Sample records for assn ia cooperative

  1. McLeod Cooperative Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayo PowerMcLeod Cooperative Power

  2. Pella Cooperative Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl River Valley ElPelamis Wave

  3. Stearns Cooperative Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr||Ste.Facility |Stearns

  4. Microsoft PowerPoint - Post-2014 August 25, 2011 Proposed Allocations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Cooperative Assn., Inc. Kaw Valley Electric Cooperative, Inc. Nemaha - Marshall Electric Cooperative Assn Nemaha - Marshall Electric Cooperative Assn.,...

  5. Pontotoc Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini EnergiaBiocombustiveis JumpPoncaElectric Power Assn

  6. Southeast Colorado Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado Power Assn Jump to: navigation, search Name:

  7. Central Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillarCAPSPower Assn Jump to:

  8. Federated Rural Electric Assn (Iowa) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°, -89.4742177° ShowRural Electric Assn (Iowa) Jump

  9. Moon Lake Electric Assn Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon Lake Electric Assn Inc (Utah) Jump to:

  10. Moon Lake Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon Lake Electric Assn Inc (Utah) Jump to:Moon

  11. Morgan County Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon Lake Electric Assn IncMorenci Water andMorgan

  12. Pearl River Valley El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl River Valley El Pwr Assn Jump to:

  13. Southwest Rural Elec Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado Power AssnInformation

  14. Valley Electric Assn, Inc (Nevada) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUserVHF Technologies SAValley Electric Assn,

  15. Bridger Valley Elec Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridger Valley Elec Assn, Inc (Utah) Jump

  16. Dust around Type Ia supernovae

    E-Print Network [OSTI]

    Wang, Lifan

    2005-01-01T23:59:59.000Z

    Dust around Type Ia supernovae Lifan Wang 1,2 LawrenceIa. Subject headings: Supernovae: General, Dust, Extinctionline) bands for Type Ia supernovae. (a), upper panel, shows

  17. Cooperative L&P Assn Lake Cnty | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergy InformationsourceEnergy

  18. New approaches for modeling type Ia supernovae

    E-Print Network [OSTI]

    Zingale, Michael; Almgren, Ann S.; Bell, John B.; Day, Marcus S.; Rendleman, Charles A.; Woosley, Stan

    2007-01-01T23:59:59.000Z

    runaway in Type Ia supernovae: How to run away? oIgnition in Type Ia Supernovae. II. A Three- dimensionalnumber modeling of type Ia supernovae. I. hydrodynamics.

  19. New approaches for modeling type Ia supernovae

    E-Print Network [OSTI]

    Zingale, Michael; Almgren, Ann S.; Bell, John B.; Day, Marcus S.; Rendleman, Charles A.; Woosley, Stan

    2007-01-01T23:59:59.000Z

    ich and J. Stein. On the thermonuclear runaway in Type IaSmall-Scale Stability of Thermonuclear Flames o in Type IaS. E. Woosley. The thermonuclear explosion of chandrasekhar

  20. Type Ia Supernova Explosion Models

    E-Print Network [OSTI]

    W. Hillebrandt; J. C. Niemeyer

    2000-06-21T23:59:59.000Z

    Because calibrated light curves of Type Ia supernovae have become a major tool to determine the local expansion rate of the Universe and also its geometrical structure, considerable attention has been given to models of these events over the past couple of years. There are good reasons to believe that perhaps most Type Ia supernovae are the explosions of white dwarfs that have approached the Chandrasekhar mass, M_ch ~ 1.39 M_sun, and are disrupted by thermonuclear fusion of carbon and oxygen. However, the mechanism whereby such accreting carbon-oxygen white dwarfs explode continues to be uncertain. Recent progress in modeling Type Ia supernovae as well as several of the still open questions are addressed in this review. Although the main emphasis will be on studies of the explosion mechanism itself and on the related physical processes, including the physics of turbulent nuclear combustion in degenerate stars, we also discuss observational constraints.

  1. Turbulence-Flame Interactions in Type Ia Supernovae

    E-Print Network [OSTI]

    Aspden, Andrew J; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720 (Authors 1, 2 & 3); Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (Author 4); Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (Author 5)

    2008-01-01T23:59:59.000Z

    Interactions in Type Ia Supernovae A. J. Aspden 1 , J. B.involved in type Ia supernovae (SN Ia) requires the use of ?generated by RT in type Ia supernovae should obey Bolgiano-

  2. Ideal bandpasses for type Ia supernova cosmology

    E-Print Network [OSTI]

    Davis, Tamara M.; Schmidt, Brian P.; Kim, Alex G.

    2005-01-01T23:59:59.000Z

    diversity of type Ia Supernovae, in preparation. Kim, A.error in measurements of supernovae depends on a periodicABSTRACT To use type Ia supernovae as standard candles for

  3. Rates and progenitors of type Ia supernovae

    E-Print Network [OSTI]

    Wood-Vasey, William Michael

    2004-01-01T23:59:59.000Z

    Supernovae . . . . . . . . . . . . . . . . . . . .Supernovae Found 5.1 Introduction . . . . . . . . . . . .1.2 Non-Type Ia Supernovae . . . . . . . . . . . . . . . 1.3

  4. Appendix 14-Ia Coach's Employment

    E-Print Network [OSTI]

    Swaddle, John

    Appendix 14-Ia Coach's Employment Non Institutional Camp/Clinic Revised August 2010 ATHLETICS STAFF MEMBERS' EMPLOYMENT AT A NON-WILLIAM & MARY CAMP/CLINIC Coach's Name: ______ Sport) No athletics department staff member may be employed (salary or volunteer) in any capacity by a camp or clinic

  5. Type Ia Supernova Carbon Footprints

    E-Print Network [OSTI]

    Thomas, R C; Aragon, C; Antilogus, P; Bailey, S; Baltay, C; Bongard, S; Buton, C; Canto, A; Childress, M; Chotard, N; Copin, Y; Fakhouri, H K; Gangler, E; Hsiao, E Y; Kerschhaggl, M; Kowalski, M; Loken, S; Nugent, P; Paech, K; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigault, M; Rubin, D; Runge, K; Scalzo, R; Smadja, G; Tao, C; Weaver, B A; Wu, C; Brown, P J; Milne, P A

    2011-01-01T23:59:59.000Z

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of 5 Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 d relative to maximum. Detections are based on the presence of relatively strong C II 6580 absorption "notches" in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the 5 SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibits high-velocity (v > 20,000 km/s) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broad band light curve/color behavior: Three of the 5 have relatively narrow light curves but also blue colors, and a fourth may be a dust-reddened member of this family. Accounting for signal-to-noise and phase, we ...

  6. Rates and Progenitors of Type Ia Supernovae

    E-Print Network [OSTI]

    William Michael Wood-Vasey

    2005-05-30T23:59:59.000Z

    The remarkable uniformity of Type Ia supernovae (SNe Ia) has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, SNe Ia exhibit intrinsic variation in both their spectra and observed brightness. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in SNe Ia. Toward this end, the Nearby Supernova Factory (SNfactory) has been designed to discover hundreds of SNe Ia in a systematic and automated fashion and study them in detail. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of SNe Ia. This dissertation presents a new method for analyzing the true sensitivity of a multi-epoch supernova search and finds a SN Ia rate from $z\\sim0.01$--0.1 of $r_V = 4.26 (+1.39 -1.93) (+0.10 - 0.10)$ SNe Ia/yr/Mpc$^3$ from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of SNe Ia.

  7. Low Mach Number Modeling of Type Ia Supernovae. II. Energy Evolution

    E-Print Network [OSTI]

    Almgren, Ann S.; Bell, John B.; Rendleman, Charles A.; Zingale, Mike

    2006-01-01T23:59:59.000Z

    Number Modeling of Type Ia Supernovae. II. Energy EvolutionIa. Subject headings: supernovae: general white dwarfs the ignition of Type Ia supernovae (SNe Ia) is critical to

  8. Turbulent Combustion in Type Ia Supernova Models

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt

    2006-09-15T23:59:59.000Z

    We review the astrophysical modeling of type Ia supernova explosions and describe numerical methods to implement numerical simulations of these events. Some results of such simulations are discussed.

  9. Theoretical cosmic Type Ia supernova rates

    E-Print Network [OSTI]

    R. Valiante; F. Matteucci; S. Recchi; F. Calura

    2009-03-16T23:59:59.000Z

    The aim of this work is the computation of the cosmic Type Ia supernova rates at very high redshifts (z>2). We adopt various progenitor models in order to predict the number of explosions in different scenarios for galaxy formation and to check whether it is possible to select the best delay time distribution model, on the basis of the available observations of Type Ia supernovae. We also computed the Type Ia supernova rate in typical elliptical galaxies of different initial luminous masses and the total amount of iron produced by Type Ia supernovae in each case. It emerges that: it is not easy to select the best delay time distribution scenario from the observational data and this is because the cosmic star formation rate dominates over the distribution function of the delay times; the monolithic collapse scenario predicts an increasing trend of the SN Ia rate at high redshifts whereas the predicted rate in the hierarchical scheme drops dramatically at high redshift; for the elliptical galaxies we note that the predicted maximum of the Type Ia supernova rate depends on the initial galactic mass. The maximum occurs earlier (at about 0.3 Gyr) in the most massive ellipticals, as a consequence of downsizing in star formation. We find that different delay time distributions predict different relations between the Type Ia supernova rate per unit mass at the present time and the color of the parent galaxies and that bluer ellipticals present higher supernova Type Ia rates at the present time.

  10. Supersoft Sources as SN Ia Progenitors

    E-Print Network [OSTI]

    Greiner, Jochen

    of the existence of supersoft X­ray sources. It is argued that SNe Ia are thermonuclear explosions of accreting C is that they represent thermonuclear disruptions of mass accreting white dwarfs (WDs). Thus, the basic ingredient

  11. Nucleosynthesis in Type Ia Supernovae

    E-Print Network [OSTI]

    K. Nomoto; K. Iwamoto; N. Nakasato; F. -K. Thielemann; F. Brachwitz; T. Tsujimoto; Y. Kubo; N. Kishimoto

    1997-06-03T23:59:59.000Z

    Among the major uncertainties involved in the Chandrasekhar mass models for Type Ia supernovae are the companion star of the accreting white dwarf (or the accretion rate that determines the carbon ignition density) and the flame speed after ignition. We present nucleosynthesis results from relatively slow deflagration (1.5 - 3 % of the sound speed) to constrain the rate of accretion from the companion star. Because of electron capture, a significant amount of neutron-rich species such as ^{54}Cr, ^{50}Ti, ^{58}Fe, ^{62}Ni, etc. are synthesized in the central region. To avoid the too large ratios of ^{54}Cr/^{56}Fe and ^{50}Ti/^{56}Fe, the central density of the white dwarf at thermonuclear runaway must be as low as \\ltsim 2 \\e9 \\gmc. Such a low central density can be realized by the accretion as fast as $\\dot M \\gtsim 1 \\times 10^{-7} M_\\odot yr^{-1}$. These rapidly accreting white dwarfs might correspond to the super-soft X-ray sources.

  12. Survey gives clues to origin of Type Ia supernovae | EurekAlert! Science News

    E-Print Network [OSTI]

    ... to origin of Type Ia supernovae ... Type Ia supernovae still not understood despite their ... s behind the Type Ia supernovae they use to measure distances ...

  13. New findings show some Type Ia supernovae linked to novae | EurekAlert! Science News

    E-Print Network [OSTI]

    ... findings show some Type Ia supernovae linked to novae ... least some thermonuclear (Type Ia) supernovae come from a recurrent nova ... originators of other Type Ia supernovae . ...

  14. Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Utility of Type Ia Supernovae: Implications of a Dispersionheadings: surveys supernovae: general cosmologicalparameters Introduction Supernovae of Type Ia (SNe Ia) are

  15. Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters

    E-Print Network [OSTI]

    Kim, Alex G

    2011-01-01T23:59:59.000Z

    Applied to Type Ia supernovae, my strategy provides adata sets. Subject headings: Supernovae: Data Analysis andhomogeneous nature of Type Ia supernovae (SNe Ia) makes them

  16. Visualizing Buoyant Burning Bubbles in Type Ia Supernovae at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning in Supernovae Buoyant Burning Bubbles in Type Ia Supernovae bubble-s.jpeg Flame ignition in type Ia supernovae leads to isolated bubbles of burning buoyant fluid. As a...

  17. Closest Type Ia Supernova in Decades Solves a Cosmic Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PTF 11kly as it appeared in the nearby M101 galaxy. (Images: Peter Nugent) Type Ia supernovae (SN Ia's) are the extraordinarily bright and remarkably similar "standard candles"...

  18. China Today IAS 2123.001

    E-Print Network [OSTI]

    Oklahoma, University of

    China Today IAS 2123.001 Kevin Carrico Tuesdays & Thursdays 10:30 am -11:45 am Approved for Non-Western culture credit Everyone knows that China today is a "rising superpower," but the real story of China's modern history is considerably more complex. This course looks beyond the headlines to rediscover China

  19. Probing Cosmological Isotropy With Type IA Supernovae

    E-Print Network [OSTI]

    Bengaly, C A P; Alcaniz, J S

    2015-01-01T23:59:59.000Z

    We investigate the validity of the Cosmological Principle by mapping the cosmological parameters $H_0$ and $q_0$ through the celestial sphere. In our analysis, performed in a low-redshift regime to follow a model-independent approach, we use two compilations of type Ia Supernovae (SNe Ia), namely the Union2.1 and the JLA datasets. Firstly, we show that the angular distributions for both SNe Ia datasets are statistically anisotropic at high confidence level ($p$-value $<$ 0.0001), in particular the JLA sample. Then we find that the cosmic expansion and acceleration are mainly of dipolar type, with maximal anisotropic expansion [acceleration] pointing towards $(l,b) \\simeq (326^{\\circ},12^{\\circ})$ [$(l,b) \\simeq (174^{\\circ},27^{\\circ})$], and $(l,b) \\simeq (58^{\\circ},-60^{\\circ})$ [$(l,b) \\simeq (225^{\\circ},51^{\\circ})$] for the Union2.1 and JLA data, respectively. Secondly, we use a geometrical method to test the hypothesis that the non-uniformly distributed SNe Ia events could introduce anisotropic imp...

  20. Models of Type Ia Supernova Explosions

    E-Print Network [OSTI]

    J. C. Niemeyer; M. Reinecke; W. Hillebrandt

    2002-03-21T23:59:59.000Z

    Type Ia supernovae have become an indispensable tool for studying the expansion history of the universe, yet our understanding of the explosion mechanism is still incomplete. We describe the variety of discussed scenarios, sketch the most relevant physics, and report recent advances in multidimensional simulations of Chandrasekhar mass white dwarf explosions.

  1. Models of Type Ia Supernova Explosions

    E-Print Network [OSTI]

    Niemeyer, J C; Hillebrandt, W

    2002-01-01T23:59:59.000Z

    Type Ia supernovae have become an indispensable tool for studying the expansion history of the universe, yet our understanding of the explosion mechanism is still incomplete. We describe the variety of discussed scenarios, sketch the most relevant physics, and report recent advances in multidimensional simulations of Chandrasekhar mass white dwarf explosions.

  2. The Outermost Ejecta of Type Ia Supernovae

    E-Print Network [OSTI]

    Masaomi Tanaka; Paolo A. Mazzali; Stefano Benetti; Ken'ichi Nomoto; Nancy Elias-Rosa; Rubina Kotak; Giuliano Pignata; Vallery Stanishev; Stephan Hachinger

    2007-12-17T23:59:59.000Z

    The properties of the highest velocity ejecta of normal Type Ia supernovae (SNe Ia) are studied via models of very early optical spectra of 6 SNe. At epochs earlier than 1 week before maximum, SNe with a rapidly evolving Si II 6355 line velocity (HVG) have a larger photospheric velocity than SNe with a slowly evolving Si II 6355 line velocity (LVG). Since the two groups have comparable luminosities, the temperature at the photosphere is higher in LVG SNe. This explains the different overall spectral appearance of HVG and LVG SNe. However, the variation of the Ca II and Si II absorptions at the highest velocities (v >~ 20,000 km/s) suggests that additional factors, such as asphericity or different abundances in the progenitor white dwarf, affect the outermost layers. The C II 6578 line is marginally detected in 3 LVG SNe, suggesting that LVG undergo less intense burning. The carbon mass fraction is small, only less than 0.01 near the photosphere, so that he mass of unburned C is only <~ 0.01 Msun. Radioactive 56Ni and stable Fe are detected in both LVG and HVG SNe. Different Fe-group abundances in the outer layers may be one of the reasons for spectral diversity among SNe Ia at the earliest times. The diversity among SNe Ia at the earliest phases could also indicate an intrinsic dispersion in the width-luminosity relation of the light curve.

  3. A threat-based definition of IA- and IA-enabled products.

    SciTech Connect (OSTI)

    Shakamuri, Mayuri; Schaefer, Mark A.; Campbell, Philip LaRoche

    2010-07-01T23:59:59.000Z

    This paper proposes a definition of 'IA and IA-enabled products' based on threat, as opposed to 'security services' (i.e., 'confidentiality, authentication, integrity, access control or non-repudiation of data'), as provided by Department of Defense (DoD) Instruction 8500.2, 'Information Assurance (IA) Implementation.' The DoDI 8500.2 definition is too broad, making it difficult to distinguish products that need higher protection from those that do not. As a consequence the products that need higher protection do not receive it, increasing risk. The threat-based definition proposed in this paper solves those problems by focusing attention on threats, thereby moving beyond compliance to risk management. (DoDI 8500.2 provides the definitions and controls that form the basis for IA across the DoD.) Familiarity with 8500.2 is assumed.

  4. A threat-based definition of IA and IA-enabled products.

    SciTech Connect (OSTI)

    Shakamuri, Mayuri; Schaefer, Mark A.; Campbell, Philip LaRoche

    2010-09-01T23:59:59.000Z

    This paper proposes a definition of 'IA and IA-enabled products' based on threat, as opposed to 'security services' (i.e., 'confidentiality, authentication, integrity, access control or non-repudiation of data'), as provided by Department of Defense (DoD) Instruction 8500.2, 'Information Assurance (IA) Implementation.' The DoDI 8500.2 definition is too broad, making it difficult to distinguish products that need higher protection from those that do not. As a consequence the products that need higher protection do not receive it, increasing risk. The threat-based definition proposed in this paper solves those problems by focusing attention on threats, thereby moving beyond compliance to risk management. (DoDI 8500.2 provides the definitions and controls that form the basis for IA across the DoD.) Familiarity with 8500.2 is assumed.

  5. SHOCK BREAKOUT FROM TYPE Ia SUPERNOVA

    SciTech Connect (OSTI)

    Piro, Anthony L.; Chang, Philip; Weinberg, Nevin N., E-mail: tpiro@astro.berkeley.ed, E-mail: pchang@astro.berkeley.ed, E-mail: nweinberg@astro.berkeley.ed [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States)

    2010-01-01T23:59:59.000Z

    The mode of explosive burning in Type Ia supernovae (SNe Ia) remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the delayed detonation transition, DDT). We argue that this transition leads to a breakout shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (approx20 keV) lasting approx10{sup -2} s with a total radiated energy of approx10{sup 40} erg, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M{sub V} approx -9 to -10 at approx1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m = 24) will see it out to a distance of approx80 Mpc, giving a maximum rate of approx60 yr{sup -1}. Archival data sets can also be used to study the early rise dictated by the shock heating (at approx20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion-induced collapse to a neutron star, but with a lower occurrence rate.

  6. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    E-Print Network [OSTI]

    Kim, A. G.

    2014-01-01T23:59:59.000Z

    magnitudes of type Ia supernovae from multi-band lightsuch an analysis on the supernovae of the Nearby Supernovaheadings: distance scale, supernovae: general 1 Physics

  7. K-corrections and spectral templates of Type Ia supernovae

    E-Print Network [OSTI]

    Hsiao, E. Y.

    2008-01-01T23:59:59.000Z

    templates of Type Ia supernovae E. Y. Hsiao 1 , A. Conleyobservations of low-redshift supernovae are less a?ected byobservations, stars: supernovae Department of Physics and

  8. Constraining Cosmic Evolution of Type Ia Supernovae

    SciTech Connect (OSTI)

    Foley, Ryan J.; Filippenko, Alexei V.; Aguilera, C.; Becker, A.C.; Blondin, S.; Challis, P.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Garnavich, P.M.; Jha, S.; Kirshner, R.P.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miceli, A.; Miknaitis, G.; Pignata, G.; Rest, A.; Riess, A.G.; /UC, Berkeley, Astron. Dept. /Cerro-Tololo InterAmerican Obs. /Washington U., Seattle, Astron. Dept. /Harvard-Smithsonian Ctr. Astrophys. /Chile U., Catolica /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /NOAO, Tucson /Fermilab /Chile U., Santiago /Harvard U., Phys. Dept. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Res. Sch. Astron. Astrophys., Weston Creek /Stockholm U. /Hawaii U. /Illinois U., Urbana, Astron. Dept.

    2008-02-13T23:59:59.000Z

    We present the first large-scale effort of creating composite spectra of high-redshift type Ia supernovae (SNe Ia) and comparing them to low-redshift counterparts. Through the ESSENCE project, we have obtained 107 spectra of 88 high-redshift SNe Ia with excellent light-curve information. In addition, we have obtained 397 spectra of low-redshift SNe through a multiple-decade effort at Lick and Keck Observatories, and we have used 45 ultraviolet spectra obtained by HST/IUE. The low-redshift spectra act as a control sample when comparing to the ESSENCE spectra. In all instances, the ESSENCE and Lick composite spectra appear very similar. The addition of galaxy light to the Lick composite spectra allows a nearly perfect match of the overall spectral-energy distribution with the ESSENCE composite spectra, indicating that the high-redshift SNe are more contaminated with host-galaxy light than their low-redshift counterparts. This is caused by observing objects at all redshifts with similar slit widths, which corresponds to different projected distances. After correcting for the galaxy-light contamination, subtle differences in the spectra remain. We have estimated the systematic errors when using current spectral templates for K-corrections to be {approx}0.02 mag. The variance in the composite spectra give an estimate of the intrinsic variance in low-redshift maximum-light SN spectra of {approx}3% in the optical and growing toward the ultraviolet. The difference between the maximum-light low and high-redshift spectra constrain SN evolution between our samples to be < 10% in the rest-frame optical.

  9. IA Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrentHydronic71 IA Blog Archive en DOE andBlog

  10. IA News Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrentHydronic71 IA Blog Archive en DOENews

  11. Steamboat IA Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation Glass Buttes AreaSteaI GeothermalIA

  12. Type Ia Supernova Explosion: Gravitationally Confined Detonation

    E-Print Network [OSTI]

    Tomasz Plewa; Alan Calder; Don Lamb

    2004-05-08T23:59:59.000Z

    We present a new mechanism for Type Ia supernova explosions in massive white dwarfs. The proposed scenario follows from relaxing the assumption of symmetry in the model and involves a detonation created in an unconfined environment. The explosion begins with an essentially central ignition of stellar material initiating a deflagration. This deflagration results in the formation of a buoyantly-driven bubble of hot material that reaches the stellar surface at supersonic speeds. The bubble breakout forms a strong pressure wave that laterally accelerates fuel-rich outer stellar layers. This material, confined by gravity to the white dwarf, races along the stellar surface and is focused at the location opposite to the point of the bubble breakout. These streams of nuclear fuel carry enough mass and energy to trigger a detonation just above the stellar surface. The flow conditions at that moment support a detonation that will incinerate the white dwarf and result in an energetic explosion. The stellar expansion following the deflagration redistributes stellar mass in a way that ensures production of intermediate mass and iron group elements consistent with observations. The ejecta will have a strongly layered structure with a mild amount of asymmetry following from the early deflagration phase. This asymmetry, combined with the amount of stellar expansion determined by details of the evolution (principally the energetics of deflagration, timing of detonation, and structure of the progenitor), can be expected to create a family of mildly diverse Type Ia supernova explosions.

  13. Dark matter ignition of type Ia supernovae

    E-Print Network [OSTI]

    Bramante, Joseph

    2015-01-01T23:59:59.000Z

    Recent studies of low redshift type Ia supernovae (SNIa) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SNIa progenitors. We show that $0.1-10$ PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SNIa. We combine data on SNIa masses with data on the ages of SNIa-adjacent stars. This combination reveals a $ 3 \\sigma$ inverse correlation between SNIa masses and ignition ages, which could result from increased capture of dark matter in 1.4 versus 1.1 solar mass white dwarfs. Future studies of SNIa in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SNI...

  14. Plasma Redshift, Time Dilation, and Supernovas Ia

    E-Print Network [OSTI]

    Ari Brynjolfsson

    2004-07-20T23:59:59.000Z

    The measurements of the absolute magnitudes and redshifts of supernovas Ia show that conventional physics, which includes plasma redshift, fully explains the observed magnitude-redshift relation of the supernovas. The only parameter that is required is the Hubble constant, which in principle can be measured independently. The contemporary theory of the expansion of the universe (Big Bang) requires in addition to the Hubble constant several adjustable parameters, such as an initial explosion, the dark matter parameter, and a time adjustable dark energy parameter for explaining the supernova Ia data. The contemporary Big Bang theory also requires time dilation of distant events as an inherent premise. The contention is usually that the light curves of distant supernovas show or even prove the time dilation. In the present article, we challenge this assertion. We document and show that the previously reported data in fact indicate that there is no time dilation. The data reported by Riess et al. in the Astrophysical Journal in June 2004 confirm the plasma redshift, the absence of time dilation, dark matter, and dark energy.

  15. Three-dimensional numerical simulations of Rayleigh-Taylor unstable flames in type Ia supernovae

    E-Print Network [OSTI]

    Zingale, M.; Woosley, S.E.; Rendleman, C.A.; Day, M.S.; Bell, J.B.

    2005-01-01T23:59:59.000Z

    Unstable Flames in Type Ia Supernovae M. Zingale 1 , S. E.Subject headings: supernovae: general white dwarfs ame in Type Ia supernovae (SNe Ia) is well recognized (M

  16. Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies

    E-Print Network [OSTI]

    Meyers, Joshua Evan

    2012-01-01T23:59:59.000Z

    Host Galaxies of Type Ia Supernovae Introduction SN Ia Hosts109 C HAPTER 1 Cosmology, Type Ia Supernovae and HostGalaxies Observations of supernovae have played a role in

  17. UNU-IAS Policy Report Biofuels in Africa

    E-Print Network [OSTI]

    UNU-IAS Policy Report Biofuels in Africa Impacts on Ecosystem Services, Biodiversity and Human Well-being #12;#12;UNU-IAS Policy Report Biofuels in Africa Impacts on Ecosystem Services, Biodiversity and Human........................................................................................................... 9 1.2 Biofuel drivers, feedstocks and policies in Africa

  18. Diversity of Type Ia Supernovae Imprinted in Chemical Abundances

    E-Print Network [OSTI]

    Tsujimoto, Takuji

    2012-01-01T23:59:59.000Z

    A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit a SN Ia-like elemental feature including a very low [Mg/Fe] (~-1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr,Mn,Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth, and gives a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nice...

  19. Nickel Bubble Expansion in Type Ia Supernovae: Adiabatic Solutions

    E-Print Network [OSTI]

    Chih-Yueh Wang

    2008-06-20T23:59:59.000Z

    This paper presents hydrodynamical and radiation-hydrodynamical simulations of the nickel bubble effect in Type Ia supernovae, comparison of results to self-similar solutions, and application to observations of Type Ia supernova remnants, with a particular emphasis on Tycho's SNR.

  20. Platte River Cooperative Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY, CO, DOE...

  1. Type Ia Supernova Remnants: Shaping by Iron Bullets

    E-Print Network [OSTI]

    Tsebrenko, Danny

    2015-01-01T23:59:59.000Z

    Using 2D numerical hydrodynamical simulations of type Ia supernova remnants (SNR Ia) we show that iron clumps few times denser than the rest of the SN ejecta might form protrusions in an otherwise spherical SNR. Such protrusions exist in some SNR Ia, e.g., SNR 1885 and Tycho. Iron clumps are expected to form in the deflagration to detonation explosion model. In SNR Ia where there are two opposite protrusions, termed ears, such as Kepler's SNR and SNR G1.9+0.3, our scenario implies that the dense clumps, or iron bullets, were formed along an axis. Such a preferred axis can result from a rotating white dwarf progenitor. If our claim holds, this offers an important clue to the SN Ia explosion scenario.

  2. Direct numerical simulations of type Ia supernovae flames I: The landau-darrieus instability

    E-Print Network [OSTI]

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2003-01-01T23:59:59.000Z

    Simulations of Type Ia Supernovae Flames I: The Landau-Subject headings: supernovae: general white dwarfs could occur in Type Ia supernovae (Niemeyer & Woosley 1997),

  3. DIVERSITY OF TYPE Ia SUPERNOVAE IMPRINTED IN CHEMICAL ABUNDANCES

    SciTech Connect (OSTI)

    Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan); Shigeyama, Toshikazu, E-mail: taku.tsujimoto@nao.ac.jp [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-12-01T23:59:59.000Z

    A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit an SN-Ia-like elemental feature including a very low [Mg/Fe] ( Almost-Equal-To - 1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr, Mn, Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth and give a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nicely explains the different [Cr, Mn, Ni/Fe] features between the two galaxies as well as the puzzling feature seen in the LMC stars exhibiting very low Ca but normal Mg abundances. Furthermore, the corresponding channel of slow SN Ia is exemplified by performing detailed nucleosynthesis calculations in the scheme of SNe Ia resulting from a 0.8 + 0.6 M{sub Sun} white dwarf merger.

  4. Phases of a Type Ia supernova explosion

    E-Print Network [OSTI]

    J. C. Niemeyer

    1998-02-13T23:59:59.000Z

    In the framework of the Chandrasekhar mass white dwarf model for Type Ia supernovae, various stages of the explosion are described in terms of the burning regimes of the thermonuclear flame front. In the early flamelet regime following the ``smoldering'' phase prior to the explosion, the flame is sufficiently thin and fast to remain laminar on small scales. As the white dwarf density declines, the thermal flame structure becomes subject to penetration by turbulent eddies, and it enters the ``distributed burning'' regime. A specific control parameter for this transition is proposed. Furthermore, we outline an argument for the coincidence of the transition between burning regimes with the onset of a deflagration-detonation-transition (DDT) in the late phase of the explosion.

  5. K-corrections and spectral templates of Type Ia supernovae

    SciTech Connect (OSTI)

    Nugent, Peter E; Hsiao, E.Y.; Conley, A.; Howell, D.A.; Sullivan, M.; Pritchet, C.J.; Carlberg, R.G.; Nugent, P.E.; Phillips, M.M.

    2007-03-20T23:59:59.000Z

    With the advent of large dedicated Type Ia supernova (SN Ia) surveys, K-corrections of SNe Ia and their uncertainties have become especially important in the determination of cosmological parameters. While K-corrections are largely driven by SN Ia broadband colors, it is shown here that the diversity in spectral features of SNe Ia can also be important. For an individual observation, the statistical errors from the inhomogeneity in spectral features range from 0.01 (where the observed and rest-frame filters are aligned) to 0.04 (where the observed and rest-frame filters are misaligned). To minimize the systematic errors caused by an assumed SN Ia spectral energy distribution (SED), we outline a prescription for deriving a mean spectral template time series that incorporates a large and heterogeneous sample of observed spectra. We then remove the effects of broadband colors and measure the remaining uncertainties in the K-corrections associated with the diversity in spectral features. Finally, we present a template spectroscopic sequence near maximum light for further improvement on the K-correction estimate. A library of ~;;600 observed spectra of ~;;100 SNe Ia from heterogeneous sources is used for the analysis.

  6. Type Ia Supernova Progenitors, Environmental Effects, and Cosmic Supernova Rates

    E-Print Network [OSTI]

    Ken'ichi Nomoto; Hideyuki Umeda; Izumi Hachisu; Mariko Kato; Chiaki Kobayashi; Takuji Tsujimoto

    1999-07-27T23:59:59.000Z

    Relatively uniform light curves and spectral evolution of Type Ia supernovae (SNe Ia) have led to the use of SNe Ia as a ``standard candle'' to determine cosmological parameters, such as the Hubble constant, the density parameter, and the cosmological constant. Whether a statistically significant value of the cosmological constant can be obtained depends on whether the peak luminosities of SNe Ia are sufficiently free from the effects of cosmic and galactic evolutions. Here we first review the single degenerate scenario for the Chandrasekhar mass white dwarf (WD) models of SNe Ia. We identify the progenitor's evolution and population with two channels: (1) the WD+RG (red-giant) and (2) the WD+MS (near main-sequence He-rich star) channels. In these channels, the strong wind from accreting white dwarfs plays a key role, which yields important age and metallicity effects on the evolution. We then address the questions whether the nature of SNe Ia depends systematically on environmental properties such as metallicity and age of the progenitor system and whether significant evolutionary effects exist. We suggest that the variation of the carbon mass fraction $X$(C) in the C+O WD (or the variation of the initial WD mass) causes the diversity of the brightness of SNe Ia. This model can explain the observed dependence of SNe Ia brighness on the galaxy types. Finally, applying the metallicity effect on the evolution of SN Ia progenitors, we make a prediction of the cosmic supernova rate history as a composite of the supernova rates in different types of galaxies.

  7. Type Ia Supernovae: Progenitors and Evolution with Redshift

    E-Print Network [OSTI]

    Ken'ichi Nomoto; Hideyuki Umeda; Chiaki Kobayashi; Izumi Hachisu; Mariko Kato; Takuji Tsujimoto

    2000-03-09T23:59:59.000Z

    Relatively uniform light curves and spectral evolution of Type Ia supernovae (SNe Ia) have led to the use of SNe Ia as a ``standard candle'' to determine cosmological parameters. Whether a statistically significant value of the cosmological constant can be obtained depends on whether the peak luminosities of SNe Ia are sufficiently free from the effects of cosmic and galactic evolutions. Here we first review the single degenerate scenario for the Chandrasekhar mass white dwarf (WD) models of SNe Ia. We identify the progenitor's evolution and population with two channels: (1) the WD+RG (red-giant) and (2) the WD+MS (near main-sequence He-rich star) channels. In these channels, the strong wind from accreting WDs plays a key role, which yields important age and metallicity effects on the evolution. We then address the questions whether the nature of SNe Ia depends systematically on environmental properties such as metallicity and age of the progenitor system and whether significant evolutionary effects exist. We suggest that the variation of the carbon mass fraction $X$(C) in the C+O WD (or the variation of the initial WD mass) causes the diversity of the brightness of SNe Ia. This model can explain the observed dependences of SNe Ia brightness on the galaxy types and the distance from the galactic center. Finally, applying the metallicity effect on the evolution of SN Ia progenitors, we make a prediction of the cosmic supernova rate history as a composite of the supernova rates in different types of galaxies.

  8. Will Jets Identify the Progenitors of Type Ia Supernovae?

    E-Print Network [OSTI]

    Mario Livio; Adam Riess; William Sparks

    2002-04-26T23:59:59.000Z

    We use the fact that a Type Ia supernova has been serendipitously discovered near the jet of the active galaxy 3C 78 to examine the question of whether jets can enhance accretion onto white dwarfs. One interesting outcome of such a jet-induced accretion process is an enhanced rate of novae in the vicinity of jets. We present results of observations of the jet in M87 which appear to have indeed discovered 11 novae in close proximity to the jet. We show that a confirmation of the relation between jets and novae and Type Ia supernovae can finally identify the elusive progenitors of Type Ia supernovae.

  9. Single-Degenerate Type Ia Supernovae Are Preferentially Overluminous

    E-Print Network [OSTI]

    Fisher, Robert

    2015-01-01T23:59:59.000Z

    Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs in the double-degenerate and the double-detonation channels, respectively, as the most promising progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly-accreting Chandrasekhar mass white dwarfs in the single-degenerate channel remains more mysterious then ever. In this paper, we clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia by analytically deriving the existence of a characteristic length scale which establishes a transition from central ignitions to buoyancy-driven ignitions. Using this criterion, combined with data from three-dimensional simulations of convection and ignition, we demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass white dwarfs in the single-degenerate channel are buoyancy-driven, and consequently lack a vigorous deflagration phase. We thus infer that single-degenerate SNe Ia are gen...

  10. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Shen, Ken J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Guillochon, James [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Foley, Ryan J., E-mail: kenshen@astro.berkeley.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-20T23:59:59.000Z

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  11. The Photometric Properties of Nearby Type Ia Supernovae

    E-Print Network [OSTI]

    Ganeshalingam, Mohan

    2012-01-01T23:59:59.000Z

    The Rise-Time Distribution of Nearby Type Ia Supernovae 3.1Highlight: The Physics of Supernovae, ed. W. Hillebrandt &1.1 Supernovae . . . . . . . . . . . . . . 1.1.1

  12. TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM

    SciTech Connect (OSTI)

    Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Howell, D. Andrew; Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Filippenko, Alexei V.; Bloom, Joshua S.; Cenko, S. Bradley; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cao, Yi; Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Chornock, Ryan; Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Coil, Alison L. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Griffith, Christopher V. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kasliwal, Mansi M., E-mail: jsilverman@astro.as.utexas.edu [Observatories of the Carnegie Institution of Science, Pasadena, CA 91101 (United States); and others

    2013-07-01T23:59:59.000Z

    Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well studied previously, three were previously known but are analyzed in depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by H{alpha} emission (with widths of {approx}2000 km s{sup -1}) and exhibit large H{alpha}/H{beta} intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of H{alpha} 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag {<=} M{sub R} {<=} -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.

  13. Futures for energy cooperatives

    SciTech Connect (OSTI)

    None

    1981-01-01T23:59:59.000Z

    A listing of Federal agencies and programs with potential funding for community-scale cooperatives using conservation measures and solar technologies is presented in Section 1. Section 2 presents profiles of existing community energy cooperatives describing their location, history, membership, services, sources of finance and technical assistance. A condensed summary from a recent conference on Energy Cooperatives featuring notes on co-op members' experiences, problems, and opportunities is presented in Section 3. Section 4 lists contacts for additional information. A National Consumer Cooperative Bank Load Application is shown in the appendix.

  14. Nebraska Nuclear Profile - Cooper

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooper" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  15. EARLY EMISSION FROM TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Rabinak, Itay; Waxman, Eli [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Livne, Eli, E-mail: itay.rabinak@weizmann.ac.il [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

    2012-09-20T23:59:59.000Z

    A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of supernovae of type Ia is the presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation density profile by the weak shocks generated during the deflagration phase, the time evolution of the opacity, and the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple analytic model is presented and shown to provide an acceptable approximation to the results of one-dimensional numerical DDT simulations. Our analysis predicts a {approx}10{sup 3} s long UV/optical flash with a luminosity of {approx}1 to {approx}3 Multiplication-Sign 10{sup 39} erg s{sup -1}. Lower luminosity corresponds to faster (turbulent) deflagration velocity. The luminosity of the UV flash is predicted to be strongly suppressed at t > t{sub drop} {approx} 1 hr due to the deviation from pure radiation domination.

  16. Innovative Cooperation and Collaboration: A Study on Rwandan Coffee Cooperatives

    E-Print Network [OSTI]

    Stellbauer, Robert Matthew

    2012-07-16T23:59:59.000Z

    The purpose of this study is to describe and examine the attitudes of coffee cooperative members towards the ownership of the SPREAD cooperatives in relation to cooperative sustainability. In addition this study identifies barriers faced by member...

  17. 2012 Scientific American Cooperation

    E-Print Network [OSTI]

    Nowak, Martin A.

    T The Cooperation Evolution of SPACE SCIENCE Mountain-Climbing MARS ROVER MEDICINE Vaccine Clues from HIV a nagging exception to the rule of evolution, cooperation has been one of its primary architects By Martin A following a lethal earthquake and tsunami, a maintenance worker in his 20s was among those who volunteered

  18. Cooperative Research & Development Agreements | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRADA SHARE Cooperative Research and Development Agreement A Cooperative Research and Development Agreement (CRADA) allows non-federal entities (industry, universities,...

  19. Type Ia Supernova Explosion Models: Homogeneity versus Diversity

    E-Print Network [OSTI]

    W. Hillebrandt; J. C. Niemeyer; M. Reinecke

    2000-05-30T23:59:59.000Z

    Type Ia supernovae (SN Ia) are generally believed to be the result of the thermonuclear disruption of Chandrasekhar-mass carbon-oxygen white dwarfs, mainly because such thermonuclear explosions can account for the right amount of Ni-56, which is needed to explain the light curves and the late-time spectra, and the abundances of intermediate-mass nuclei which dominate the spectra near maximum light. Because of their enormous brightness and apparent homogeneity SN Ia have become an important tool to measure cosmological parameters. In this article the present understanding of the physics of thermonuclear explosions is reviewed. In particular, we focus our attention on subsonic (``deflagration'') fronts, i.e. we investigate fronts propagating by heat diffusion and convection rather than by compression. Models based upon this mode of nuclear burning have been applied very successfully to the SN Ia problem, and are able to reproduce many of their observed features remarkably well. However, the models also indicate that SN Ia may differ considerably from each other, which is of importance if they are to be used as standard candles.

  20. Simulations of Turbulent Thermonuclear Burning in Type Ia Supernovae

    E-Print Network [OSTI]

    W. Hillebrandt; M. Reinecke; W. Schmidt; F. K. Roepke; C. Travaglio; J. C. Niemeyer

    2004-05-11T23:59:59.000Z

    Type Ia supernovae have recently received considerable attention because it appears that they can be used as "standard candles" to measure cosmic distances out to billions of light years away from us. Observations of type Ia supernovae seem to indicate that we are living in a universe that started to accelerate its expansion when it was about half its present age. These conclusions rest primarily on phenomenological models which, however, lack proper theoretical understanding, mainly because the explosion process, initiated by thermonuclear fusion of carbon and oxygen into heavier elements, is difficult to simulate even on supercomputers. Here, we investigate a new way of modeling turbulent thermonuclear deflagration fronts in white dwarfs undergoing a type Ia supernova explosion. Our approach is based on a level set method which treats the front as a mathematical discontinuity and allows for full coupling between the front geometry and the flow field. New results of the method applied to the problem of type Ia supernovae are obtained. It is shown that in 2-D with high spatial resolution and a physically motivated subgrid scale model for the nuclear flames numerically "converged" results can be obtained, but for most initial conditions the stars do not explode. In contrast, simulations in 3-D, do give the desired explosions and many of their properties, such as the explosion energies, lightcurves and nucleosynthesis products, are in very good agreement with observed type Ia supernovae.

  1. K-corrections and extinction corrections for Type Ia supernovae

    SciTech Connect (OSTI)

    Nugent, Peter; Kim, Alex; Perlmutter, Saul

    2002-05-21T23:59:59.000Z

    The measurement of the cosmological parameters from Type Ia supernovae hinges on our ability to compare nearby and distant supernovae accurately. Here we present an advance on a method for performing generalized K-corrections for Type Ia supernovae which allows us to compare these objects from the UV to near-IR over the redshift range 0 < z < 2. We discuss the errors currently associated with this method and how future data can improve upon it significantly. We also examine the effects of reddening on the K-corrections and the light curves of Type Ia supernovae. Finally, we provide a few examples of how these techniques affect our current understanding of a sample of both nearby and distant supernovae.

  2. The ignition of thermonuclear flames in Type Ia supernovae

    E-Print Network [OSTI]

    L. Iapichino; M. Brggen; W. Hillebrandt; J. C. Niemeyer

    2005-12-12T23:59:59.000Z

    In the framework of the Chandrasekhar-mass deflagration model for Type Ia supernovae (SNe Ia), a persisting free parameter is the initial morphology of the flame front, which is linked to the ignition process in the progenitor white dwarf. Previous analytical models indicate that the thermal runaway is driven by temperature perturbations (''bubbles'') that develop in the white dwarf's convective core. In order to probe the conditions at ignition (diameters, temperatures and evolutionary timescales), we have performed hydrodynamical 2D simulations of buoyant bubbles in white dwarf interiors. Our results show that fragmentation occurring during the bubble rise affects the outcome of the bubble evolution. Possible implications for the ignition process of SNe Ia are discussed.

  3. Refined numerical models for multidimensional Type Ia supernova simulations

    E-Print Network [OSTI]

    Reinecke, M; Niemeyer, J C

    2002-01-01T23:59:59.000Z

    Following up on earlier work on this topic (Reinecke et al. 1999, A&A 347, pp. 724 and 739), we present an improved set of numerical models for simulations of white dwarfs exploding as Type Ia supernovae (SNe Ia). Two-dimensional simulations were used to test the reliability and numerical robustness of these algorithms; the results indicate that integral quantities like the total energy release are insensitive to changes of the grid resolution (above a certain threshold), which was not the case for our former code. The models were further enhanced to allow fully three-dimensional simulations of SNe Ia. A direct comparison of a 2D and a 3D calculation with identical initial conditions shows that the explosion is considerably more energetic in three dimensions; this is most likely caused by the assumption of axisymmetry in 2D, which inhibits the growth of flame instabilities in the azimuthal direction and thereby decreases the flame surface.

  4. Refined numerical models for multidimensional Type Ia supernova simulations

    E-Print Network [OSTI]

    M. Reinecke; W. Hillebrandt; J. C. Niemeyer

    2001-11-26T23:59:59.000Z

    Following up on earlier work on this topic (Reinecke et al. 1999, A&A 347, pp. 724 and 739), we present an improved set of numerical models for simulations of white dwarfs exploding as Type Ia supernovae (SNe Ia). Two-dimensional simulations were used to test the reliability and numerical robustness of these algorithms; the results indicate that integral quantities like the total energy release are insensitive to changes of the grid resolution (above a certain threshold), which was not the case for our former code. The models were further enhanced to allow fully three-dimensional simulations of SNe Ia. A direct comparison of a 2D and a 3D calculation with identical initial conditions shows that the explosion is considerably more energetic in three dimensions; this is most likely caused by the assumption of axisymmetry in 2D, which inhibits the growth of flame instabilities in the azimuthal direction and thereby decreases the flame surface.

  5. The ignition of thermonuclear flames in Type Ia supernovae

    E-Print Network [OSTI]

    Iapichino, L; Hillebrandt, W; Niemeyer, J C

    2005-01-01T23:59:59.000Z

    In the framework of the Chandrasekhar-mass deflagration model for Type Ia supernovae (SNe Ia), a persisting free parameter is the initial morphology of the flame front, which is linked to the ignition process in the progenitor white dwarf. Previous analytical models indicate that the thermal runaway is driven by temperature perturbations (''bubbles'') that develop in the white dwarf's convective core. In order to probe the conditions at ignition (diameters, temperatures and evolutionary timescales), we have performed hydrodynamical 2D simulations of buoyant bubbles in white dwarf interiors. Our results show that fragmentation occurring during the bubble rise affects the outcome of the bubble evolution. Possible implications for the ignition process of SNe Ia are discussed.

  6. Strong Ultraviolet Pulse From a Newborn Type Ia Supernova

    E-Print Network [OSTI]

    Cao, Yi; Howell, D Andrew; Gal-Yam, Avishay; Kasliwal, Mansi M; Valenti, Stefano; Johansson, J; Amanullah, R; Goobar, A; Sollerman, J; Taddia, F; Horesh, Assaf; Sagiv, Ilan; Cenko, S Bradley; Nugent, Peter E; Arcavi, Iair; Surace, Jason; Wo?niak, P R; Moody, Daniela I; Rebbapragada, Umaa D; Bue, Brian D; Gehrels, Neil

    2015-01-01T23:59:59.000Z

    Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs. Although they are used empirically to measure cosmological distances, the nature of their progenitors remains mysterious, One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion. Here we report observations of strong but declining ultraviolet emission from a Type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star, and therefore provides evidence that some Type Ia supernovae arise from the single degenerate channel.

  7. Diagnosing multiplicative error by lensing magnification of type Ia supernovae

    E-Print Network [OSTI]

    Zhang, Pengjie

    2015-01-01T23:59:59.000Z

    Weak lensing causes spatially coherent fluctuations in flux of type Ia supernovae (SNe Ia). This lensing magnification allows for weak lensing measurement independent of cosmic shear. It is free of shape measurement errors associated with cosmic shear and can therefore be used to diagnose and calibrate multiplicative error. Although this lensing magnification is difficult to measure accurately in auto correlation, its cross correlation with cosmic shear and galaxy distribution in overlapping area can be measured to significantly higher accuracy. Therefore these cross correlations can put useful constraint on multiplicative error, and the obtained constraint is free of cosmic variance in weak lensing field. We present two methods implementing this idea and estimate their performances. We find that, with $\\sim 1$ million SNe Ia that can be achieved by the proposed D2k survey with the LSST telescope (Zhan et al. 2008), multiplicative error of $\\sim 0.5\\%$ for source galaxies at $z_s\\sim 1$ can be detected and la...

  8. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    Conservation Cooperative, consisting of factory trawlers, a group of seven catcher vessels with history cooperative and the inshore sector formed a total of seven. Quotas are distributed to coops by the NMFS as per-1997 as set in the AFA. The Unalaska Fleet Cooperative is one of seven inshore cooperatives formed in December

  9. Type Ia supernovae from merging white dwarfs. I. Prompt detonations

    SciTech Connect (OSTI)

    Moll, R.; Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Raskin, C.; Kasen, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-04-20T23:59:59.000Z

    Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). Numerical models suggest that a detonation might be initiated before the stars have coalesced to form a single compact object. Here we study such prompt detonations by means of numerical simulations, modeling the disruption and nucleosynthesis of the stars until the ejecta reach the coasting phase, and generating synthetic light curves and spectra. Three models are considered with primary masses 0.96 M {sub ?}, 1.06 M {sub ?}, and 1.20 M {sub ?}. Of these, the 0.96 M {sub ?} dwarf merging with a 0.81 M {sub ?} companion, with an {sup 56}Ni yield of 0.58 M {sub ?}, is the most promising candidate for reproducing common SNe Ia. The more massive mergers produce unusually luminous SNe Ia with peak luminosities approaching those attributed to 'super-Chandrasekhar' mass SNe Ia. While the synthetic light curves and spectra of some of the models resemble observed SNe Ia, the significant asymmetry of the ejecta leads to large orientation effects. The peak bolometric luminosity varies by more than a factor of two with the viewing angle, and the velocities of the spectral absorption features are lower when observed from angles where the light curve is brightest. The largest orientation effects are seen in the ultraviolet, where the flux varies by more than an order of magnitude. The set of three models roughly obeys a width-luminosity relation, with the brighter light curves declining more slowly in the B band. Spectral features due to unburned carbon from the secondary star are also seen in some cases.

  10. SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT

    SciTech Connect (OSTI)

    Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellon, Sergio; Roth, Miguel [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Hamuy, Mario; Anderson, Joseph P. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Krzeminski, Wojtek [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Prieto, Jose L. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Ln., Princeton, NJ 08544 (United States); Suntzeff, Nicholas B.; Krisciunas, Kevin, E-mail: gaston.folatelli@ipmu.jp [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); and others

    2013-08-10T23:59:59.000Z

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of Almost-Equal-To 0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a Almost-Equal-To 2{sigma}-3{sigma} correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.

  11. Cooperating mobile robots

    DOE Patents [OSTI]

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03T23:59:59.000Z

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  12. Sampling the Probability Distribution of Type Ia Supernova Lightcurve Parameters in Cosmological Analysis

    E-Print Network [OSTI]

    Dai, Mi

    2015-01-01T23:59:59.000Z

    In order to obtain robust cosmological constraints from Type Ia supernova (SN Ia) data, we have applied Markov Chain Monte Carlo (MCMC) to SN Ia lightcurve fitting. We develop a method for sampling the resultant probability density distributions (pdf) of the SN Ia lightcuve parameters in the MCMC likelihood analysis to constrain cosmological parameters. Applying this method to the Joint Lightcurve Analysis (JLA) data set of SNe Ia, we find that sampling the SN Ia lightcurve parameter pdf's leads to cosmological parameters closer to that of a flat Universe with a cosmological constant, compared to the usual practice of using only the best fit values of the SN Ia lightcurve parameters. Our method will be useful in the use of SN Ia data for precision cosmology.

  13. Spectral Observations and Analyses of Low-Redshift Type Ia Supernovae

    E-Print Network [OSTI]

    Silverman, Jeffrey Michael

    2011-01-01T23:59:59.000Z

    1.3.2 Thermonuclear Supernovae . . . . . . . . 1.4 Why WriteIa are the result of thermonuclear explosions of C/O whiteIa are the result of thermonuclear explosions of C/O white

  14. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA

    E-Print Network [OSTI]

    Krauss, Miriam

    We present multiband photometry of 185 type-Ia supernovae (SNe Ia), with over 11,500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics ...

  15. Feasibility of Measuring the Cosmological Constant [LAMBDA] and Mass Density [Omega] using Type Ia Supernovae

    E-Print Network [OSTI]

    Goobar, A.

    2008-01-01T23:59:59.000Z

    at z = 1. uncertainty for supernovae at z = 1. mR Adding theMass Density .Q Using Type Ia Supernovae A. Goobar and S.Density Q Using Type Ia Supernovae Ariel Goobar l and Saul

  16. UV Spectroscopy of Type Ia Supernovae at Low- and High-Redshift

    E-Print Network [OSTI]

    Nugent, Peter

    2005-01-01T23:59:59.000Z

    Spectroscopy of Type Ia Supernovae at Low- and High-RedshiftUV properties of Type Ia Supernovae. The low-redshift studyULDA Access Guide No. 6: Supernovae, The Netherlands: ESA

  17. Nearby Supernova Factory Observations of SN 2006D: On Sporadic Carbon Signatures in Early Type Ia Supernova Spectra

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    with low volume-?lling factor. Subject headings: supernovae:general supernovae: individual (SN 2006D)Introduction Type Ia supernovae (SNe Ia) make valuable

  18. Experto Universitario Java Enterprise 2012-2013 Depto. Ciencia de la Computacin e IA

    E-Print Network [OSTI]

    Escolano, Francisco

    Experto Universitario Java Enterprise 2012-2013 Depto. Ciencia de la Computacin e IA Lenguaje Lenguaje Java Avanzado 2012-2013 Depto. Ciencia de la Computacin e IA Lenguaje Java 2 ndice. Ciencia de la Computacin e IA Lenguaje Java 3 Java Java es un lenguaje OO creado por Sun Microsystems

  19. Experto Universitario Java Enterprise 2012-2013 Depto. Ciencia de la Computacin e IA

    E-Print Network [OSTI]

    Escolano, Francisco

    Experto Universitario Java Enterprise 2012-2013 Depto. Ciencia de la Computacin e IA Lenguaje Avanzado 2012-2013 Depto. Ciencia de la Computacin e IA Depuracin y logs - 2 El depurador de Eclipse Enterprise Lenguaje Java Avanzado 2012-2013 Depto. Ciencia de la Computacin e IA Depuracin y logs - 3 El

  20. Innovation Academy Change of Major Form (Out of IA) College of Agricultural and Life Sciences

    E-Print Network [OSTI]

    Jawitz, James W.

    Innovation Academy Change of Major Form (Out of IA) College of Agricultural and Life Sciences Academy Change of Major Form (Out of IA) College of Agricultural and Life Sciences SECTION 3: TO BE COMPLETED BY THE INNOVATION ACADEMY ADVISER IA Adviser's Comments/Conditions (circle

  1. Type Ia supernovae from exploding oxygen-neon white dwarfs

    E-Print Network [OSTI]

    Marquardt, Kai S; Ruiter, Ashley J; Seitenzahl, Ivo R; Ohlmann, Sebastian T; Kromer, Markus; Pakmor, Ruediger; Roepke, Friedrich K

    2015-01-01T23:59:59.000Z

    The progenitor problem of Type Ia supernovae (SNe Ia) is still unsolved. Most of these events are thought to be explosions of carbon-oxygen (CO) white dwarfs (WDs), but for many of the explosion scenarios, particularly those involving the externally triggered detonation of a sub-Chandrasekhar mass WD (sub-M Ch WD), there is also a possibility of having an oxygen-neon (ONe) WD as progenitor. We simulate detonations of ONe WDs and calculate synthetic observables from these models. The results are compared with detonations in CO WDs of similar mass and observational data of SNe Ia. We perform hydrodynamic explosion simulations of detonations in initially hydrostatic ONe WDs for a range of masses below the Chandrasekhar mass (M Ch), followed by detailed nucleosynthetic postprocessing with a 384-isotope nuclear reaction network. The results are used to calculate synthetic spectra and light curves, which are then compared with observations of SNe Ia. We also perform binary evolution calculations to determine the nu...

  2. Cosmic Supernova Rate History and Type Ia Supernova Progenitors

    E-Print Network [OSTI]

    Chiaki Kobayashi; Ken'ichi Nomoto; Takuji Tsujimoto

    2001-02-14T23:59:59.000Z

    Adopting a single degenerate scenario for Type Ia supernova progenitors with the metallicity effect, we make a prediction of the cosmic supernova rate history as a composite of the supernova rates in spiral and elliptical galaxies, and compare with the recent observational data up to z ~ 0.55.

  3. Probing the Type Ia environment with Light Echoes

    E-Print Network [OSTI]

    F. Patat

    2004-11-19T23:59:59.000Z

    In general, Light Echoes (LE) are beautiful, rather academical and therefore unavoidably useless phenomena. In some cases, however, they can give interesting information about the environment surrounding the exploding star. After giving a brief introduction to the subject, I describe its application to the case of Type Ia Supernovae and discuss the implications for progenitors and their location within the host galaxies.

  4. Weld Surfacing Edited by Dr I.A. Bucklow

    E-Print Network [OSTI]

    Cambridge, University of

    becomesconfigurationally frozen at a temperature of about 1150Cduring deposition by the manual-metal-arc welding techniqueV01.II Weld Surfacing Edited by Dr I.A. Bucklow ConferenceTechnicalDirector Organised by The Welding Institute in associationwith The Surface Engineering Society THE WELDING INSTITUTE #12;L

  5. Signatures of Explosion Models for SN ~Ia & Cosmology

    E-Print Network [OSTI]

    P. Hoeflich

    2004-09-07T23:59:59.000Z

    We give an overview of the current understanding of Type Ia supernovae relevant for their use as cosmological distance indicators. We present the physical basis to understand their homogeneity of the observed light curves and spectra and the observed correlations. SNe Ia have been well established as distance indicators on the 10 % level. However, the quest for the nature of the dark energy requires improvements in the accuracy to the 2 to 3 % level, we must understand the diversity within the SNe Ia population, and its evolution with redshift. Based on detailed models for the progenitors, explosions, light curves and spectra, we discuss signatures of thermonuclear explosions, and the implications for cosmology. We emphasize the relation between LC properties and spectra because, for local SNe~Ia, the diversity becomes apparent the combination of spectra and LCs whereas, by enlarge, we have to for high-z objects. At some examples, we show how we can actually probe the properties of the progenitor, its environment, and details of the explosion physics.

  6. Type Ia Supernova Cosmology in the Near-Infrared

    E-Print Network [OSTI]

    Stanishev, V; Amanullah, R; Bassett, B; Fantaye, Y T; Garnavich, P; Hlozek, R; Nordin, J; Okouma, P M; Ostman, L; Sako, M; Scalzo, R; Smith, M

    2015-01-01T23:59:59.000Z

    We main goal of this paper is to test whether the NIR peak magnitudes of SNe Ia could be accurately estimated with only a single observation obtained close to maximum light, provided the time of B band maximum and the optical stretch parameter are known. We obtained multi-epoch UBVRI and single-epoch J and H photometric observations of 16 SNe Ia in the redshift range z=0.037-0.183, doubling the leverage of the current SN Ia NIR Hubble diagram and the number of SNe beyond redshift 0.04. This sample was analyzed together with 102 NIR and 458 optical light curves (LCs) of normal SNe Ia from the literature. The analysis of 45 well-sampled NIR LCs shows that a single template accurately describes them if its time axis is stretched with the optical stretch parameter. This allows us to estimate the NIR peak magnitudes even with one observation obtained within 10 days from B-band maximum. We find that the NIR Hubble residuals show weak correlation with DM_15 and E(B-V), and for the first time we report a possible dep...

  7. On the Explosion Mechanism of SNe Type Ia

    E-Print Network [OSTI]

    M. Reinecke; J. C. Niemeyer; W. Hillebrandt

    2001-11-26T23:59:59.000Z

    In this article we discuss the first simulations of two- and three-dimensional Type Ia supernovae with an improved hydrodynamics code. After describing the various enhancements, the obtained results are compared to those of earlier code versions, observational data and the findings of other researchers in this field.

  8. Could there be a hole in type Ia supernovae?

    SciTech Connect (OSTI)

    Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan

    2004-04-23T23:59:59.000Z

    In the favored progenitor scenario, Type Ia supernovae (SNe Ia) arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et al. (2001) show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity.

  9. Nucleosynthesis in type Ia supernovae driven by asymmetric thermonuclear ignition

    SciTech Connect (OSTI)

    Maeda, Keiichi [Institute for the Physics and Mathematics of the Universe (IPMU), Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2012-11-12T23:59:59.000Z

    Type Ia Supernovae (SNe Ia) are believed to be thermonuclear explosions of a white dwarf. They can be used as mature cosmological standardized candles, leading to the discovery of the accelerating expansion of the Universe. However, the explosion mechanism has not yet been fully clarified. In this paper, we first present nucleosynthetic features of a leading explosion scenario, namely a delayed-detonation scenario. Based on this, we propose a new and strong observational constraint on the explosion mechanism through emission lines from neutron-rich Fe-peaks. Especially, we show that an asymmetry in the explosion is likely a generic feature. We further argue that the diversity arising from various viewing angles can be an origin of observational diversities of SNe Ia seen in their spectral features (suspected possible biases in cosmology) and colors (related to the extinction estimate in cosmology). Using these new insights could open up a possibility of using SNe Ia as more precise distance indicators than currently employed.

  10. Effect of nuclear structure on Type Ia supernova nucleosynthesis

    E-Print Network [OSTI]

    D. J. Dean

    2000-12-08T23:59:59.000Z

    The relationship among nuclear structure, the weak processes in nuclei, and astrophysics becomes quite apparent in supernova explosion and nucleosynthesis studies. In this brief article, I report on progress made in the last few years on calculating electron capture and beta-decay rates in iron-group nuclei. I also report on applications of these rates to Type-Ia nucleosynthesis studies.

  11. Thermonuclear supernova models, and observations of Type Ia supernovae

    E-Print Network [OSTI]

    E. Bravo; C. Badenes; D. Garcia-Senz

    2004-12-07T23:59:59.000Z

    In this paper, we review the present state of theoretical models of thermonuclear supernovae, and compare their predicitions with the constraints derived from observations of Type Ia supernovae. The diversity of explosion mechanisms usually found in one-dimensional simulations is a direct consequence of the impossibility to resolve the flame structure under the assumption of spherical symmetry. Spherically symmetric models have been successful in explaining many of the observational features of Type Ia supernovae, but they rely on two kinds of empirical models: one that describes the behaviour of the flame on the scales unresolved by the code, and another that takes account of the evolution of the flame shape. In contrast, three-dimensional simulations are able to compute the flame shape in a self-consistent way, but they still need a model for the propagation of the flame in the scales unresolved by the code. Furthermore, in three dimensions the number of degrees of freedom of the initial configuration of the white dwarf at runaway is much larger than in one dimension. Recent simulations have shown that the sensitivity of the explosion output to the initial conditions can be extremely large. New paradigms of thermonuclear supernovae have emerged from this situation, as the Pulsating Reverse Detonation. The resolution of all these issues must rely on the predictions of observational properties of the models, and their comparison with current Type Ia supernova data, including X-ray spectra of Type Ia supernova remnants.

  12. Cooper Pairs in Insulators?!

    ScienceCinema (OSTI)

    James Valles

    2010-01-08T23:59:59.000Z

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  13. COOPERATIVE RESEARCH UNITS 1www.coopunits.org COOPERATIVE

    E-Print Network [OSTI]

    ,410 Figuresshowninthousands. PROGRAM YEAR IN REVIEW #12;2 COOPERATIVE RESEARCH UNITS www.coopunits.org FY 2007 PROGRAM

  14. Low-Metallicity Inhibition of Type Ia Supernovae and Galactic and Cosmic Chemical Evolution

    E-Print Network [OSTI]

    Chiaki Kobayashi; Takuji Tsujimoto; Ken'ich Nomoto; Izumi Hachisu; Mariko Kato

    1998-06-25T23:59:59.000Z

    We introduce a metallicity dependence of Type Ia supernova (SN Ia) rate into the Galactic and cosmic chemical evolution models. In our SN Ia progenitor scenario, the accreting white dwarf (WD) blows a strong wind to reach the Chandrasekhar mass limit. If the iron abundance of the progenitors is as low as [Fe/H] 1-2, SNe Ia can be found only in the environments where the timescale of metal enrichment is sufficiently short as in starburst galaxies and ellipticals. The low-metallicity inhibition of SNe Ia can shed new light on the following issues: 1) The limited metallicity range of the SN Ia progenitors would imply that ``evolution effects'' are relatively small for the use of high redshift SNe Ia to determine the cosmological parameters. 2) WDs of halo populations are poor producers of SNe Ia, so that the WD contribution to the halo mass is not constrained from the iron abundance in the halo. 3) The abundance patterns of globular clusters and field stars in the Galactic halo lack of SN Ia signatures in spite of their age difference of several Gyrs, which can be explained by the low-metallicity inhibition of SNe Ia. 4) It could also explain why the SN Ia contamination is not seen in the damped Ly\\alpha systems for over a wide range of redshift.

  15. An Analysis of Department of Defense Instruction 8500.2 'Information Assurance (IA) Implementation.'

    SciTech Connect (OSTI)

    Campbell, Philip LaRoche

    2012-01-01T23:59:59.000Z

    The Department of Defense (DoD) provides its standard for information assurance in its Instruction 8500.2, dated February 6, 2003. This Instruction lists 157 'IA Controls' for nine 'baseline IA levels.' Aside from distinguishing IA Controls that call for elevated levels of 'robustness' and grouping the IA Controls into eight 'subject areas' 8500.2 does not examine the nature of this set of controls, determining, for example, which controls do not vary in robustness, how this set of controls compares with other such sets, or even which controls are required for all nine baseline IA levels. This report analyzes (1) the IA Controls, (2) the subject areas, and (3) the Baseline IA levels. For example, this report notes that there are only 109 core IA Controls (which this report refers to as 'ICGs'), that 43 of these core IA Controls apply without variation to all nine baseline IA levels and that an additional 31 apply with variations. This report maps the IA Controls of 8500.2 to the controls in NIST 800-53 and ITGI's CoBIT. The result of this analysis and mapping, as shown in this report, serves as a companion to 8500.2. (An electronic spreadsheet accompanies this report.)

  16. TUM Research and Commercial Cooperations

    E-Print Network [OSTI]

    being Linde AG, founded by Prof. Carl von Linde. Cooperation between the worlds of business and academia

  17. Intellectual Property Provisions (CDSB-115) Cooperative Agreement...

    Office of Environmental Management (EM)

    CDSB-115) Cooperative Agreement - Special Data Statute Research, Development, or Demonstration Domestic Small Business Intellectual Property Provisions (CDSB-115) Cooperative...

  18. Intellectual Property Provisions (CSB-1003) Cooperative Agreement...

    Energy Savers [EERE]

    003) Cooperative Agreement Research, Development, or Demonstration Domestic Small Businesses Intellectual Property Provisions (CSB-1003) Cooperative Agreement Research,...

  19. WORK PROGRAMME 2009 COOPERATION

    E-Print Network [OSTI]

    Milano-Bicocca, Universit

    _______ 15 SSH-2009 - 4.1.1. Competition and collaboration in access to oil, gas and mineral resourcesWORK PROGRAMME 2009 COOPERATION THEME 8 SOCIO-ECONOMIC SCIENCES AND HUMANITIES (European Commission and the Humanities Page 1 of 38 OBJECTIVE_______________________________________________________________ 3 I CONTEXT

  20. WORK PROGRAMME 2009 COOPERATION

    E-Print Network [OSTI]

    Milano-Bicocca, Universit

    )........................................ 46 Area 2.3.3 Industrial biotechnology: novel high added-value bio-products and bio-processes ..................................................................................................................... 48 Area 2.3.5 Environmental biotechnologyWORK PROGRAMME 2009 COOPERATION THEME 2 FOOD, AGRICULTURE AND FISHERIES, AND BIOTECHNOLOGY

  1. WORK PROGRAMME 2010 COOPERATION

    E-Print Network [OSTI]

    Milano-Bicocca, Universit

    )........................................ 53 Area 2.3.3 Industrial biotechnology: novel high added-value bio-products and bio-processes ..................................................................................................................... 58 Area 2.3.5 Environmental biotechnologyWORK PROGRAMME 2010 COOPERATION THEME 2 FOOD, AGRICULTURE AND FISHERIES, AND BIOTECHNOLOGY

  2. OKLAHOMA COOPERATIVE EXTENSION SERVICE

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    OKLAHOMA COOPERATIVE EXTENSION SERVICE PRODUCTION TECHNOLOGY of animal manure in acid and neutral soils. One study conducted in Eastern Oklahoma a few years ago found and reduce aluminum toxicity. In Oklahoma, many fields are acidic and animal manure would be an good

  3. Cooperative Testing and Analysis

    E-Print Network [OSTI]

    Xie, Tao

    Cooperative Testing and Analysis: Tao Xie Peking University, China (2011-2012) North Carolina State Account for even half the total cost of software development [Beizer 90] Automated testing reduces manual to the user to get her help? Tool Human How does the user help the tool based on the info? Iterations

  4. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    formed the Pollock Conservation Cooperative, consisting of factory trawlers, a group of seven catcher Sector formed one cooperative and the inshore sector formed a total of seven. Quotas are distributed qualifying years, 1995-1997 as set in the AFA. The Unalaska Fleet Cooperative is one of seven inshore

  5. Learning from the Scatter in Type Ia Supernovae

    E-Print Network [OSTI]

    Scott Dodelson; Alberto Vallinotto

    2005-11-02T23:59:59.000Z

    Type Ia Supernovae are standard candles so their mean apparent magnitude has been exploited to learn about the redshift-distance relationship. Besides intrinsic scatter in this standard candle, additional source of scatter is caused by gravitational magnification by large scale structure. Here we probe the dependence of this dispersion on cosmological parameters and show that information about the amplitude of clustering, \\sigma_8, is contained in the scatter. In principle, it will be possible to constrain \\sigma_8 to within 5% with observations of 2000 Type Ia Supernovae. However, extracting this information requires subtlety as the distribution of magnifications is far from Gaussian. If one incorrectly assumes a Gaussian distribution, the estimate of the clustering amplitude will be biased three-\\sigma away from the true value.

  6. Multi-spot ignition in type Ia supernova models

    E-Print Network [OSTI]

    Roepke, F K; Niemeyer, J C; Woosley, S E

    2005-01-01T23:59:59.000Z

    We present a systematic survey of the capabilities of type Ia supernova explosion models starting from a number of flame seeds distributed around the center of the white dwarf star. To this end we greatly improved the resolution of the numerical simulations in the initial stages. This novel numerical approach facilitates a detailed study of multi-spot ignition scenarios with up to hundreds of ignition sparks. Two-dimensional simulations are shown to be inappropriate to study the effects of initial flame configurations. Based on a set of three-dimensional models, we conclude that multi-spot ignition scenarios may improve type Ia supernova models towards better agreement with observations. The achievable effect reaches a maximum at a limited number of flame ignition kernels as shown by the numerical models and corroborated by a simple dimensional analysis.

  7. Multi-spot ignition in type Ia supernova models

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt; J. C. Niemeyer; S. E. Woosley

    2005-10-17T23:59:59.000Z

    We present a systematic survey of the capabilities of type Ia supernova explosion models starting from a number of flame seeds distributed around the center of the white dwarf star. To this end we greatly improved the resolution of the numerical simulations in the initial stages. This novel numerical approach facilitates a detailed study of multi-spot ignition scenarios with up to hundreds of ignition sparks. Two-dimensional simulations are shown to be inappropriate to study the effects of initial flame configurations. Based on a set of three-dimensional models, we conclude that multi-spot ignition scenarios may improve type Ia supernova models towards better agreement with observations. The achievable effect reaches a maximum at a limited number of flame ignition kernels as shown by the numerical models and corroborated by a simple dimensional analysis.

  8. Type Ia Supernova Spectral Line Ratios as LuminosityIndicators

    SciTech Connect (OSTI)

    Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

    2005-12-07T23:59:59.000Z

    Type Ia supernovae have played a crucial role in thediscovery of the dark energy, via the measurement of their light curvesand the determination of the peak brightness via fitting templates to theobserved lightcurve shape. Two spectroscopic indicators are also known tobe well correlated with peak luminosity. Since the spectroscopicluminosity indicators are obtained directly from observed spectra, theywill have different systematic errors than do measurements usingphotometry. Additionally, these spectroscopic indicators may be usefulfor studies of effects of evolution or age of the SNe~;Ia progenitorpopulation. We present several new variants of such spectroscopicindicators which are easy to automate and which minimize the effects ofnoise. We show that these spectroscopic indicators can be measured byproposed JDEM missions such as snap and JEDI.

  9. Investigating the Flame Microstructure in Type Ia Supernovae

    E-Print Network [OSTI]

    Roepke, F K; Niemeyer, J C

    2002-01-01T23:59:59.000Z

    We present a numerical model to study the behavior of thermonuclear flames in the discontinuity approximation. This model is applied to investigate the Landau-Darrieus instability under conditions found in Type Ia supernova explosions of Chandrasekhar mass white dwarfs. This is a first step to explore the flame microstructure in these events. The model reproduces Landau's linearized stability analysis in early stages of the flame evolution and the stabilization in a cellular flame structure in the nonlinear stage.

  10. Investigating the Flame Microstructure in Type Ia Supernovae

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

    2002-04-02T23:59:59.000Z

    We present a numerical model to study the behavior of thermonuclear flames in the discontinuity approximation. This model is applied to investigate the Landau-Darrieus instability under conditions found in Type Ia supernova explosions of Chandrasekhar mass white dwarfs. This is a first step to explore the flame microstructure in these events. The model reproduces Landau's linearized stability analysis in early stages of the flame evolution and the stabilization in a cellular flame structure in the nonlinear stage.

  11. X- and Gamma-Ray Flashes from Type Ia Supernovae?

    E-Print Network [OSTI]

    Hoflich, Peter

    2009-01-01T23:59:59.000Z

    We investigate two potential mechanisms that will produce X-ray and gamma-ray flashes from Type Ia supernovae (SN-Ia). The mechanisms are the breakout of the thermonuclear burning front as it reaches the surface of the white dwarf and the interaction of the rapidly expanding envelope with an accretion disk. Based on the delayed-detonation scenario and detailed radiation-hydro calculation which include nuclear networks, we find that both mechanisms produce ~1 second flashes of high energy radiation with peak luminosities of 10^48 to 10^50 erg/sec with fast rises and exponential declines. The X- and gamma-ray visibility of a SN-Ia will depend strongly on self absorption within the progenitor system, specifically on the properties of the accretion disk and its orientation towards the observer. Such X-ray and gamma-ray flashes could be detected as triggered events by Gamma-Ray Burst (GRB) detectors on satellites, with events in current GRB catalogs. We have searched through the GRB catalogs (for the BATSE, HETE, ...

  12. The type Ia supernovae and the Hubble's constant

    E-Print Network [OSTI]

    Ari Brynjolfsson

    2004-07-20T23:59:59.000Z

    The Hubble's constant is usually surmised to be a constant; but the experiments show a large spread and conflicting estimates. According to the plasma-redshift theory, the Hubble's constant varies with the plasma densities along the line of sight. It varies then slightly with the direction and the distance to a supernova and a galaxy. The relation between the magnitudes of type Ia supernovae and their observed redshifts results in an Hubble's constant with an average value in intergalactic space of 59.44 km per s per Mpc. The standard deviation from this average value is only 0.6 km per s per Mpc, but the standard deviation in a single measurement is about 8.2 km per s per Mpc. These deviations do not include possible absolute calibration errors. The experiments show that the Hubble's constant varies with the intrinsic redshifts of the Milky Way galaxy and the host galaxies for type Ia supernovae, and that it varies with the galactic latitude. These findings support the plasma-redshift theory and contradict the contemporary big-bang theory. Together with the previously reported absence of time dilation in type Ia supernovae measurements, these findings have profound consequences for the standard cosmological theory.

  13. Theoretical Clues to the Ultraviolet Diversity of Type Ia Supernovae

    E-Print Network [OSTI]

    Brown, Peter J; Milne, Peter; Roming, Peter W A; Wang, Lifan

    2015-01-01T23:59:59.000Z

    The effect of metallicity on the observed light of Type Ia supernovae (SNe Ia) could lead to systematic errors as the absolute magnitudes of local and distant SNe Ia are compared to measure luminosity distances and determine cosmological parameters. The UV light may be especially sensitive to metallicity, though different modeling methods disagree as to the magnitude, wavelength dependence, and even the sign of the effect. The outer density structure, ^56 Ni, and to a lesser degree asphericity, also impact the UV. We compute synthetic photometry of various metallicity-dependent models and compare to UV/optical photometry from the Swift Ultra-Violet/Optical Telescope. We find that the scatter in the mid-UV to near-UV colors is larger than predicted by changes in metallicity alone and is not consistent with reddening. We demonstrate that a recently employed method to determine relative abundances using UV spectra can be done using UVOT photometry, but we warn that accurate results require an accurate model of t...

  14. CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS

    SciTech Connect (OSTI)

    Ma, H.; Woosley, S. E.; Malone, C. M. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Almgren, A.; Bell, J. [Center for Computational Sciences and Engineering, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States)

    2013-07-01T23:59:59.000Z

    A leading model for Type Ia supernovae (SNe Ia) begins with a white dwarf near the Chandrasekhar mass that ignites a degenerate thermonuclear runaway close to its center and explodes. In a series of papers, we shall explore the consequences of ignition at several locations within such dwarfs. Here we assume central ignition, which has been explored before, but is worth revisiting, if only to validate those previous studies and to further elucidate the relevant physics for future work. A perturbed sphere of hot iron ash with a radius of {approx}100 km is initialized at the middle of the star. The subsequent explosion is followed in several simulations using a thickened flame model in which the flame speed is either fixed-within the range expected from turbulent combustion-or based on the local turbulent intensity. Global results, including the explosion energy and bulk nucleosynthesis (e.g., {sup 56}Ni of 0.48-0.56 M{sub Sun }) turn out to be insensitive to this speed. In all completed runs, the energy released by the nuclear burning is adequate to unbind the star, but not enough to give the energy and brightness of typical SNe Ia. As found previously, the chemical stratification observed in typical events is not reproduced. These models produce a large amount of unburned carbon and oxygen in central low velocity regions, which is inconsistent with spectroscopic observations, and the intermediate mass elements and iron group elements are strongly mixed during the explosion.

  15. Coding for Cooperative Communications

    E-Print Network [OSTI]

    Uppal, Momin Ayub

    2011-10-21T23:59:59.000Z

    of SWCNSQ based CF relaying as a performance benchmark, we will present a practical code design using low-density parity-check (LDPC) codes for error protection at the source, and nested scalar quantization plus irregular repeat-accumulate (IRA) codes... develop and design practical coding strategies which perform very close to the infor- mation theoretic limits. The cooperative communication channels we consider are: (a) The Gaussian re- lay channel, (b) the quasi-static fading relay channel, (c...

  16. The modification of a radio frequency Cockcroft Walton generator

    E-Print Network [OSTI]

    Holt, Joseph Marion

    1954-01-01T23:59:59.000Z

    iepedanee of the line Ee ia /ja$C', linea the line ia open at the Nth loop~ ZM ia of~ by p, ) 28'4 ~(Alf) ' ' & &2 ~ ~ (6I N (~y) g bC ~ (6) 5N solviag %his emyrlsmfea ter aha ratio ( ? } @islay ( + ) ~ FF0% PifQ$% (2) y ib San bo assn tha, The en...

  17. THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Kistler, Matthew D. [California Institute of Technology, Mail Code 350-17, Pasadena, CA 91125 (United States); Stanek, K. Z.; Kochanek, Christopher S.; Thompson, Todd A. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Prieto, Jose L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2013-06-20T23:59:59.000Z

    The metallicity of a star strongly affects both its evolution and the properties of the stellar remnant that results from its demise. It is generally accepted that stars with initial masses below {approx}8 M{sub Sun} leave behind white dwarfs and that some sub-population of these lead to Type Ia supernovae (SNe Ia). However, it is often tacitly assumed that metallicity has no effect on the rate of SNe Ia. We propose that a consequence of the effects of metallicity is to significantly increase the SN Ia rate in lower-metallicity galaxies, in contrast to previous expectations. This is because lower-metallicity stars leave behind higher-mass white dwarfs, which should be easier to bring to explosion. We first model SN Ia rates in relation to galaxy masses and ages alone, finding that the elevation in the rate of SNe Ia in lower-mass galaxies measured by Lick Observatory SN Search is readily explained. However, we then see that models incorporating this effect of metallicity agree just as well. Using the same parameters to estimate the cosmic SN Ia rate, we again find good agreement with data up to z Almost-Equal-To 2. We suggest that this degeneracy warrants more detailed examination of host galaxy metallicities. We discuss additional implications, including for hosts of high-z SNe Ia, the SN Ia delay time distribution, super-Chandrasekhar SNe, and cosmology.

  18. High-Redshift Type Ia Supernova Rates in Galaxy Cluster and Field Environments

    E-Print Network [OSTI]

    Barbary, Kyle Harris

    2011-01-01T23:59:59.000Z

    29 Candidates classified as supernovae . . . . . . . .1.1 Type Ia Supernovae as Standard Candles . . . . . . . .4.2.3 Supernovae . . . . . . . . . . . . . . . . 4.2.4

  19. Multi-layered Spectral Formation in SNe Ia Around Maximum Light

    E-Print Network [OSTI]

    Bongard, Sebastien

    2008-01-01T23:59:59.000Z

    stars: atmospheres supernovae DISCLAIMER This document wasIntroduction Type Ia supernov have been used as spanning the normal supernov blue magnitudes. Single Ion

  20. Timescale stretch parameterization of Type Ia supernova B-band light curves

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    the light curve of Type Ia supernovae discovered by theof the high-redshift supernovae. This work was supported inobjects. Subject headings: supernovae: general cosmology:

  1. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect (OSTI)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon (France); Universite de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (France); and others

    2013-06-20T23:59:59.000Z

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  2. Direct numerical simulations of type Ia supernovae flames II: The rayleigh-taylor instability

    E-Print Network [OSTI]

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2004-01-01T23:59:59.000Z

    Weaver, T. A. 1994, in Supernovae, Les Houches, Session LIV,Simulations of Type Ia Supernovae Flames II: The Rayleigh-Subject headings: supernovae: general white dwarfs

  3. Reflections on Reflexions: I. Light Echoes in Type Ia Supernovae

    E-Print Network [OSTI]

    F. Patat

    2004-09-28T23:59:59.000Z

    In the last ten years, observational evidences about a possible connection between Type Ia Supernovae (SNe) properties and the environment where they explode have been steadily growing. In this paper I discuss, from a theoretical point of view but with an observer's perspective, the usage of light echoes (LEs) to probe the CSM around SNe of Type Ia since, in principle, they give us a unique opportunity of getting a three-dimensional description of the SN environment. In turn, this can be used to check the often suggested association of some Ia's with dusty/star forming regions, which would point to a young population for the progenitors. After giving a brief introduction to the LE phenomenon in single scattering approximation, I derive analytical and numerical solutions for the optical light and colour curves for a few simple dust geometries. A fully 3D multiple scattering treatment has also been implemented in a Monte Carlo code, which I have used to investigate the effects of multiple scattering. In particular, I have explored in detail the LE colour dependency from time and dust distribution, since this is a promising tool to determine the dust density and derive the effective presence of multiple scattering from the observed properties. Finally, again by means of Monte Carlo simulations, I have studied the effects of multiple scattering on the LE linear polarization, analyzing the dependencies from the dust parameters and geometry. Both the analytical formalism and MC codes described in this paper can be used for any LE for which the light curve of the central source is known.

  4. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    SciTech Connect (OSTI)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stritzinger, Maximilian; Contreras, Carlos [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castelln, Sergio; Morrell, Nidia; Salgado, Francisco [Carnegie Institution of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, College Station, TX 77843 (United States)

    2014-07-01T23:59:59.000Z

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B V), such that larger E(B V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  5. A Model for Multidimensional Delayed Detonations in SN Ia Explosions

    E-Print Network [OSTI]

    I. Golombek; J. C. Niemeyer

    2005-03-29T23:59:59.000Z

    We show that a flame tracking/capturing scheme originally developed for deflagration fronts can be used to model thermonuclear detonations in multidimensional explosion simulations of type Ia supernovae. After testing the accuracy of the front model, we present a set of two-dimensional simulations of delayed detonations with a physically motivated off-center deflagration-detonation-transition point. Furthermore, we demonstrate the ability of the front model to reproduce the full range of possible interactions of the detonation with clumps of burned material. This feature is crucial for assessing the viability of the delayed detonation scenario.

  6. Can Deflagration-Detonation-Transitions occur in Type Ia Supernovae?

    E-Print Network [OSTI]

    J. C. Niemeyer

    1999-07-19T23:59:59.000Z

    The mechanism for deflagration-detonation-transition (DDT) by turbulent preconditioning, suggested to explain the possible occurrence of delayed detonations in Type Ia supernova explosions, is argued to be conceptually inconsistent. It relies crucially on diffusive heat losses of the burned material on macroscopic scales. Regardless of the amplitude of turbulent velocity fluctuations, the typical gradient scale for temperature fluctuations is shown to be the laminar flame width or smaller, rather than the factor of thousand more required for a DDT. Furthermore, thermonuclear flames cannot be fully quenched in regions much larger than the laminar flame width as a consequence of their simple ``chemistry''. Possible alternative explosion scenarios are briefly discussed.

  7. Three-dimensional simulations of type Ia supernovae

    E-Print Network [OSTI]

    M. Reinecke; W. Hillebrandt; J. C. Niemeyer

    2002-06-26T23:59:59.000Z

    We present the results of three-dimensional hydrodynamical simulations of the subsonic thermonuclear burning phase in type Ia supernovae. The burning front model contains no adjustable parameters so that variations of the explosion outcome can be linked directly to changes in the initial conditions. In particular, we investigate the influence of the initial flame geometry on the explosion energy and find that it appears to be weaker than in 2D. Most importantly, our models predict global properties such as the produced nickel masses and ejecta velocities within their observed ranges without any fine tuning.

  8. Three-dimensional simulations of type Ia supernovae

    E-Print Network [OSTI]

    Reinecke, M; Niemeyer, J C

    2002-01-01T23:59:59.000Z

    We present the results of three-dimensional hydrodynamical simulations of the subsonic thermonuclear burning phase in type Ia supernovae. The burning front model contains no adjustable parameters so that variations of the explosion outcome can be linked directly to changes in the initial conditions. In particular, we investigate the influence of the initial flame geometry on the explosion energy and find that it appears to be weaker than in 2D. Most importantly, our models predict global properties such as the produced nickel masses and ejecta velocities within their observed ranges without any fine tuning.

  9. Marginal evidence for cosmic acceleration from Type Ia supernovae

    E-Print Network [OSTI]

    Nielsen, Jeppe Trst; Sarkar, Subir

    2015-01-01T23:59:59.000Z

    The `standard' model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present --- as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these `standardisable candles' indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.

  10. Cooperative Education | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    our future"- Bill Nye The Cooperative Education Program combines academic study with employment. The program provides students with an opportunity to test skills learned in the...

  11. The Evolution of Human Cooperation

    E-Print Network [OSTI]

    Gintis, Herbert; Doebeli, Michael; Flack, Jessica

    2012-01-01T23:59:59.000Z

    684 Gintis, H. 2011. The Evolution of Human Cooperation.misunderstandings about cultural evolution. Human Nat. 19,Feldman, M. , 1981. Cultural Evolution. Princeton University

  12. Grouping normal type Ia supernovae by UV to optical color differences

    SciTech Connect (OSTI)

    Milne, Peter A. [University of Arizona, Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85719 (United States); Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Roming, Peter W. A. [Space Science and Engineering Division, Southwest Research Corporation, P.O. Drawer 28510, San Antonio, TX 78228-0510 (United States); Bufano, Filomena [Universidad Andres Bello, Departmento de Cincias Fisicas, Avda. Republica 220, Santiago (Chile); Gehrels, Neil, E-mail: pbrown@physics.tamu.edu [NASA-Goddard Space Flight Center, Astrophysics Science Division, Codes 660.1 and 662, Greenbelt, MD 20771 (United States)

    2013-12-10T23:59:59.000Z

    Observations of many Type Ia supernovae (SNe Ia) for multiple epochs per object with the Swift Ultraviolet Optical Telescope instrument have revealed that there exists order to the differences in the UV-optical colors of optically normal supernovae (SNe). We examine UV-optical color curves for 23 SNe Ia, dividing the SNe into four groups, and find that roughly one-third of 'NUV-blue' SNe Ia have bluer UV-optical colors than the larger 'NUV-red' group. Two minor groups are recognized, 'MUV-blue' and 'irregular' SNe Ia. While we conclude that the latter group is a subset of the NUV-red group, containing the SNe with the broadest optical peaks, we conclude that the 'MUV-blue' group is a distinct group. Separating into the groups and accounting for the time evolution of the UV-optical colors lowers the scatter in two NUV-optical colors (e.g., u v and uvw1 v) to the level of the scatter in b v. This finding is promising for extending the cosmological utilization of SNe Ia into the NUV. We generate spectrophotometry of 33 SNe Ia and determine the correct grouping for each. We argue that there is a fundamental spectral difference in the 2900-3500 wavelength range, a region suggested to be dominated by absorption from iron-peak elements. The NUV-blue SNe Ia feature less absorption than the NUV-red SNe Ia. We show that all NUV-blue SNe Ia in this sample also show evidence of unburned carbon in optical spectra, whereas only one NUV-red SN Ia features that absorption line. Every NUV-blue event also exhibits a low gradient of the Si II ?6355 absorption feature. Many NUV-red events also exhibit a low gradient, perhaps suggestive that NUV-blue events are a subset of the larger low-velocity gradient group.

  13. NOAA Fisheries Service National Cooperative Research Program

    E-Print Network [OSTI]

    COOPERATIVE RESEARCH Project Title: Personnel and Associated Management Costs Project Title: Development and Operating Costs to Support Cooperative Research Projects 16 NORTHEAST REGIONAL OFFICE COOPERATIVE RESEARCH Council Reports: Improve Fish Stock Assessments, Effects of Trawling & Dredging on Sea Floor Habitat

  14. Maximum likelihood estimation for cooperative sequential adsorption

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Maximum likelihood estimation for cooperative sequential adsorption Mathew D. Penrose and Vadim;Maximum likelihood estimation for cooperative sequential adsorption M.D. Penrose, Department of the region. Keywords: cooperative sequential adsorption, space-time point pro- cess, maximum likelihood

  15. Cooperative Diversity Routing in Wireless Networks

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Cooperative Diversity Routing in Wireless Networks Mostafa Dehghan and Majid Ghaderi Department routing, cooperative commu- nication, cooperative diversity, wireless networks. I. INTRODUCTION Energy efficiency is a challenging problem in wireless networks, especially in ad hoc and sensor networks, where

  16. Cooperative Approaches for Implementation of

    E-Print Network [OSTI]

    Laughlin, Robert B.

    ;#12;Abstract Anaerobic digestion of dairy manure produces biogas that can be captured and used for fuel while returns from energy and byproduct sales. Keywords: Anaerobic digestion, biogas, cooperatives, carbonCooperative Approaches for Implementation of Dairy Manure Digesters Research Report 217 #12

  17. MULTIMEDIA INSTRUCTIONS IN IA-64 Ruby B. Lee, A. Murat Fiskiran and Abdulla Bubshait

    E-Print Network [OSTI]

    Lee, Ruby B.

    MULTIMEDIA INSTRUCTIONS IN IA-64 Ruby B. Lee, A. Murat Fiskiran and Abdulla Bubshait Department discuss the integer and floating-point multimedia instructions in the IA-64 instruction-set architecture (ISA). These multimedia instructions implement subword parallelism, also called packed parallelism

  18. Experto Universitario Java Enterprise 2012-2013 Depto. Ciencia de la Computacin e IA

    E-Print Network [OSTI]

    Escolano, Francisco

    Experto Universitario Java Enterprise 2012-2013 Depto. Ciencia de la Computacin e IA Lenguaje Java Avanzado Sesin 3: Tratamiento de errores #12;Lenguaje Java Avanzado 2012-2013 Depto. Ciencia de Tipos genricos #12;Lenguaje Java Avanzado 2012-2013 Depto. Ciencia de la Computacin e IA Errores - 3

  19. 2010-2011 Depto. Ciencia de la Computacin e IA Especialista Universitario Java Enterprise

    E-Print Network [OSTI]

    Escolano, Francisco

    2010-2011 Depto. Ciencia de la Computacin e IA Especialista Universitario Java Enterprise Struts Sesin 4: Introduccin a Struts 2 #12; 2010-2011 Depto. Ciencia de la Computacin e IA Especialista Taglibs Internacionalizacin Validacin Conceptos nuevos en Struts 2 #12; 2010-2011 Depto. Ciencia

  20. Clay Electric Cooperative, Inc- Energy Conservation Loans

    Broader source: Energy.gov [DOE]

    Clay Electric Cooperative (CEC), a Touchstone Energy Cooperative, covers 14 North Florida counties, including Gainesville, Keystone Heights, Lake City, Orange Park, Palatka, and Salt Springs. It...

  1. Clay Electric Cooperative, Inc- Solar Thermal Loans

    Broader source: Energy.gov [DOE]

    Clay Electric Cooperative (CEC), a Touchstone Energy Cooperative, covers 14 counties in northern Florida, including Gainesville, Keystone Heights, Lake City, Orange Park, Palatka, and Salt Springs....

  2. International Framework for Nuclear Energy Cooperation (IFNEC...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania...

  3. Secretary Bodman Highlights Alternative Energy Cooperation in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Energy Cooperation in the United Arab Emirates Secretary Bodman Highlights Alternative Energy Cooperation in the United Arab Emirates January 21, 2008 - 10:38am Addthis...

  4. Mohave Electric Cooperative- Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Mohave Electric Cooperative is a non-profit that serves the communities of Bullhead City, Fort Mohave, Mohave Valley, Wikieup, Hackberry and Peach Springs. Mohave Electric Cooperative offers...

  5. Mohave Electric Cooperative- Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Mohave Electric Cooperative provides incentives for its customers to install renewable energy systems on their homes and businesses. Mohave Electric Cooperative will provide rebates for...

  6. Reporting Cooperating Agencies in Implementing the Procedural...

    Energy Savers [EERE]

    of Federal and non-federal cooperating agencies in the preparation of analyses and documentation required by the National Environmental Policy Act (NEPA). REPORTING COOPERATING...

  7. Type Ia supernova rate studies from the SDSS-II Supernova Study

    SciTech Connect (OSTI)

    Dilday, Benjamin; /Chicago U.

    2008-08-01T23:59:59.000Z

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered {approx} 500 spectroscopically confirmed SNe Ia with densely sampled (once every {approx} 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents {approx} 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  8. Measurement of Omega_m, Omega_Lambda from a blind analysis of Type Ia supernovae with CMAGIC: Using color information to verify the acceleration of the Universe

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    analysis of Type Ia supernovae with CMAGIC: Using colorof 21 high redshift supernovae using a new technique (lightcurves of Type Ia supernovae, ?rst introduced in Wang

  9. The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

    SciTech Connect (OSTI)

    Lampeitl, Hubert; /Portsmouth U., ICG; Smith, Mathew; /Cape Town U. /Portsmouth U., ICG; Nichol, Robert C.; /Portsmouth U., ICG; Bassett, Bruce; /South African Astron. Observ. /Cape Town U.; Cinabro, David; /Wayne State U.; Dilday, Benjamin; /Rutgers U., Piscataway; Foley, Ryan J.; /Harvard-Smithsonian Ctr. Astrophys.; Frieman, Joshua A.; /Chicago U. /Fermilab; Garnavich, Peter M.; /Notre Dame U.; Goobar, Ariel; /Stockholm U., OKC; Im, Myungshin; /Seoul Natl. U. /Rutgers U., Piscataway

    2010-05-01T23:59:59.000Z

    We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 to 3{sigma}) that SNe Ia are {approx_equal} 0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R{sub V} {approx_equal} 1, while SNe Ia in star-forming hosts require R{sub V} {approx} 2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  10. Supernova progenitor constraints from circumstellar interaction: Type Ia

    E-Print Network [OSTI]

    Peter Lundqvist; Robert J. Cumming

    1996-10-03T23:59:59.000Z

    Searching for the presence of a circumstellar medium is a direct observational way to discriminate between different types of progenitor systems for Type Ia supernovae. We have modeled whether such gas may give rise to detectable emission, especially in H-alpha, and compare the models with observations of SN 1994D. We obtain a mass loss rate less than about 2.5 10^{-5} solar masses per year for a wind speed of 10 km/s. We find that X-ray observations in the range 5-10 keV, e.g., with AXAF, provide the most useful limits on the mass loss, while high-resolution optical spectroscopy offers the only direct way of identifying circumstellar hydrogen.

  11. Polarisation spectral synthesis for Type Ia supernova explosion models

    E-Print Network [OSTI]

    Bulla, M; Kromer, M

    2015-01-01T23:59:59.000Z

    We present a Monte Carlo radiative transfer technique for calculating synthetic spectropolarimetry for multi-dimensional supernova explosion models. The approach utilises "virtual-packets" that are generated during the propagation of the Monte Carlo quanta and used to compute synthetic observables for specific observer orientations. Compared to extracting synthetic observables by direct binning of emergent Monte Carlo quanta, this virtual-packet approach leads to a substantial reduction in the Monte Carlo noise. This is vital for calculating synthetic spectropolarimetry (since the degree of polarisation is typically very small) but also useful for calculations of light curves and spectra. We first validate our approach via application of an idealised test code to simple geometries. We then describe its implementation in the Monte Carlo radiative transfer code ARTIS and present test calculations for simple models for Type Ia supernovae. Specifically, we use the well-known one-dimensional W7 model to verify tha...

  12. Type Ia supernova Hubble residuals and host-galaxy properties

    SciTech Connect (OSTI)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J. [Laboratoire de Physique Nuclaire et des Hautes nergies, Universit Pierre et Marie Curie Paris 6, Universit Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M. [Physikalisches Institut, Universitt Bonn, Nuallee 12, D-53115 Bonn (Germany); Childress, M. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Chotard, N.; Copin, Y.; Gangler, E. [Universit de Lyon, F-69622 Lyon (France); Universit de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nuclaire de Lyon (France); and others

    2014-03-20T23:59:59.000Z

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the ?m {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  13. On silicon group elements ejected by supernovae type IA

    SciTech Connect (OSTI)

    De, Soma; Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Brown, Edward F. [Joint Institute for Nuclear Astrophysics, University of Notre Dame, IN 46556 (United States); Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY (United States); Townsley, Dean M. [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL (United States); Athanassiadou, Themis [Swiss National Supercomputing Centre, Via Trevano 131, 6900 Lugano (Switzerland); Chamulak, David A. [Physics Division, Argonne National Laboratory, Argonne, IL (United States); Hawley, Wendy [Laboratoire d'Astrophysique de Marseille, Marseille cedex 13 F-13388 (France); Jack, Dennis, E-mail: somad@asu.edu [Departamento de Astronoma, Universidad de Guanajuato, Apartado Postal 144, 36000 Guanajuato (Mexico)

    2014-06-01T23:59:59.000Z

    There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y {sub e} at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y {sub e} at explosion from the abundances recovered from an observed spectra. We show that measurement of {sup 28}Si, {sup 32}S, {sup 40}Ca, and {sup 54}Fe abundances can be used to construct Y {sub e} in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y {sub e} to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the {sup 28}Si abundance is insensitive to Y {sub e}, the {sup 32}S abundance has a nearly linear trend with Y {sub e}, and the {sup 40}Ca abundance has a nearly quadratic trend with Y {sub e}. We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.

  14. Egyptian Electric Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation, search ToolEcoware SpaEdtekEgyp-UNEP

  15. Empire Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to: navigation, search

  16. FEM Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace CenterEverlightOpenEyeforenergyFEM Electric

  17. Federated Rural Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman AerospaceEfficiencyInformation HydropowerFederated

  18. Runestone Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to: navigation,Rolls RoyceRosaRowanRumble

  19. Kodiak Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: Energy Resources JumpKobe Steel LtdKodiak

  20. Kotzebue Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: EnergyKosovo: Energy ResourcesKotzebue

  1. Coahoma Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityCleanInformation

  2. Coast Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityCleanInformationCommunity CoalCoast

  3. Dixie Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict of Columbia: Energy ResourcesDivya

  4. Intermountain Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to: navigation, search Name:Intermountain

  5. Chugach Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport | OpenChristian Reitberger Private Investor

  6. Harmon Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation Handbook forHansung ANewHardyCounty,

  7. Niobrara Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX LtdNewNingguo

  8. Matanuska Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy Resources JumpMastic, New York: Energy

  9. Delta Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: Energy Resources Jump to: navigation,

  10. Delta Montrose Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: Energy Resources Jump to: navigation,Delta

  11. Kotzebue Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts and Fasteners KPFKosciuskoKotzebue

  12. Magnolia Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to:Macquarie Energy LLCMagnolia BioPower LLC

  13. South Central Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopics BackgroundBend,South

  14. Tippah Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:Tioga Energy Jump to:Tippah Electric

  15. Tombigbee Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:Tioga EnergyTokyoTombigbee

  16. Tuntutuliak Comm Services Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinity ThermalTunisia-REEEP Energy Activities

  17. Umatilla Electric Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin

  18. Valley Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUserVHF Technologies SAValley Electric

  19. Flowell Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOE GTP)The Needles Area

  20. Highline Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation Hess Retail NaturalHifluxHighline Electric

  1. Homer Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation HessHirschmannScoring Tool Jump

  2. Intercounty Electric Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner MongoliaIntegrysInteracta JumpIntercounty

  3. Benton Rural Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative Sources of Funding: CaseBenton Rural

  4. Type Ia Supernovae Rates and Galaxy Clustering from the CFHT Supernova Legacy Survey

    E-Print Network [OSTI]

    M. L. Graham; C. J. Pritchet; M. Sullivan; S. D. J. Gwyn; J. D. Neill; E. Y. Hsiao; P. Astier; D. Balam; C. Balland; S. Basa; R. G. Carlberg; A. Conley; D. Fouchez; J. Guy; D. Hardin; I. M. Hook; D. A. Howell; R. Pain; K. Perrett; N. Regnault; S. Baumont; J. Le Du; C. Lidman; S. Perlmutter; P. Ripoche; N. Suzuki; E. S. Walker; T. Zhang

    2008-01-31T23:59:59.000Z

    The Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS) has created a large homogeneous database of intermediate redshift (0.2 rates, properties, and host galaxy star formation rates. The SNLS SN Ia database has now been combined with a photometric redshift galaxy catalog and an optical galaxy cluster catalog to investigate the possible influence of galaxy clustering on the SN Ia rate, over and above the expected effect due to the dependence of SFR on clustering through the morphology-density relation. We identify three cluster SNe Ia, plus three additional possible cluster SNe Ia, and find the SN Ia rate per unit mass in clusters at intermediate redshifts is consistent with the rate per unit mass in field early-type galaxies and the SN Ia cluster rate from low redshift cluster targeted surveys. We also find the number of SNe Ia in cluster environments to be within a factor of two of expectations from the two component SNIa rate model.

  5. Stellar Populations and the White Dwarf Mass Function: Connections To Supernova Ia Luminosities

    E-Print Network [OSTI]

    Ted von Hippel; G. D. Bothun; R. A. Schommer

    1997-06-11T23:59:59.000Z

    We discuss the luminosity function of SNe Ia under the assumption that recent evidence for dispersion in this standard candle is related to variations in the white dwarf mass function (WDMF) in the host galaxies. We develop a simple parameterization of the WDMF as a function of age of a stellar population and apply this to galaxies of different morphological types. We show that this simplified model is consistent with the observed WDMF of Bergeron et al. (1992) for the solar neighborhood. Our simple models predict that WDMF variations can produce a range of more than 1.8 mag in M$_B$(SN Ia), which is comparable to the observed value using the data of Phillips (1993) and van den Bergh (1996). We also predict a galaxy type dependence of M$_B$(SN Ia) under standard assumptions of the star formation history in these galaxies and show that M$_B$(SN Ia) can evolve with redshift. In principle both evolutionary and galaxy type corrections should be applied to recover the intrinsic range of M$_B$(SN Ia) from the observed values. Our current inadequate knowledge of the star formation history of galaxies coupled with poor physical understanding of the SN Ia mechanism makes the reliable estimation of these corrections both difficult and controversial. The predictions of our models combined with the observed galaxy and redshift correlations may have the power to discriminate between the Chandrasekhar and the sub-Chandrasekhar progenitor scenarios for SNe Ia.

  6. A systematic study of carbon-oxygen white dwarf mergers: mass combinations for Type Ia supernovae

    E-Print Network [OSTI]

    Sato, Yushi; Tanikawa, Ataru; Nomoto, Ken'ichi; Maeda, Keiichi; Hachisu, Izumi

    2015-01-01T23:59:59.000Z

    Mergers of two carbon-oxygen (CO) white dwarfs (WDs) have been considered as progenitors of Type Ia supernovae (SNe Ia). Based on smoothed particle hydrodynamics (SPH) simulations, previous studies claimed that mergers of CO WDs lead to an SN Ia explosion either in the dynamical merger phase or stationary rotating merger remnant phase. However, the mass range of CO WDs that lead to an SN Ia has not been clearly identified yet. In the present work, we perform systematic SPH merger simulations for the WD masses ranging from $0.5~M_{\\odot}$ to $1.1~M_{\\odot}$ with higher resolutions than the previous systematic surveys and examine whether or not carbon burning occurs dynamically or quiescently in each phase. We further study the possibility of SN Ia explosion and estimate the mass range of CO WDs that lead to an SN Ia. We found that when the both WDs are massive, i.e., in the mass range of $0.9~M_{\\odot} {\\le} M_{1,2} {\\le} 1.1~M_{\\odot}$, they can explode as an SN Ia in the merger phase. On the other hand, when...

  7. The Hubble Constant from Type Ia Supernovae in Early-Type Galaxies

    E-Print Network [OSTI]

    Tom Richtler; Georg Drenkhahn

    1999-09-07T23:59:59.000Z

    Type Ia supernovae (SNe) are the best standard candles available today in spite of an appreciable intrinsic variation of their luminosities at maximum phase, and of probably non-uniform progenitors. For an unbiased use of type Ia SNe as distance indicators it is important to know accurately how the decline rate and colour at maximum phase correlate with the peak brightness. In order to calibrate the Hubble diagram of type Ia SNe, i.e. to derive the Hubble constant, one needs to determine the absolute brightness of nearby type Ia SNe. Globular cluster systems of early type Ia host galaxies provide suitable distance indicators. We discuss how Ia SNe can be calibrated and explain the method of Globular Cluster Luminosity Functions (GCLFs). At present, the distance to the Fornax galaxy cluster is most important for deriving the Hubble constant. Our present data indicate a Hubble constant of H_0=72+-4 km/s/Mpc. As an appendix, we summarise what is known about absolute magnitudes of Ia's in late-type galaxies.

  8. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect (OSTI)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon (France); Universite de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (France); and others

    2013-06-20T23:59:59.000Z

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and H{alpha}-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M{sub *}/M{sub Sun }) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  9. Energy Efficient Cooperative Communication A Dissertation

    E-Print Network [OSTI]

    Brown III, Donald R.

    Energy Efficient Cooperative Communication by Jie Yang A Dissertation Submitted to the Faculty of the energy efficiency of cooperative wireless communication systems. Cooperative communication is a technique study of the energy efficiency of two-source cooperative transmission under differing assumptions about

  10. Co-operatives as a learning

    E-Print Network [OSTI]

    Bandara, Arosha

    Co-operatives as a learning space for youth RESEARCH BACKGROUND There is increasing interest in co-operatives in Africa and whether they have the potential to enable people to build sustainable livelihoods. Why co-operatives? Co-operatives are organisational structures where groups of people come together to set up businesses

  11. FUNDING OPPORTUNITIES: Cooperation and development

    E-Print Network [OSTI]

    : cooperation, ideas, people, capacities, nuclear research Observation session Universidad de Alicante, 3, 3-4 May 2010 FP7: Evolution of budget: #12;KICK- OFF MEETING Health Food, agriculture

  12. Santee Cooper- Business Custom Rebates

    Broader source: Energy.gov [DOE]

    Santee Cooper has developed a Business Custom Rebate as part of their Reduce the Use: Business Prescriptive RebateProgram, which was designed to reduce a business's overall electricity use.

  13. THE FOREST BIOLOGY RESEARCH COOPERATIVE

    E-Print Network [OSTI]

    Watson, Craig A.

    Staudhammer, SFRC, Biometrics COOPERATORS Industrial: Plum Creek Timber Company, Rayonier, Weyerhaeuser CoGen, CellFor; Together, these companies produce over 400 million tree seedlings per year, more than a fourth

  14. Glass Transition, Cooperativity and Interfaces

    E-Print Network [OSTI]

    Salez, Thomas; Dalnoki-Veress, Kari; Raphal, Elie; Forrest, James A

    2015-01-01T23:59:59.000Z

    We introduce a minimal theory of glass formation based on the physical ideas of molecular crowding and resultant cooperative motion, and address the effects of free interfaces on dynamics. First, we obtain a simple scaling expression for the diverging number of particles taking part in bulk cooperative relaxation as the system approaches kinetic arrest, and in doing so provide a robust derivation of the Adam and Gibbs description of cooperative dynamics. Then, by including thermal expansivity of the material, the Vogel-Fulcher-Tammann relation is derived. Moreover, we predict a temperature-dependent expression for the cooperative length $\\xi$ of bulk relaxation, and explore the influence of sample boundaries on the glassy dynamics when the system size becomes comparable to $\\xi$. The theory is in full agreement with measurements of the glass transition temperature of thin polystyrene films. This agreement comes with two adjustable parameters, the critical interparticle distance and the Vogel temperature. Alth...

  15. Cooperative Kalman Filters for Cooperative Exploration Fumin Zhang and Naomi Ehrich Leonard

    E-Print Network [OSTI]

    Leonard, Naomi

    Cooperative Kalman Filters for Cooperative Exploration Fumin Zhang and Naomi Ehrich Leonard of the platforms. Based on this model, we design cooperative Kalman filters that apply to general cooperative of the cooperative Kalman filters. These sufficient conditions provide guidelines on mission design issues

  16. University Engagement and Outreach Committee Chair: PVC (IA), Prof. M Cardew-Hall

    E-Print Network [OSTI]

    Botea, Adi

    University Engagement and Outreach Committee Chair: PVC (IA), Prof. M Cardew-Hall Alternate Chair: PVC (IO), Dr. Erik Lithander Secretary: Ms. Jan O'Connor (Jan.OConnor@anu.edu.au) / Ms. Joanne Gash

  17. Structural studies of allosteric regulation in the class Ia Ribonucleotide reductase from Escherichia coli

    E-Print Network [OSTI]

    Zimanyi, Christina Marie

    2013-01-01T23:59:59.000Z

    Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication and repair. The E. coli class Ia enzyme requires two subunits to catalyze the radical-based reduction ...

  18. Type Ia supernova rate at a redshift of ~ 0.1

    E-Print Network [OSTI]

    Blanc, G; Alard, C; Albert, J N; Aldering, G; Amadon, A; Andersen, J; Ansari, R; Aubourg, E; Balland, C; Bareyre, P; Beaulieu, J P; Charlot, X; Conley, A; Coutures, C; Dahlen, T; Derue, F; Fan, X; Ferlet, R; Folatelli, G; Fouqu, P; Garavini, G; Glicenstein, J F; Goldman, B; Goobar, A; Gould, A; Graff, D; Gros, M; Hassinski, J; Hamadache, C; Hardin, D; Hook, I M; De Kat, J; Kent, S; Kim, A; Lasserre, T; Le Guillou, Laurent; Lesquoy, E; Loup, C; Magneville, C; Marquette, J B; Maurice, E; Maury, A; Milsztajn, A; Moniez, M; Mouchet, M; Newberg, H; Nobili, S; Palanque-Delabrouille, Nathalie; Perdereau, O; Prvt, L; Rahal, Y R; Regnault, N; Rich, J; Ruiz-Lapuente, P; Spiro, M; Tisserand, P; Vidal-Madjar, A; Vigroux, L; Walton, N A; Zylberajch, S

    2004-01-01T23:59:59.000Z

    We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides the type Ia supernova explosion rate at a redshift ~ 0.13. The result is $0.125^{+0.044+0.028}_{-0.034-0.028} h_{70}^2$ SNu where 1 SNu = 1 SN / $10^{10} L_{sun}^B$ / century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.

  19. Type Ia supernova rate at a redshift of ~ 0.1

    E-Print Network [OSTI]

    G. Blanc; C. Afonso; C. Alard; J. N. Albert; G. Aldering; A. Amadon; J. Andersen; R. Ansari; E. Aubourg; C. Balland; P. Bareyre; J. P. Beaulieu; X. Charlot; A. Conley; C. Coutures; T. Dahlen; F. Derue; X. Fan; R. Ferlet; G. Folatelli; P. Fouque; G. Garavini; J. F. Glicenstein; B. Goldman; A. Goobar; A. Gould; D. Graff; M. Gros; J. Haissinski; C. Hamadache; D. Hardin; I. M. Hook; J. deKat; S. Kent; A. Kim; T. Lasserre; L. LeGuillou; E. Lesquoy; C. Loup; C. Magneville; J. B. Marquette; E. Maurice; A. Maury; A. Milsztajn; M. Moniez; M. Mouchet; H. Newberg; S. Nobili; N. Palanque-Delabrouille; O. Perdereau; L. Prevot; Y. R. Rahal; N. Regnault; J. Rich; P. Ruiz-Lapuente; M. Spiro; P. Tisserand; A. Vidal-Madjar; L. Vigroux; N. A. Walton; S. Zylberajch

    2004-05-11T23:59:59.000Z

    We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides the type Ia supernova explosion rate at a redshift ~ 0.13. The result is $0.125^{+0.044+0.028}_{-0.034-0.028} h_{70}^2$ SNu where 1 SNu = 1 SN / $10^{10} L_{sun}^B$ / century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.

  20. Hipparcos calibration of the peak brightness of four SNe Ia and the value of Ho

    E-Print Network [OSTI]

    P. Lanoix

    1997-12-10T23:59:59.000Z

    Hipparcos geometrical parallaxes allowed us to calibrate the Cepheid Period-Luminosity relation and to compute the true distance moduli of 17 galaxies. Among these 17 galaxies, we selected those which generated type Ia Supernovae (SNe Ia). We found NGC 5253, parent galaxy of 1895B and 1972E, IC 4182 and NGC 4536 parents of 1937C and 1981B, respectively. We used the available B-band photometry to determine the peak brightness of these four SNe Ia. We obtained = -19.65 \\pm 0.09. Then, we built a sample of 57 SNe Ia in order to plot the Hubble diagram and determine its zero-point. Our result (ZP_{B} = -3.16 \\pm 0.10) is in agreement with other determinations and allows us to derive the following Hubble constant : Ho = 50 \\pm 3 (internal) km.s^-1.Mpc^-1.

  1. , SEYMOUR AND MacGREGOR COGNlTlYb NEUROPSYCHOLOGY. IdyslexIa. Brain. 102. 4363.

    E-Print Network [OSTI]

    Mehler, Jacques

    .T. (1980) Word-form dyslexIa. Brain. 102. 4363. REFERENCENOTES On Reducing Language to Biology I. Holmes. J. M. (1973) Dyslexia: a lIeurolinguistic study 0/ traumatic and developmental disorders 0/ reading

  2. Imprint of modified Einstein's gravity on white dwarfs: Unifying type Ia supernovae

    E-Print Network [OSTI]

    Das, Upasana

    2015-01-01T23:59:59.000Z

    We establish the importance of modified Einstein's gravity (MG) in white dwarfs (WDs) for the first time in the literature. We show that MG leads to significantly sub- and super-Chandrasekhar limiting mass WDs, depending on a single model parameter. However, conventional WDs on approaching Chandrasekhar's limit are expected to trigger type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe. Nevertheless, observations of several peculiar, under- and over-luminous SNeIa argue for the limiting mass widely different from Chandrasekhar's limit. Explosions of MG induced sub- and super-Chandrasekhar limiting mass WDs explain under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes. Our discovery questions both the global validity of Einstein's gravity and the uniqueness of Chandrasekhar's limit.

  3. EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE

    E-Print Network [OSTI]

    Lewin, Walter H. G.

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This ...

  4. Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study

    E-Print Network [OSTI]

    Garavini, G.; Supernova Cosmology Project

    2008-01-01T23:59:59.000Z

    Highlight - The Physics of Supernovae, ESO/MPA/MPE Workshop,Evolution in high-redshift supernovae Fig. 8 Ca ii H&KSN 1991T/SN 1999aa-like supernovae. 1. Introduction Type Ia

  5. Constructing a cosmological model-independent Hubble diagram of type Ia supernovae with cosmic chronometers

    E-Print Network [OSTI]

    Li, Zhengxiang; Yu, Hongwei; Zhu, Zong-Hong; Alcaniz, J S

    2015-01-01T23:59:59.000Z

    We apply two methods to reconstruct the Hubble parameter $H(z)$ as a function of redshift from 15 measurements of the expansion rate obtained from age estimates of passively evolving galaxies. These reconstructions enable us to derive the luminosity distance to a certain redshift $z$, calibrate the light-curve fitting parameters accounting for the (unknown) intrinsic magnitude of type Ia supernova (SNe Ia) and construct cosmological model-independent Hubble diagrams of SNe Ia. In order to test the compatibility between the reconstructed functions of $H(z)$, we perform a statistical analysis considering the latest SNe Ia sample, the so-called JLA compilation. We find that, while one of the reconstructed functions leads to a value of the local Hubble parameter $H_0$ in excellent agreement with the one reported by the Planck collaboration, the other requires a higher value of $H_0$, which is consistent with recent measurements of this quantity from Cepheids and other local distance indicators.

  6. Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing...

    Broader source: Energy.gov (indexed) [DOE]

    Cooperative is a generation and transmission cooperative (G&T) that provides the wholesale electrical requirements and other services for 25 electric distribution cooperatives...

  7. Energy Department Names Two Colorado-based Electric Cooperatives...

    Energy Savers [EERE]

    Energy Department Names Two Colorado-based Electric Cooperatives as Wind Cooperatives of the Year for 2014 Energy Department Names Two Colorado-based Electric Cooperatives as Wind...

  8. Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra

    E-Print Network [OSTI]

    Childress, Michael J; Seitenzahl, Ivo; Sullivan, Mark; Maguire, Kate; Taubenberger, Stefan; Scalzo, Richard; Ruiter, Ashley; Blagorodnova, Nadejda; Camacho, Yssavo; Castillo, Jayden; Elias-Rosa, Nancy; Fraser, Morgan; Gal-Yam, Avishay; Graham, Melissa; Howell, D Andrew; Inserra, Cosimo; Jha, Saurabh W; Kumar, Sahana; Mazzali, Paolo A; McCully, Curtis; Morales-Garoffolo, Antonia; Pandya, Viraj; Polshaw, Joe; Schmidt, Brian; Smartt, Stephen; Smith, Ken W; Sollerman, Jesper; Spyromilio, Jason; Tucker, Brad; Valenti, Stefano; Walton, Nicholas; Wolf, Christian; Yaron, Ofer; Young, D R; Yuan, Fang; Zhang, Bonnie

    2015-01-01T23:59:59.000Z

    The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of $^{56}$Ni to $^{56}$Co at early times, and the decay of $^{56}$Co to $^{56}$Fe from ~60 days after explosion. We examine the evolution of the [Co III] 5892 A emission complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of $^{56}$Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in $^{56}$Co decay, and long-term stability of the ionization state of the nebula. We compile 77 nebular spectra of 25 SN Ia from the literature and present 17 new nebular spectra of 7 SNe Ia, including SN2014J. From these we measure the flux in the [Co III] 5892 A line and remove its well-behaved time dependence to infer the initial mass of $^{56}$Ni ($M_{Ni}$) produced in the explosion. We then examine $^{56}$Ni yields for different SN Ia ejected masses ($M_{ej}$ - calculated using the relation between light...

  9. Tycho Brahe's 1572 supernova as a standard type Ia explosion revealed from its light echo spectrum

    E-Print Network [OSTI]

    Oliver Krause; Masaomi Tanaka; Tomonori Usuda; Takashi Hattori; Miwa Goto; Stephan Birkmann; Ken'ichi Nomoto

    2008-10-28T23:59:59.000Z

    Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions are how the explosion actually proceeds and whether accretion occurs from a companion or via the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a SN Ia in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the yet unknown exact spectroscopic type of SN 1572 is crucial to relate these results to the diverse population of SNe Ia. Here we report an optical spectrum of Tycho Brahe's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light of the explosion swept past Earth. We find that SN 1572 belongs to the majority class of normal SNe Ia. The presence of a strong Ca II IR feature at velocities exceeding 20,000 km/s, which is similar to the previously observed polarized features in other SNe Ia, suggests asphericity in SN 1572.

  10. THE ABSENCE OF EX-COMPANIONS IN TYPE Ia SUPERNOVA REMNANTS

    SciTech Connect (OSTI)

    Di Stefano, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin, E-mail: rd@cfa.harvard.edu, E-mail: kilic@ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States)

    2012-11-01T23:59:59.000Z

    Type Ia supernovae (SNe Ia) play important roles in our study of the expansion and acceleration of the universe, but because we do not know the exact nature or natures of the progenitors, there is a systematic uncertainty that must be resolved if SNe Ia are to become more precise cosmic probes. No progenitor system has ever been identified either in the pre- or post-explosion images of a Ia event. There have been recent claims for and against the detection of ex-companion stars in several SNe Ia remnants. These studies, however, usually ignore the angular momentum gain of the progenitor white dwarf (WD), which leads to a spin-up phase and a subsequent spin-down phase before explosion. For spin-down timescales greater than 10{sup 5} years, the donor star could be too dim to detect by the time of explosion. Here we revisit the current limits on ex-companion stars to SNR 0509-67.5, a 400-year-old remnant in the Large Magellanic Cloud. If the effects of possible angular momentum gain on the WD are included, a wide range of single-degenerate progenitor models are allowed for this remnant. We demonstrate that the current absence of evidence for ex-companion stars in this remnant, as well as other SNe Ia remnants, does not necessarily provide the evidence of absence for ex-companions. We discuss potential ways to identify such ex-companion stars through deep imaging observations.

  11. THE DISCOVERY OF THE MOST DISTANT KNOWN TYPE Ia SUPERNOVA AT REDSHIFT 1.914

    SciTech Connect (OSTI)

    Jones, David O.; Rodney, Steven A.; Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Dahlen, Tomas; Casertano, Stefano; Koekemoer, Anton [Space Telescope Science Institute, Baltimore, MD 21218 (United States); McCully, Curtis; Keeton, Charles R.; Patel, Brandon [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Frederiksen, Teddy F.; Hjorth, Jens [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Strolger, Louis-Gregory [Department of Physics, Western Kentucky University, Bowling Green, KY 42101 (United States); Wiklind, Tommy G. [Joint ALMA Observatory, ESO, Santiago (Chile); Challis, Peter [Harvard/Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Graur, Or [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Hayden, Brian; Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Weiner, Benjamin J. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); and others

    2013-05-10T23:59:59.000Z

    We present the discovery of a Type Ia supernova (SN) at redshift z = 1.914 from the CANDELS multi-cycle treasury program on the Hubble Space Telescope (HST). This SN was discovered in the infrared using the Wide-Field Camera 3, and it is the highest-redshift Type Ia SN yet observed. We classify this object as a SN Ia by comparing its light curve and spectrum with those of a large sample of Type Ia and core-collapse SNe. Its apparent magnitude is consistent with that expected from the {Lambda}CDM concordance cosmology. We discuss the use of spectral evidence for classification of z > 1.5 SNe Ia using HST grism simulations, finding that spectral data alone can frequently rule out SNe II, but distinguishing between SNe Ia and SNe Ib/c can require prohibitively long exposures. In such cases, a quantitative analysis of the light curve may be necessary for classification. Our photometric and spectroscopic classification methods can aid the determination of SN rates and cosmological parameters from the full high-redshift CANDELS SN sample.

  12. Human Robot Cooperation for Mechanical Assembly using Cooperative Vision System

    E-Print Network [OSTI]

    Kimura, Hiroshi

    For the purpose of the child care and nursing care, we are developing the robot which can assist the hu- man 182 K.Ikeuchi Institute of Industrial Science, Univ. of Tokyo 7-22-1 Roppongi, Minato-ku, Tokyo 106 an experiment in which the human and the robotic hand assembled toy parts in cooperation. 1 Introduction

  13. Cooperative Multiplexing in Wireless Relay Networks

    E-Print Network [OSTI]

    Nagpal, Vinayak

    2012-01-01T23:59:59.000Z

    Input Multiple Output MISO Multiple Input Single Output MLno cooperation) and 21 MISO (unlimited cooperation)Fig 2.6 achieves the 2 1 MISO bound for multiplexing gains

  14. Individual variation in cooperative behaviour in meerkats

    E-Print Network [OSTI]

    English, Sinad

    2010-04-13T23:59:59.000Z

    Individual variation in cooperation is a striking yet poorly understood feature of many animal societies, particularly in cooperative breeders where individuals assist in the care of young that are not their own. While previous research...

  15. Interacting models of cooperative gene regulation Debopriya Das*, Nilanjana Banerjee*

    E-Print Network [OSTI]

    Interacting models of cooperative gene regulation Debopriya Das*, Nilanjana Banerjee* , and Michael, especially mammals, where cooperative control of gene regulation is absolutely essential. cooperativity control in gene regulation networks. It requires cooperative binding of multiple transcription factors

  16. The Texas Agricultural Cooperative Board Chairman.

    E-Print Network [OSTI]

    Black, William E.; Knutson, Ronald D.

    1985-01-01T23:59:59.000Z

    19 10 7 100 5 Board chairmen usually purchase most of their supplies from cooperatives. Of the supplies that were handled, board chairmen, on the average, purchased 87 percent from their cooperative. Older board chairmen were better supply... patrons than younger ones. However, all age groups purchased a majority of their supplies from their cooperative. Table 6. Relationship of Age of Chairman to the Percent of Inputs Purcha~ from the Cooperative, Texas, 1985. Percent of Inputs Purchased...

  17. Pedernales Electric Cooperative- HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Pedernales Electric Cooperative offers equipment rebates to its members who install energy efficient HVAC equipment. Eligible equipment includes:

  18. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    trawlers, a group of seven catcher vessels with history of delivering offshore to factory trawlers of seven. Quotas are distributed to coops by the NMFS as per a formula based on the catch percentages by vessels in the qualifying years as set in the AFA. The Unalaska Fleet Cooperative is one of seven inshore

  19. NOAA Fisheries Service National Cooperative Research Program

    E-Print Network [OSTI]

    COOPERATIVE RESEARCH 12 Project Title: Personnel and Associated Management Costs 12 Project Title: Development Title: Equipment and Operating Costs to Support Cooperative Research Projects 17 NORTHEAST REGIONAL of Trawling & Dredging on Sea Floor Habitat (2002), and Cooperative Research in the National Marine Fisheries

  20. Cooperative Secondary Authorization Recycling , Matei Ripeanu

    E-Print Network [OSTI]

    failures and network delays. This paper presents the design of our cooperative secondary authorization recy not employ cooperation. 2 #12;Contents 1 Introduction 4 2 Secondary and Approximate Authorization Model (SAAM) 7 3 Cooperative Secondary Authorization Recycling (CSAR) 8 3.1 Design Requirements

  1. General Doppler Shift Equation and the Possibility of Systematic Error in Calculation of Z for High Redshift Type Ia Supernovae

    E-Print Network [OSTI]

    Steven M Taylor

    2007-04-10T23:59:59.000Z

    Systematic error in calculation of z for high redshift type Ia supernovae could help explain unexpected luminosity values that indicate an accelerating rate of expansion of the universe.

  2. A New Determination of the High Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Schmidt, B. P. , 2003, in Supernovae and Gamma Ray Bursts,for identifying Type Ia supernovae (although spectroscopicfor future high-statistics supernovae searches in which

  3. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    magnitudes of Type IA supernovae. Astrophys. J. Lett. 413,from 42 High-Redshift Supernovae. Astrophys. J. 517, 565Observational Evidence from Supernovae for an Accelerating

  4. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    E-Print Network [OSTI]

    Hsiao, E Y; Contreras, C; Hflich, P; Sand, D; Marion, G H; Phillips, M M; Stritzinger, M; Gonzlez-Gaitn, S; Mason, R E; Folatelli, G; Parent, E; Gall, C; Amanullah, R; Anupama, G C; Arcavi, I; Banerjee, D P K; Beletsky, Y; Blanc, G A; Bloom, J S; Brown, P J; Campillay, A; Cao, Y; De Cia, A; Diamond, T; Freedman, W L; Gonzalez, C; Goobar, A; Holmbo, S; Howell, D A; Johansson, J; Kasliwal, M M; Kirshner, R P; Krisciunas, K; Kulkarni, S R; Maguire, K; Milne, P A; Morrell, N; Nugent, P E; Ofek, E O; Osip, D; Palunas, P; Perley, D A; Persson, S E; Piro, A L; Rabus, M; Roth, M; Schiefelbein, J M; Srivastav, S; Sullivan, M; Suntzeff, N B; Surace, J; Wo?nia, P R; Yaron, O

    2015-01-01T23:59:59.000Z

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I {\\lambda}1.0693 {\\mu}m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely-cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with {\\Delta}m15(B) = 1.79 $\\pm$ 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categ...

  5. A Precise Distance Indicator: Type Ia Supernova Multicolor Light Curve Shapes

    E-Print Network [OSTI]

    Adam Riess; William Press; Robert Kirshner

    1996-04-24T23:59:59.000Z

    We present an empirical method that uses multicolor light curve shapes (MLCS) to estimate the luminosity, distance, and total line-of-sight extinction of Type Ia supernovae (SN Ia). The empirical correlation between the MLCS and the luminosity is derived from a ``training set'' of nine SN Ia light curves with independent distance and reddening estimates. We find that intrinsically dim SN Ia are redder and have faster light curves than the bright ones which are slow and blue. By thirty-five days after maximum the intrinsic color variations become negligable. A formal treatment of extinction employing Bayes' theorem is used to estimate the best value and its uncertainty. Applying MLCS to both light curves and to color curves provides enough information to determine which supernovae are dim because they are distant, which are intrinsically dim, and which are dim because of extinction by dust. The precision of the MLCS distances is examined by constructing a Hubble diagram with an independent set of twenty SN Ia's. The dispersion of 0.12 mag indicates a typical distance accuracy of 5 % for a single object, and the intercept yields a Hubble constant on the Cepheid distance scale (Sandage et al 1994, 1996) of H_0=65 \\pm 3 (statistical) km/s/Mpc ( \\pm 6 total error). The slope of 0.2010 pm 0.0035 mag over the distance interval 32.2 < mu < 38.3 yields the most precise confirmation of the linearity of the Hubble law.

  6. Wind-driven evolution of white dwarf binaries to type Ia supernovae

    SciTech Connect (OSTI)

    Ablimit, Iminhaji; Xu, Xiao-jie; Li, X.-D. [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2014-01-01T23:59:59.000Z

    In the single-degenerate scenario for the progenitors of Type Ia supernovae (SNe Ia), a white dwarf rapidly accretes hydrogen- or helium-rich material from its companion star and appears as a supersoft X-ray source. This picture has been challenged by the properties of the supersoft X-ray sources with very low mass companions and the observations of several nearby SNe Ia. It has been pointed out that the X-ray radiation or the wind from the accreting white dwarf can excite winds or strip mass from the companion star, thus significantly influencing the mass transfer processes. In this paper, we perform detailed calculations of the wind-driven evolution of white dwarf binaries. We present the parameter space for the possible SN Ia progenitors and for the surviving companions after the SNe. The results show that the ex-companion stars of SNe Ia have characteristics more compatible with the observations, compared with those in the traditional single-degenerate scenario.

  7. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    SciTech Connect (OSTI)

    Raskin, Cody; Kasen, Daniel [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Moll, Rainer; Woosley, Stan [Department of Physics and Department of Astronomy, University of California, Santa Cruz, CA (United States); Schwab, Josiah [Department of Physics and Department of Astronomy, University of California, Berkeley, CA (United States)

    2014-06-10T23:59:59.000Z

    Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multidimensional simulations of 'tamped' SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale height of the disk, which depends sensitively on the binary mass ratio, and the total {sup 56}Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant and show that a longer time delay between merger and explosion probably leads to larger {sup 56}Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical 'tamped' SN Ia for explaining the class of 'super-Chandrasekhar' SN Ia.

  8. SALT: a Spectral Adaptive Light curve Template for Type Ia Supernovae

    E-Print Network [OSTI]

    J. Guy; P. Astier; S. Nobili; N. Regnault; R. Pain

    2005-07-01T23:59:59.000Z

    We present a new method to parameterize Type Ia Supernovae (SN Ia) multi-color light curves. The method was developed in order to analyze the large number of SN Ia multi-color light curves measured in current high-redshift projects. The technique is based on empirically modeling SN Ia luminosity variations as a function of phase, wavelength, a shape parameter, and a color parameter. The model is trained with a sample of well measured nearby SN Ia and then tested with an independent set of supernovae by building an optimal luminosity distance estimator combining the supernova rest-frame luminosity, shape parameter and color reconstructed with the model. The distances we measure using B- and V-band data show a dispersion around the Hubble line comparable or lower than obtained with other methods. With this model, we are able to measure distances using U- and B-band data with a dispersion around the Hubble line of 0.16 +- 0.05.

  9. Confirmation of Hostless Type Ia Supernovae Using Hubble Space Telescope Imaging

    E-Print Network [OSTI]

    Graham, Melissa L; Zaritsky, Dennis; Pritchet, Chris J

    2015-01-01T23:59:59.000Z

    We present deep Hubble Space Telescope imaging at the locations of four, potentially hostless, long-faded Type Ia supernovae (SNe Ia) in low-redshift, rich galaxy clusters that were identified in the Multi-Epoch Nearby Cluster Survey. Assuming a steep faint-end slope for the galaxy cluster luminosity function ($\\alpha_d=-1.5$), our data includes all but $\\lesssim0.2\\%$ percent of the stellar mass in cluster galaxies ($\\lesssim0.005\\%$ with $\\alpha_d=-1.0$), a factor of 10 better than our ground-based imaging. Two of the four SNe Ia still have no possible host galaxy associated with them ($M_R>-9.2$), confirming that their progenitors belong to the intracluster stellar population. The third SNe Ia appears near a faint disk galaxy ($M_V=-12.2$) which has a relatively high probability of being a chance alignment. A faint, red, point source coincident with the fourth SN Ia's explosion position ($M_V=-8.4$) may be either a globular cluster (GC) or faint dwarf galaxy. We estimate the local surface densities of GCs ...

  10. COMPARING THE LIGHT CURVES OF SIMULATED TYPE Ia SUPERNOVAE WITH OBSERVATIONS USING DATA-DRIVEN MODELS

    SciTech Connect (OSTI)

    Diemer, Benedikt; Kessler, Richard; Graziani, Carlo; Jordan, George C. IV; Lamb, Donald Q.; Long, Min; Van Rossum, Daniel R., E-mail: bdiemer@oddjob.uchicago.edu [Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States)

    2013-08-20T23:59:59.000Z

    We propose a robust, quantitative method to compare the synthetic light curves of a Type Ia supernova (SN Ia) explosion model with a large set of observed SNe Ia, and derive a figure of merit for the explosion model's agreement with observations. The synthetic light curves are fit with the data-driven model SALT2 which returns values for stretch, color, and magnitude at peak brightness, as well as a goodness-of-fit parameter. Each fit is performed multiple times with different choices of filter bands and epoch range in order to quantify the systematic uncertainty on the fitted parameters. We use a parametric population model for the distribution of observed SN Ia parameters from large surveys, and extend it to represent red, dim, and bright outliers found in a low-redshift SN Ia data set. We discuss the potential uncertainties of this population model and find it to be reliable given the current uncertainties on cosmological parameters. Using our population model, we assign each set of fitted parameters a likelihood of being observed in nature, and a figure of merit based on this likelihood. We define a second figure of merit based on the quality of the light curve fit, and combine the two measures into an overall figure of merit for each explosion model. We compute figures of merit for a variety of one-, two-, and three-dimensional explosion models and show that our evaluation method allows meaningful inferences across a wide range of light curve quality and fitted parameters.

  11. Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydro Models

    E-Print Network [OSTI]

    E. Baron; S. Bongard; David Branch; Peter H. Hauschildt

    2006-03-03T23:59:59.000Z

    We have performed detailed NLTE spectral synthesis modeling of 2 types of 1-D hydro models: the very highly parameterized deflagration model W7, and two delayed detonation models. We find that overall both models do about equally well at fitting well observed SNe Ia near to maximum light. However, the Si II 6150 feature of W7 is systematically too fast, whereas for the delayed detonation models it is also somewhat too fast, but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II 6150 line near maximum light and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydro model to fit the spectra of observed SNe Ia near maximum light.

  12. The Late-Time Rebrightening of Type Ia SN 2005gj in the Mid-Infrared

    E-Print Network [OSTI]

    Fox, Ori D

    2013-01-01T23:59:59.000Z

    A growing number of observations reveal a subset of Type Ia supernovae undergoing circumstellar interaction (SNe Ia-CSM). We present unpublished archival Spitzer Space Telescope data on SNe Ia-CSM 2002ic and 2005gj obtained > 1300 and 500 days post-discovery, respectively. Both SNe show evidence for late-time mid-infrared (mid-IR) emission from warm dust. The dust parameters are most consistent with a pre-existing dust shell that lies beyond the forward-shock radius, most likely radiatively heated by optical and X-ray emission continuously generated by late-time CSM interaction. In the case of SN 2005gj, the mid-IR luminosity more than doubles after 1 year post-discovery. While we are not aware of any late-time optical-wavelength observations at these epochs, we attribute this rebrightening to renewed shock interaction with a dense circumstellar shell.

  13. [O I] ??6300, 6364 IN THE NEBULAR SPECTRUM OF A SUBLUMINOUS TYPE Ia SUPERNOVA

    SciTech Connect (OSTI)

    Taubenberger, S.; Kromer, M.; Hillebrandt, W. [Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)] [Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Pakmor, R. [Heidelberger Institut fr Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)] [Heidelberger Institut fr Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Pignata, G. [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile)] [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Maeda, K. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)] [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Hachinger, S. [Julius-Maximilians-Universitt Wrzburg, Emil-Fischer-Str. 31, D-97074 Wrzburg (Germany)] [Julius-Maximilians-Universitt Wrzburg, Emil-Fischer-Str. 31, D-97074 Wrzburg (Germany); Leibundgut, B. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)] [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2013-10-01T23:59:59.000Z

    In this Letter, a late-phase spectrum of SN 2010lp, a subluminous Type Ia supernova (SN Ia), is presented and analyzed. As in 1991bg-like SNe Ia at comparable epochs, the spectrum is characterized by relatively broad [Fe II] and [Ca II] emission lines. However, instead of narrow [Fe III] and [Co III] lines that dominate the emission from the innermost regions of 1991bg-like supernovae (SNe), SN 2010lp shows [O I] ??6300, 6364 emission, usually associated with core-collapse SNe and never previously observed in a subluminous thermonuclear explosion. The [O I] feature has a complex profile with two strong, narrow emission peaks. This suggests that oxygen is distributed in a non-spherical region close to the center of the ejecta, severely challenging most thermonuclear explosion models discussed in the literature. We conclude that, given these constraints, violent mergers are presently the most promising scenario to explain SN 2010lp.

  14. THE LATE-TIME REBRIGHTENING OF TYPE Ia SN 2005gj IN THE MID-INFRARED

    SciTech Connect (OSTI)

    Fox, Ori D.; Filippenko, Alexei V., E-mail: ofox@berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2013-07-20T23:59:59.000Z

    A growing number of observations reveal a subset of Type Ia supernovae undergoing circumstellar interaction (SNe Ia-CSM). We present unpublished archival Spitzer Space Telescope data on SNe Ia-CSM 2002ic and 2005gj obtained >1300 and 500 days post-discovery, respectively. Both SNe show evidence for late-time mid-infrared (mid-IR) emission from warm dust. The dust parameters are most consistent with a preexisting dust shell that lies beyond the forward-shock radius, most likely radiatively heated by optical and X-ray emission continuously generated by late-time CSM interaction. In the case of SN 2005gj, the mid-IR luminosity more than doubles after 1 yr post-discovery. While we are not aware of any late-time optical-wavelength observations at these epochs, we attribute this rebrightening to renewed shock interaction with a dense circumstellar shell.

  15. SALT2: using distant supernovae to improve the use of Type Ia supernovae as distance indicators

    E-Print Network [OSTI]

    J. Guy; P. Astier; S. Baumont; D. Hardin; R. Pain; N. Regnault; S. Basa; R. G. Carlberg; A. Conley; S. Fabbro; D. Fouchez; I. M. Hook; D. A. Howell; K. Perrett; C. J. Pritchet; J. Rich; M. Sullivan; P. Antilogus; E. Aubourg; G. Bazin; J. Bronder; M. Filiol; N. Palanque-Delabrouille; P. Ripoche; V. Ruhlmann-Kleider

    2007-01-29T23:59:59.000Z

    We present an empirical model of Type Ia supernovae spectro-photometric evolution with time. The model is built using a large data set including light-curves and spectra of both nearby and distant supernovae, the latter being observed by the SNLS collaboration. We derive the average spectral sequence of Type Ia supernovae and their main variability components including a color variation law. The model allows us to measure distance moduli in the spectral range 2500-8000 A with calculable uncertainties, including those arising from variability of spectral features. Thanks to the use of high-redshift SNe to model the rest-frame UV spectral energy distribution, we are able to derive improved distance estimates for SNe Ia in the redshift range 0.8supernovae.

  16. EARLY PHASE OBSERVATIONS OF EXTREMELY LUMINOUS TYPE Ia SUPERNOVA 2009dc

    SciTech Connect (OSTI)

    Yamanaka, M.; Arai, A.; Chiyonobu, S.; Fukazawa, Y.; Ikejiri, Y.; Itoh, R.; Komatsu, T.; Miyamoto, H. [Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Kawabata, K. S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kinugasa, K.; Hashimoto, O.; Honda, S. [Gunma Astronomical Observatory, Takayama, Gunma 377-0702 (Japan); Tanaka, M. [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Imada, A.; Kuroda, D. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Kamogata, Asakuchi-shi, Okayama 719-0232 (Japan); Maeda, K.; Nomoto, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa (Japan); Kamata, Y. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Kawai, N. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Konishi, K., E-mail: myamanaka@hiroshima-u.ac.j [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan)

    2009-12-20T23:59:59.000Z

    We present early phase observations in optical and near-infrared wavelengths for the extremely luminous Type Ia supernova (SN Ia) 2009dc. The decline rate of the light curve is DELTAm{sub 15}(B) = 0.65 +- 0.03, which is one of the slowest among SNe Ia. The peak V-band absolute magnitude is estimated to be M{sub V} = -19.90 +- 0.15 mag if no host extinction is assumed. It reaches M{sub V} = -20.19 +- 0.19 mag if we assume the host extinction of A{sub V} = 0.29 mag. SN 2009dc belongs to the most luminous class of SNe Ia, like SNe 2003fg and 2006gz. Our JHK{sub s} -band photometry shows that this SN is also one of the most luminous SNe Ia in near-infrared wavelengths. We estimate the ejected {sup 56}Ni mass of 1.2 +- 0.3 M{sub sun} for the no host extinction case (and of 1.6 +- 0.4 M{sub sun} for the host extinction of A{sub V} = 0.29 mag). The C II lambda6580 absorption line remains visible until a week after the maximum brightness, in contrast to its early disappearance in SN 2006gz. The line velocity of Si II lambda6355 is about 8000 km s{sup -1} around the maximum, being considerably slower than that of SN 2006gz. The velocity of the C II line is similar to or slightly less than that of the Si II line around the maximum. The presence of the carbon line suggests that the thick unburned C+O layer remains after the explosion. Spectropolarimetric observations by Tanaka et al. indicate that the explosion is nearly spherical. These observational facts suggest that SN 2009dc is a super-Chandrasekhar mass SN Ia.

  17. OPTICAL CROSS-CORRELATION FILTERS: AN ECONOMICAL APPROACH FOR IDENTIFYING SNe Ia AND ESTIMATING THEIR REDSHIFTS

    SciTech Connect (OSTI)

    Scolnic, Daniel M.; Riess, Adam G.; Huber, Mark E. [Department of Physics and Astronomy, Johns Hopkins University, MD 21218 (United States); Rest, Armin; Stubbs, Christoper W. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Tonry, John L. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2009-11-20T23:59:59.000Z

    Large photometric surveys of transient phenomena, such as Panoramic Survey Telescope and Rapid Response System and Large Synoptic Survey Telescope, will locate thousands to millions of Type Ia supernova (SN Ia) candidates per year, a rate prohibitive for acquiring spectroscopy to determine each candidate's type and redshift. In response, we have developed an economical approach to identifying SNe Ia and their redshifts using an uncommon type of optical filter which has multiple, discontinuous passbands on a single substrate. Observation of a supernova through a specially designed pair of these 'cross-correlation filters' measures the approximate amplitude and phase of the cross-correlation between the spectrum and a SN Ia template, a quantity typically used to determine the redshift and type of a high-redshift SN Ia. Simulating the use of these filters, we obtain a sample of SNe Ia which is approx98% pure with individual redshifts measured to sigma{sub z} = 0.01 precision. The advantages of this approach over standard broadband photometric methods are that it is insensitive to reddening, independent of the color data used for subsequent distance determinations which reduce selection or interpretation bias, and because it makes use of the spectral features its reliability is greater. A great advantage over long-slit spectroscopy comes from increased throughput, enhanced multiplexing, and reduced setup time resulting in a net gain in speed of up to approx30 times. This approach is also insensitive to host galaxy contamination. Prototype filters were built and successfully used on Magellan with LDSS-3 to characterize three SuperNova Legacy Survey candidates. We discuss how these filters can provide critical information for the upcoming photometric supernova surveys.

  18. Ultraviolet observations of Super-Chandrasekhar mass type Ia supernova candidates with swift UVOT

    SciTech Connect (OSTI)

    Brown, Peter J.; Smitka, Michael T.; Krisciunas, Kevin; Wang, Lifan [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Kuin, Paul; De Pasquale, Massimiliano [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking Surrey, RH5 6NT (United Kingdom); Scalzo, Richard [Research School of Astronomy and Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Holland, Stephen [Space Telescope Science Center 3700 San Martin Drive, Baltimore, MD 21218 (United States); Milne, Peter, E-mail: pbrown@physics.tamu.edu [Steward Observatory, University of Arizona, Tucson, AZ 85719 (United States)

    2014-05-20T23:59:59.000Z

    Among Type Ia supernovae (SNe Ia), a class of overluminous objects exist whose ejecta mass is inferred to be larger than the canonical Chandrasekhar mass. We present and discuss the UV/optical photometric light curves, colors, absolute magnitudes, and spectra of three candidate Super-Chandrasekhar mass SNe2009dc, 2011aa, and 2012dnobserved with the Swift Ultraviolet/Optical Telescope. The light curves are at the broad end for SNe Ia, with the light curves of SN 2011aa being among the broadest ever observed. We find all three to have very blue colors which may provide a means of excluding these overluminous SNe from cosmological analysis, though there is some overlap with the bluest of 'normal' SNe Ia. All three are overluminous in their UV absolute magnitudes compared to normal and broad SNe Ia, but SNe 2011aa and 2012dn are not optically overluminous compared to normal SNe Ia. The integrated luminosity curves of SNe 2011aa and 2012dn in the UVOT range (1600-6000 ) are only half as bright as SN 2009dc, implying a smaller {sup 56}Ni yield. While it is not enough to strongly affect the bolometric flux, the early time mid-UV flux makes a significant contribution at early times. The strong spectral features in the mid-UV spectra of SNe 2009dc and 2012dn suggest a higher temperature and lower opacity to be the cause of the UV excess rather than a hot, smooth blackbody from shock interaction. Further work is needed to determine the ejecta and {sup 56}Ni masses of SNe 2011aa and 2012dn and to fully explain their high UV luminosities.

  19. Rural electric cooperatives IRP survey

    SciTech Connect (OSTI)

    Garrick, C. [Garrick and Associates, Morrison, CO (United States)

    1995-11-01T23:59:59.000Z

    This report summarizes the integrated resource planning (IRP) practices of US rural electric cooperatives and the IRP policies which influence these practices. It was prepared by the National Renewable Energy Laboratory (NREL) and its subcontractor Garrick and Associates to assist the US Department of Energy (DOE) in satisfying the reporting requirements of Title 1, Subtitle B, Section 111(e)(3) of the Energy Policy Act of 1992 (EPAct), which states: (e) Report--Not later than 2 years after the date of the enactment of this Act, the Secretary (of the US Department of Energy) shall transmit a report to the President and to the Congress containing--(the findings from several surveys and evaluations, including:); (3) a survey of practices and policies under which electric cooperatives prepare IRPs, submit such plans to REA, and the extent to which such integrated resource planning is reflected in rates charged to customers.

  20. Constraining the Lattice Fluid Dark Energy from SNe Ia, BAO and OHD

    E-Print Network [OSTI]

    Duan, Xiaoxian; Gao, Changjun

    2011-01-01T23:59:59.000Z

    Sanchez and Lacombe have ever developed a lattice fluid theory based on a well-defined statistical mechanical model. Taking the lattice fluid as a candidate of dark energy, we investigate the cosmic evolution of this fluid. Using the combined observational data of Type Ia Supernova (SNe Ia), Baryon Acoustic Oscillations (BAO) and Observational Hubble Data (OHD), we find the best fit value of the parameter in the model, $A = -0.3_{-0.1}^{+0.1}$. Then the cosmological implications of the model are presented.

  1. Constraining the Lattice Fluid Dark Energy from SNe Ia, BAO and OHD

    E-Print Network [OSTI]

    Xiaoxian Duan; Yichao Li; Changjun Gao

    2011-11-15T23:59:59.000Z

    Sanchez and Lacombe have ever developed a lattice fluid theory based on a well-defined statistical mechanical model. Taking the lattice fluid as a candidate of dark energy, we investigate the cosmic evolution of this fluid. Using the combined observational data of Type Ia Supernova (SNe Ia), Baryon Acoustic Oscillations (BAO) and Observational Hubble Data (OHD), we find the best fit value of the parameter in the model, $A = -0.3_{-0.1}^{+0.1}$. Then the cosmological implications of the model are presented.

  2. Experto Universitario Java Enterprise Componentes de presentacin 2012-2013 Depto. Ciencia de la Computacin e IA Sesin 1

    E-Print Network [OSTI]

    Escolano, Francisco

    Experto Universitario Java Enterprise Componentes de presentacin 2012-2013 Depto. Ciencia de la Universitario Java Enterprise Componentes de presentacin 2012-2013 Depto. Ciencia de la Computacin e IA Componentes de presentacin 2012-2013 Depto. Ciencia de la Computacin e IA Sesin 1 Experto Universitario

  3. Especialista Universitario Java Enterprise Componentes de presentacin 2012-2013 Depto. Ciencia de la Computacin e IA Sesin 4

    E-Print Network [OSTI]

    Escolano, Francisco

    Especialista Universitario Java Enterprise Componentes de presentacin 2012-2013 Depto. Ciencia presentacin 2012-2013 Depto. Ciencia de la Computacin e IA Sesin 4 Experto Universitario Java Enterprise Componentes de presentacin 2012-2013 Depto. Ciencia de la Computacin e IA Sesin 4 Experto Universitario

  4. A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS

    SciTech Connect (OSTI)

    Rodney, Steven A.; Riess, Adam G.; Jones, David O. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Dahlen, Tomas; Ferguson, Henry C.; Casertano, Stefano; Grogin, Norman A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Strolger, Louis-Gregory [Department of Physics, Western Kentucky University, Bowling Green, KY 42101 (United States); Hjorth, Jens; Frederiksen, Teddy F. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Weiner, Benjamin J. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Challis, Peter; Kirshner, Robert P. [Harvard/Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Faber, S. M. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 92064 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Garnavich, Peter; Hayden, Brian [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graur, Or [Department of Astrophysics, Tel Aviv University, 69978 Tel Aviv (Israel); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); and others

    2012-02-10T23:59:59.000Z

    We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing a full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z Almost-Equal-To 2, providing a complementary constraint on SN Ia progenitor models.

  5. Multi-color light curves of type Ia supernovae on the color-magnitude diagram: A novel step toward more precise distance and extinction estimates

    E-Print Network [OSTI]

    Wang, Lifan; Goldhaber, Gerson; Aldering, Greg; Perlmutter, Saul

    2003-01-01T23:59:59.000Z

    Date is earlier than for supernovae with smaller ?m 15 . SeeLight Curves of Type Ia Supernovae on the Color-Magnituderelation of Type Ia supernovae after optical maximum can

  6. Predicting the amount of hydrogen stripped by the SN explosion for SN 2002cx-like SNe Ia

    SciTech Connect (OSTI)

    Liu, Zheng-Wei; Chen, X. F.; Wang, B.; Han, Z. W. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Kromer, M. [Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Fink, M.; Rpke, F. K. [Institut fr Theoretische Physik und Astrophysik, Universitt Wrzburg, Am Hubland, D-97074 Wrzburg (Germany); Pakmor, R., E-mail: zwliu@ynao.ac.cn [Heidelberger Institut fr Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2013-12-01T23:59:59.000Z

    The most favored progenitor scenarios for Type Ia supernovae (SNe Ia) involve the single-degenerate (SD) scenario and the double-degenerate scenario. The absence of stripped hydrogen (H) in the nebular spectra of SNe Ia challenges the SD progenitor models. Recently, it was shown that pure deflagration explosion models of Chandrasekhar-mass white dwarfs, ignited off-center, reproduce the characteristic observational features of 2002cx-like SNe Ia very well. In this work we predict, for the first time, the amount of stripped H for the off-center, pure deflagration explosions. We find that their low kinetic energies lead to inefficient H mass stripping (? 0.01 M {sub ?}), indicating that the stripped H may be hidden in (observed) late-time spectra of SN 2002cx-like SNe Ia.

  7. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    SciTech Connect (OSTI)

    Graur, O.; Rodney, S. A.; Riess, A. G.; Medezinski, E. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Maoz, D. [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Jha, S. W.; Holoien, T. W.-S.; McCully, C.; Patel, B. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Postman, M.; Dahlen, T.; Strolger, L.-G.; Coe, D.; Bradley, L.; Koekemoer, A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Bentez, N.; Molino, A. [Instituto de Astrofsica de Andaluca (CSIC), E-18080 Granada (Spain); Jouvel, S. [Institut de Ciencies de l'Espai, (IEEC-CSIC), E-08193 Bellaterra (Barcelona) (Spain); Nonino, M.; Balestra, I., E-mail: orgraur@jhu.edu [INAF-Osservatorio Astronomico di Trieste, I-34143 Trieste (Italy); and others

    2014-03-01T23:59:59.000Z

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ?13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of ?1.00{sub ?0.06(0.10)}{sup +0.06(0.09)} (statistical){sub ?0.08}{sup +0.12} (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.

  8. Rural Electric Cooperatives Energy Efficiency Rebate Programs (Offered by 12 Utilities)

    Broader source: Energy.gov [DOE]

    The Central Iowa Power Cooperative (CIPCO) is a generation and transmission cooperative serving 12 rural electric cooperatives (REC) and one municipal electric cooperative in the state of Iowa....

  9. The Operation of Cooperative Education for Homeschooled Children: The Quality Homeschool Cooperative as a Case Study

    E-Print Network [OSTI]

    Muldowney, Hanna Maria

    2011-10-21T23:59:59.000Z

    and private school officials towards homeschooling, as well as homeschooling parents' perceptions of public and private schools. The literature on homeschool cooperatives is scarce. A homeschool cooperative (co-op) is a group of homeschooling parents who...

  10. Agricultural Cooperatives' Self-Inflicted Wounds.

    E-Print Network [OSTI]

    Black, William E.; Knutson, Ronald D.

    1986-01-01T23:59:59.000Z

    Tooe Z TA245.7 8873 NO.1537 s vi' 8-1537 ~xas Agricultural Extension Service VJtk HU'f1Urt; PIYJ/ltk -----.-- Agricultural Cooperatives' 8elf-1 nfl icted Wounds LIBRARY JUl 1986 1 exas A iversity Texas Agricultural Extension Service.... Zerle L. Carpenter, Director The Texas A&M University System. College Station, Texas [Blank Page in Original Bulletin] AGRICULTURAL COOPERATIVES' SELF-INFLICTED WOUNDS William E. Black and Ronald D. Knutson * Agricultural cooperatives...

  11. BIBLIOGRAPHY Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, 10th ed,

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    352 BIBLIOGRAPHY · Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, 10th ed, New York:Dover, 1972. · Akivis, M.A., Goldberg, V.V., An Introduction to Linear Algebra and Tensors. · Goodbody, A.M., Cartesian Tensors, Chichester, England:Ellis Horwood Ltd, 1982. · Hay, G.E., Vector

  12. BIBLIOGRAPHY . Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, 10th ed,

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    352 BIBLIOGRAPHY . Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, 10th ed, New York:Dover, 1972. . Akivis, M.A., Goldberg, V.V., An Introduction to Linear Algebra and Tensors, A.M., Cartesian Tensors, Chichester, England:Ellis Horwood Ltd, 1982. . Hay, G.E., Vector and Tensor

  13. AN EXPLORATORY STUDY OF THE EXPOSURE DRAFT OF IAS 19 DUE

    E-Print Network [OSTI]

    Boyer, Edmond

    a strategic issue for both private and public entities. In response to the ED published in April 2010 of three questions, asked respondents to approve a common discount rate to be applied to both the defined be of interest to the accounting profession and the public at large. Key words: IAS 19, Due process, net interest

  14. IAS 3353 001 Modern Brazil Instructor: Dr. Erika Robb-Larkins

    E-Print Network [OSTI]

    Oklahoma, University of

    IAS 3353 001 Modern Brazil Instructor: Dr. Erika Robb-Larkins MW 3:00-4:15 p.m. Hester Hall, room an anthropological perspective. Beginning with a broad overview of Brazil's colonial history and emergence the course with an appreciation of the complexities of Brazil today.... and with a desire to hop on the next

  15. X-ray amplification from a Raman Free Electron Laser I.A. Andriyash,

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    X-ray amplification from a Raman Free Electron Laser I.A. Andriyash, E. d'Humi`eres, V 5107, F33400 Talence, France We demonstrate that a mm-scale free electron laser can operate in the X and health applications. Large scale X-ray free electron laser (XFEL) projects have been launched, and start

  16. Especialista Universitario Java Enterprise 2010-2011 Depto. Ciencia de la Computacin e IA

    E-Print Network [OSTI]

    Escolano, Francisco

    Especialista Universitario Java Enterprise 2010-2011 Depto. Ciencia de la Computacin e IA Sesin 1: Introduccin a JMS #12;Servicios de Mensajes con JMS 2010-2011 Depto. Ciencia de la Computacin Una Aplicacin JMS PTP Pub/Sub #12;Servicios de Mensajes con JMS 2010-2011 Depto. Ciencia de la

  17. Tycho Brahe's 1572 supernova as a standard type Ia explosion revealed from its light echo spectrum

    E-Print Network [OSTI]

    Krause, Oliver; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-01-01T23:59:59.000Z

    Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions are how the explosion actually proceeds and whether accretion occurs from a companion or via the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a SN Ia in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the yet unknown exact spectroscopic type of SN 1572 is crucial to relate these results to the diverse population of SNe Ia. Here we report an optical spectrum of Tycho Brahe's supernova near maximum brightness, obtained from a scatter...

  18. On the thermonuclear runaway in Type Ia supernovae: How to run away

    E-Print Network [OSTI]

    P. Hflich; J. Stein

    2002-01-01T23:59:59.000Z

    Type Ia Supernovae are thought to be thermonuclear explosions of massive white dwarfs (WD). We present the first study of multi-dimensional effects during the final hours prior to the thermonuclear runaway which leads to the explosion. The calculations utilize an implicit, 2-D hydrodynamical code

  19. Turbulent Oxygen Flames in Type Ia Supernovae A. J. Aspden1

    E-Print Network [OSTI]

    Turbulent Oxygen Flames in Type Ia Supernovae A. J. Aspden1 , J. B. Bell1 , and S. E. Woosley2 oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen

  20. Revealing progenitors of type Ia supernovae from their light curves and spectra

    E-Print Network [OSTI]

    Kutsuna, Masamichi

    2015-01-01T23:59:59.000Z

    In the single degenerate (SD) scenario of type Ia supernovae (SNe Ia), the collision of the ejecta with its companion results in stripping hydrogen rich matter from the companion star. This hydrogen rich matter might leave its trace in the light curves and/or spectra. In this paper, we perform radiation hydrodynamical simulations of this collision for three binary systems. As a result, we find that the emission from the shock-heated region is not as strong as in the previous study. This weak emission, however, may be a result of our underestimate of the coupling between the gas and radiation in the shock interaction. Therefore, though our results suggest that the observed early light curves of SNe Ia can not rule out binary systems with a short separation as the progenitor system, more elaborate numerical studies will be needed to reach a fair conclusion. Alternatively, our results indicate that the feature observed in the early phase of a recent type Ia SN 2014J might result from interaction of the ejecta wi...

  1. METALLICITY DIFFERENCES IN TYPE Ia SUPERNOVA PROGENITORS INFERRED FROM ULTRAVIOLET SPECTRA

    SciTech Connect (OSTI)

    Foley, Ryan J.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-05-20T23:59:59.000Z

    Two ''twin'' Type Ia supernovae (SNe Ia), SNe 2011by and 2011fe, have extremely similar optical light-curve shapes, colors, and spectra, yet have different ultraviolet (UV) continua as measured in Hubble Space Telescope spectra and measurably different peak luminosities. We attribute the difference in the UV continua to significantly different progenitor metallicities. This is the first robust detection of different metallicities for SN Ia progenitors. Theoretical reasoning suggests that differences in metallicity also lead to differences in luminosity. SNe Ia with higher progenitor metallicities have lower {sup 56}Ni yields and lower luminosities for the same light-curve shape. SNe 2011by and 2011fe have different peak luminosities ({Delta}M{sub V} Almost-Equal-To 0.6 mag), which correspond to different {sup 56}Ni yields: M{sub 11fe}({sup 56}Ni) / M{sub 11by}({sup 56}Ni) = 1.7{sup +0.7}{sub -0.5}. From theoretical models that account for different neutron-to-proton ratios in progenitors, the differences in {sup 56}Ni yields for SNe 2011by and 2011fe imply that their progenitor stars were above and below solar metallicity, respectively. Although we can distinguish progenitor metallicities in a qualitative way from UV data, the quantitative interpretation in terms of abundances is limited by the present state of theoretical models.

  2. ON THE LIRA LAW AND THE NATURE OF EXTINCTION TOWARD TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Foerster, Francisco; Gonzalez-Gaitan, Santiago [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2013-07-20T23:59:59.000Z

    We have studied the relation between the color evolution of Type Ia supernovae (SNe Ia) from maximum light to the Lira law regime and the presence of narrow absorption features. Based on a nearby sample of 89 SNe Ia, we have found that the rate of change of B - V colors at late phases (between 35 and 80 days after maximum) varies significantly among different SNe Ia. At maximum light, faster Lira law B - V decliners have significantly higher equivalent widths of blended Na I D1 and D2 narrow absorption lines, redder colors, and lower R{sub V} reddening laws. We do not find faster Lira law B - V decliners to have a strong preference for younger galaxy environments, where higher interstellar material (ISM) column densities would be expected. We interpret these results as evidence for the presence of circumstellar material. The differences in colors and reddening laws found at maximum light are also present 55 days afterward, but unlike the colors at maximum they show a significant variation among different host galaxy morphological types. This suggests that the effect of ISM on the colors is more apparent at late times. Finally, we discuss how the transversal expansion of the ejecta in an inhomogeneous ISM could mimic some of these findings.

  3. High-Velocity Features of Calcium and Silicon in the Spectra of Type Ia Supernovae

    E-Print Network [OSTI]

    Silverman, Jeffrey M; Marion, G H; Wheeler, J Craig; Barna, Barnabas; Szalai, Tamas; Mulligan, Brian; Filippenko, Alexei V

    2015-01-01T23:59:59.000Z

    "High-velocity features" (HVFs) are spectral features in Type Ia supernovae (SNe Ia) that have minima indicating significantly higher (by greater than about 6000 km/s) velocities than typical "photospheric-velocity features" (PVFs). The PVFs are absorption features with minima indicating typical photospheric (i.e., bulk ejecta) velocities (usually ~9000-15,000 km/s near B-band maximum brightness). In this work we undertake the most in-depth study of HVFs ever performed. The dataset used herein consists of 445 low-resolution optical and near-infrared (NIR) spectra (at epochs up to 5 d past maximum brightness) of 210 low-redshift SNe Ia that follow the "Phillips relation." A series of Gaussian functions is fit to the data in order to characterise possible HVFs of Ca II H&K, Si II {\\lambda}6355, and the Ca II NIR triplet. The temporal evolution of the velocities and strengths of the PVFs and HVFs of these three spectral features is investigated, as are possible correlations with other SN Ia observables. We f...

  4. California ISO Glossary CAL I F O R N IA I S O

    E-Print Network [OSTI]

    California ISO Glossary CAL I F O R N IA I S O A watt is a measure of electricity. If you have 10 under less pressure for delivery through the straws. The ISO's job is to make sure that in the high; the ISO refers to utilities like PG&E as "load-serving entities" because that's what they do, they serve

  5. Florida Keys Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Florida Keys Electric Cooperative offers residential members rebates for installing energy efficient measures. To qualify for rebates, members must first call FKEC and make an appointment for a...

  6. Sandia National Laboratories: Automotive Fuel Cell Cooperation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automotive Fuel Cell Cooperation ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy,...

  7. Cooperation with the Office of Inspector General

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-02-25T23:59:59.000Z

    To establish responsibilities and requirements for cooperating with the Department of Energy Office of Inspector General. Cancels DOE O 221.2.

  8. Internship and Cooperative Education Manual for Employers

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    Internship and Cooperative Education Manual for Employers #12;2 Division of Student Affairs ................................................................................................... Page 4 Benefits of Internship Programs................................................................................................. Page 5 Characteristics of NIU Internships

  9. Cooperation with the Office of Inspector General

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-21T23:59:59.000Z

    To establish Department of Energy (DOE) policy for cooperating with the Office of Inspector General (OIG). Cancels DOE 2320.1C

  10. Santee Cooper- Renewable Energy Resource Loans

    Broader source: Energy.gov [DOE]

    Santee Cooper offers low-interest loans to residential customers who have a licensed contractor install photovoltaic (PV) systems, wind energy systems, micro-hydropower systems, biomass energy...

  11. Santee Cooper- Smart Energy Loan Program

    Broader source: Energy.gov [DOE]

    Santee Cooper provides low interest loans to residential customers to improve the efficiency of homes through the Smart Energy loan program. Customers can apply for energy efficient improvement...

  12. Undergraduate Cooperative Education | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teller The Cooperative Education Program combines academic study with employment. The employment is a practical application directed towards the student's academic...

  13. Advanced Collaborative Emissions Study (ACES) - Cooperative multi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Cooperative multi-party effort to characterize emissions and possible health effects of new advanced heavy duty engine and control systems and fuels in the market 2007 - 2010...

  14. Cooperative Agreement Awarded to Energy Communities Alliance...

    Energy Savers [EERE]

    to National Conference of State Legislatures Cooperative Agreement Awarded DOE Awards Small Business Contract to Support Cleanup of New York West Valley Demonstration Project...

  15. Douglas Electric Cooperative- Residential Energy Efficiency Loans

    Broader source: Energy.gov [DOE]

    Douglas Electric Cooperative offers rebates to its members for the purchase of energy efficient products and measures. Rebates include clothes washers, heat pumps, manufactured homes, and...

  16. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Energy Savers [EERE]

    FORMAT: Natural Gas Use in Transportation REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation RCC Workplan NGV.PDF More Documents &...

  17. Adams Electric Cooperative- Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Adams Electric Cooperative offers financing to help residential customers increase the energy efficiency of homes through the Energy Resource Conservation (ERC) and Supplemental Loan Program. ...

  18. East Central Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and appliances. To qualify for the rebate...

  19. Cooperating Agencies in Implementing the Procedural Requirements...

    Energy Savers [EERE]

    of Federal and non-federal cooperating agencies in the preparation of analyses and documentation required by the National Environmental Policy Act (NEPA), and to ensure that...

  20. United Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperative Place: Beaver Dam, Wisconsin Sector:

  1. A Test for the Nature of the Type Ia Supernova Explosion Mechanism

    E-Print Network [OSTI]

    Philip A. Pinto; Ronald G. Eastman; Tamara Rogers

    2000-08-21T23:59:59.000Z

    Currently popular models for Type Ia supernovae (SNe Ia) fall into two general classes. The first comprises explosions of nearly pure carbon/oxygen (C/O) white dwarfs at the Chandrasekhar limit which ignite near their centers. The second consists of lower-mass C/O cores which are ignited by the detonation of an accreted surface helium layer. Explosions of the latter type produce copious Fe, Co and Ni K-alpha emission from 56Ni and 56Co decay in the detonated surface layers, emission which is much weaker from Chandrasekhar-mass models. The presence of this emission provides a simple and unambiguous discriminant between these two models for SNe Ia. Both mechanisms may produce 0.1-0.6 solar masses of 56Ni, making them bright gamma-ray line emitters. The time to maximum brightness of 56Ni decay lines is distinctly shorter in the sub-Chandrasekhar mass class of model (approximately 15 days) than in the Chandrasekhar mass model (approximately 30 days), making gamma-ray line evolution another direct test of the explosion mechanism. It should just be possible to detect K-shell emission from a sub-Chandrasekhar explosion from SNe Ia as far away as the Virgo cluster with the XMM Observatory. A 1 to 2 square meter X-ray telescope such as the proposed Con-X Observatory could observe K-alpha emission from sub-Chandrasekhar mass SNe Ia in the Virgo cluster, providing not just a detection, but high-accuracy flux and kinematic information.

  2. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig

    SciTech Connect (OSTI)

    Marion, G. H.; Foley, Ryan J.; Challis, Peter; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Vinko, Jozsef; Wheeler, J. Craig; Silverman, Jeffrey M. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, 4242 AMU, College Station, TX 77843 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Landsman, Wayne B. [Adnet Systems, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Parrent, Jerod T. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Pritchard, Tyler A.; Roming, Peter W. A. [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802 (United States); Wang, Xiaofeng, E-mail: gmarion@cfa.harvard.edu [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 1,00084 (China)

    2013-11-01T23:59:59.000Z

    We report measurements and analysis of high-velocity (HVF) (>20,000 km s{sup 1}) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between 14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M{sub B} = 19.46 mag and ?m{sub 15}(B) = 0.90 mag). Similarly, the Si II ?6355 velocity at the time of B-max is greater than 'normal' for an SN Ia, but it is not extreme (v{sub Si} = 13,400 km s{sup 1}). The 14 days and 13 days spectra clearly resolve HVF from Si II ?6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From 12 days to 6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s{sup 1}. After 6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before 10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II ?6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF.

  3. Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe

    SciTech Connect (OSTI)

    Rodney, Steven A.; Riess, Adam G.; Graur, Or; Jones, David O. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Strolger, Louis-Gregory; Dahlen, Tomas; Casertano, Stefano; Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Dickinson, Mark E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hayden, Brian [E.O. Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Jha, Saurabh W.; McCully, Curtis; Patel, Brandon [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Weiner, Benjamin J. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); and others

    2014-07-01T23:59:59.000Z

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ?0.25 deg{sup 2} with ?900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z ? 2.5. We classify ?24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only ?3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is f{sub P} = 0.53{sub stat0.10}{sup 0.09}{sub sys0.26}{sup 0.10}, consistent with a delay time distribution that follows a simple t {sup 1} power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosionsthough further analysis and larger samples will be needed to examine that suggestion.

  4. National Marine Fisheries Service National Cooperative Research Program

    E-Print Network [OSTI]

    SCIENCE CENTER GROUNDFISH COOPERATIVE RESEARCH 13 Project Title: Personnel and Associated Management Costs Project Title: Equipment and Operating Costs to Support Cooperative Research Projects 17 NORTHEAST Stock Assessments, Effects of Trawling & Dredging on Sea Floor Habitat, and Cooperative Research

  5. Practices, perceptions and performance: a Texas cooperative study

    E-Print Network [OSTI]

    Hagerman, Amy D.

    2006-04-12T23:59:59.000Z

    . The results indicated that successful cooperatives were larger in size, had a smaller number of close competitors, and perceived loyalty to be a large issue for the cooperative. Strategic planning was utilized equally by successful and stagnant cooperatives...

  6. GREAT PLAINS INTERSTATE FOREST FIRE COOPERATIVE

    E-Print Network [OSTI]

    GREAT PLAINS INTERSTATE FOREST FIRE COMPACT COOPERATIVE ANNUAL OPERATING PLAN 2011 #12;Great Plains are located in Appendices F through K. II. Purpose This cooperative operating plan facilitates assistance ordered through the Compact and used on joint US Federal/State fires will be considered agents

  7. Cooperatives' contributions to a plural economy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    23 Cooperatives' contributions to a plural economy Jérôme Blanc* and Denis Colongo** T he European economy(1) . The central theme of the conference was the contributions of cooperatives to a plural economy and solidarity economy and elsewhere, and some of them draw on Karl Polanyi's conceptual framework (a key

  8. Michigan State University Cooperation with South Africa

    E-Print Network [OSTI]

    Liu, Taosheng

    Michigan State University Cooperation with South Africa: Forty Years of Partnerships African President of South Africa 1994-1999 #12;ii Michigan State University Cooperation with South Africa Table of Contents Introduction: Michigan and MSU Engagement in Africa and South Africa The Beginnings

  9. DOE Cooperative Research and Development Agreements Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    This Manual provides detailed requirements to supplement DOE O 483.1, DOE Cooperative Research and Development Agreements, dated 1-12-01, which establishes requirements for the performance of technology transfer through the use of Cooperative Research and Development Agreements (CRADAs). Canceled by DOE O 483.1A.

  10. Energy Harvesting Diamond Channel with Energy Cooperation

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Harvesting Diamond Channel with Energy Cooperation Berk Gurakan Sennur Ulukus Department@umd.edu Abstract--We consider the energy harvesting diamond channel, where the source and two relays harvest energy the option of wirelessly transferring some of its energy to the relays via energy cooperation. We find

  11. Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new NOAO survey probing the nearby smooth Hubble flow

    SciTech Connect (OSTI)

    Weyant, Anja; Wood-Vasey, W. Michael [Pittsburgh Particle physics, Astrophysics, and Cosmology Center (PITT PACC), Physics and Astronomy Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Allen, Lori; Joyce, Richard; Matheson, Thomas [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Garnavich, Peter M. [Department of Physics, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Jha, Saurabh W., E-mail: anw19@pitt.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2014-04-01T23:59:59.000Z

    We present 13 Type Ia supernovae (SNe Ia) observed in the rest-frame near-infrared (NIR) from 0.02 < z < 0.09 with the WIYN High-resolution Infrared Camera on the WIYN 3.5 m telescope. With only one to three points per light curve and a prior on the time of maximum from the spectrum used to type the object, we measure an H-band dispersion of spectroscopically normal SNe Ia of 0.164 mag. These observations continue to demonstrate the improved standard brightness of SNe Ia in an H band, even with limited data. Our sample includes two SNe Ia at z ? 0.09, which represent the most distant rest-frame NIR H-band observations published to date. This modest sample of 13 NIR SNe Ia represent the pilot sample for {sup S}weetSpot{sup }a 3 yr NOAO Survey program that will observe 144 SNe Ia in the smooth Hubble flow. By the end of the survey we will have measured the relative distance to a redshift of z ? 0.05%-1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNe Ia in the rest-frame NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift.

  12. COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY

    SciTech Connect (OSTI)

    Campbell, Heather; D'Andrea, Chris B; Nichol, Robert C.; Smith, Mathew; Lampeitl, Hubert [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)] [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States)] [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Olmstead, Matthew D.; Brown, Peter; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East 201, Salt Lake City, UT 84112 (United States)] [Department of Physics and Astronomy, University of Utah, 115 South 1400 East 201, Salt Lake City, UT 84112 (United States); Bassett, Bruce [Mathematics Department, University of Cape Town, Rondebosch, Cape Town (South Africa)] [Mathematics Department, University of Cape Town, Rondebosch, Cape Town (South Africa); Biswas, Rahul; Kuhlmann, Steve [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)] [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Cinabro, David [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48126 (United States)] [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48126 (United States); Dilday, Ben [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States)] [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Frieman, Joshua A. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)] [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)] [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)] [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)] [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Kunz, Martin, E-mail: Heather.Campbell@port.ac.uk [African Institute for Mathematical Sciences, Muizenberg, 7945, Cape Town (South Africa)] [African Institute for Mathematical Sciences, Muizenberg, 7945, Cape Town (South Africa); and others

    2013-02-15T23:59:59.000Z

    We present the cosmological analysis of 752 photometrically classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey. Our photometric-classification method is based on the SN classification technique of Sako et al., aided by host-galaxy redshifts (0.05 < z < 0.55). SuperNova ANAlysis simulations of our methodology estimate that we have an SN Ia classification efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat {Lambda}CDM cosmological model, we find that our photometric sample alone gives {Omega} {sub m} = 0.24{sup +0.07} {sub -0.05} (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on {Omega} {sub m} and {Omega}{sub {Lambda}}, comparable to those derived from the spectroscopically confirmed Three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H {sub 0}, cosmic microwave background, and luminous red galaxy data, we obtain w = -0.96{sup +0.10} {sub -0.10}, {Omega} {sub m} = 0.29{sup +0.02} {sub -0.02}, and {Omega} {sub k} = 0.00{sup +0.03} {sub -0.02} (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically classified SN Ia samples in improving cosmological constraints.

  13. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  14. Comments of the National Rural Electric Cooperative Association...

    Broader source: Energy.gov (indexed) [DOE]

    approximately 65 generation and transmission (-G&T) Cooperatives that supply wholesale power to their distribution Cooperative member-owners. Comments of the National...

  15. TRB-Transit Cooperative Research Program (TCRP): Case Studies...

    Open Energy Info (EERE)

    TRB-Transit Cooperative Research Program (TCRP): Case Studies in Bus Rapid Transit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: TRB-Transit Cooperative Research...

  16. International Framework for Nuclear Energy Cooperation to Hold...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

  17. Dixie Electric Cooperative- Residential Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Dixie Electric Cooperative, a Touchstone Electric Cooperative, offers the Energy Resources Conservation (ERC) loan to residential customers pursue energy efficiency measures. The program allows a...

  18. QER - Comment of Dairyland Power Cooperative - FWD by John Richards...

    Energy Savers [EERE]

    - Comment of Dairyland Power Cooperative - FWD by John Richards QER - Comment of Dairyland Power Cooperative - FWD by John Richards From: Richards, John Sent: Tuesday, August 19,...

  19. Canada-United States Regulatory Cooperation Council Webinar:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Canada-United States Regulatory Cooperation Council Webinar: Proposed Approach for Energy Efficiency Standards Canada-United States Regulatory Cooperation Council Webinar: Proposed...

  20. Flathead Electric Cooperative Facility Geothermal Heat Pump System...

    Broader source: Energy.gov (indexed) [DOE]

    Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Project Will Take Advantage of...

  1. Flathead Electric Cooperative Facility Geothermal Heat Pump System...

    Broader source: Energy.gov (indexed) [DOE]

    Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade CHERYL TALLEY, PE Flathead Electric Cooperative Ground Source Heat Pumps Demonstration Projects May 19,...

  2. South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

  3. Residential Energy Efficiency Rebate (Offered by Several Cooperative Utilities)

    Broader source: Energy.gov [DOE]

    Associated Electric Cooperative and many of its member cooperatives offer rebates to residential customers who purchase and install energy efficient equipment for the home. Eligible equipment...

  4. Linn County Rural Electric Cooperative- Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to commercial,...

  5. Function of the Diiron Cluster of Escherichia coli Class Ia Ribonucleotide Reductase in Proton-Coupled Electron Transfer

    E-Print Network [OSTI]

    Wrsdrfer, Bigna

    The class Ia ribonucleotide reductase (RNR) from Escherichia coli employs a free-radical mechanism, which involves bidirectional translocation of a radical equivalent or hole over a distance of ~35 from the stable ...

  6. Experto Universitario Java Enterprise Validacin e internacionalizacin 2012-2013 Depto. Ciencia de la Computacin e IA Spring

    E-Print Network [OSTI]

    Escolano, Francisco

    Experto Universitario Java Enterprise Validacin e internacionalizacin 2012-2013 Depto. Ciencia #12;Experto Universitario Java Enterprise Validacin e internacionalizacin 2012-2013 Depto. Ciencia Java Enterprise Validacin e internacionalizacin 2012-2013 Depto. Ciencia de la Computacin e IA

  7. In vivo cofactor biosynthesis and maintenance in the class Ia ribonucleotide reductase small subunit of Escherichia coli

    E-Print Network [OSTI]

    Wu, Chia-Hung, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The small subunit ([beta]2) of Escherichia coli class Ia ribonucleotide reductases (RNRs) contains a diferric tyrosyl radical (Y*) cofactor essential for the conversion of nucleotides to deoxynucleotides that are needed ...

  8. Restframe I-band Hubble diagram for type Ia supernovae up to redshift z ~; 0.5

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    in STScI Symposium Ser. 13, Supernovae and gamma-ray bursts:Highlight: The Physics of Supernovae, ed. W. Hillebrandt &diagram for type Ia supernovae up to redshift z ? 0.5 ? S.

  9. Mechanistic studies of proton-coupled electron transfer in aminotyrosine- and fluorotyrosine- substituted class Ia Ribonucleotide reductase

    E-Print Network [OSTI]

    Minnihan, Ellen Catherine

    2012-01-01T23:59:59.000Z

    Ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to 2'- deoxynucleotides in all organisms. The class Ia RNR from Escherichia coli is active as an a2p2 complex and utilizes an unprecedented mechanism ...

  10. On the small-scale stability of thermonuclear flames in Type Ia supernovae

    E-Print Network [OSTI]

    F. K. Roepke; J. C. Niemeyer; W. Hillebrandt

    2003-05-02T23:59:59.000Z

    We present a numerical model which allows us to investigate thermonuclear flames in Type Ia supernova explosions. The model is based on a finite-volume explicit hydrodynamics solver employing PPM. Using the level-set technique combined with in-cell reconstruction and flux-splitting schemes we are able to describe the flame in the discontinuity approximation. We apply our implementation to flame propagation in Chandrasekhar-mass Type Ia supernova models. In particular we concentrate on intermediate scales between the flame width and the Gibson-scale, where the burning front is subject to the Landau-Darrieus instability. We are able to reproduce the theoretical prediction on the growth rates of perturbations in the linear regime and observe the stabilization of the flame in a cellular shape. The increase of the mean burning velocity due to the enlarged flame surface is measured. Results of our simulation are in agreement with semianalytical studies.

  11. The ignition process in type Ia supernovae: numerical simulations of core temperature perturbations

    E-Print Network [OSTI]

    L. Iapichino; M. Brggen; W. Hillebrandt; J. C. Niemeyer

    2007-11-13T23:59:59.000Z

    The onset of the thermonuclear runaway in a Chandrasekhar-mass white dwarf, leading to the explosion as a type Ia supernova, is studied with hydrodynamical simulations. We investigate the evolution of temperature fluctuations (``bubbles'') in the WD's convective core by means of 2D numerical simulations. We show how the occurrence of the thermonuclear runaway depends on various bubble parameters. The relevance of the progenitor's composition for the ignition process is also discussed.

  12. The ignition process in type Ia supernovae: numerical simulations of core temperature perturbations

    E-Print Network [OSTI]

    Iapichino, L; Hillebrandt, W; Niemeyer, J C

    2007-01-01T23:59:59.000Z

    The onset of the thermonuclear runaway in a Chandrasekhar-mass white dwarf, leading to the explosion as a type Ia supernova, is studied with hydrodynamical simulations. We investigate the evolution of temperature fluctuations (``bubbles'') in the WD's convective core by means of 2D numerical simulations. We show how the occurrence of the thermonuclear runaway depends on various bubble parameters. The relevance of the progenitor's composition for the ignition process is also discussed.

  13. TIDAL TAIL EJECTION AS A SIGNATURE OF TYPE Ia SUPERNOVAE FROM WHITE DWARF MERGERS

    SciTech Connect (OSTI)

    Raskin, Cody; Kasen, Daniel [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2013-07-20T23:59:59.000Z

    The merger of two white dwarfs may be preceded by the ejection of some mass in ''tidal tails,'' creating a circumstellar medium around the system. We consider the variety of observational signatures from this material, which depend on the lag time between the start of the merger and the ultimate explosion (assuming one occurs) of the system in a Type Ia supernova (SN Ia). If the time lag is fairly short, then the interaction of the supernova ejecta with the tails could lead to detectable shock emission at radio, optical, and/or X-ray wavelengths. At somewhat later times, the tails produce relatively broad NaID absorption lines with velocity widths of the order of the white dwarf escape speed ({approx}1000 km s{sup -1}). That none of these signatures have been detected in normal SNe Ia constrains the lag time to be either very short ({approx}< 100 s) or fairly long ({approx}> 100 yr). If the tails have expanded and cooled over timescales {approx}10{sup 4} yr, then they could be observable through narrow NaID and Ca II H and K absorption lines in the spectra, which are seen in some fraction of SNe Ia. Using a combination of three-dimensional and one-dimensional hydrodynamical codes, we model the mass loss from tidal interactions in binary systems, and the subsequent interactions with the interstellar medium, which produce a slow-moving, dense shell of gas. We synthesize NaID line profiles by ray casting through this shell, and show that in some circumstances tidal tails could be responsible for narrow absorptions similar to those observed.

  14. Observational constraints from SNe Ia and Gamma-Ray Bursts on a clumpy universe

    E-Print Network [OSTI]

    Nora Bretn; Ariadna Montiel

    2013-03-06T23:59:59.000Z

    The luminosity distance describing the effect of local inhomogeneities in the propagation of light proposed by Zeldovich-Kantowski-Dyer-Roeder (ZKDR) is tested with two probes for two distinct ranges of redshifts: supernovae Ia (SNe Ia) in 0.015 gamma-ray bursts (GRBs) in 1.547 < z < 3.57. Our analysis is performed by a Markov Chain Monte Carlo (MCMC) code that allows us to constrain the matter density parameter \\Omega_m as well as the smoothness parameter $\\alpha$ that measures the inhomogeneous-homogeneous rate of the cosmic fluid in a flat \\LambdaCDM model. The obtained best fits are (\\Omega_m=0.285^{+0.019}_{-0.018}, \\alpha= 0.856^{+0.106}_{-0.176}) from SNe Ia and (\\Omega_m=0.259^{+0.028}_{-0.028}, \\alpha=0.587^{+0.201}_{-0.202}) from GRBs, while from the joint analysis the best fits are (\\Omega_m=0.284^{+0.021}_{-0.020}, \\alpha= 0.685^{+0.164}_{-0.171}) with a \\chi^2_{\\rm red}=0.975. The value of the smoothness parameter $\\alpha$ indicates a clumped universe however it does not have an impact on the amount of dark energy (cosmological constant) needed to fit observations. This result may be an indication that the Dyer-Roeder approximation does not describe in a precise form the effects of clumpiness in the expansion of the universe.

  15. Observations of Type Ia Supernova 2014J with FLITECAM/SOFIA

    E-Print Network [OSTI]

    Vacca, William D; Savage, Maureen; Shenoy, Sachindev; Becklin, E E; McLean, Ian S; Logsdon, Sarah E; Gehrz, R D; Spyromilio, J; Garnavich, P; Marion, G H; Fox, O D

    2015-01-01T23:59:59.000Z

    We present medium resolution near-infrared (NIR) spectra, covering 1.1 to 3.4 microns, of the normal Type Ia supernova (SN Ia) SN 2014J in M82 obtained with the FLITECAM instrument aboard SOFIA approximately 17-25 days after maximum B light. Our 2.8-3.4 micron spectra may be the first ~3 micron spectra of a SN Ia ever published. The spectra spanning the 1.5-2.7 micron range are characterized by a strong emission feature at ~1.77 microns with a full width at half maximum of ~11,000-13,000 km/s. We compare the observed FLITECAM spectra to the recent non-LTE delayed detonation models of Dessart et al. (2014) and find that the models agree with the spectra remarkably well in the 1.5-2.7 micron wavelength range. Based on this comparison we identify the ~1.77 micron emission peak as a blend of permitted lines of Co II. Other features seen in the 2.0 - 2.5 micron spectra are also identified as emission from permitted transitions of Co II. However, the models are not as successful at reproducing the spectra in the 1....

  16. The Cellular Burning Regime in Type Ia Supernova Explosions - I. Flame Propagation into Quiescent Fuel

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

    2003-12-03T23:59:59.000Z

    We present a numerical investigation of the cellular burning regime in Type Ia supernova explosions. This regime holds at small scales (i.e. below the Gibson scale), which are unresolved in large-scale Type Ia supernova simulations. The fundamental effects that dominate the flame evolution here are the Landau-Darrieus instability and its nonlinear stabilization, leading to a stabilization of the flame in a cellular shape. The flame propagation into quiescent fuel is investigated addressing the dependence of the simulation results on the specific parameters of the numerical setup. Furthermore, we investigate the flame stability at a range of fuel densities. This is directly connected to the questions of active turbulent combustion (a mechanism of flame destabilization and subsequent self-turbulization) and a deflagration-to-detonation transition of the flame. In our simulations we find no substantial destabilization of the flame when propagating into quiescent fuels of densities down to ~10^7 g/cm^3, corroborating fundamental assumptions of large-scale SN Ia explosion models. For these models, however, we suggest an increased lower cutoff for the flame propagation velocity to take the cellular burning regime into account.

  17. Is the X-ray pulsating companion of HD 49798 a possible type Ia supernova progenitor?

    E-Print Network [OSTI]

    Liu, Dong-Dong; Wu, Cheng-Yuan; Wang, Bo

    2015-01-01T23:59:59.000Z

    HD 49798 (a hydrogen depleted subdwarf O6 star) with its massive white dwarf (WD) companion has been suggested to be a progenitor candidate of type Ia supernovae (SNe Ia). However, it is still uncertain whether the companion of HD 49798 is a carbon-oxygen (CO) WD or an oxygen-neon (ONe) WD. A CO WD will explode as an SN Ia when its mass grows approach to Chandrasekhar mass, while the outcome of an accreting ONe WD is likely to be a neutron star. We followed a series of Monte Carlo binary population synthesis approach to simulate the formation of ONe WD + He star systems. We found that there is almost no orbital period as large as HD 49798 with its WD companion in these ONe WD + He star systems based on our simulations, which means that the companion of HD 49798 might not be an ONe WD. We suggest that the companion of HD 49798 is most likely a CO WD, which can be expected to increase its mass to the Chandrasekhar mass limit by accreting He-rich material from HD 49798. Thus, HD 49798 with its companion may prod...

  18. Searching for light echoes due to CSM in SN Ia spectra

    E-Print Network [OSTI]

    Marino, Sebastin; Frster, Francisco; Folatelli, Gastn; Hamuy, Mario; Hsiao, Eric

    2015-01-01T23:59:59.000Z

    We present an analytical model for light echoes (LEs) coming from circumstellar material (CSM) around Type Ia Supernovae (SNe Ia). Using this model we find two spectral signatures at 4100 {\\AA} and 6200 {\\AA} that are useful to identify LEs during the Lira law phase (between 35 and 80 days after maximum light) coming from nearby CSM at distances of 0.01-0.25 pc. We analyze a sample of 89 SNe Ia divided in two groups according to their B-V decline rate during the Lira law phase, and search for LEs from CSM interaction in the group of SNe with steeper slopes by comparing their spectra with our LE model. We find that a model with LEs + pure extinction from interstellar material (ISM) fits better the observed spectra than a pure ISM extinction model that is constant in time, but we find that a decreasing extinction alone explains better the observations without the need of LEs, possibly implying dust sublimation due to the radiation from the SN.

  19. Subclasses of Type Ia Supernovae as the origin of [\\alpha/Fe] ratios in dwarf spheroidal galaxies

    E-Print Network [OSTI]

    Kobayashi, Chiaki; Hachisu, Izumi

    2015-01-01T23:59:59.000Z

    Recent extensive observations of Type Ia Supernovae (SNe Ia) have revealed the existence of a diversity of SNe Ia, including SN 2002cx-like objects (also called SN Iax). We introduce two possible channels in the single degenerate scenario: 1) double detonations in sub-Chandrasekhar (Ch) mass CO white dwarfs (WDs), where a thin He envelope is developed with relatively low accretion rates after He novae even at low metallicities, and 2) carbon deflagrations in Ch-mass possibly hybrid C+O+Ne WDs, where WD winds occur at [Fe/H] ~ -2.5 at high accretion rates. These subclasses of SNe Ia are rarer than `normal' SNe Ia and do not affect the chemical evolution in the solar neighborhood, but can be very important in metal-poor systems with stochastic star formation. In dwarf spheroidal galaxies in the Local Group, the decrease of [\\alpha/Fe] ratios at [Fe/H] ~ -2 to -1.5 can be produced depending on the star formation history. SNe Iax give high [Mn/Fe], while sub-Ch-mass SNe Ia give low [Mn/Fe], and thus a model inclu...

  20. Optical and ultraviolet observations of the narrow-lined type Ia SN 2012fr in NGC 1365

    SciTech Connect (OSTI)

    Zhang, Ju-Jia; Bai, Jin-Ming; Wang, Bo; Liu, Zheng-Wei [Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650011 (China); Wang, Xiao-Feng; Zhao, Xu-Lin; Chen, Jun-Cheng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Zhang, Tian-Meng, E-mail: jujia@ynao.ac.cn, E-mail: baijinming@ynao.ac.cn, E-mail: wang_xf@mail.tsinghua.edu.cn [National Astronomical Observatories of China (NAOC), Chinese Academy of Sciences, Beijing 100012 (China)

    2014-07-01T23:59:59.000Z

    Extensive optical and ultraviolet (UV) observations of the type Ia supernova (SN Ia) 2012fr are presented in this paper. It has a relatively high luminosity, with an absolute B-band peak magnitude of about 19.5 mag and a smaller post-maximum decline rate than normal SNe Ia (e.g., ?m {sub 15}(B) =0.85 0.05 mag). Based on the UV and optical light curves, we derived that a {sup 56}Ni mass of about 0.88 M {sub ?} was synthesized in the explosion. The earlier spectra are characterized by noticeable high-velocity features of Si II ?6355 and Ca II with velocities in the range of ?22, 000-25, 000 km s{sup 1}. At around the maximum light, these spectral features are dominated by the photospheric components which are noticeably narrower than normal SNe Ia. The post-maximum velocity of the photosphere remains almost constant at ?12,000 km s{sup 1} for about one month, reminiscent of the behavior of some luminous SNe Ia like SN 1991T. We propose that SN 2012fr may represent a subset of the SN 1991T-like SNe Ia viewed in a direction with a clumpy or shell-like structure of ejecta, in terms of a significant level of polarization reported in Maund et al. in 2013.

  1. Constraining the Amount of Circumstellar Matter and Dust around Type Ia Supernovae through Near-Infrared Echo

    E-Print Network [OSTI]

    Maeda, Keiichi; Motohara, Kentaro

    2014-01-01T23:59:59.000Z

    Circumstellar (CS) environment is a key in understanding progenitors of type Ia supernovae (SNe Ia) as well as an origin of peculiar extinction property toward SNe Ia for cosmological application. It has been suggested that multiple em scatterings of SN photons on CS dust might explain a non-standard reddening law. In this paper, we investigate an effect of re-emissions of SN photons by CS dust in the Infrared (IR) wavelengths. We show that this effect allows observed IR light curves to be used to place a constraint on position/size and the amount of CSM dust. We apply the method to observed NIR SN Ia samples, showing that meaningful upper limits, even under conservative assumptions, on the CS dust mass can be derived. We thereby clarify a difficulty of the CS dust scattering model to be a general explanation for the peculiar reddening law, while it may still apply to a sub-sample of highly-reddened SNe Ia. For SNe Ia in general, environment at the interstellar scale should be responsible for the non-standard...

  2. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-06T23:59:59.000Z

    The order establishes policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Cancels DOE O 483.1 Admin Chg 1 and DOE M 483.1-1.

  3. Delaware Electric Cooperative- Green Energy Fund

    Broader source: Energy.gov [DOE]

    Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation, electric cooperatives were allowed to opt out of the RPS schedule if they met certain other requirements. One such requirem...

  4. "Renewable Energy Transition and International Climate Cooperation

    E-Print Network [OSTI]

    Sheridan, Jennifer

    "Renewable Energy Transition and International Climate Cooperation: The German Experience" Jürgen and sustainability science; complex systems analysis, mathematical modeling and computer simulation; technology assessment, arms control and international security. For more information: eucenter

  5. Cooperativity and Contact Order in Protein Folding

    E-Print Network [OSTI]

    Marek Cieplak

    2004-01-11T23:59:59.000Z

    The effects of cooperativity are studied within Go-Lennard-Jones models of proteins by making the contact interactions dependent on the proximity to the native conformation. The kinetic universality classes are found to remain the same as in the absence of cooperativity. For a fixed native geometry, small changes in the effective contact map may affect the folding times in a chance way and to the extent that is comparable to the shift in the folding times due to cooperativity. The contact order controlls folding scenarios: the average times necessary to bring pairs of amino acids into their near native separations depend on the sequential distances within the pairs. This dependence is largely monotonic, regardless of the cooperativity, and the dominant trend could be described by a single parameter like the average contact order. However, it is the deviations from the trend which are usually found to set the net folding times.

  6. Model and control for cooperative energy management

    E-Print Network [OSTI]

    Ranade, Vinayak V

    2010-01-01T23:59:59.000Z

    Proto/Amorphous Cooperative Energy Management (PACEM) aims to build and deploy a highly scalable system for smart power grids that will enable efficient demand shaping for small-user networks. Two key problems are to provide ...

  7. Essays on conflict, cooperation and economic development

    E-Print Network [OSTI]

    Ralston, Laura R. (Laura Rosalind)

    2013-01-01T23:59:59.000Z

    This dissertation consists of three chapters on topics relating to conflict, social cooperation and development economics. Several studies have identified the impact of adverse economic shocks on civil conflict using ...

  8. Oklahoma Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Oklahoma Energy Cooperative (OEC) offers rebates to residential customers for the purchase of air-source heat pumps, geothermal heat pumps and water heaters. Air-source heat pumps are eligible for...

  9. Sandia National Laboratories: cooperative research & development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cooperative research & development agreement Cool Earth Solar and Sandia Team Up in First-Ever Public-Private Partnership on Livermore Valley Open Campus On February 26, 2013, in...

  10. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. No cancellation.

  11. Palmetto Electric Cooperative- Buried Treasure Rebate Program

    Broader source: Energy.gov [DOE]

    Palmetto Electric Cooperative offers rebates for its members who install ground-source heat pumps through their Buried Treasure Rebate Program. [http://www.palmetto.coop/conserve/tr_cashin.html...

  12. Santee Cooper- Business Custom Rebate (South Carolina)

    Broader source: Energy.gov [DOE]

    Santee Cooper has developed a Business Custom Rebate as part of their Reduce the Use: Business Prescriptive Rebate Program, which was designed to reduce a business's overall electricity use.

  13. Berkeley Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Berkeley Electric Cooperative (BEC) offers several rebates to residential customers for energy efficiency upgrades. The H2O Advantage Water Heater Rebate Program offers a rebate of up to $300 for...

  14. Cooperative Monitoring Center Occasional Paper/8: Cooperative Border Security for Jordan: Assessment and Options

    SciTech Connect (OSTI)

    Qojas, M.

    1999-03-01T23:59:59.000Z

    This document is an analysis of options for unilateral and cooperative action to improve the security of Jordan's borders. Sections describe the current political, economic, and social interactions along Jordan's borders. Next, the document discusses border security strategy for cooperation among neighboring countries and the adoption of confidence-building measures. A practical cooperative monitoring system would consist of hardware for early warning, command and control, communications, and transportation. Technical solutions can expand opportunities for the detection and identification of intruders. Sensors (such as seismic, break-wire, pressure-sensing, etc.) can warn border security forces of intrusion and contribute to the identification of the intrusion and help formulate the response. This document describes conceptual options for cooperation, offering three scenarios that relate to three hypothetical levels (low, medium, and high) of cooperation. Potential cooperative efforts under a low cooperation scenario could include information exchanges on military equipment and schedules to prevent misunderstandings and the establishment of protocols for handling emergency situations or unusual circumstances. Measures under a medium cooperation scenario could include establishing joint monitoring groups for better communications, with hot lines and scheduled meetings. The high cooperation scenario describes coordinated responses, joint border patrols, and sharing border intrusion information. Finally, the document lists recommendations for organizational, technical, and operational initiatives that could be applicable to the current situation.

  15. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    SciTech Connect (OSTI)

    Kelly, Patrick L.; /KIPAC, Menlo Park /SLAC; Hicken, Malcolm; /Harvard-Smithsonian Ctr. Astrophys.; Burke, David L.; /KIPAC, Menlo Park /SLAC; Mandel, Kaisey S.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2010-05-03T23:59:59.000Z

    From Sloan Digital Sky Survey u{prime} g{prime} r{prime} i{prime} z{prime} imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were discovered largely by searches targeting luminous galaxies, and we find that their host galaxies are substantially more massive than the hosts of SN discovered by the flux-limited Supernova Legacy Survey. Testing four separate light curve fitters, we detect {approx}2.5{sigma} correlations of Hubble residuals with both host galaxy size and stellar mass, such that SN Ia occurring in physically larger, more massive hosts are {approx}10% brighter after light curve correction. The Hubble residual is the deviation of the inferred distance modulus to the SN, calculated from its apparent luminosity and light curve properties, away from the expected value at the SN redshift. Marginalizing over linear trends in Hubble residuals with light curve parameters shows that the correlations cannot be attributed to a light curve-dependent calibration error. Combining 180 higher-redshift ESSENCE, SNLS, and HigherZ SN with 30 nearby SN whose host masses are less than 10{sup 10.8} M{circle_dot} n a cosmology fit yields 1 + w = 0.22{sub -0.108}{sup +0.152}, while a combination where the 30 nearby SN instead have host masses greater than 10{sup 10.8} M{circle_dot} yields 1 + w = ?0.03{sub -0.143}{sup +0.217}. Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SN Ia.

  16. Constraints on shallow {sup 56}Ni from the early light curves of type Ia supernovae

    SciTech Connect (OSTI)

    Piro, Anthony L. [Theoretical Astrophysics, California Institute of Technology, 1200 E California Boulevard, M/C 350-17, Pasadena, CA 91125 (United States); Nakar, Ehud, E-mail: piro@caltech.edu [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-03-20T23:59:59.000Z

    Ongoing transient surveys are presenting an unprecedented account of the rising light curves of Type Ia supernovae (SNe Ia). This early emission probes the shallowest layers of the exploding white dwarf (WD), which can provide constraints on the progenitor star and the properties of the explosive burning. We use semianalytic models of radioactively powered rising light curves to analyze these observations. As we have summarized in previous work, the main limiting factor in determining the surface distribution of {sup 56}Ni is the lack of an unambiguously identified time of explosion, as would be provided by detection of shock breakout or shock-heated cooling. Without this the SN may in principle exhibit a 'dark phase' for a few hours to days, where the only emission is from shock-heated cooling that is too dim to be detected. We show that by assuming a theoretically motivated time-dependent velocity evolution, the explosion time can be better constrained, albeit with potential systematic uncertainties. This technique is used to infer the surface {sup 56}Ni distributions of three recent SNe Ia that were caught especially early in their rise. In all three we find fairly similar {sup 56}Ni distributions. Observations of SN 2011fe and SN 2012cg probe shallower depths than SN 2009ig, and in these two cases {sup 56}Ni is present merely ?10{sup 2} M {sub ?} from the WDs' surfaces. The uncertainty in this result is up to an order of magnitude given the difficulty of precisely constraining the explosion time. We also use our conclusions about the explosion times to reassess radius constraints for the progenitor of SN 2011fe, as well as discuss the roughly t {sup 2} power law that is inferred for many observed rising light curves.

  17. IS WX CEN A POSSIBLE TYPE Ia SUPERNOVA PROGENITOR WITH WIND-DRIVEN MASS TRANSFER?

    SciTech Connect (OSTI)

    Qian, S.-B.; Shi, G.; Zhu, L.-Y.; Liu, L.; Zhao, E.-G.; Li, L.-J. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Fernandez Lajus, E.; Di Sisto, R. P., E-mail: qsb@ynao.ac.cn [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina)

    2013-08-01T23:59:59.000Z

    WX Cen is one of a few compact binary supersoft X-ray sources (CBSS) in the Galaxy that is a possible Type Ia supernova (SN Ia) progenitor. The supersoft X-ray radiation is explained as hydrostatic nuclear burning on the surface of the white dwarf component that is accreting hydrogen from a stellar companion at a high rate. If the mass donor in this system has a low mass, as has been suggested in the literature, one would expect a high wind-driven mass transfer rate. In that case, the orbital period of the system should increase. To test this theoretical prediction, we have monitored the system photometrically since 2010. By using four newly determined eclipse timings together with those collected from the literature, we discovered that the orbital period is decreasing at a rate of dP/dt = -5.15 Multiplication-Sign 10{sup -7} days yr{sup -1}. The long-term decrease in the orbital period is contrary to the prediction that the system is powered by wind-driven accretion. It therefore seems plausible that the mass donor could be more massive than the white dwarf, and that the mass transfer is driven by the thermal instability of the donor star. This finding suggests that WX Cen is a key object to check the physical mechanisms of mass accretion in CBSS. The corresponding timescale of the period change is about P/P-dot {approx} 0.81 x 10{sup 6} yr, indicating that WX Cen may evolve into an SNe Ia within one million years in the Galaxy.

  18. On the Thermonuclear Runaway in Type Ia Supernovae: How to run away?

    E-Print Network [OSTI]

    P. Hoeflich; J. Stein

    2001-12-07T23:59:59.000Z

    Type Ia Supernovae are thought to be thermonuclear explosions of massive white dwarfs (WD). We present the first study of multi-dimensional effects during the final hours prior to the thermonuclear runaway which leads to the explosion. The calculations utilize an implicit, 2-D hydro code.Mixing and the ignition process are studied in detail. We find that the initial chemical structure of the WD is changed but the material is not fully homogenized. The exploding WD sustains a central region with a low C/O ratio. This implies that the explosive nuclear burning will begin in a partially C-depleted environment. The thermonuclear runaway happens in a well defined region close to the center. It is induced by compressional heat when matter is brought inwards by convective flows. We find no evidence for multiple spot or strong off-center ignition. Convective velocities are of the order of 100 km/sec which is well above the effective burning speeds in SNe Ia previously expected right after the runaway. For about 0.5 to 1 sec, the speed of the burning front will neither be determined by the laminar speed nor the Rayleigh-Taylor instabilities but by convective flows produced prior to the runaway. The consequences are discussed for our under- standing of the detailed physics of the flame propagation, the deflagration detonation transition, and the nucleosynthesis in the central layers. Our results strongly suggest the pre-conditioning of the progenitor as a key-factor for our understanding of the diversity in SNeIa.

  19. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-masswhite dwarf star

    SciTech Connect (OSTI)

    Howell, D.Andrew; Sullivan, Mark; Nugent, Peter E.; Ellis,Richard S.; Conley, Alexander J.; Le Borgne, Damien; Carlberg, RaymondG.; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook,Isobel M.; Hsiao, Eric Y.; Neill, James D.; Pain, Reynald; Perrett,Kathryn M.; Pritchet, Christopher J.

    2006-02-01T23:59:59.000Z

    The acceleration of the expansion of the universe, and theneed for Dark Energy, were inferred from the observations of Type Iasupernovae (SNe Ia) 1;2. There is consensus that SNeIa are thermonuclearexplosions that destroy carbon-oxygen white dwarf stars that accretematter from a companion star3, although the nature of this companionremains uncertain. SNe Ia are thought to be reliable distance indicatorsbecause they have a standard amount of fuel and a uniform trigger theyare predicted to explode when the mass of the white dwarf nears theChandrasekhar mass 4 - 1.4 solar masses. Here we show that the highredshift supernova SNLS-03D3bb has an exceptionally high luminosity andlow kinetic energy that both imply a super-Chandrasekhar mass progenitor.Super-Chandrasekhar mass SNeIa shouldpreferentially occur in a youngstellar population, so this may provide an explanation for the observedtrend that overluminous SNe Ia only occur in young environments5;6. Sincethis supernova does not obey the relations that allow them to becalibrated as standard candles, and since no counterparts have been foundat low redshift, future cosmology studies will have to considercontamination from such events.

  20. The p-Process in the Carbon Deflagration Model for Type Ia Supernovae and Chronology of the Solar System Formation

    SciTech Connect (OSTI)

    Kusakabe, Motohiko [Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Iwamoto, Nobuyuki [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nomoto, Ken'ichi [Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2006-07-12T23:59:59.000Z

    We study nucleosynthesis of p-nuclei in the carbon deflagration model for Type Ia supernovae (SNe Ia) by assuming that seed nuclei are produced by the s-process in accreting layers on a carbon-oxygen white dwarf during mass accretion from a binary companion. We find that about 50 % of the p-nuclides are synthesized in proportion to the solar abundance and that p-isotopes of Mo and Ru which are significantly underproduced in Type II supernovae (SNe II) are produced up to a level close to other p-nuclei. Comparing the yields of iron and p-nuclei in SNe Ia we find that SNe Ia can contribute to the galactic evolution of the p-nuclei. Next, we consider nucleochronology of the solar system formation by using four radioactive nuclides and apply the result of the p-process nucleosynthesis to simple galactic chemical evolution models. We find that when assumed three phases of interstellar medium are mixed by the interdiffusion with the timescale of about 40 Myr 53Mn/55Mn value in the early solar system is consistent with a meteoritic value. In addition, we put constraints to a scenario that SNe Ia induce the core collapse of the molecular cloud, which leads to the formation of the solar system.

  1. A super-Eddington wind scenario for the progenitors of type Ia supernovae: binary population synthesis calculations

    E-Print Network [OSTI]

    Wang, Bo; Liu, Dongdong; Liu, Zhengwei; Wu, Chengyuan; Zhang, Jujia; Han, Zhanwen

    2015-01-01T23:59:59.000Z

    The super-Eddington wind scenario has been proposed as an alternative way for producing type Ia supernovae (SNe Ia). The super-Eddington wind can naturally prevent the carbon--oxygen white dwarfs (CO WDs) with high mass-accretion rates from becoming red-giant-like stars. Furthermore, it works in low-metallicity environments, which may explain SNe Ia observed at high redshifts. In this article, we systematically investigated the most prominent single-degenerate WD+MS channel based on the super-Eddington wind scenario. We combined the Eggleton stellar evolution code with a rapid binary population synthesis (BPS) approach to predict SN Ia birthrates for the WD+MS channel by adopting the super-Eddington wind scenario and detailed mass-accumulation efficiencies of H-shell flashes on the WDs. Our BPS calculations found that the estimated SN Ia birthrates for the WD+MS channel are ~0.009-0.315*10^{-3}{yr}^{-1} if we adopt the Eddington accretion rate as the critical accretion rate, which are much lower than that of ...

  2. Gamma-Rays as Probes for the Multi-Dimensionality of Type Ia Supernovae

    E-Print Network [OSTI]

    P. Hoeflich

    2001-10-03T23:59:59.000Z

    We present $\\gamma $-ray spectra for a set of Type Ia supernovae models. Our study is based on a detailed Monte Carlo transport scheme for both spherical and full 3-D geometries. Classical and new challenges of the $\\gamma $ ray astronomy are addressed. We find that $\\gamma $-rays are very suitable to reveal the structure of the envelope and, thus, they allow to probe properties of the nuclear burning front and the progenitor, namely its central density and global asphericities. The potential problems are discussed for the quantitative comparison between theoretical and observed line fluxes during the first few months after the explosion.

  3. Testing the isotropy of the Universe by using the JLA compilation of type-Ia supernovae

    E-Print Network [OSTI]

    Lin, Hai-Nan; Chang, Zhe; Li, Xin

    2015-01-01T23:59:59.000Z

    We probe the possible anisotropy in the accelerated expanding Universe by using the JLA compilation of type-Ia supernovae. We constrain the amplitude and direction of anisotropy in the anisotropic cosmological models. For the dipole-modulated $\\Lambda$CDM model, the anisotropic amplitude has an upper bound $D<1.04\\times10^{-3}$ at the $68\\%$ confidence level. Similar results are found in the dipole-modulated $w$CDM and CPL models. Our studies show that there are no significant evidence for the anisotropic expansion of the Universe. Thus the Universe is still well compatible with the isotropy.

  4. On the Stability of Thermonuclear Burning Fronts in Type Ia Supernovae

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt

    2004-04-26T23:59:59.000Z

    The propagation of cellularly stabilized thermonuclear flames is investigated by means of numerical simulations. In Type Ia supernova explosions the corresponding burning regime establishes at scales below the Gibson length. The cellular flame stabilization - which is a result of an interplay between the Landau-Darrieus instability and a nonlinear stabilization mechanism - is studied for the case of propagation into quiescent fuel as well as interaction with vortical fuel flows. Our simulations indicate that in thermonuclear supernova explosions stable cellular flames develop around the Gibson scale and that deflagration-to-detonation transition is unlikely to be triggered from flame evolution effects here.

  5. Enhancing regional security agreements through cooperative monitoring

    SciTech Connect (OSTI)

    Pregenzer, A.L.

    1995-05-01T23:59:59.000Z

    This paper proposes that strengthening regional capabilities for formulating and implementing arms control and confidence-building measures is a tangible method of enhancing regional security. It discusses the importance of developing a regional infrastructure for arms control and confidence building and elucidates the role of technology in facilitating regional arms control and confidence-building agreements. In addition, it identifies numerous applications for regional cooperative monitoring in the areas of arms control, resource management, international commerce and disaster response. The Cooperative Monitoring Center at Sandia National Laboratories, whose aim is to help individual countries and regions acquire the tools they need to develop their own solutions to regional problems, is discussed briefly. The paper ends with recommendations for establishing regional cooperative monitoring centers.

  6. Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra

    E-Print Network [OSTI]

    Douglas C. Leonard

    2007-10-16T23:59:59.000Z

    Despite intense scrutiny, the progenitor system(s) that gives rise to Type Ia supernovae remains unknown. The favored theory invokes a carbon-oxygen white dwarf accreting hydrogen-rich material from a close companion until a thermonuclear runaway ensues that incinerates the white dwarf. However, simulations resulting from this single-degenerate, binary channel demand the presence of low-velocity H-alpha emission in spectra taken during the late nebular phase, since a portion of the companion's envelope becomes entrained in the ejecta. This hydrogen has never been detected, but has only rarely been sought. Here we present results from a campaign to obtain deep, nebular-phase spectroscopy of nearby Type Ia supernovae, and include multi-epoch observations of two events: SN 2005am (slightly subluminous) and SN 2005cf (normally bright). No H-alpha emission is detected in the spectra of either object. An upper limit of 0.01 M_Sun of solar abundance material in the ejecta is established from the models of Mattila et al. which, when coupled with the mass-stripping simulations of Marietta et al. and Meng et al. effectively rules out progenitor systems for these supernovae with secondaries close enough to the white dwarf to be experiencing Roche lobe overflow at the time of explosion. Alternative explanations for the absence of H-alpha emission, along with suggestions for future investigations necessary to confidently exclude them as possibilities, are critically evaluated.

  7. First Evidence of Globular Cluster Formation from the Ejecta of Prompt Type Ia Supernovae

    E-Print Network [OSTI]

    Tsujimoto, Takuji

    2012-01-01T23:59:59.000Z

    Recent spectroscopic observations of globular clusters (GCs) in the Large Magellanic Cloud (LMC) have discovered that one of the intermediate-age GC, NGC 1718 with [Fe/H]=-0.7 has an extremely low [Mg/Fe] ratio of ~-0.9. We propose that NGC 1718 was formed from the ejecta of type Ia supernovae (SNe Ia) mixed with very metal-poor ([Fe/H] <-1.3) gas about ~ 2 Gyr ago. The proposed scenario is shown to be consistent with the observed abundances of Fe-group elements such as Cr, Mn, and Ni. In addition, compelling evidence for asymptotic giant branch stars playing a role in chemical enrichment during this GC formation is found. We suggest that the origin of the metal-poor gas is closely associated with the efficient gas-transfer from the outer gas disk of the Small Magellanic Cloud to the LMC disk. We anticipate that the outer part of the LMC disk contains field stars exhibiting significantly low [Mg/Fe] ratios, formed through the same process as NGC 1718.

  8. Inference for the dark energy equation of state using Type IA supernova data

    E-Print Network [OSTI]

    Christopher Genovese; Peter Freeman; Larry Wasserman; Robert Nichol; Christopher Miller

    2009-05-18T23:59:59.000Z

    The surprising discovery of an accelerating universe led cosmologists to posit the existence of "dark energy"--a mysterious energy field that permeates the universe. Understanding dark energy has become the central problem of modern cosmology. After describing the scientific background in depth, we formulate the task as a nonlinear inverse problem that expresses the comoving distance function in terms of the dark-energy equation of state. We present two classes of methods for making sharp statistical inferences about the equation of state from observations of Type Ia Supernovae (SNe). First, we derive a technique for testing hypotheses about the equation of state that requires no assumptions about its form and can distinguish among competing theories. Second, we present a framework for computing parametric and nonparametric estimators of the equation of state, with an associated assessment of uncertainty. Using our approach, we evaluate the strength of statistical evidence for various competing models of dark energy. Consistent with current studies, we find that with the available Type Ia SNe data, it is not possible to distinguish statistically among popular dark-energy models, and that, in particular, there is no support in the data for rejecting a cosmological constant. With much more supernova data likely to be available in coming years (e.g., from the DOE/NASA Joint Dark Energy Mission), we address the more interesting question of whether future data sets will have sufficient resolution to distinguish among competing theories.

  9. Spectroscopic Determination of the Low Redshift Type Ia Supernova Rate from the Sloan Digital Sky Survey

    SciTech Connect (OSTI)

    Krughoff, K. S. [Univ. of Washington, Seattle, WA (United States); Connolly, Andrew J. [Univ. of Washington, Seattle, WA (United States); Frieman, Joshua [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); SubbaRao, Mark [Univ. of Chicago, Chicago, IL (United States); Kilper, Gary [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Schneider, Donald P. [Davey Laboratory, PA (United States)

    2011-04-10T23:59:59.000Z

    Supernova rates are directly coupled to high mass stellar birth and evolution. As such, they are one of the few direct measures of the history of cosmic stellar evolution. In this paper we describe an probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We present a study of 52 type Ia supernovae ranging in age from -14 days to +40 days extracted from a parent sample of \\simeq 50,000 spectra from the SDSS DR5. We find a Supernova Rate (SNR) of 0.472^{+0.048}_{-0.039}(Systematic)^{+0.081}_{-0.071}(Statistical)SNu at a redshift of = 0.1. This value is higher than other values at low redshift at the 1{\\sigma}, but is consistent at the 3{\\sigma} level. The 52 supernova candidates used in this study comprise the third largest sample of supernovae used in a type Ia rate determination to date. In this paper we demonstrate the potential for the described approach for detecting supernovae in future spectroscopic surveys.

  10. Smoothed Particle Hydrodynamics simulations of the core-degenerate scenario for Type Ia supernovae

    E-Print Network [OSTI]

    Aznar-Sigun, G; Lorn-Aguilar, P; Soker, N; Kashi, A

    2015-01-01T23:59:59.000Z

    The core-degenerate (CD) scenario for type Ia supernovae (SN Ia) involves the merger of the hot core of an asymptotic giant branch (AGB) star and a white dwarf, and might contribute a non-negligible fraction of all thermonuclear supernovae. Despite its potential interest, very few studies, and based on only crude simplifications, have been devoted to investigate this possible scenario, compared with the large efforts invested to study some other scenarios. Here we perform the first three-dimensional simulations of the merger phase, and find that this process can lead to the formation of a massive white dwarf, as required by this scenario. We consider two situations, according to the mass of the circumbinary disk formed around the system during the final stages of the common envelope phase. If the disk is massive enough, the stars merge on a highly eccentric orbit. Otherwise, the merger occurs after the circumbinary disk has been ejected and gravitational wave radiation has brought the stars close to the Roche...

  11. Consistent use of type Ia supernovae highly magnified by galaxy clusters to constrain the cosmological parameters

    SciTech Connect (OSTI)

    Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Redlich, Matthias [Universitt Heidelberg, Zentrum fr Astronomie, Institut fr Theoretische Astrophysik, Philosophenweg 12, D-69120 Heidelberg (Germany); Broadhurst, Tom, E-mail: adizitrin@gmail.com [Department of Theoretical Physics, University of Basque Country UPV/EHU, Bilbao (Spain)

    2014-07-01T23:59:59.000Z

    We discuss how Type Ia supernovae (SNe) strongly magnified by foreground galaxy clusters should be self-consistently treated when used in samples fitted for the cosmological parameters. While the cluster lens magnification of a SN can be well constrained from sets of multiple images of various background galaxies with measured redshifts, its value is typically dependent on the fiducial set of cosmological parameters used to construct the mass model. In such cases, one should not naively demagnify the observed SN luminosity by the model magnification into the expected Hubble diagram, which would create a bias, but instead take into account the cosmological parameters a priori chosen to construct the mass model. We quantify the effect and find that a systematic error of typically a few percent, up to a few dozen percent per magnified SN may be propagated onto a cosmological parameter fit unless the cosmology assumed for the mass model is taken into account (the bias can be even larger if the SN is lying very near the critical curves). We also simulate how such a bias propagates onto the cosmological parameter fit using the Union2.1 sample supplemented with strongly magnified SNe. The resulting bias on the deduced cosmological parameters is generally at the few percent level, if only few biased SNe are included, and increases with the number of lensed SNe and their redshift. Samples containing magnified Type Ia SNe, e.g., from ongoing cluster surveys, should readily account for this possible bias.

  12. The Cellular Burning Regime in Type Ia Supernova Explosions - II. Flame Propagation into Vortical Fuel

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

    2003-12-08T23:59:59.000Z

    We investigate the interaction of thermonuclear flames in Type Ia supernova explosions with vortical flows by means of numerical simulations. In our study, we focus on small scales, where the flame propagation is no longer dominated by the turbulent cascade originating from large-scale effects. Here, the flame propagation proceeds in the cellular burning regime, resulting from a balance between the Landau-Darrieus instability and its nonlinear stabilization. The interaction of a cellularly stabilized flame front with a vortical fuel flow is explored applying a variety of fuel densities and strengths of the velocity fluctuations. We find that the vortical flow can break up the cellular flame structure if it is sufficiently strong. In this case the flame structure adapts to the imprinted flow field. The transition from the cellularly stabilized front to the flame structure dominated by vortices of the flow proceeds in a smooth way. The implications of the results of our simulations for Type Ia Supernova explosion models are discussed.

  13. Delayed detonations in full-star models of Type Ia supernova explosions

    E-Print Network [OSTI]

    F. K. Roepke; J. C. Niemeyer

    2007-03-14T23:59:59.000Z

    Aims: We present the first full-star three-dimensional explosion simulations of thermonuclear supernovae including parameterized deflagration-to-detonation transitions that occur once the flame enters the distributed burning regime. Methods: Treating the propagation of both the deflagration and the detonation waves in a common front-tracking approach, the detonation is prevented from crossing ash regions. Results: Our criterion triggers the detonation wave at the outer edge of the deflagration flame and consequently it has to sweep around the complex structure and to compete with expansion. Despite the impeded detonation propagation, the obtained explosions show reasonable agreement with global quantities of observed type Ia supernovae. By igniting the flame in different numbers of kernels around the center of the exploding white dwarf, we set up three different models shifting the emphasis from the deflagration phase to the detonation phase. The resulting explosion energies and iron group element productions cover a large part of the diversity of type Ia supernovae. Conclusions: Flame-driven deflagration-to-detonation transitions, if hypothetical, remain a possibility deserving further investigation.

  14. Spectroscopic Observations and Analysis of the Unusual Type Ia SN1999ac

    SciTech Connect (OSTI)

    Garavini, G.; Aldering, G.; Amadon, A.; Amanullah, R.; Astier,P.; Balland, C.; Blanc, G.; Conley, A.; Dahlen, T.; Deustua, S.E.; Ellis,R.; Fabbro, S.; Fadeyev, V.; Fan, X.; Folatelli, G.; Frye, B.; Gates,E.L.; Gibbons, R.; Goldhaber, G.; Goldman, B.; Goobar, A.; Groom, D.E.; Haissinski, J.; Hardin, D.; Hook, I.; Howell, D.A.; Kent, S.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Kuznetsova, N.; Lee, B.C.; Lidman, C.; Mendez,J.; Miller, G.J.; Moniez, M.; Mouchet, M.; Mourao, A.; Newberg, H.; Nobili, S.; Nugent, P.E.; Pain, R.; Perdereau, O.; Perlmutter, S.; Quimby, R.; Regnault, N.; Rich, J.; Richards, G.T.; Ruiz-Lapuente, P.; Schaefer, B.E.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-12T23:59:59.000Z

    The authors present optical spectra of the peculiar Type Ia supernova (SN Ia) 1999ac. The data extend from -15 to +42 days with respect to B-band maximum and reveal an event that is unusual in several respects. prior to B-band maximum, the spectra resemble those of SN 1999aa, a slowly declining event, but possess stronger Si II and Ca II signatures (more characteristic of a spectroscopically normal SN). Spectra after B-band maximum appear more normal. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from Si II are among the slowest ever observed, though SN 1999ac is not particularly dim. The analysis of the parameters v{sub 10}(Si II), R(Si II), v, and {Delta}m{sub 15} further underlines the unique characteristics of SN 1999ac. They find convincing evidence of C II {lambda}6580 in the day -15 spectrum with ejection velocity v > 16,000 km s{sup -1}, but this signature disappears by day -9. This rapid evolution at early times highlights the importance of extremely early-time spectroscopy.

  15. TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD

    SciTech Connect (OSTI)

    Tian, W. W. [National Astronomical Observatories, CAS, Beijing 100012 (China); Leahy, D. A., E-mail: tww@bao.ac.cn [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2011-03-10T23:59:59.000Z

    The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. This new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.

  16. Variable Selection for Modeling the Absolute Magnitude at Maximum of Type Ia Supernovae

    E-Print Network [OSTI]

    Uemura, Makoto; Kawabata, S; Ikeda, Shiro; Maeda, Keiichi

    2015-01-01T23:59:59.000Z

    We discuss what is an appropriate set of explanatory variables in order to predict the absolute magnitude at the maximum of Type Ia supernovae. In order to have a good prediction, the error for future data, which is called the "generalization error," should be small. We use cross-validation in order to control the generalization error and LASSO-type estimator in order to choose the set of variables. This approach can be used even in the case that the number of samples is smaller than the number of candidate variables. We studied the Berkeley supernova database with our approach. Candidates of the explanatory variables include normalized spectral data, variables about lines, and previously proposed flux-ratios, as well as the color and light-curve widths. As a result, we confirmed the past understanding about Type Ia supernova: i) The absolute magnitude at maximum depends on the color and light-curve width. ii) The light-curve width depends on the strength of Si II. Recent studies have suggested to add more va...

  17. Culture, cooperation, and planning for development in Maputo, Mozambique

    E-Print Network [OSTI]

    Martin, Laura Andreae

    2014-01-01T23:59:59.000Z

    Cooperation projects rooted in cultural ties, such as South-South cooperation, are contemporarily receiving unprecedented attention from the international development community. This focus on specific types of partnerships ...

  18. Sand Mountain Electric Cooperative- Residential Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least...

  19. Closer Co-operation in Tomorrows European Union

    E-Print Network [OSTI]

    Deubner, Christian

    2006-01-01T23:59:59.000Z

    project, EU Gouvernance by Self- Co-ordination: Towards aCloser Co-operation in Tomorrows European Union 1.1 We speak about closer co-operation in the EU when fewer

  20. Interagency Field Test Evaluates Co-operation of Turbines and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Field Test Evaluates Co-operation of Turbines and Radar Interagency Field Test Evaluates Co-operation of Turbines and Radar May 1, 2012 - 2:56pm Addthis The Department...

  1. Linn County Rural Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to residential customers....

  2. An Assessment of Communication Technology Adoption in Texas Cooperatives

    E-Print Network [OSTI]

    Murch, Matthew 1987-

    2012-08-31T23:59:59.000Z

    of communication technology from the background of cooperative managers to board management policy. The survey categorized 105 different cooperatives by current technology use and management practices. Once the data were collected, a factor analysis to understand...

  3. Linn County Rural Electric Cooperative- Agricultural Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of equipment rebates to agricultural...

  4. Linn County Rural Electric Cooperative- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to residential customers....

  5. Department of Energy Names Virginia and Illinois Electric Cooperatives...

    Office of Environmental Management (EM)

    Department of Energy Names Virginia and Illinois Electric Cooperatives Wind Co-ops of the Year Department of Energy Names Virginia and Illinois Electric Cooperatives Wind Co-ops of...

  6. Guidelines for Events In Cooperation with IACR February 2014

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    : · Acknowledge IACR's cooperation on all event promotional materials and on the event web site. The proper form of acknowledgement is In Cooperation with IACR. When used on the web, this should link to www.iacr.org. · Insert

  7. Nebular spectra and abundance tomography of the type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core

    E-Print Network [OSTI]

    Mazzali, P A; Filippenko, A V; Garnavich, P M; Clubb, K I; Maguire, K; Pan, Y -C; Shappee, R; Silverman, J M; Benetti, S; Hachinger, S; Nomoto, K; Pian, E

    2015-01-01T23:59:59.000Z

    A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, "rho-11fe", was extended to lower velocities to include the regions that emit at nebular epochs. Model rho-11fe is intermediate between the fast deflagration model W7 and a low-energy delayed-detonation. Good fits to the nebular spectra are obtained if the innermost ejecta are dominated by neutron-rich, stable Fe-group species, which contribute to cooling but not to heating. The correct thermal balance can thus be reached for the strongest [FeII] and [FeIII] lines to be reproduced with the observed ratio. The 56Ni mass thus obtained is 0.47 +/- 0.05 Mo. The bulk of 56Ni has an outermost velocity of ~8500 km/s. The mass of stable iron is 0.23 +/- 0.03 Mo. Stable Ni has low abundance, ~10^{-2} Mo. This is sufficient to reproduce an observed emission line near 7400 A. A sub-Chandrasekhar exp...

  8. A Generalized {ital K} Correction for Type Ia Supernovae: Comparing {ital R}-band Photometry Beyond {ital z=9.2} with B,V, and {ital R}-band Nearby Photometry

    E-Print Network [OSTI]

    Goodbar, Ariel

    2008-01-01T23:59:59.000Z

    spectroscopically peculiar supernovae, and to search for anyK Correction for Type Ia Supernovae: Comparing R-bandK Correction for Type Ia Supernovae: Comparing R-band

  9. Utrecht University Close Co-operation

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Utrecht University Close Co-operation #12;1 CloseCo-operation Preface 3 TheNextGeneration 18 Facts&Figures 20 Faculty Humanities 4 Faculty Geosciences 6 Faculty Medicine/UniversityMedicalCenter Utrecht 8 VeterinaryMedicine 16 Contents Utrecht University CloseCo-operation #12;3 CloseCo-operation It is a great

  10. A Distributed System for Cooperative MIMO Transmissions

    E-Print Network [OSTI]

    Kalyanaraman, Shivkumar

    a distributed system for facilitating cooperative MIMO transmissions in networks without multiple antenna diversity can be leveraged at the network, link or physical layers to provide energy efficient transmissions for reliable low-power transmissions. The rest of this paper is organized as follows: the proposed system

  11. Cooperative Determination on Cache Replacement Candidates

    E-Print Network [OSTI]

    Chin, Francis Y.L.

    Cooperative Determination on Cache Replacement Candidates for Transcoding Proxy Caching Keqiu Li1- mination on cache replacement candidates for transcoding proxies. An original model which determines cache replacement candidates on all can- didate nodes in a coordinated fashion with the objective of minimizing

  12. Cooperation Enablement for Centralistic Early Warning Systems

    E-Print Network [OSTI]

    Flegel, Ulrich

    Cooperation Enablement for Centralistic Early Warning Systems Ulrich Flegel SAP Research CEC that is considered here is the centralistic malware early warning system developed in the AMSEL project [3 Karlsruhe Vincenz-Prienitz-Str. 1 76131 Karlsruhe, Germany ulrich.flegel@sap.com Johannes Hoffmann TU

  13. Globalization and Human Cooperation Supporting Information (SI)

    E-Print Network [OSTI]

    Globalization and Human Cooperation Supporting Information (SI) Nancy R. Buchana Gianluca Grimaldab University, Houston, TX 77005, USA d Department of Psychology, Ohio State University, Columbus, OH 43210, USA e Laboratory for Research in Experimental Economics, University of Valencia, Valencia, Spain 46020 f

  14. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-12T23:59:59.000Z

    To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Admin Chg, dated 9-18-2013. Canceled by DOE O 483.1A.

  15. Cooperative Multihop Communication for Underwater Acoustic Networks

    E-Print Network [OSTI]

    Zhou, Shengli

    Cooperative Multihop Communication for Underwater Acoustic Networks Cecilia Carbonelli and Urbashi propagation 1. INTRODUCTION Underwater sensor networks will find applications in data collection, pollution acoustic (UWA) channels differ from those in other media, such as radio channels, due to the high temporal

  16. COOPER PAIR TRANSISTOR IN A TUNABLE ENVIRONMENT

    E-Print Network [OSTI]

    Haviland, David

    COOPER PAIR TRANSISTOR IN A TUNABLE ENVIRONMENT S. Corlevi, W. Guichard, and D. B. Haviland* 1 measurements of the CPT, which are performed in a low impedance environment, the charging effects are observed as gate voltage modulation of the critical current. However, in a high impedance environment, a Coulomb

  17. Origin and Structure of Dynamic Cooperative Networks

    E-Print Network [OSTI]

    Hauert, Christoph

    Origin and Structure of Dynamic Cooperative Networks Lucas Wardil & Christoph Hauert Department the local structure of the social network. Here we propose a simple theoretical framework to model dynamic among coop- erators24 . Social networks represent a dynamical abstraction of social structures

  18. ARIZONA COOPERATIVE Climate Change and Wildfire

    E-Print Network [OSTI]

    Crimmins, Michael A.

    and Woodlands Summary of Issue Wildfire requires three things to burn: heat, fuel and oxygen. If one 1998) and warming temperatures coupled with recent drought conditions. In many cases, high force managers to consider new management #12;2 The University of Arizona Cooperative Extension

  19. ANTARCTIC CLIMATE & ECOSYSTEMS COOPERATIVE RESEARCH CENTRE

    E-Print Network [OSTI]

    Phipps, Steven J.

    , including economic damage or loss or injury to person or property, regardless of whether the Antarctic Centre Program. A U S T R A L I A ACE also has formal partnerships with the Department of the Environment be addressed to: The Manager Communications Antarctic Climate & Ecosystems Cooperative Research Centre Private

  20. Evaluation of Performance of Cooperative Web Caching with Web Polygraph

    E-Print Network [OSTI]

    Subhlok, Jaspal

    Evaluation of Performance of Cooperative Web Caching with Web Polygraph Ping Du Jaspal Subhlok This paper presents a framework for evaluating the performance of cooperative Web cache hierarchies. Web Poly cache hierarchies built with Squid proxy cache servers. 1 Introduction Multiple Web caches can cooperate

  1. Chapter 3.3: Cooperative Education Program1 Objectives & Goals

    E-Print Network [OSTI]

    Chapter 3.3: Cooperative Education Program1 Objectives & Goals Objective: Grow Cooperative Education into a sustainable, self-funded program for undergraduate students while enhancing (1) student in the Cooperative Education program are: Goal: Eliminate barriers to entry for undergraduate engineering students

  2. The Co-operative Business Model Hort 2020 Forum

    E-Print Network [OSTI]

    Peak, Derek

    The Co-operative Business Model Hort 2020 Forum November 14, 2009 Co-op Start-ups - The Basics #12;Business Models Co-operative Traditional Not-for-Profit Sole Proprietor Partnerships Business Corporations. #12;Business Model Comparison Purpose Community Service Co-operative (Not-for-profit) Co

  3. Stimulating Cooperative Diversity in Wireless Ad Hoc Networks through Pricing

    E-Print Network [OSTI]

    Adve, Raviraj

    Stimulating Cooperative Diversity in Wireless Ad Hoc Networks through Pricing Naveen Shastry in commercial wireless ad hoc networks. For the relay, cooperation represents both a real cost of energy a pricing game that stimulates cooperation via reimbursements to the relay. Specifically, given the price

  4. BEAN IMPROVEMENT COOPERATIVE 2014 BIC Invoice (US $) and Membership Information

    E-Print Network [OSTI]

    BEAN IMPROVEMENT COOPERATIVE 2014 BIC Invoice (US $) and Membership Information 2014 Dues (Volume ISSN # = 0084-7747] INVOICE 2014 BEAN IMPROVEMENT COOPERATIVE MEMBERSHIP If paying by check, please make payable to the "BEAN IMPROVEMENT COOPERATIVE", and mail to: Dr. Phillip N. Miklas, USDA-ARS, 24106

  5. LATE-TIME SPECTRAL OBSERVATIONS OF THE STRONGLY INTERACTING TYPE Ia SUPERNOVA PTF11kx

    SciTech Connect (OSTI)

    Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Nugent, Peter E.; Filippenko, Alexei V.; Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Pan, Yen-Chen; Hook, Isobel M., E-mail: jsilverman@astro.as.utexas.edu [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-08-01T23:59:59.000Z

    PTF11kx was a Type Ia supernova (SN Ia) that showed time-variable absorption features, including saturated Ca II H and K lines that weakened and eventually went into emission. The strength of the emission component of H{alpha} gradually increased, implying that the SN was undergoing significant interaction with its circumstellar medium (CSM). These features, and many others, were blueshifted slightly and showed a P-Cygni profile, likely indicating that the CSM was directly related to, and probably previously ejected by, the progenitor system itself. These and other observations led Dilday et al. to conclude that PTF11kx came from a symbiotic nova progenitor like RS Oph. In this work we extend the spectral coverage of PTF11kx to 124-680 rest-frame days past maximum brightness. The late-time spectra of PTF11kx are dominated by H{alpha} emission (with widths of full width at half-maximum intensity Almost-Equal-To 2000 km s{sup -1}), strong Ca II emission features ({approx}10,000 km s{sup -1} wide), and a blue 'quasi-continuum' due to many overlapping narrow lines of Fe II. Emission from oxygen, He I, and Balmer lines higher than H{alpha} is weak or completely absent at all epochs, leading to large observed H{alpha}/H{beta} intensity ratios. The H{alpha} emission appears to increase in strength with time for {approx}1 yr, but it subsequently decreases significantly along with the Ca II emission. Our latest spectrum also indicates the possibility of newly formed dust in the system as evidenced by a slight decrease in the red wing of H{alpha}. During the same epochs, multiple narrow emission features from the CSM temporally vary in strength. The weakening of the H{alpha} and Ca II emission at late times is possible evidence that the SN ejecta have overtaken the majority of the CSM and agrees with models of other strongly interacting SNe Ia. The varying narrow emission features, on the other hand, may indicate that the CSM is clumpy or consists of multiple thin shells.

  6. Cooperative system and method using mobile robots for testing a cooperative search controller

    DOE Patents [OSTI]

    Byrne, Raymond H. (Albuquerque, NM); Harrington, John J. (Albuquerque, NM); Eskridge, Steven E. (Albuquerque, NM); Hurtado, John E. (College Station, TX)

    2002-01-01T23:59:59.000Z

    A test system for testing a controller provides a way to use large numbers of miniature mobile robots to test a cooperative search controller in a test area, where each mobile robot has a sensor, a communication device, a processor, and a memory. A method of using a test system provides a way for testing a cooperative search controller using multiple robots sharing information and communicating over a communication network.

  7. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 97102 Total Consumers 44394 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  8. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 77157 Total Consumers 43869 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  9. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 69154 Total Consumers 43876 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  10. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 77543 Total Consumers 44730 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  11. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 92113 Total Consumers 44586 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  12. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 64724 Total Consumers 44708 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  13. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 87721 Total Consumers 43779 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  14. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 88236 Total Consumers 44787 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  15. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 73805 Total Consumers 44830 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  16. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Sales (MWh) 93756 Total Consumers 43814 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  17. Phases Energy Services County Electric Power Assn A N Electric...

    Open Energy Info (EERE)

    Alpena Power Co Alt amaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit Energy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy...

  18. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Residential Revenue(Thousand ) 5629 Residential Sales (MWh) 49312 Residential Consumers 35980 Commercial Revenue(Thousand ) 2031 Commercial Sales (MWh) 15395 Commercial Consumers...

  19. Y-W Electric Assn Inc (Nebraska) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co Ltd Jump to:Xupu CountyY-W

  20. Y-W Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co Ltd Jump to:Xupu

  1. Yampa Valley Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower Co Ltd Jump to:XupuYPP

  2. Yazoo Valley Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower CoYasunaga Wire Saw Systems

  3. Bridger Valley Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro,Hampshire:Brice, Ohio:New

  4. Butler Rural El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy Resources JumpButler Rural El

  5. Calhoun County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass16 2013 Next » Monday2014

  6. East Mississippi Elec Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrictInformation Ireland)East CentralCoastEast

  7. Empire Electric Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to: navigation, search Name:EmpireEmpire

  8. Florida Keys El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisia BabcockFlexColorado:

  9. Cherokee County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County,Chenango County, NewCherokee County Elec

  10. Singing River Elec Pwr Assn (Mississippi) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbHKentucky: EnergySinemSinging River Elec

  11. Western Coop Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff,HoltWestchester County, New York:Western

  12. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission | OpenDevelopment GuideMexico ||

  13. 4-County Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission | OpenDevelopment GuideMexico20082008

  14. Red River Valley Coop Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,JumpReactionEnergy Data JamReconcept

  15. Renville-Sibley Coop Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesysRenewable HawaiiRenoenergieRenville-Sibley

  16. San Isabel Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energysource HistorySamElectric HomeCA)San

  17. San Miguel Power Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energysource HistorySamElectricSanSanMiguelSan

  18. Sangre De Cristo Elec Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:EnergysourceRamon,Sandur Power Company Pvt

  19. Sedgwick Cnty El Coop Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump638324°,Schnell ZTools and

  20. La Plata Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEE JumpPalma, California:PlataLa

  1. La Plata Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEE JumpPalma, California:PlataLaLa

  2. La Plata Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEE JumpPalma, California:PlataLaLaLa

  3. Harrison Rural Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation HandbookOhio: EnergyWest Virginia: EnergyRural

  4. Holy Cross Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey:Heights, NewOhio:Michigan:Holtville,Holy

  5. Columbia Power Coop Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonial Industria

  6. Columbia Rural Elec Assn, Inc (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonial IndustriaColumbia

  7. Comanche County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonialComanche Clean Energy Jump

  8. Cooke County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergy Informationsource HistoryCounty Elec Coop

  9. Doniphan Elec Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjin Semichem Co JumpDongying

  10. Wright-Hennepin Coop Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoodsCenters5654°, -92.539603° Show

  11. Yampa Valley Electric Assn Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:StateXiningYamagawaYamhill,

  12. Prentiss County Elec Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for Energy Efficiency JumpPrenova Inc

  13. Charles Mix Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformation Changzhou JiangnanstandsCharles

  14. Niobrara Electric Assn, Inc (South Dakota) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppelsource History(CTI PFAN) |

  15. Mountain View Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon LakeMountain Electric Coop, Inc

  16. Osage Valley Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThesource History ViewOrmatOsage

  17. Panhandle Rural El Member Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) JumpPalcan s JVCo |

  18. South Louisiana Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix JapanCalifornia:(RECP) in

  19. Edgar Electric Co-op, Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport,de NantesCryogenics LLCEdenspaceElectric

  20. Niobrara Electric Assn, Inc (Nebraska) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to:Nigeria: EnergyNinilchik, Alaska:Electric

  1. Bailey County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagley Public Utilities CommBailey County

  2. Blachly-Lane Cnty Coop El Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirch Creek Village Elec1BBlachly-Lane

  3. South Mississippi El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource History ViewHolt Wind Farm

  4. Copper Valley Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| ExplorationCooperstown, Wisconsin:NewCopper Valley Elec

  5. LaCreek Electric Assn, Inc (Nebraska) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNL Energy FlowLODLPKFLa

  6. LaCreek Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNL Energy FlowLODLPKFLaLaCreek

  7. Lake Region Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhou Luneng Wind

  8. Lamar County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhou LunengLamar County Elec

  9. Meeker Coop Light & Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayoOregon:Medical AreaMeehan

  10. Mid-South Electric Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc Jump to:Jump to: navigation, search

  11. South Mississippi El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopicsSouth DakotaSouthOpenSouthSouth

  12. Southern Pine Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, Inc Jump to:Southern Maryland ElecSouthern

  13. Southwest Rural Elec Assn Inc (Texas) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, Inc JumpSouthwest Iowa Rural

  14. Alger-Delta Coop Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformation ASHRAE 169-2006 Climate

  15. Columbia Rural Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformationInformationColton,Columbia

  16. Monroe County Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia | OpenMonona County, Iowa:County Elec

  17. Natchez Trace Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOceanNanostellar

  18. Tri-County Electric Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower StationTownTri-County Electric Coop (Michigan)

  19. Twin County Electric Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbull Hydro LLC Jump to:Page Edit withTwin

  20. Victory Electric Coop Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt ManagementVera IrrigationVestas Wind

  1. Virginia Mun Elec Assn No 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage ofInformationVineyardEnergy Project Jump

  2. Wabash Valley Power Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph Home Wzeng'sVortex EnergyWDPWPAWSWabashValley

  3. West Florida El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraphWellton-Mohawk IrrWest CentralFargo,

  4. West River Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraphWellton-Mohawk IrrWestWest Plains

  5. Wheatland Rural Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraphWellton-MohawkWesternwish

  6. White River Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's picture Submitted by Kyoung(155) Contributor

  7. Red River Valley Rrl Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay County,OpenCounty, Texas:Red River Valley

  8. Golden Valley Elec Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <GlacialGolden Spread Electric

  9. Goodhue County Coop Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <GlacialGolden SpreadGomti BiotechUK Jump

  10. Hamilton County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou,GuizhouGuyana:HaeHalcyon Energy

  11. Alcorn County Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatech srl Jump to:Alcorn County Elec

  12. Ark Valley Elec Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture andsoftware andSolar Center Jump to:Ark Valley

  13. Bon Homme Yankton El Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotins Energia Jump to:BlackBluewatt JumpBoji BotaiBon

  14. Brown County Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridger Valley05411°, -105.0866504°

  15. Caney Valley El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallaway ElectricCambridge FundsCampaWindCaney

  16. Late-Time Photometry of Type Ia Supernova SN2012cg Reveals the Radioactive Decay of $^{57}$Co

    E-Print Network [OSTI]

    Graur, Or; Shara, Michael M; Riess, Adam G

    2015-01-01T23:59:59.000Z

    Seitenzahl et al. (2009) have predicted that $\\sim 3$ years after its explosion, the light we receive from a Type Ia supernova will come mostly from reprocessing of electrons and X-rays emitted by the radioactive decay chain $^{57}{\\rm Co}~\\to~^{57}{\\rm Fe}$, instead of positrons from the decay chain $^{56}{\\rm Co}~\\to~^{56}{\\rm Fe}$ that dominates the supernova light at earlier times. Using the Hubble Space Telescope, we followed the light curve of the Type Ia supernova SN2012cg out to $1055$ days after maximum light. Our measurements are consistent with the light curves predicted by the contribution of energy from the reprocessing of electrons and X-rays emitted by the decay of $^{57}$Co. This provides conclusive evidence that $^{57}$Co is produced in Type Ia supernova explosions. The ratio of luminosities produced by the decays of $^{57}$Co and $^{56}$Co, a strong constraint on any Type Ia supernova explosion model, is in the range $(0.4$ - $8.5)\\times10^{-3}$.

  17. Utilizing the Updated Gamma-Ray Bursts and Type Ia Supernovae to Constrain the Cardassian Expansion Model and Dark Energy

    E-Print Network [OSTI]

    Wei, Jun-Jie; Wu, Xue-Feng

    2015-01-01T23:59:59.000Z

    We update gamma-ray burst (GRB) luminosity relations among certain spectral and light-curve features with 139 GRBs. The distance modulus of 82 GRBs at $z>1.4$ can be calibrated with the sample at $z\\leq1.4$ by using the cubic spline interpolation method from the Union2.1 Type Ia supernovae (SNe Ia) set. We investigate the joint constraints on the Cardassian expansion model and dark energy with 580 Union2.1 SNe Ia sample ($z<1.4$) and 82 calibrated GRBs data ($1.4Ia significantly improves the constrain on $\\Omega_{m}-\\Omega_{\\Lambda}$ plane. In the Cardassian expansion model, the best fit is $\\Omega_{m}= 0.24_{-0.15}^{+0.15}$ and $n=0.16_{-0.52}^{+0.30}$ $(1\\sigma)$, which is consistent with the $\\Lambda$CDM cosmology $(n=0)$ in the $1\\sigma$ confidence region. We also discuss two dark energy models in which the equation of state $w(z)$ is parametrized as $w(z)=w_{0}$ and $w(z)=w_{0}+w_{1}z/(1+z)$, respectively. Based on o...

  18. RESULTS OF THE LICK OBSERVATORY SUPERNOVA SEARCH FOLLOW-UP PHOTOMETRY PROGRAM: BVRI LIGHT CURVES OF 165 TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Ganeshalingam, Mohan; Li Weidong; Filippenko, Alexei V.; Anderson, Carmen; Foster, Griffin; Griffith, Christopher V.; Joubert, Niels; Leja, Joel; Macomber, Brent; Pritchard, Tyler; Thrasher, Patrick; Winslow, Dustin [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gates, Elinor L.; Grigsby, Bryant J.; Lowe, Thomas B. [Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States)

    2010-10-15T23:59:59.000Z

    We present BVRI light curves of 165 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search follow-up photometry program from 1998 through 2008. Our light curves are typically well sampled (cadence of 3-4 days) with an average of 21 photometry epochs. We describe our monitoring campaign and the photometry reduction pipeline that we have developed. Comparing our data set to that of Hicken et al., with which we have 69 overlapping supernovae (SNe), we find that as an ensemble the photometry is consistent, with only small overall systematic differences, although individual SNe may differ by as much as 0.1 mag, and occasionally even more. Such disagreement in specific cases can have significant implications for combining future large data sets. We present an analysis of our light curves which includes template fits of light-curve shape parameters useful for calibrating SNe Ia as distance indicators. Assuming the B - V color of SNe Ia at 35 days past maximum light can be presented as the convolution of an intrinsic Gaussian component and a decaying exponential attributed to host-galaxy reddening, we derive an intrinsic scatter of {sigma} = 0.076 {+-} 0.019 mag, consistent with the Lira-Phillips law. This is the first of two papers, the second of which will present a cosmological analysis of the data presented herein.

  19. CS3600 Lab Manual CyberCIEGE is an information assurance (IA) training tool that illustrates computer and

    E-Print Network [OSTI]

    CS3600 Lab Manual Lab SSL CyberCIEGE is an information assurance (IA) training tool. The CyberCIEGE SSL scenario illustrates the use of SSL to authenticate the identity of web servers. This scenario explores the following concepts: SSL is a means of authenticating a server (e.g., a web server

  20. Restframe I-band Hubble diagram for type Ia supernovae up to redshift z ~; 0.5

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    up to redshift z ? 0.5 ? S. Nobili 1,2 , R. Amanullah 2 , G.up to redshift z ? 0.5 Filippenko, A.V. , Richmond, M.W. ,Ia supernovae up to redshift z ? 0.5 ported by cross-cutting