National Library of Energy BETA

Sample records for assurance improvement project

  1. 2010 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance Improvement Project Plan 2010 Quality Assurance Improvement Project Plan This Project Plan is jointly developed by the Department of Energy (DOE) Office of Environmental Management (EM) and the Energy Facility Contractors Group (EFCOG), to provide execution support to the EM Quality Assurance (QA) Corporate Board. The Board serves a vital and critical role in ensuring that the EM mission is completed safely, correctly, and efficiently. 2010 Quality Assurance Improvement Project

  2. 2012 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Quality Assurance Improvement Project Plan 2012 Quality Assurance Improvement Project Plan This Project Plan is jointly developed by the Department of Energy (DOE) Office of Environmental Management (EM) and the Energy Facility Contractors Group (EFCOG), to provide execution support to the EM Quality Assurance (QA) Corporate Board. The Board serves a vital and critical role in ensuring that the EM mission is completed safely, correctly, and efficiently. 2012 Quality Assurance Improvement

  3. 2014 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Quality Assurance Improvement Project Plan 2014 Quality Assurance Improvement Project Plan This Project Plan is jointly developed by the Department of Energy (DOE) Office of Environmental Management (EM) and the Energy Facility Contractors Group (EFCOG), to provide execution support to the EM Quality Assurance (QA) Corporate Board. The Board serves a vital and critical role in ensuring that the EM mission is completed safely, correctly, and efficiently. 2014 Quality Assurance Improvement

  4. 2015 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Quality Assurance Improvement Project Plan 2015 Quality Assurance Improvement Project Plan This Project Plan is jointly developed by the Department of Energy (DOE) Office of Environmental Management (EM) and the Energy Facility Contractors Group (EFCOG), to provide execution support to the EM Quality Assurance (QA) Corporate Board. The Board serves a vital and critical role in ensuring that the EM mission is completed safely, correctly, and efficiently. 2015 Quality Assurance Improvement

  5. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Holland, R. C.

    1998-06-01

    This Quality Assurance Project Plan documents the quality assurance activities for the Wastewater/Stormwater/Groundwater and Environmental Surveillance Programs. This QAPP was prepared in accordance with DOE guidance on compliance with 10CFR830.120.

  6. Environmental Monitoring Program Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Holland, R.C.

    1993-06-01

    The Quality Assurance Project Plan (QAPP) is intended to document the quality assurance of the Environmental Monitoring Program. The Quality Assurance Project Plan has two parts and is written to become a chapter in the Environmental Monitoring Plan. Part A describes the management responsibilities and activities performed to assure the quality of the Environmental Monitoring Program. Part B covers the documentation requirements for changes in the Monitoring Program, and provides details on control of the design and implementation of quality assurance activities.

  7. Quality Assurance Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-27

    This Guide provides acceptable approaches for implementing the Quality Assurance requirements and criteria of DOE O 413.3A related to the development and implementation of a Quality Assurance Program for the project. No cancellations.

  8. EM Quality Assurance Centralized Training Platform Project Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Quality Assurance EM Quality Assurance Centralized Training Platform Project Plan for 2009-2010 EM Quality Assurance Centralized Training Platform Project...

  9. Quality Assurance Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-27

    This Guide provides information to assist U.S. Department of Energy (DOE) Federal Project Directors (FPD) and their Integrated Project Teams (IPT) in carrying out their Quality Assurance (QA)-related roles and responsibilities.

  10. Performance Assurance for UESC Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers performance assurance design and its four elements for utility energy service contracts (UESCs).

  11. Quality Assurance Guide for Project Management - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Quality Assurance Guide for Project Management by John Makepeace Functional areas: Project Management, Quality Assurance and Oversight This Guide provides acceptable approaches...

  12. The Groundwater Performance Assessment Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Walker, Thomas G.

    2005-01-26

    This document provides the quality assurance guidelines that will be followed by the groundwater project.

  13. Enabling States and Localities to Improve Energy Assurance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling States and Localities to Improve Energy Assurance and Resiliency Planning (September 2010) Enabling States and Localities to Improve Energy Assurance and Resiliency Planning ...

  14. The Groundwater Performance Assessment Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Luttrell, Stuart P.

    2006-05-11

    U.S. Department of Energy (DOE) has monitored groundwater on the Hanford Site since the 1940s to help determine what chemical and radiological contaminants have made their way into the groundwater. As regulatory requirements for monitoring increased in the 1980s, there began to be some overlap between various programs. DOE established the Groundwater Performance Assessment Project (groundwater project) in 1996 to ensure protection of the public and the environment while improving the efficiency of monitoring activities. The groundwater project is designed to support all groundwater monitoring needs at the site, eliminate redundant sampling and analysis, and establish a cost-effective hierarchy for groundwater monitoring activities. This document provides the quality assurance guidelines that will be followed by the groundwater project. This QA Plan is based on the QA requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--General Provisions/Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the groundwater project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The groundwater project has determined that the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  15. Project quality assurance plant: Sodium storage facility, project F-031

    SciTech Connect (OSTI)

    Shultz, J.W.; Shank, D.R.

    1994-11-01

    The Sodium Storage Facility Project Quality Assurance Plan delineates the quality assurance requirements for construction of a new facility, modifications to the sodium storage tanks, and tie-ins to the FFTF Plant. This plan provides direction for the types of verifications necessary to satisfy the functional requirements within the project scope and applicable regulatory requirements determined in the Project Functional Design Criteria (FDC), WHC-SD-FF-FDC-009.

  16. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  17. CERCLA Sites Quality Assurance Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CERCLA Sites Quality Assurance Project Plan CERCLA Sites Quality Assurance Project Plan CERCLA Sites Quality Assurance Project Plan CERCLA Sites Quality Assurance Project Plan (905.68 KB) More Documents & Publications Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Closure Sites Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site

  18. Project Management Quality Assurance Guide, GPG 017 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Management Quality Assurance Guide, GPG 017 Project Management Quality Assurance Guide, GPG 017 LIFE CYCLE ASSET MANAGEMENT Good Practice Guide GPG-FM-017 Quality Assurance March 1996 Department of Energy Office of Field Management Office of Project and Fixed Asset Management Project Management Quality Assurance Guide, GPG 017 (303.89 KB) More Documents & Publications DOE-STD-1054-93 Independent Oversight Review, Waste Treatment and Immobilization Plant - May 2013 Site Selection

  19. EM Quality Assurance Centralized Training Platform Project Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project plan for the development of a centralized quality assurance training platform to develop a consistent approach and methodology to training personnel. PDF icon EM Quality ...

  20. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-03-12

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  1. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2007-01-10

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barrier at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratorys Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  2. Project Facilitation and Quality Assurance for Federal ESPCs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Project Facilitation and Quality Assurance for Federal ESPCs Project Facilitation and Quality Assurance for Federal ESPCs Document offers guidance on how to agencies can qualify their own project facilitators after notifying the U.S. Department of Energy Federal Energy Management Program energy savings performance contract (ESPC) program manager in writing who they have designated to serve as the qualifying official and confirming their use of the qualification standards. Download

  3. Operational Environmental Monitoring Program Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Perkins, C.J.

    1994-08-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and operational environmental monitoring performed by Westinghouse Hanford Company as it implements the Operational Environmental Monitoring program. This plan applies to all sampling and monitoring activities performed by Westinghouse Hanford Company in implementing the Operational Environmental Monitoring program at the Hanford Site.

  4. Tank Waste Project Quality Assurance Program Plan. Revision 1

    SciTech Connect (OSTI)

    Clayton, R.E.

    1994-11-20

    This plan describes all the Quality Assurance Program elements required by DOE Order 5700.6C. The elements shall be applied as applicable to specific Tank Waste Projects. A project-specific QAPP shall be issued as a supporting document which shall be used in conjunction with this QAPP. The project specific QAPP shall describe or define any special information, instructions or requirements.

  5. Quality assurance program plan for SNF characterization support project

    SciTech Connect (OSTI)

    Tanke, J.M.

    1997-05-22

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Spent Nuclear Fuel Characterization Support Project. This QAPP has been developed specifically for the Spent Nuclear Fuel Characterization Support Project, per Letter of Instruction (LOI) from Duke Engineering and Services Company, letter No. DESH-9655870, dated Nov. 22, 1996. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP) and LOI. These activities include installation of sectioning equipment and furnace, surface and subsurface examinations, sectioning for metallography, and element drying and conditioning testing, as well as project related operations within the 327 facility as it relates to the specific activities of this project. General facility activities are covered in other appropriate QA-PPS. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping,1261 and HSRCM-1, Hanford Site Radiological Control Manual. The 327 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a Babcock and Wilcox Hanford Company (BVMC) managed facility. During this transition process existing procedures and documents will be utilized until replaced by BVMC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to IO CFR 830.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be utilized in support of this project and the subject organizations are

  6. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect (OSTI)

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  7. Near-facility environmental monitoring quality assurance project plan

    SciTech Connect (OSTI)

    McKinney, S.M.

    1997-11-24

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site.

  8. ERD UMTRA Project quality assurance program plan, Revision 7

    SciTech Connect (OSTI)

    1995-09-01

    This document is the revised Quality Assurance Program Plan (QAPP) dated September, 1995 for the Environmental Restoration Division (ERD) Uranium Mill Tailings Remedial Action Project (UMTRA). Quality Assurance requirements for the ERD UMTRA Project are based on the criteria outlined in DOE Order 5700.6C or applicable sections of 10 CFR 830.120. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the ERD UMTRA Project and its contractors.

  9. Quality assurance in the Antares laser fusion construction project

    SciTech Connect (OSTI)

    Reichelt, W.H.

    1984-01-01

    The Antares CO/sub 2/ laser facility came on line in November 1983 as an experimental physics facility; it is the world's largest CO/sub 2/ laser fusion system. Antares is a major component of the Department of Energy's Inertial Confinement Fusion Program. Antares is a one-of-a-kind laser system that is used in an experimental environment. Given limited project funds and tight schedules, the quality assurance program was tailored to achieve project goals without imposing oppressive constraints. The discussion will review the Antares quality assurance program and the utility of various portions to completion of the project.

  10. Project Specific Quality Assurance Plan (QAPP)

    SciTech Connect (OSTI)

    Huston, J.J.

    1994-11-01

    The Project QAPP`s describe the program and the planned actions which WHC will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C. The Project involves retrieving the high-heat waste from Tank 241-C-106 to close the safety issue associate with the tank, demonstrate initial waste retrieval technology for a Single Shell Tank, and provide feed for the Hanford Waste Vitrification Plant.

  11. Report: Acquisition, Project Management, and Quality Assurance

    Office of Environmental Management (EM)

    ... into a performance baseline with scope, costs, and schedules based on an immature design ... EM's project reporting, analyses, and forecasting. o EM plans to move to a web-based ...

  12. UMTRA Project Office quality assurance program plan. Revision 6

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites. The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the UMTRA Project Office and its contractors.

  13. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    SciTech Connect (OSTI)

    Fishler, B

    2011-03-18

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  14. CRAD, Quality Assurance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Quality Assurance Program at the Idaho Accelerated Retrieval Project Phase II.

  15. UMTRA project technical assistance contractor quality assurance implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP) (DOE, 1993a), which was developed using US Department of Energy (DOE) Order 5700.6C quality assurance (QA) criteria. The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. All QA issues in the QAIP shall comply with requirements contained in the TAC QAPP (DOE, 1933a). Because industry standards for data acquisition and data control are not addressed in DOE Order 5700.6C, the QAIP has been formatted to the 14 US Environmental Protection Agency (EPA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) QA requirements. DOE Order 5700.6C criteria that are not contained in the CERCLA requirements are added to the QAIP as additional requirements in Sections 15.0 through 18.0. Project documents that contain CERCLA requirements and 5700.6 criteria shall be referenced in this document to avoid duplication. Referenced documents are not included in this QAIP but are available through the UMTRA Project Document Control Center.

  16. UMTRA Project Office Quality Assurance Program Plan. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office directs the overall Project. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA Project Office shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan or an industry standard format that has been approved by the DOE Project Office.

  17. Near Facility Environmental Monitoring Quality Assurance Project Plan

    SciTech Connect (OSTI)

    MCKINNEY, S.M.

    2000-05-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards.

  18. 2010 Quality Assurance Improvement Project Plan

    Office of Environmental Management (EM)

    ... validation A description of the process to review and approve of Lead Auditor credentials 1.2.6 Obtain auditor disclosure statements A form that establishes auditors ...

  19. 2012 Quality Assurance Improvement Project Plan

    Office of Environmental Management (EM)

    ... that does not require an additional password 2. Viewing of site Supplier information ... documents 9. Database functions with password and login protection for simplification. ...

  20. Effluent monitoring Quality Assurance Project Plan for radioactive airborne emissions data. Revision 2

    SciTech Connect (OSTI)

    Frazier, T.P.

    1995-12-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling Hanford Site radioactive airborne emissions data. These data will be reported to the U.S. Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Effluent Monitoring performs compliance assessments on radioactive airborne sampling and monitoring systems. This Quality Assurance Project Plan is prepared in compliance with interim guidelines and specifications. Topics include: project description; project organization and management; quality assurance objectives; sampling procedures; sample custody; calibration procedures; analytical procedures; monitoring and reporting criteria; data reduction, verification, and reporting; internal quality control; performance and system audits; corrective actions; and quality assurance reports.

  1. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Riddle, Donna L.

    2007-05-03

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for

  2. Gas generation matrix depletion quality assurance project plan

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    The Los Alamos National Laboratory (LANL) is to provide the necessary expertise, experience, equipment and instrumentation, and management structure to: Conduct the matrix depletion experiments using simulated waste for quantifying matrix depletion effects; and Conduct experiments on 60 cylinders containing simulated TRU waste to determine the effects of matrix depletion on gas generation for transportation. All work for the Gas Generation Matrix Depletion (GGMD) experiment is performed according to the quality objectives established in the test plan and under this Quality Assurance Project Plan (QAPjP).

  3. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  4. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  5. EM Quality Assurance Centralized Training Platform Project Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the Lead Auditor-under instruction (may not be the same as ... a college level curriculum addressing the basic knowledge of quality assurance principles, methods of ...

  6. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  7. Project specific quality assurance plan, W-151, Tank 241-AZ-101 waste retrieval system. Revision 2

    SciTech Connect (OSTI)

    Manthei, M.E.

    1994-11-21

    This project specific quality assurance program plan establishes the responsibility for the implementation of QA requirements, defines and documents the QA requirements associated with design, procurement, and construction, and defines and documents the degree of QA reviews and verifications on the design and construction necessary to assure compliance to project and DOE requirements. Revision 2 updates the QAPP to provide concurrence with approved work scope deletion. In addition, the Quality Assurance Program Index is being updated to reflect the current Quality Assurance Program requirements per DOE Order 5700.6C.

  8. DNFSB 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.2: Safety Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes

    Office of Environmental Management (EM)

    EH-4.2.1.2-Criteria Defense Nuclear Facilities Safety Board Recommendation 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.2: Software Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 November 2003 Software Quality Assurance Criteria for Safety Analysis Codes November 2003 INTENTIONALLY BLANK ii Software Quality Assurance Criteria

  9. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  10. Interstate Electrification Improvement Project

    SciTech Connect (OSTI)

    Puckette, Margaret; Kim, Jeff

    2015-07-01

    The Interstate Electrification Improvement Project, publicly known as the Shorepower Truck Electrification Project (STEP), started in May 2011 and ended in March 2015. The project grant was awarded by the Department of Energy’s Vehicles Technology Office in the amount of $22.2 million. It had three overarching missions: 1. Reduce the idling of Class 8 tractors when parked at truck stops, to reduce diesel fuel consumption and thus U.S. dependence on foreign petroleum; 2. Stimulate job creation and economic activity as part of the American Reinvestment and Recovery Act of 2009; 3. Reduce greenhouse gas emissions (GHG) from diesel combustion and the carbon footprint of the truck transportation industry. The project design was straightforward. First, build fifty Truck Stop Electrification (TSE) facilities in truck stop parking lots across the country so trucks could plug-in to 110V, 220V, or 480VAC, and shut down the engine instead of idling. These facilities were strategically located at fifty truck stops along major U.S. Interstates with heavy truck traffic. Approximately 1,350 connection points were installed, including 150 high-voltage electric standby Transport Refrigeration Unit (eTRU) plugs--eTRUs are capable of plugging in to shore power1 to cool the refrigerated trailer for loads such as produce, meats and ice cream. Second, the project provided financial incentives on idle reduction equipment to 5,000 trucks in the form of rebates, to install equipment compatible with shore power. This equipment enables drivers to shut down the main engine when parked, to heat or cool their cab, charge batteries, or use other household appliances without idling—a common practice that uses approximately 1 gallon of diesel per hour. The rebate recipients were intended to be the first fleets to plug into Shorepower to save diesel fuel and ensure there is significant population of shore power capable trucks. This two part project was designed to complement each other by

  11. Quality assurance program plan for FRG sealed isotopic heat sources project (C-229)

    SciTech Connect (OSTI)

    Tanke, J.M.

    1997-05-16

    This QAPP implements the Quality Assurance Program Plan for the FRG Sealed Isotopic Heat Sources Project (C-229). The heat source will be relocated from the 324 Building and placed in interim storage at the Central Waste Complex (CWC).

  12. Facility Software Quality Assurance (SQA) for Captal Project Critical Decisions RM

    Broader source: Energy.gov [DOE]

    The purpose of this Software Quality Assurance for Capital Project Critical Decision Review Module (SQA RM) is to identify, integrate, and clarify, in one EM document, the SQA performance...

  13. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  14. Project Management Improvements Drive Progress

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Improving project management has been a top priority of EM’s senior leadership.

  15. Project Hanford management contract quality improvement project management plan

    SciTech Connect (OSTI)

    ADAMS, D.E.

    1999-03-25

    On July 13, 1998, the U.S. Department of Energy, Richland Operations Office (DOE-RL) Manager transmitted a letter to Fluor Daniel Hanford, Inc. (FDH) describing several DOE-RL identified failed opportunities for FDH to improve the Quality Assurance (QA) Program and its implementation. In addition, DOE-RL identified specific Quality Program performance deficiencies. FDH was requested to establish a periodic reporting mechanism for the corrective action program. In a July 17, 1998 response to DOE-RL, FDH agreed with the DOE concerns and committed to perform a comprehensive review of the Project Hanford Management Contract (PHMC) QA Program during July and August, 1998. As a result, the Project Hanford Management Contract Quality Improvement Plan (QIP) (FDH-3508) was issued on October 21, 1998. The plan identified corrective actions based upon the results of an in-depth Quality Program Assessment. Immediately following the scheduled October 22, 1998, DOE Office of Enforcement and Investigation (EH-10) Enforcement Conference, FDH initiated efforts to effectively implement the QIP corrective actions. A Quality Improvement Project (QI Project) leadership team was assembled to prepare a Project Management Plan for this project. The management plan was specifically designed to engage a core team and the support of representatives from FDH and the major subcontractors (MSCs) to implement the QIP initiatives; identify, correct, and provide feedback as to the root cause for deficiency; and close out the corrective actions. The QI Project will manage and communicate progress of the process.

  16. Acquisition and Project Management Continuous Improvement Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Project Management Continuous Improvement Presentation Acquisition and Project Management Continuous Improvement Presentation Presentation on Acquisition and Project Management ...

  17. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    SciTech Connect (OSTI)

    Hall, L.R.

    1995-05-30

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  18. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    HORHOTA, M.J.

    2000-12-21

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

  19. Enabling States and Localities to Improve Energy Assurance and Resiliency Planning (September 2010)

    Broader source: Energy.gov [DOE]

    The Energy Assurance Planning (EAP) Initiative for State and Local Governments is a major element of DOE's effort to improve the Nation's energy sector resiliency. The overall goal of the three...

  20. Quality assurance program plan for 324 Building B-Cell safety cleanout project (BCCP)

    SciTech Connect (OSTI)

    Tanke, J.M.

    1997-05-22

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the 324 Building B-Cell Safety Cleanout Project (BCCP). This QAPP is responsive to the Westinghouse Hanford Company Quality Assurance Program and Implementation Plan, WHC-SP-1131, for 10 CFR 830.120, Nuclear Safety Management, Quality Assurance Requirements; and DOE Order 5700.6C, Quality Assurance. This QAPP supersedes PNNL PNL-MA-70 QAP Quality Assurance Plan No. WTC-050 Rev. 2, issue date May 3, 1996. This QAPP has been developed specifically for the BCCP. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of decontaminating B-Cell and project related operations within the 324 Building as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations) are covered in the Building 324 QAPP. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping, and HSRCM-1, Hanford Site Radiological Control Manual, The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing, PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to 10 CFR 83 0.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be

  1. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  2. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-03-28

    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  3. Quality assurance plan for the Objective Supply Capability Adaptive Redesign (OSCAR) project

    SciTech Connect (OSTI)

    Stewart, K.A.; Rasch, K.A.; Reid, R.W.

    1996-11-01

    This document establishes the Quality Assurance Plan (QAP) for the National Guard Bureau Objective Supply Capability Adaptive Redesign (OSCAR) project activities under the Oak Ridge National Laboratory (ORNL) management. It defines the requirements and assigns responsibilities for ensuring, with a high degree of confidence, that project objectives will be achieved as planned. The QAP outlined herein is responsive to and meets the Quality Assurance Program standards for the U.S. Department of Energy (DOE), Lockheed Martin Energy Research Corporation and ORNL and the ORNL Computing, Robotics, and Education Directorate (CRE). This document is intended to be in compliance with DOE Order 5700.6C, Quality Assurance Program, and the ORNL Standard Practice Procedure, SPP X-QA-8, Quality Assurance for ORNL Computing Software. This standard allows individual organizations to apply the stated requirements in a flexible manner suitable to the type of activity involved. Section I of this document provides an introduction to the OSCAR project QAP; Sections 2 and 3 describe the specific aspects of quality assurance as applicable to the OSCAR project. Section 4 describes the project approach to risk management. The Risk Management Matrix given in Appendix A is a tool to assess, prioritize, and prevent problems before they occur. Therefore, the matrix will be reviewed and revised on a periodic basis.

  4. Quality assurance project plan for ground water monitoring activities managed by Westinghouse Hanford Company. Revision 3

    SciTech Connect (OSTI)

    Stauffer, M.

    1995-11-01

    This quality assurance project plan (QAPP) applies specifically to the field activities and laboratory analysis performed for all RCRA groundwater projects conducted by Hanford Technical Services. This QAPP is generic in approach and shall be implemented in conjunction with the specific requirements of individual groundwater monitoring plans.

  5. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements.

  6. Project Hanford management contract quality assurance program implementation plan for nuclear facilities

    SciTech Connect (OSTI)

    Bibb, E.K.

    1997-10-15

    During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

  7. Spent nuclear fuel project quality assurance program plan

    SciTech Connect (OSTI)

    Lacey, R.E.

    1997-05-09

    This main body of this document describes how the requirements of 10 CFR 830.120 are met by the Spent Nuclear Fuel Project through implementation of WHC-SP-1131. Appendix A describes how the requirements of DOE/RW-0333P are met by the Spent Nuclear Fuel Project through implementation of specific policies, manuals, and procedures.

  8. CRAD, Quality Assurance- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Quality Assurance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  9. Management and overview Quality Assurance Program Plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office (DOE/ UMTRA-PO) is the US Department of Energy (DOE) Albuquerque Operations Office (AL) organization charged with the responsibility of managing and coordinating the activities of the various participating organizations and support contractors working on the UMTRA Project. This Quality Assurance Program Plan (QAPP) describes how the DOE/UMTRA-PO, as assisted by the Technical Assistance Contractor (TAC), performs the quality assurance (QA) aspects of managing and coordinating UMTRA Project activities. This QAPP was developed to comply with DOE Order 5700.6A, August, 1981, and AL Order 5700.6B, April, 1984, which contain the criteria applicable to Project QA activities.

  10. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  11. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    SciTech Connect (OSTI)

    1995-11-01

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements.

  12. PNNL Apatite Investigation at 100-NR-2 Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-02

    In 2004, the U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory (PNNL), and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area would include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary. Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing strontium-90 flux to the Columbia River. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the PNNL Apatite Investigation at 100-NR-2 Project. The plan is designed to be used exclusively by project staff.

  13. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1997-04-14

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  14. [Uranium Mill Tailings Remedial Action Project Office Quality Assurance Program Plan

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office (UMTRA PO) directs the overall project. Since these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA PO shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan.

  15. Sandia National Laboratories, California Quality Assurance Project Plan for Environmental Monitoring Program.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2005-09-01

    This Quality Assurance Project Plan (QAPP) applies to the Environmental Monitoring Program at the Sandia National Laboratories/California. This QAPP follows DOE Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance (DOE G 414.1-2A June 17, 2005). The Environmental Monitoring Program is located within the Environmental Operations Department. The Environmental Operations Department is responsible for ensuring that SNL/CA operations have minimal impact on the environment. The Department provides guidance to line organizations to help them comply with applicable environmental regulations and DOE orders. To fulfill its mission, the department has groups responsible for waste management; pollution prevention, air quality; environmental planning; hazardous materials management; and environmental monitoring. The Environmental Monitoring Program is responsible for ensuring that SNL/CA complies with all Federal, State, and local regulations and with DOE orders regarding the quality of wastewater and stormwater discharges. The Program monitors these discharges both visually and through effluent sampling. The Program ensures that activities at the SNL/CA site do not negatively impact the quality of surface waters in the vicinity, or those of the San Francisco Bay. The Program verifies that wastewater and stormwater discharges are in compliance with established standards and requirements. The Program is also responsible for compliance with groundwater monitoring, and underground and above ground storage tanks regulatory compliance. The Program prepares numerous reports, plans, permit applications, and other documents that demonstrate compliance.

  16. Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program

    SciTech Connect (OSTI)

    Sailer, S.J.

    1996-08-01

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCP has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.

  17. Acquisition and Project Management Continuous Improvement Presentation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Project Management Continuous Improvement Presentation Acquisition and Project Management Continuous Improvement Presentation Presentation on Acquisition and Project Management Continuous Improvement. Acquisition and Project Management Continuous Improvement presentation (1.43 MB) More Documents & Publications Occupational Safety Performance Voluntary Protection Program Onsite Review, Safeguards and Security - August 2012 Report on Acquisition and Project

  18. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of Energy (DOE) ...

  19. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-03-01

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  20. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-02-01

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  1. Quality assurance project plan for the radionuclide airborne emissions for the Plutonium Finishing Plant

    SciTech Connect (OSTI)

    Kristofzski, J.G.; Alison, D.

    1992-04-01

    The information provided in this document meets the quality assurance (QA) requirements for the National Emission Standards for Hazardous Air Pollutants'' (NESHAP) (EPA 1989a) radionuclide airborne emissions control program in accordance with the regulation's referenced stack monitoring method (i.e. Method 114) for the Plutonium Finishing Plant (PFP). At the Hanford Site, the operations personnel have primary responsibility for implementing the continuous radionuclide emission measurements in conformance with NESHAP. Continuous measurement is used to describe continuous sampling of the effluent stream withdrawn and subjected to radiochemical analysis, and monitoring of radionuclide particulate emissions for administrative control. This Quality Assurance Project Plan (QAPjP) fully describes these PFP- implemented activities and the associated QA program as required by the NESHAP. The information is provided in the format specified in QAMS/005, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (EPA 1983a). This QAPjP describes the QA program for only those activities that are the responsibility of the PFP: operation, calibration, and maintenance of the sampling systems. The QA requirements for laboratory services, data compilation, and data reporting are beyond the scope of this QAPjP.

  2. Quality assurance project plan for the radionuclide airborne emissions for the Plutonium Finishing Plant

    SciTech Connect (OSTI)

    Kristofzski, J.G.; Alison, D.

    1992-04-01

    The information provided in this document meets the quality assurance (QA) requirements for the ``National Emission Standards for Hazardous Air Pollutants`` (NESHAP) (EPA 1989a) radionuclide airborne emissions control program in accordance with the regulation`s referenced stack monitoring method (i.e. Method 114) for the Plutonium Finishing Plant (PFP). At the Hanford Site, the operations personnel have primary responsibility for implementing the continuous radionuclide emission measurements in conformance with NESHAP. Continuous measurement is used to describe continuous sampling of the effluent stream withdrawn and subjected to radiochemical analysis, and monitoring of radionuclide particulate emissions for administrative control. This Quality Assurance Project Plan (QAPjP) fully describes these PFP- implemented activities and the associated QA program as required by the NESHAP. The information is provided in the format specified in QAMS/005, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (EPA 1983a). This QAPjP describes the QA program for only those activities that are the responsibility of the PFP: operation, calibration, and maintenance of the sampling systems. The QA requirements for laboratory services, data compilation, and data reporting are beyond the scope of this QAPjP.

  3. Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting

    SciTech Connect (OSTI)

    Burris, S.A.; Thomas, S.P.

    1994-02-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).

  4. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  5. Global Threat Reduction Initiative Fuel-Thermo-Physical Characterization Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Pereira, Mario M.; Slonecker, Bruce D.

    2012-06-01

    The charter of the Fuel Thermo-Physical Characterization Project is to ready Pacific Northwest National Laboratory (PNNL) facilities and processes for the receipt of unirradiated and irradiated low enriched uranium (LEU) molybdenum (U-Mo) fuel element samples, and to perform analysis to support the Global Threat Reduction Initiative conversion program. PNNL’s support for the program will include the establishment of post-irradiation examination processes, including thermo-physical properties, unique to the U.S. Department of Energy laboratories. These processes will ultimately support the submission of the base fuel qualification (BFQ) to the U.S. Nuclear Regulatory Commission (NRC) and revisions to High Performance Research Reactor Safety Analysis Reports to enable conversion from highly enriched uranium to LEU fuel. This quality assurance plan (QAP) provides the quality assurance requirements and processes that support the NRC BFQ. This QAP is designed to be used by project staff, and prescribes the required management control elements that are to be met and how they are implemented. Additional controls are captured in Fuel Thermo-Physical Characterization Project plans, existing procedures, and procedures to be developed that provide supplemental information on how work is conducted on the project.

  6. Underground test area quality assurance project plan, Nevada test site, Nevada. Revision 1

    SciTech Connect (OSTI)

    1997-04-01

    This Quality Assurance Project Plan (QAPP) is one of the planning documents used for the Underground Test Area (UGTA) Subproject at the Nevada Test Site (NTS) which falls under the oversight of the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Nevada Environmental Restoration Project (NV ERP). The Nevada ERP consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The UGTA Subproject constitutes a component of the Nevada Environmental Restoration Project. The purposes of the UGTA Subproject are to define boundaries around each Corrective Action Unit (CAU), as defined by the Federal Facility Agreement and Consent Order (FFACO), that establish areas containing water that may be unsafe for domestic or municipal use and to establish monitoring programs for each CAU that will verify modeling upon which the boundaries are based.

  7. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

  8. Wind Forecasting Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Improvement Project Wind Forecasting Improvement Project October 3, 2011 - 12:12pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. In July, the Department of Energy launched a $6 million project with the National Oceanic and Atmospheric Administration (NOAA) and private partners to improve wind forecasting. Wind power forecasting allows system operators to anticipate the electrical output of wind plants and adjust the electrical

  9. Improving Project Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Secretary of Energy Ernest Moniz has made improving project management a priority at the Energy Department. In August 2013, the Secretary established a special working group that...

  10. DOE Announces Competitive Improvement Project Awards | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competitiveness Improvement Project (CIP), which was announced in January 2013. Bergey Windpower Company of Oklahoma, an initial CIP recipient, used this funding to identify ...

  11. Class 8 Truck Freight Efficiency Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daimler Trucks and Buses 1 Super Truck Program: Vehicle Project Review Recovery Act -Class 8 Truck Freight Efficiency Improvement Project Project ID: ARRAVT080 This presentation does not contain any proprietary, confidential, or otherwise restricted information Derek Rotz (PI & Presenter) Dr. Maik Ziegler Daimler Truck North America LLC June 19 th , 2014 Daimler Trucks and Buses 2 Overview * Project start: April 2010 * Project end: March 2015 * Percent complete: 80% * Resolve thermal &

  12. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern ...

  13. Quality assurance plan for the molten salt reactor experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-02-01

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by Molten Salt Reactor Experiment (MSRE) Remediation Project personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description, Y/QD-15 Rev. 2 (Martin Marietta Energy Systems, Inc., 1995) and Environmental Management and Enrichment Facilities Work Smart Standards. This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRE Remediation Project. This QAP will be periodically reviewed, revised, and approved as necessary. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan.

  14. NEUP Project Selections_September212011_IRP and Infrastructure Improvements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Projects selections for NEUP 2011 under Integrated Research Projects and University Research Infrastructure Improvements.

  15. Recommendations to Improve EVM and Project Management Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommendations to Improve EVM and Project Management Integration in the DOE Recommendations to Improve EVM and Project Management Integration in the DOE Significant improvements ...

  16. Final Report Project Activity Task ORD-FY04-002 Nevada System of Higher Education Quality Assurance Program

    SciTech Connect (OSTI)

    Smiecinski, Amy; Keeler, Raymond; Bertoia, Julie; Mueller, Terry; Roosa, Morris; Roosa, Barbara

    2008-03-07

    The principal purpose of DOE Cooperative Agreement DE-FC28-04RW12232 is to develop and continue providing the public and the U.S. Department of Energys (DOE) Office of Civilian Radioactive Waste Management (OCRWM) with an independently derived, unbiased body of scientific and engineering data concerning the study of Yucca Mountain as a potential high-level radioactive waste repository. Under this agreement, the Nevada System of Higher Education (NSHE), formerly the University and Community College System of Nevada (UCCSN), performs scientific or engineering research, and maintains and fosters collaborative working relationships between government and academic researchers. In performing these activities, the NSHE has already developed and implemented a Quality Assurance (QA) program, which was accepted by the DOE Office of Quality Assurance, under the previous Cooperative Agreement Number DE-FC28-98NV12081. The following describes the objectives of Project Activity 002 Quality Assurance Program under cooperative agreement DE-FC28-04RW12232. The objective of this QA program was to assure that data produced under the cooperative agreement met the OCRWM QA Requirements and Description (QARD) requirements for quality-affecting (Q) data. The QA Program was written to address specific QARD requirements historically identified and incorporated in Q activities to the degree appropriate for the nature, scope, and complexity of the activity. Additional QARD requirements were integrated into the program when required to complete a specific activity. NSHE QA staff developed a detailed matrix to address each QARD element, identifying the applicable requirements and specifying where each requirement is addressed in the QA program procedures, or identify requirements as not applicable to the QA program. Controlled documents were prepared in the form of QA procedures (QAPs) and implementing procedures (IPs). NSHE identified new QAPs and IPs when needed. NSHE PIs implemented

  17. FY 2016 Overall Contract and Project Management Improvement Performanc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2016 Overall Contract and Project Management Improvement Performance Metrics and Targets ...

  18. FY 2013 Overall Contract and Project Management Improvement Performanc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2013 Overall Contract and Project Management Improvement Performance Metrics and Targets ...

  19. FY 2010 Overall Contract and Project Management Improvement Performanc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2010 Overall Contract and Project Management Improvement Performance Metrics and Targets ...

  20. FY 2009 Overall Contract and Project Management Improvement Performanc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2009 Overall Contract and Project Management Improvement Performance Metrics and Targets ...

  1. Contract and Project Management Improvement (CPMI) Closure Report...

    Energy Savers [EERE]

    Contract and Project Management Improvement (CPMI) Closure Report -- April 2012 Contract and Project Management Improvement (CPMI) Closure Report -- April 2012 The Department of ...

  2. FY 2011 Overall Contract and Project Management Improvement Performanc...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FY 2013 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2014 Overall Contract and Project Management Improvement ...

  3. FY 2015 Overall Contract and Project Management Improvement Performanc...

    Energy Savers [EERE]

    5 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2015 Overall Contract and Project Management Improvement Performance Metrics and Targets ...

  4. FY 2008 Overall Contract and Project Management Improvement Performanc...

    Office of Environmental Management (EM)

    8 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2008 Overall Contract and Project Management Improvement Performance Metrics and Targets FY ...

  5. FY 2014 Overall Contract and Project Management Improvement Performanc...

    Office of Environmental Management (EM)

    4 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2014 Overall Contract and Project Management Improvement Performance Metrics and Targets ...

  6. FY 2012 Overall Contract and Project Management Improvement Performanc...

    Energy Savers [EERE]

    2 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2012 Overall Contract and Project Management Improvement Performance Metrics and Targets ...

  7. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Office of Environmental Management (EM)

    Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - ...

  8. Safety Improvements, Project Progress at Hanford Site's Plutonium...

    Office of Environmental Management (EM)

    Safety Improvements, Project Progress at Hanford Site's Plutonium Finishing Plant Safety Improvements, Project Progress at Hanford Site's Plutonium Finishing Plant May 16, 2016 - ...

  9. EM Quality Assurance Policy, Revision 0

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It is EM policy that all EM projects will have a consistent quality assurance approach while allowing for grading based ... Quality Assurance Implementation Plan demonstrating how ...

  10. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  11. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  12. Quality assurance project plan for the preliminary site investigation for McMurdo Station, Ross Island, Antarctica

    SciTech Connect (OSTI)

    Prasad, S.S.

    1991-05-01

    The quality assurance project plan (QAPjP) is designed to ensure that sampling and analysis activities are scoped and performed to obtain quality data during the preliminary site investigation for McMurdo Station, Ross Island, Antarctica. The QAPjP is prepared in accordance with the guidelines set forth and adopted by the US Environmental Protection Agency (EPA) (1980a, 1986a, 1989a), Argonne National Laboratory (ANL) (1988), and Pentecost and Doctor (1990). This document presents the final QAPjP for the preliminary site investigation. A drat version of this report was presented to the National Science Foundation (NSF) in January 1991. A description of the project and data quality objectives is provided in Section 3.1 of the work plan. Specific health and safety precautions and procedures are presented in the health and safety plan. 17 refs., 2 figs., 11 tabs.

  13. Distributed Wind Competitiveness Improvement Project Fact Sheet

    Broader source: Energy.gov [DOE]

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards.

  14. Quality Assurance Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1) to ensure all EM projects utilize a consistent quality assurance approach. PDF icon Quality Assurance Policy, Revision 1 PDF icon EM Quaility Assurance Program (EM-QA-001 ...

  15. Improving Project Management at the Department of Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Improving Project Management at the Department of Energy Improving Project Management at the Department of Energy December 19, 2014 - 12:15pm Addthis Improving Project Management at the Department of Energy John J. MacWilliams John J. MacWilliams Associate Deputy Secretary Read the Report Learn more by reading the full Improving Project Management report. Secretary Ernest Moniz has made improving project management a priority at the Energy Department. In August 2013, the Secretary

  16. Quality assurance project plan for the Chestnut Ridge Fly Ash Pond Stabilization Project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-07-01

    The Chestnut Ridge Fly Ash Pond Stabilization (CRFAPS) Project will stabilize a 19-m-high (62-ft-high) earthen embankment across Upper McCoy Branch situated along the southern slope of Chestnut Ridge. This task will be accomplished by raising the crest of the embankment, reinforcing the face of the embankment, removing trees from the face and top of the embankment, and repairing the emergency spillway. The primary responsibilities of the team members are: Lockheed Martin Energy Systems, Inc., (Energy Systems) will be responsible for project integration, technical support, Title 3 field support, environmental oversight, and quality assurance (QA) oversight of the project; Foster Wheeler Environmental Corporation (FWENC) will be responsible for design and home office Title 3 support; MK-Ferguson of Oak Ridge Company (MK-F) will be responsible for health and safety, construction, and procurement of construction materials. Each of the team members has a QA program approved by the US Department of Energy (DOE) Oak Ridge Operations. This project-specific QA project plan (QAPP), which is applicable to all project activities, identifies and integrates the specific QA requirements from the participant`s QA programs that are necessary for this project.

  17. Secretary's 2014 Award for Project Management Improvement | Department of

    Office of Environmental Management (EM)

    Energy for Project Management Improvement Secretary's 2014 Award for Project Management Improvement Nuclear Materials Safeguards & Security Upgrades (NMSSUP) Project (The National Nuclear Security Administration) (855.47 KB) More Documents & Publications 2014 Awards for Project Management Secretary's 2014 Achievement Awards Acquisition and Project Management Awards Presentations - Ingrid Kolb, Director, Office of Management

  18. Quality Assurance | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Assurance The Quality Assurance & Continuous Improvement Department has the critical role of working with the U.S. Department of Energy and other regulators on the environment, health and safety; self-assessment and quality assurance. The department's goal is to devise, integrate and manage activities, programs and systems that make it possible for the lab, its employees and its contractors deliver services and products that perpetuate environmental, integrated safety and quality

  19. PROJECT PROFILE: An Integrated Tool for Improving Grid Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: An Integrated Tool for Improving Grid Performance and Reliability of Combined Transmission-Distribution with High Solar Penetration (SuNLaMP) PROJECT PROFILE: An ...

  20. J.R. Simplot: Burner Upgrade Project Improves Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant J.R. Simplot: Burner Upgrade Project Improves Performance and Saves ...

  1. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Broader source: Energy.gov (indexed) [DOE]

    The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind ...

  2. Joint transmission system projects to improve system reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    County PUD, 425-783-8444 Joint transmission system projects to improve system reliability First major regional electric grid improvements in decades prepare the area for the...

  3. Contract and Project Management Improvement (CPMI) Closure Report -- April

    Energy Savers [EERE]

    2012 | Department of Energy Contract and Project Management Improvement (CPMI) Closure Report -- April 2012 Contract and Project Management Improvement (CPMI) Closure Report -- April 2012 The Department of Energy (DOE) is committed to making continuous improvements in contract and project management performance. One of the first steps the Department took to improve contract and project management was to hold a Root Cause Analysis (RCA) Workshop in 2007. Following the RCA Workshop, DOE

  4. Quality Assurance Project Plan for the Gas Generation Testing Program at the INEL

    SciTech Connect (OSTI)

    NONE

    1994-10-01

    The data quality objectives (DQOs) for the Program are to evaluate compliance with the limits on total gas generation rates, establish the concentrations of hydrogen and methane in the total gas flow, determine the headspace concentration of VOCs in each drum prior to the start of the test, and obtain estimates of the concentrations of several compounds for mass balance purposes. Criteria for the selection of waste containers at the INEL and the parameters that must be characterized prior to and during the tests are described. Collection of gaseous samples from 55-gallon drums of contact-handled transuranic waste for the gas generation testing is discussed. Analytical methods and calibrations are summarized. Administrative quality control measures described in this QAPjP include the generation, review, and approval of project documentation; control and retention of records; measures to ensure that personnel, subcontractors or vendors, and equipment meet the specifications necessary to achieve the required data quality for the project.

  5. RAVEN Quality Assurance Activities

    SciTech Connect (OSTI)

    Cogliati, Joshua Joseph

    2015-09-01

    This report discusses the quality assurance activities needed to raise the Quality Level of Risk Analysis in a Virtual Environment (RAVEN) from Quality Level 3 to Quality Level 2. This report also describes the general RAVEN quality assurance activities. For improving the quality, reviews of code changes have been instituted, more parts of testing have been automated, and improved packaging has been created. For upgrading the quality level, requirements have been created and the workflow has been improved.

  6. Wind Forecast Improvement Project Southern Study Area Final Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf (15.76 MB) More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 QER - Comment of Canadian Hydropower Association QER - Comment of Edison Electric Institute (EEI) 2

  7. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    SciTech Connect (OSTI)

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements.

  8. Improving\tProject\tManagement

    Office of Environmental Management (EM)

    ... research and development; nuclear weapons development and stewardship; ... Project Peer Reviews across the complex to better monitor project development and execution and ...

  9. Greater Green River Basin Production Improvement Project

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  10. Improving the Department's Management of Projects | Department...

    Office of Environmental Management (EM)

    DOE is managing some of the largest, most complex, and technically challenging projects in the public or private sector. Many are one-of-a-kind projects that involve the risks and ...

  11. Upcoming Funding Opportunity for Wind Forecasting Improvement Project in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complex Terrain | Department of Energy Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am Addthis On February 11, 2014 the Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex terrain, this funding would improve

  12. Report on Acquisition and Project Management Continuous Improvement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy on Acquisition and Project Management Continuous Improvement Report on Acquisition and Project Management Continuous Improvement EM senior management has committed to extensive management reforms and has completed several robust improvements in contract and project management. Additional improvement initiatives are continuing and this document outlines the consolidated plan of these initiatives in a top-down framework of EM vision, goals, strategies, performance metrics,

  13. Quality Assurance Manual

    SciTech Connect (OSTI)

    McGarrah, J.E.

    1995-05-01

    In order to provide clients with quality products and services, Pacific Northwest Laboratory (PNL) has established and implemented a formal quality assurance program. These management controls are documented in this manual (PNL-MA-70) and its accompanying standards and procedures. The QA Program meets the basic requirements and supplements of ANSI/ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities, as interpreted for PNL activities. Additional, the quality requirements are augmented to include the Total Quality approach defined in the Department of Energy Order 5700.6C, Quality Assurance. This manual provides requirements and an overview of the administrative procedures that apply to projects and activities.

  14. Readiness Assurance

    National Nuclear Security Administration (NNSA)

    planning, resource allocation, program assistance activities, evaluations, training, drills, and exercises; and,

  15. Emergency Readiness Assurance Plans (ERAPs)<...

  16. PROJECT PROFILE: Frequency Response Assessment and Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    due to High Penetrations of Photovoltaic Generation (SuNLaMP) PROJECT PROFILE: ... due to High Penetrations of Photovoltaic Generation (SuNLaMP) Funding Program: ...

  17. NREL Distributes Wind Competitiveness Improvement Project Round...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Type testing includes safety and function test, power performance test, load measurements, acoustic noise test, and blade test. The awardees will complete their projects within an ...

  18. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  19. PROJECT PROFILE: Improving PV performance Estimates in the System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project will improve the forecasting of lifetime PV system performance as well as operations and maintenance costs by incorporating the Photovoltaic Reliability and ...

  20. Improving Project Management | Department of Energy

    Office of Environmental Management (EM)

    Department of Energy Improving Communication with Industry during the Acquisition Process Improving Communication with Industry during the Acquisition Process The Office of Federal Procurement Policy, (OFPP) issued the attached memorandum entitled "Myth-Busting: Addressing Misconceptions to Improve Communication with Industry during the Acquisition Process" on February 2, 2011. PF2011-44 Improving Communication with Industry during the Acquisition Process (41.59 KB) PF2011-44a.pdf

  21. Understanding DOE Quality Assurance Requirements and ASME NQA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear Projects Training Agenda Understanding DOE Quality Assurance Requirements and ASME NQA-1 For ...

  1. Class 8 Truck Freight Efficiency Improvement Project

    Broader source: Energy.gov (indexed) [DOE]

    Derek Rotz (PI & Presenter) Dr. Maik Ziegler Daimler Truck ... controls integration (aux, hybrid, powertrain, waste heat, ... 20% improvement through a heavy-duty diesel engine capable ...

  2. Quality Assurance Project Plan for the treatability study of in situ vitrification of Seepage Pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    This Quality Assurance Project Plan (QAPjP) establishes the quality assurance procedures and requirements to be implemented for the control of quality-related activities for Phase 3 of the Treatability Study (TS) of In Situ Vitrification (ISV) of Seepage Pit 1, ORNL Waste Area Grouping 7. This QAPjP supplements the Quality Assurance Plan for Oak Ridge National Laboratory Environmental Restoration Program by providing information specific to the ISV-TS. Phase 3 of the TS involves the actual ISV melt operations and posttest monitoring of Pit 1 and vicinity. Previously, Phase 1 activities were completed, which involved determining the boundaries of Pit 1, using driven rods and pipes and mapping the distribution of radioactivity using logging tools within the pipes. Phase 2 involved sampling the contents, both liquid and solids, in and around seepage Pit 1 to determine their chemical and radionuclide composition and the spatial distribution of these attributes. A separate QAPjP was developed for each phase of the project. A readiness review of the Phase 3 activities presented QAPjP will be conducted prior to initiating field activities, and an Operational Acceptance, Test (OAT) will also be conducted with no contamination involved. After, the OAT is complete, the ISV process will be restarted, and the melt will be allowed to increase with depth and incorporate the radionuclide contamination at the bottom of Pit 1. Upon completion of melt 1, the equipment will be shut down and mobilized to an adjacent location at which melt 2 will commence.

  3. S-PRIME Thermionic Space Nuclear Power System Quality Assurance Program Plan

    SciTech Connect (OSTI)

    Jones, C.M.

    1992-09-23

    This Quality Assurance Program Plan (QAPP)describes how the Thermionic Space Nuclear Power System Design and Technology Demonstration Project addresses the Quality Assurance requirements delineated in DOE Order 5700.6C and the Thermionic Program Management Plan 214PMP000001. The Quality Assurance Program is based on the following fundamental principles, which Rocketdyne endorses and the QA Project Manager and Program Manager shall enforce: Quality Achievement is a continuing responsibility of line organization at all levels; the Quality Assurance organization through the effective overview of work, gives additional assurance that specified requirements are met; risk is the fundamental consideration in determining to what extent the Quality Assurance Plan should be applied to items and processes; action is based on facts and analysis, customer driven quality, strong quality leadership and continuous improvement.

  4. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-29

    To establish an effective management system [i.e., quality assurance programs (QAPs)] using the performance requirements of this Order, coupled with technical standards where appropriate. Cancels DOE O 414.1.

  5. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The Order defines roles and responsibilities for providing quality assurance for DOE products and services.Admin Chg 1, dated 5-8-13, supersedes DOE O 414.1D.

  6. Smart Grid Projects Are Improving Performance and Helping Consumers Better

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manage their Energy Use | Department of Energy Projects Are Improving Performance and Helping Consumers Better Manage their Energy Use Smart Grid Projects Are Improving Performance and Helping Consumers Better Manage their Energy Use November 14, 2014 - 5:07pm Addthis Hank Kenchington Hank Kenchington Deputy Assistant Secretary, Cybersecurity and Emerging Threats Research and Development After nearly five years, the 131 smart grid projects funded through the 2009 Recovery Act are nearing

  7. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks | Department of Energy Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - 1:43pm Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office (BETO).

  8. Class 8 Truck Freight Efficiency Improvement Project

    Broader source: Energy.gov (indexed) [DOE]

    least 20% improvement through a heavy-duty diesel engine capable of ... Tractor Trailer 16.5% 2.4% (incl. hybrid) NEXT STEP: build the truck Approach Daimler Trucks and Buses ...

  9. CXD 4604, Development CONOPS Improvement Project (4604)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effort to improve its facility conditions. The focus will be on removal of accumulated trash, de-cluttering of work areas, and identification and removal of any unneeded materials...

  10. Outage project productivity improvement of TVA fossil

    SciTech Connect (OSTI)

    Picard, H.E.; Seay, C.R. Jr.

    1996-10-01

    Competition in the utility industry forces management to look closely at the cost effectiveness of power plant outage projects. At TVA Fossil and Hydro Power, innovative work measurement is proving effective as a project management tool to do more with less. Labor-hours to complete outage work scopes are reduced by some 20 to 30%, not by working harder or sacrificing safety, or quality, but by working and managing smarter. Fossil power plant outages and shutdowns are costly. They are labor-intensive construction projects, often with expanding work scope, and executed on a fast track. Outage work is inherently complex and dynamic, and often unpredictable. Many activities and tasks must be integrated, coordinated and completed safely and efficiently by multiple crafts and work groups. As a result, numerous productivity factors can influence the cost and schedule of outage completion. This provides owners, contractors and labor with unique opportunities for competitive advantage--by making radical changes in how they manage labor-hours and time.

  11. Quality Assurance Specialist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Quality Control Technician; Quality Assurance Inspector; Quality Assurance Representative

  12. Montenay recyclable trash improvements (RTI) project

    SciTech Connect (OSTI)

    Smith, D.M.; Smith, E.F.

    1998-07-01

    Municipal trash is converted to a solid fuel for an off-site boiler installation. Existing Miami-Dade Resources Recovery Facilities were modified and new processing facilities were added at a cost of $26 million dollars. This major recycling project was developed over three years, was built in 1996 and was successfully commissioned in 1997. Process machinery includes three modified shredders with a final throughput capacity of 110 tons per hour, conveyors, trommels, and raw product separation equipment. The RTI process makes commercial grade biomass fuel and two soil products. A discussion of process design and testing is presented. Other bulk material handling issues such as delivery contracts for raw trash ad remote site fuel delivery is included. Elements of the plant designs for truck tipping, rejects separation, process and storage buildings are also discussed.

  13. Lawrence Livermore National Laboratory Quality Assurance Project Plan for National Emission Standards for Hazardous Air Pollutants (NESHAPs), Subpart H

    SciTech Connect (OSTI)

    Hall, L.; Biermann, A

    2000-06-27

    As a Department of Energy (DOE) Facility whose operations involve the use of radionuclides, Lawrence Livermore National Laboratory (LLNL) is subject to the requirements of 40 CFR 61, the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Subpart H of this Regulation establishes standards for exposure of the public to radionuclides (other than radon) released from DOE Facilities (Federal Register, 1989). These regulations limit the emission of radionuclides to ambient air from DOE facilities (see Section 2.0). Under the NESHAPs Subpart H Regulation (hereafter referred to as NESHAPs), DOE facilities are also required to establish a quality assurance program for radionuclide emission measurements; specific requirements for preparation of a Quality Assurance Program Plan (QAPP) are given in Appendix B, Method 114 of 40 CFR 61. Throughout this QAPP, the specific Quality Assurance Method elements of 40 CFR 61 Subpart H addressed by a given section are identified. In addition, the US Environmental Protection Agency (US EPA) (US EPA, 1994a) published draft requirements for QAPP's prepared in support of programs that develop environmental data. We have incorporated many of the technical elements specified in that document into this QAPP, specifically those identified as relating to measurement and data acquisition; assessment and oversight; and data validation and usability. This QAPP will be evaluated on an annual basis, and updated as appropriate.

  14. NREL Announces Two New Competitiveness Improvement Project Awards

    Broader source: Energy.gov [DOE]

    In July, the U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) announced two new Competitiveness Improvement Project (CIP) awards. Northern Power Systems of Barre,...

  15. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  16. Energy Department Announces Five Research Projects to Improve Mining

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Research Projects to Improve Mining Efficiency Energy Department Announces Five Research Projects to Improve Mining Efficiency May 5, 2005 - 12:42pm Addthis WASHINGTON, DC - As part of the Bush Administration's continuing effort to make more efficient use of America's domestic energy resources while maintaining sound stewardship of the environment, the U.S. Department of Energy (DOE) today announced the selection of five new research and development

  17. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2012_o.pdf (2.58 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency

  18. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2013_o.pdf (1.46 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency

  19. Security Improvements Project Completed Ahead of Schedule, $20 Million

    National Nuclear Security Administration (NNSA)

    Under Budget | National Nuclear Security Administration | (NNSA) Security Improvements Project Completed Ahead of Schedule, $20 Million Under Budget April 07, 2014 WASHINGTON, D.C. - The National Nuclear Security Administration's (NNSA) Security Improvements Project (SIP) was recently completed ahead of schedule and approximately $20 million under its original budget of $72 million. SIP upgraded security at Y-12 by replacing existing alarm stations and access control systems with Argus, a

  20. Security Improvements Project Completed Ahead of Schedule, $20 Million

    National Nuclear Security Administration (NNSA)

    Under Budget | National Nuclear Security Administration | (NNSA) Security Improvements Project Completed Ahead of Schedule, $20 Million Under Budget April 07, 2014 The National Nuclear Security Administration's (NNSA) Security Improvements Project (SIP) was recently completed ahead of schedule and approximately $20 million under its original budget of $72 million. File 2014-04-08 SIP.docx NPO Press Releases September 2016 (1) August 2016 (1) May 2016 (1) February 2016 (1) January 2016 (1)

  1. PROJECT PROFILE: An Integrated Tool for Improving Grid Performance and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability of Combined Transmission-Distribution with High Solar Penetration (SuNLaMP) | Department of Energy PROJECT PROFILE: An Integrated Tool for Improving Grid Performance and Reliability of Combined Transmission-Distribution with High Solar Penetration (SuNLaMP) PROJECT PROFILE: An Integrated Tool for Improving Grid Performance and Reliability of Combined Transmission-Distribution with High Solar Penetration (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration

  2. Project Profile: Solar Power Tower Improvements with the Potential to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Costs | Department of Energy Concentrating Solar Power » Project Profile: Solar Power Tower Improvements with the Potential to Reduce Costs Project Profile: Solar Power Tower Improvements with the Potential to Reduce Costs Pratt Whitney Rocketdyne logo Pratt & Whitney Rocketdyne, under the Baseload CSP FOA, designed and tested several components of a molten salt solar power tower that is in line with SunShot Initiative cost targets. Approach Receiver test panel design

  3. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-07-21

    To provide Department of Energy (DOE) policy, set forth principles, and assign responsibilities for establishing, implementing, and maintaining programs of plans and actions to assure quality achievement in DOE programs. Cancels DOE O 5700.6, dated 1-16-1981. Canceled by DOE O 5700.6B, dated 9-23-1986.

  4. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-01-16

    To provide Department of Energy (DOE) policy, set forth principles, and assign responsibilities for establishing, implementing, and maintaining programs of plans and actions to assure quality achievement in DOE programs. Canceled by DOE O 5700.6A, dated 7-21-1981.

  5. Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandian's Receive Hydrogen and Fuel Cell Program Achievement Award Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials Science, News, News & Events, Research & Capabilities, Transportation Energy Sandian's Receive Hydrogen and Fuel Cell Program Achievement Award Two Sandians received the DOE Hydrogen and Fuel Cell Program achievement award. Pictured (from left to right)

  6. Infrastructure Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Assurance - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  7. Fermilab | Directorate | Assurance Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assurance Council The purpose of the Assurance Council is to identify and communicate risk and serve as a mechanism to provide reasonable assurance to the laboratory director that...

  8. Quality assurance plan for Final Waste Forms project in support of the development, demonstration, testing and evaluation efforts associated with the Oak Ridge reservation`s LDR/FFCA compliance

    SciTech Connect (OSTI)

    Gilliam, T.M.; Mattus, C.H.

    1994-07-01

    This quality assurance project plan specifies the data quality objectives for Phase I of the Final Waste Forms Project and defines specific measurements and processes required to achieve those objectives. Although the project is funded by the U.S. Department of Energy (DOE), the ultimate recipient of the results is the U.S. Environmental Protection Agency (EPA). Consequently, relevant quality assurance requirements from both organizations must be met. DOE emphasizes administrative structure to ensure quality; EPA`s primary focus is the reproducibility of the generated data. The ten criteria of DOE Order 5700.6C are addressed in sections of this report, while the format used is that prescribed by EPA for quality assurance project plans.

  9. Quality assurance program plan fuel supply shutdown

    SciTech Connect (OSTI)

    Metcalf, I.L.

    1998-09-21

    This Quality Assurance Program plan (QAPP) describes how the Fuel Supply Shutdown (FSS) project organization implements the quality assurance requirements of HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) and the B and W Hanford Company Quality Assurance Program Plan (QAPP), FSP-MP-004. The QAPP applies to facility structures, systems, and components and to activities (e.g., design, procurement, testing, operations, maintenance, etc.) that could affect structures, systems, and components. This QAPP also provides a roadmap of applicable Project Hanford Policies and Procedures (PHPP) which may be utilized by the FSS project organization to implement the requirements of this QAPP.

  10. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12

    To establish an effective management system [i.e., quality assurance programs(QAPs)] using the performance requirements of this Order, coupled with technical standards where appropriate. Change 1, dated 7/12/01, facilitates the Department's organizational transition necessitated by establishment of the NNSA. (Attachment 2 of this Order is canceled by DOE O 470.2B.) Cancels: DOE O 414.1

  11. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-29

    This Order ensures that the quality of DOE/NNSA products and services meets or exceeds the customer's expectations. This Order cancels DOE O 414.1A, Quality Assurance, dated 9-29-99, and Attachment 1, paragraph 8, and Attachment 2, paragraph 22, of DOE O 440.1A, Worker Protection Management for DOE Federal and Contractor Employees, dated 3-27-98. Cancels: DOE O 414.1A and DOE O 440.1A, parts as noted.

  12. PROJECT PROFILE: Frequency Response Assessment and Improvement of Three

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Major North American Interconnections due to High Penetrations of Photovoltaic Generation (SuNLaMP) | Department of Energy Frequency Response Assessment and Improvement of Three Major North American Interconnections due to High Penetrations of Photovoltaic Generation (SuNLaMP) PROJECT PROFILE: Frequency Response Assessment and Improvement of Three Major North American Interconnections due to High Penetrations of Photovoltaic Generation (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram:

  13. Workshop for Sites, Headquarters Focuses on Improvements to Contracts, Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. – About 100 EM employees from across the complex gathered for a meaningful exchange that focused on continuous improvements in planning and executing the cleanup program’s contracts and projects at an annual workshop this month.

  14. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  15. NMMSS Software Quality Assurance Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NMMSS Software Quality Assurance Plan NMMSS Software Quality Assurance Plan The Software Quality Assurance Plan (SQAP) for the Nuclear Materials Management and Safeguard System (NMMSS) software upgrade project (an actual DOE software development project) can be used as a template to facilitate the creation of the SQA plan for your particular project NMMSS Software Quality Assurance Plan (164.99 KB) More Documents & Publications Configuration Management Plan Software Configuration Management

  16. Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RECOVERY ACT CASE STUDY Recovery Act funds helped NewPage Wisconsin System Inc. install new high-efficiency paper machine cleaners at its mill in Wisconsin Rapids, Wisconsin. Photo courtesy of NewPage Wisconsin Systems Inc. Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Recovery Act Funding Supports Wisconsin Industries U.S. Department of Energy (DOE) funding of $14.4 million from the American Recovery and Reinvestment Act (ARRA) of 2009 supported nine industrial

  17. Waste Characterization Plan for the Hanford Site single-shell tanks. Appendix D, Quality Assurance Project Plan for characterization of single-shell tanks: Revision 3

    SciTech Connect (OSTI)

    Hill, J.G.; Winters, W.I.; Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States); Buck, J.W.; Chamberlain, P.J.; Hunter, V.L. [Pacific Northwest Lab., Richland, WA (United States)

    1991-09-01

    This section of the single-shell tank (SST) Waste Characterization Plan describes the quality control (QC) and quality assurance (QA) procedures and information used to support data that is collected in the characterization of SST wastes. The section addresses many of the same topics discussed in laboratory QA project plans (QAPjP) (WHC 1989, PNL 1989) and is responsive to the requirements of QA program plans (QAPP) (WHC 1990) associated with the characterization of the waste in the SSTs. The level of QC for the project depends on how the data is used. Data quality objectives (DQOs) are being developed to support decisions made using this data. It must be recognized that the decisions and information related to this part of the SST program deal with the materials contained within the tank only and not what may be in the environment/area surrounding the tanks. The information derived from this activity will be used to determine what risks may be incurred by the environment but are not used to define what actual constituents are contained within the soil surrounding the tanks. The phases defined within the DQOs on this Waste Characterization Plan follow the general guidance of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) yet are pertinent to analysis of the contents of the tanks and not the environment.

  18. Recommendations for improvements to program and project management

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    Oak Ridge National Laboratory (ORNL) has operated with a balanced matrix organization for over sixteen years. Much of the work at the Laboratory is accomplished with good customer satisfaction through programs, projects, and matrix management. During the past several years concerns about program and project management at ORNL have been expressed by both the Department of Energy and ORNL staff. In May 1993 the ORNL Division/Program/Office Directors Caucus chartered a ``fox team`` to identity and to recommend improvements to matrix management that would lead to resolution of these concerns. Nine experienced ORNL staff members served on this Matrix Management Upgrade Solutions Team (MMUST). The MMUST adopted a four-phase approach in which they first gathered information and then developed and proposed recommended actions. In the fourth phase the team was available to support implementation of the recommendations. They began work in June 1993, gathering and evaluating information in biweekly meetings for six months. Recommendations developed in October and November 1993 were presented to ORNL management in December. The MMUST issued three principal recommendations based on their evaluation of the information gathered. They are: Renew and enhance the ORNL management commitment to matrix management, program managers, and project managers; Implement actions to ensure career path parity between the program/project manager family of positions and the technical line manager family of positions across all directorates and divisions; and Clarify and document program/project manager roles, responsibilities, and authorities.

  19. Quality assurance program plan for Building 327

    SciTech Connect (OSTI)

    Tanke, J.M.

    1997-05-22

    This Quality Assurance Program Plan (QAPP) provides an overview of the quality assurance program for Building 327. The program applies to the facility safety structures, systems, and components and to activities that could affect safety structures, systems, and components. Adherence to the quality assurance program ensures the following: US Department of Energy missions and objectives are effectively accomplished; Products and services are safe, reliable, and meet or exceed the requirements and expectations of the user; Hazards to the public, to Hanford Site and facility workers, and to the environment are minimized. The format of this Quality Assurance Program Plan is structured to parallel that of 10 CFR 83 0.120, Quality Assurance Requirements. This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the 324 Building B-Cell Safety Cleanout Project (BCCP). This QAPP is responsive to the Westinghouse Hanford Company Quality Assurance Program and Implementation Plan, WHC-SP 113 1, for 10 CFR 830.120, Nuclear Safety Management, Quality Assurance Requirements; and DOE Order 5700.6C, Quality Assurance. This QAPP supersedes PNNL PNL-MA-70 QAP Quality Assurance Plan No. WTC-050 Rev. 2, issue date May 3, 1996.

  20. Track 9: Quality Assurance

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 9: Quality Assurance

  1. Recovery Act--Class 8 Truck Freight Efficiency Improvement Project

    SciTech Connect (OSTI)

    Trucks, Daimler

    2015-07-26

    Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of the technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.

  2. Yakima Habitat Improvement Project Master Plan, Technical Report 2003.

    SciTech Connect (OSTI)

    Golder Associates, Inc.

    2003-04-22

    The Yakima Urban Growth Area (UGA) is a developing and growing urban area in south-central Washington. Despite increased development, the Yakima River and its tributaries within the UGA continue to support threatened populations of summer steelhead and bull trout as well as a variety of non-listed salmonid species. In order to provide for the maintenance and recovery of these species, while successfully planning for the continued growth and development within the UGA, the City of Yakima has undertaken the Yakima Habitat Improvement Project. The overall goal of the project is to maintain, preserve, and restore functioning fish and wildlife habitat within and immediately surrounding the Yakima UGA over the long term. Acquisition and protection of the fish and wildlife habitat associated with key properties in the UGA will prevent future subdivision along riparian corridors, reduce further degradation or removal of riparian habitat, and maintain or enhance the long term condition of aquatic habitat. By placing these properties in long-term protection, the threat of development from continued growth in the urban area will be removed. To most effectively implement the multi-year habitat acquisition and protection effort, the City has developed this Master Plan. The Master Plan provides the structure and guidance for future habitat acquisition and restoration activities to be performed within the Yakima Urban Area. The development of this Master Plan also supports several Reasonable and Prudent Alternatives (RPAs) of the NOAA Fisheries 2000 Biological Opinion (BiOp), as well as the Water Investment Action Agenda for the Yakima Basin, local planning efforts, and the Columbia Basin Fish and Wildlife Authority's 2000 Fish and Wildlife Program. This Master Plan also provides the framework for coordination of the Yakima Habitat Improvement Project with other fish and wildlife habitat acquisition and protection activities currently being implemented in the area. As a result of

  3. Quality assurance plan for the Molten Salt Reactor Experiment Remediation Project at the Oak Ridge National Laboratory. Phase 1 -- Interim corrective measures and Phase 2 -- Purge and trap reactive gases

    SciTech Connect (OSTI)

    1995-11-01

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by the Molten Salt Reactor Experiment Remediation Project (MSRERP) personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description Y/QD-15 Rev. 2 (Energy Systems 1995f). This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRERP Phase 1--Interim Corrective Measures and Phase 2--Purge and Trap objectives. This QAP will be reviewed, revised, and approved as necessary for Phase 3 and Phase 4 activities. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan.

  4. Riding the Clean Energy Wave: New Projects Aim to Improve Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices April 16, 2014 - 1:56pm ...

  5. Highly Integrated Quality Assurance – An Empirical Case

    SciTech Connect (OSTI)

    Drake Kirkham; Amy Powell; Lucas Rich

    2011-02-01

    Highly Integrated Quality Assurance – An Empirical Case Drake Kirkham1, Amy Powell2, Lucas Rich3 1Quality Manager, Radioisotope Power Systems (RPS) Program, Idaho National Laboratory, P.O. Box 1625 M/S 6122, Idaho Falls, ID 83415-6122 2Quality Engineer, RPS Program, Idaho National Laboratory 3Quality Engineer, RPS Program, Idaho National Laboratory Contact: Voice: (208) 533-7550 Email: Drake.Kirkham@inl.gov Abstract. The Radioisotope Power Systems Program of the Idaho National Laboratory makes an empirical case for a highly integrated Quality Assurance function pertaining to the preparation, assembly, testing, storage and transportation of 238Pu fueled radioisotope thermoelectric generators. Case data represents multiple campaigns including the Pluto/New Horizons mission, the Mars Science Laboratory mission in progress, and other related projects. Traditional Quality Assurance models would attempt to reduce cost by minimizing the role of dedicated Quality Assurance personnel in favor of either functional tasking or peer-based implementations. Highly integrated Quality Assurance adds value by placing trained quality inspectors on the production floor side-by-side with nuclear facility operators to enhance team dynamics, reduce inspection wait time, and provide for immediate, independent feedback. Value is also added by maintaining dedicated Quality Engineers to provide for rapid identification and resolution of corrective action, enhanced and expedited supply chain interfaces, improved bonded storage capabilities, and technical resources for requirements management including data package development and Certificates of Inspection. A broad examination of cost-benefit indicates highly integrated Quality Assurance can reduce cost through the mitigation of risk and reducing administrative burden thereby allowing engineers to be engineers, nuclear operators to be nuclear operators, and the cross-functional team to operate more efficiently. Applicability of this case

  6. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192&D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for {approximately}4 years.

  7. Project Quality Assurance Plan for research and development services provided by Oak Ridge National Laboratory in support of the Westinghouse Materials Company of Ohio Operable Unit 1 Stabilization Development and Treatability Studies Program

    SciTech Connect (OSTI)

    Gilliam, T.M.

    1991-05-01

    This Project Quality Assurance Plan (PQAP) sets forth the quality assurance (QA) requirements that are applied to those elements of the Westinghouse Materials Company of Ohio (WMCO) Operable Unit 1 support at Oak Ridge National Laboratory (ORNL) project that involve research and development (R D) performed at ORNL. This is in compliance with the applicable criteria of 10 CFR Part 50, Appendix B, ANSI/ASME NQA-1, as specified by Department of Energy (DOE) Oak Ridge Operations (ORO) Order 5700.6B. For this application, NQA-1 is the core QA Program requirements document. QA policy, normally found in the requirements document, is contained herein. The requirements of this PQAP apply to project activities that affect the quality and reliability/credibility of research, development, and investigative data and documentation. These activities include the functions of attaining quality objectives and assuring that an appropriate QA program scope is established. The scope of activities affecting quality includes organization; personnel training and qualifications; design control; procurement; material handling and storage; operating procedures; testing, surveillance, and auditing; R D investigative activities and documentation; deficiencies; corrective actions; and QA record keeping. 12 figs.

  8. Quality Assurance for Critical Decision Reviews RM

    Broader source: Energy.gov [DOE]

    The purpose of this Quality Assurance for Capital Project Critical Decision Review Module (QA RM) is to identify, integrate, and clarify the QA performance objectives, criteria, and guidance needed...

  9. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  10. Understanding DOE Quality Assurance Requirements and ASME NQA-1 For

    Office of Environmental Management (EM)

    Application in DOE Nuclear Projects Training Agenda | Department of Energy Agenda Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear Projects Training Agenda Agenda for the Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear Projects Training Workshop held on May 14, 2015. Agenda (36.02 KB) More Documents & Publications Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in

  11. Understanding DOE Quality Assurance Requirements and ASME NQA-1 For

    Office of Environmental Management (EM)

    Application in DOE Nuclear Projects Training Materials | Department of Energy Materials Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear Projects Training Materials Training Materials for the Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear Projects Training Workshop held on May 14, 2015. Training Materials (4.27 MB) More Documents & Publications Understanding DOE Quality Assurance Requirements

  12. Understanding DOE Quality Assurance Requirements and ASME NQA...

    Broader source: Energy.gov (indexed) [DOE]

    Materials for the Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear ... DOE Nuclear Projects, A Management Overview and ...

  13. Review of the Sandia Site Office Quality Assurance Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    ... Plan, Rev. 10, 11212 * PLA 10-09, Software Quality Assurance Project Plan, Rev. 00, 1912 * Sandia Site Office Crosscutting Procedure 1304.02, Guidance and Expectations ...

  14. Annual Progress Report Fish Research Project Oregon : Project title, Evaluation of Habitat Improvements -- John Day River.

    SciTech Connect (OSTI)

    Olsen, Erik A.

    1984-01-01

    This report summarizes data collected in 1983 to evaluate habitat improvements in Deer, Camp, and Clear creeks, tributaries of the John Day River. The studies are designed to evaluate changes in abundance of spring chinook and summer steelhead due to habitat improvement projects and to contrast fishery benefits with costs of construction and maintenance of each project. Structure types being evaluated are: (1) log weirs, rock weirs, log deflectors, and in stream boulders in Deer Creek; (2) log weirs in Camp Creek; and (3) log weir-boulder combinations and introduced spawning gravel in Clear Creek. Abundance of juvenile steelhead ranged from 16% to 119% higher in the improved (treatment) area than in the unimproved (control) area of Deer Creek. However, abundance of steelhead in Camp Creek was not significantly different between treatment and control areas. Chinook and steelhead abundance in Clear Creek was 50% and 25% lower, respectively in 1983, than the mean abundance estimated in three previous years. The age structure of steelhead was similar between treatment and control areas in Deer and Clear creeks. The treatment area in Camp Creek, however, had a higher percentage of age 2 and older steelhead than the control. Steelhead redd counts in Camp Creek were 36% lower in 1983 than the previous five year average. Steelhead redd counts in Deer Creek were not made in 1983 because of high streamflows. Chinook redds counted in Clear Creek were 64% lower than the five year average. Surface area, volume, cover, and spawning gravel were the same or higher than the corresponding control in each stream except in Deer Creek where there was less available cover and spawning gravel in sections with rock weirs and in those with log deflectors, respectively. Pool:riffle ratios ranged from 57:43 in sections in upper Clear Creek with log weirs to 9:91 in sections in Deer Creek with rock weirs. Smolt production following habitat improvements is estimated for each stream

  15. FY 2014 Projects for Improving the Design, Construction, and...

    Energy Savers [EERE]

    Institute (Des Plaines, Ill.) - Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems. The project team will further develop an...

  16. SHINES SunShot Project to Improve Energy Storage

    ScienceCinema (OSTI)

    Sekaric, Lidija

    2016-06-29

    Our SunShot Initiative?s new solar storage projects will supply solar energy at any time of day while helping to modernize the electrical grid.

  17. EM Employees Engage in Interactive Workshop on Contract, Project Management Improvements

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. - EM employees from across the DOE complex met at the Contract and Project Management Workshop this past month to focus on continuous improvements in planning and execution of contracts and projects.

  18. SAPHIRE 8 Software Quality Assurance Oversight

    SciTech Connect (OSTI)

    Kurt G. Vedros

    2011-09-01

    The software quality assurance oversight consists of updating and maintaining revision control of the SAPHIRE 8 quality assurance program documentation and of monitoring revision control of the SAPHIRE 8 source code. This report summarizes the oversight efforts through description of the revision control system (RCS) setup, operation and contents. Documents maintained under revision control include the Acceptance Test Plan (ATP), Configuration Management Plan, Quality Assurance Plan, Software Project Plan, Requirements Traceability Matrix (RTM), System Test Plan, SDP Interface Training Manual, and the SAPHIRE 8, 'New Features and Capabilities Overview'.

  19. FY 2014 Projects for Improving the Design, Construction, and Operation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy Systems | Department of Energy Projects for Improving the Design, Construction, and Operation of Fossil Energy Systems FY 2014 Projects for Improving the Design, Construction, and Operation of Fossil Energy Systems In FY 2014, the U.S. Department of Energy selected 38 new projects from across the nation under the Crosscutting Research Program that target innovative concepts and technologies to improve electric generating units and industrial plants that use fossil fuels. The

  20. EM Focuses on Contract, Project Management Improvements in Three-Day Workshop

    Broader source: Energy.gov [DOE]

    ORLANDO, Fla. – EM held a three-day workshop in Orlando this month focusing on strategies to improve contract and project management across the EM complex.

  1. Quality Assurance Rule

    Broader source: Energy.gov [DOE]

    This rule establishes quality assurance requirements for contractors conducting activities, including providing items or services which affect, or may affect, nuclear safety of DOE nuclear facilities.

  2. Quality Assurance Source Requirements Traceability Database

    SciTech Connect (OSTI)

    MURTHY, R., NAYDENOVA, A., DEKLEVER, R., BOONE, A.

    2006-01-30

    At the Yucca Mountain Project the Project Requirements Processing System assists in the management of relationships between regulatory and national/industry standards source criteria, and Quality Assurance Requirements and Description document (DOE/R W-0333P) requirements to create compliance matrices representing respective relationships. The matrices are submitted to the U.S. Nuclear Regulatory Commission to assist in the commission's review, interpretation, and concurrence with the Yucca Mountain Project QA program document. The tool is highly customized to meet the needs of the Office of Civilian Radioactive Waste Management Office of Quality Assurance.

  3. BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks

    Broader source: Energy.gov [DOE]

    Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project...

  4. Security Improvements Project Completed Ahead of Schedule, $20...

    National Nuclear Security Administration (NNSA)

    2010 (1) July 2010 (1) June 2010 (5) April 2010 (2) January 2010 (1) December 2009 (1) 1 of 3 Related Topics apm project management llnl defense nuclear security Y-12 npo...

  5. SOPP-43, EM-23 Quality Assurance Oversight | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Program Management » Quality Assurance » SOPP-43, EM-23 Quality Assurance Oversight SOPP-43, EM-23 Quality Assurance Oversight Procedure to describe the process that will be utilized by the EM Office of Standards and Quality Assurance to guide its activities related to oversight and audit of the EM Field/site, project, and vendor QA programs. SOPP-43, EM-23 Quality Assurance Oversight (408.14 KB) More Documents & Publications Protocol for EM Review/Field Self-Assessment of

  6. EERE Success Story-BETO Project Improves Production of Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As part of this work, Genomatica developed a "sugar specification," which provides ... scale from conventional sources such as sugar beets or cane sugar, but the improved ...

  7. NAPA Collaboration Project: Worker Dialogue to Improve Worker...

    Energy Savers [EERE]

    will host A Worker Dialogue: Improving Health, Safety and Security at DOE. This web-based "conversation" will engage the DOE workforce in an open, online dialogue to ...

  8. Energy Department Announces Distributed Wind Competitiveness Improvement Project Awards

    Broader source: Energy.gov [DOE]

    The Energy Department and the Department’s National Renewable Energy Laboratory today announced funding for projects led by Pika Energy, Northern Power Systems, Endurance Wind Power, and Urban Green Energy that will help drive down the cost of small and medium-sized wind energy systems.

  9. Advanced Membrane Separations to Improve Efficiency of Thermochemical Conversion Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Project Peer Review Advanced Membrane Separations to Improve Efficiency of Thermochemical Conversion March 24, 2015 Technology Area Review Oak Ridge National Laboratory (ORNL) National Renewable Energy Laboratory (NREL) Project Team: Michael Hu Brian Bischoff Chaiwat Engtrakul Mark Davis High Performance Architectured Surface-Selective (HiPAS) 2 Presentation name Goal Statement This project seeks to develop & employ a new class of HiPAS membranes, to improve the efficiency of bio-oil

  10. EERE Success Story-BETO Project Improves Production of Renewable Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Cellulosic Feedstocks | Department of Energy BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks EERE Success Story-BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 20, 2015 - 11:18am Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's

  11. EA-1075: Proposed Casey's Pond Improvement Project, Batavia, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposed system upgrade to meet improved operational criteria on the current Industrial Cooling Water distribution system used in the fixed target...

  12. NREL Announces Two New Competitiveness Improvement Project Awards...

    Broader source: Energy.gov (indexed) [DOE]

    A photo of a wind turbine from the point of view of looking upward at the blades and ... up to 1,000 square meters improve their turbine design and manufacturing processes to ...

  13. Battery Manufacturing Processes Improved by Johnson Controls Project

    Broader source: Energy.gov [DOE]

    Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the governments EV Everywhere goal of producing by 2022 plug...

  14. FY 2014 Projects for Improving the Design, Construction, and...

    Office of Environmental Management (EM)

    ... improve system efficiency in a coal-fired power plant. ... at NETL model pulverized coal combustion, natural gas ... Utilizing Low-Grade Heat and CO2 at Power Plants for Water Treatment. ...

  15. Hopper:Improving I/O performance to GSCRATCH and PROJECT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSCRATCH/PROJECT Performance Tuning on Hopper Hopper:Improving I/O performance to GSCRATCH and PROJECT What are GSCRATCH/PROJECT? GSCRATCH and PROJECT are two file systems at NERSC that one can access on most computational systems. They are both based on the IBM GPFS file system and have multiple racks of dedicated servers and disk arrays. How are GSCRATCH/PROJECT connected to Hopper? As shown in the figure below, GSCRATCH and PROJECT are each connected to several Private NSD Servers (PNSD; for

  16. Interstate Grid Electrification Improvement Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This presentation by John Vogel of Plug Power was given at the New Fuel Cell Projects Meeting in February 2007. new_fc_vogel_plugpower.pdf (1.72 MB) More Documents & Publications PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Open Discussion of Freeze Related Issues

    Dr. Regis A. Matzie, Chair NEAC Meeting December 10, 2014 1 Externalities of Nuclear Power Important

  17. Power Assure | Open Energy Information

    Open Energy Info (EERE)

    Assure Jump to: navigation, search Name: Power Assure Place: Santa Clara, California Zip: 95051 Sector: Efficiency Product: California-based, service start-up focused on energy...

  18. Section 22: Quality Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Assurance (40 CFR § 194.22) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Quality Assurance (40 CFR § 194.22) Table of Contents 22.0 Quality Assurance (40 CFR § 194.22) 22.1 Requirements 22.2 Background 22.3 1998 Certification Decision 22.4 Changes in the CRA-2004 22.5 EPA's Evaluation of Compliance for the 2004 Recertification 22.5.1 NQA Standards 22.5.2 Audits of QA Plan

  19. Connecticut Weatherization Project Improves Lives, Receives National Recognition

    Broader source: Energy.gov [DOE]

    Several energy-efficient improvements made to a senior care center in New Milford, Connecticut are helping residents live healthier and more comfortable lifestyles. The upgrade to the facility also captured a residential energy efficiency award and is an example for other states.

  20. Recommendations to Improve EVM and Project Management Integration in the

    Energy Savers [EERE]

    Recent Publications Recent Publications The following list of recent publications from the Advanced Manufacturing Office (AMO) reflects the broad scope of AMO's activities. The publications cover both the ongoing support for innovation through research and development of new products and processes and the technical assistance to improve energy efficiency in manufacturing. May 13, 2016 R&D For Dispatchable Distributed Energy Resources At Manufacturing Sites - Workshop Summary Report, April

  1. Quality Assurance Corporate Board

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management (EM) Quality Assurance Corporate Board is an executive board that includes both senior U.S. Department of Energy (DOE) and contractor representatives who are...

  2. Software Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-02

    DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01. To define requirements and responsibilities for software quality assurance (SQA) within the Department of Energy (DOE). Does not cancel other directives.

  3. Software Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-02

    To define requirements and responsibilities for software quality assurance (SQA) within the Department of Energy (DOE). DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01.

  4. Quality Assurance Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-16

    This Guide provides information on principles, requirements, and practices used to establish and implement an effective Quality Assurance Program. Admin Chg 2, dated 5-8-13, Admin Chg 1.

  5. IT Quality Assurance

    Broader source: Energy.gov [DOE]

    Quality, error-free work holds down costs. Avoiding mistakes and rework saves valuable time, effort, and materials. Quality assurance provides the mechanisms for paying close attention to details...

  6. SHINES SunShot Project to Improve Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SHINES SunShot Project to Improve Energy Storage SHINES SunShot Project to Improve Energy Storage Addthis Description Below is the text version for the SHINES SunShot Project to Improve Energy Storage video. Text appears on the screen: The SunShot Initiative just launched the Sustainable and Holistic Integration of Energy Storage and Solar PV Program. We call it... SHINES. The video cuts to a shot of Lidijia Sekaric, SunShot Acting Director. SHINES is the first program in our renewable portfolio

  7. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at a Large Food Processing Plant | Department of Energy J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant This case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho. J.R. Simplot: Burner Upgrade Project Improves

  8. DOE RFP Seeks Projects for Improving Environmental Performance of Unconventional Natural Gas Technologies

    Broader source: Energy.gov [DOE]

    Research projects to study ways for improving the environmental performance of unconventional gas development are being sought by the National Energy Technology Laboratory, a facility of the U.S. Department of Energy’s Office of Fossil Energy.

  9. Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain

    Office of Energy Efficiency and Renewable Energy (EERE)

    On April 4, 2014 the U.S. Department of Energy announced a $2.5 million funding opportunity entitled “Wind Forecasting Improvement Project in Complex Terrain.” By researching the physical processes...

  10. AVLIS Production Plant Preliminary Quality Assurance Plan and Assessment

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    This preliminary Quality Assurance Plan and Assessment establishes the Quality Assurance requirements for the AVLIS Production Plant Project. The Quality Assurance Plan defines the management approach, organization, interfaces, and controls that will be used in order to provide adequate confidence that the AVLIS Production Plant design, procurement, construction, fabrication, installation, start-up, and operation are accomplished within established goals and objectives. The Quality Assurance Program defined in this document includes a system for assessing those elements of the project whose failure would have a significant impact on safety, environment, schedule, cost, or overall plant objectives. As elements of the project are assessed, classifications are provided to establish and assure that special actions are defined which will eliminate or reduce the probability of occurrence or control the consequences of failure. 8 figures, 18 tables.

  11. Compressed Air System Retrofitting Project Improves Productivity at a Foundry (Cast Masters, Bowling Green, OH)

    SciTech Connect (OSTI)

    2002-06-01

    This case study highlights International Truck and Engine Corporation's optimization project on the compressed air system that serves its foundry, Indianapolis Casting Corporation. Due to the project's implementation, the system's efficiency was greatly improved, allowing the foundry to operate with less compressor capacity, which resulted in reduced energy consumption, significant maintenance savings, and more reliable production.

  12. New Project To Improve Characterization of U.S. Gas Hydrate Resources |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Project To Improve Characterization of U.S. Gas Hydrate Resources New Project To Improve Characterization of U.S. Gas Hydrate Resources October 22, 2014 - 10:02am Addthis WASHINGTON, D.C. -The U.S. Department of Energy (DOE) today announced the selection of a multi-year, field-based research project designed to gain further insight into the nature, formation, occurrence and physical properties of methane hydrate-bearing sediments for the purpose of methane hydrate

  13. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    SciTech Connect (OSTI)

    Palmer, A L; Bradley, D A; Nisbet, A

    2014-06-01

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy. Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film

  14. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations

    Broader source: Energy.gov [DOE]

    The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind energy forecasts, and to demonstrate the economic value of these improvements.

  15. Quality Assurance Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-16

    This Guide provides information on principles, requirements, and practices used to establish and implement an effective Quality Assurance Program. Cancels DOE G 414.1-2A, DOE G 414.1-3 and DOE G 414.1-5. Admin Chg 1, dated 9-27-11. Admin Chg 2, dated 5-8-13.

  16. Quality Assurance Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-16

    The directive provides guidance for DOE elements and contractors in developing and implementing an effective Quality Assurance Program. Cancels DOE G 414.1-2A, DOE G 414.1-3 and DOE G 414.1-5. Superseded by Admin Chg 1, 9-27-11.

  17. The Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanford’s 300 Area Uranium Plume Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-31

    The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused on multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.

  18. Secretarial Memorandum on Integrating Project Management with NEPA Compliance to Improve Decision Making

    Broader source: Energy.gov [DOE]

    Declaring that “Compliance with [NEPA] is a pre-requisite to successful implementation of DOE programs and projects,” the Secretary has signed a memorandum on "Improved Decision Making through the Integration of Program and Project Management with National Environmental Policy Act Compliance." The memo urges better use of existing tools and guidance, and highlights principles for strengthening NEPA compliance – for example, through Field and Headquarters teamwork, realistic schedules, and performance accountability.

  19. 222-S Laboratory Quality Assurance Plan. Revision 1

    SciTech Connect (OSTI)

    Meznarich, H.K.

    1995-07-31

    This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A quality assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document.

  20. Quality assurance and data management

    SciTech Connect (OSTI)

    Lockrem, L.L.

    1998-01-12

    This report contains graphs and tables relating to quality assurance and data management for environmental quality at Hanford Reservation.

  1. Light oil yield improvement project at Granite City Division Coke/By-Product Plant

    SciTech Connect (OSTI)

    Holloran, R.A.

    1995-12-01

    Light oil removal from coke oven gas is a process that has long been proven and utilized throughout many North American Coke/By-Products Plants. The procedures, processes, and equipment requirements to maximize light oil recovery at the Granite City By-Products Plant will be discussed. The Light Oil Yield Improvement Project initially began in July, 1993 and was well into the final phase by February, 1994. Problem solving techniques, along with utilizing proven theoretical recovery standards were applied in this project. Process equipment improvements and implementation of Operator/Maintenance Standard Practices resulted in an average yield increase of 0.4 Gals./NTDC by the end of 1993.

  2. Emergency Readiness Assurance Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-02-27

    To establish the requirements of the Emergency Readiness Assurance Program with a goal of assurting that the Department of Energy (DOE) Emergency Management System (EMS) is ready to respond promptly, efficiently, and effectively to any emergency involving DOE facilities or requiring DOE assistance. Cancels DOE O 5500.10 dated 4-30-91. Chg 1 dated 2-27-92. Change 1 canceled by DOE O 151.1 of 9-25-95.

  3. Specified assurance level sampling procedure

    SciTech Connect (OSTI)

    Willner, O.

    1980-11-01

    In the nuclear industry design specifications for certain quality characteristics require that the final product be inspected by a sampling plan which can demonstrate product conformance to stated assurance levels. The Specified Assurance Level (SAL) Sampling Procedure has been developed to permit the direct selection of attribute sampling plans which can meet commonly used assurance levels. The SAL procedure contains sampling plans which yield the minimum sample size at stated assurance levels. The SAL procedure also provides sampling plans with acceptance numbers ranging from 0 to 10, thus, making available to the user a wide choice of plans all designed to comply with a stated assurance level.

  4. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    SciTech Connect (OSTI)

    Lower, Mark D; Christopher, Timothy W; Oland, C Barry

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  5. Quality Assurance for Residential Retrofit Programs

    Broader source: Energy.gov [DOE]

    This webinar covered quality assurance and how to assure that your investment achieves a desired result of saving energy.

  6. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  7. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    SciTech Connect (OSTI)

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  8. Report: Removal of EM Projects from the GAO High Risk List: Strategies for Improving the Effectiveness of Project and Contract Management in the Office of Environmental Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy REPORT TO THE ENVIRONMENTAL MANAGEMENT ADVISORY BOARD Removal of EM Projects from the GAO High Risk List: Strategies for Improving the Effectiveness of Project and Contract Management in the Office of Environmental Management Submitted by the EMAB Acquisition and Project Management Subcommittee December 5, 2011 Introduction: This report provides a comprehensive summary of the work performed by the Acquisition and Project Management Subcommittee (APMS) of the

  9. Data Quality Assurance Program Plan for NRC Division of Risk Analysis Programs at the INL

    SciTech Connect (OSTI)

    Sattison, Martin B.; Wierman, Thomas E.; Vedros, Kurt G.; Germain, Shawn W. St.; Eide, Steven A.; Sant, Robert L.

    2009-07-01

    The Division of Risk Analysis (DRA), Office of Nuclear Regulatory Research (RES), must ensure that the quality of the data that feed into its programs follow Office of Management and Budget (OMB) and U.S. Nuclear Regulatory Commission (NRC) guidelines and possibly other standards and guidelines used in nuclear power plant risk analyses. This report documents the steps taken in DRAs Data Quality Improvement project (Job Control Number N6145) to develop a Data Quality Assurance Program Plan. These steps were 1. Conduct a review of data quality requirements 2. Review current data programs, products, and data quality control activities 3. Review the Institute of Nuclear Power Operation (INPO) Equipment Performance and Information Exchange (EPIX) data quality programs and characterize the EPIX data quality and uncertainty 4. Compare these programs, products, and activities against the requirements 5. Develop a program plan that provides assurance that data quality is being maintained. It is expected that the Data Quality Assurance Program Plan will be routinely implemented in all aspects of future data collection and processing efforts and that specific portions will be executed annually to provide assurance that data quality is being maintained.

  10. Safety Improves Dramatically In Fluor Hanford Soil and Groundwater Remediation Project

    SciTech Connect (OSTI)

    Foster, A.L.; Gerber, M.S.; VonBargen, B.H.

    2008-07-01

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walk-downs, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site. (authors)