Powered by Deep Web Technologies
Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

2

Solar Thermal Conversion  

DOE Green Energy (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

3

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

4

Thermal Conversion Process (TCP) Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

5

Ocean Thermal Energy Conversion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Ocean Thermal Energy Conversion August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in...

6

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Conversion A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when...

7

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

DOE-EPA Working Group on Ocean TherUial Energy Conversion,Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversion

Sands, M.Dale

2013-01-01T23:59:59.000Z

8

Appendix B Metric and Thermal Conversion Tables  

U.S. Energy Information Administration (EIA)

2011 U.S. Energy Information Administration | Natural Gas Annual 193 Appendix B Metric and Thermal Conversion Tables

9

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENTOcean Thermal Energy Conversion Draft Programmatic Environ-Ocean Thermal Energy Conversion. U.S. DOE Assistant Secre-

Sands, M.Dale

2013-01-01T23:59:59.000Z

10

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Thermal Energy Conversion Conference. Ocean Systems Branch,Thermal Energy Conversion Conference. Ocean Systems Branch,thermal energy conversion, June 18, 1979. Ocean Systems

Sands, M. D.

2011-01-01T23:59:59.000Z

11

NREL-Ocean Energy Thermal Conversion | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Thermal Conversion Jump to: navigation, search Logo: NREL-Ocean Energy Thermal Conversion Name NREL-Ocean Energy Thermal Conversion AgencyCompany Organization...

12

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

13

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

14

Thermal Conversion Factor Source Documentation  

U.S. Energy Information Administration (EIA)

national annual quantity-weighted average conversion factors for conventional, reformulated, and oxygenated motor gasolines (see Table A3). The factor ...

15

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Nanoporous Thermal-to-Electrical Energy Conversion System (hand, the indirect energy conversion systems tend to beIn a direct energy conversion system, heat can be converted

Lim, Hyuck

2011-01-01T23:59:59.000Z

16

Assessment of ocean thermal energy conversion  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

17

Biomass thermal conversion research at SERI  

DOE Green Energy (OSTI)

SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

1980-09-01T23:59:59.000Z

18

Thermal Conversion of Methane to Acetylene  

DOE Green Energy (OSTI)

This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

2000-01-01T23:59:59.000Z

19

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary1978. 'Open cycle thermal energy converS1on. A preliminary

Sands, M. D.

2011-01-01T23:59:59.000Z

20

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

energy conversion systems ..on thermal energy conversion systems As energy demandsefficient energy conversion in power systems," in Thermal

Ho, Tony

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for the commercialization of ocean thermal energy conversionR. E. Hathaway. Open cycle ocean thermal energy conversion.of sewage effluent in an ocean current. Inst. of Tech. ,

Sands, M. D.

2011-01-01T23:59:59.000Z

22

Ocean Thermal Energy Conversion: An overview  

DOE Green Energy (OSTI)

Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

Not Available

1989-11-01T23:59:59.000Z

23

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

cycle ocean thermal difference power plant. M.S. Thesis,ocean thermal energy conversion power plants. M.S. Thesis.comments on the thermal effects of power plants on fish eggs

Sands, M. D.

2011-01-01T23:59:59.000Z

24

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large, M.Sc. Candidate University of Hawaii at Manoa Department of Oceanography Hawaii Natural Energy

Hawai'i at Manoa, University of

25

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

26

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

27

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network (OSTI)

Thermal Energy Conversion (OTEC) Program PreoperationalOcean Thermal Energy Conversion (OTEC), U.S. Department ofOregon State University. Conversion Power Plants. Corvallis,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

28

Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Water Heating Maximum Rebate None Program Info State Ohio Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Ohio Department of Taxation Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed, constructed, or installed after December 31, 1974. Qualifying energy conversion facilities are those that are used for the

29

Sustainable Energy Science and Engineering Center Solar Thermal Conversion  

E-Print Network (OSTI)

Sustainable Energy Science and Engineering Center Solar Thermal Conversion Major Functions: · Solar #12;Sustainable Energy Science and Engineering Center Solar Thermal Conversion Solar energy a surface is heated by a certain flux of incident solar energy is determined by the balance of incident

Krothapalli, Anjaneyulu

30

Open cycle ocean thermal energy conversion system  

DOE Patents (OSTI)

An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

31

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) sites to identify thethermal energy conversion (OTEC) program; preoperationalOCEAN THERHAL _ENERGY _CONVERSION(OTEC) --:siTE IN PUERTO

Ryan, Constance J.

2013-01-01T23:59:59.000Z

32

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

a working molecular solar energy conversion system where noEnergy Storage and Conversion System ..74Thermal (MOST) Energy Storage and Conversion System In this

Coso, Dusan

2013-01-01T23:59:59.000Z

33

Review and summary of Solar Thermal Conversion Program planning assistance  

DOE Green Energy (OSTI)

The Solar Thermal Conversion Program comprises a major part of the national solar energy program which must be continuously reviewed and modified where necessary. Modifications are typically required to reflect technical achievements and uncertainties which arise from within the program or from other technical programs, changes in budgets available for supporting the program as well as internal program funding priorities, changing goals such as through acceleration or stretch-out of the program schedule, significant organizational changes involving responsible governmental agencies, the introduction of new project management support contractors, and required budget or schedule changes occurring within individual projects that make up the Solar Thermal Conversion Program. The Aerospace Corporation has provided data to assist in planning, review, coordination, and documentation of the overall Solar Thermal Conversion Program. The Solar Thermal Conversion Program Plan is described in detail. Sections 2.0 through 5.0 cover the discussion and detail planning covering the objectives, justification, basic and alternative plans, budgets, and schedules for the Solar Thermal sub-unit portion of the Solar Electric Applications effort. Appendices B1, B2, and B3 include the March 21, March 28, and April 5, 1975, Program Plan submissions of the complete Solar Electric Applications effort. In Appendix B the Solar Thermal, Solar Photovoltaic, Wind Energy, and Ocean Thermal sub-unit texts have been condensed and formatted for integration in the overall ERDA budget package. (WHK)

Not Available

1975-06-01T23:59:59.000Z

34

Portfolio Manager Technical Reference: Thermal Conversion Factors | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conversion Factors Thermal Conversion Factors Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

35

Assessment of Methods to Manipulate Thermal Emission and Evaluate the Quality of Thermal Radiation for Direct Energy Conversion.  

E-Print Network (OSTI)

??ABSTRACT Control of spectral thermal emission from surfaces may be desirable in some energy related applications, such as nano-scale antenna energy conversion and thermophotovoltaic conversion. (more)

Wijewardane, Samantha

2012-01-01T23:59:59.000Z

36

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

in thermal energy conversion efficiency over present solarsolar thermal- photovoltaic co-generation scheme could have potentially very high solar-to-electric efficiency.solar-to-electric conversion efficiencies are attained and no thermal

Ho, Tony

2012-01-01T23:59:59.000Z

37

Thermal to electricity conversion using thermal magnetic properties  

DOE Patents (OSTI)

A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

2010-04-27T23:59:59.000Z

38

Sustainable Energy Science and Engineering Center Solar Thermal Conversion  

E-Print Network (OSTI)

Sustainable Energy Science and Engineering Center Solar Thermal Conversion Major Functions: · Solar Center Collection The temperature to which a surface is heated by a certain flux of incident solar energy - 1914 Between 1880 and 1910, there were 48 articles on solar energy as a world energy source

Krothapalli, Anjaneyulu

39

Thermal-Electric Conversion Efficiency of the Dish/AMTEC Solar Thermal Power System in Wind Condition  

Science Conference Proceedings (OSTI)

The dish/AMTEC solar thermal power system is a newly proposed solar energy utilization system that enables the direct thermal-electric conversion. The performance of the solar dish/AMTEC system in wind condition has been theoretically evaluated in addition ... Keywords: dish/AMTEC solar thermal power system, efficiency, thermal-electric conversion, wind condition

Lan Xiao; Shuang-Ying Wu; You-Rong Li

2012-07-01T23:59:59.000Z

40

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORTOcean Thermal Energy Conversion (OTEC) sites in the Gulf ofOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,

Commins, M.L.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORT FROM 0. S. S. RESEARCHER IN GULF OF MEXICO, JULY 12-23, 1977.  

E-Print Network (OSTI)

01 OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORTOcean Thermal Energy Conversion (OTEC) Sites: Puerto Rico,Ocean Thermal Energy Conversion plant were in- itiated in

Quinby-Hunt, M.S.

2008-01-01T23:59:59.000Z

42

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYto potential Ocean Thermal Energy Conversion (OTEC) sites inThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:

Commins, M.L.

2010-01-01T23:59:59.000Z

43

Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles  

DOE Green Energy (OSTI)

This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

Green, H.J. (Solar Energy Research Inst., Golden, CO (USA)); Guenther, P.R. (Scripps Institution of Oceanography, La Jolla, CA (USA))

1990-09-01T23:59:59.000Z

44

Thermal conversion of oil shale into recoverable hydrocarbons  

SciTech Connect

The production of hydrocarbons is accomplished by pyrolysis of oil shale with controlled removal of the resulting layer of spent oil-shale residue. A procedure is described for the in situ thermal conversion of oil shale wherein fluidized abrasive particles are employed to foster improved hydrocarbon production, in amount and kind, by a controlled partial removal of the layer of spent oil shale which results from application of flowing fluids to heat exposed surfaces of the oil shale to release hydrocarbons. (5 claims)

Slusser, M.L.; Bramhall, W.E.

1969-09-23T23:59:59.000Z

45

Thermal catalytic conversion of the used isobutyl isoprene rubber into valuable hydrocarbons  

E-Print Network (OSTI)

continuous ?ow reactor for thermal degradation of polymers.Qian J. Studies of the thermal degradation of waste rubber.10.1007/s10973-009-0577-3 Thermal catalytic conversion of

Rasul Jan, M.; Jabeen, Farah; Shah, Jasmin; Mabood, Fazal

2010-01-01T23:59:59.000Z

46

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Thermally-Chargeable Supercapacitor Fluctuating Low-GradeThermally-Chargeable Supercapacitor for Fluctuating Low-Thermally-Chargeable Supercapacitor for Fluctuating Low-

Lim, Hyuck

2011-01-01T23:59:59.000Z

47

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

the portion of thermal energy that can be converted toof high-performance thermal energy harvesting systems, butreferred to as the thermal energy from low- temperature heat

Lim, Hyuck

2011-01-01T23:59:59.000Z

48

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense New Ventures #12;What is OTEC? OTEC B fiOTEC Benefits: Large Renewable Energy Source 3-5 Terawatts Water Temperature Delta 2 A New Clean Renewable 24/7 Energy Source #12;Ocean Thermal Energy Conversion

49

Development of Detailed Kinetic Models for the Thermal Conversion of Biomass via First  

E-Print Network (OSTI)

Chapter 10 Development of Detailed Kinetic Models for the Thermal Conversion of Biomass via First. In this contribution we discuss four selected example systems related to the thermal conversion of biomass reaction steps, for the biomass gasification process would be of tremendous value to engineers who try

Dean, Anthony M.

50

Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants  

DOE Green Energy (OSTI)

This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

1981-02-01T23:59:59.000Z

51

Environmental programs for ocean thermal energy conversion (OTEC)  

Science Conference Proceedings (OSTI)

The environmental research effort in support of the US Department of Energy's Ocean Thermal Energy Conversion (OTEC) program has the goal of providing documented information on the effect of proposed operations on the ocean and the effect of oceanic conditions on the plant. The associated environment program consists of archival studies in potential areas serial oceanographic cruises to sites or regions of interest, studies from various fixed platforms at sites, and compilation of such information for appropriate legal compliance and permit requirements and for use in progressive design of OTEC plants. Site/regions investigated are south of Mobile and west of Tampa, Gulf of Mexico; Punta Tuna, Puerto Rico; St. Croix, Virgin Islands; Kahe Point, Oahu and Keahole Point, Hawaii, Hawaiian Islands; and off the Brazilian south Equatorial Coast. Four classes of environmental concerns identified are: redistribution of oceanic properties (ocean water mixing, impingement/entrainment etc.); chemical pollution (biocides, working fluid leaks, etc.); structural effects (artificial reef, aggregation, nesting/migration, etc.); socio-legal-economic (worker safety, enviromaritime law, etc.).

Wilde, P.

1981-07-01T23:59:59.000Z

52

Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices  

SciTech Connect

The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

Authors, Various

1980-01-01T23:59:59.000Z

53

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

SAN DIEGO Recycling of Wasted Energy : Thermal to ElectricalRecycling of Wasted Energy : Thermal to Electrical Energyenergy, geothermal energy, wasted heat from a nuclear

Lim, Hyuck

2011-01-01T23:59:59.000Z

54

Recycling of wasted energy : thermal to electrical energy conversion.  

E-Print Network (OSTI)

??Harvesting useful electric energy from ambient thermal gradients and/or temperature fluctuations is immensely important. For many years, a number of direct and indirect thermal-to-electrical energy (more)

Lim, Hyuck

2011-01-01T23:59:59.000Z

55

Energy conversion using thermal transpiration : optimization of a Knudsen compressor  

E-Print Network (OSTI)

Knudsen compressors are devices without any moving parts that use the nanoscale phenomenon of thermal transpiration to pump or compress a gas. Thermal transpiration takes place when a gas is in contact with a solid boundary ...

Klein, Toby A. (Toby Anna)

2012-01-01T23:59:59.000Z

56

Ocean thermal energy conversion plants : experimental and analytical study of mixing and recirculation  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a method of generating power using the vertical temperature gradient of the tropical ocean as an energy source. Experimental and analytical studies have been carried out to determine ...

Jirka, Gerhard H.

57

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

the overall efficiency. The heat source can be solar thermalefficiency of the vehicles can be considerably enhanced [105]. Other examples of LGH include solar thermal

Lim, Hyuck

2011-01-01T23:59:59.000Z

58

Rapid Solar-Thermal Conversion of Biomass to Syngas - Energy ...  

Production of synthesis gas or hydrogen by gasification or pyrolysis of biological feedstocks using solar-thermal energy. The invention provides processes that ...

59

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network (OSTI)

Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular important source of energy. By approaching a photovoltaic (PV) cell3 in proximity of a thermal emitter

Paris-Sud XI, Université de

60

Rapid Solar-Thermal Conversion of Biomass to Syngas  

perform biomass gasification or pyrolysis for production of hydrogen, synthesis gas, liquid fuels, or other hydrocarbon based chemicals. The methods of the invention use solar thermal energy as the energy source for the biomass pyrolysis or ...

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for Western Gulf of Mexico. Energy Research and Developmentfor central Gulf of Mexico. Energy Research and DevelopmentGulf of Mexico, - IV-34 in Proc. Fourth Ocean Thermal Energy

Sands, M. D.

2011-01-01T23:59:59.000Z

62

Energy Conversion of Fully Random Thermal Relaxation Times  

E-Print Network (OSTI)

Thermodynamic random processes in thermal systems are generally associated with one or several relaxation times, the inverse of which are formally homogeneous with energy. Here, we show in a precise way that the periodic modification of relaxation times during temperature-constant thermodynamic cycles can be thermodynamically beneficiary to the operator. This result holds as long as the operator who adjusts relaxation times does not attempt to control the randomness associated with relaxation times itself as a Maxwell 'demon' would do. Indirectly, our result also shows that thermal randomness appears satisfactorily described within a conventional quantum-statistical framework, and that the attempts advocated notably by Ilya Prigogine to go beyond a Hilbert space description of quantum statistics do not seem justified - at least according to the present state of our knowledge. Fundamental interpretation of randomness, either thermal or quantum mechanical, is briefly discussed.

Franois Barriquand

2005-07-26T23:59:59.000Z

63

Seawater pump study: Ocean Thermal Energy Conversion Program. Final report. [For ocean thermal power plants  

DOE Green Energy (OSTI)

The pumping power required to move cold seawater and warm seawater through an Ocean Thermal Energy Conversion (OTEC) power plant is a significant portion of the plant power output; therefore, seawater pump performance, sizing, and cost information are very influential inputs into any power plant system design optimizations. The analysis and evaluation of large seawater pumping systems selected specifically for the OTEC application are provided with a view toward judging the impact of pump selection on overall OTEC power plant performance. A self-contained bulb, direct drive, axial flow pump was found to have a distinct advantage in performance and arrangement flexibility. A design of a pump operating at a net total head rise of 3.5 meters and a flow capacity of 100 m/sup 3//s is presented including pump blade geometry (profiles), pump diffuser geometry, and pump/diffuser configuration and performance. Results are presented in terms of the geometric and power requirements of several related pump designs over a range of seawater capacity from 25 m/sup 3//s to 100 m/sup 3//s. Summary analysis and evaluations include pump design weights and cost estimates.

Little, T.E.

1978-01-01T23:59:59.000Z

64

Conversion system overview assessment. Volume III. Solar thermal/coal or biomass derived fuels  

SciTech Connect

The three volumes of this report cover three distinct areas of solar energy research: solar thermoelectrics, solar-wind hybrid systems, and synthetic fuels derived with solar thermal energy. Volume III deals with the conversion of synthetic fuels with solar thermal heat. The method is a hybrid combination of solar energy with either coal or biomass. A preliminary assessment of this technology is made by calculating the cost of fuel produced as a function of the cost of coal and biomass. It is shown that within the projected ranges of coal, biomass, and solar thermal costs, there are conditions when solar synthetic fuels with solar thermal heat will become cost-competitive.

Copeland, R. J.

1980-02-01T23:59:59.000Z

65

Comparison of Biological and Thermal (Pyrolysis) Pathways for Conversion of Lignocellulose to Biofuels  

E-Print Network (OSTI)

Because of the limited supply of imported crude oil and environmental degradation, renewable energy is becoming commercially feasible and environmentally desirable. In this research, biological and thermal (pyrolysis) conversion pathways for biofuel production from lignocellulosic feedstocks were compared. For biological conversions of sorghum, ethanol yield was improved using M81-E variety (0.072 g/g juice) over Umbrella (0.065 g/g juice) for first-generation biomass (sorghum juice), and 0.042 g/g sorghum was obtained from the cellulosic portion of second-generation biomass. When ultrasonication was combined with hot water pretreatment, yields increased by 15% and 7% for cellulose to glucose, and hemicellulose to pentose, respectively. Ethanol yield was 10% higher when this pretreatment was combined with Accellerase 1500+XC for saccharification. Biological conversion yielded 1,600?2,300 L ethanol/ha for first-generation biomass, and 4,300?4,500 L ethanol/ha from lignocellulosic biomass. For thermal (pyrolysis) conversion of lignocellulosic switchgrass at 600 degrees C, product yield was 37% bio-oil, 26% syngas, and 25% bio-char. At 400 degrees C, product yield was 22% bio-oil, 8% syngas, and 56% bio-char. Bio-oil from pyrolysis was highly oxygenated (37 wt%). It required chemical transformation to increase its volatility and thermal stability, and to reduce its viscosity by removing objectionable oxygen, so the product could be used as transportation fuel (gasoline). As a consequence of upgrading bio-oil by catalytic hydrogenation, bio-oil oxygen decreased from 37?2 wt%, carbon increased from 50?83 wt%, hydrogen increased from 9?15 wt% and heating value increased from 36?46 MJ/kg, resulting in a fuel that was comparable to gasoline. The upgraded product passed the thermal stability test when kept under an oxygen-rich environment. The upgraded product consisted of 14.8% parrafins, 21.7% iso-parrafins, 3% napthene, 42.6% aromatics, 4.7% olefin, 4.7% DMF, 8% alcohol, and 0.6% ketone on a mass basis. Comparing the two pathways, biological conversion had 11 wt% ethanol yield from sorghum, and thermal conversion had 13 wt% gasoline yield from switchgrass. For process efficiency, thermal conversion had 35% energy loss versus 45% energy loss for biological conversions. For the biological pathway, ethanol cost was $2.5/gallon ($4/gallon, gasoline equivalent), whereas for the thermal pathway, switchgrass gasoline cost was $3.7/gallon, both with 15% before tax profit.

Imam, Tahmina 1983-

2012-12-01T23:59:59.000Z

66

Rankine cycle energy conversion system design considerations for low and intermediate temperature sensible heat sources. Geothermal, waste heat, and solar thermal conversion  

DOE Green Energy (OSTI)

Design considerations are described for energy conversion systems for low and intermediate temperature sensible heat sources such as found in geothermal, waste heat, and solar-thermal applications. It is concluded that the most cost effective designs for the applications studied did not require the most efficient thermodynamic cycle, but that the efficiency of the energy conversion hardware can be a key factor.

Abbin, J.P. Jr.

1976-10-01T23:59:59.000Z

67

Heat exchanger cleaning in support of ocean thermal energy conversion (OTEC) - electronics subsystems  

DOE Green Energy (OSTI)

Electronics systems supporting the development of biofouling countermeasures for Ocean Thermal Energy Conversion (OTEC) are described. Discussed are the thermistor/thermopile amplifiers, heaters, flowmeters, temperature measurement, control systems for chlorination, flow driven brushes, and recirculating sponge rubber balls. The operation and troubleshooting of each electronic subsystem is documented.

Lott, D.F.

1980-12-01T23:59:59.000Z

68

SIGNATURES OF PHOTON-AXION CONVERSION IN THE THERMAL SPECTRA AND POLARIZATION OF NEUTRON STARS  

SciTech Connect

Conversion of photons into axions under the presence of a strong magnetic field can dim the radiation from magnetized astrophysical objects. Here we perform a detailed calculation aimed at quantifying the signatures of photon-axion conversion in the spectra, light curves, and polarization of neutron stars (NSs). We take into account the energy and angle dependence of the conversion probability and the surface thermal emission from NSs. The latter is computed from magnetized atmosphere models that include the effect of photon polarization mode conversion due to vacuum polarization. The resulting spectral models, inclusive of the general-relativistic effects of gravitational redshift and light deflection, allow us to make realistic predictions for the effects of photon to axion conversion on observed NS spectra, light curves, and polarization signals. We identify unique signatures of the conversion, such as an increase of the effective area of a hot spot as it rotates away from the observer line of sight. For a star emitting from the entire surface, the conversion produces apparent radii that are either larger or smaller (depending on axion mass and coupling strength) than the limits set by NS equations of state. For an emission region that is observed phase-on, photon-axion conversion results in an inversion of the plane of polarization with respect to the no-conversion case. While the quantitative details of the features that we identify depend on NS properties (magnetic field strength and temperature) and axion parameters, the spectral and polarization signatures induced by photon-axion conversion are distinctive enough to make NSs very interesting and promising probes of axion physics.

Perna, Rosalba [JILA and Department of Astrophysical and Planetary Science, University of Colorado at Boulder, 440 UCB, Boulder, CO 80304 (United States); Ho, Wynn C. G. [School of Mathematics, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Verde, Licia; Jimenez, Raul [ICREA and ICC, University of Barcelona (IEEC-UB) (Spain); Van Adelsberg, Matthew [Center for Relativistic Astrophysics and School of Physics Georgia Institute of Technology, Atlanta, GA 30332 (United States)

2012-04-01T23:59:59.000Z

69

Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques  

Science Conference Proceedings (OSTI)

Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.

Hunter, Scott Robert [ORNL; Lavrik, Nickolay V [ORNL; Mostafa, Salwa [ORNL; Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

2012-01-01T23:59:59.000Z

70

Impact of thermal pretreatment on the fast pyrolysis conversion of Southern Pine  

Science Conference Proceedings (OSTI)

Background: Thermal pretreatment of biomass ranges from simple (nondestructive) drying to more severe treatments that cause devolatization, depolymerization and carbonization. These pretreatments have demonstrated promise for transforming raw biomass into feedstock material that has improved milling, handling, storage and conversion properties. In this work, southern pine material was pretreated at 120, 180, 230 and 270 degrees C, and then subjected to pyrolysis tests in a continuous-feed bubbling-fluid bed pyrolysis system. Results: High pretreatment temperatures were associated with lower specific grinding energies, higher grinding rates and lower hydrogen and oxygen contents. Higher pretreatment temperatures were also correlated with increased char production, decreased total acid number and slight decrease in the oxygen content of the pyrolysis liquid fraction. Conclusion: Thermal pretreatment has both beneficial and detrimental impacts on fast pyrolysis conversion of pine material to bio-oil, and the effect of thermal pretreatment on upgrading of pyrolysis bio-oil requires further attention.

Tyler L. Westover; Manunya Phanphanich; Micael L. Clark; Sharna R. Rowe; Steven E. Egan; Christopher T Wright; Richard D. Boardman; Alan H. Zacher

2013-01-01T23:59:59.000Z

71

System for thermal energy storage, space heating and cooling and power conversion  

DOE Patents (OSTI)

An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

1981-04-21T23:59:59.000Z

72

Ocean thermal energy conversion power system development-I. Phase I. Final report  

DOE Green Energy (OSTI)

The objective of the Ocean Thermal Energy Conversion (OTEC) Power System Development-I (PSD-I), Phase I, study was to develop conceptual and preliminary designs of closed-cycle ammonia power system modules for the 100-MW(e) OTEC Demonstration Plant, the 400-MW(e) Commercial Size Plant, and Heat Exchanger Test Articles representative of the full-size power system module design. Results are presented.

Not Available

1978-12-18T23:59:59.000Z

73

Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants  

E-Print Network (OSTI)

The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can ...

Rodrguez Buo, Mariana

2013-01-01T23:59:59.000Z

74

Research on the external fluid mechanics of ocean thermal energy conversion plants : report covering experiments in a current  

E-Print Network (OSTI)

This report describes a set of experiments in a physical model study to explore plume transport and recirculation potential for a range of generic Ocean Thermal Energy Conversion (OTEC) plant designs and ambient conditions. ...

Fry, David J.

1981-01-01T23:59:59.000Z

75

Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)  

DOE Green Energy (OSTI)

There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

Rabas, T.; Panchal, C.; Genens, L.

1990-01-01T23:59:59.000Z

76

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power  

E-Print Network (OSTI)

, power generation, the flow of liquids and gases, and the transfer of thermal energy (heat) by means, Thermodynamics, a sophomore spring course. This is followed by ME 608, Fluid Dynamics in the fall of the junior - Analytical Fluid Dynamics ME 709 - Computational Fluids Dynamics ME 712 - Waves in Fluids #12;

Chini, Gregory P.

77

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

and Techniques, Energy Conversion and Management, 39 (11),Applications, Energy Conversion and Management, 45 , pp.2011, Low-grade Heat Conversion into Power Using Organic

Coso, Dusan

2013-01-01T23:59:59.000Z

78

GEOTEC (Geothermal-Enhanced Ocean Thermal Energy Conversion) engineering concept study  

DOE Green Energy (OSTI)

The project was to provide a conceptual design for a modular state-of-the-art geothermal-enhanced ocean thermal energy conversion (GEOTEC) plant for implementation at a Navy site on Adak Island, Alaska. This report includes the following appendices: (1) statement of work; (2) geothermal resource assessment; (3) assessment of environmental issues; (4) design optimization program formulations for GEOTEC; (5) calculation of geofluid temperature drop in brine collection system; (6) pressure losses and pumping requirements for seawater pipeline system; (7) geocost comparison of single and dual binary cycle systems; (8) description of seawater pipeline system; and (9) plant system installed cost estimates. (ACR)

Not Available

1984-03-01T23:59:59.000Z

79

Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants  

DOE Green Energy (OSTI)

The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

Bowyer, J.M.

1984-04-15T23:59:59.000Z

80

Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons  

E-Print Network (OSTI)

Maximum efficiency of ideal single-junction photovoltaic (PV) cells is limited to 33% (for one sun illumination) by intrinsic losses such as band edge thermalization, radiative recombination, and inability to absorb below-bandgap photons. This intrinsic thermodynamic limit, named after Shockley and Queisser (S-Q), can be exceeded by utilizing low-energy photons either via their electronic up-conversion or via thermophotovoltaic (TPV) conversion process. However, electronic up-conversion systems have extremely low efficiencies, and practical temperature considerations limit the operation of TPV converters to the narrow-gap PV cells. Here we develop a conceptual design of a hybrid TPV platform, which exploits thermal up-conversion of low-energy photons and is compatible with conventional silicon PV cells by using spectral and directional selectivity of the up-converter. The hybrid platform offers sunlight-to-electricity conversion efficiency exceeding that imposed by the S-Q limit on the corresponding PV cells ...

Boriskina, Svetlana V

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)  

DOE Green Energy (OSTI)

This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

Not Available

2005-09-01T23:59:59.000Z

82

Systems analysis of solar thermal power systems. Report on Task 1: determination and characterization of solar thermal conversion options  

SciTech Connect

Seven general solar thermal conversion concepts were selected initially. The literature review confirmed that these are the only concepts that are developed to a level suitable for inclusion in the comparative analysis to be performed. A summary of information pertaining to these concepts is given and the concepts are briefly described. The information presented is abstracted from applicable references presented in the bibliography. The bibliography and a list of the major contacts established are included in appendices. The seven concepts are: point-focusing distributed receiver system; point focusing, central receiver systems; fixed mirror/distributed focus system; line-focus central receiver system; line-focus distributed receiver system; fixed mirror line-focus distributed receiver system, and low concentrator non-tracking systems. (WHR)

Apley, W.J.

1978-07-01T23:59:59.000Z

83

Corrosion and biofouling on the non-heat-exchanger surfaces of an ocean thermal energy conversion power plant: a survey  

DOE Green Energy (OSTI)

Of the many foreseeable problems confronting economical ocean thermal energy conversion operation, two major items are the deterioration of the structural and functional components, which prevents efficient operation, and the biofouling of the surfaces, which adds excess weight to the floating ocean platform. The techniques required for effective long-term control of deterioration and corrosion have been investigated actively for many years, and successful solutions for most situations have been developed. For the most part, these solutions can be directly transferred to the ocean thermal energy conversion plant. The majority of problems in these areas are expected to be associated with scale-up and will require some advanced development due to the immensity of the ocean thermal energy conversion platform. Current antifouling control systems are not effective for long-term fouling prevention. Commercially available antifouling coatings are limited to a 3-year service life in temperate waters, and even shorter in tropical waters. However, underwater cleaning techniques and some fouling-control systems presently being used by conventional power plants may find utility on an ocean thermal energy conversion plant. In addition, some recent major advances in long-term antifouling coatings sponsored by the Navy may be applicable to ocean thermal energy conversion. 132 references.

Castelli, V.J. (ed.)

1979-05-01T23:59:59.000Z

84

Thermal catalytic conversion of the used isobutyl isoprene rubber into valuable hydrocarbons  

E-Print Network (OSTI)

Jan MR, Mabood F. Catalytic conversion of waste tyres intoJ, Jan MR, Mabood F. Conversion of waste tires into liquidbest method for maximum conversion into useful product, and

Rasul Jan, M.; Jabeen, Farah; Shah, Jasmin; Mabood, Fazal

2010-01-01T23:59:59.000Z

85

Selected legal and institutional issues related to Ocean Thermal Energy Conversion (OTEC) development  

DOE Green Energy (OSTI)

Ocean Thermal Energy Conversion (OTEC), an attractive alternative to traditional energy sources, is still in the early stages of development. To facilitate OTEC commercialization, it is essential that a legal and institutional framework be designed now so as to resolve uncertainties related to OTEC development, primarily involving jurisdictional, regulatory, and environmental issues. The jurisdictional issues raised by OTEC use are dependent upon the site of an OTEC facility and its configuration; i.e., whether the plant is a semipermanent fixture located offshore or a migrating plant ship that provides a source of energy for industry at sea. These issues primarily involve the division of authority between the Federal Government and the individual coastal states. The regulatory issues raised are largely speculative: they involve the adaptation of existing mechanisms to OTEC operation. Finally, the environmental issues raised center around compliance with the National Environmental Policy Act (NEPA) as well as international agreements. 288 references.

Nanda, V. P.

1979-06-01T23:59:59.000Z

86

In-situ biofouling of ocean thermal energy conversion (OTEC) evaporator tubes  

Science Conference Proceedings (OSTI)

The Puerto Rico Center for Energy and Environmental Research equipped a LCU facility in 1100 m of water near Punta Tuna, Puerto Rico to measure in situ biofouling of simulated Ocean Thermal Energy Conversion evaporator tubes. The system consisted of two 5052 aluminum alloy and two titanium tubes, through which a continuous flow of ocean water was maintained. The tubes were cleaned three times and the fouling resistance was measured, showing only slight differences between the tubes with respect to heat transfer loss resulting from biofouling. In all units, the average fouling rate after cleaning was greater than before cleaning, and only after the first cleaning did the aluminum units show greater fouling rates than did the titanium. The titanium units showed a progressive increase in the fouling rates with each cleaning. The subsequent average fouling rates for all units after eight months were between 4 and 4.6 x 0.000010 sq m-k/W-day.

Sasscer, D.S. (Univ. of Puerto Rico, Mayaguez); Morgan, T. (Argonne National Lab., IL)

1981-05-01T23:59:59.000Z

87

Ocean Thermal Energy Conversion (OTEC) Program. Volume 1. Preoperatinal ocean test platform  

DOE Green Energy (OSTI)

An environmental impact assessment for the field test of the first preoperational Ocean Thermal Energy Conversion, referred to as OTEC-1, is presented. The conceptual design of OTEC-1 is described, and the existing environments at the four OTEC-1 study sites (Punta Tuna, Keahole Point, offshore New Orleans, and offshore Tampa) are discussed. The environmental impacts considered include organism impingement, organism entrainment, ocean water mixing, metallic ion release, chlorine release, ammonia leakage, oil release, and platform attraction. The development of a risk assessment model for credible accidents at OTEC-1 is discussed. Also, the federal and state legal, safety, and health policies pertinent to OTEC-1 are presented. A glossary is included. (WHK)

Not Available

1979-03-01T23:59:59.000Z

88

Graphene-based photovoltaic cells for near-field thermal energy conversion  

E-Print Network (OSTI)

Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.

Riccardo Messina; Philippe Ben-Abdallah

2012-07-05T23:59:59.000Z

89

Deep water pipe, pump, and mooring study: Ocean Thermal Energy Conversion program. Final report  

DOE Green Energy (OSTI)

The ocean engineering issues affecting the design, construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) power plants are of key importance. This study addressed the problems associated with the conceptual design of the deep-water pipe, cold-water-pumping, and platform mooring arrangements. These subsystems fall into a natural grouping since the parameters affecting their design are closely related to each other and to the ocean environment. Analysis and evaluations are provided with a view toward judging the impact of the various subsystems on the overall plant concept and to provide an estimate of material and construction cost. Parametric data is provided that describes mooring line configurations, mooring line loads, cold water pipe configurations, and cold water pumping schemes. Selected parameters, issues, and evaluation criteria are used to judge the merits of candidate concepts over a range of OTEC plant size from 100 MWe to 1000 MWe net output power.

Little, T.E.; Marks, J.D.; Wellman, K.H.

1976-06-01T23:59:59.000Z

90

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the Preliminary Design Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume describes system operation, a complete test program to verify mechanical reliability and thermal performance, fabrication and installation operations, and a cost analysis. (WHK)

Not Available

1978-12-04T23:59:59.000Z

91

Development of plastic heat exchangers for ocean thermal energy conversion. Final report, August 1976--December 1978  

DOE Green Energy (OSTI)

Materials and processes have been selected and design information obtained for plastic ocean thermal energy conversion (OTEC) heat exchangers as the result of a program comprising five types of laboratory experiments. Tests to evaluate the chemical resistance of seven commercially available thermoplastics to sea water and several possible working fluids were conducted with emphasis placed on compatibility with ammonia. Environmental rupture tests involving exposure of stressed specimens to sea water or liquid ammonia indicated that the high density polyethylene (HDPE) is the best suited candidate and produced an extrapolated 100,000 hour failure stress of 1060 psi for HDPE. Long term durability tests of extruded HDPE plate-tube panel confirmed that plastic heat transfer surface is mechanically reliable in an OTEC environment. Thermal conductivity measurements of acetylene black filled HDPE indicated that conductivity may be increased by 50% with a 35% by weight filler loading. The permeability coefficient measured for liquid ammonia through HDPE was higher than previous estimates. Test showed that the rate can be significantly reduced by sulfonation of HDPE. A review of biofouling mechanisms revealed that the permeable nature of the plastic heat exchanger surface may be used to control primary biofouling form formation by allowing incorporation of non-toxic organic repellents into the plastic. A preliminary design and fabrication development program suggests that construction of an ammonia condenser test unit is feasible using currently available materials and manufacturing techniques.

Hart, G.K.; Lee, C.O.; Latour, S.R.

1979-01-01T23:59:59.000Z

92

Ocean Thermal Energy Conversion power system development. Phase I. Final report  

DOE Green Energy (OSTI)

This report covers the conceptual and preliminary design of closed-cycle, ammonia, ocean thermal energy conversion power plants by Westinghouse Electric Corporation. Preliminary designs for evaporator and condenser test articles (0.13 MWe size) and a 10 MWe modular experiment power system are described. Conceptual designs for 50 MWe power systems, and 100 MWe power plants are also descirbed. Design and cost algorithms were developed, and an optimized power system design at the 50 MWe size was completed. This design was modeled very closely in the test articles and in the 10 MWe Modular Application. Major component and auxiliary system design, materials, biofouling, control response, availability, safety and cost aspects are developed with the greatest emphasis on the 10 MWe Modular Application Power System. It is concluded that all power plant subsystems are state-of-practice and require design verification only, rather than continued research. A complete test program, which verifies the mechanical reliability as well as thermal performance, is recommended and described.

Not Available

1978-12-04T23:59:59.000Z

93

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Heat Exchangers, Applied Thermal Engineering, 25 (1), pp.Raad P. E. , 2008, Thermal Challenges in Next-GenerationAssessment of High-Heat-Flux Thermal Management Schemes,

Coso, Dusan

2013-01-01T23:59:59.000Z

94

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

2009, Solar Thermal Power Plants, The European PhysicalThermal Energy Storage for Parabolic Trough Power Plants,fuel based power plants, and most nuclear and solar thermal

Coso, Dusan

2013-01-01T23:59:59.000Z

95

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

Review on Sustainable thermal Energy Storage Technologies,D. , 2009, Review on Thermal Energy Storage with PhaseW. , 2002, Survey of Thermal Energy Storage for Parabolic

Coso, Dusan

2013-01-01T23:59:59.000Z

96

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

97

Thermal-hydraulic calculations for the conversion to LEU of a research reactor core  

SciTech Connect

The thermal-hydraulic analysis performed for the needs of the conversion of the open pool 5MW Greek Research Reactor (GRR-1) to a pure Low Enrichment (LEU) configuration is presented. The methodology was based on a complete set of neutronic calculations performed for the new core configuration, in compliance with pre-defined Operation Limiting Conditions. The hottest channel analysis approach was adopted, and peaking factors were used to account for fabrication or measuring uncertainties. Calculations were carried out using the numerical codes NATCON, PLTEMP and PARET provided by Argonne National Laboratory (ANL). Two main different classes of conditions were considered, namely i) steady state normal operating conditions and ii) transient cases related to accidental events including reactivity feedback effects. For steady state operating conditions the behaviour of the new configuration was examined both for forced and natural convection cooling modes. Transient calculations considered several initiating events including reactivity insertion accidents (slow or fast reactivity insertion) and total or partial loss-of-flow accidents, i.e. in accordance to guidelines provided by the IAEA for research Reactors. (author)

Grigoriadis, D. [National Center for Scientific Research 'DEMOKRITOS', 153 10 Aghia Paraskevi (Greece); Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678 (Cyprus); Varvayanni, M.; Catsaros, N.; Stakakis, E. [National Center for Scientific Research 'DEMOKRITOS', 153 10 Aghia Paraskevi (Greece)

2008-07-15T23:59:59.000Z

98

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the Preliminary Desigh Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume presents the preliminary design configuration and system optimization. (WHK)

Not Available

1978-12-04T23:59:59.000Z

99

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

R. a. , 2012, Molecular Solar Thermal (MOST) Energy Storageand Nocera D. G. , 2010, Solar Energy Supply and Storage20] Kalogirou S. a. , 2004, Solar Thermal Collectors and

Coso, Dusan

2013-01-01T23:59:59.000Z

100

Solar energy conversion systems engineering and economic analysis radiative energy input/thermal electric output computation. Volume III  

DOE Green Energy (OSTI)

The direct energy flux analytical model, an analysis of the results, and a brief description of a non-steady state model of a thermal solar energy conversion system implemented on a code, SIRR2, as well as the coupling of CIRR2 which computes global solar flux on a collector and SIRR2 are presented. It is shown how the CIRR2 and, mainly, the SIRR2 codes may be used for a proper design of a solar collector system. (LEW)

Russo, G.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermal hydraulic design and analysis of a large lead-cooled reactor with flexible conversion ratio  

E-Print Network (OSTI)

This thesis contributes to the Flexible Conversion Ratio Fast Reactor Systems Evaluation Project, a part of the Nuclear Cycle Technology and Policy Program funded by the Department of Energy through the Nuclear Energy ...

Nikiforova, Anna S., S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

102

Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems  

E-Print Network (OSTI)

Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

Greenhut, Andrew David

2010-01-01T23:59:59.000Z

103

Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage).

Lu Xiaowei; Jordan, Beth [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Berge, Nicole D., E-mail: berge@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

2012-07-15T23:59:59.000Z

104

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

of Photochemical and Photovoltaic Solar Energy Converters,of solar energy in either photovoltaic or solar thermalphotovoltaic (PV) systems,[13,82,83] and solar thermal systems (energy

Coso, Dusan

2013-01-01T23:59:59.000Z

105

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

c,e Low-Intermediate Gas turbine exhaust, boiler exhaust,cycles for micro-gas turbines," Applied Thermal Engineering,Tiba, "Optimization of gas-turbine combined cycles for solar

Ho, Tony

2012-01-01T23:59:59.000Z

106

The magnesium silicide germanide stannide alloy: A new concept in ocean thermal energy conversion  

Science Conference Proceedings (OSTI)

In devices hitherto used for the direct conversion of heat into electricity, commonly known as ''thermoelectric energy converters'', the efficiency of conversion is appreciably lower than that of conventional reciprocating or rotary heat engines. This low efficiency is brought about by the physical properties of the materials selected for the manufacture of these devices. The materials that are currently being used for this purpose are either simple elements and alloys thereof, such as silicon and germanium, or intermetallic compounds, either simple or alloys and solid solutions thereof. Of the latter, mention may be made of bismuth telluride, antimony telluride, lead telluride, antimony silver telluride, lead selenide, bismuth selenide, antimony selenide, etc., as well as mixtures and solid solutions of these and other compounds. A search in respect of these materials carried out in the U.S. Patent literature indicates indeed a quite substantial and impressive record.

Nicolaou, M.C.

1983-12-01T23:59:59.000Z

107

Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals  

DOE Patents (OSTI)

A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

Peters, William A. (Lexington, MA); Howard, Jack B. (Winchester, MA); Modestino, Anthony J. (Hanson, MA); Vogel, Fredreric (Villigen PSI, CH); Steffin, Carsten R. (Herne, DE)

2009-02-24T23:59:59.000Z

108

Phase 1: conceptual design. Ocean thermal energy conversion power system development. Volume 2 of 3. Technical details. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the conceptual design of the Power System for the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a conceptual design for the following three items: first, a full-size power system module for the 100 MWe Demonstration Plant; second, a scaled proof of concept power system; and third, a heat exchanger test article. The study was limited to a closed cycle ammonia power system module, using a water temperature difference of 40/sup 0/F., and a surface platform/ship reference hull. Two power module of 50 MWe each are recommended for the demonstration plant. The 50 MWe module was selected since it has the lowest cost, and since it is of a size which convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. A modular, tube bundle approach to heat exchanger design makes large heat exchangers practical and economical. Other power module elements are considered to be within state-of-practice. Technological assessments of all subsystems indicate requirements for verification only, rather than continued research. A complete test program, which will verify the mechanical reliability as well as thermal performance, is recommended.

Not Available

1978-01-30T23:59:59.000Z

109

2D Thermal Hydraulic Analysis and Benchmark in Support of HFIR LEU Conversion using COMSOL  

Science Conference Proceedings (OSTI)

The research documented herein was funded by a research contract between the Research Reactors Division (RRD) of Oak Ridge National Laboratory (ORNL) and the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE). The research was governed by a statement of work (SOW) which clearly defines nine specific tasks. This report is outlined to follow and document the results of each of these nine specific tasks. The primary goal of this phase of the research is to demonstrate, through verification and validation methods, that COMSOL is a viable simulation tool for thermal-hydraulic modeling of the High Flux Isotope Reactor (HFIR) core. A secondary goal of this two-dimensional phase of the research is to establish methodology and data base libraries that are also needed in the full three-dimensional COMSOL simulation to follow. COMSOL version 3.5a was used for all of the models presented throughout this report.

Freels, James D [ORNL; Bodey, Isaac T [ORNL; Lowe, Kirk T [ORNL; Arimilli, Rao V [ORNL

2010-09-01T23:59:59.000Z

110

Thermal to Electrical Energy Conversion of Skutterudite-Based Thermoelectric Modules  

SciTech Connect

The performance of thermoelectric (TE) materials has improved tremendously over the past decade. The intrinsic thermal and electrical properties of state-of-the-art TE materials demonstrate that the potential for widespread practical TE applications is very large and includes TE generators (TEGs) for automotive waste heat recovery. TE materials for automotive TEG applications must have good intrinsic performance, be thermomechanically compatible, and be chemically stable in the 400 K to 850 K temperature range. Both n-type and p-type varieties must be available at low cost, easily fabricated, and durable. They must also form robust junctions and develop good interfaces with other materials to permit efficient flows of electrical and thermal energy. Among the TE materials of interest for automotive waste heat recovery systems are the skutterudite compounds, which are the antimony-based transition-metal compounds RTE4Sb12, where R can be an alkali metal (e.g., Na, K), alkaline earth (e.g., Ba), or rare earth (e.g., La, Ce, Yb), and TE can be a transition metal (e.g., Co, Fe). We synthesized a considerable quantity of n-type and p-type skutterudites, fabricated TE modules, incorporated these modules into a prototype TEG, and tested the TEG on a production General Motors (GM) vehicle. We discuss our progress on skutterudite TE module fabrication and present module performance data for electrical power output under simulated operating conditions for automotive waste heat recovery systems. We also present preliminary durability results on our skutterudite modules.

Salvador, James R. [GM R& D and Planning, Warren, Michigan; Cho, Jung Y [GM R& D and Planning, Warren, Michigan; Ye, Zuxin [GM Research and Development Center; Moczygemba, Joshua E. [Marlow Industries, Inc; Thompson, Alan [Marlow Industries, Inc; Sharp, Jeff W. [Marlow Industries, Inc; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Maloney, Ryan [Michigan State University; Thompson, Travis [Michigan State University; Sakamoto, Jeff [Michigan State University; Wang, Hsin [ORNL; Wereszczak, Andrew A [ORNL; Meisner, G P [General Motors Corporation-R& D

2013-01-01T23:59:59.000Z

111

Uncertainty analysis routine for the Ocean Thermal Energy Conversion (OTEC) biofouling measurement device and data reduction procedure. [HTCOEF code  

DOE Green Energy (OSTI)

Biofouling and corrosion of heat exchanger surfaces in Ocean Thermal Energy Conversion (OTEC) systems may be controlling factors in the potential success of the OTEC concept. Very little is known about the nature and behavior of marine fouling films at sites potentially suitable for OTEC power plants. To facilitate the acquisition of needed data, a biofouling measurement device developed by Professor J. G. Fetkovich and his associates at Carnegie-Mellon University (CMU) has been mass produced for use by several organizations in experiments at a variety of ocean sites. The CMU device is designed to detect small changes in thermal resistance associated with the formation of marine microfouling films. An account of the work performed at the Pacific Northwest Laboratory (PNL) to develop a computerized uncertainty analysis for estimating experimental uncertainties of results obtained with the CMU biofouling measurement device and data reduction scheme is presented. The analysis program was written as a subroutine to the CMU data reduction code and provides an alternative to the CMU procedure for estimating experimental errors. The PNL code was used to analyze sample data sets taken at Keahole Point, Hawaii; St. Croix, the Virgin Islands; and at a site in the Gulf of Mexico. The uncertainties of the experimental results were found to vary considerably with the conditions under which the data were taken. For example, uncertainties of fouling factors (where fouling factor is defined as the thermal resistance of the biofouling layer) estimated from data taken on a submerged buoy at Keahole Point, Hawaii were found to be consistently within 0.00006 hr-ft/sup 2/-/sup 0/F/Btu, while corresponding values for data taken on a tugboat in the Gulf of Mexico ranged up to 0.0010 hr-ft/sup 2/-/sup 0/F/Btu. Reasons for these differences are discussed.

Bird, S.P.

1978-03-01T23:59:59.000Z

112

Power system development: Ocean Thermal Energy Conversion (OTEC). Preliminary design report: appendices, Part 2 (Final)  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the electrical system, instrumentation and control, ammonia pump evaluation study, ammonia and nitrogen support subsystems, piping and support design calculations, and plant availability. (WHK)

None

1978-12-04T23:59:59.000Z

113

Ocean thermal energy conversion (OTEC) power system development. Preliminary design report, Appendices, Part 1 (Final)  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the developed computer models, water system dynamic studies, miscellaneous performance analysis, materials and processes, detailed equipment lists, turbine design studies, tube cleaner design, ammonia leak detection, and heat exchanger design supporting data. (WHK)

Not Available

1978-12-04T23:59:59.000Z

114

A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain  

Science Conference Proceedings (OSTI)

In recent years, solid-shell elements with the absence of the rotational degrees of freedom have considerable attentions in analyzing thin structures. In this paper, the non-linear formulation of a co-rotational 8-node degenerated thin-walled element ... Keywords: 8-Node solid element, Assumed natural strains, Co-rotational method, Enhanced assumed strains, Geometrical nonlinearity

Pramin Norachan; Songsak Suthasupradit; Ki-Du Kim

2012-03-01T23:59:59.000Z

115

Ocean thermal energy conversion power system development-I. Phase I. Preliminary design report. Volume 1. Final report  

DOE Green Energy (OSTI)

The results of a conceptual and preliminary design study of Ocean Thermal Energy Conversion (OTEC) closed loop ammonia power system modules performed by Lockheed Missiles and Space Company, Inc. (LMSC) are presented. This design study is the second of 3 tasks in Phase I of the Power System Development-I Project. The Task 2 objectives were to develop: 1) conceptual designs for a 40 to 50-MW(e) closed cycle ammonia commercial plant size power module whose heat exchangers are immersed in seawater and whose ancillary equipments are in a shirt sleeve environment; preliminary designs for a modular application power system sized at 10-MW(e) whose design, construction and material selection is analogous to the 50 MW(e) module, except that titanium tubes are to be used in the heat exchangers; and 3) preliminary designs for heat exchanger test articles (evaporator and condenser) representative of the 50-MW(e) heat exchangers using aluminum alloy, suitable for seawater service, for testing on OTEC-1. The reference ocean platform was specified by DOE as a surface vessel with the heat exchanger immersed in seawater to a design depth of 0 to 20 ft measured from the top of the heat exchanger. For the 50-MW(e) module, the OTEC 400-MW(e) Plant Ship, defined in the Platform Configuration and Integration study, was used as the reference platform. System design, performance, and cost are presented. (WHK)

Not Available

1978-12-18T23:59:59.000Z

116

The effect of biofouling in simulated Ocean Thermal Energy Conversion (OTEC) evaporator tubes at a potential site in Puerto Rico  

SciTech Connect

Since 29 January 1980, continuous flow of ocean surface water has been maintained through simulated Ocean Thermal Energy Conversion (OTEC) evaporator tubes in order to determine in situ, long-term effects of microbiofouling on heat exchanger efficiency. The experimental apparatus consists of two aluminum and two titanium modules mounted on a research platform moored at the potential OTEC site off Punta Tuna, Puerto Rico. The fouling resistance (R /SUB f/ ), a relative measure of heat transfer efficiency, is being monitored regularly, and the units have been cleaned four times. Postcleaning fouling rates (dR /SUB f/ /dt) for the aluminum units have not changed significantly but are considerably higher than the initial fouling rates. At first, post-cleaning fouling rates for the titanium units were less than for the aluminum units, but this value has been progressively increasing and now all units are fouling at approximately the same rate. Cleaning with manually operated M.A.N. brushes did not reduce R /SUB f/ to zero. On four occasions, flow velocity through the units has been increased. Results from these experiments suggest that initially the fouling layer is easily dislodged from the tube surface but that, with time, it becomes more firmly attached.

Sasscer, D.S.; Morgan, T.O.; Tosteson, T.R.

1980-12-01T23:59:59.000Z

117

Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)  

DOE Green Energy (OSTI)

This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

1990-07-01T23:59:59.000Z

118

Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles  

DOE Green Energy (OSTI)

Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

None

1981-12-22T23:59:59.000Z

119

Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems  

Science Conference Proceedings (OSTI)

Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

Golshani, A.; Chen, F.C.

1980-10-01T23:59:59.000Z

120

Solar-thermal energy conversion and storage: cyclohexane dehydrogenation. Progress report, 30 September 1977-30 June 1978  

DOE Green Energy (OSTI)

The objective of this project is to provide research support for the benzene/cyclohexane heat pipe development program at Sandia. The kinetics of the cyclohexane decomposition (energy collection) reaction over a commercially available naphtha reforming catalyst (RD-150, Englehard Industries) in the temperature range 400 to 800/sup 0/F and pressures of 1 to 40 atmospheres were measured. Significant amounts of side products such as toluene and butane were identified at temperatures above 550/sup 0/F at atmospheric pressure and significant mass transfer limitations on conversions were observed at the higher space velocities and higher temperatures. No significant decreases in catalyst activity were measured at temperatures below 800/sup 0/F. However, at 800/sup 0/F there was a significant decrease in catalyst activity which does not appear to be a poisoning problem but a thermal limitation on catalyst effectiveness. A test facility has been fabricated to study the behavior of the benzene/cyclohexane (or any other gas phase catalytic reaction) system and its catalysts under long term cycling at temperatures up to 1000/sup 0/F, and pressures up to 1000 psig at a wide variety of space velocities. A mathematical model was developed which simulates the dynamic behavior of the collector (endothermic) reactor and allows the evaluation of such things as startup, shutdown, switching and process control algorithms.

Ritter, A.B.; DeLancey, G.B.; Schneider, J.; Silla, H.

1978-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater  

DOE Green Energy (OSTI)

This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

1990-09-01T23:59:59.000Z

122

Thermal hydraulic limits analysis for the MIT Research Reactor low enrichment uranium core conversion using statistical propagation of parametric uncertainties  

E-Print Network (OSTI)

The MIT Research Reactor (MITR) is evaluating the conversion from highly enriched uranium (HEU) to low enrichment uranium (LEU) fuel. In addition to the fuel element re-design from 15 to 18 plates per element, a reactor ...

Chiang, Keng-Yen

2012-01-01T23:59:59.000Z

123

Technical and economic assessment of three solar conversion technologies  

DOE Green Energy (OSTI)

Photoelectric energy conversion, solar electric thermal conversion, and direct solar thermal conversion are examined from the point of view of technical and economic viability. The key conclusions of this examination are that all three of these solar thermal conversion technologies are technically viable today. However, only the direct solar thermal heat applications appear to be close to economically viability. If it is assumed that a lead time of approximately 25 years is required before a technical innovation can be placed on the market in a large scale, only direct applications of solar thermal energy, such as for heating water or providing industrial process heat, appear to have the potential of making major market penetration in this century. At the present time, the useful energy delivered from an industrial process heat system is within a factor of two of competing with systems using electric resistance heating or fossil fuel such as oil or coal. The technologies for direct application of solar thermal energy are mature and within technical and economical reach of mass production and installation. There exists no economically viable energy storage system compatible with industrial heat application temperatures, but a large penetration of the market appears feasible by designing solar systems that do not exceed the minimal load requirement of the industrial process and thereby utilize all available thermal energy directly.

Kreith, F.

1979-01-01T23:59:59.000Z

124

OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE  

E-Print Network (OSTI)

Energy Conversion (OTEC) sites in the Gulf of Mexico. TheENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICOEnergy Conversion (OTEC) Sites: Puerto Rico, St. Croix and Northern Gulf of Mexico.

Commins, M.L.

2010-01-01T23:59:59.000Z

125

Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335  

DOE Green Energy (OSTI)

The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

Netter, J.

2013-08-01T23:59:59.000Z

126

Ocean thermal energy conversion preliminary data report for the November 1977 GOTEC-02 cruise to the Gulf of Mexico Mobile Site  

DOE Green Energy (OSTI)

This is the second in a series of preliminary data reports from cruises to potential Ocean Thermal Energy Conversion (OTEC) sites in the Gulf of Mexico. The data are from the GOTEC-02 cruise to a site at approximately 29/sup 0/N, 88/sup 0/W, the Mobile Site. Twelve oceanographic stations were visited. Due to bad weather, the results are scanty. The reader will note that much of the data is questionable. Current meter results are presented elsewhere (Molinari, Hazelworth and Ortman, 1979). Determinations of the biomass indicators - chlorophyll a, phaeophytins and adenosine triphosphate - and zooplankton, are presented. Results were generally those that might have been predicted from previous studies in the area.

Not Available

1980-03-01T23:59:59.000Z

127

Unit Conversion  

Science Conference Proceedings (OSTI)

Unit Conversion. ... Unit Conversion Example. "If you have an amount of unit of A, how much is that in unit B?"; Dimensional Analysis; ...

2012-12-04T23:59:59.000Z

128

Ocean thermal energy conversion (OTEC) power system development (PSD) II. Preliminary design report. Appendix II: supporting data  

DOE Green Energy (OSTI)

The trade studies, calculations, and reports which provide the rationale for design conclusions for the 10 MWe OTEC power system are presented in this volume. These appendices include: (1) system design and optimization model; (2) system off-design performance computer model; (3) seawater system dynamics; (4) system mechanical design studies; (5) electrical design studies; (6) structural design studies; (7) tube cleaner design report and proposed brush test program; (8) heat exchangers: mechanical design; (9) heat exchangers: thermal hydraulic computer model; (10) heat exchangers: manufacturing flow plan; (11) heat exchangers: installation and removal procedures; (12) heat exchangers: stainless steel conceptual design; (13) heat exchangers: cost studies; (14)heat exchangers: materials selection and corrosion; and (15) heat exchangers: quality assurance. (WHK)

Not Available

1979-08-10T23:59:59.000Z

129

The conversion of biomass to ethanol using geothermal energy derived from hot dry rock to supply both the thermal and electrical power requirements  

SciTech Connect

The potential synergism between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources to produce transportation fuel has very positive environmental implications. One of the distinct advantages of wedding an HDR geothermal power source to a biomass conversion process is flexibility, both in plant location and in operating process is flexibility, both in plant location and in operating conditions. The latter obtains since an HDR system is an injection conditions of flow rate, pressure, temperature, and water chemistry are under the control of the operator. The former obtains since, unlike a naturally occurring geothermal resource, the HDR resource is very widespread, particularly in the western US, and can be developed near transportation and plentiful supplies of biomass. Conceptually, the pressurized geofluid from the HDR reservoir would be produced at a temperature in the range of 200{degrees} to 220{degrees}c. The higher enthalpy portion of the geofluid thermal energy would be used to produce a lower-temperature steam supply in a countercurrent feedwater-heater/boiler. The steam, following a superheating stage fueled by the noncellulosic waste fraction of the biomass, would be expanded through a turbine to produce electrical power. Depending on the lignin fraction of the biomass, there would probably be excess electrical power generated over and above plant requirements (for slurry pumping, stirring, solids separation, etc.) which would be available for sale to the local power grid. In fact, if the hybrid HDR/biomass system were creatively configured, the power plant could be designed to produce daytime peaking power as well as a lower level of baseload power during off-peak hours.

Brown, D.W.

1997-10-01T23:59:59.000Z

130

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

DOE Green Energy (OSTI)

This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the a

PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

2012-09-29T23:59:59.000Z

131

Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters  

Science Conference Proceedings (OSTI)

This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton ( 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the a

PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

2012-09-29T23:59:59.000Z

132

Plasma-Thermal Synthesis  

INLs Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels.

133

Validation of the MULCH-II code for thermal-hydraulic safety analysis of the MIT research reactor conversion to LEU  

SciTech Connect

An in-house thermal hydraulics code was developed for the steady-state and loss of primary flow analysis of the MIT Research Reactor (MITR). This code is designated as MULti-CHannel-II or MULCH-II. The MULCH-II code is being used for the MITR LEU conversion design study. Features of the MULCH-II code include a multi-channel analysis, the capability to model the transition from forced to natural convection during a loss of primary flow transient, and the ability to calculate safety limits and limiting safety system settings for licensing applications. This paper describes the validation of the code against PLTEMP/ANL 3.0 for steady-state analysis, and against RELAP5-3D for loss of primary coolant transient analysis. Coolant temperature measurements obtained from loss of primary flow transients as part of the MITR-II startup testing were also used for validating this code. The agreement between MULCH-II and the other computer codes is satisfactory. (author)

Ko, Y.-C. [Nuclear Science and Engineering Department, MIT, Cambridge, MA 02139 (United States); Hu, L.-W. [Nuclear Reactor Laboratory, MIT, Cambridge, MA 02139 (United States)], E-mail: lwhu@mit.edu; Olson, Arne P.; Dunn, Floyd E. [RERTR Program, Argonne National Laboratory, Argonne, IL 60439 (United States)

2008-07-15T23:59:59.000Z

134

Validation of the MULCH-II code for thermal-hydraulic safety analysis of the MIT research reactor conversion to LEU.  

SciTech Connect

An in-house thermal hydraulics code was developed for the steady-state and loss of primary flow analysis of the MIT Research Reactor (MITR). This code is designated as MULti-CHannel-II or MULCH-II. The MULCH-II code is being used for the MITR LEU conversion design study. Features of the MULCH-II code include a multi-channel analysis, the capability to model the transition from forced to natural convection during a loss of primary flow transient, and the ability to calculate safety limits and limiting safety system settings for licensing applications. This paper describes the validation of the code against PLTEMP/ANL 3.0 for steady-state analysis, and against RELAP5-3D for loss of primary coolant transient analysis. Coolant temperature measurements obtained from loss of primary flow transients as part of the MITR-II startup testing were also used for validating this code. The agreement between MULCH-II and the other computer codes is satisfactory.

Ko, Y. C.; Hu, L. W.; Olson, A. P.; Dunn, F. E.; Nuclear Engineering Division; MIT

2007-01-01T23:59:59.000Z

135

Ocean thermal energy conversion ecological data report from OSS Researcher in Gulf of Mexico, (GOTEC-01), July 12-23, 1977  

DOE Green Energy (OSTI)

Ecological measurements important for environmental assessment of the effect of an operating Ocean Thermal Energy Conversion plant were initiated in July 1977 at the proposed Gulf of Mexico site off the coasts of Louisiana, Mississippi, Alabama and Florida. The initial cruise of the OSS Researcher, in a joint effort with the Atlantic Oceanic and Meteorological Laboratories (AOML) of the National Oceanic and Atmospheric Administration (NOAA), and Lawrence Berkeley Laboratory (LBL) took place from 12 to 23 July 1977. The measurements were taken at 15 oceanographic stations to a maximum depth of 1000 m. Water was analyzed for trace metals, nutrients and chlorophyll a and ATP. Physical data, salinity and dissolved oxygen measurements were supplied by NOAA-AOML. Two bioassays were carried out using indigenous phytoplankton to estimate the effect of deep water on the rates of /sup 14/CO/sub 2/ uptake of photic zone algae. The Deep Scattering Layer (DSL) was monitored at the site by a continuously recording 12 kHz depth sounder at the Mobile site. This report presents data collected during the cruise.

Quinby-Hunt, M.S. (comp.)

1979-06-01T23:59:59.000Z

136

Thermoelectric Ocean Thermal Energy Conversion  

DOE Green Energy (OSTI)

A novel thermoelectric OTEC concept is proposed and compared with the ammonia closed-cycle designs. The thermoelectric OTEC is a much simpler system which uses no working fluid and therefore requires no pressure vessel, working fluid pumps, or turbogenerator. These components are replaced by power modules which are heat exchangers integrated with thermoelectric generators. The thermoelectric OTEC offers several potential advantages including: simpler and more easily mass-produced components; higher reliability system performance through the use of a high level of redundancy and long-lived, solid-state thermoelectric generators; greater safety for crew and environment by elimination of the pressurized working fluid; and the possibility of lower system costs. These comparisons are discussed and plans for future work are presented.

Jayadev, T.S.; Benson, D.K.; Bohn, M.S.

1979-06-01T23:59:59.000Z

137

Conversion Factor  

Gasoline and Diesel Fuel Update (EIA)

Conversion Factor (Btu per cubic foot) Production Marketed... 1,110 1,106 1,105 1,106 1,109 Extraction Loss ......

138

Direct Conversion Technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

139

Practical Conversion of Pressure to Depth  

Science Conference Proceedings (OSTI)

A conversion formula between pressure and depth is obtained employing the recently adopted equation of state for seawater (Millero et al., 1980). Assuming the ocean of uniform salinity 35 NSU and temperature 0C the following equation is proposed,...

Peter M. Saunders

1981-04-01T23:59:59.000Z

140

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Direct conversion technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

1992-01-07T23:59:59.000Z

142

Unit Conversions  

Science Conference Proceedings (OSTI)

... volume flow units, which contain "atm", assume that the gas is: ideal; at a pressure of 101325 Pa; at a temperature of 0 C. Be aware that the unit "atm ...

2012-10-02T23:59:59.000Z

143

B&W Y-12 assumes responsibility for protective force | Y-12 National  

NLE Websites -- All DOE Office Websites (Extended Search)

assumes ... assumes ... B&W Y-12 assumes responsibility for protective force Posted: October 29, 2012 - 4:30pm B&W Y-12 has assumed responsibility for the protective force at the Y-12 National Security Complex following a four-week transition from WSI Oak Ridge, the site's former subcontractor for security. During the transition, B&W Y-12 hired more than 560 WSI Oak Ridge employees. "The transition from WSI Oak Ridge to B&W Y-12 has gone very smoothly, and we welcome these new employees to the company," said Brigadier General (Ret.) Rod Johnson, Deputy General Manager for Security. "We've already seen improvements in security performance following previously announced contracting changes, and we believe we'll see additional successes with the protective force fully integrated into B&W Y-12."

144

Precious Metals Conversion Information  

Science Conference Proceedings (OSTI)

Precious Metals Conversion Information. The Office of Weights and Measures (OWM) has prepared a Conversion Factors ...

2012-11-21T23:59:59.000Z

146

Comparison of ELCAP data with lighting and equipment load levels and profiles assumed in regional models  

SciTech Connect

The analysis in this report was driven by two primary objectives: to determine whether and to what extent the lighting and miscellaneous equipment electricity consumption measured by metering in real buildings differs from the levels assumed in the various prototypes used in power forecasting; and to determine the reasons for those differences if, in fact, differences were found. 13 refs., 47 figs., 4 tabs.

Taylor, Z.T.; Pratt, R.G.

1990-09-01T23:59:59.000Z

147

Zinc phosphate conversion coatings  

DOE Patents (OSTI)

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

148

Solar energy conversion.  

SciTech Connect

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

149

Context: Destruction/Conversion  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Context: Destruction/Conversion. ... Process for Conversion of Halon 1211.. Tran, R.; Kennedy, EM; Dlugogorski, BZ; 2000. ...

2011-11-17T23:59:59.000Z

150

Surface Tension Mediated Conversion of Light to Work  

taics for conversion to electricity, solar thermal for water heating, ... and solar water splitting to produce hydrogen and oxygen.1 Though useful, ...

151

Minutes of the eighth meeting of the centers for the analysis of thermal-mechanical energy conversion concepts. Report No. CATMEC/10  

SciTech Connect

Highlights of the meeting were discussions on the problem of waste heat rejection including the effects of noncondensable gases in geothermal power plants, a review of the state of the art in binary fluid geothermal power plants, and progress reports on the preparation of chapters and sections of the ''Sourcebook on the Production of Electricity from Geothermal Energy.'' Appendices are included with information on: the dry cooling enhancement program; condenser effects on Rankine cycle performance; waste heat rejection systems; effect on seasonal variations of ambient temperatures on the performance of low temperature power cycles; geothermal loop experimental facility fact sheet; Heber geothermal demonstration plant fact sheet; geothermal energy conversion systems using geofluids with high levels of noncondensable gases; analysis of East Mesa 16-29 well flow data; site-specific sub- and super-critical hybrid power cycles; novel hybrid fossil-geothermal power plants; total flow comparative cost studies; and, fact sheets on the geothermal component test facility, Magmamax dual binary power plant, and Cerro Prieto geothermal field and power plant. (JGB)

DiPippo, R.

1978-03-01T23:59:59.000Z

152

Minutes of the eighth meeting of the centers for the analysis of thermal-mechanical energy conversion concepts. Report No. CATMEC/10  

DOE Green Energy (OSTI)

Highlights of the meeting were discussions on the problem of waste heat rejection including the effects of noncondensable gases in geothermal power plants, a review of the state of the art in binary fluid geothermal power plants, and progress reports on the preparation of chapters and sections of the ''Sourcebook on the Production of Electricity from Geothermal Energy.'' Appendices are included with information on: the dry cooling enhancement program; condenser effects on Rankine cycle performance; waste heat rejection systems; effect on seasonal variations of ambient temperatures on the performance of low temperature power cycles; geothermal loop experimental facility fact sheet; Heber geothermal demonstration plant fact sheet; geothermal energy conversion systems using geofluids with high levels of noncondensable gases; analysis of East Mesa 16-29 well flow data; site-specific sub- and super-critical hybrid power cycles; novel hybrid fossil-geothermal power plants; total flow comparative cost studies; and, fact sheets on the geothermal component test facility, Magmamax dual binary power plant, and Cerro Prieto geothermal field and power plant. (JGB)

DiPippo, R.

1978-03-01T23:59:59.000Z

153

Symposium on Electrochemical and Thermal Modeling of Battery, Fuel Cell, and Photoenergy Conversion Systems, San Diego, CA, Oct. 20-22, 1986, Proceedings  

SciTech Connect

Papers are presented on modeling of the zinc chlorine battery, design modeling of zinc/bromine battery systems, the modeling of aluminum-air battery systems, and a point defect model for a nickel electrode structure. Also considered are the impedance of a tubular electrode under laminar flow, mathematical modeling of a LiAl/Cl2 cell with a gas diffusion Cl2 electrode, ultrahigh power batteries, and battery thermal modeling. Other topics include an Na/beta-alumina/NaAlCl4, Cl2/C circulating cell, leakage currents in electrochemical systems having common electrodes, modeling for CO poisoning of a fuel cell anode, electrochemical corrosion of carbonaceous materials, and electrolyte management in molten carbonate fuel cells.

Selman, J.R.; Maru, H.C.

1986-01-01T23:59:59.000Z

154

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

W _7405-eng- 4B QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvint r UCRL-9 533 QUANrUM CONVERSION IN PHWOSYNTHESIS * Melvinitself. The primary quantum conversion act is an ionization

Calvin, Melvin

2008-01-01T23:59:59.000Z

155

Ocean thermal energy conversion (OTEC) power system development utilizing advanced, high-performance heat transfer techniques. Volume 1. Conceptual design report  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC Demonstration Plant. In turn, this Demonstration Plant is to demonstrate, by 1984, the operation and performance of an ocean thermal power plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the Demonstration Plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibility studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report describes the full-size power system module, and summarizes the design parameters and associated costs for the Demonstration Plant module (prototype) and projects costs for commercial plants in production. The material presented is directed primarily toward the surface platform/ship basic reference hull designated for use during conceptual design; however, other containment vessels were considered during the design effort so that the optimum power system would not be unduly influenced or restricted. (WHK)

Not Available

1978-05-12T23:59:59.000Z

156

Produced Conversion Coatings  

Science Conference Proceedings (OSTI)

Chemical conversion coatings are commonly applied to Mg alloys as paint bases and in some cases as stand-alone protection. Traditional conversion coatings...

157

Library Conversion Tool  

Science Conference Proceedings (OSTI)

Library Conversion Tool. ... The LIB2NIST mass spectral data conversion program consists of the following files (which are contained in a ZIP archive): ...

2013-06-24T23:59:59.000Z

158

Conversion of Legacy Data  

Science Conference Proceedings (OSTI)

... Conversion of Legacy Data. Conversion of legacy data can be one of the most difficult and challenging components in an SGML environment. ...

159

Biofuel Conversion Process  

Energy.gov (U.S. Department of Energy (DOE))

The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers...

160

Conversion Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Plan Conversion Plan This template is used to document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation...

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced nanofabrication of thermal emission devices  

E-Print Network (OSTI)

Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

Hurley, Fergus (Fergus Gerard)

2008-01-01T23:59:59.000Z

162

Ocean Thermal Energy Conversion Program Management Plan  

DOE Green Energy (OSTI)

The Office of the Associate Laboratory Director for Energy and Environmental Technology has established the OTEC Program Management Office to be responsible for the ANL-assigned tasks of the OTEC Program under DOE's Chicago Operations and Regional Office (DOE/CORO). The ANL OTEC Program Management Plan is essentially a management-by-objective plan. The principal objective of the program is to provide lead technical support to CORO in its capacity as manager of the DOE power-system program. The Argonne OTEC Program is divided into three components: the first deals with development of heat exchangers and other components of OTEC power systems, the second with development of biofouling counter-measures and corrosion-resistant materials for these components in seawater service, and the third with environmental and climatic impacts of OTEC power-system operation. The essential points of the Management Plan are summarized, and the OTEC Program is described. The organization of the OTEC Program at ANL is described including the functions, responsibilities, and authorities of the organizational groupings. The system and policies necessary for the support and control functions within the organization are discussed. These functions cross organizational lines, in that they are common to all of the organization groups. Also included are requirements for internal and external reports.

Combs, R E

1980-01-01T23:59:59.000Z

163

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

disturbances d~e to carbon dioxide releases and sea-surfacefom installations; however, the carbon dioxide~releases fromwith other man-ind~ced carbon dioxide releases to result in

Sands, M.Dale

2013-01-01T23:59:59.000Z

164

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

planes, Large quantities of chlorine will be used to controlthe marine environment. Chlorine react ions in sea\\Chlorine also has been reported to

Sands, M.Dale

2013-01-01T23:59:59.000Z

165

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network (OSTI)

demand due to emerging economies like China, India, and Brazil. Coal and natural gas resources 7296 O. It seems sensible toconsider OTEC as one of the renewable energy technologies of the future. Introduction

166

Portfolio Manager Technical Reference: Thermal Conversion Factors...  

NLE Websites -- All DOE Office Websites (Extended Search)

able to monitor electricity consumption on a continuous basis. Based on your particular energy suppliers and onsite systems, you may have a variety of different meter types that...

167

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network (OSTI)

Structures (Plantships) · Bottom-Mounted Structures · Model Basin Tests/ At-Sea Tests · 210 kW OC-OTEC systems and with an investment payback period estimated at 3 to 4 years. #12;OTEC 12 Energy Carriers & Attachments #12;#12;#12;#12;Bottom-Mounted Structures · Fixed Towers · Guyed Towers · TLP not shown · Causeway

168

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

and power usages (baseload electricity and production of =approximately 60 GW of baseload electricty could be producedcommunities, and will produce baseload electrical power and

Sands, M.Dale

2013-01-01T23:59:59.000Z

169

Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications  

Science Conference Proceedings (OSTI)

There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550C and 750C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550C versus 850C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550C and 750C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.

Edwin A. Harvego; Michael G. McKellar

2011-05-01T23:59:59.000Z

170

Conversion Between Implicit - CECM  

E-Print Network (OSTI)

Conversion Between Implicit and Parametric Representation of Differential Varieties. Xiao-Shan Gao, Institute of Systems Science, Chinese Academy of...

171

Direct electrochemical conversion of carbon: systems for efficient conversion of fossil fuels to electricity  

DOE Green Energy (OSTI)

The direct electrochemical conversion of carbon involves discharge of suspensions of reactive carbon particles in a molten salt electrolyte against an oxygen (air) cathode. (Figure 1). The free energy and the enthalpy of the oxidation reaction are nearly identical. This allows theoretical efficiencies ({Delta}G(T)/{Delta}H) to approach 100% at temperatures from 500 to 800 C. Entropy heat losses are therefore negligible. The activities of the elemental carbon and of the carbon dioxide product are uniform throughout the fuel cell and constant over discharge time. This stabilizes cell EMF and allows full utilization of the carbon fuel in a single pass. Finally, the energy cost for pyrolysis of hydrocarbons is generally very low compared with that of steam reforming or water gas reactions. Direct electrochemical conversion of carbon might be compared with molten carbonate fuel cell using carbon rather than hydrogen. However, there are important differences. There is no hydrogen involved (except from trace water contamination). The mixture of molten carbonate and carbon is not highly flammable. The carbon is introduced in as a particulate, rather than as a high volume flow of hydrogen. At the relatively low rates of discharge (about 1 kA/m{sup 2}), the stoichiometric requirements for carbon dioxide by the cathodic reaction may be met by diffusion across the thin electrolyte gap. We report recent experimental work at LLNL using melt slurries of reactive carbons produced by the thermal decomposition of hydrocarbons. We have found that anodic reactivity of carbon in mixed carbonate melts depends strongly on form, structure and nano-scale disorder of the materials, which are fixed by the hydrocarbon starting material and the conditions of pyrolysis. Thus otherwise chemically pure carbons made by hydrocarbon pyrolysis show rates at fixed potentials that span an order of magnitude, while this range lies 1-2 orders of magnitude higher than the current density of graphite plate electrodes. One carbon materials was identified which delivered anode current densities of 1 kA/m{sup 2} at 0.8 V (i.e., 80% efficiency, based on the standard enthalpy of carbon/oxygen reaction, and assuming full conversion), which we believe to be sufficiently great to allow practical application in fuel cell arrays. Since the hydrocarbon starting materials are ''ash free,'' entrainment of ash into the melt is not limiting. Finally, the use of fine carbon particulates in slurries avoids cost and logistics of carbon electrode manufacture and distribution.

Cooper, J F; Cherepy, N; Krueger, R

2000-08-10T23:59:59.000Z

172

Beneficial Conversion Features or Contingently Adjustable Conversion  

E-Print Network (OSTI)

1. An entity may issue convertible debt with an embedded conversion option that is required to be bifurcated under Statement 133 if all of the conditions in paragraph 12 of that Statement are met. An embedded conversion option that initially requires separate Copyright 2008, Financial Accounting Standards Board Not for redistribution Page 1accounting as a derivative under Statement 133 may subsequently no longer meet the conditions that would require separate accounting as a derivative. A reassessment of whether an embedded conversion option must be bifurcated under Statement 133 is required each reporting period. When an entity is no longer required to bifurcate a conversion option pursuant to Statement 133, there are differing views on how an entity should recognize that change.

Bifurcation Criteria; Fasb Statement No; Stock Purchase Warrants

2006-01-01T23:59:59.000Z

173

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biofuel Conversion Processes The conversion of...

174

Iterated multidimensional wave conversion  

Science Conference Proceedings (OSTI)

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

175

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

176

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

177

Quantum state conversion between continuous variable and qubits systems  

E-Print Network (OSTI)

We investigate how quantum state can be converted between continuous variable and qubits systems. Non-linear Jaynes-Cumings interaction Hamiltonian is introduced to accomplish the conversion. Detail analysis on the conversion of thermal state exhibits that pretty good fidelity can be achieved.

Xiao-yu Chen; Liang Han; Li-zhen Jiang

2006-10-31T23:59:59.000Z

178

Will lecture on: Understanding and Controlling Solar Energy Conversion  

E-Print Network (OSTI)

Will lecture on: Understanding and Controlling Solar Energy Conversion: The relationship between, and their relationship to their ability to harvest solar energy in the form of electricity. In particular, morphology low carbon electricity (solar and thermal energy conversion, off-shore wind, biofuels, nuclear

Rimon, Elon

179

Polymeric and Conversion Coatings  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Ongoing research reveals that the search for appropriate conversion ... of the coated alloy was ~ 250 mV more noble compared to bare alloy.

180

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

182

Thermal Conductivity Measurements of Thermoelectric Films  

Science Conference Proceedings (OSTI)

... which allow solid-state conversion of thermal to electrical energy, have a ... and exhaust system, which can run either an electric motor or accessories ...

2013-03-15T23:59:59.000Z

183

Assessment of the potential of solar thermal small power systems in small utilities. Final report  

DOE Green Energy (OSTI)

This study involved an assessment of the potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities. Five different solar thermal small power system configurations were considered in the study representing three different solar thermal technologies. The configurations included: (1) 1-MW, 2-MW, and 10-MW parabolic dish concentrators with a 15-kW heat engine mounted at the focal point of each dish. These systems utilized advanced battery energy storage. (2) A 10-MW system with variable slat concentrators and central steam Rankine energy conversion. This system utilized sensible thermal energy storage. (3) A 50-MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system. This system also utilized sensible thermal storage. The approach used in determining the potential for solar thermal small power systems in the small utility market involved a comparison of the economics of power supply expansion plans for seven hypothetical small utilities through the year 2000 both with and without the solar thermal small power systems. Insolation typical of the Southwestern US was assumed. A comparison of the break-even capital costs with the range of plant costs estimated in this study yields the following conclusions: (1) The parabolic dish concentrator systems could be economically competitive with conventional generation if the lowest capital costs can be achieved. (2) The variable slat concentrator and central receiver systems would have to achieve lower costs than the lowest in the cost ranges generally assumed in the study to become economically competitive. (3) All of the solar thermal plant types are potentially more competitive in utilities which are heavily dependent upon oil.

Steitz, P.; Mayo, L.G.; Perkins, S.P. Jr.

1978-11-01T23:59:59.000Z

184

NUCLEAR CONVERSION APPARATUS  

DOE Patents (OSTI)

A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.

Seaborg, G.T.

1960-09-13T23:59:59.000Z

185

Chemical Conversion Coating  

Science Conference Proceedings (OSTI)

Table 16   Applications of aluminum using chemical conversion coatings...doors 6063 Acrylic paint (b) Cans 3004 Sanitary lacquer Fencing 6061 None applied Chromate conversion coatings Aircraft fuselage skins 7075 clad with 7072 Zinc chromate primer Electronic chassis 6061-T4 None applied Cast missile bulkhead 356-T6 None applied Screen 5056 clad with 6253 Clear varnish...

186

ADEPT: Efficient Power Conversion  

SciTech Connect

ADEPT Project: In todays increasingly electrified world, power conversionthe process of converting electricity between different currents, voltage levels, and frequenciesforms a vital link between the electronic devices we use every day and the sources of power required to run them. The 14 projects that make up ARPA-Es ADEPT Project, short for Agile Delivery of Electrical Power Technology, are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

None

2011-01-01T23:59:59.000Z

187

Direct energy conversion systems  

SciTech Connect

The potential importance of direct energy conversion to the long-term development of fusion power is discussed with stress on the possibility of alleviating waste heat problems. This is envisioned to be crucial for any central power station in the 21st century. Two approaches to direct conversion, i.e., direct collection and magnetic expansion, are reviewed. While other techniques may be possible, none have received sufficient study to allow evaluation. It is stressed that, due to the intimate connection between the type of fusion fuel, the confinement scheme, direct conversion, and the coupling technique, all four element must be optimized simultaneously for high overall efficiency.

Miley, G.H.

1978-01-01T23:59:59.000Z

188

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

189

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

190

Solar Hydrogen Conversion Background  

E-Print Network (OSTI)

Solar Hydrogen Conversion Background: The photoelectrochemical production of hydrogen has drawn properties In order to develop better materials for solar energy applications, in-depth photoelectrochemical simulated solar irradiance. Hydrogen production experiments are conducted in a sealed aluminum cell

Raftery, Dan

191

Photovoltaic Cell Conversion Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

192

Structured luminescence conversion layer  

SciTech Connect

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

193

Graphene to Graphane: Novel Electrochemical Conversion  

E-Print Network (OSTI)

A novel electrochemical means to generate atomic hydrogen, simplifying the synthesis and controllability of graphane formation on graphene is presented. High quality, vacuum grown epitaxial graphene (EG) was used as starting material for graphane conversion. A home-built electrochemical cell with Pt wire and exposed graphene as the anode and cathode, respectively, was used to attract H+ ions to react with the exposed graphene. Cyclic voltammetry of the cell revealed the potential of the conversion reaction as well as oxidation and reduction peaks, suggesting the possibility of electrochemically reversible hydrogenation. A sharp increase in D peak in the Raman spectra of EG, increase of D/G ratio, introduction of a peak at ~2930 cm-1 and respective peak shifts as well as a sharp increase in resistance showed the successful hydrogenation of EG. This conversion was distinguished from lattice damage by thermal reversal back to graphene at 1000{\\deg}C.

Daniels, Kevin M; Zhang, R; Chowdhury, I; Obe, A; Weidner, J; Williams, C; Sudarshan, T S; Chandrashekhar, MVS

2010-01-01T23:59:59.000Z

194

Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity  

DOE Green Energy (OSTI)

We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

2001-03-07T23:59:59.000Z

195

ISOTOPE CONVERSION DEVICE  

DOE Patents (OSTI)

This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

1957-12-01T23:59:59.000Z

196

Biomass Thermochemical Conversion Program. 1984 annual report  

DOE Green Energy (OSTI)

The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1985-01-01T23:59:59.000Z

197

Energy Conversion, Mixing Energy, and Neutral Surfaces with a Nonlinear Equation of State  

E-Print Network (OSTI)

Energy Conversion, Mixing Energy, and Neutral Surfaces with a Nonlinear Equation of State JONAS energy, it is generally assumed that it does not produce a restoring buoyancy force. However, it is here effect) such a neutral displacement is accompanied by a conversion between internal energy E

Nycander, Jonas

198

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

199

Overview of coal conversion  

SciTech Connect

The structure of coal and the processes of coal gasification and coal liquefaction are reviewed. While coal conversion technology is not likely to provide a significant amount of synthetic fuel within the next several years, there is a clear interest both in government and private sectors in the development of this technology to hedge against ever-diminishing petroleum supplies, especially from foreign sources. It is evident from this rather cursory survey that there is some old technology that is highly reliable; new technology is being developed but is not ready for commercialization at the present state of development. The area of coal conversion is ripe for exploration both on the applied and basic research levels. A great deal more must be understood about the reactions of coal, the reactions of coal products, and the physics and chemistry involved in the various stages of coal conversion processes in order to make this technology economically viable.

Clark, B.R.

1981-03-27T23:59:59.000Z

200

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conservation Technologies thrust area supports initiatives that enhance the core competencies of the Lawrence Livermore National Laboratory (LLNL) Engineering Directorate in the area of solid-state power electronics. Through partnerships with LLNL programs, projects focus on the development of enabling technologies for existing and emerging programs that have unique power conversion requirements. This year, a multi-disciplinary effort was supported which demonstrated solid-state, high voltage generation by using a dense, monolithic photovoltaic array. This effort builds upon Engineering's strengths in the core technology areas of power conversion, photonics, and microtechnologies.

Haigh, R E

1998-01-01T23:59:59.000Z

202

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

203

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

204

Links to on-line unit conversions  

Science Conference Proceedings (OSTI)

... Basic physical quantities. General unit, currency, and temperature conversion. ... Many conversions, including unusual and ancient units. ...

205

Model Energy Conversion Efficiency of Biological Systems  

Science Conference Proceedings (OSTI)

MML Researchers Model Energy Conversion Efficiency of Biological Systems. Novel, highly efficient energy conversion ...

2013-03-15T23:59:59.000Z

206

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Buy Solar Energy Stocks? Make Photovoltaics your Profession! #12;Challenges Make solar cells more and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth #12;Take Advantage of Solar Megatrend

Glashausser, Charles

207

ENERGY CONVERSION Spring 2011  

E-Print Network (OSTI)

in this course: Week 1: Review Week 2: Entropy and exergy Week 3: Power cycles, Otto and Diesel Week 4 resources including: wind, wave energy conversion devices, and fuel cell technologies Week12: Introduction will work in groups as assigned. Experiment: Diesel Engine Assessment: Projects 20% Lab Reports

Bahrami, Majid

208

Conversion system overview assessment. Volume 1: solar thermoelectrics  

DOE Green Energy (OSTI)

An assessment of thermoelectrics for solar energy conversion is given. There is significant potential for solar thermoelectrics in solar technologies where collector costs are low; e.g., Ocean Thermal Energy Conversion (OTEC) and solar ponds. Reports of two studies by manufacturers assessing the cost of thermoelectric generators in large scale production are included in the appendix and several new concepts thermoelectric systems are presented. (WHK)

Jayadev, T. S.; Henderson, J.; Finegold, J.; Benson, D.

1979-08-01T23:59:59.000Z

209

Proceedings of the 25th intersociety energy conversion engineering conference  

SciTech Connect

This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

Nelson, P.A.; Schertz, W.W.; Till, R.H.

1990-01-01T23:59:59.000Z

210

Nanoscale thermal transport and the thermal conductance of interfaces  

E-Print Network (OSTI)

absorption depends on temperature of the nanotube · Assume heat capacity is comparable to graphite · Cooling conductance · Pump probe apparatus · Transient absorption ­ Carbon nanotubes and thermal transport at hard optical absorption of nanoparticles and nanotubes in liquid suspensions. ­ Measure the thermal relaxation

Braun, Paul

211

Ecological analysis of spatial and temporal patterns of pelagic ecosystem components potentially interacting with an OTEC (Ocean Thermal Energy Conversion) plant near Punta Tuna, Puerto Rico: physical characteristics. Final report  

SciTech Connect

This hydrographic study characterizes the Punta Tuna area as a potential site for an OTEC power plant. Seven cruises were conducted at approximately two month intervals. Each cruise included at least 22 hydrocast stations, six done as serial stations in a small area to reveal temporal and small scale variability. The results of the analysis of these data so far indicate a bi-seasonality in the dynamics. Mesoscale eddies and meanders are a common feature of the circulation pattern on Puerto Rico's southern coast. The time series studies have shown their existence of a very energetic internal wave field with relatively large amplitude waves at the diurnal and semi-diurnal tidal frequencies. The results in terms of an OTEC power plant indicate the thermal resource to be at least a 20C thermal gradient in the upper 100 m year round.

Lopez, J.M.; Tilly, L.J.

1983-01-01T23:59:59.000Z

212

Question detection in spoken conversations using textual conversations  

Science Conference Proceedings (OSTI)

We investigate the use of textual Internet conversations for detecting questions in spoken conversations. We compare the text-trained model with models trained on manually-labeled, domain-matched spoken utterances with and without prosodic features. ...

Anna Margolis; Mari Ostendorf

2011-06-01T23:59:59.000Z

213

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

Science Conference Proceedings (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

214

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

215

Session: Energy Conversion  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

216

Natural gas conversion process  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-01-01T23:59:59.000Z

217

DUF6 Conversion Facility EISs  

NLE Websites -- All DOE Office Websites (Extended Search)

Sign Me Up Search: OK Button DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home Conversion Facility EISs...

218

Conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents, For your convenience, you may convert energies online below. Or display factors as: ...

219

Energy Conversion/Fuel Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Sponsorship, MS&T Organization.

220

Conversion of Questionnaire Data  

SciTech Connect

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL; Elwood Jr, Robert H [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ocean energy conversion systems annual research report  

DOE Green Energy (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

222

LABORATORY VI ENERGY AND THERMAL PROCESSES  

E-Print Network (OSTI)

LABORATORY VI ENERGY AND THERMAL PROCESSES Lab VI - 1 The change of the internal energy of a system temperature by sweating to cool down. Running seems to be the conversion of chemical energy to thermal energy energy into thermal energy, you decide to make some measurements in the laboratory. To make

Minnesota, University of

223

THERMAL PERFORMANCE ANALYSIS FOR WSB DRUM  

SciTech Connect

The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum.

Lee, S

2008-06-26T23:59:59.000Z

224

Determination of Earths transient and equilibrium climate sensitivities from observations over the twentieth century: Strong dependence on assumed forcing  

Science Conference Proceedings (OSTI)

Relations among observed changes in global mean surface temperature, ocean heat content, ocean heating rate, and calculated radiative forcing, all as a function of time over the twentieth century, that are based on a two-compartment energy balance model, are used to determine key properties of Earth's climate system. The increase in heat content of the world ocean, obtained as the average of several recent compilations, is found to be linearly related to the increase in global temperature over the period 1965-2009; the slope, augmented to account for additional heat sinks, which is an effective heat capacity of the climate system, is 21.8 {+-} 2.1 W year m{sup -2} K{sup -1} (one sigma), equivalent to the heat capacity of 170 m of seawater (for the entire planet) or 240 m for the world ocean. The rate of planetary heat uptake, determined from the time derivative of ocean heat content, is found to be proportional to the increase in global temperature relative to the beginning of the twentieth century with proportionality coefficient 1.05 {+-} 0.06 W m{sup -2} K{sup -1}. Transient and equilibrium climate sensitivities were evaluated for six published data sets of forcing mainly by incremental greenhouse gases and aerosols over the twentieth century as calculated by radiation transfer models; these forcings ranged from 1.1 to 2.1 W m{sup -2}, spanning much of the range encompassed by the 2007 assessment of the Intergovernmental Panel on Climate Change (IPCC). For five of the six forcing data sets, a rather robust linear proportionality obtains between the observed increase in global temperature and the forcing, allowing transient sensitivity to be determined as the slope. Equilibrium sensitivities determined by two methods that account for the rate of planetary heat uptake range from 0.31 {+-} 0.02 to 1.32 {+-} 0.31 K (W m{sup -2}){sup -1} (CO{sub 2} doubling temperature 1.16 {+-} 0.09-4.9 {+-} 1.2 K), more than spanning the IPCC estimated 'likely' uncertainty range, and strongly anticorrelated with the forcing used to determine the sensitivities. Transient sensitivities, relevant to climate change on the multidecadal time scale, are considerably lower, 0.23 {+-} 0.01 to 0.51 {+-} 0.04 K (W m{sup -2}){sup -1}. The time constant characterizing the response of the upper ocean compartment of the climate system to perturbations is estimated as about 5 years, in broad agreement with other recent estimates, and much shorter than the time constant for thermal equilibration of the deep ocean, about 500 years.

Schwartz S. E.

2012-05-04T23:59:59.000Z

225

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

notably energy conversion. As research continues in thisnanowires for energy conversion. Chemical Reviews, 2010.for solar energy conversion. Physical Review Letters, 2004.

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

226

: Package gov.nist.nlpir.irf.conversion  

Science Conference Proceedings (OSTI)

gov.nist.nlpir.irf.conversion Classes Ascii2HtmlConverter ConversionRule ConversionRules IrfConverter Sgml2AppDocConverter.

227

Thermal stability of nano-structured selective emitters for thermophotovoltaic systems  

E-Print Network (OSTI)

A fundamental challenge in solar-thermal-electrical energy conversion is the thermal stability of materials and devices at high operational temperatures. This study focuses on the thermal stability of tungsten selective ...

Lee, Heon Ju, 1977-

2012-01-01T23:59:59.000Z

228

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

229

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

230

Nanowire silicon as a material for thermoelectric energy conversion  

Science Conference Proceedings (OSTI)

In order to use silicon as an efficient thermoelectric (TE) material for TE energy conversion, it is necessary to reduce its relatively high thermal conductivity, while maintaining the high power factor. This can be done by structuring silicon into 1-D ...

A. Stranz; J. Khler; S. Merzsch; A. Waag; E. Peiner

2012-08-01T23:59:59.000Z

231

Magnetron-sputter deposition of Fe{sub 3}S{sub 4} thin films and their conversion into pyrite (FeS{sub 2}) by thermal sulfurization for photovoltaic applications  

SciTech Connect

The authors report on the fabrication of FeS{sub 2} (pyrite) thin films by sulfurizing Fe{sub 3}S{sub 4} that were deposited by direct current magnetron sputtering at room temperature. Under the selected sputtering conditions, Fe{sub 3}S{sub 4} nanocrystal films are obtained and the nanocrystals tend to locally cluster and closely pack into ricelike nanoparticles with an increase in film thickness. Meanwhile, the film tends to crack when the film thickness is increased over {approx}1.3 {mu}m. The film cracking can be effectively suppressed by an introduction of a 3-nm Cu intermediate layer prior to Fe{sub 3}S{sub 4} deposition. However, an introduction of a 3-nm Al intermediate layer tends to enhance the film cracking. By post-growth thermal sulfurization of the Fe{sub 3}S{sub 4} thin films in a tube-furnace, FeS{sub 2} with high phase purity, as determined by using x ray diffraction, is obtained. Optical absorption spectroscopy was employed to characterize the resultant FeS{sub 2} thin films, which revealed two absorption edges at 0.9 and 1.2 eV, respectively. These two absorption edges are assigned to the direct bandgap (0.9 eV) and the indirect allowed transitions (1.2 eV) of FeS{sub 2}, respectively.

Liu Hongfei; Chi Dongzhi [Institute of Materials Research and Engineering (IMRE), A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

2012-07-15T23:59:59.000Z

232

Basis of conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Basis of conversion factors for energy equivalents Conversion factors for energy equivalents are derived from the following relations: ...

233

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents Return to online conversions. Next page of energy equivalents. Definition of uncertainty ...

234

Catalytic Conversion of Bioethanol to Hydrocarbons ...  

Conventional biomass to hydrocarbon conversion is generally not commercially feasible, due to costs of the conversion process.

235

Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion  

DOE Green Energy (OSTI)

This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

Per F. Peterson

2010-03-01T23:59:59.000Z

236

Evaluation of ethane as a power conversion system working fluid for fast reactors  

E-Print Network (OSTI)

A supercritical ethane working fluid Brayton power conversion system is evaluated as an alternative to carbon dioxide. The HSC chemical kinetics code was used to study thermal dissociation and chemical interactions for ...

Perez, Jeffrey A

2008-01-01T23:59:59.000Z

237

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

Newton, M. A.

1997-02-01T23:59:59.000Z

238

Quantum optical waveform conversion  

E-Print Network (OSTI)

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

Kielpinski, D; Wiseman, HM

2010-01-01T23:59:59.000Z

239

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

Science Conference Proceedings (OSTI)

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30T23:59:59.000Z

240

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wideband Wavelength Conversion Using Cavity ...  

Science Conference Proceedings (OSTI)

... The researchers use the interaction of two ... bands that are frequently used in telecommunications. ... conversion should be possible using the same ...

2013-08-27T23:59:59.000Z

242

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from the EERE Bioenergy Technologies Office. Thermochemical Conversion Processes Heat energy and chemical catalysts can be used to break down biomass into intermediate compounds...

243

PRIMARY QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

Reactions in,Bacterial Photosynthesis. I, Nature of lightReactions in Bacterial Photosynthesis. 111. Reactions ofQUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin and G. M.

Calvin, Melvin; Androes, G.M.

1962-01-01T23:59:59.000Z

244

Concentrating Solar Thermal Technology  

Science Conference Proceedings (OSTI)

After nearly 20 years of commercial dormancy, concentrating solar thermal (CST) power development and investment activity is heating up globally. Encouraged by volatile energy prices, carbon markets, and renewable-friendly policies, an increasing number of established companies, newcomers, utilities, and government agencies are planning to deploy CST systems to tap the technologies' improving conversion efficiencies and low-cost electricity production potential. This renewable energy technology perspecti...

2009-03-27T23:59:59.000Z

245

SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Thermionic Solar Next-Generation Thermionic Solar Energy Conversion to someone by E-mail Share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Facebook Tweet about SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Twitter Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Google Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Delicious Rank SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Digg Find More places to share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload

246

Alternative Fuels Data Center: Conversion Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversion Regulations Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on AddThis.com... Conversion Regulations All vehicle and engine conversions must meet standards instituted by the U.S. Environmental Protection Agency (EPA), the National Highway Traffic Safety Administration (NHTSA), and state agencies like the California Air Resources Board (CARB).

247

MEDICAL IMAGE CONVERSION Peter Stanchev  

E-Print Network (OSTI)

MEDICAL IMAGE CONVERSION Peter Stanchev Institute of Mathematics, Bulgarian Academy of Sciences with the problem of converting medical images from one format to another. In solving it the structure of the most commonly used medical image formats are studied and analysed. A mechanism for medical image file conversion

Stanchev, Peter

248

Visualization components for persistent conversations  

Science Conference Proceedings (OSTI)

An appropriately designed interface to persistent, threaded conversations could reinforce socially beneficial behavior by prominently featuring how frequently and to what degree each user exhibits such behaviors. Based on the data generated by the Netscan ... Keywords: Usenet, asynchronous threaded discussions, newsgroup, persistent conversation, social cyberspaces, visualization

Marc A. Smith; Andrew T. Fiore

2001-03-01T23:59:59.000Z

249

Alcohol fuel conversion apparatus  

Science Conference Proceedings (OSTI)

This patent describes an alcohol fuel conversion apparatus for internal combustion engines comprising: fuel storage means for containing an alcohol fuel; primary heat exchange means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchange means; a heat source for heating the primary heat exchange means; pressure relief valve means in closed fluid communication with the primary heat exchange means for releasing heated pressurized alcohol into an expansion chamber; converter means including the expansion chamber in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; fuel injection means in fluid communication with the converter means for injecting vaporized alcohol into the cylinders of an internal combustion engine for mixing with air within the cylinders for proper combustion; and pump means for pressurized pumping of alcohol from the 23 fuel storage means to the primary heat exchanger means, converter means, fuel injector means, and to the engine.

Carroll, B.I.

1987-12-08T23:59:59.000Z

250

$?- e$ Conversion With Four Generations  

E-Print Network (OSTI)

We study $\\mu - e$ conversion with sequential four generations. A large mass for the fourth generation neutrino can enhance the conversion rate by orders of magnitude. We compare constraints obtained from $\\mu - e$ conversion using experimental bounds on various nuclei with those from $\\mu \\to e \\gamma$ and $\\mu \\to e\\bar e e$. We find that the current bound from $\\mu - e$ conversion with Au puts the most stringent constraint in this model. The relevant flavor changing parameter $\\lambda_{\\mu e} = V^*_{\\mu 4}V_{e4}^{}$ is constrained to be less than $1.6\\times 10^{-5}$ for the fourth generation neutrino mass larger than 100 GeV. Implications for future $\\mu -e$ conversion, $\\mu \\to e\\gamma$ and $\\mu \\to e\\bar e e$ experiments are discussed.

N. G. Deshpande; T. Enkhbat; T. Fukuyama; X. -G. He; L. -H. Tsai; K. Tsumura

2011-06-25T23:59:59.000Z

251

Soil Thermal Resistivity and Thermal Stability Measuring Instrument: Volume 5: Abridged Manual for Use of the Statistical Weather Analysis Program  

Science Conference Proceedings (OSTI)

Numerous considerations influence the thermal design of an underground power cable, including the soil thermal resistivity, thermal diffusivity, and thermal stability. Each of these properties is a function of soil moisture which is, in turn, a function of past weather, soil composition, and biological burden. The Neher-McGrath formalism has been widely used for thermal cable design. However, this formalism assumes knowledge of soil thermal properties. For design purposes, these parameters should be trea...

1981-12-01T23:59:59.000Z

252

Hydrothermal Energy Conversion Technology  

SciTech Connect

The goal of the Hydrothermal Program is to develop concepts which allow better utilization of geothermal energy to reduce the life-cycle cost of producing electricity from liquid-dominated, hydrothermal resources. Research in the program is currently ongoing in three areas: (1) Heat Cycle Research, which is looking at methods to increase binary plant efficiencies; (2) Materials Development, which is developing materials for use in geothermal associated environments; and (3) Advanced Brine Chemistry, with work taking place in both the brine chemistry modeling area and waste disposal area. The presentations during this session reviewed the accomplishments and activities taking place in the hydrothermal energy conversion program. Lawrence Kukacka, Brookhaven National Laboratory, discussed advancements being made to develop materials for use in geothermal applications. This research has identified a large number of potential materials for use in applications from pipe liners that inhibit scale buildup and reduce corrosion to elastomers for downhole use. Carl J. Bliem, Idaho National Engineering Laboratory, discussed preparations currently underway to conduct field investigations of the condensation behavior of supersaturated turbine expansions. The research will evaluate whether the projected 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Eugene T. Premuzic, Brookhaven National Laboratory, discussed advancements being made using biotechnology for treatment of geothermal residual waste; the various process options were discussed in terms of biotreatment variables. A treatment scenario and potential disposal costs were presented. John H. Weare, University of California, San Diego, discussed the present capabilities of the brine chemistry model he has developed for geothermal applications and the information it can provide a user. This model is available to industry. The accomplishments from the research projects presented in this session have been many. It is hoped that these accomplishments can be integrated into industrial geothermal power plant sites to assist in realizing the goal of reducing the cost of energy produced from the geothermal resource.

Robertson, David W.; LaSala, Raymond J.

1992-03-24T23:59:59.000Z

253

Biological conversion of biomass to methane. Quarterly progress report, September 1--November 30, 1978  

DOE Green Energy (OSTI)

The viability of wheat straw as a feedstock for methane production by anaerobic digestion was investigated and the results obtained compared with that obtained with corn stover. Poor conversion was obtained with the wheat straw under thermophilic conditions, but better than that obtained with corn. In addition the residue has no value as an animal feed. A mild thermochemical pretreatment of the corn prior to anaerobic digestion improved the conversion efficiency and the value of the residue as an animal feed. It is assumed that similar pretreatment of wheat straw would improve its conversion efficiency. Slurry and pumping characteristics of wheat straw particles were reported. (JSR)

Pfeffer, J T

1978-12-01T23:59:59.000Z

254

Management and Uses Conversion Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Conversion DOE is planning to build two depleted UF6 conversion facilities, and site-specific environmental impact statements (EISs) to evaluate project alternatives. The Final Plan for Conversion and the Programmatic EIS The eventual disposition of depleted UF6 remains the subject of considerable interest within the U.S. Congress, and among concerned citizens and other stakeholders. Congress stated its intentions in Public Law (P. L.) 105-204, signed by the President in July 1998. P. L. 105-204 required DOE to develop a plan to build two depleted UF6 conversion facilities, one each at Portsmouth, Ohio, and Paducah, Kentucky. DOE submitted the required plan, Final Plan for the Conversion of Depleted Uranium Hexafluoride, to Congress in July 1999. This document provided a discussion of DOE's technical approach and schedule to implement this project. Although much of the information provided in this report is still valid, a few aspects of this plan have changed since its publication.

255

Barn ConversionBarn Conversion DiscussionDiscussion  

E-Print Network (OSTI)

B.G.S.A.C Stats ·· 2500 square foot insulated pole barn2500 square foot insulated pole barn ·· concrete neededhouse the system needed ·· Is the conversion cost worthIs the conversion cost worth while when compared installedNo vapor barrier installed ·· Rains in barnRains in barn ·· Up to 75 gallons per dayUp to 75

256

EPA Redesigns Conversion Certification Policies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EPA Redesigns EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's Enforcement Office. The meeting, attended by representatives of more than 60 organizations, was held to discuss actions addressing AFV emission certification. Specifically, topics included * Conversion emissions perfor- mance data * Status of environmental laws pertaining to alternative fuel

257

Wireless connection instructions -Windows This document outlines the procedure for setting up Windows7, Vista or XP to use the College wireless network. It assumes  

E-Print Network (OSTI)

Wireless connection instructions - Windows This document outlines the procedure for setting up Windows7, Vista or XP to use the College wireless network. It assumes that you have already connected your Wireless Networks window Registering your computer Start your web browser, ie. Internet Explorer Your

Goldschmidt, Christina

258

Paducah DUF6 Conversion Final EIS - Chapter 2: Description and Comparison of Alternatives  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS 2 DESCRIPTION AND COMPARISON OF ALTERNATIVES Alternatives for building and operating a DUF 6 conversion facility at the Paducah site were evaluated for their potential impacts on the human and natural environment. This EIS considers the proposed action of building and operating a conversion facility and a no action alternative. Under the proposed action, three action alternatives are considered that focus on where to construct the conversion facility within the Paducah site. An option of shipping cylinders currently stored at ETTP to the Paducah facility is also considered. The no action alternative assumes that a conversion facility is not built at Paducah and that the DUF 6 cylinders at Paducah would continue to be stored indefinitely in a manner consistent with

259

Alternative Fuels Data Center: Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversions on AddThis.com... Vehicle Conversions Photo of converted to run on propane. What kinds of conversions are available? Natural Gas Propane Electric Hybrid Ethanol An aftermarket conversion is a vehicle or engine modified to operate using

260

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tidal Conversion by Supercritical Topography  

E-Print Network (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

Balmforth, Neil J.

262

Conversion to the Metric System  

U.S. Energy Information Administration (EIA)

Appendix C Conversion to the Metric System Public Law 100418, the Omnibus Trade and Competitiveness Act of 1988, states: It is the declared policy of the United ...

263

Tidal Conversion by Supercritical Topography  

Science Conference Proceedings (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of periodic obstructions; a ...

Neil J. Balmforth; Thomas Peacock

2009-08-01T23:59:59.000Z

264

Conversion coefficients for superheavy elements  

E-Print Network (OSTI)

In this paper we report on internal conversion coefficients for Z = 111 to Z = 126 superheavy elements obtained from relativistic Dirac-Fock (DF) calculations. The effect of the atomic vacancy created during the conversion process has been taken into account using the so called "Frozen Orbital" approximation. The selection of this atomic model is supported by our recent comparison of experimental and theoretical conversion coefficients across a wide range of nuclei. The atomic masses, valence shell electron configurations, and theoretical atomic binding energies required for the calculations were adopted from a critical evaluation of the published data. The new conversion coefficient data tables presented here cover all atomic shells, transition energies from 1 keV up to 6000 keV, and multipole orders of 1 to 5. A similar approach was used in our previous calculations [1] for Z = 5 - 110.

T. Kibdi; M. B. Trzhaskovskaya; M. Gupta; A. E. Stuchbery

2011-03-03T23:59:59.000Z

265

Cosmopolitanism - Conversation with Stuart Hall  

E-Print Network (OSTI)

Conversation between Stuart Hall and Pnina Werbner on the theme of Cosmopolitanism (to be shown at the Association of Social Anthropologists Silver Jubilee conference in 2006), in March 2006...

Hall, Stuart

2006-09-27T23:59:59.000Z

266

Unsupervised modeling of Twitter conversations  

Science Conference Proceedings (OSTI)

We propose the first unsupervised approach to the problem of modeling dialogue acts in an open domain. Trained on a corpus of noisy Twitter conversations, our method discovers dialogue acts by clustering raw utterances. Because it accounts for the sequential ...

Alan Ritter; Colin Cherry; Bill Dolan

2010-06-01T23:59:59.000Z

267

Biological conversion of synthesis gas  

DOE Green Energy (OSTI)

A continuous stirred tank reactor with and without sulfur recovery has been operated using Chlorobium thiosulfatophilum for the conversion of H[sub 2]S to elemental sulfur. In operating the reactor system with sulfur recovery, a gas retention time of 40 min was required to obtain a 100 percent conversion of H[sub 2]S to elemental sulfur. Essentially no SO[sub 4][sup 2[minus

Clausen, E.C.

1993-04-10T23:59:59.000Z

268

Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)  

DOE Green Energy (OSTI)

The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

Pablo Rubiolo, Principal Investigator

2003-03-21T23:59:59.000Z

269

Apparatus and method for pyroelectric power conversion  

DOE Patents (OSTI)

Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected.

Olsen, Randall B. (Olivenhain, CA)

1984-01-01T23:59:59.000Z

270

Apparatus and method for pyroelectric power conversion  

DOE Patents (OSTI)

Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance are disclosed. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected. 12 figs.

Olsen, R.B.

1984-01-10T23:59:59.000Z

271

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

components and moving parts, such as pumps, heat exchangers,as heat exchangers and pumps. The numerous moving parts alsopumps and heat exchangers as well as the large number of moving parts.

Lim, Hyuck

2011-01-01T23:59:59.000Z

272

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

industrial users. Costs and per kWh increased from to 2.7rf-30, 1978, the average cost per kWh was 6.09i for residential

Sands, M. D.

2011-01-01T23:59:59.000Z

273

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

District (Hawaii) Electrical Power Grid--Hawaii . . . . . .Electrical Power Grid--Puerto Rico . . . . Ammonia andocean water to produce electrical power by means of gas or

Sands, M. D.

2011-01-01T23:59:59.000Z

274

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

various types of Stirling engine have been developed, whichThermogalvanic cell Stirling Engine ORC Internal Combustion

Lim, Hyuck

2011-01-01T23:59:59.000Z

275

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

cable contractors, tropical cyclones and geology. Dept. ofpressure center. Tropical cyclones are usually accompaniedor plankton. case of 'TROPICAL CYCLONE TUNICATES TURBIDITY

Sands, M. D.

2011-01-01T23:59:59.000Z

276

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

distur- bances due to carbon dioxide releases and sea-how- ever, the carbon dioxide releases from large- scalewith other man-induced carbon dioxide releases to result in

Sands, M.Dale

2013-01-01T23:59:59.000Z

277

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Degradation Processes for Chlorine in Saline Waters .92-101. Fate and effects of chlorine Bogdanov, D.V. , V.A.control alternatives to chlorine for power plant cooling

Sands, M. D.

2011-01-01T23:59:59.000Z

278

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

and commercialization and a DOE requirement for the SAR. TheDOE Operations (SAR), established the uniform requirement todocument requirements and updating schedule of the SAR (DOE,

Sands, M. D.

2011-01-01T23:59:59.000Z

279

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

proposed or existing oil or gas exploration areas, site-useOTEC Liability - Gas and oil exploration and exploitation onor natural gas; however, some oil exploration is beginning,

Sands, M. D.

2011-01-01T23:59:59.000Z

280

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Mahkamov, Renewable and Sustainable Energy Reviews, Vol. 11(S. Wongwises, Renewable and Sustainable Energy Reviews, Vol.E. Barbier, Renewable Sustainable Energy Review, Vol. 6, pp.

Lim, Hyuck

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Ocean Thermal Energy Conversion - Energy Explained, Your Guide To ...  

U.S. Energy Information Administration (EIA)

Landfill Gas and Biogas; Biomass & the Environment See also: Biofuels. Biofuels: Ethanol & Biodiesel. Ethanol; Use of Ethanol; Ethanol & the Environment; Biodiesel;

282

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

System Tube-in-She11 Heat Exchanger . . . . . . . . .possible Plate-Type Heat Exchanger Estimated Relationship~res isolation of the heat and exchanger module, purging of

Sands, M. D.

2011-01-01T23:59:59.000Z

283

Ocean thermal energy conversion (OTEC) power system development. Conceptual design  

DOE Green Energy (OSTI)

The conceptual design of a power system for application to the OTEC 100-MWe Demonstration Plant is presented. System modeling, design, and performance are described in detail. Materials considerations, module assembly, and cost considerations are discussed. Appendices include: A) systems analysis, B) general arrangements, C) system equipment, D) ammonia system material considerations; E) ammonia cycle, F) auxiliary subsystems, G) DACS availability analysis, H) heat exchanger supporting data, I) rotating machinery, and J) platform influences. (WHK)

Not Available

1978-01-30T23:59:59.000Z

284

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

SciTech Connect

This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.

Sands, M. D.

1980-01-01T23:59:59.000Z

285

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

by means of gas or steam turbines. temperature The minimalby means of gas or steam turbines. The minimal operationalproblems. present steam turbine hardware by a factor of 11

Sands, M. D.

2011-01-01T23:59:59.000Z

286

Open cycle ocean thermal energy conversion system structure  

DOE Patents (OSTI)

A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

287

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

in size, and will produce baseload systems primarily land-and intended power use (baseload electricity or at-seathe ultimate use of providing baseload products, ammonia and

Sands, M. D.

2011-01-01T23:59:59.000Z

288

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

and intended power use (baseload electri- city or at-seaship), and power usages (baseload electricity, ammonia andship con- ~lguratlons. For baseload power production, the

Sands, M.Dale

2013-01-01T23:59:59.000Z

289

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

various types of Stirling engine have been developed, whichThermogalvanic cell Stirling Engine ORC Internal Combustionof Sterling engine [17] year inventor Robert Stirling John

Lim, Hyuck

2011-01-01T23:59:59.000Z

290

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

fauna associated with offshore platforms 1n the northeasternrisks and safety of offshore drilling platforms. ation andPlatform Effects Attraction - Fish congregate around offshore

Sands, M. D.

2011-01-01T23:59:59.000Z

291

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Electrical Power Grid--Puerto Rico . . . . Ammonia andin the coastal waters of Puerto Rico. Unpublished. HarborAuthority, San Juan, Puerto Rico. Markel, A.L. VA. Personal

Sands, M. D.

2011-01-01T23:59:59.000Z

292

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

of Amorphous Gallium Indium Zinc Oxide NonvolatileAmorphous gallium indium zinc oxide thin film transistors:Effects in Amorphous GalliumIndium Zinc- xv Oxide Thin Film

Lim, Hyuck

2011-01-01T23:59:59.000Z

293

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

D. L. 1979. A review of water intake screening options forcapacity of cooling water intake structures for minimizingvessels. a. Warm and Cold Water Intakes Volumes - A single

Sands, M. D.

2011-01-01T23:59:59.000Z

294

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

power station on northeastern Long Island Sound, USA. Marinepower cycle will entrain and impinge members of the marinesuch as a power plant. A species of marine plankton

Sands, M. D.

2011-01-01T23:59:59.000Z

295

Fast Conversion Algorithms for Orthogonal Polynomials - Computer ...  

E-Print Network (OSTI)

Nov 13, 2008 ... a known conversion algorithm from an arbitrary orthogonal basis to the ... Fast algorithms, transposed algorithms, basis conversion, orthogonal.

296

Photocatalytic Conversion of Carbon Dioxide to Methanol.  

E-Print Network (OSTI)

??The photocatalytic conversion of carbon dioxide (CO2) to methanol was investigated. The procedure for the carbon dioxide conversion was carried out using a small scale (more)

Okpo, Emmanuel

2009-01-01T23:59:59.000Z

297

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion to someone by E-mail Share Vehicle Technologies Office: Solid State Energy Conversion on Facebook Tweet about Vehicle Technologies Office: Solid State Energy...

298

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Energy Conversion The Solid State Energy Conversion R&D activity is focused on developing advanced thermoelectric technologies for utilizing engine waste heat by...

299

Documents: Disposal of DUF6 Conversion Products  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion Products Search Documents: Search PDF Documents View a list of all documents Disposal of DUF6 Conversion Products PDF Icon Engineering Analysis for Disposal of...

300

THERMAL RECOVERY  

NLE Websites -- All DOE Office Websites (Extended Search)

THERMAL RECOVERY Thermal recovery comprises the techniques of steamflooding, cyclic steam stimulation, and in situ combustion. In steamflooding, high-temperature steam is injected...

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

302

Reactor technology: power conversion systems and reactor operation and maintenance  

SciTech Connect

The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He/sup 3/ reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored.

Powell, J.R.

1977-01-01T23:59:59.000Z

303

Quiescent thermal emission from neutron stars in LMXBs  

E-Print Network (OSTI)

The quiescent thermal emission from neutron stars in low mass X-ray binaries after active periods of intense activity in x-rays (outbursts) has been monitored. The theoretical modeling of the thermal relaxation of the neutron star crust may be used to establish constraints on the crust and envelope composition and transport properties, depending on the astrophysical scenarios assumed. We perform numerical simulations of the neutron star crust thermal evolution and compare them with inferred surface temperatures for five sources: MXB 1659-29, KS 1731-260, EXO 0748-676, XTE J1701-462 and IGR J17480-2446. We also present stationary envelope models to be used as a boundary condition for the crustal cooling models. We obtain a relation between the mass accretion rate and the temperature reached at the crust-envelope interface at the end of the active phase that accounts for early observations and reduces the number of free parameters of the problem. With this relation we are also able to set constraints to the envelope composition depending on the accretion mass rate. We find that the evolution of MXB 1659-29, KS 1731-260 and EXO 0748-676 can be well described within a deep crustal cooling scenario. Conversely, we find that other two sources can only be explained with models beyond crustal cooling. For the peculiar emission of XTE J1701-462 we propose alternative scenarios like residual accretion during quiescence, additional heat sources in the outer crust and/or thermal isolation of the inner crust due to a buried magnetic field. We also explain the very recent reported temperature of IGR J17480-2446 with an extra heat deposition in the outer crust coming from shallow sources.

Anabela Turlione; Deborah N. Aguilera; Jos A. Pons

2013-09-16T23:59:59.000Z

304

Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion  

DOE Green Energy (OSTI)

Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

LIN, SHAWN-YU; FLEMING, JAMES G.; MORENO, JOSEPH A.

2003-03-01T23:59:59.000Z

305

Energy Conversion Photovoltaic, Concentrating Solar Power, and ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion Photovoltaic, Concentrating Solar Power, and ...

306

Biochemical Conversion Pilot Plant (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

307

Frequency Conversion of Entangled State  

E-Print Network (OSTI)

The quantum characteristics of sum-frequency process in an optical cavity with an input signal optical beam, which is a half of entangled optical beams, are analyzed. The calculated results show that the quantum properties of the signal beam can be maintained after its frequency is conversed during the intracavity nonlinear optical interaction. The frequency-conversed output signal beam is still in an entangled state with the retained other half of initial entangled beams. The resultant quantum correlation spectra and the parametric dependences of the correlations on the initial squeezing factor, the optical losses and the pump power of the sum-frequency cavity are calculated. The proposed system for the frequency conversion of entangled state can be used in quantum communication network and the calculated results can provide direct references for the design of experimental systems.

Aihong Tan; Xiaojun Jia; Changde Xie

2006-03-01T23:59:59.000Z

308

Comparison of Geothermal Power Conversion Cycles  

SciTech Connect

Geothermal power conversion cycles are compared with respect to recovery of the available wellhead power. The cycles compared are flash steam, in which steam turbines are driven by steam separated from one or more flash states; binary, in which heat is transferred from flashed steam to an organic turbine cycle; and dual steam, in which two-phase expanders are driven by the flashing steam-brine mixture and steam turbines by the separated steam. Expander efficiencies assumed are 0.7 for steam turbines, 0.8 for organic turbines, and 0.6 for two-phase expanders. The fraction of available wellhead power delivered by each cycle is found to be about the same at all brine temperatures: 0.65 with one stage and 0.7 with four stages for dual stream; 0.4 with one stage and 0.6 with four stages for flash steam; 0.5 for binary; and 0.3 with one stage and 0.5 with four stages for flash binary.

Elliott, David G.

1976-12-01T23:59:59.000Z

309

Solid State Energy Conversion Alliance (SECA) Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Publications NETL Publications 2001 Conference Proceedings Solid State Energy Conversion Alliance (SECA) Workshop March 29-30, 2001 Table of Contents Disclaimer Papers and Presentations Plenary Session Selected Presentations on Current DOE Work Supporting SECA Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

310

Solar-thermal technology  

DOE Green Energy (OSTI)

Solar-thermal technology converts sunlight into thermal energy. It stands alongside other solar technologies including solar-electric and photovoltaic technologies, both of which convert sunlight into electricity. Photovoltaic technology converts by direct conversion, and solar-electric converts by using sunlight`s thermal energy in thermodynamic power cycles. The numerous up-and-running solar energy systems prove solar-thermal technology works. But when is it cost-effective, and how can HVAC engineers and facility owners quickly identify cost-effective applications? This article addresses these questions by guiding the reader through the basics of solar-thermal technology. The first section provides an overview of today`s technology including discussions of collectors and typical systems. The next section presents an easy method for identifying potentially cost-effective applications. This section also identifies sources for obtaining more information on the technology--collector ratings and performance, solar manufacturers, and solar design and analysis tools. The article discusses only those collectors and systems that are most often used. Many others are on the market--the article does not, by omission, mean to infer that one is better than the other.

Bennett, C. [Sandia National Labs., Albuquerque, NM (United States)

1995-09-01T23:59:59.000Z

311

Conversion of the Barotropic Tide  

Science Conference Proceedings (OSTI)

Using linear wave theory, the rate at which energy is converted into internal gravity waves by the interaction of the barotropic tide with topography in an ocean is calculated. Bell's formula for the conversion rate is extended to the case of an ...

Stefan G. Llewellyn Smith; W. R. Young

2002-05-01T23:59:59.000Z

312

Energy Conversion and Storage Program  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

313

Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices  

DOE Patents (OSTI)

Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

2000-01-01T23:59:59.000Z

314

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

315

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

316

Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion  

SciTech Connect

Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

2011-05-28T23:59:59.000Z

317

Implications of Fast Reactor Transuranic Conversion Ratio  

SciTech Connect

Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (burners) do not have blankets; the cases above CR=1 (breeders) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is attractive for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

2010-11-01T23:59:59.000Z

318

Direct conversion technology: Annual summary report CY 1988  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.

Massier, P.F.; Bankston, C.P.; Fabris, G.; Kirol, L.D.

1988-12-01T23:59:59.000Z

319

BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MAGNETOHYDRODYNAMIC PLASMA  

SciTech Connect

Alfven waves may be generated via mode conversion from fast magnetoacoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helioseismology. In active regions this reflection typically occurs high enough that the Alfven speed a greatly exceeds the sound speed c, well above the a = c level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfven conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold magnetohydrodynamic model c {yields} 0. This provides a benchmark for fast-to-Alfven mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfven speed profile with density scale height h, the Alfven conversion coefficient depends on three variables only: the dimensionless transverse-to-the-stratification wavenumber {kappa} = kh, the magnetic field inclination from the stratification direction {theta}, and the polarization angle {phi} of the wavevector relative to the plane containing the stratification and magnetic field directions. We present an extensive exploration of mode conversion in this parameter space and conclude that near-total conversion to outward-propagating Alfven waves typically occurs for small {theta} and large {phi} (80{sup 0}-90{sup 0}), though it is absent entirely when {theta} is exactly zero (vertical field). For wavenumbers of helioseismic interest, the conversion region is broad enough to encompass the whole chromosphere.

Cally, Paul S. [Monash Centre for Astrophysics and School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 (Australia); High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Hansen, Shelley C., E-mail: paul.cally@monash.edu, E-mail: shelley.hansen@monash.edu [Monash Centre for Astrophysics and School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 (Australia)

2011-09-10T23:59:59.000Z

320

SPS energy conversion and power management workshop. Final report  

Science Conference Proceedings (OSTI)

In 1977 a four year study, the concept Development and Evaluation Program, was initiated by the US Department of Energy and the National Aeronautics and Space Administration. As part of this program, a series of peer reviews were carried out within the technical community to allow available information on SPS to be sifted, examined and, if need be, challenged. The SPS Energy Conversion and Power Management Workshop, held in Huntsville, Alabama, February 5 to 7, 1980, was one of these reviews. The results of studies in this particular field were presented to an audience of carefully selected scientists and engineers. This first report summarizes the results of that peer review. It is not intended to be an exhaustive treatment of the subject. Rather, it is designed to look at the SPS energy conversion and power management options in breadth, not depth, to try to foresee any troublesome and/or potentially unresolvable problems and to identify the most promising areas for future research and development. Topics include photovoltaic conversion, solar thermal conversion, and electric power distribution processing and power management. (WHK)

Not Available

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Topping cycles and advanced conversion machinery for central power stations  

SciTech Connect

From thermal power conference; Pullman, Washington, USA (3 Oct 1973). The possibility of developing dynamic conversion machines for topping cycles --- expanders and turbines ---that might utilize refractory materials not previously applied to this purpose is investigated. A technological basis for topping cycle systems that will extend the conversion efficiency of central power stations to the range of 55 to 60% is provided. The performance of a small (500 cm/sup 3/ displacement) graphite helical rotor compressor-expander set operating on inert gas for nearly 300 hr at temperatures up to 1500 deg C and rotor speeds to 14,000 rpm is described. In a related program, turbine blades and sound monolithic bodies up to 36 in. characteristic dimension were fabricated of the refractory compounds silicon nitride (Si/sub 3/N/sub 4/) and silicon carbide (SiC), which are compatible with air and combustion products. The application of available materials and power-conversion technology to permit a significant improvement in energy conversion efficiency is discussed. The demonstration of this capability is proposed by devising topping cycle systems incorporating ceramic engines capable of extracting useful energy from combustion heat sources at conditions presently inaccessible. 12 references. (auth)

Mohr, P.B.; Rienecker, F.

1973-12-12T23:59:59.000Z

322

Thermal Density Functional Theory in Context  

E-Print Network (OSTI)

This chapter introduces thermal density functional theory, starting from the ground-state theory and assuming a background in quantum mechanics and statistical mechanics. We review the foundations of density functional theory (DFT) by illustrating some of its key reformulations. The basics of DFT for thermal ensembles are explained in this context, as are tools useful for analysis and development of approximations. We close by discussing some key ideas relating thermal DFT and the ground state. This review emphasizes thermal DFT's strengths as a consistent and general framework.

Pribram-Jones, Aurora; Gross, E K U; Burke, Kieron

2013-01-01T23:59:59.000Z

323

DUF6 Conversion Facility EIS Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Conversion Facility EISs Schedule The final EISs for the DUF6 Conversion Facilities have been completed, and are available through this web site. The RODs are...

324

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

325

EFFECT OF DENTAL POLYMER DEGREE OF CONVERSION ...  

Science Conference Proceedings (OSTI)

Effect of Dental Polymer Degree of Conversion on Oral Biofilms. Alison Kraigsley, Sheng Lin-Gibson, Nancy J. Lin. National ...

326

Conversion of Levulinic Acid to Methyl Tetrahydrofuran ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Conversion of Levulinic Acid to Methyl Tetrahydrofuran. Battelle ...

327

Energy Storage, Transport, and Conversion in CNST  

Science Conference Proceedings (OSTI)

Energy Storage, Transport, and Conversion in CNST. Nanotribology ... Theory and Modeling of Materials for Renewable Energy. Nanostructures ...

2013-05-02T23:59:59.000Z

328

Conversion of Levulinic Acid to Methyl Tetrahydrofuran ...  

Biomass and Biofuels Conversion of Levulinic Acid to Methyl Tetrahydrofuran Pacific Northwest National Laboratory. Contact PNNL About This Technology ...

329

Thermionic energy conversion (TEC) topping thermoelectrics  

DOE Green Energy (OSTI)

Long-respected international experts on thermoelectrics (Dixon, Ertl and Goldsmid supported by Ure) determine the probable maximum figure of merit (ZT) for fully matured thermoelectric generators as about unity from ordiary temperatures to 2000 K. Thus the maximum efficiency for fully matured thermoelectrics would be approximately 0.414 (l - r/sub T/)/(1.414 + r/sub T/) where r/sub T/ is the ratio of cold and hot junction temperatures. This limitation contrasts with the recent burst of enthusiasm for high-temperature thermoelectrics - based on calculated figures of merit and efficiencies that increase more and more rapidly with rising temperatures. Unfortunately these calculations neglect internal radiation effects which diminish thermoelectric figures of merit significantly at 1000 K and substantially at 2000 K: The effective thermal-conductivity contribution of intrathermoelectric radiative dissipation increases with the third power of temperature. Therefore the quotation from Thermoelectricy: Science and Engineering by Heikes and Ure apparently still prevails: ...thermoelectric devices appear difficult to extend in the direction of high temperature, while thermionic devices become inefficient at low temperature. Accordingly consideration of thermoelectric power generation with high-temperature heat sources should include utilization of TEC topping thermoelectrics. However TEC alone or TEC topping more-efficient conversion systems like steam or gas turbines, combined cycles or Stirling engines would be more desirable generally.

Morris, J.F.

1981-01-01T23:59:59.000Z

330

High resolution A/D conversion based on piecewise conversion at lower resolution  

SciTech Connect

Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

Terwilliger, Steve (Albuquerque, NM)

2012-06-05T23:59:59.000Z

331

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network (OSTI)

and Friedman, S. ,"Conversion of Anthraxylon - Kinetics ofiv- LBL 116807 CATALYTIC CONVERSION OF SOLVENT REFINED COALand Mechanisms of Coal Conversion to Clean Fuel,iI pre-

Tanner, K.I.

2010-01-01T23:59:59.000Z

332

STRIPPING OF PROCESS CONDENSATES FROM SOLID FUEL CONVERSION  

E-Print Network (OSTI)

Aqueous from Fossil Fuel Conversion Processes", ~l:;_J. _and Pollution Control in Coal Conversion Processes", U. s.By-Product Waters from Coal Conversion Processes", American

Hill, Joel David

2013-01-01T23:59:59.000Z

333

NREL: Biomass Research - Biochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

334

Biomass thermochemical conversion program: 1987 annual report  

DOE Green Energy (OSTI)

The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1988-01-01T23:59:59.000Z

335

Biomass thermochemical conversion program. 1985 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1986-01-01T23:59:59.000Z

336

Mode conversion studies in TFTR  

SciTech Connect

Mode converted Ion Bernstein Waves (IBW) have important potential applications in tokamak reactors. These applications include on or off axis electron heating and current drive and the channeling of alpha particle power for both current drive and increased reactivity. Efficient mode conversion electron heating with a low field side antenna, with both on and off axis power deposition, has been demonstrated for the first time in TFTR in D{sup 3}He-{sup 4}He plasmas. Up to 80% of the Ion Cyclotron Range of Frequency (ICRF) power is coupled to electrons at the mode conversion surface. Experiments during deuterium and tritium neutral beam injection (NBI) indicate that good mode conversion efficiency can be maintained during NBI if sufficient {sup 3}He is present. No evidence of strong alpha particle heating by the IBW is seen. Recent modeling indicates that if the mode converted IBW is preferentially excited off the horizontal midplane then the resultant high poloidal mode number wave may channel alpha particle power to either electrons or ions. In TFTR both the propagation of the IBW and its effect on the alpha particle population is being investigated. Experiments with 2 MW of ICRF power launched with {+-} 90{degree} antenna phasing for current drive show that electron heating and sawtooth activity depend strongly on the direction of the launched wave. The noninductively driven current could not be experimentally determined in these relatively high plasma current, short pulse discharges. Experiments at higher RF power and lower plasma current are planned to determine on and off axis current drive efficiency.

Majeski, R.; Fisch, N.J.; Adler, H.

1995-03-01T23:59:59.000Z

337

Conversion of ethane and of propane to higher olefin hydrocarbons  

DOE Green Energy (OSTI)

Purely thermal reactions for the conversion of ethane were carried out in an empty and in a quartz chip filled reactor over a temperature range of 300--800{degrees}C in the absence and presence of oxygen and oxygen plus water. Ethane alone shows no conversion below 600{degrees}C and some conversion to CH{sub 4} and very little C{sub 2}H{sub 4} at 700{degrees} and 800{degrees}C. Ethane and oxygen produce CO{sub 2} as the major product above 400{degrees}C. The additional presence of water does not appreciably change this picture. Converting ethane with oxygen and water over a Ca{sub 3}Ni{sub 1}K{sub 0.1} catalyst at very low space velocity gave increasing conversion with temperature, primarily CO{sub 2} production and a small amount of C{sub 3+} hydrocarbons. The CO{sub 2} production was decreased and slightly more C{sub 3} hydrocarbons were produced when the potassium concentration of the catalyst was increased. Activation energies have been calculated for the various ethane conversion reactions. It appears that the CaNiK oxide catalyst is not suited for oxidative ethane coupling at the conditions thus far investigated. The indications are that much shorter contact times are required to prevent oxidation of intermediates. Blank runs with propane and oxygen in the absence of a catalyst have shown significant reaction at temperatures as low as 400{degrees}C. 12 figs., 3 tabs.

Heinemann, H.; Somorjai, G.A.

1991-10-01T23:59:59.000Z

338

Formation of alcohol conversion catalysts  

DOE Patents (OSTI)

The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

Wachs, Israel E. (Bridgewater, NJ); Cai, Yeping (Louisville, KY)

2001-01-01T23:59:59.000Z

339

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1991-01-01T23:59:59.000Z

340

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Biomass Thermochemical Conversion Program: 1986 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1987-01-01T23:59:59.000Z

342

Enhancement of methane conversion using electric fields. Quarterly report, October 1--December 31, 1996  

DOE Green Energy (OSTI)

The goal of this project is the development of novel, economical, processes for the conversion of natural gas to more valuable projects such as methanol, ethylene and other organic oxygenates or higher hydrocarbons. The methodologies of the project are to investigate and develop low temperature electric discharges and electric field-enhanced catalysis for carrying out these conversions. In the case of low temperature discharges, the conversion is carried out at ambient temperature which in effect trades high temperature thermal energy for electric energy as the driving force for conversion. The low operating temperatures relax the thermodynamic constraints on the product distribution found at high temperature and also removes the requirements of large thermal masses required for current technologies. With the electric field-enhanced conversion, the operating temperatures are expected to be below those currently required for such processes as oxidative coupling, thereby allowing for a higher degree of catalytic selectivity while maintaining high activity. During this quarter the authors worked on some kinetics experiments and also did some catalyst screening, particularly looking for correlations with surface OH and oxygen groups to help determine the manner in which these surfaces alter the selectivities. On the dielectric systems they looked at power versus frequency and conversions relationships, worked on oxygen utilization and started building a short residence time reactor for studying intermediate formation and destruction.

NONE

1996-12-31T23:59:59.000Z

343

Biological conversion of synthesis gas  

DOE Green Energy (OSTI)

Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. R. rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H[sub 2]0 [yields] CO[sub 2] + H[sub 2]. C. thiosulfatophilum is also a H[sub 2]S and COS to elemental sulfur. The growth of R. rubrum may be satisfactorily carried out at 25[degree] and 30[degree]C, while CO uptake and thus the conversion of CO best occurs at temperatures of either 30[degree], 32[degree] or 34[degree]C. The rate of conversion of COs and H[sub 2]O to CO[sub 2] and H[sub 2]S may be modeled by a first order rate expression. The rate constant at 30[degree]C was found to be 0.243 h[sup [minus]1]. The growth of C. thiosulfatophilum may be modeled in terms of incoming light intensity using a Monod equation: [mu] = [sub 351] + I[sub o]/[sup 0.152]I[sub o]. Comparisons of the growth of R. rubrum and C. thiosulfatophilum shows that the specific growth rate of C. thiosulfatophilum is much higher at a given light intensity.

Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

1992-03-01T23:59:59.000Z

344

SNAP I POWER CONVERSION SYSTEM DEVELOPMENT. Period covered: February 1, 1957 to June 30, 1959  

SciTech Connect

Development of the SNAP I power conversion system is described. The system is designed to convert the thermal energy produced by the decay of radioisotopes into 500 watts of electrical energy by means of a mercury Funkine cycle. A list of specific accomplishments of the program is included. (J.R.D.)

Biering, R.C.; Carrell, D.D.; Grevstad, P.E.; Otto, N.P.; Picking, J.W.; Thur, G.M.; Wulf, R.F.

1960-06-20T23:59:59.000Z

345

Direct Energy Conversion for Fast Reactors  

DOE Green Energy (OSTI)

Thermoelectric generators (TEG) are a well-established technology for compact low power output long-life applications. Solid state TEGs are the technology of choice for many space missions and have also been used in remote earth-based applications. Since TEGs have no moving parts and can be hermetically sealed, there is the potential for nuclear reactor power systems using TEGs to be safe, reliable and resistant to proliferation. Such power units would be constructed in a manner that would provide decades of maintenance-free operation, thereby minimizing the possibility of compromising the system during routine maintenance operations. It should be possible to construct an efficient direct energy conversion cascade from an appropriate combination of solid-state thermoelectric generators, with each stage in the cascade optimized for a particular range of temperature. Performance of cascaded thermoelectric devices could be further enhanced by exploitation of compositionally graded p-n couples, as well as radial elements to maximize utilization of the heat flux. The Jet Propulsion Laboratory in Pasadena has recently reported segmented unicouples that operate between 300 and 975 K and have conversion efficiencies of 15 percent [Caillat, 2000]. TEGs are used in nuclear-fueled power sources for space exploration, in power sources for the military, and in electrical generators on diesel engines. Second, there is a wide variety of TE materials applicable to a broad range of temperatures. New materials may lead to new TEG designs with improved thermoelectric properties (i.e. ZT approaching 3) and significantly higher efficiencies than in designs using currently available materials. Computational materials science (CMS) has made sufficient progress and there is promise for using these techniques to reduce the time and cost requirements to develop such new TE material combinations. Recent advances in CMS, coupled with increased computational power afforded by the Accelerated Strategic Computing Initiative (ASCI), should improve the speed and decrease the cost of developing new TEGs. The system concept to be evaluated is shown in Figure 1. Liquid metal is used to transport heat away from the nuclear heat source and to the TEG. Air or liquid (water or a liquid metal) is used to transport heat away from the cold side of the TEG. Typical reactor coolants include sodium or eutectic mixtures of lead-bismuth. These are coolants that have been used to cool fast neutron reactors. Heat from the liquid metal coolant is rejected through the thermal electric materials, thereby producing electrical power directly. The temperature gradient could extend from as high as 1300 K to 300 K, although fast reactor structural materials (including those used to clad the fuel) currently used limit the high temperature to about 825K.

Brown, N.; Cooper, J.; Vogt, D.; Chapline, G.; Turchi, P.; Barbee Jr., T.; Farmer, J.

2000-07-01T23:59:59.000Z

346

Thermal tolerant avicelase from Acidothermus cellulolyticus  

DOE Patents (OSTI)

The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

Ding, Shi-You (Golden, CO); Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Himmel, Michael E. (Littleton, CO)

2008-04-29T23:59:59.000Z

347

Thermal tolerant avicelase from Acidothermus cellulolyticus  

DOE Patents (OSTI)

The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

Ding, Shi-You (Golden, CO); Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Himmel, Michael E. (Littleton, CO)

2009-05-26T23:59:59.000Z

348

A Review of Previous Research in Direct Energy Conversion Fission Reactors  

DOE Green Energy (OSTI)

From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this day, but there have been no recent significant programs to develop the technology.

DUONG,HENRY; POLANSKY,GARY F.; SANDERS,THOMAS L.; SIEGEL,MALCOLM D.

1999-09-22T23:59:59.000Z

349

SNAP I RADIOISOTOPE-FUELED TURBOELECTRIC POWER CONVERSION SYSTEM SUMMARY, JANUARY 1957 TO JUNE 1959  

SciTech Connect

The SNAP I development program was initiated to develop a 500-watt turboelectric power conversion system for space applications, Superheated mercury vapor was used as the heat conversion working fluid. The conversion system was to obtain thermal energy from the decay of a radioisotope fuel such as Ce/sup 144/ . Each of the major components and systems is summarized with respect to initial design objectives, development progress to the point of program termination, results obtained from tests and, where indicated, future growth potential. Reference is made to 10 other reports which describe, in detail, the major components of this power generating system. Also included is a bibliography of documented reports that are related to the power conversion system design criteria or system integration into a flight vehicle. (auth)

Dick, P.J.

1960-06-01T23:59:59.000Z

350

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

of Novel Energy Conversion and Storage Systems By Andrewof Novel Energy Conversion and Storage Systems by Andrew

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

351

Microturbine Power Conversion Technology Review  

SciTech Connect

In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to accept a varying dc voltage source. The study will also look at technical issues pertaining to the interconnection and coordinated/compatible operation of multiple microturbines. It is important to know today if modifications to provide improved operation and additional services will entail complete redesign, selected component changes, software modifications, or the addition of power storage devices. This project is designed to provide a strong technical foundation for determining present technical needs and identifying recommendations for future work.

Staunton, R.H.

2003-07-21T23:59:59.000Z

352

Conversion economics for Alaska North Slope natural gas  

SciTech Connect

For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

Thomas, C.P.; Robertson, E.P.

1995-07-01T23:59:59.000Z

353

Power conversion apparatus and method  

DOE Patents (OSTI)

A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

Su, Gui-Jia (Knoxville, TN)

2012-02-07T23:59:59.000Z

354

Cleanup of hydrocarbon conversion system  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of a substantially contaminant-free second hydrocarbon feed using a second reforming catalyst, in a catalytic-reforming system having equipment contaminated through contact with a contaminant-containing prior feed. It comprises: contacting the first hydrocarbon feed in the catalytic-reforming system at first reforming conditions with a first reforming catalyst until contaminant removal from the conversion system is substantially completed and the system is contaminant-free; thereafter replacing the first reforming catalyst in the contaminant-free catalytic-reforming system with a second reforming catalyst; and thereafter contacting the second hydrocarbon feed in the contaminant-free catalytic-reforming system with the second reforming catalyst at second reforming conditions.

Peer, R.L.; Russ, M.B.

1990-07-10T23:59:59.000Z

355

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

356

Documents: DUF6 Conversion EIS Supporting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion EIS DUF6 Conversion EIS Search Documents: Search PDF Documents View a list of all documents NEPA Compliance: DUF6 Conversion EIS Supporting Documents PDF Icon Notice of Change in National Environmental Policy Act (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project 38 KB details PDF Icon Press Release: DOE Seeks Public Input for Depleted Uranium Hexafluoride Environmental Impact Statement 90 KB details PDF Icon Advance Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 52 KB details PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program

357

DUF6 Conversion Facility EIS Alternatives  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

358

Introduction to Solar Photon Conversion  

SciTech Connect

The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

Nozik, A.; Miller, J.

2010-11-10T23:59:59.000Z

359

SUPERFAST THERMALIZATION OF PLASMA  

DOE Patents (OSTI)

A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

Chang, C.C.

1962-06-12T23:59:59.000Z

360

Frequency Conversion Interfaces for Photonic Quantum ...  

Science Conference Proceedings (OSTI)

... by nearly two orders of magnitude while maintaining equal conversion efficiency. ... focused on developing approaches to tune the energy levels of ...

2013-07-02T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Novel Nitride-Modified Multielectron Conversion Electrode ...  

Novel Nitride-Modified Multielectron Conversion Electrode Materials for Lithium Ion Batteries Note: The technology described above is an early stage opportunity.

362

Share of Conversion Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the early to mid 1980s, Atlantic Basin refiners rapidly expanded their conversion capacity as a consequence of the belief that world crude production would get ...

363

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically converting an alcohol ...

364

Direct Conversion of Biomass into Transportation Fuels  

Direct Conversion of Biomass into Transportation Fuels . Return to Marketing Summary. Skip footer navigation to end of page. Contacts | Web Site Policies | U.S ...

365

Conversion of Ultra High Performance Carbon Fiber  

Conversion of Ultra High Performance Carbon Fiber Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

366

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically ...

367

Converse, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Converse, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

368

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network (OSTI)

465 Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

369

Bioenergy Technologies Office: Processing and Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sugar-rich stream (hydrolyzate) is fed to organisms that ferment the sugars to fuel precursor molecules. The biochemical conversion platform also has a large stake in some...

370

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

371

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

372

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Previous page of energy equivalents. Definition of uncertainty notation eg, 123(45) | Basis of conversion factors for energy equivalents. Top. ...

373

Articulatory-based Speech Processing Methods for Foreign Accent Conversion  

E-Print Network (OSTI)

The objective of this dissertation is to develop speech processing methods that enable without altering their identity. We envision accent conversion primarily as a tool for pronunciation training, allowing non-native speakers to hear their native-accented selves. With this application in mind, we present two methods of accent conversion. The first assumes that the voice quality/identity of speech resides in the glottal excitation, while the linguistic content is contained in the vocal tract transfer function. Accent conversion is achieved by convolving the glottal excitation of a non-native speaker with the vocal tract transfer function of a native speaker. The result is perceived as 60 percent less accented, but it is no longer identified as the same individual. The second method of accent conversion selects segments of speech from a corpus of non-native speech based on their acoustic or articulatory similarity to segments from a native speaker. We predict that articulatory features provide a more speaker-independent representation of speech and are therefore better gauges of linguistic similarity across speakers. To test this hypothesis, we collected a custom database containing simultaneous recordings of speech and the positions of important articulators (e.g. lips, jaw, tongue) for a native and non-native speaker. Resequencing speech from a non-native speaker based on articulatory similarity with a native speaker achieved a 20 percent reduction in accent. The approach is particularly appealing for applications in pronunciation training because it modifies speech in a way that produces realistically achievable changes in accent (i.e., since the technique uses sounds already produced by the non-native speaker). A second contribution of this dissertation is the development of subjective and objective measures to assess the performance of accent conversion systems. This is a difficult problem because, in most cases, no ground truth exists. Subjective evaluation is further complicated by the interconnected relationship between accent and identity, but modifications of the stimuli (i.e. reverse speech and voice disguises) allow the two components to be separated. Algorithms to measure objectively accent, quality, and identity are shown to correlate well with their subjective counterparts.

Felps, Daniel

2011-08-01T23:59:59.000Z

374

Generative conversation tool for game writers  

Science Conference Proceedings (OSTI)

Conversation is an important part of many games, whether it is there to provide information or entertainment. In the current state of commercial game development, almost all conversation is hand-authored. Further, different authoring approaches are used ... Keywords: authoring tools, dialogue generation, game development

Christina R. Strong; Michael Mateas; Dave Grossman

2009-04-01T23:59:59.000Z

375

Heat to electricity thermoacoustic-magnetohydrodynamic conversion  

E-Print Network (OSTI)

In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

A. A. Castrejon-Pita; G. Huelsz

2006-10-12T23:59:59.000Z

376

1982 annual report: Biomass Thermochemical Conversion Program  

DOE Green Energy (OSTI)

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

377

1982 annual report: Biomass Thermochemical Conversion Program  

SciTech Connect

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

378

Catalytic conversion of light alkanes  

DOE Green Energy (OSTI)

The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

Lyons, J.E.

1992-06-30T23:59:59.000Z

379

Interdigitated photovoltaic power conversion device  

DOE Patents (OSTI)

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

1999-01-01T23:59:59.000Z

380

Interdigitated photovoltaic power conversion device  

DOE Patents (OSTI)

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

1999-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal Energy Transport in Nanostructured Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

382

A bimetal and electret-based converter for thermal energy harvesting  

E-Print Network (OSTI)

This paper presents a new device able to turn thermal gradients into electricity by using a bimetal-based heat engine coupled to an electrostatic converter. A two-steps conversion is performed: (i) a curved bimetallic strip turns the thermal gradient into a mechanical movement (thermal-to-mechanical conversion) that is (ii) then converted into electricity thanks to an electret-based electrostatic converter (mechanical-to-electrical conversion). An output power up to 5.5uW on a hot source at 50{\\deg}C has already been reached, validating this new concept.

Boisseau, S; Monfray, S; Puscasu, O; Skotnicki, T

2012-01-01T23:59:59.000Z

383

Solar energy conversion: an analysis of impacts on desert ecosystems. Final report, June 1, 1977-December 31, 1977  

DOE Green Energy (OSTI)

A research program is proposed to determine the response of desert ecosystems to the operation of various solar conversion systems. Existing solar powered irrigation pumping systems are described, as well as the 5 MW solar thermal test system at Albuquerque, the proposed 10 MW central receiver system at Barstow, and photovoltaic solar dispersed power systems. The theoretical ecological impacts of solar conversion system are described. Three major impact categories are discussed in detail: shading, wind deflection, and physical disturbance. Research needs necessary to evaluate biotic and abiotic changes in the desert ecosystem are delineated, and specific monitoring and manipulation programs for existing and proposed solar conversion sites are proposed.

Patten, D.C.

1978-05-01T23:59:59.000Z

384

Conversion system overview assessment. Volume II. Solar-wind hybrid systems  

SciTech Connect

Solar-wind hybrid systems are discussed. It is shown that there are large areas in the United States where solar and wind resources are comparable in magnitude and there are diurnal and seasonal complementarities which offer the potential for cost-effective hybrid systems. There are also distinct engineering features of the two conversion technologies. Electric power generation from wind is straightforward and cost-effective, whereas solar thermal conversion to generate heat is more cost-effective than to generate electricity. Examples of hybrid systems utilizing these features in total energy applications are presented.

Jayadev, T. S.; Henderson, J.; Bingham, C.

1979-08-01T23:59:59.000Z

385

Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

386

Thermal Properties  

Science Conference Proceedings (OSTI)

Table 12   Thermal conductivities of polymers and other materials...40,000 2.8 Aluminum 24,000 1.7 Steel 5000 0.35 Granite 350 0.02 Crown glass (75 wt% silica) 90 0.006 Source: Ref 4...

387

Utilizing Nature's Designs for Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

388

Energy Conversion & Storage Program, 1993 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1994-06-01T23:59:59.000Z

389

Energy conversion & storage program. 1994 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1995-04-01T23:59:59.000Z

390

Paducah DUF6 Conversion Final EIS - Appendix G: Consultation Letters  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX G: CONSULTATION LETTERS Consultation Letters G-2 Paducah DUF 6 Conversion Final EIS Consultation Letters G-3 Paducah DUF 6 Conversion Final EIS U.S. DEPARTMENT OF ENERGY LETTERS TO STATE AGENCIES AND RECOGNIZED NATIVE AMERICAN GROUPS Consultation Letters G-4 Paducah DUF 6 Conversion Final EIS Consultation Letters G-5 Paducah DUF 6 Conversion Final EIS Consultation Letters G-6 Paducah DUF 6 Conversion Final EIS Consultation Letters G-7 Paducah DUF 6 Conversion Final EIS Consultation Letters G-8 Paducah DUF 6 Conversion Final EIS Consultation Letters G-9 Paducah DUF 6 Conversion Final EIS Consultation Letters G-10 Paducah DUF 6 Conversion Final EIS Consultation Letters G-11 Paducah DUF 6 Conversion Final EIS Consultation Letters G-12 Paducah DUF 6 Conversion Final EIS

391

Helical rays in two-dimensional resonant wave conversion  

E-Print Network (OSTI)

2] D.G. Swanson, Theory of Mode Conversion and Tunneling inin two-dimensional resonant wave conversion Allan N. KaufmanThe process of resonant wave conversion (often called linear

Kaufman, Allan N.; Tracy, Eugene R.; Brizard, Alain J.

2004-01-01T23:59:59.000Z

392

Health Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

393

Automatic recognition of personality in conversation  

Science Conference Proceedings (OSTI)

The identification of personality by automatic analysis of conversation has many applications in natural language processing, from leader identification in meetings to partner matching on dating websites. We automatically train models of the main five ...

Franois Mairesse; Marilyn Walker

2006-06-01T23:59:59.000Z

394

NREL: Biomass Research - Thermochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Capabilities Conversion Capabilities NREL researchers are developing gasification and pyrolysis processes for the cost-effective thermochemical conversion of biomass to biofuels. Gasification-heating biomass with about one-third of the oxygen necessary for complete combustion-produces a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis-heating biomass in the absence of oxygen-produces a liquid bio-oil. Both syngas and bio-oil can be used directly or can be converted to clean fuels and other valuable chemicals. Areas of emphasis in NREL's thermochemical conversion R&D are: Gasification and fuel synthesis R&D Pyrolysis R&D Thermochemical process integration. Gasification and Fuel Synthesis R&D Get the Adobe Flash Player to see this video.

395

NREL: Biomass Research - Biochemical Conversion Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

396

Depleted UF6 Conversion facility EIS Topics  

NLE Websites -- All DOE Office Websites (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

397

Energy Conversion Materials Through Chemical Synthesis Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Materials Through Chemical Synthesis Route Speaker(s): Lionel Vayssieres Date: April 27, 2004 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Samuel Mao The...

398

Catalytic Conversion Probabilities for Bipartite Pure States  

E-Print Network (OSTI)

For two given bipartite-entangled pure states, an expression is obtained for the least upper bound of conversion probabilities using catalysis. The attainability of the upper bound can also be decided if that bound is less than one.

S. Turgut

2007-06-25T23:59:59.000Z

399

Radio frequency dc-dc power conversion  

E-Print Network (OSTI)

THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations ...

Rivas, Juan, 1976-

2007-01-01T23:59:59.000Z

400

Hybrid staging of geothermal energy conversion process  

DOE Green Energy (OSTI)

Progress in the demonstration of the feasibility of hybrid staging in geothermal energy conversion is described, particularly processes involving the Lysholm engine. The performance limitations of the Lysholm engine were studied. (MHR)

Steidel, R.F. Jr.

1984-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Tidal Conversion at a Submarine Ridge  

Science Conference Proceedings (OSTI)

The radiative flux of internal wave energy (the tidal conversion) powered by the oscillating flow of a uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation method. The problem is characterized ...

Franois Ptrlis; Stefan Llewellyn Smith; W. R. Young

2006-06-01T23:59:59.000Z

402

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Matrix-assisted energy conversion in nanostructured ...  

A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal ...

404

Surface spontaneous parametric down-conversion  

E-Print Network (OSTI)

Surface spontaneous parametric down-conversion is predicted as a consequence of continuity requirements for electric- and magnetic-field amplitudes at a discontinuity of chi2 nonlinearity. A generalization of the usual two-photon spectral amplitude is suggested to describe this effect. Examples of nonlinear layered structures and periodically-poled nonlinear crystals show that surface contributions to spontaneous down-conversion can be important.

Jan Perina Jr; Antonin Luks; Ondrej Haderka; Michael Scalora

2009-07-21T23:59:59.000Z

405

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

406

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

407

Direct conversion technology. Annual summary report CY 1991, January 1, 1991--December 31, 1991  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

1992-01-07T23:59:59.000Z

408

Standards for photovoltaic energy conversion systems. Final report  

DOE Green Energy (OSTI)

This report provides the results of a search for existing domestic standards and related documents for possible application in the development of a standards base for photovoltaic energy conversion systems. The search resulted in locating about 150 test methods, recommended practices, standards, solar-thermal performance criteria, and other standards-related documents. They are listed by topic areas in the appendix. The listing was prepared to assist those involved in developing performance criteria for photovoltaic systems and in identifying methods to test system performance against these criteria. It is clear from the results of the search that few standards are directly applicable to terrestrial solar photovoltaic systems and that much standards development is required to support the commercialization of such systems.

Schafft, H. A.

1980-04-01T23:59:59.000Z

409

Locascio, Cavanagh Assume New NIST Leadership Roles  

Science Conference Proceedings (OSTI)

... assurance tools in areas such as climate change, renewable energy, advanced materials ... two or more NIST laboratories, such as the Office of Law ...

2012-05-15T23:59:59.000Z

410

Assuming Responsibility for Packaging and Packaging Waste  

E-Print Network (OSTI)

> Natural Resources Institute, University of ManitobaWinnipeg, Manitoba, Canada R3T 2N2.and A.J. Sinclair. (1997). "Manitobas Product Stewardship

Sinclair, A. John

2000-01-01T23:59:59.000Z

411

Westinghouse TRU Solutions LLC Assumes WIPP Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager of WTS. A retired U.S. Navy Rear Admiral, Herrera has more than 27 years of nuclear operations and radioactive waste management experience. He spent 24 years in nuclear...

412

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

413

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

414

Method for the Photocatalytic Conversion of Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

the Photocatalytic Conversion of Gas Hydrates Opportunity Research is currently active on the patented technology "Method for the Photocatalytic Conversion of Gas Hydrates." The...

415

University of Delaware Institute of Energy Conversion | Open...  

Open Energy Info (EERE)

Energy Conversion Jump to: navigation, search Name University of Delaware Institute of Energy Conversion Place Delaware Product String representation "University rese ... dium tin...

416

U-058: Apache Struts Conversion Error OGNL Expression Injection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Apache Struts Conversion Error OGNL Expression Injection Vulnerability U-058: Apache Struts Conversion Error OGNL Expression Injection Vulnerability December 12, 2011 - 9:00am...

417

Conversion of Strontium Sulfate to Strontium Oxalate in Solutions ...  

Science Conference Proceedings (OSTI)

The effect of stirring speed, ammonium oxalate concentration, particle size and temperature on the conversion rate were investigated. During the conversion...

418

Strategy for conversion of CO2 isotopic measurements to delta ...  

Science Conference Proceedings (OSTI)

... The conversion algorithm described here may utilize user-selected values or the ... The conversions to ?13C and ?18O values are then performed via ...

2013-10-28T23:59:59.000Z

419

North Dakota Energy Conversion and Transmission Facility Siting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility...

420

: gov.nist.nlpir.irf.conversion Class Hierarchy  

Science Conference Proceedings (OSTI)

Hierarchy For Package gov.nist.nlpir.irf.conversion. ... Class Hierarchy. class java.lang.Object: class gov.nist.nlpir.irf.conversion.Ascii2HtmlConverter; ...

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Method for conversion of .beta.-hydroxy carbonyl compounds ...  

A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated ...

422

Portsmouth DUF6 Conversion Final EIS - Appendix H: Contractor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF 6 Conversion Final EIS APPENDIX H: CONTRACTOR DISCLOSURE STATEMENT Disclosure Statement H-2 Portsmouth DUF 6 Conversion Final EIS Disclosure Statement H-3 Portsmouth...

423

BPD Conversion in a Thin SiC Buffer Layer  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Power Electronics, Power Conditioning, and Power Conversion. Presentation Title, BPD Conversion in a Thin SiC Buffer...

424

CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS Purpose This procedure provides guidance on the...

425

EIS-0045: Coal Conversion Program, Continental Forest Industries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

45: Coal Conversion Program, Continental Forest Industries, Combustors 1,2, and 3, Port Wentworth, Chatham County, Georgia EIS-0045: Coal Conversion Program, Continental Forest...

426

Production and Handling Slide 18: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

last step of the conversion process involves the chemical conversion of uranium tetrafluoride UF4 to uranium hexafluoride UF6 using fluorine F2. Slide 1...

427

Changes related to "Coal Conversion Facility Privilege Tax Exemptions...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Conversion Facility Privilege Tax Exemptions (North Dakota)" Coal Conversion...

428

Pages that link to "Coal Conversion Facility Privilege Tax Exemptions...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Conversion Facility Privilege Tax Exemptions (North Dakota)" Coal Conversion...

429

CRAD, Safety Basis - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Safety Basis - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to...

430

CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE...

431

CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G...

432

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

433

Focus Area 2 - Biomass Deconstruction and Conversion : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deconstruction and Conversion BESC research in biomass deconstruction and conversion targets CBP by studying model organisms and thermophilic anaerobes to understand novel...

434

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name Penrose Landfill Gas Conversion LLC Place Los Angeles, California Product Owner of landfill gas plant....

435

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

436

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

437

Preliminary Advanced Test Reactor LEU Fuel Conversion Feasibility Study  

SciTech Connect

The Advanced Test Reactor (ATR) is a high power density, high neutron flux research reactor operating in the United States. The ATR has large irradiation test volumes located in high flux areas. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth with a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2s. As a result, the ATR is a representative candidate for assessing the necessary modifications and evaluating the subsequent operating effects associated with low-enriched uranium (LEU) fuel conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed for the fuel cycle burnup comparison analysis. Using the current HEU 235U enrichment of 93.0 % as a baseline, an analysis can be performed to determine the LEU uranium density and 235U enrichment required in the fuel meat to yield an equivalent Keff between the HEU core and a LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the 235U loading in the LEU core, such that the differences in Keff between the HEU and LEU core can be minimized for operation at 150 EFPD with a total core power of 115 MW. The Monte-Carlo with ORIGEN-2 (MCWO) method was used to calculate Keff versus EFPDs. The MCWO-calculated results for the LEU case demonstrated adequate excess reactivity such that the LEU core conversion designer should be able to optimize the 235U content of each fuel plate, so that the Keff and relative radial fission heat flux profile are similar to the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Upgraded Final Safety Analysis Report (UFSAR) safety requirements, a further study will be required in order to investigate the detailed radial, axial, and azimuthal heat flux profile variations versus EFPDs.

G. S. Chang; R. G. Ambrosek

2005-11-01T23:59:59.000Z

438

Manipulation of Thermal Phonons  

E-Print Network (OSTI)

Developing materials that can conduct electricity easily, but block the motion of phonons is necessary in the applications of thermoelectric devices, which can generate electricity from temperature differences. In converse, a key requirement as chips get faster is to obtain better ways to dissipate heat. Controlling heat transfer in these crystalline materials devices such as silicon is important. The heat is actually the motion or vibration of atoms known as phonons. Finding ways to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials phononic crystals might make manipulation of thermal phonons possible. In many fields of physical sciences and engineering, acoustic wave propagation in solids attracts many researchers. Wave propagation phenomena can be analyzed by mathematically solving the acoustic wave equation. However, wave propagation in inhomogeneous media with various geometric structures is too complex to find an exact solution. Hence, the Finite Difference Time Domain method is developed to investigate these complicated problems. In this work, the Finite-Difference Time-Domain formula is derived from acoustic wave equations based on the Taylors expansion. The numerical dispersion and stability problems are analyzed. In addition, the convergence conditions of numerical acoustic wave are stated. Based on the periodicity of phononic crystal, the Blochs theorem is applied to fulfill the periodic boundary condition of the FDTD method. Then a wide-band input signal is used to excite various acoustic waves with different frequencies. In the beginning of the calculation process, the wave vector is chosen and fixed. By means of recording the displacement field and taking the Fourier transformation, we can obtain the eigenmodes from the resonance peaks of the spectrum and draw the dispersion relation curve of acoustic waves. With the large investment in silicon nanofabrication techniques, this makes tungsten/silicon phononic crystal a particularly attractive platform for manipulating thermal phonons. Phononic crystal makes use of the fundamental properties of waves to create band gap over which there can be no propagation of acoustic waves in the crystal. This crystal can be applied to deterministically manipulate the phonon dispersion curve affected by different crystal structures and to modify the phonon thermal conductivity accordingly. We can expect this unique metamaterial is a promising route to creating unprecedented thermal properties for highly-efficient energy harvesting and thermoelectric cooling.

Hsu, Chung-Hao

2013-05-01T23:59:59.000Z

439

Aquifer thermal energy (heat and chill) storage  

DOE Green Energy (OSTI)

As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

Jenne, E.A. (ed.)

1992-11-01T23:59:59.000Z

440

FUTURE DIRECTIONS FOR THERMAL DISTRIBUTION STANDARDS  

SciTech Connect

This report details development paths for advanced versions of ASHRAE Standard 152, Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Efficiency. During the course of conversations within the ASHRAE committee responsible for developing the standard (SPC152P), three areas of development for Standard 152 were proposed: (1) extend the scope of the standard to include thermal comfort variables; (2) extend the scope of the standard to include small commercial buildings; and (3) improve the existing standard with respect to accuracy and economy of effort. Research needs associated with each of the three options are identified.

ANDREWS,J.W.

2003-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Proceedings of the solar thermal technology conference  

SciTech Connect

The Solar Thermal Technology Conference was held on August 26-28, 1987, at the Marriott Hotel, Albuquerque, New Mexico. The meeting was sponsored by the United States Department of Energy and Sandia National Laboratories. Topics covered during the conference included a status summary of the Sandia Solar Thermal Development Project, perspectives on central and distributed receiver technology including energy collection and conversion technologies, systems analyses and applications experiments. The proceedings contain summaries (abstracts and principal visual aids) of the presentations made at the conference.

Tyner, C.E. (ed.)

1987-08-01T23:59:59.000Z

442

Cascode buffer for monolithic voltage conversion operating at high input supply voltages  

E-Print Network (OSTI)

A high-to-low switching DC-DC converter that operates at input supply voltages up to two times as high as the maximum voltage permitted in a nanometer CMOS technology is proposed in this paper. The circuit technique is based on a cascode bridge that maintains the steady-state voltage differences among the terminals of all of the transistors within a range imposed by a specific fabrication technology. The proposed circuit technique permits the full integration of active and passive devices of a switching DC-DC converter with a high voltage conversion ratio in a standard low voltage CMOS process. An efficiency of 87.8 % is achieved for 3.6 volts to 0.9 volts conversion assuming

Volkan Kursun; Gerhard Schrom; Vivek K. De; Eby G. Friedman; Siva G. Narendra

2005-01-01T23:59:59.000Z

443

Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant  

Science Conference Proceedings (OSTI)

The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed.

Miles, T.L.; Liu, Y.

1995-08-01T23:59:59.000Z

444

Alternative Fuels Data Center: Natural Gas Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Conversions Related Information Conversion Basics

445

High conversion efficiency pumped-cavity second harmonic generation of a diode laser  

Science Conference Proceedings (OSTI)

To investigate the feasibility of producing a compact, efficient blue laser source, pumped-cavity second harmonic generation of diode lasers was explored. It is desirable to have such lasers to increase optical disk storage density, for color displays and for under-the-sea green-blue optical signal transmission. Based on assumed cavity losses, a cavity was designed and numerical analysis predicted an overall conversion efficiency to the second harmonic wavelength of 76% from a 75 mW diode laser. The diode laser used in these experiments had a single longitudinal and a single transverse mode output at 860 nm. The best conversion efficiency obtained (26%) was less than optimum due to the 2.5% single-pass linear losses associated with the cavity. However, calculations based on these higher losses are in good agreement with the experimentally determined values. In additions, a factor of 1.65 increase in the second harmonic output power is anticipated by reducing the input mirror reflectivity to better impedance-match the cavity. With this relatively low second harmonic conversion, the power to light conversion is 7.8%.

Keicher, D.M.

1994-01-01T23:59:59.000Z

446

Simple and efficient quantum key distribution with parametric down-conversion  

E-Print Network (OSTI)

We propose an efficient quantum key distribution protocol based on the photon-pair generation from parametric down-conversion (PDC). It uses the same experimental setup as the conventional protocol, but a refined data analysis enables detection of photon-number splitting attacks by utilizing information from a built-in decoy state. Assuming the use of practical detectors, we analyze the unconditional security of the new scheme and show that it improves the secure key generation rate by several orders of magnitude at long distances, using a high intensity PDC source.

Yoritoshi Adachi; Takashi Yamamoto; Masato Koashi; Nobuyuki Imoto

2006-10-15T23:59:59.000Z

447

New type of thermoelectric conversion of energy by semiconducting liquid anisotropic media  

E-Print Network (OSTI)

The paper describes preliminary investigations of a new effect in conducting anisotropic liquids, which leads to thermoelectric conversion of energy. Nematic liquid crystals with semiconducting dopes are used. A thermoelectric figure of merit ZT = 0.2 is obtained in experiments. The effect can be explained by assuming that the thermocurrent in semiconducting nematics, in contrast to the Seebeck effect, is a nonlinear function of the temperature gradient and of the temperature itself. Though the discovered effect has to be further investigated, the data obtained suggest that it can be effectively used in alternative energy engineering.

Sergey I. Trashkeev; Alexey N. Kudryavtsev

2012-11-02T23:59:59.000Z

448

GT-MHR power conversion system: Design status and technical issues  

SciTech Connect

The Modular Helium Reactor (MHR) builds on 30 years of international gas-cooled reactor experience utilizing the unique properties of helium gas coolant, graphite moderator and coated particle fuel. To efficiently utilize the high temperature potential of the MHR, an innovative power conversion system has been developed featuring an intercooled and recuperated gas turbine. The gas turbine replaces a conventional steam turbine and its many auxiliary components. The Power Conversion System converts the thermal energy of the helium directly into electrical energy utilizing a closed Brayton cycle. The Power Conversion System draws on even more years of experience than the MHR: the world`s first closed-cycle plant, fossil fired and utilizing air as working fluid, started operation in Switzerland in 1939. Shortly thereafter, in 1945, the coupling of a closed-cycle plant to a nuclear heat generation system was conceived. Directly coupling the closed-cycle gas turbine concept to a modern, passively safe nuclear reactor opens a new chapter in power generation technology and brings with it various design challenges. Some of these challenges are associated with the direct coupling of the Power Conversion System to a nuclear reactor. Since the primary coolant is also the working fluid, the Power Conversion System has to be designed for reactor radionuclide plateout. As a result, issues like component maintainability and replaceability, and fission product effects on materials must be addressed. Other issues concern the integration of the Power Conversion System components into a single vessel. These issues include the selection of key technologies for the power conversion components such as submerged generator, magnetic bearings, seals, compact heat exchangers, and the overall system layout.

Etzel, K.; Baccaglini, G.; Schwartz, A. [General Atomics, San Diego, CA (United States); Hillman, S.; Mathis, D. [AlliedSignal Aerospace, Tempe, AZ (United States)

1994-12-01T23:59:59.000Z

449

Thermally activated heat pumps  

SciTech Connect

This article describes research to develop efficient gas-fired heat pumps heat and cool buildings without CFCs. Space heating and cooling use 46% of all energy consumed in US buildings. Air-conditioning is the single leading cause of peak demand for electricity and is a major user of chlorofluorocarbons (CFCs). Advanced energy conversion technology can save 50% of this energy and eliminate CFCs completely. Besides saving energy, advanced systems substantially reduce emissions of carbon dioxide (a greenhouse gas), sulfur dioxide, and nitrogen oxides, which contribute to smog and acid rain. These emissions result from the burning of fossil fuels used to generate electricity. The Office of Building Technologies (OBT) of the US Department of Energy supports private industry`s efforts to improve energy efficiency and increase the use of renewable energy in buildings. To help industry, OBT, through the Oak Ridge National Laboratory, is currently working on thermally activated heat pumps. OBT has selected the following absorption heat pump systems to develop: generator-absorber heat-exchange (GAX) cycle for heating-dominated applications in residential and light commercial buildings; double-condenser-coupled (DCC) cycle for commercial buildings. In addition, OBT is developing computer-aided design software for investigating the absorption cycle.

NONE

1995-05-01T23:59:59.000Z

450

HYLIFE-II power conversion system design and cost study  

Science Conference Proceedings (OSTI)

The power conversion system for the HYLIFE-2 fusion power plant has been defined to include the IHX's (intermediate heat exchangers) and everything that support the exchange of energy from the reactor. It is referred to simply as the BOP (balance of plant) in the rest of this report. The above is a convenient division between the reactor equipment and the rest of the fusion power plant since the BOP design and cost then depend only on the specification of the thermal power to the IHX's and the temperature of the primary Flibe coolant into and out of the IHX's, and is almost independent of the details of the reactor design. The main efforts during the first year have been on the definition and thermal-hydraulics of the IHX's, the steam generators and the steam power plant, leading to the definition of a reference BOP with the molten salt, Flibe, as the primary coolant. A summary of the key results in each of these areas is given in this report.

Hoffman, M.A. (California Univ., Davis, CA (USA). Dept. of Mechanical, Aeronautical and Materials Engineering)

1990-09-01T23:59:59.000Z

451

The Effects of Ingot Composition and Conversion on the Mechanical ...  

Science Conference Proceedings (OSTI)

THE EFFECTS OF INGOT COMPOSITION AND CONVERSION ON THE MECHANICAL PROPERTIES AND. MICROSTRUCTURAL RESPONSE OF GTD-

452

Modeling facial expression of uncertainty in conversational animation  

Science Conference Proceedings (OSTI)

Building animated conversational agents requires developing a fine-grained analysis of the motions and meanings available to interlocutors in face-to-face conversation and implementing strategies for using these motions and meanings to communicate effectively. ... Keywords: embodied conversational agents, face-to-face conversation, facial displays, uncertainty

Matthew Stone; Insuk Oh

2006-04-01T23:59:59.000Z

453

The Free Will Theorem and the Flash Ontology implicitly assume the Before-Before Experiment and thereby imply free will. Comment on a note by Nicolas Gisin in arXiv:1002.1392v1  

E-Print Network (OSTI)

It is argued that both the "Free Will Theorem" (FWT) and the "relativistic GRW model with Flash Ontology" (rGRWf) hiddenly assume the result of the before-before experiment, and for this reason both FWT and rGRWf imply free will in the world outside free experimenters.

Suarez, Antoine

2010-01-01T23:59:59.000Z

454

The Free Will Theorem and the Flash Ontology implicitly assume the Before-Before Experiment and thereby imply free will. Comment on a note by Nicolas Gisin in arXiv:1002.1392v1  

E-Print Network (OSTI)

It is argued that both the "Free Will Theorem" (FWT) and the "relativistic GRW model with Flash Ontology" (rGRWf) hiddenly assume the result of the before-before experiment, and for this reason both FWT and rGRWf imply free will in the world outside free experimenters.

Antoine Suarez

2010-02-13T23:59:59.000Z

455

Paducah DUF6 Conversion Final EIS - Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS SUMMARY 1 S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in

456

Energy conversion & storage program. 1995 annual report  

DOE Green Energy (OSTI)

The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

Cairns, E.J.

1996-06-01T23:59:59.000Z

457

NETL: Gasification Systems - Conversion and Fouling  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion and Fouling Conversion and Fouling NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 3 Project Description The objective for this NETL in-house conversion and fouling project is to improve the reliability, availability and maintainability (RAM) of gasification plants by providing tools that can be used to evaluate the impact that fuel properties have on slag and refractory interaction, and to reduce plugging and fouling throughout the syngas cooling system. Utilizing these tools will aid in minimizing plugging and fouling-increasing overall plant efficiency due to improved heat transfer in heat exchangers. Particle deposition experimental schematic Particle deposition experimental schematic (click to enlarge) Project Details Program Background and Project Benefits

458

Energy Conversion | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion Group Energy Conversion Group The Energy Conversion Group offers advanced technical solutions to achieve reduced fossil fuel use in geothermal power and building energy applications. Focus is on advanced materials, biofuel end use, combustion and system concepts. We seek to continuously improve the capabilities of relevant research tools being applied in collaborative initiatives to achieving these goals. Capabilities The group conducts research in a number of energy-related areas. These include advanced materials for geothermal energy, applications of biofuels and alternative fuels, efficiency in heating/cooling equipment, advanced oil burner development and particulate emissions for wood boilers. Advanced Materials for Geothermal Energy Supercritical carbon dioxide has properties midway between a gas and a

459

Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Electric Aftermarket Electric Vehicle (EV) Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on AddThis.com... More in this section...

460

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Conversion Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on AddThis.com... More in this section... Federal State

462

Environmental Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

463

Tunable Up-Conversion Photon Detector  

E-Print Network (OSTI)

We introduce a simple approach for a tunable up-conversion detector. This scheme is relevant for both single photon detection or anywhere where low light levels at telecom wavelengths need to be detected with a high degree of temporal resolution or where high count rates are desired. A system combining a periodically poled Lithium niobate waveguide for the nonlinear wavelength conversion and a low jitter Silicon avalanche photodiode are used in conjunction with a tunable pump source. We report more than a ten-fold increase in the detectable bandwidth using this tuning scheme.

R. T. Thew; H. Zbinden; N. Gisin

2008-07-22T23:59:59.000Z

464

Atom-molecule conversion with particle losses  

E-Print Network (OSTI)

Based on the mean-field approximation and the phase space analysis, we study the dynamics of an atom-molecule conversion system subject to particle loss. Starting from the many-body dynamics described by a master equation, an effective nonlinear Schr\\"odinger equation is introduced. The classical phase space is then specified and classified by fixed points. The boundary, which separate different dynamical regimes have been calculated and discussed. The effect of particle loss on the conversion efficiency and the self-trapping is explored.

B. Cui; L. C. Wang; X. X. Yi

2011-03-01T23:59:59.000Z

465

Lower Hybrid to Whistler Wave Conversion  

Science Conference Proceedings (OSTI)

In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

Winske, Dan [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

466

Advanced thermally stable jet fuels  

Science Conference Proceedings (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

467

Conversion of atactic polypropylene waste to fuel oil. Final report  

DOE Green Energy (OSTI)

A stable, convenient thermal pyrolysis process was demonstrated on a large scale pilot plant. The process successfully converted high viscosity copolymer atactic polypropylene to predominantly liquid fuels which could be burned in commercial burners. Energy yield of the process was very high - in excess of 93% including gas phase heating value. Design and operating data were obtained to permit design of a commercial size atactic conversion plant. Atactic polypropylene can be cracked at temperatures around 850/sup 0/F and residence time of 5 minutes. The viscosity of the cracked product increases with decrease in time/temperature. A majority of the pyrolysis was carried out at a pressure of 50 psig. Thermal cracking of atactic polypropylene is seen to result in sigificant coke formation (0.4% to 0.8% on a weight of feed basis) although the coke levels were of an order of magnitude lower than those obtained during catalytic cracking. The discrepancy between batch and continuous test data can be atrributed to lowered heat transfer and diffusion rates. Oxidative pyrolysis is not seen as a viable commercial alternative due to a significant amount of water formation. However, introduction of controlled quantities of oxygen at lower temperatures to affect change in feedstock viscosity could be considered. It is essential to have a complete characterization of the polymer composition and structure in order to obtain useful and duplicable data because the pyrolysis products and probably the pyrolysis kinetics are affected by introduction of abnormalities into the polymer structure during polymerization. The polymer products from continuous testing contained an olefinic content of 80% or higher. This suggests that the pyrolysis products be investigated for use as olefinic raw materials. Catalytic cracking does not seem to result in any advantage over the Thermal Cracking process in terms of reaction rates or temperature of operation.

Bhatia, J.

1981-04-01T23:59:59.000Z

468

Thermal conductivity of thermal-battery insulations  

DOE Green Energy (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

469

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network (OSTI)

Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

Dai, Pengcheng

470

Columbia University Libraries Preservation & Digital Conversion Division  

E-Print Network (OSTI)

Columbia University Libraries Preservation & Digital Conversion Division Disaster Response Manual for Care of Library Materials 2008 Edition #12;CUL Disaster Response Manual 2008 2 TABLE OF CONTENTS page. Disaster Response Coordinators List 31 B. Disaster Supply Center List 32 C. Vendor List 33 D. LSO

Salzman, Daniel

471

Biological conversion of synthesis gas culture development  

DOE Green Energy (OSTI)

Research continues on the conversion of synthesis by shift reactions involving bacteria. Topics discussed here include: biological water gas shift, sulfur gas utilization, experimental screening procedures, water gas shift studies, H{sub 2}S removal studies, COS degradation by selected CO-utilizing bacteria, and indirect COS utilization by Chlorobia. (VC)

Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

1992-03-01T23:59:59.000Z

472

Thermochemical Conversion Pilot Plant (Fact Sheet)  

DOE Green Energy (OSTI)

The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

Not Available

2013-06-01T23:59:59.000Z

473

On the Energy Conversion during Geostrophic Adjustment  

Science Conference Proceedings (OSTI)

It is found that for a continuously stratified fluid which remains so during the geostrophic adjustment, the energy conversion ratio ? (??KE/?PE) is , in contrast to the value of ? for a two-layer fluid. Since the two-layer fluid is an ...

Hsien Wang Ou

1986-12-01T23:59:59.000Z

474

Calcine Conversion Facility alternative concepts engineering studies  

SciTech Connect

The purpose of the engineering study reported is to develop conceptual designs for two alternative facilities for the conversion of high level waste calcine to high level glass. The objectives and design bases of the two concepts (CCF/RSSF and CCF/FRP) are described. No recommendation of one concept in preference to the other is given. (LK)

1975-02-01T23:59:59.000Z

475

DIRECT ENERGY CONVERSION DEVICES. A Literature Search  

SciTech Connect

A bibliography comprising 208 unclassified references is presented on nuclear direct energy conversion devices. Major emphasis is placed on auxiliary power devices suitable for use in satellites including reports on nuclear batteries, thermoelectric cells, thermionic conversron and aspects of the SNAP program. (J.R.D.)

Raleigh, H.D. comp.

1961-03-01T23:59:59.000Z

476

Ris Energy Report 2 Bioenergy conversion  

E-Print Network (OSTI)

Electricity production by SOFC fuel cells is one road to obtain a high efficiency in electricity production. In order to meet this demand in a sustainable way, gasifica- tion and SOFC fuel cell conversion systems gasfication gas has the potential to be used directly in SOFC cells or alternatively steam- reformed

477

Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light  

SciTech Connect

It is revealed that the generation of a coherent wave by frequency conversion of incoherent waves is a characteristic feature of three-wave interaction in a nonlinear medium when angular dispersion of input waves is properly chosen. In this case the combining action of the pairs of spectral components of incoherent waves may result in the cumulative driving of a single plane monochromatic wave in up-conversion and down-conversion processes. As a fundamental result we point out an enhancement of the spectral radiance of the generated wave in comparison with incoherent waves.

Piskarskas, A.; Pyragaite, V.; Stabinis, A. [Department of Quantum Electronics, Vilnius University, Sauletekio Avenue 9, Building 3, LT-10222 Vilnius (Lithuania)

2010-11-15T23:59:59.000Z

478

Methods of using thermal tolerant avicelase from Acidothermus cellulolyticus  

DOE Patents (OSTI)

The invention provides a thermal tolerant (thermostable) cellulase, AviIII, that is a member of the glycoside hydrolase (GH) family. AviIII was isolated and characterized from Acidothermus cellulolyticus, and, like many cellulases, the disclosed polypeptide and/or its derivatives may be useful for the conversion of biomass into biofuels and chemicals.

Adney, William S. (Golden, CO); Vinzant, Todd B. (Golden, CO); Ding, Shih-You (Golden, CO); Himmel, Michael E. (Golden, CO)

2011-04-26T23:59:59.000Z

479

Alternative Fuels Data Center: Alternative Fuel School Bus Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Conversion Research to someone by E-mail School Bus Conversion Research to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Google Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Delicious Rank Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel School Bus Conversion Research

480

Ocean Thermal Resources off the Hawaiian Islands luisvega@hawaii.edu Ocean Thermal Resources off the Hawaiian Islands  

E-Print Network (OSTI)

information to assist developers of ocean thermal energy conversion (OTEC) systems in site selection functions required to determine electricity production with specific OTEC systems can be found in the open be satisfied with desalinated water produced with OTEC systems. This renewable ocean resource is vast enough

Note: This page contains sample records for the topic "assumed thermal conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Thermal Effects of Moisture in Rigid Insulation Board  

E-Print Network (OSTI)

The impact of moisture in rigid roof insulation upon energy consumption is often assumed to be a simple function of the conductance. This paper will show that there are complex interactions between conductance, thermal mass, and climate. The energy performance can not be predicted from only the conductance. These results affect removal criteria for wet insulation board.

Crow, G. W.

1992-05-01T23:59:59.000Z

482

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

483

Novel Nuclear Powered Photocatalytic Energy Conversion  

DOE Green Energy (OSTI)

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

2005-08-29T23:59:59.000Z

484

BALDR-1: a solar thermal system simulation  

DOE Green Energy (OSTI)

A solar thermal system simulation (BALDR-1) was written in a modular fashion to facilitate expansion and modification. The flexibility of the simulation is derived, in part, from the use of three separate models to constitute the system simulation: FIELD, POWER, and ECON. Each model can be run independently, or they may be coupled and run as a set. The FIELD code models the optical and thermal performance of the collector field. It has separate optical and thermal performance routines for each generic collector type. Meteorological data is read in 15-minute or hourly increments. The POWER code models the performance of power conversion and storage components. It calculates the total thermal and/or electrical energy produced during the year for a set of plant configurations comprised of different collector field sizes, thermal storage sizes, and electrical storage sizes. The POWER code allows the selection of one of several control strategies in the dispatch of thermal and electrical storage. The ECON code calculates the initial capital cost of each power plant configuration modelled in POWER. This capital cost is combined with operations and maintenance costs to calculate a life-cycle busbar energy cost and simple payback period for each plant.

Finegold, J.G.; Herlevich, F.A.

1980-01-01T23:59:59.000Z

485

Conversion of the trace elements Zn, Cd, and Pb in the combustion of near-Moscow coals  

SciTech Connect

A model for the conversion of trace elements in the combustion of near-Moscow coals based on a complex approach combining the capabilities of geochemistry, chemical thermodynamics, phase analysis, and chemical kinetics is proposed. The conversion of the trace elements Zn, Cd, and Pb as the constituents of near-Moscow coal in the flow of coal combustion products along the line of the P-59 boiler at the Ryazanskaya Thermal Power Plant was calculated. Experimental data were used in the development of the model and in calculations.

E.V. Samuilov; L.N. Lebedeva; L.S. Pokrovskaya; M.V. Faminskaya [OAO Power Engineering Institute, Moscow (Russia)

2008-10-15T23:59:59.000Z

486

Energy Conversion Materials Through Chemical Synthesis Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Materials Through Chemical Synthesis Route Conversion Materials Through Chemical Synthesis Route Speaker(s): Lionel Vayssieres Date: April 27, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Samuel Mao The ability to design anisotropic nanoparticles with tailored aspect ratio and to order them into large 3-D arrays is an important challenge that scientists have to face to create functionalized nanomaterials. Our approach to control the size and shape of nanoparticles as well as the overall texture of nanoparticulate thin films is to tune their direct aqueous hydrolysis-condensation growth onto substrates by monitoring the interfacial thermodynamics of nanocrystals as well as their kinetics of heteronucleation. Growing materials at very low interfacial tension, i.e. at thermodynamically stable conditions, allows the experimental control of

487

Battery Chargers | Electrical Power Conversion and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

488

Portsmouth DUF6 Conversion Final EIS - Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS SUMMARY 1 S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF 6 stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF 6 from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and

489

Pit Disassembly and Conversion Demonstration Environmental Ass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 1998 August 1998 i TABLE OF CONTENTS 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Related National Environmental Policy Act Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.0 PURPOSE AND NEED FOR ACTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Purpose and Need for Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.0 PROPOSED PIT DISASSEMBLY AND CONVERSION DEMONSTRATION . . . . . . . . . . . . . . . . 6 4.0 NO ACTION ALTERNATIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.0 AFFECTED ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1 History and Current Mission of Los Alamos National Laboratory