of the

  15. Conductivity based on selective etch for GaN devices and applications thereof

    DOE Patents [OSTI]

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  16. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    SciTech Connect (OSTI)

    Grachev, V.; Meyer, M.; Malovichko, G.; Hunt, A. W.

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20?MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystalsionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and ?-radiation.

  17. Characterization and device performance of (AgCu)(InGa)Se2 absorber layers

    SciTech Connect (OSTI)

    Hanket, Gregory; Boyle, Jonathan H.; Shafarman, William N.

    2009-06-08

    The study of (AgCu)(InGa)Se2 absorber layers is of interest in that Ag-chalcopyrites exhibit both wider bandgaps and lower melting points than their Cu counterparts. (AgCu)(InGa)Se2 absorber layers were deposited over the composition range 0 < Ag/(Ag+Cu) < 1 and 0.3 < Ga/(In+Ga) < 1.0 using a variety of elemental co-evaporation processes. Films were found to be singlephase over the entire composition range, in contrast to prior studies. Devices with Ga content 0.3 < Ga/(In+Ga) <0.5 tolerated Ag incorporation up to Ag/(Ag+Cu) = 0.5 without appreciable performance loss. Ag-containing films with Ga/(In+Ga) = 0.8 showed improved device characteristics over Cu-only control samples, in particular a 30-40% increase in short-circuit current. An absorber layer with composition Ag/(Ag+Cu) = 0.75 and Ga/(In+Ga) = 0.8 yielded a device with VOC = 890 mV, JSC = 20.5mA/cm2, fill factor = 71.3%, and ? = 13.0%.

  18. Efficiency calculations of thin-film GaAs solar cells on Si substrates

    SciTech Connect (OSTI)

    Yamaguchi, M.; Amano, C.

    1985-11-01

    Dislocation effect upon the efficiency of single-crystal thin-film AlGaAs-GaAs heteroface solar cells on Si substrates is analyzed. Solar-cell properties are calculated based on a simple model; in the model, dislocations act as recombination centers to reduce the minority-carrier diffusion length in each layer and increase the space-charge layer recombination current. Numerical analysis is also carried out to optimize thin-film AlGaAs-GaAs heteroface solar-cell structures. The fabrication of thin-film AlGaAs-GaAs heteroface solar cells with a practical efficiency larger than 18% on Si substrates appears possible if the dislocation density in the thin-film GaAs layer is less than 10/sup 6/ cm/sup -2/.

  19. Optical and quantum efficiency analysis of (Ag,Cu)(In,Ga)Se2 absorber layers

    SciTech Connect (OSTI)

    Boyle, Jonathan; Hanket, Gregory; Shafarman, William

    2009-06-09

    (Ag,Cu)(In,Ga)Se2 thin films have been deposited by elemental co-evaporation over a wide range of compositions and their optical properties characterized by transmission and reflection measurements and by relative shift analysis of quantum efficiency device measurements. The optical bandgaps were determined by performing linear fits of (?h?)2 vs. h?, and the quantum efficiency bandgaps were determined by relative shift analysis of device curves with fixed Ga/(In+Ga) composition, but varying Ag/(Cu+Ag) composition. The determined experimental optical bandgap ranges of the Ga/(In+Ga) = 0.31, 0.52, and 0.82 groups, with Ag/(Cu+Ag) ranging from 0 to 1, were 1.19-1.45 eV, 1.32-1.56 eV, and 1.52-1.76 eV, respectively. The optical bowing parameter of the different Ga/(In+Ga) groups was also determined.

  20. Average Structure Evolution of ?-phase Pu-Ga Alloys

    SciTech Connect (OSTI)

    Smith, Alice Iulia; Page, Katharine L.; Gourdon, Olivier; Siewenie, Joan E.; Richmond, Scott; Saleh, Tarik A.; Ramos, Michael; Schwartz, Daniel S.

    2015-03-30

    [Full Text] Plutonium metal is a highly unusual element, exhibiting six allotropes at ambient pressure, from room temperature to its melting point. Many phases of plutonium metal are unstable with temperature, pressure, chemical additions, and time. This strongly affects structure and properties, and becomes of high importance, particularly when considering effects on structural integrity over long time periods. The fcc ?-phase deserves additional attention, not only in the context of understanding the electronic structure of Pu, but also as one of the few high-symmetry actinide phases that can be stabilized down to ambient pressure and room temperature by alloying it with trivalent elements. We will present results on recent work on aging of Pu-2at.%Ga and Pu-7at.%Ga alloys

  1. Method of plasma etching Ga-based compound semiconductors

    DOE Patents [OSTI]

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  2. Method of plasma etching GA-based compound semiconductors

    DOE Patents [OSTI]

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  3. Formation and properties of porous GaAs

    SciTech Connect (OSTI)

    Schmuki, P.; Lockwood, D.J.; Fraser, J.W.; Graham, M.J.; Isaacs, H.S.

    1996-06-01

    Porous structures on n-type GaAs (100) can be grown electrochemically in chloride-containing solutions. Crystallographic etching of the sample is a precursor stage of the attack. Polarization curves reveal the existanece of a critical onset potential for por formation (PFP). PFP is strongly dependent on the doping level of the sample and presence of surface defects. Good agreement between PFP and breakdown voltage of the space charge layer is found. Surface analysis by EDX, AES, and XPS show that the porous structure consists mainly of GaAs and that anion uptake in the structure can only observed after attackhas been initiated. Photoluminescence measurements reveal (under certain conditions) visible light emission from the porous structure.

  4. LG Electronics U.S.A. v. DOE, Stipulation of Voluntary Dismissal

    Broader source: Energy.gov [DOE]

    LG Electronics U.S.A., Inc. v. U.S. Dept. of Energy, Civil Action Number 1:09-cv-02297-JDB - LG voluntarily dismissed its claims against the DOE and agrees to remove the ENERGY STAR labels from various refrigerator-freezers.

  5. The transputer based GA. SP data acquisition system

    SciTech Connect (OSTI)

    Colombo, D.; Avano, B.; DePoli, M.; Maron, G. ); Negro, A.; Parlati, G. )

    1992-04-01

    In this paper, the new data acquisition for the GA.SP detector is presented. It is a distributed system based on a network of 40 T800 and T222 transputers linked to a VME system used for histogram storage. A 100 MBit/s FDDI ring connects the system to UNIX workstations used for the experiment control, histogram display and second level data analysis.

  6. Ga lithography in sputtered niobium for superconductive micro and nanowires

    SciTech Connect (OSTI)

    Henry, M. David; Wolfley, Steve; Monson, Todd; Lewis, Rupert

    2014-08-18

    This work demonstrates the use of focused ion beam (FIB) implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12?nm deep with a 14?nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10??m by 10??m and 100??m by 100??m, demonstrate that doses above than 7.5??10{sup 15?}cm{sup ?2} at 30?kV provide adequate mask protection for a 205?nm thick, sputtered Nb film. The resolution of this dry lithographic technique is demonstrated by fabrication of nanowires 75?nm wide by 10??m long connected to 50??m wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature (T{sub c})?=?7.7?K was measured using a magnetic properties measurement system. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.

  7. Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission

    SciTech Connect (OSTI)

    Young, Erin C.; Wu Feng; Haeger, Daniel A.; Nakamura, Shuji; Denbaars, Steven P.; Cohen, Daniel A.; Speck, James S.; Romanov, Alexey E.

    2012-10-01

    In this Letter, we report on the growth and properties of relaxed, compositionally graded Al{sub x}Ga{sub 1-x}N buffer layers on freestanding semipolar (2021) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 10{sup 6}/cm{sup 2} as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.

  8. Study of the one dimensional electron gas arrays confined by steps in vicinal GaN/AlGaN heterointerfaces

    SciTech Connect (OSTI)

    Li, Huijie E-mail: sh-yyang@semi.ac.cn; Zhao, Guijuan; Liu, Guipeng; Wei, Hongyuan; Jiao, Chunmei; Yang, Shaoyan E-mail: sh-yyang@semi.ac.cn; Wang, Lianshan; Zhu, Qinsheng

    2014-05-21

    One dimensional electron gas (1DEG) arrays in vicinal GaN/AlGaN heterostructures have been studied. The steps at the interface would lead to the lateral barriers and limit the electron movement perpendicular to such steps. Through a self-consistent Schrdinger-Poisson approach, the electron energy levels and wave functions were calculated. It was found that when the total electron density was increased, the lateral barriers were lowered due to the screening effects by the electrons, and the electron gas became more two-dimension like. The calculated 1DEG densities were compared to the experimental values and good agreements were found. Moreover, we found that a higher doping density is more beneficial to form 1-D like electron gas arrays.

  9. Electron heating due to microwave photoexcitation in the high mobility GaAs/AlGaAs two dimensional electron system

    SciTech Connect (OSTI)

    Ramanayaka, A. N.; Mani, R. G.; Wegscheider, W.

    2013-12-04

    We extract the electron temperature in the microwave photo-excited high mobility GaAs/AlGaAs two dimensional electron system (2DES) by studying the influence of microwave radiation on the amplitude of Shubnikov-de Haas oscillations (SdHOs) in a regime where the cyclotron frequency, ?{sub c}, and the microwave angular frequency, ?, satisfy 2? ? ?{sub c} ? 3.5? The results indicate that increasing the incident microwave power has a weak effect on the amplitude of the SdHOs and therefore the electron temperature, in comparison to the influence of modest temperature changes on the dark-specimen SdH effect. The results indicate negligible electron heating under modest microwave photo-excitation, in good agreement with theoretical predictions.

  10. Origin of radiative recombination and manifestations of localization effects in GaAs/GaNAs core/shell nanowires

    SciTech Connect (OSTI)

    Chen, S. L.; Filippov, S.; Chen, W. M.; Buyanova, I. A.; Ishikawa, Fumitaro

    2014-12-22

    Radiative carrier recombination processes in GaAs/GaNAs core/shell nanowires grown by molecular beam epitaxy on a Si substrate are systematically investigated by employing micro-photoluminescence (?-PL) and ?-PL excitation (?-PLE) measurements complemented by time-resolved PL spectroscopy. At low temperatures, alloy disorder is found to cause localization of photo-excited carriers leading to predominance of optical transitions from localized excitons (LE). Some of the local fluctuations in N composition are suggested to lead to strongly localized three-dimensional confining potential equivalent to that for quantum dots, based on the observation of sharp and discrete PL lines within the LE contour. The localization effects are found to have minor influence on PL spectra at room temperature due to thermal activation of the localized excitons to extended states. Under these conditions, photo-excited carrier lifetime is found to be governed by non-radiative recombination via surface states which is somewhat suppressed upon N incorporation.

  11. Comparative investigation of InGaP/GaAs pseudomorphic field-effect transistors with triple doped-channel profiles

    SciTech Connect (OSTI)

    Tsai, Jung-Hui; Guo, Der-Feng; Lour, Wen-Shiung

    2011-09-15

    In this article, the comparison of DC performance on InGaP/GaAs pseudomorphic field-effect transistors with tripe doped-channel profiles is demonstrated. As compared to the uniform and high-medium-low doped-channel devices, the low-medium-high doped-channel device exhibits the broadest gate voltage swing and the best device linearity because more twodimensional electron gases are formed in the heaviest doped channel to enhance the magnitude of negative threshold voltage. Experimentally, the transconductance within 50% of its maximum value for gate voltage swing is 4.62 V in the low-medium-high doped-channel device, which is greater than 3.58 (3.30) V in the uniform (high-medium-low) doped-channel device.

  12. 1.9 kV AlGaN/GaN Lateral Schottky Barrier Diodes on Silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Mingda; Song, Bo; Qi, Meng; Hu, Zongyang; Nomoto, Kazuki; Yan, Xiaodong; Cao, Yu; Johnson, Wayne; Kohn, Erhard; Jena, Debdeep; et al

    2015-02-16

    In this letter, we present AlGaN/GaN lateral Schottky barrier diodes on silicon with recessed anodes and dual field plates. A low specific on-resistance RON,SP (5.12 mΩ · cm2), a low turn-on voltage (<0.7 V) and a high reverse breakdown voltage BV (>1.9 kV), were simultaneously achieved in devices with a 25 μm anode/cathode separation, resulting in a power figure-of-merit (FOM) BV2/RON,SP of 727 MW·cm2. The record high breakdown voltage of 1.9 kV is attributed to the dual field plate structure.

  13. Passivation of deep level states caused by misfit dislocations in InGaAs on patterned GaAs

    SciTech Connect (OSTI)

    Matragrano, M.J.; Watson, G.P.; Ast, D.G. ); Anderson, T.J.; Pathangey, B. )

    1993-03-22

    Deep level transient spectroscopy (DLTS) and cathodoluminescence (CL) were used to study the hydrogen passivation of misfit dislocations in In[sub 0.06]Ga[sub 0.94]As/GaAs heterostructures. The CL observations indicate that hydrogen plasma exposure passivates most, but not all, of the dark line defects existing in the specimen prior to hydrogenation. The concentration of deep level defect states that cannot be passivated is below the detection limit of the DLTS instrument (approximately 4[times]10[sup 12] cm[sup [minus]3]). We find the passivation is stable after anneals at temperatures as high as 600 [degree]C, indicating that hydrogen passivation of misfit dislocations is at least as stable as that of the isolated point defect studied previously with DLTS [W. C. Dautremont-Smith, J. C. Nabity, V. Swaminathan, M. Stavola, J. Chevalier, C. W. Tu, and S. J. Pearton, Appl. Phys. Lett. [bold 49] 1098 (1986)].

  14. Terrestrial Concentrator PV Modules Based on GaInP/GaAs/Ge TJ Cells and Minilens Panels

    SciTech Connect (OSTI)

    Rumyantsev, V. D.; Sadchikov, N. A.; Chalov, A. E.; Ionova, E. A.; Friedman, D. J.; Glenn, G.

    2006-01-01

    This paper is a description of research activity in the field of cost-effective modules realizing the concept of very high solar concentration with small-aperture area Fresnel lenses and multijunction III-V cells. Structural simplicity and 'all-glass' design are the guiding principles of the corresponding development. The advanced concentrator modules are made with silicone Fresnel lens panels (from 8 up to 144 lenses, each lens is 4 times 4 cm{sup 2} in aperture area) with composite structure. GaInP/GaAs/Ge triple-junction cells with average efficiencies of 31.1 and 34.7% at 1000 suns were used for the modules. Conversion efficiency as high as 26.3% has been measured indoors in a test module using a newly developed large-area solar simulator.

  15. Demonstration of isotype GaN/AlN/GaN heterobarrier diodes by NH{sub 3}-molecular beam epitaxy

    SciTech Connect (OSTI)

    Fireman, Micha N.; Browne, David A.; Mazumder, Baishakhi; Speck, James S.; Mishra, Umesh K.

    2015-05-18

    The results of vertical transport through nitride heterobarrier structures grown by ammonia molecular beam epitaxy are presented. Structures are designed with binary layers to avoid the effects of random alloy fluctuations in ternary nitride barriers. The unintentional incorporation of Ga in the AlN growth is investigated by atom probe tomography and is shown to be strongly dependent on both the NH{sub 3} flowrate and substrate temperature growth parameters. Once nominally pure AlN layer growth conditions are achieved, structures consisting of unintentionally doped (UID) GaN spacer layers adjacent to a nominally pure AlN are grown between two layers of n+ GaN, from which isotype diodes are fabricated. Varying the design parameters of AlN layer thickness, UID spacer layer thickness, and threading dislocation density show marked effects on the vertical transport characteristics of these structures. The lack of significant temperature dependence, coupled with Fowler-Nordheim and/or Milliken-Lauritsen analysis, point to a prevalently tunneling field emission mechanism through the AlN barrier. Once flatband conditions in the UID layer are achieved, electrons leave the barrier with significant energy. This transport mechanism is of great interest for applications in hot electron structures.

  16. Microstructure of V-based ohmic contacts to AlGaN/GaN heterostructures at a reduced annealing temperature

    SciTech Connect (OSTI)

    Schmid, A. Schroeter, Ch.; Otto, R.; Heitmann, J.; Schuster, M.; Klemm, V.; Rafaja, D.

    2015-02-02

    Ohmic contacts with V/Al/Ni/Au and V/Ni/Au metalization schemes were deposited on AlGaN/GaN heterostructures. The dependence of the specific contact resistance on the annealing conditions and the V:Al thickness ratio was shown. For an optimized electrode stack, a low specific contact resistance of 8.9??10{sup ?6} ? cm{sup 2} was achieved at an annealing temperature of 650?C. Compared to the conventional Ti/Al/Ni/Au contact, this is a reduction of 150?K. The microstructure and contact formation at the AlGaN/metal interface were investigated by transmission electron microscopy including high-resolution micrographs and energy dispersive X-ray analysis. It was shown that for low-resistive contacts, the resistivity of the metalization has to be taken into account. The V:Al thickness ratio has an impact on the formation of different intermetallic phases and thus is crucial for establishing ohmic contacts at reduced annealing temperatures.

  17. Selective area epitaxy of monolithic white-light InGaN/GaN quantum well microstripes with dual color emission

    SciTech Connect (OSTI)

    Li, Yuejing; Tong, Yuying; Yang, Guofeng Yao, Chujun; Sun, Rui; Cai, Lesheng; Xu, Guiting; Wang, Jin; Zhang, Qing; Ye, Xuanchao; Wu, Mengting; Wen, Zhiqin

    2015-09-15

    Monolithic color synthesis is demonstrated using InGaN/GaN multiple quantum wells (QWs) grown on GaN microstripes formed by selective area epitaxy on SiO{sub 2} mask patterns. The striped microfacet structure is composed of (0001) and (11-22) planes, attributed to favorable surface polarity and surface energy. InGaN/GaN QWs on different microfacets contain spatially inhomogeneous compositions owing to the diffusion of adatoms among the facets. This unique property allows the microfacet QWs to emit blue light from the (11-22) plane and yellow light from the top (0001) plane, the mixing of which leads to the perception of white light emission.

  18. Temporally and spatially resolved photoluminescence investigation of (112{sup }2) semi-polar InGaN/GaN multiple quantum wells grown on nanorod templates

    SciTech Connect (OSTI)

    Liu, B.; Smith, R.; Athanasiou, M.; Yu, X.; Bai, J.; Wang, T.

    2014-12-29

    By means of time-resolved photoluminescence (PL) and confocal PL measurements, temporally and spatially resolved optical properties have been investigated on a number of In{sub x}Ga{sub 1?x}N/GaN multiple-quantum-well (MQW) structures with a wide range of indium content alloys from 13% to 35% on (112{sup }2) semi-polar GaN with high crystal quality, obtained through overgrowth on nanorod templates. With increasing indium content, the radiative recombination lifetime initially increases as expected, but decreases if the indium content further increases to 35%, corresponding to emission in the green spectral region. The reduced radiative recombination lifetime leads to enhanced optical performance for the high indium content MQWs as a result of strong exciton localization, which is different from the behaviour of c-plane InGaN/GaN MQWs, where quantum confined Stark effect plays a dominating role in emission process.

  19. H irradiation effects on the GaAs-like Raman modes in GaAs{sub 1-x}N{sub x}/GaAs{sub 1-x}N{sub x}:H planar heterostructures

    SciTech Connect (OSTI)

    Giulotto, E. Geddo, M.; Patrini, M.; Guizzetti, G.; Felici, M.; Capizzi, M.; Polimeni, A.; Martelli, F.; Rubini, S.

    2014-12-28

    The GaAs-like longitudinal optical phonon frequency in two hydrogenated GaAs{sub 1-x}N{sub x}/GaAs{sub 1-x}N{sub x}:H microwire heterostructureswith similar N concentration, but different H dose and implantation conditionshas been investigated by micro-Raman mapping. In the case of GaAs{sub 0.991}N{sub 0.009} wires embedded in barriers where GaAs-like properties are recovered through H irradiation, the phonon frequency in the barriers undergoes a blue shift with respect to the wires. In GaAs{sub 0.992}N{sub 0.008} wires embedded in less hydrogenated barriers, the phonon frequency exhibits an opposite behavior (red shift). Strain, disorder, phonon localization effects induced by H-irradiation on the GaAs-like phonon frequency are discussed and related to different types of N-H complexes formed in the hydrogenated barriers. It is shown that the red (blue) character of the frequency shift is related to the dominant N-2H (N-3H) type of complexes. Moreover, for specific experimental conditions, an all-optical determination of the uniaxial strain field is obtained. This may improve the design of recently presented devices that exploit the correlation between uniaxial stress and the degree of polarization of photoluminescence.

  20. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Masuda, T; Tomasulo, S; Lang, JR; Lee, ML

    2015-03-07

    We have investigated similar to 2.0 eV (AlxGa1-x)(0.51)In0.49P and similar to 1.9 eV Ga0.51In0.49P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (AlxGa1-x)(0.51)In0.49P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V-oc) ranging from 1.29 to 1.30 V for Ga0.51In0.49P cells, and 1.35-1.37 V for (AlxGa1-x)(0.51)In0.49P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W-oc = E-g/q - V-oc) of Ga0.51In0.49P cells to decrease from similar to 575 mV to similar to 565 mV, while that of (AlxGa1-x)(0.51)In0.49P cells remained nearly constant at 620 mV. The constant Woc as a function of substrate offcut for (AlxGa1-x)(0.51)In0.49P implies greater losses from non-radiative recombination compared with the Ga0.51In0.49P devices. In addition to larger Woc values, the (AlxGa1-x)(0.51)In0.49P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga0.51In0.49P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (AlxGa1-x)(0.51)In0.49P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells. (C) 2015 AIP Publishing LLC.

  1. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology

    SciTech Connect (OSTI)

    Vernon, S.M. )

    1993-04-01

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  2. Quantum effects in electron beam pumped GaAs

    SciTech Connect (OSTI)

    Yahia, M. E.; National Institute of Laser Enhanced Sciences , Cairo University ; Azzouz, I. M.; Moslem, W. M.

    2013-08-19

    Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.

  3. Low dimensional GaAs/air vertical microcavity lasers

    SciTech Connect (OSTI)

    Gessler, J.; Steinl, T.; Fischer, J.; Hfling, S.; Schneider, C.; Kamp, M.; Mika, A.; S?k, G.; Misiewicz, J.

    2014-02-24

    We report on the fabrication of gallium arsenide (GaAs)/air distributed Bragg reflector microresonators with indium gallium arsenide quantum wells. The structures are studied via momentum resolved photoluminescence spectroscopy which allows us to investigate a pronounced optical mode quantization of the photonic dispersion. We can extract a length parameter from these quantized states whose upper limit can be connected to the lateral physical extension of the microcavity via analytical calculations. Laser emission from our microcavity under optical pumping is observed in power dependent investigations.

  4. Method of making V.sub.3 Ga superconductors

    DOE Patents [OSTI]

    Dew-Hughes, David (Bellport, NY)

    1980-01-01

    An improved method for producing a vanadium-gallium superconductor wire having aluminum as a component thereof is disclosed, said wire being encased in a gallium bearing copper sheath. The superconductors disclosed herein may be fabricated under normal atmospheres and room temperatures by forming a tubular shaped billet having a core composed of an alloy of vanadium and aluminum and an outer sheath composed of an alloy of copper, gallium and aluminum. Thereafter the entire billet is swage reduced to form a wire therefrom and heat treated to form a layer of V.sub.3 Ga in the interior of the wire.

  5. Structure, transport and thermal properties of UCoGa

    SciTech Connect (OSTI)

    Purwanto, A.; Robinson, R.A.; Prokes, K.

    1994-04-01

    By means of neutron powder diffraction, we find that UCoGa crystallizes in the hexagonal ZrNiAl structure and orders ferromagnetically at low temperatures with magnetic moments stacked along the c axis. The magnetic-ordering temperature is reflected in anomalies in the temperature dependencies of the electrical resistivity and the specific heat at Tc = 47 K. Furthermore, the strong anisotropy in the electrical resistivity for i {parallel} c and i {perpendicular} c indicates a significant contribution of the magnetic anisotropy to the electrical resistivity.

  6. " Best Practices Scorecard (c) GA Tech Research Corp.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices Scorecard (c) GA Tech Research Corp. (c) Texas Industries of the Future" "Instructions for Using the Best Practice Scorecard Calculator" "This calculator was developed for use with the Superior Energy Performance's Best Practice Scorecard, revision 9, dated December 5, 2012." "How to use this calculator:" "1. On the Summary tab, press the hide or unhide buttons to show desired detail." "2. Click on the category links in the

  7. Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy Citation Details In-Document Search This content will become publicly available on August 20, 2016 Title: Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni2MnGa is significant in the austenite phase. Furthermore, in the martensite phase,

  8. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on magnetic shape memory effect (Journal Article) | SciTech Connect Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect Citation Details In-Document Search Title: Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of

  9. Enhanced photocatalytic performance of Ga{sup 3+}-doped ZnO

    SciTech Connect (OSTI)

    Zhong, Jun Bo; Li, Jian Zhang; Zeng, Jun; He, Xi Yang; Hu, Wei; Shen, Yue Cheng

    2012-11-15

    Graphical abstract: In general, the strong SPS response corresponds to the high separation rate of photoinduced charge carriers on the basis of the SPS principle. The photovoltage of Ga{sup 3+}-doped ZnO is higher than that of ZnO, thus it can be confirmed that the Ga{sup 3+}-doped ZnO has a higher charge separation rate than the ZnO sample. Among these samples, 1%Ga has highest charge separation rate. Display Omitted Highlights: ? Ga{sup 3+} has been employed to dope ZnO photocatalyst. ? Ga{sup 3+} increases the BET surface area and changes the morphology of ZnO. ? The photoinduced charge separation rate has been enhanced. ? The photocatalytic activity has been greatly promoted. -- Abstract: ZnO and Ga{sup 3+}-doped ZnO with different molar ratio of Ga/Zn (1%, 2% and 3%) were prepared by a parallel flow precipitation method. The photocatalysts prepared were characterized by BET surface area, X-ray diffraction (XRD), UV/vis diffuse reflectance spectroscopy (DRS), scanning electron microscope (SEM) and surface photovoltage spectroscopy (SPS), respectively. The results show that doping Ga{sup 3+} into ZnO increases the BET surface area. The XRD spectra of the photocatalysts calcined at 573 K show only the characteristic peaks of wurtzite-type. Ga{sup 3+}-doped ZnO absorbs much more light than ZnO in the visible light region. Doping Ga{sup 3+} into ZnO greatly changes the morphology of ZnO and enhances the photoinduced charge separation rate. The photocatalytic activity of ZnO and Ga{sup 3+}-doped ZnO for decolorization of methyl orange (MO) solution was evaluated, of all the photocatalysts prepared, the Ga{sup 3+}-doped ZnO with 1% possesses the best photocatalytic activity and the possible reason was discussed.

  10. app_d

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26 Appendix D Document 23, Department of Health & Human Services (Kenneth W. Holt), Atlanta, GA Page 1 of 21 - New Information - Document 22, Char Roth, Ketchum, ID Page 1 of 1 D-27 DOE/EIS-0287 Idaho HLW & FD EIS Document 23, Department of Health & Human Services (Kenneth W. Holt), Atlanta, GA Page 2 of 21 Document 23, Department of Health & Human Services (Kenneth W. Holt), Atlanta, GA Page 3 of 21 - New Information - DOE/EIS-0287 D-28 Appendix D Document 23, Department of

  11. DOE Zero Energy Ready Home Case Study: Heirloom Design Build, Euclid

    Energy Savers [EERE]

    Avenue, Atlanta, GA | Department of Energy Heirloom Design Build, Euclid Avenue, Atlanta, GA DOE Zero Energy Ready Home Case Study: Heirloom Design Build, Euclid Avenue, Atlanta, GA Case study of a DOE 2015 Housing Innovation Award winning custom home in the mixed-humid climate that got a HERS 50 without PV, with 2x6 16" on center walls with R-19 ocsf; basement with R-28 ccsf, R-5 rigid foam under slab; sealed attic with R-28 ocsf under roof deck; 22.8 SEER; 12.5 HSPF heat pump. PDF

  12. Relaxation and critical strain for maximum In incorporation in AlInGaN on GaN grown by metal organic vapour phase epitaxy

    SciTech Connect (OSTI)

    Reuters, Benjamin; Finken, M.; Wille, A.; Kalisch, H.; Vescan, A.; Hollaender, B.; Heuken, M.

    2012-11-01

    Quaternary AlInGaN layers were grown on conventional GaN buffer layers on sapphire by metal organic vapour phase epitaxy at different surface temperatures and different reactor pressures with constant precursor flow conditions. A wide range in compositions within 30-62% Al, 5-29% In, and 23-53% Ga was covered, which leads to different strain states from high tensile to high compressive. From high-resolution x-ray diffraction and Rutherford backscattering spectrometry, we determined the compositions, strain states, and crystal quality of the AlInGaN layers. Atomic force microscopy measurements were performed to characterize the surface morphology. A critical strain value for maximum In incorporation near the AlInGaN/GaN interface is presented. For compressively strained layers, In incorporation is limited at the interface as residual strain cannot exceed an empirical critical value of about 1.1%. Relaxation occurs at about 15 nm thickness accompanied by strong In pulling. Tensile strained layers can be grown pseudomorphically up to 70 nm at a strain state of 0.96%. A model for relaxation in compressively strained AlInGaN with virtual discrete sub-layers, which illustrates the gradually changing lattice constant during stress reduction is presented.

  13. Electron and hole gas in modulation-doped GaAs/Al{sub 1-x}Ga{sub x}As radial heterojunctions

    SciTech Connect (OSTI)

    Bertoni, Andrea; Royo, Miquel; Mahawish, Farah; Goldoni, Guido

    2011-11-15

    We perform self-consistent Schroedinger-Poisson calculations with exchange and correlation corrections to determine the electron and hole gas in a radial heterojunction formed in a GaAs/AlGaAs core-multi-shell nanowire, which is either n- or p-doped. We show that the electron and hole gases can be tuned to different localizations and symmetries inside the core as a function of the doping density/gate potential. Contrary to planar heterojunctions, conduction electrons do not form a uniform 2D electron gas (2DEG) localized at the GaAs/AlGaAs interface, but rather show a transition between an isotropic, cylindrical distribution deep in the GaAs core (low doping) and a set of six tunnel-coupled quasi-1D channels at the edges of the interface (high doping). Holes, on the other hand, are much more localized at the GaAs/AlGaAs interface. At low doping, they present an additional localization pattern with six separated 2DEGs strips. The field generated by a back-gate may easily deform the electron or hole gas, breaking the sixfold symmetry. Single 2DEGs at one interface or multiple quasi-1D channels are shown to form as a function of voltage intensity, polarity, and carrier type.

  14. Analysis of the GaInP/GaAs/1-eV/Ge Cell and Related Structures for Terrestrial Concentrator Application: Preprint

    SciTech Connect (OSTI)

    Friedman, D. J.; Kurtz, S. R.; Geisz, J. F.

    2002-05-01

    This conference paper describes the analysis of the potential of GaInP/GaAs/1-eV/Ge four-junction solar cell to improve on the efficiency of the state-of-the-art GaInP/GaAs/Ge benchmark. We emphasize three factors: (1) The newly proposed terrestrial concentrator spectrum has a lower ratio of red to blue light than does the old AM1.5 direct standard spectrum. (2) Standard two-layer antireflection coatings do not provide near-zero reflectance over the full spectral range of interest for these devices. (3) GaInNAs junctions used to date for the 1-eV junction have quantum efficiencies less than {approx}75%. These factors all limit the device current, adversely affecting the four-junction efficiency. We discuss strategies for ameliorating this problem, including going to alternate structures such as a GaInP/GaAs/0.9-eV three-junction device.

  15. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  16. Issued by Sandia National Laboratories, Albuquerque, New Mexico, USA for the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9-4908 P Issued by Sandia National Laboratories, Albuquerque, New Mexico, USA for the US National Nuclear Security Administration (NNSA) Office of Research & Development for National Security Science & Technology, NA-121. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. ON THE COVER: Peridynamics simulation of uniaxial pull

  17. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; Pan, Janet L.; Jungjohann, Katherine Leigh; Tu, Charles W.; Dayeh, Shadi A.

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than othermore » solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.« less

  18. Vacancy defects in as-grown and neutron irradiated GaP studied by positrons

    SciTech Connect (OSTI)

    Dlubek, G.; Bruemmer, O.; Polity, A.

    1986-08-18

    Positron lifetime and Doppler-broadening measurements have been used to study vacancy defects in n-italic-type GaP. Vacancies in the P sublattice with a concentration of some 10/sup 17/ cm/sup -3/ were observed in as-grwon GaP. The vacancies disappear during annealing at 500--800 /sup 0/C. In neutron-irradiated GaP positrons are trapped by Ga vacancies which anneal out in two stages situated at 300--550 /sup 0/C and 550--700 /sup 0/C.

  19. Structural defects in GaN revealed by Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Liliental-Weber, Zuzanna

    2014-04-18

    This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

  20. Relaxation of compressively strained AlGaN by inclined threading

    Office of Scientific and Technical Information (OSTI)

    dislocations. (Journal Article) | SciTech Connect Journal Article: Relaxation of compressively strained AlGaN by inclined threading dislocations. Citation Details In-Document Search Title: Relaxation of compressively strained AlGaN by inclined threading dislocations. Transmission electron microscopy and x-ray diffraction were used to assess the microstructure and strain of Al{sub x}Ga{sub 1?x}N(x = 0.61-0.64) layers grown on AlN. The compressively-strained AlGaN is partially relaxed by

  1. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its...

    Office of Scientific and Technical Information (OSTI)

    shape memory effect Citation Details In-Document Search Title: Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect ...

  2. Electronic structure of Co-Ni-Ga Heusler alloys studied by resonant

    Office of Scientific and Technical Information (OSTI)

    photoemission (Journal Article) | SciTech Connect Electronic structure of Co-Ni-Ga Heusler alloys studied by resonant photoemission Citation Details In-Document Search Title: Electronic structure of Co-Ni-Ga Heusler alloys studied by resonant photoemission The electronic structures of Co{sub 2.01}Ni{sub 1.05}Ga{sub 0.94} and Co{sub 1.76}Ni{sub 1.46}Ga{sub 0.78} Heusler alloys have been investigated by resonant photoemission spectroscopy across the 3p-3d transition of Co and Ni. For the Ni

  3. Antimonide-Based Long-Wavelength Lasers on GaAs Substrates

    SciTech Connect (OSTI)

    KLEM,JOHN F.; Blum, O.

    2000-08-17

    We have investigated the use of GaAsSb in edge-emitting laser active regions, in order to obtain lasing near 1.3 {micro}m. Single quantum well GaAsSb devices display electroluminescence at wavelengths as long as 1.34 {micro}m, but substantial blueshifts occur under high injection conditions. GaAsSb single quantum well edge emitters have been obtained which lase at 1.275 {micro}m with a room-temperature threshold current density as low as 535 A/cm{sup 2}. Modification of the basic GaAsSb/GaAs structure with the addition of InGaAs layers results in a strongly type-II band alignment which can be used to further extend the emission wavelength of these devices. Using GaAsSb/InGaAs active regions, lasers emitting at 1.17 {micro}m have been obtained with room-temperature threshold current densities of 120 A/cm{sup 2}, and devices operating at 1.29 {micro}m have displayed thresholds as low as 375 A/cm{sup 2}. Characteristic temperatures for devices employing various GaAsSb-based active regions have been measured to be 60-73 K.

  4. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    SciTech Connect (OSTI)

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; Pan, Janet L.; Jungjohann, Katherine Leigh; Tu, Charles W.; Dayeh, Shadi A.

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.

  5. Interface Reactions and Electrical Characteristics of Au/GaSb Contacts

    SciTech Connect (OSTI)

    H. Ehsani; R.J. Gutmann; G.W. Charache

    2000-07-07

    The reaction of Au with GaSb occurs at a relatively low temperature (100 C). Upon annealing, a AuSb{sub 2} compound and several Au-Ga phases are produced. Phase transitions occur toward higher Ga concentration with increasing annealing temperatures. Furthermore, the depth of the contact also increases with increased annealing temperature. They found that the AuSb{sub 2} compound forms on the GaSb surface, with the compound crystal partially ordered with respect to the substrate. The transition of Schottky- to ohmic-contact behavior in Au/n-type GaSb occurs simultaneously with the formation of the AuGa compound at about a 250 C annealing temperature. This ohmic contact forms without the segregation of dopants at the metallic compound/GaSb interface. Therefore it is postulated that transition from Schottky- to ohmic-contact behavior is obtained through a series of tunneling transitions of electrons through defects in the depletion region in the Au/n-type GaSb contacts. Contact resistivities of 6-7 x 10{sup -6} {Omega}-cm{sup 2} were obtained with the annealing temperature between 300 and 350 C for 30 seconds. In Au/p-type GaSb contacts, the resistivity was independent of the annealing temperature. This suggested that the carrier transport in p-type contact dominated by thermionic emission.

  6. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  7. Energy Efficiency is Beautiful! L'Oréal USA Joins Better Plants with Aggressive Energy Efficiency Commitment

    Broader source: Energy.gov [DOE]

    The Department of Energy welcomed L'Oréal USA to the Better Buildings, Better Plants Program (Better Plants) and it is a beautiful partnership. As the nation’s largest cosmetics manufacturer, L...

  8. Estimates of the Global Indirect Energy-Use Emission Impacts of USA Biofuel Policy

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A

    2012-01-01

    This paper evaluates the indirect energy-use emission implications of increases in the use of biofuels in the USA between 2001 and 2010 as mandates within a dynamic global computable general equilibrium model. The study incorporates explicit markets for biofuels, petroleum and other fossil fuels, and accounts for interactions among all sectors of an 18-region global economy. It considers bilateral trade, as well as the dynamics of capital allocation and investment. Simulation results show that the biofuel mandates in the USA generate an overall reduction in global energy use and emissions over the simulation period from 2001 to 2030. Consequently, the indirect energy-use emission change or emission leakage under the mandate is negative. That is, global emission reductions are larger than the direct emission savings from replacing petroleum with biofuels under the USA RFS2 over the last decade. Under our principal scenario this enhanced the direct emission reduction from biofuels by about 66%. The global change in lifecycle energy-use emissions for this scenario was estimated to be about 93 million tons of CO2e in 2010, 45 million tons of CO2e in 2020, and an increase of 5 million tons of CO2e in 2030, relative to the baseline scenario. Sensitivity results of six alternative scenarios provided additional insights into the pattern of the regional and global effects of biofuel mandates on energy-use emissions.

  9. High-temperature luminescence in an n-GaSb/n-InGaAsSb/p-AlGaAsSb light-emitting heterostructure with a high potential barrier

    SciTech Connect (OSTI)

    Petukhov, A. A., E-mail: andrey-rus29@rambler.ru; Zhurtanov, B. E.; Kalinina, K. V.; Stoyanov, N. D.; Salikhov, H. M.; Mikhailova, M. P.; Yakovlev, Yu. P. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-09-15

    The electroluminescent properties of an n-GaSb/n-InGaAsSb/p-AlGaAsSb heterostructure with a high potential barrier in the conduction band (large conduction-band offset) at the n-GaSb/n-InGaAsSb type-II heterointerface ({Delta}E{sub c} = 0.79 eV) are studied. Two bands with peaks at 0.28 and 0.64 eV at 300 K, associated with radiative recombination in n-InGaAsSb and n-GaSb, respectively, are observed in the electroluminescence (EL) spectrum. In the entire temperature range under study, T = 290-480 K, additional electron-hole pairs are formed in the n-InGaAsSb active region by impact ionization with hot electrons heated as a result of the conduction-band offset. These pairs contribute to radiative recombination, which leads to a nonlinear increase in the EL intensity and output optical power with increasing pump current. A superlinear increase in the emission power of the long-wavelength band is observed upon heating in the temperature range T = 290-345 K, and a linear increase is observed at T > 345 K. This work for the first time reports an increase in the emission power of a light-emitting diode structure with increasing temperature. It is shown that this rise is caused by a decrease in the threshold energy of the impact ionization due to narrowing of the band gap of the active region.

  10. InGaAsN Solar Cells with 1.0eV Bandgap, Lattice Matched to GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Banas, J.J.; Gee, J.M.; Hammons, B.E.; Jones, E.D.; Kurtz, S.R.

    1998-11-24

    The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar Al, with 1.0 ev bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies > 70% arc obwined. Optical studies indicate that defects or impurities, from InGAsN doping and nitrogen incorporation, limit solar cell performance.

  11. A comparison of the structure and localized magnetism in Ce{sub 2}PdGa{sub 12} with the heavy fermion CePdGa{sub 6}

    SciTech Connect (OSTI)

    Macaluso, Robin T. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Millican, Jasmine N. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Nakatsuji, Satoru [Department of Physics, Kyoto University, Kyoto, Japan 606-8502 (Japan); Lee, Han-Oh [Department of Physics, University of California, Davis, CA 95616 (United States); Carter, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Moreno, Nelson O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fisk, Zachary [Department of Physics, University of California, Davis, CA 95616 (United States); Chan, Julia Y. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States)]. E-mail: jchan@lsu.edu

    2005-11-15

    Single crystals of Ce{sub 2}PdGa{sub 12} have been synthesized in Ga flux and characterized by X-ray diffraction. This compound crystallizes in the tetragonal P4/nbm space group, Z=2 with lattice parameters of a=6.1040(2)A and c=15.5490(6)A. It shows strongly anisotropic magnetism and orders antiferromagnetically at T{sub N}{approx}11K. A field-induced metamagnetic transition to the ferromagnetic state is observed below T{sub N}. Structure-property relationships with the related heavy-fermion antiferromagnet CePdGa{sub 6} are discussed.

  12. Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions

    SciTech Connect (OSTI)

    Piprek, Joachim

    2014-02-03

    This Letter investigates the efficiency enhancement achieved by tunnel junction insertion into the InGaN/GaN multi-quantum well (MQW) active region of blue light emitting diodes (LEDs). The peak quantum efficiency of such LED exceeds 100%, but the maximum wall-plug efficiency (WPE) hardly changes. However, due to the increased bias, the WPE peaks at much higher input power, i.e., the WPE droop is significantly delayed, and the output power is strongly enhanced. The main physical reason for this improvement lies in the non-uniform vertical carrier distribution typically observed within InGaN MQWs.

  13. InGaP/GaAs Inverted Dual Junction Solar Cells For CPV Applications Using Metal-Backed Epitaxial Lift-Off

    SciTech Connect (OSTI)

    Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey

    2010-10-14

    The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.

  14. Ga-doped ZnO grown by pulsed laser deposition in H2: the roles of Ga and H

    SciTech Connect (OSTI)

    Look, David; Droubay, Timothy C.; McCloy, John S.; Zhu, Zihua; Chambers, Scott A.

    2011-01-11

    Highly conductive thin films of ZnO doped with Ga were grown by pulsed-laser deposition (PLD) with 10 mTorr of H2 in the growth chamber. Compared with a more conventional method of producing conductive films of ZnO, i.e., growth in O2 followed by annealing in forming gas (5% H2 in Ar), the H2 method requires no post-growth anneal and also produces higher carrier concentrations and lower resistivities with better depth uniformity. As an example, a 65-nm-thick sample had a room-temperature mobility of 32 cm2/V-s, a concentration of 6.8 x 1020 cm-3, and a resistivity of 2.9 x 10^-4 ohm-cm. From a scattering model, the donor and acceptor concentrations were calculated as 8.9 x 1020 and 2.1 x 10^20 cm-3, respectively, as compared to the Ga and H concentrations of 11 x 10^20 and 1 x 10^20 cm-3. Thus, H does not play a significant role as a donor in this type of ZnO

  15. Explanations of the unusual photoluminescence observed in annealed InGaN/GaN multi quantum well

    SciTech Connect (OSTI)

    Biswas, Dipankar Bera, Partha Pratim Mistry, Apu

    2015-05-15

    During growth and fabrication of devices, InGaN/GaN QWs undergo several thermal cyclings which causes redistribution of the elements, particularly In in the QW structures. This causes significant changes in the optical properties of the QWs. The thermal cyclings are often accompanied by alloy clustering and phase separation. So in order to have a deep knowledge of how the nano structures behave with thermal cyclings the process is simulated through successive annealing at high temperatures which are accompanied by photoluminescence (PL) measurements to obtain the optical properties at each stage. III-V nanostructures, in most usual cases, on annealing lead to a monotonic blue shift of the PL peak energy and goes into saturation. Recently there were reports in which the PL peak initially had a red shift which was followed by an increase in energy, a blue shift i.e. the PL peak goes through an inflexion. These unusual observations have been explained in this paper through quantum mechanical models and computations, which remained unexplained.

  16. A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes

    SciTech Connect (OSTI)

    Moslehi Milani, N.; Mohadesi, V.; Asgari, A.

    2015-02-07

    A broadband superluminescent light emitting diode with In{sub 0.2}Ga{sub 0.8}N/GaN multiple quantum wells (MQWs) active region is investigated. The investigation is based on a theoretical model which includes the calculation of electronic states of the structure, rate equations, and the spectral radiation power. Two rate equations corresponding to MQW active region and separate confinement heterostructures layer are solved self-consistently with no-k selection wavelength dependent gain and quasi-Fermi level functions. Our results show that the superluminescence started in a current of ?120?mA (?7.5?kA/Cm{sup 2}) at 300?K. The range of peak emission wavelengths for different currents is 423426?nm and the emission bandwidth is ?5?nm in the superluminescence regime. A maximum light output power of 7.59 mW is obtained at 600?mA and the peak modal gain as a function of current indicates logarithmic behavior. Also, the comparison of our calculated results with published experimental data is shown to be in good agreement.

  17. Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Zaidi, Z. H. Lee, K. B.; Qian, H.; Jiang, S.; Houston, P. A.; Guiney, I.; Wallis, D. J.; Humphreys, C. J.

    2014-12-28

    In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1??A/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ?215 to 90?mV/decade) is achieved. The sulfuric acid is believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90??10{sup 12?}cm{sup ?2} eV{sup ?1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.

  18. The use of short-period InGaN/GaN superlattices in blue-region light-emitting diodes

    SciTech Connect (OSTI)

    Sizov, V. S., E-mail: vsizov@mail.ioffe.ru; Tsatsulnikov, A. F.; Sakharov, A. V.; Lundin, W. V.; Zavarin, E. E.; Cherkashin, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Hytch, M. J. [National Center for Scientific Research (CNRS), Center for Material Elaboration and Structural Studies (CEMES) (France); Nikolaev, A. E. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Mintairov, A. M.; He Yan; Merz, J. L. [University of Notre Dame, EE Department (United States)

    2010-07-15

    Optical and light-emitting diode structures with an active InGaN region containing short-period InGaN/GaN superlattices are studied. It is shown that short-period superlattices are thin two-dimensional layers with a relatively low In content that contain inclusions with a high In content 1-3 nm thick. Inclusions manifest themselves from the point of view of optical properties as a nonuniform array of quantum dots involved in a residual quantum well. The use of short-period superlattices in light-emitting diode structures allows one to decrease the concentration of nonradiative centers, as well as to increase the injection of carriers in the active region due to an increase in the effective height of the AlGaN barrier, which in general leads to an increase in the quantum efficiency of light-emitting diodes.

  19. Atomistic modeling and HAADF investigations of misfit and threading dislocations in GaSb/GaAs hetero-structures for applications in high electron mobility transistors

    SciTech Connect (OSTI)

    Ruterana, Pierre Wang, Yi Chen, Jun Chauvat, Marie-Pierre; El Kazzi, S.; Deplanque, L.; Wallart, X.

    2014-10-06

    A detailed investigation on the misfit and threading dislocations at GaSb/GaAs interface has been carried out using molecular dynamics simulation and quantitative electron microscopy techniques. The sources and propagation of misfit dislocations have been elucidated. The nature and formation mechanisms of the misfit dislocations as well as the role of Sb on the stability of the Lomer configuration have been explained.

  20. In-situ surface composition measurements of CuGaSe{sub 2} thin films

    SciTech Connect (OSTI)

    Fons, P.; Yamada, A.; Niki, S.; Oyanagi, H.

    1998-12-31

    Two CuGaSe{sub 2} films were grown by molecular beam epitaxy onto GaAs (001) substrates with varying Cu/Ga flux ratios under Se overpressure conditions. Growth was interrupted at predetermined times and the surface composition was measured using Auger electron spectroscopy after which growth was continued. After growth, the film composition was analyzed using voltage dependent electron microprobe spectroscopy. Film structure and morphology were also analyzed using x-ray diffraction and atomic force microscopy. The film with a Cu/Ga ratio larger than unity showed evidence of surface segregation of a second Cu-rich phase with a Cu/Se composition ratio slightly greater than unity. A second CuGaSe{sub 2} film with a Cu/Ga ratio of less than unity showed no change in surface composition with time and was also consistent with bulk composition measurements. Diffraction measurements indicated a high concentration of twins as well as the presence of domains with mixed c and a axes in the Ga-rich film. The Cu-rich films by contrast were single domain and had a narrower mosaics. High sensitivity scans along the [001] reciprocal axis did not exhibit any new peaks not attributable to either the substrate or the CuGaSe{sub 2} thin film.

  1. Development of a Low Cost Insulated Foil Substrate for Cu(InGaSe)2 Photovoltaics

    SciTech Connect (OSTI)

    ERTEN ESER

    2012-01-22

    The project validated the use of stainless steel flexible substrate coated with silicone-based resin dielectric, developed by Dow Corning Corporation, for Cu(InGa)Se2 based photovoltaics. The projects driving force was the high performance of Cu(InGa)Se2 based photovoltaics coupled with potential cost reduction that could be achieved with dielectric coated SS web substrate.

  2. Deep-level transient spectroscopy of InAs/GaAs quantum dot superlattices

    SciTech Connect (OSTI)

    Sobolev, M. M.; Nevedomskii, V. N.; Zolotareva, R. V.; Vasil'ev, A. P.; Ustinov, V. M.

    2014-02-21

    Deep level transient spectroscopy (DLTS) has been applied to study the carrier emission from states of a 10-layer system of tunnel-coupled vertically correlated quantum dots (VCQDs) in p-n InAs/GaAs heterostructures with different widths of GaAs spacers under varied reverse bias (U{sub r}) and filling voltage pulse U{sub f}.

  3. Activation of small alkanes in Ga-exchanged zeolites: A quantum chemical study of ethane dehydrogenation

    SciTech Connect (OSTI)

    Frash, M.V.; Santen, R.A. van

    2000-03-23

    Quantum chemical calculations on the mechanism of ethane dehydrogenation catalyzed by Ga-exchanged zeolites have been undertaken. Two forms of gallium, adsorbed dihydride gallium ion GaH{sub 2}+Z{sup {minus}} and adsorbed gallyl ion [Ga=O]{sup +}Z{sup {minus}}, were considered. It was found that GaH{sub 2}{sup +}Z{sup {minus}} is the likely active catalyst. On the contrary, [Ga=O]{sup +}Z{sup {minus}} cannot be a working catalyst in nonoxidative conditions, because regeneration of this form is very difficult. Activation of ethane by GaH{sub 2}{sup +}Z{sup {minus}} occurs via an alkyl mechanism and the gallium atom acts as an acceptor of the ethyl group. The carbenium activation of ethane, with gallium abstracting a hydride ion, is much (ca. 51 kcal/mol) more difficult. The catalytic cycle for the alkyl activation consists of three elementary steps: (1) rupture of the ethane C-H bond; (2) formation of dihydrogen from the Bronsted proton and hydrogen bound to Ga; and (3) formation of ethene from the ethyl group bound to Ga. The best estimates (MP2/6--311++G(2df,p)//B3LYP/6--31G*) for the activation energies of these three steps are 36.9, ca. 0, and 57.9 kcal/mol, respectively.

  4. Variation of lattice constant and cluster formation in GaAsBi

    SciTech Connect (OSTI)

    Puustinen, J.; Schramm, A.; Guina, M.; Wu, M.; Luna, E.; Laukkanen, P.; Laitinen, M.; Sajavaara, T.

    2013-12-28

    We investigate the structural properties of GaAsBi layers grown by molecular beam epitaxy on GaAs at substrate temperatures between 220315 C. Irrespective of the growth temperature, the structures exhibited similar Bi compositions, and good overall crystal quality as deduced from X-Ray diffraction measurements. After thermal annealing at temperatures as low as 500 C, the GaAsBi layers grown at the lowest temperatures exhibited a significant reduction of the lattice constant. The lattice variation was significantly larger for Bi-containing samples than for Bi-free low-temperature GaAs samples grown as a reference. Rutherford backscattering spectrometry gave no evidence of Bi diffusing out of the layer during annealing. However, dark-field and Z-contrast transmission electron microscopy analyses revealed the formation of GaAsBi clusters with a Bi content higher than in the surrounding matrix, as well as the presence of metallic As clusters. The apparent reduction of the lattice constant can be explained by a two-fold process: the diffusion of the excess As incorporated within As{sub Ga} antisites to As clusters, and the reduction of the Bi content in the GaAs matrix due to diffusion of Bi to GaAsBi clusters. Diffusion of both As and Bi are believed to be assisted by the native point defects, which are present in the low-temperature as-grown material.

  5. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    SciTech Connect (OSTI)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-14

    In{sub x}Ga{sub 1?x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18?}cm{sup ?3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  6. Effect of the band structure of InGaN/GaN quantum well on the surface plasmon enhanced light-emitting diodes

    SciTech Connect (OSTI)

    Li, Yi; Zhang, Rong E-mail: bliu@nju.edu.cn; Liu, Bin E-mail: bliu@nju.edu.cn; Xie, Zili; Zhang, Guogang; Tao, Tao; Zhuang, Zhe; Zhi, Ting; Zheng, Youdou

    2014-07-07

    The spontaneous emission (SE) of InGaN/GaN quantum well (QW) structure with silver(Ag) coated on the n-GaN layer has been investigated by using six-by-six K-P method taking into account the electron-hole band structures, the photon density of states of surface plasmon polariton (SPP), and the evanescent fields of SPP. The SE into SPP mode can be remarkably enhanced due to the increase of electron-hole pairs near the Ag by modulating the InGaN/GaN QW structure or increasing the carrier injection. However, the ratio between the total SE rates into SPP mode and free space will approach to saturation or slightly decrease for the optimized structures with various distances between Ag film and QW layer at a high injection carrier density. Furthermore, the Ga-face QW structure has a higher SE rate than the N-face QW structure due to the overlap region of electron-hole pairs nearer to the Ag film.

  7. Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios

    SciTech Connect (OSTI)

    Khan, Aurangzeb; Yamaguchi, Masafumi; Takamoto, Tatsuya

    2004-10-11

    A study of the performance of single-junction InGaP/GaAs and dual-junction InGaP/GaAs tandem cells under low concentration ratios (up to 15 suns), before and after 1 MeV electron irradiation is presented. Analysis of the tunnel junction parameters under different concentrated light illuminations reveals that the peak current (J{sub P}) and valley current (J{sub V}) densities should be greater than the short-circuit current density (J{sub sc}) for better performance. The tunnel junction behavior against light intensity improved after irradiation. This led to the suggestion that the peak current density (J{sub P}) and valley current density (J{sub V}) of the tunnel junction were enhanced after irradiation or the peak current was shifted to higher concentration. The recovery of the radiation damage under concentrated light illumination conditions suggests that the performance of the InGaP/GaAs tandem solar cell can be enhanced even under low concentration ratios.

  8. Polycrystalline GaAs solar cells on low-cost Silicon-Film{trademark} substrates

    SciTech Connect (OSTI)

    Mauk, M.G.; Feyock, B.W.; Hall, R.B.; Cavanaugh, K.D.; Cotter, J.E.

    1997-12-31

    The authors assess the potential of a low-cost, large-area Silicon-Film{trademark} sheet as a substrate for thin-film polycrystalline GaAs solar cells. Silicon-Film is a relatively inexpensive material on which large-grain (>2 mm) polycrystalline GaAs films can be formed. The GaAs epitaxial layers are grown by a simple close-spaced vapor transport (CSVT) technique using water vapor as a transport agent. A recrystallized Ge{sub 1{minus}x}Si{sub x} buffer layer between the GaAs epilayer and Silicon-Film substrate can facilitate growth of the GaAs. Selective epitaxy on patterned, oxide-masked substrates is effective in reducing thermal stress effects.

  9. MOCVD growth of GaAs solar cells on silicon substrates

    SciTech Connect (OSTI)

    Vernon, S.M.; Haven, V.E.; Geoffroy, L.M.; Sanfacon, M.M.; Mastrovito, A.L. )

    1992-12-01

    This paper reports advances in the development of solar cells made from GaAs-on-Si structures prepared by metalorganic chemical vapor deposition (MOCVD). The use of concentrator cells, operating at [similar to]200 suns, has led to the efficiency achievements of 21.3% (AM1.5D) for a GaAs-on-Si solar cell, and 27.6 (AM1.5D) for a homoepitaxial GaAs cell. The development of epitaxial multilayer dielectric mirrors (Bragg reflectors), as back-surface reflectors in thin-film GaAs cells, on both Si and GaAs substrates, is shown to lead to modest efficiency increases, over that of conventional designs.

  10. Doping of GaN{sub 1-x}As{sub x} with high As content

    SciTech Connect (OSTI)

    Levander, A.X.; Novikov, S.V.; Liliental-Weber, Z.; dos Reis, R.; Dubon, O.D.; Wu, J.; Foxon, C.T.; Yu, K.M.; Walukiewicz, W.

    2011-09-22

    Recent work has shown that GaN{sub 1-x}As{sub x} can be grown across the entire composition range by low temperature molecular beam epitaxy with intermediate compositions being amorphous, but control of the electrical properties through doping is critical for functionalizing this material. Here we report the bipolar doping of GaN{sub 1-x}As{sub x} with high As content to conductivities above 4 S/cm at room temperature using Mg or Te. The carrier type was confirmed by thermopower measurements. Doping requires an increase in Ga flux during growth resulting in a mixed phase material of polycrystalline GaAs:N embedded in amorphous GaN{sub 1-x}As{sub x}.

  11. Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates

    SciTech Connect (OSTI)

    Yamaguchi, M.; Amano, C.; Itoh, Y.

    1989-07-15

    This paper describes some recent developments in GaAs thin-film solar cells fabricated on Si substrates by metalorganic chemical vapor deposition and numerically analyzes them.GaAs solar cells with efficiency of more than 18% are successfully fabricated on Si substrates by reducing the dislocation density. Photovoltaic properties of GaAs/Si cells are analyzed by considering the effect of nonuniform dislocation distribution on recombination properties of GaAs thin films on Si substrates. Numerical analysis shows that the effect of majority-carrier trapping must be considered. High efficiency GaAs solar cells with total-area efficiency of over 20% on Si substrates can be realized if dislocation density can be reduced to less than 5/times/10/sup 5/ cm/sup /minus/2/.

  12. Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping

    SciTech Connect (OSTI)

    Ahn, Kwang-Soon; Yan, Yanfa; Shet, Sudhakar; Deutsch, Todd; Turner, John; Al-Jassim, Mowafak

    2007-12-03

    We report on the crystallinity and photoelectrochemical (PEC) response of ZnO thin films codoped by Ga and N. The ZnO:(Ga,N) thin films were deposited by cosputtering at room temperature and followed by postannealing at 500 deg. C in air for 2 h. We found that ZnO:(Ga,N) thin films exhibited significantly enhanced crystallinity compared to ZnO doped solely with N at the same growth conditions. Furthermore, ZnO:(Ga,N) thin films exhibited enhanced N incorporation over ZnO doped solely with N at high temperatures. As a result, ZnO:(Ga,N) thin films achieved dramatically improved PEC response, compared to ZnO thin films doped solely with N at any conditions. Our results suggest a general way to improve PEC response for wide-band-gap oxides.

  13. Electron Traps Detected in p-type GaAsN Using Deep Level Transient Spectroscopy

    SciTech Connect (OSTI)

    Johnston, S.; Kurtz, S.; Friedman, D.; Ptak, A.; Ahrenkiel, R.; Crandall, R.

    2005-01-01

    The GaAsN alloy can have a band gap as small as 1.0 eV when the nitrogen composition is about 2%. Indium can also be added to the alloy to increase lattice matching to GaAs and Ge. These properties are advantageous for developing a highly-efficient, multi-junction solar cell. However, poor GaAsN cell properties, such as low open-circuit voltage, have led to inadequate performance. Deep-level transient spectroscopy of p-type GaAsN has identified an electron trap having an activation energy near 0.2 eV and a trap density of at least 1016 cm-3. This trap level appears with the addition of small amounts of nitrogen to GaAs, which also corresponds to an increased drop in open-circuit voltage.

  14. Intrinsic polarization control in rectangular GaN nanowire lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Changyi; Liu, Sheng; Luk, Ting S.; Figiel, Jeffrey J.; Brener, Igal; Brueck, S. R. J.; Wang, George T.

    2016-02-10

    In this study, we demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444kW/cm2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control overmore » the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.« less

  15. Ferromagnetic (Ga,Mn)As nanostructures for spintronic applications

    SciTech Connect (OSTI)

    Wosinski, Tadeusz; Andrearczyk, Tomasz; Figielski, Tadeusz; Makosa, Andrzej; Wrobel, Jerzy; Sadowski, Janusz

    2013-12-04

    Magneto-resistive, cross-like nanostructures have been designed and fabricated by electron-beam lithography patterning and chemical etching from thin epitaxial layers of the ferromagnetic semiconductor (Ga,Mn)As. The nanostructures, composed of two perpendicular nanostripes crossing in the middle of their length, represent four-terminal devices, in which an electric current can be driven through any of the two nanostripes. In these devices, a novel magneto-resistive memory effect, related to a rearrangement of magnetic domain walls in the central part of the device, has been demonstrated. It consists in that the zero-field resistance of a nanostripe depends on the direction of previously applied magnetic field. The nanostructures can thus work as two-state devices providing basic elements of nonvolatile memory cells.

  16. Surface modification of multilayer graphene using Ga ion irradiation

    SciTech Connect (OSTI)

    Wang, Quan; Shao, Ying; Ge, Daohan; Ren, Naifei; Yang, Qizhi

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  17. InGaAs monolithic interconnected modules (MIM)

    SciTech Connect (OSTI)

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.; Hoffman, R.W. Jr.; Wilt, D.M.; Scheiman, D.; Brinker, D.; Murray, C.S.; Riley, D.

    1997-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs with an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.

  18. Development of an IR-transparent, inverted-grown, thin-film, Al[sub 0. 34]Ga[sub 0. 66]As/GaAs cascade solar cell

    SciTech Connect (OSTI)

    Venkatasubramanian, R.; Timmons, M.L.; Sharps, P.R.; Colpitts, T.S.; Hills, J.S.; Hancock, J.; Hutchby, J.A. )

    1992-12-01

    Inverted growth and the development of associated cell processing, are likely to offer a significant degree of freedom for improving the performance of many III-V multijunction cascades and open new avenues for advanced multijunction concepts. This is especially true for the development of high-efficiency Al[sub 0.37]Ga[sub 0.63]As/GaAs cascades where the high growth temperatures required for the AlGaAs top cell growth can cause the deterioration of the tunnel junction interconnect. In the approach of inverted-grown AlGaAs/GaAs cascade cells, the AlGaAs top cell is grown first at 780 [degree]C and the GaAs tunnel junction and bottom cell are grown at 675 [degree]C. After the inverted growth, the AlGaAs/GaAs cascade structure is selectively removed from the parent substrate. The feasibility of inverted growth is demonstrated by a fully-processed, inverted-grown, thin film GaAs cell with a 1-sun AM1.5 efficiency of 20.3%. Also, an inverted-grown, thin-film, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiencies of 19.9% and 21% at 1-sun and 7-suns, respectively, has been obtained.

  19. Effects of phase transformation on the microstructures and magnetostriction of Fe-Ga and Fe-Ga-Zn ferromagnetic shape memory alloys

    SciTech Connect (OSTI)

    Lin, Yin-Chih Lin, Chien-Feng

    2015-05-07

    The phase transformation and magnetostriction of bulk Fe{sub 73}Ga{sub 27} and Fe{sub 73}Ga{sub 18}Zn{sub 9} (at.?%) ferromagnetic shape memory alloys (FSMs) were investigated by transmission electron microscopy (TEM), x-ray diffraction (XRD), and a magnetostrictive-meter setup. For the Fe{sub 73}Ga{sub 27} FSM alloy solution treated at 1100?C for 4?h and quenched in ice brine, the antiphase boundary segments of the D0{sub 3} domain were observed in the A2 (disordered) matrix, and the Fe{sub 73}Ga{sub 27} FSM alloy had an optimal magnetostriction (?{sub ?}{sup s?}=?71??10{sup ?6} and ?{sub ?}{sup s?}=??31??10{sup ?6}). In Fe{sub 73}Ga{sub 27} FSM alloy as-quenched, aged at 700?C for 24?h, and furnace cooled, D0{sub 3} nanoclusters underwent phase transformation to an intermediate tetragonal phase (i.e., L1{sub 0}-like martensite) via Bain distortion, and finally L1{sub 2} (Fe{sub 3}Ga) structures precipitated, as observed by TEM and XRD. The L1{sub 0}-like martensite and L1{sub 2} phases in the aged Fe{sub 73}Ga{sub 27} FSM alloy drastically decreased the magnetostriction from positive to negative (?{sub ?}{sup s?}=??20??10{sup ?6} and ?{sub ?}{sup s?}=??8??10{sup ?6}). However, in Fe{sub 73}Ga{sub 18}Zn{sub 9} FSM alloy as-quenched and aged, the phase transformation of D0{sub 3} to an intermediate tetragonal martensite phase and precipitation of L1{sub 2} structures were not found. The results indicate that the aged Fe{sub 73}Ga{sub 18}Zn{sub 9} FSM alloy maintained stable magnetostriction (?{sub ?}{sup s?}=?36??10{sup ?6} and ?{sub ?}{sup s?}=??31??10{sup ?6}). Adding Zn can improve the ferromagnetic shape memory effect of aged Fe{sub 73}Ga{sub 18}Zn{sub 9} alloy, which may be useful in application of the alloy in high temperature environments.

  20. Ground-state energy trends in single and multilayered coupled InAs/GaAs quantum dots capped with InGaAs layers: Effects of InGaAs layer thickness and annealing temperature

    SciTech Connect (OSTI)

    Shah, S.; Ghosh, K.; Jejurikar, S.; Mishra, A.; Chakrabarti, S.

    2013-08-01

    Graphical abstract: - Highlights: Investigation of ground state energy in single and multi-layered InAs/GaAs QD. Strain reducing layer (InGaAs) prevents the formation of non-radiative. Strain reducing layer (InGaAs) is responsible for high activation energy. Significant deviation from the Varshni model, E(T) = E ? ?T{sup 2}/T + ?. - Abstract: Vertically coupled, multilayered InAs/GaAs quantum dots (QDs) covered with thin InGaAs strain-reducing layers (SRLs) are in demand for various technological applications. We investigated low temperature photoluminescence of single and multilayered structures in which the SRL thickness was varied. The SRL layer was responsible for high activation energies. Deviation of experimental data from the Varshni (1967) model, E(T) = E ? ? T{sup 2}/T + ?, suggests that the InAs-layered QDs have properties different from those in bulk material. Anomalous ground-state peak linewidths (FWHM), especially for annealed multilayer structures, were observed. A ground-state peak blue-shift with a broadened linewidth was also observed. Loss of intensity was detected in samples annealed at 800 C. Presence of SRLs prevents formation of non-radiative centers under high temperature annealing. The results indicate the potential importance of such structures in optoelectronic applications.

  1. Overview of Station Analysis Tools Developed in Support of H2USA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5/12/2015 U.S. DEPARTMENT OF ENERGY FUEL CELL TECHNOLOGIES OFFICE Overview of Station Analysis Tools Developed in Support of H2USA Presenter(s): Amgad Elgowainy, PhD Marc Melaina, PhD 5/12/2015 Fuel Cell Technologies Office | 2 5/12/2015 Question and Answer * Please type your questions into the question box hydrogenandfuelcells.energy.gov Fuel Cell Technologies Office | 3 5/12/2015 * Welcome and House Keeping - 5 minutes * Hydrogen Refueling Station Analysis Model (HRSAM) - 20 minutes - Amgad

  2. WM2015 Conference, March, 15-19, 2015, Phoenix, Arizona, USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March, 15-19, 2015, Phoenix, Arizona, USA † Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy. Impacts of an Additional Exhaust Shaft on WIPP

  3. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1-eV)/GaInAs(0.7-eV) Four-Junction Solar Cell: Preprint

    SciTech Connect (OSTI)

    Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

    2006-05-01

    We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga0.5In0.5P/GaAs/Ga0.75In0.25As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga0.75In0.25As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap GaxIn1-xAs fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the GaxIn1-xAs fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

  4. SR0006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program (EMSP) National Workshop in Atlanta, GA on April 25-27 at the Westin Peachtree Plaza. Hosted by DOE's Office of Environmental Management and Office of Science, Idaho...

  5. Remarks by Federal Blue Ribbon Commission J. David Jameson ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Blue Ribbon Commission J. David Jameson Atlanta, GA October 18, 2011 Good Morning. I am David Jameson. I am President and CEO of the Greater Aiken, South Carolina, Chamber...

  6. SOUTHEASTERN FEDERAL POWER ALLIANCE Martin Luther King, Jr. Federal...

    Broader source: Energy.gov (indexed) [DOE]

    Martin Luther King, Jr. Federal Building 77 Forsyth Street SW, Atlanta, GA 30303 November 6, 2014 November 5, 2014: Meet at the Glenn Hotel lobby at 6:00 p.m. to walk to...

  7. Clean Cities: Coalitions in Order of Designation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Order Atlanta, GA September 8th, 1993 1 Denver, CO September 13th, 1993 2 Philadelphia, PA September 22nd, 1993 3 Delaware October 12th, 1993 4 Washington, DC October...

  8. The effect of diet and exercise on incidence of 7,12dimethylbenz...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 1991-03-15 OSTI Identifier: 5174614 Report Number(s): CONF-9104107-- ... Atlanta, GA (United States), 21-25 Apr 1991 Country of Publication: United States ...

  9. DOE Kicks Off National "Change a Light, Change the World" Campaign

    Broader source: Energy.gov [DOE]

    ATLANTA, GA - U.S. Department of Energy (DOE) Assistant Secretary for Policy and International Affairs Karen A. Harbert today joined Georgia Power President and CEO Mike Garrett to kick off the...

  10. GE Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: GE Wind Energy Place: Atlanta, Georgia Zip: GA 30339 Sector: Wind energy Product: GE's wind energy division, formed as a result of the...

  11. Performance & Risk Assessment Community of Practice (P&RA CoP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pacop) April 13-14, 2010: Richland, WA (http:srnl.doe.govcopexchange2010pacop.htm) May 25-26, 2011: Atlanta. GA (http:srnl.doe.govcopexchange2011pacop.htm) December...

  12. Intersubband transitions in In{sub x}Ga{sub 1?x}N/In{sub y}Ga{sub 1?y}N/GaN staggered quantum wells

    SciTech Connect (OSTI)

    Y?ld?r?m, Hasan; Aslan, Bulent

    2014-04-28

    Intersubband transition energies and absorption lineshape in staggered InGaN/GaN quantum wells surrounded by GaN barriers are computed as functions of structural parameters such as well width, In concentrations, and the doping level in the well. Schrdinger and Poisson equations are solved self-consistently by taking the free and bound surface charge concentrations into account. Many-body effects, namely, depolarization and excitonic shifts are also included in the calculations. Results for transition energies, oscillator strength, and the absorption lineshape up to nonlinear regime are represented as functions of the parameters mentioned. The well width (total and constituent layers separately) and In concentration dependence of the built-in electric field are exploited to tune the intersubband transition energies.

  13. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Masuda, Taizo Tomasulo, Stephanie; Lang, Jordan R.; Lee, Minjoo Larry

    2015-03-07

    We have investigated ?2.0?eV (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P and ?1.9?eV Ga{sub 0.51}In{sub 0.49}P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V{sub oc}) ranging from 1.29 to 1.30?V for Ga{sub 0.51}In{sub 0.49}P cells, and 1.351.37?V for (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W{sub oc}?=?E{sub g}/q???V{sub oc}) of Ga{sub 0.51}In{sub 0.49}P cells to decrease from ?575?mV to ?565?mV, while that of (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells remained nearly constant at 620?mV. The constant W{sub oc} as a function of substrate offcut for (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P implies greater losses from non-radiative recombination compared with the Ga{sub 0.51}In{sub 0.49}P devices. In addition to larger W{sub oc} values, the (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga{sub 0.51}In{sub 0.49}P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells.

  14. Experimental and theoretical studies of band gap alignment in GaAs{sub 1?x}Bi{sub x}/GaAs quantum wells

    SciTech Connect (OSTI)

    Kudrawiec, R. Kopaczek, J.; Polak, M. P.; Scharoch, P.; Gladysiewicz, M.; Misiewicz, J.; Richards, R. D.; Bastiman, F.; David, J. P. R.

    2014-12-21

    Band gap alignment in GaAs{sub 1?x}Bi{sub x}/GaAs quantum wells (QWs) was studied experimentally by photoreflectance (PR) and theoretically, ab initio, within the density functional theory in which the supercell based calculations are combined with the alchemical mixing approximation applied to a single atom in a supercell. In PR spectra, the optical transitions related to the excited states in the QW (i.e., the transition between the second heavy-hole and the second electron subband) were clearly observed in addition to the ground state QW transition and the GaAs barrier transition. This observation is clear experimental evidence that this is a type I QW with a deep quantum confinement in the conduction and valence bands. From the comparison of PR data with calculations of optical transitions in GaAs{sub 1?x}Bi{sub x}/GaAs QW performed for various band gap alignments, the best agreement between experimental data and theoretical calculations has been found for the valence band offset of 52??5%. A very similar valence band offset was obtained from ab initio calculations. These calculations show that the incorporation of Bi atoms into GaAs host modifies both the conduction and the valence band. For GaAs{sub 1?x}Bi{sub x} with 0?GaAs{sub 1?x}Bi{sub x} and GaAs in the range of ?60%40% (?40%60%), which is in good agreement with our conclusion derived from PR measurements.

  15. USA National Phenology Network: Plant and Animal Life-Cycle Data Related to Climate Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Phenology refers to recurring plant and animal life cycle stages, such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. It is also the study of these recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate. Phenology affects nearly all aspects of the environment, including the abundance and diversity of organisms, their interactions with one another, their functions in food webs, and their seasonable behavior, and global-scale cycles of water, carbon, and other chemical elements. Phenology records can help us understand plant and animal responses to climate change; it is a key indicator. The USA-NPN brings together citizen scientists, government agencies, non-profit groups, educators, and students of all ages to monitor the impacts of climate change on plants and animals in the United States. The network harnesses the power of people and the Internet to collect and share information, providing researchers with far more data than they could collect alone.[Extracts copied from the USA-NPN home page and from http://www.usanpn.org/about].

  16. Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lemus, Rocky; Parrish, David J.; Wolf, Dale D.

    2014-01-01

    Switchgrass ( Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer andmore » November) and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended.« less

  17. Suppression of metastable-phase inclusion in N-polar (0001{sup }) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    SciTech Connect (OSTI)

    Shojiki, Kanako Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-06-01

    The metastable zincblende (ZB) phase in N-polar (0001{sup }) (?c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the ?c-plane and Ga-polar (0001) (+c-plane), the ?c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the ?c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated.

  18. Sulfur-mediated palladium catalyst immobilized on a GaAs surface

    SciTech Connect (OSTI)

    Shimoda, M. [Surface Physics and Structure Unit, Surface Physics Group, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Konishi, T. [Anan National College of Technology, 265 Aoki, Minobayashi-cho, Anan, Tokushima 774-0017 (Japan); Nishiwaki, N. [School of Environmental and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502 (Japan); Yamashita, Y.; Yoshikawa, H. [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2012-06-15

    We present a hard x-ray photoelectron spectroscopy study on the preparation process of palladium catalyst immobilized on an S-terminated GaAs(100) surface. It is revealed that Pd(II) species are reduced on the GaAs surface and yield Pd nanoparticles during the process of Pd immobilization and the subsequent heat treatment. A comparison with the results on GaAs without S-termination suggests that the reduction of Pd is promoted by hydroxy groups during the Pd immobilization and by S during the heat treatment.

  19. Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light

    SciTech Connect (OSTI)

    Kibria, M. G.; Chowdhury, F. A.; Zhao, S.; Mi, Z.; Trudeau, M. L.; Guo, H.

    2015-03-16

    We report that by engineering the intra-gap defect related energy states in GaN nanowire arrays using Mg dopants, efficient and stable overall neutral water splitting can be achieved under violet light. Overall neutral water splitting on Rh/Cr{sub 2}O{sub 3} co-catalyst decorated Mg doped GaN nanowires is demonstrated with intra-gap excitation up to 450?nm. Through optimized Mg doping, the absorbed photon conversion efficiency of GaN nanowires reaches ?43% at 375450?nm, providing a viable approach to extend the solar absorption of oxide and non-oxide photocatalysts.

  20. Modulation on Ni{sub 2}MnGa(001) surface (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Modulation on Ni{sub 2}MnGa(001) surface Citation Details In-Document Search Title: Modulation on Ni{sub 2}MnGa(001) surface We report periodic modulation on (001) surface of Ni2MnGa ferromagnetic shape memory alloy. For the stoichiometric surface, analysis of the low energy electron diffraction (LEED) spot profiles shows that the modulation is incommensurate. The modulation appears at 200 K, concomitant with the first order structural transition to the martensitic phase. Authors:

  1. Enhanced single photon emission from positioned InP/GaInP quantum dots

    Office of Scientific and Technical Information (OSTI)

    coupled to a confined Tamm-plasmon mode (Journal Article) | SciTech Connect Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode Citation Details In-Document Search Title: Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode We report on the enhancement of the spontaneous emission in the visible red spectral range from site-controlled InP/GaInP quantum dots by resonant coupling

  2. DOE Zero Energy Ready Home Case Study: The Imery Group, Serenbe, GA |

    Energy Savers [EERE]

    Department of Energy The Imery Group, Serenbe, GA DOE Zero Energy Ready Home Case Study: The Imery Group, Serenbe, GA Case study of a DOE Zero Energy Ready home in Serenbe, GA, that scored a HERS 40 without PV or HERS -10 with PV. The 2,811-ft2, two-story custom home has 2x6, advanced framed walls filled with R-20 of open-cell spray foam, plus an R-6.6 insulated coated OSB sheathing. The sealed attic has R-32 of open-cell spray foam on the underside of the roof deck plus R-5 rigid foam above

  3. Low Cost Production of InGaN for Next-Generation Photovoltaic Devices

    SciTech Connect (OSTI)

    Nick M. Sbrockey, Shangzhu Sun, Gary S. Tompa,

    2012-07-09

    The goal of this project is to develop a low-cost and low-energy technology for production of photovoltaic devices based on InGaN materials. This project builds on the ongoing development by Structured Materials Industries (SMI), of novel thin film deposition technology for Group III-Nitride materials, which is capable of depositing Group-III nitride materials at significantly lower costs and significantly lower energy usage compared to conventional deposition techniques. During this project, SMI demonstrated deposition of GaN and InGaN films using metalorganic sources, and demonstrated compatibility of the process with standard substrate materials and hardware components.

  4. Carrier localization and in-situ annealing effect on quaternary Ga{sub 1-x}In{sub x}As{sub y}Sb{sub 1-y}/GaAs quantum wells grown by Sb pre-deposition

    SciTech Connect (OSTI)

    Thoma, Jiri; Huyet, Guillaume; Tyndall National Institute, UCC, Lee Maltings, Cork ; Liang, Baolai; Huffaker, Diana L.; Lewis, Liam; Hegarty, Stephen P.

    2013-03-18

    Using temperature-dependent photoluminescence spectroscopy, we have investigated and compared intrinsic InGaAs, intrinsic GaInAsSb, and p-i-n junction GaInAsSb quantum wells (QWs) embedded in GaAs barriers. Strong carrier localization inside the intrinsic GaInAsSb/GaAs QW has been observed together with its decrease inside the p-i-n sample. This is attributed to the effect of an in-situ annealing during the top p-doped AlGaAs layer growth at an elevated temperature of 580 Degree-Sign C, leading to Sb-atom diffusion and even atomic redistribution. High-resolution X-ray diffraction measurements and the decrease of both maximum localization energy and full delocalization temperature in the p-i-n QW sample further corroborated this conclusion.

  5. Enhanced quality thin film Cu(In,Ga)Se.sub.2 for semiconductor device applications by vapor-phase recrystallization

    DOE Patents [OSTI]

    Tuttle, John R. (Denver, CO); Contreras, Miguel A. (Golden, CO); Noufi, Rommel (Golden, CO); Albin, David S. (Denver, CO)

    1994-01-01

    Enhanced quality thin films of Cu.sub.w (In,Ga.sub.y)Se.sub.z for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu.sub.x Se on a substrate to form a large-grain precursor and then converting the excess Cu.sub.x Se to Cu(In,Ga)Se.sub.2 by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga).sub.y Se.sub.z. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300.degree.-600.degree. C., where the Cu(In,Ga)Se.sub.2 remains solid, while the excess Cu.sub.x Se is in a liquid flux. The characteristic of the resulting Cu.sub.w (In,Ga).sub.y Se.sub.z can be controlled by the temperature. Higher temperatures, such as 500.degree.-600.degree. C., result in a nearly stoichiometric Cu(In,Ga)Se.sub.2, whereas lower temperatures, such as 300.degree.-400.degree. C., result in a more Cu-poor compound, such as the Cu.sub.z (In,Ga).sub.4 Se.sub.7 phase.

  6. Enhanced quality thin film Cu(In,Ga)Se[sub 2] for semiconductor device applications by vapor-phase recrystallization

    DOE Patents [OSTI]

    Tuttle, J.R.; Contreras, M.A.; Noufi, R.; Albin, D.S.

    1994-10-18

    Enhanced quality thin films of Cu[sub w](In,Ga[sub y])Se[sub z] for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu[sub x]Se on a substrate to form a large-grain precursor and then converting the excess Cu[sub x]Se to Cu(In,Ga)Se[sub 2] by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga)[sub y]Se[sub z]. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300--600 C, where the Cu(In,Ga)Se[sub 2] remains solid, while the excess Cu[sub x]Se is in a liquid flux. The characteristic of the resulting Cu[sub w](In,Ga)[sub y]Se[sub z] can be controlled by the temperature. Higher temperatures, such as 500--600 C, result in a nearly stoichiometric Cu(In,Ga)Se[sub 2], whereas lower temperatures, such as 300--400 C, result in a more Cu-poor compound, such as the Cu[sub z](In,Ga)[sub 4]Se[sub 7] phase. 7 figs.

  7. Strain dependence on polarization properties of AlGaN and AlGaN-based ultraviolet lasers grown on AlN substrates

    SciTech Connect (OSTI)

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramn; Mita, Seiji; Tweedie, James

    2015-06-08

    Since the band ordering in AlGaN has a profound effect on the performance of UVC light emitting diodes (LEDs) and even determines the feasibility of surface emitting lasers, the polarization properties of emitted light from c-oriented AlGaN and AlGaN-based laser structures were studied over the whole composition range, as well as various strain states, quantum confinements, and carrier densities. A quantitative relationship between the theoretical valence band separation, determined using kp theory, and the experimentally measured degree of polarization is presented. Next to composition, strain was found to have the largest influence on the degree of polarization while all other factors were practically insignificant. The lowest crossover point from the transverse electric to transverse magnetic polarized emission of 245?nm was found for structures pseudomorphically grown on AlN substrates. This finding has significant implications toward the efficiency and feasibility of surface emitting devices below this wavelength.

  8. Green, red and infrared Er-related emission in implanted GaN:Er and GaN:Er,O samples

    SciTech Connect (OSTI)

    Monteiro, T.; Soares, J.; Correia, M. R.; Alves, E.

    2001-06-01

    Er-related luminescence near 1.54 {mu}m ({similar_to}805 meV) is observed under below band gap excitation at 4.2 K in GaN:Er and GaN:Er,O implanted samples. The spectrum of the recovered damage samples is a multiline structure. So far, these lines are the sharpest ones reported for GaN. Well-resolved green and red luminescences are observed in implanted samples. The dependence of luminescence on the excitation energy as well as the influence of different nominal fluence and annealing conditions is discussed. Combining the results obtained from photoluminescence and Rutherford backscattering spectrometry, different lattice sites for the optical active Er-related centers are identified. {copyright} 2001 American Institute of Physics.

  9. Mid-infrared electro-luminescence and absorption from AlGaN/GaN-based multi-quantum well inter-subband structures

    SciTech Connect (OSTI)

    Hofstetter, Daniel; Bour, David P.; Kirste, Lutz

    2014-06-16

    We present electro-modulated absorption and electro-luminescence measurements on chirped AlGaN/GaN-based multi-quantum well inter-subband structures grown by metal-organic vapour phase epitaxy. The absorption signal is a TM-polarized, 70?meV wide feature centred at 230?meV. At medium injection current, a 58?meV wide luminescence peak corresponding to an inter-subband transition at 1450?cm{sup ?1} (180?meV) is observed. Under high injection current, we measured a 4?meV wide structure peaking at 92.5?meV in the luminescence spectrum. The energy location of this peak is exactly at the longitudinal optical phonon of GaN.

  10. Temperature-dependent modulated reflectance of InAs/InGaAs/GaAs quantum dots-in-a-well infrared photodetectors

    SciTech Connect (OSTI)

    Nedzinskas, R. ?echavi?ius, B.; Rimkus, A.; Pozingyt?, E.; Kavaliauskas, J.; Valuis, G.; Li, L. H.; Linfield, E. H.

    2015-04-14

    We present a photoreflectance (PR) study of multi-layer InAs quantum dot (QD) photodetector structures, incorporating InGaAs overgrown layers and positioned asymmetrically within GaAs/AlAs quantum wells (QWs). The influence of the back-surface reflections on the QD PR spectra is explained and a temperature-dependent photomodulation mechanism is discussed. The optical interband transitions originating from the QD/QW ground- and excited-states are revealed and their temperature behaviour in the range of 3300?K is established. In particular, we estimated the activation energy (?320?meV) of exciton thermal escape from QD to QW bound-states at high temperatures. Furthermore, from the obtained Varshni parameters, a strain-driven partial decomposition of the InGaAs cap layer is determined.

  11. Highly tunable quantum Hall far-infrared photodetector by use of GaAs/Al{sub x}Ga{sub 1?x}As-graphene composite material

    SciTech Connect (OSTI)

    Tang, Chiu-Chun [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-11-03

    We have developed a highly tunable, narrow band far-infrared (FIR) photodetector which utilizes the characteristic merits of graphene and two-dimensional electron gas (2DEG) in GaAs/Al{sub x}Ga{sub 1?x}As heterostructure in the Quantum Hall states (QHS). The heterostructure surface is covered with chemical vapor-deposited graphene, which functions as a transparent top-gate to vary the electron density of the 2DEG. FIR response observed in the vicinity of integer QH regime can be effectively tuned in a wide range of 27102?cm{sup ?1} with a bias voltage less than ?1?V. In addition, we have found that the presence of graphene can genuinely modulate the photoresponse. Our results demonstrate a promising direction for realizing a tunable long-wavelength FIR detector using QHS in GaAs 2DEG/ graphene composite material.

  12. Bias dependence and correlation of the cathodoluminescence and electron beam induced current from an InGaN/GaN light emitting diode

    SciTech Connect (OSTI)

    Wallace, M. J.; Edwards, P. R.; Martin, R. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Kappers, M. J.; Oehler, F.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom); Hopkins, M. A.; Sivaraya, S.; Allsopp, D. W. E. [Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-07-21

    Micron-scale mapping has been employed to study a contacted InGaN/GaN LED using combined electroluminescence (EL), cathodoluminescence (CL), and electron beam induced current (EBIC). Correlations between parameters, such as the EBIC and CL intensity, were studied as a function of applied bias. The CL and EBIC maps reveal small areas, 210??m in size, which have increased nonradiative recombination rate and/or a lower conductivity. The CL emission from these spots is blue shifted, by 3040?meV. Increasing the reverse bias causes the size of the spots to decrease, due to competition between in-plane diffusion and drift in the growth direction. EL mapping shows large bright areas (?100??m) which also have increased EBIC, indicating domains of increased conductivity in the p and/or n-GaN.

  13. Correlating electroluminescence characterization and physics-based models of InGaN/GaN LEDs: Pitfalls and open issues

    SciTech Connect (OSTI)

    Calciati, Marco; Vallone, Marco; Zhou, Xiangyu; Ghione, Giovanni; Goano, Michele Bertazzi, Francesco; Meneghini, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico; Verzellesi, Giovanni; Zhu, Dandan; Humphreys, Colin

    2014-06-15

    Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10{sup −30} cm{sup 6}/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary attempt at uncertainty quantification confirms, beyond the present case, the need for an improved description of carrier transport and microscopic radiative and nonradiative recombination mechanisms in device-level LED numerical models.

  14. Current flow and potential efficiency of solar cells based on GaAs and GaSb p-n junctions

    SciTech Connect (OSTI)

    Andreev, V. M.; Evstropov, V. V.; Kalinovsky, V. S. Lantratov, V. M.; Khvostikov, V. P.

    2009-05-15

    Dependence of the efficiency of single-junction and multijunction solar cells on the mechanisms of current flow in photoactive p-n junctions, specifically on the form of the dark current-voltage characteristic J-V, has been studied. The resistanceless J-V{sub j} characteristic (with the series resistance disregarded) of a multijunction solar cell has the same shape as the characteristic of a single-junction cell: both feature a set of exponential portions. This made it possible to develop a unified analytical method for calculating the efficiency of singlejunction and multijunction solar cells. The equation relating the efficiency to the photogenerated current at each portion of the J-V{sub j} characteristic is derived. For p-n junctions in GaAs and GaSb, the following characteristics were measured: the dark J-V characteristic, the dependence of the open-circuit voltage on the illumination intensity P-V{sub OC}, and the dependence of the luminescence intensity on the forward current L-J. Calculated dependences of potential efficiency (under idealized condition for equality to unity of external quantum yield) on the photogenerated current for single-junction GaAs and GaSb solar cells and a GaAs/GaSb tandem are plotted. The form of these dependences corresponds to the shape of J-V{sub j} characteristics: there are the diffusion- and recombination-related portions; in some cases, the tunneling-trapping portion is also observed. At low degrees of concentration of solar radiation (C < 10), an appreciable contribution to photogenerated current is made by recombination component. It is an increase in this component in the case of irradiation with 6.78-MeV protons or 1-MeV electrons that brings about a decrease in the efficiency of conversion of unconcentrated solar radiation.

  15. Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001)

    SciTech Connect (OSTI)

    Bremner, S. P.; Ban, K.-Y.; Faleev, N. N.; Honsberg, C. B.; Smith, D. J.

    2013-09-14

    We describe InAs quantum dot creation in InAs/GaAsSb barrier structures grown on GaAs (001) wafers by molecular beam epitaxy. The structures consist of 20-nm-thick GaAsSb barrier layers with Sb content of 8%, 13%, 15%, 16%, and 37% enclosing 2 monolayers of self-assembled InAs quantum dots. Transmission electron microscopy and X-ray diffraction results indicate the onset of relaxation of the GaAsSb layers at around 15% Sb content with intersected 60 dislocation semi-loops, and edge segments created within the volume of the epitaxial structures. 38% relaxation of initial elastic stress is seen for 37% Sb content, accompanied by the creation of a dense net of dislocations. The degradation of In surface migration by these dislocation trenches is so severe that quantum dot formation is completely suppressed. The results highlight the importance of understanding defect formation during stress relaxation for quantum dot structures particularly those with larger numbers of InAs quantum-dot layers, such as those proposed for realizing an intermediate band material.

  16. Gallium Pnictides of the Alkaline Earth Metals, Synthesized by Means of the Flux Method: Crystal Structures and Properties of CaGa[subscript 2]Pn[subscript 2], SrGa[subscript 2]As[subscript 2], Ba[subscript 2]Ga[subscript 5]As[subscript 5], and Ba[subscript 4]Ga[subscript 5]Pn[subscript 8] (Pn = P or As)

    SciTech Connect (OSTI)

    He, Hua; Stearrett, Ryan; Nowak, Edmund R.; Bobev, Svilen

    2014-05-28

    The focus of this paper is on the structural characterization of the new Zintl phases CaGa{sub 2}P{sub 2}, CaGa{sub 2}As{sub 2}, SrGa{sub 2}As{sub 2}, and Ba{sub 2}Ga{sub 5}As{sub 5}, and the solid solution (Ba{sub 0.85(1)}Sr{sub 0.15}){sub 2}Ga{sub 5}As{sub 5}, all of which were synthesized from molten metal fluxes.CaGa{sub 2}P{sub 2}, CaGa{sub 2}As{sub 2}, and SrGa{sub 2}As{sub 2} have layered structures with polyanionic layers made of ethane-like Ga{sub 2}P6 and Ga{sub 2}As6 motifs fused through common edges; the polyanionic substructure in Ba{sub 2}Ga{sub 5}As{sub 5} consists of condensed Ga{sub 2}As6 units and GaAs{sub 4} tetrahedra. Ba{sub 4}Ga{sub 5}P{sub 8} and Ba{sub 4}Ga{sub 5}As{sub 8}, another pair of new compounds with channel-like 3D structures, were also synthesized from metal fluxes, and their structures were established from single-crystal X-ray and synchrotron powder diffraction. They are based on GaP{sub 4} and GaAs{sub 4} tetrahedra, with parts of their structures being heavily disordered. The electronic structures computed with the linear muffin-tin orbital (LMTO) method are discussed as well, alongside the thermopower and the electrical conductivity, measured on single crystals of Ba{sub 2}Ga{sub 5}As{sub 5} and the solid solution (Ba{sub 0.85(1)}Sr{sub 0.15}){sub 2} Ga{sub 5}As{sub 5}. They demonstrate that such an approach would be an effective way to fine-tune the transport properties.

  17. Modeling and Characterization of the Magnetocaloric Effect in Ni2MnGa Materials

    SciTech Connect (OSTI)

    Nicholson, Don M; Odbadrakh, Khorgolkhuu; Rios, Orlando; Hodges, Jason P; Ludtka, Gerard Michael; Porter, Wallace D; Sefat, A. S.; Rusanu, Aurelian; Evans III, Boyd Mccutchen

    2012-01-01

    Magnetic shape memory alloys have great promise as magneto-caloric effect refrigerant materials due to their combined magnetic and structural transitions. Computational and experimental research is reported on the Ni2MnGa material system. The magnetic states of this system have been explored using the Wang-Landau statistical approach in conjunction with the Locally Self-consistent Multiple-Scattering (LSMS) method to explore the magnetic states responsible for the magnet-caloric effect in this material. The effects of alloying agents on the transition temperatures of the Ni2MnGa alloy were investigated using differential scanning calorimetry (DSC) and superconducting quantum interference device (SQUID). Neutron scattering experiments were performed to observe the structural and magnetic phase transformations at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on alloys of Ni-Mn-Ga and Ni-Mn-Ga-Cu-Fe. Data from the observations are discussed in comparison with the computational studies.

  18. File:USDA-CE-Production-GIFmaps-GA.pdf | Open Energy Information

    Open Energy Info (EERE)

    GA.pdf Jump to: navigation, search File File history File usage Georgia Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  19. Measurement of cross sections for the Cu-63(alpha,gamma)Ga-67...

    Office of Scientific and Technical Information (OSTI)

    Title: Measurement of cross sections for the Cu-63(alpha,gamma)Ga-67 reaction from 5.9-8.7 MeV Authors: Basunia, M S ; Norman, E B ; Shugart, H A ; Smith, A R ; Dolinski, M J ; ...

  20. MULTIPLE-WINDOW SPECTROMETRY FOR $sup 67$Ga. Ross, D A; McClain...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR sup 67Ga. Ross, D A; McClain, W J; East, J K; Bell, P R N26110* --Instrumentation--Radiation Detection Instruments-- General Detectors & Monitors; N28530 --Life...

  1. Strategic Development of the Idea. LEEM-PEEM Studies of InGaN...

    Office of Scientific and Technical Information (OSTI)

    Strategic Development of the Idea. LEEM-PEEM Studies of InGaN-based Heterostructures Citation Details In-Document Search Title: Strategic Development of the Idea. LEEM-PEEM Studies...

  2. ESR Detection of optical dynamic nuclear polarization in GaAs...

    Office of Scientific and Technical Information (OSTI)

    ESR Detection of optical dynamic nuclear polarization in GaAsAlsub xGasub 1-xAs ... Citation Details In-Document Search Title: ESR Detection of optical dynamic nuclear ...

  3. Mechanism of lateral ordering of InP dots grown on InGaP layers

    SciTech Connect (OSTI)

    Bortoleto, J.R.R.; Gutierrez, H.R.; Cotta, M.A.; Bettini, J.

    2005-07-04

    The mechanisms leading to the spontaneous formation of a two-dimensional array of InP/InGaP dots grown by chemical-beam epitaxy are discussed. Samples where the InGaP buffer layer was grown at different conditions were characterized by transmission electron microscopy. Our results indicate that a periodic strain field related to lateral two-dimensional compositional modulation in the InGaP buffer layer determines the dot nucleation positions during InP growth. Although the periodic strain field in the InGaP is large enough to align the InP dots, both their shape and optical properties are effectively unaltered. This result shows that compositional modulation can be used as a tool for in situ dot positioning.

  4. Sandia Energy - Optical performance of top-down fabricated InGaN...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance of top-down fabricated InGaNGaN nanorod light emitting diode arrays" in Optics Express. This paper details the development of a two-step top-down process for...

  5. Enhanced conversion efficiency in wide-bandgap GaNP solar cells...

    Office of Scientific and Technical Information (OSTI)

    Enhanced conversion efficiency in wide-bandgap GaNP solar cells Citation Details In-Document Search This content will become publicly available on October 12, 2016 Title: Enhanced...

  6. Contrasting Behavior of GaP(001) and InP(001) at the Interface...

    Office of Scientific and Technical Information (OSTI)

    at the Interface with Water Citation Details In-Document Search Title: Contrasting Behavior of GaP(001) and InP(001) at the Interface with Water Authors: Wood, B C ; ...

  7. Large area, low capacitance, GaAs nanowire photodetector with a transparent Schottky collecting junction

    SciTech Connect (OSTI)

    Seyedi, M. A. Yao, M.; O'Brien, J.; Dapkus, P. D.; Wang, S. Y.; Nanostructured Energy Conversion Technology and Research , Advanced Studies Laboratories, University of California, Santa Cruz, California 95064, USA and NASA Ames Research Center, Moffett Field, California 94035

    2013-12-16

    We present experimental results on a GaAs/Indium-Tin-Oxide Schottky-like heterojunction photodetector based on a nanowire device geometry. By distributing the active detecting area over an array of nanowires, it is possible to achieve large area detection with low capacitance. Devices with bare GaAs and passivated AlGaAs/GaAs nanowires are fabricated to compare the responsivity with and without surface passivation. We are able to achieve responsivity of >0.5A/W and Signal-Noise-Ratio in excess of 7?dB for 2?V applied reverse bias with passivated nanowire devices. Capacitance-voltage measurement yields <5?nF/cm{sup 2}, which shows a strong possibility for high-speed applications with a broad area device.

  8. Price of Elba Island, GA Natural Gas LNG Imports from Equatorial...

    U.S. Energy Information Administration (EIA) Indexed Site

    Equatorial Guinea (Dollars per Thousand Cubic Feet) Price of Elba Island, GA Natural Gas LNG Imports from Equatorial Guinea (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 ...

  9. Demonstration of forward inter-band tunneling in GaN by polarization engineering

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram; Park, Pil Sung; Rajan, Siddharth

    2011-12-05

    We report on the design, fabrication, and characterization of GaN interband tunnel junction showing forward tunneling characteristics. We have achieved very high forward tunneling currents (153 mA/cm{sup 2} at 10 mV, and 17.7 A/cm{sup 2} peak current) in polarization-engineered GaN/InGaN/GaN heterojunction diodes grown by plasma assisted molecular beam epitaxy. We also report the observation of repeatable negative differential resistance in interband III-Nitride tunnel junctions, with peak-valley current ratio of 4 at room temperature. The forward current density achieved in this work meets the typical current drive requirements of a multi-junction solar cell.

  10. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Quan, Zhijue Wang, Li Zheng, Changda; Liu, Junlin; Jiang, Fengyi

    2014-11-14

    The roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well (MQW) light-emitting diodes are investigated by numerical simulation. The simulation results show that V-shaped pits cannot only screen dislocations, but also play an important role on promoting hole injection into the MQWs. It is revealed that the injection of holes into the MQW via the sidewalls of the V-shaped pits is easier than via the flat region, due to the lower polarization charge densities in the sidewall structure with lower In concentration and (1011)-oriented semi-polar facets.

  11. How much better are InGaN/GaN nanodisks than quantum wellsOscillator strength enhancement and changes in optical properties

    SciTech Connect (OSTI)

    Zhang, Lei; Hill, Tyler A.; Deng, Hui E-mail: peicheng@umich.edu; Lee, Leung-Kway; Teng, Chu-Hsiang; Ku, Pei-Cheng E-mail: peicheng@umich.edu

    2014-02-03

    We show over 100-fold enhancement of the exciton oscillator strength as the diameter of an InGaN nanodisk in a GaN nanopillar is reduced from a few micrometers to less than 40?nm, corresponding to the quantum dot limit. The enhancement results from significant strain relaxation in nanodisks less than 100?nm in diameter. Meanwhile, the radiative decay rate is only improved by 10 folds due to strong reduction of the local density of photon states in small nanodisks. Further increase in the radiative decay rate can be achieved by engineering the local density of photon states, such as adding a dielectric coating.

  12. Hydrogen passivation of nitrogen in GaNAs and GaNP alloys: How many H atoms are required for each N atom?

    SciTech Connect (OSTI)

    Buyanova, I. A.; Chen, W. M.; Izadifard, M.; Pearton, S. J.; Bihler, C.; Brandt, M. S.; Hong, Y. G.; Tu, C. W.

    2007-01-08

    Secondary ion mass spectrometry and photoluminescence are employed to evaluate the origin and efficiency of hydrogen passivation of nitrogen in GaNAs and GaNP. The hydrogen profiles are found to closely follow the N distributions, providing unambiguous evidence for their preferential binding as the dominant mechanism for neutralization of N-induced modifications in the electronic structure of the materials. Though the exact number of H atoms involved in passivation may depend on the conditions of the H treatment and the host matrixes, it is generally found that more than three H atoms are required to bind to a N atom to achieve full passivation for both alloys.

  13. Net electron-phonon scattering rates in InN/GaN multiple quantum wells: The

    Office of Scientific and Technical Information (OSTI)

    effects of an energy dependent acoustic deformation potential (Journal Article) | SciTech Connect Net electron-phonon scattering rates in InN/GaN multiple quantum wells: The effects of an energy dependent acoustic deformation potential Citation Details In-Document Search Title: Net electron-phonon scattering rates in InN/GaN multiple quantum wells: The effects of an energy dependent acoustic deformation potential The rates of charge carrier relaxation by phonon emission are of substantial

  14. Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN

    Office of Scientific and Technical Information (OSTI)

    Quantum Dots (Journal Article) | SciTech Connect Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN Quantum Dots Citation Details In-Document Search Title: Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN Quantum Dots Authors: Xiao, Xiaoyin ; Fischer, Arthur J. ; Wang, George T. ; Lu, Ping ; Koleske, Daniel D. ; Coltrin, Michael E. ; Wright, Jeremy B. ; Liu, Sheng ; Brener, Igal ; Subramania, Ganesh ; Tsao, Jeffrey Y. Publication Date:

  15. GaInNAs Junctions for Next-Generation Concentrators: Progress and Prospects

    SciTech Connect (OSTI)

    Friedman, D. J.; Ptak, A. J.; Kurtz, S. R.; Geisz, J. F.; Kiehl, J.

    2005-08-01

    We discuss progress in the development of GaInNAs junctions for application in next-generation multijunction concentrator cells. A significant development is the demonstration of near-100% internal quantum efficiencies in junctions grown by molecular-beam epitaxy. Testing at high currents validates the compatibility of these devices with concentrator operation. The efficiencies of several next-generation multijunction structures incorporating these state-of-the-art GaInNAs junctions are projected.

  16. 1.3??m photoluminescence of Ge/GaAs multi-quantum-well structure

    SciTech Connect (OSTI)

    Aleshkin, V. Ya.; Dubinov, A. A. Kudryavtsev, K. E.; Rumyantsev, V. V.; Tonkikh, A. A.; Zakharov, N. D.; Zvonkov, B. N.

    2014-01-28

    In this paper, we report on photoluminescence studies of a multiple quantum well Ge/GaAs heterostructure grown by laser-assisted sputtering. A broad luminescence peak is found at about 1.3??m at room temperature. We attribute this peak to the direct band gap transitions between ?-valley electrons in the GaAs matrix and valence band heavy holes in Ge quantum wells.

  17. Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy Citation Details In-Document Search Title: Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy Ferromagnetic shape memory alloys are smart materials because they exhibit temperature driven shape memory effect and magnetic field induced strain. Thus two types of energy, i.e. thermal and magnetic, are used to control their shape memory behaviour. Study of critical

  18. Strategic Development of the Idea. LEEM-PEEM Studies of InGaN-based

    Office of Scientific and Technical Information (OSTI)

    Heterostructures (Technical Report) | SciTech Connect Technical Report: Strategic Development of the Idea. LEEM-PEEM Studies of InGaN-based Heterostructures Citation Details In-Document Search Title: Strategic Development of the Idea. LEEM-PEEM Studies of InGaN-based Heterostructures Abstract not provided. Authors: Ohta, Taisuke [1] + Show Author Affiliations Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) Publication Date: 2015-09-01 OSTI Identifier: 1221950 Report

  19. Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis

    SciTech Connect (OSTI)

    Dahal, R.; Pantha, B. N.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-04-07

    InGaN alloys are very promising for solar water splitting because they have direct bandgaps that cover almost the whole solar spectrum. The demonstration of direct solar-to-fuel conversion without external bias with the sunlight being the only energy input would pave the way for realizing photoelectrochemical (PEC) production of hydrogen by using InGaN. A monolithic solar-PEC cell based on InGaN/GaN multiple quantum wells capable to directly generate hydrogen gas under zero bias via solar water splitting is reported. Under the irradiation by a simulated sunlight (1-sun with 100 mW/cm{sup 2}), a 1.5% solar-to-fuel conversion efficiency has been achieved under zero bias, setting a fresh benchmark of employing III-nitrides for artificial photosynthesis. Time dependent hydrogen gas production photocurrent measured over a prolonged period (measured for 7 days) revealed an excellent chemical stability of InGaN in aqueous solution of hydrobromic acid. The results provide insights into the architecture design of using InGaN for artificial photosynthesis to provide usable clean fuel (hydrogen gas) with the sunlight being the only energy input.

  20. Mutual Passivation in Dilulte GaNxAs1-x Alloys

    SciTech Connect (OSTI)

    Yu, K.M.; Walukiewicz, W.; Wu, J.; Mars, D.E.; Scarpulla, M.A.; Dubon, O.D.; Ridgway, M.C.; Geisz, J.F.

    2005-03-21

    The dilute GaN{sub x}As{sub 1-x} alloys (with x up to 0.05) have exhibited many unusual properties as compared to the conventional binary and ternary semiconductor alloys. We report on a new effect in the GaN{sub x}As{sub 1-x} alloy system in which electrically active substitutional group IV donors and isoelectronic N atoms passivate each other's activity. This mutual passivation occurs in dilute GaN{sub x}As{sub 1-x} doped with group IV donors through the formation of nearest neighbor IV{sub Ga-}N{sub As} pairs when the samples are annealed under conditions such that the diffusion length of the donors is greater than or equal to the average distance between donor and N atoms. The passivation of the shallow donors and the N{sub As} atoms is manifested in a drastic reduction in the free electron concentration and, simultaneously, an increase in the fundamental band gap. This mutual passivation effect is demonstrated in both Si and Ge doped GaN{sub x}As{sub 1-x} alloys. Analytical calculations of the passivation process based on Ga vacancies mediated diffusion show good agreement with the experimental results.

  1. GaNPAs Solar Cells that Can Be Lattice-Matched to Silicon

    SciTech Connect (OSTI)

    Geisz, J. F.; Friedman, D. J.; McMahon, W. E.; Ptak, A. J.; Kibbler, A. E.; Olson, J. M.; Kurtz, S.; Kramer, C.; Young, M.; Duda, A.; Reedy, R. C.; Keyes, B. M.; Dippo, P.; Metzger, W. K.

    2003-05-01

    III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We have proposed the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct bandgaps in the range of 1.5 to 2.0 eV. We have demonstrated the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and shown improvements in material quality by reducing carbon and hydrogen impurities through optimization of growth conditions. We have achieved quantum efficiencies (QE) in these cells as high as 60% and PL lifetimes as high as 3.0 ns.

  2. 1-MeV-Electron Irradiation of GaInAsN Cells: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; King, R. R.; Edmondson, K. M.; Friedman, D. J.; Karam, N. H.

    2002-05-01

    This conference paper describes the GaInAsN cells that are measured to retain 933% and 894% of their original efficiency after exposure to 5 X 1014 and 1 X 1015 cm-2 1-MeV electrons, respectively. The rate of degradation is not correlated with the performance at beginning of life (BOL). The depletion width remains essentially unchanged, increasing by< 1%. Temperature-coefficient data for GaInAsN cells are also presented. These numbers are used to project the efficiency of GaInAsN-containing multijunction cells. The GaInAsN junction is not currently predicted to increase the efficiencies of the multijunction cells. Nevertheless, GaInAsN-containing multijunction cell efficiencies are predicted to be comparable to those of the conventional structures, and even small improvements in the GaInAsN cell may lead to higher multijunction cell efficiencies, especially for high-radiation applications and when cell operating temperature is low.

  3. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO?) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO? storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  4. Development of 1.25 eV InGaAsN for triple junction solar cells

    SciTech Connect (OSTI)

    LI,N.Y.; SHARPS,P.R.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Development of next generation high efficiency space monolithic multifunction solar cells will involve the development of new materials lattice matched to GaAs. One promising material is 1.05 eV InGaAsN, to be used in a four junction GaInP{sub 2}/GaAs/InGaAsN/Ge device. The AMO theoretical efficiency of such a device is 38--42%. Development of the 1.05 eV InGaAsN material for photovoltaic applications, however, has been difficult. Low electron mobilities and short minority carrier lifetimes have resulted in short minority carrier diffusion lengths. Increasing the nitrogen incorporation decreases the minority carrier lifetime. The authors are looking at a more modest proposal, developing 1.25 eV InGaAsN for a triple junction GaInP{sub 2}/InGaAsN/Ge device. The AMO theoretical efficiency of this device is 30--34%. Less nitrogen and indium are required to lower the bandgap to 1.25 eV and maintain the lattice matching to GaAs. Hence, development and optimization of the 1.25 eV material for photovoltaic devices should be easier than that for the 1.05 eV material.

  5. Effect of arsenic on the optical properties of GaSb-based type II quantum wells with quaternary GaInAsSb layers

    SciTech Connect (OSTI)

    Janiak, F. Motyka, M.; S?k, G.; Dyksik, M.; Ryczko, K.; Misiewicz, J.; Weih, R.; Hfling, S.; Kamp, M.; Patriarche, G.

    2013-12-14

    Optical properties of molecular beam epitaxially grown type II W shaped GaSb/AlSb/InAs/GaIn(As)Sb/InAs/AlSb/GaSb quantum wells (QWs) designed for the active region of interband cascade lasers have been investigated. Temperature dependence of Fourier-transformed photoluminescence and photoreflectance was employed to probe the effects of addition of arsenic into the original ternary valence band well of GaInSb. It is revealed that adding arsenic provides an additional degree of freedom in terms of band alignment and strain tailoring and allows enhancing the oscillator strength of the active type II transition. On the other hand, however, arsenic incorporation apparently also affects the structural and optical material quality via generating carrier trapping states at the interfaces, which can deteriorate the radiative efficiency. These have been evidenced in several spectroscopic features and are also confirmed by cross-sectional transmission electron microscopy images. While arsenic incorporation into type II QWs is a powerful heterostructure engineering tool for optoelectronic devices, a compromise has to be found between ideal band structure properties and high quality morphological properties.

  6. This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

    DOE Patents [OSTI]

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  7. Y-12, early records from the National Archives at Atlanta

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cost is 346M (this was pencil changed to 390M) and the fixed fee for Stone and Webster was set at 2.9M. Of course, this interim agreement would continue to be modified...

  8. Atlanta TEC Meeting -- Tribal Group Summary 3-6-07

    Office of Environmental Management (EM)

    Shoshone Tribe), Brice Kindred (National Conference of State Legislatures, NCSL), Daniel King (Oneida Nation of Wisconsin), Angela Kordyak (DOEGC), Sue Loudner (Pueblo of Acoma),...

  9. Atlanta Suburb Greases the Path to Savings with Biodiesel | Department...

    Energy Savers [EERE]

    ... Program, the city of Dallas has improved the efficiency of more than 200 city-owned buildings, saving 1 million a year in energy costs. | Photo courtesy of the City of Dallas. ...

  10. Better Buildings Challenge, Atlanta Nears Halfway Mark in Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    improvements across its building portfolio including offices, hospitals, and sports arenas, it is sharing these achievements more broadly with others and fostering competition...

  11. Statement by Energy Secretary Steven Chu on Opening of Atlanta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act, this program will provide workers with the skills they need to offer local homeowners quality energy efficiency upgrades that will save them money by saving energy." ...

  12. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Broader source: Energy.gov [DOE]

    Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetinglists Altanta Gas Light (AGL) resources and features a map of its footprint.

  13. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    SciTech Connect (OSTI)

    Bairamis, A.; Zervos, Ch.; Georgakilas, A.; Adikimenakis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300?nm GaN/ 200?nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8??10{sup 12} to 2.1 10{sup 13} cm{sup ?2} as the AlN barrier thickness increased from 2.2 to 4.5?nm, while a 4.5?nm AlN barrier would result to 3.1??10{sup 13} cm{sup ?2} on a GaN buffer layer. The 3.0?nm AlN barrier structure exhibited the highest 2DEG mobility of 900?cm{sup 2}/Vs for a density of 1.3??10{sup 13} cm{sup ?2}. The results were also confirmed by the performance of 1??m gate-length transistors. The scaling of AlN barrier thickness from 1.5?nm to 4.5?nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63?A/mm. The maximum drain-source current was 1.1?A/mm for AlN barrier thickness of 3.0?nm and 3.7?nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0?nm AlN barrier.

  14. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect (OSTI)

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250?C. GaN thin films are grown at 200?C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3?nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3?V/decade. The entire TFT device fabrication process temperature is below 250?C, which is the lowest process temperature reported for GaN based transistors, so far.

  15. Cavity-enhanced single photon emission from site-controlled In(Ga)As quantum dots fabricated using nanoimprint lithography

    SciTech Connect (OSTI)

    Tommila, J.; Hakkarainen, T. V.; Schramm, A. Guina, M.; Belykh, V. V.; Sibeldin, N. N.; Heinonen, E.

    2014-05-26

    We report on the emission dynamics of single In(Ga)As quantum dots formed in etched GaAs pits and integrated into micropillar cavities. The site-controlled quantum dots were fabricated by molecular beam epitaxy on nanoimprint lithography patterned GaAs(001) surfaces. Triggered single photon emission confirmed by photon autocorrelation measurements is demonstrated. Time-resolved photoluminescence experiments clearly show an effect of the cavity on the spontaneous emission rate of the quantum dot.

  16. Enhancement of minority carrier lifetime of GaInP with lateral composition modulation structure grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Park, K. W.; Ravindran, Sooraj; Kang, S. J.; Hwang, H. Y.; Jho, Y. D.; Park, C. Y.; Jo, Y. R.; Kim, B. J.; Lee, Y. T.

    2014-07-28

    We report the enhancement of the minority carrier lifetime of GaInP with a lateral composition modulated (LCM) structure grown using molecular beam epitaxy (MBE). The structural and optical properties of the grown samples are studied by transmission electron microscopy and photoluminescence, which reveal the formation of vertically aligned bright and dark slabs corresponding to Ga-rich and In-rich GaInP regions, respectively, with good crystal quality. With the decrease of V/III ratio during LCM GaInP growth, it is seen that the band gap of LCM GaInP is reduced, while the PL intensity remains high and is comparable to that of bulk GaInP. We also investigate the minority carrier lifetime of LCM structures made with different flux ratios. It is found that the minority carrier lifetime of LCM GaInP is ?37 times larger than that of bulk GaInP material, due to the spatial separation of electrons and holes by In-rich and Ga-rich regions of the LCM GaInP, respectively. We further demonstrate that the minority carrier lifetime of the grown LCM GaInP structures can easily be tuned by simply adjusting the V/III flux ratio during MBE growth, providing a simple yet powerful technique to tailor the electrical and optical properties at will. The exceptionally high carrier lifetime and the reduced band gap of LCM GaInP make them a highly attractive candidate for forming the top cell of multi-junction solar cells and can enhance their efficiency, and also make them suitable for other optoelectronics devices, such as photodetectors, where longer carrier lifetime is beneficial.

  17. GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy

    SciTech Connect (OSTI)

    Cardozo, Benjamin Lewin

    2004-12-21

    High-purity and doped GaAs films have been grown by Liquid-phase epitaxy (LPE) for development of a blocked impurity band (BIB) detector for far-infrared radiation. The film growth process developed has resulted in the capability to grow GaAs with a net active impurity concentration below 1 x 10{sup 13} cm{sup -3}, ideal for the blocking layer of the BIB detector. The growth of n-type LPE GaAs films with donor concentrations below the metal-insulator transition, as required for the absorbing layer of a BIB detector, has been achieved. The control of the donor concentration, however, was found to be insufficient for detector production. The growth by LPE of a high-purity film onto a commercially grown vapor-phase epitaxial (VPE) n-type GaAs doped absorbing layer resulted in a BIB device that showed a significant reduction in the low-temperature dark current compared to the absorbing layer only. Extended optical response was not detected, most likely due to the high compensation of the commercially grown GaAs absorbing layer, which restricts the depletion width of the device.

  18. Structure and scintillation yield of Ce-doped AlGa substituted yttrium garnet

    SciTech Connect (OSTI)

    Sidletskiy, Oleg; Kononets, Valerii; Lebbou, Kheirreddine; Neicheva, Svetlana; Voloshina, Olesya; Bondar, Valerii; Baumer, Vyacheslav; Belikov, Konstantin; Gektin, Alexander; Grinyov, Boris; Joubert, Marie-France

    2012-11-15

    Highlights: ? Range of Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce solid solution crystals are grown from melt by the Czochralski method. ? Light yield of mixed crystals reaches 130% of the YAG:Ce value at x ? 0.4. ? ?1% of antisite defects is formed in YGG:Ce, but no evidence of this is obtained for the rest of crystals. -- Abstract: Structure and scintillation yield of Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce solid solution crystals are studied. Crystals are grown from melt by the Czochralski method. Distribution of host cations in crystal lattice is determined. Quantity of antisite defects in crystals is evaluated using XRD and atomic emission spectroscopy data. Trend of light output at Al/Ga substitution in Y{sub 3}(Al{sub 1?x}Ga{sub x}){sub 5}O{sub 12}:Ce is determined for the first time. Light output in mixed crystals reaches 130% comparative to Ce-doped yttriumaluminum garnet. Luminescence properties at Al/Ga substitution are evaluated.

  19. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  20. Lattice-registered growth of GaSb on Si (211) with molecular beam epitaxy

    SciTech Connect (OSTI)

    Hosseini Vajargah, S.; Botton, G. A.; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.

    2012-11-01

    A GaSb film was grown on a Si(211) substrate using molecular beam epitaxy indicating full lattice relaxation as well as full lattice registration and dislocation-free growth in the plane perpendicular to the [01 - 1]-direction. Heteroepitaxy of GaSb on a Si(211) substrate is dominated by numerous first order and multiple higher order micro-twins. The atomic-resolved structural study of GaSb films by high-angle annular dark-field scanning transmission electron microscopy reveals that slight tilt, along with twinning, favors the lattice registry to Si(211) substrates. Preferential bonding of impinging Ga and Sb atoms at the interface due to two distinctive bonding sites on the Si(211) surface enables growth that is sublattice-ordered and free of anti-phase boundaries. The role of the substrate orientation on the strain distribution of GaSb epilayers is further elucidated by investigating the local change in the lattice parameter using the geometric phase analysis method and hence effectiveness of the lattice tilting in reducing the interfacial strain was confirmed further.