Powered by Deep Web Technologies
Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Albany, OR Anchorage, AK Morgantown, WV Pittsburgh, PA Sugar Land, TX Website: www.netl.doe.gov  

E-Print Network (OSTI)

Albany, OR · Anchorage, AK · Morgantown, WV · Pittsburgh, PA · Sugar Land, TX Website: www.netl-285-5437 briggs.white@netl.doe.gov Neil Nofziger Principal Investigator seM-coM company, Inc. 1040 North Westwood 304-285-4717 daniel.driscoll@netl.doe.gov PARTNERS University of Toledo Ceramatec, Inc. PROJECT

Azad, Abdul-Majeed

2

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Company The University of Alabama - Birmingham Shell International Exploration and Production B.V. PROJECT DURATION Start Date End Date 8112010 3312014 COST Total Project...

3

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

from oil and gas wells and develop possible uses and applications. In oil and gas exploration, produced water includes saline water found in underground formations that is...

4

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University Carbon Capture Simulation Initiative The Carbon Capture Simulation Initiative (CCSI) is a...

5

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

that 99 percent of injected CO2 remains in the injection zone(s); (3) improving efficiency of storage operations; and (4) developing Best Practices Manuals (BPMs). Figure...

6

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regions Research Program Assessing Risk and Mitigating Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas...

7

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage (CCS): Training and Research Background Increased attention is being placed on...

8

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

from university or small business research projects. Collaboration with academic, non-profit, or commercial research groups can be arranged under a variety of cooperative...

9

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

needs of advanced power systems. Industries that utilize natural gas, gasifier syngas, biogas, landfill gas, or any type of fuel gas can benefit from knowing the composition of the...

10

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

risks to water ecology and energy resources from potential leakage of CO 2 from deep brine reservoirs. The results of the efforts above will be used to develop a toolkit of...

11

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Flow, Transport, and Storage of CO2 in Saline Aquifers Background Through its core research and development program administered by the National Energy Technology...

12

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal-Seq III Consortium: Advancing the Science of CO 2 Sequestration in Coal Seam and Gas Shale Reservoirs Background Through its core research and development (R&D) program...

13

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

a key risk factor for carbon capture and storage (CCS) applications. Wells (existing and new) may present risks for CO2 geologic storage, including wells which underwent poor...

14

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883...

15

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Actualistic and Geomechanical Modeling of Reservoir Rock, CO2 and FormationFluid Interaction, Citronelle Oil Field, Alabama Background Fundamental and applied research on carbon...

16

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOSEQ: Monitoring of Geological CO2 Sequestration Using Isotopes and Perfluorocarbon Tracers (PFTs) Background The purpose of this project is to develop monitoring, verification,...

17

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Simplified Predictive Models for CO2 Sequestration Performance Assessment Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and...

18

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inexpensive Monitoring and Uncertainty Assessment of CO2 Plume Migration Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and...

19

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulating Capillary and Dissolution Trapping During Injection and Post-Injection of CO2 in Heterogeneous Geological Formations Using Data from Intermediate Scale Test Systems...

20

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Complexity and Choice of Model Approaches for Practical Simulations of CO2 Injection, Migration, Leakage, and Long-term Fate Introduction The overall goal of the Department...

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National...

22

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Joint Inversion System for CO2 Storage Modeling with Large Date Sets for Characterization and Real- Time Monitoring - Enhancing Storage Performance and Reducing Failure...

23

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage: Coupled Modeling of Fault Poromechanics, and High-Resolution Simulation of CO2 Migration and Trapping Background The overall goal of the Department of Energy's (DOE)...

24

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency: A Reservoir Simulation Approach Background The overall goal of the...

25

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximization of Permanent Trapping of CO2 and Co-contaminants in the Highest Porosity Formations of the Rock Springs Uplift (Southwest Wyoming): Experimentation and Multi-Scale...

26

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions into the atmosphere without adversely influencing energy use or hindering...

27

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or...

28

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geomechanical Impacts of Shale Gas Activities Background During hydraulic fracturing of unconventional resources, large quantities of fracturing fluids are injected at high...

29

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large Scale Geologic Storage of CO 2 Background Carbon capture and storage...

30

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in MaficUltramafic Rocks Background The overall goal of the...

31

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Near-Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field- Ready 14 C Isotopic Analyzer Background Through its core...

32

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Design Applications for Modeling and Assessing Carbon Dioxide Sequestration in Saline Aquifers Background The overall goal of the Department of Energy's (DOE) Carbon...

33

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consortium-Validation Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The...

34

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Test of a 1,000-Level 3C Fiber Optic Borehole Seismic Array Applied to Carbon Sequestration Background The overall goal of the Department of Energy's (DOE) Carbon Storage...

35

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Development and Implementation of the Midwest Geological Sequestration Consortium Sequestration Training and Education Program (STEP) Background Carbon capture utilization...

36

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Commission Association of American Railroads Augusta Systems, Inc. Southeast Regional Carbon Sequestration Partnership-Validation Phase Background The U.S. Department of Energy...

37

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis Background The overall goal of the Department of Energy's (DOE) Carbon Storage...

38

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

l , optical, magnetic, and or catalytic properties. Efforts will also focus on assessing graphene for high temperature sensor applications. The novel control system research...

39

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

of CO 2 storage in oil reservoirs in association with CO 2 enhanced oil recovery (EOR). The goal of the saline formation activities is to refine, as necessary, the equations...

40

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

thus making the educational products globally accessible. * Developing a self-sustaining CCUS training program through an active sponsorship program and appropriately...

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

thus addressing primary obstacles to rapid CCUS deployment. * Developing a self-sustaining CCUS training program through an active sponsorship program and appropriately...

42

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

43

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration of Carbon Dioxide Gas in Coal Seams Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that...

44

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

of moderate to high gamma background radiation (i.e., potential Rn degassing) with naturally-occurring CO 2 (Figure 1). Natural CO 2 analogues provide a means of understanding...

45

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If the geological formations of interest are deep and have high...

46

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

pollutants and CO 2 . Oxy-fuel combustion of hydrocarbon fuel (coal, natural-gas, biomass) generates denitrified combustion gas comprising dominantly CO 2 and H 2 O. The...

47

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

in this study include: * How physical properties of sandmudstone interfaces influence CO2 storage and transport. * How geochemical perturbations * Induced by CO2 emplacement...

48

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

being developed for geologic carbon storage are focused on five storage types: oil and gas reservoirs, saline formations, unmineable coal seams, basalts, and...

49

Anchorage Municipal Light and Power | Open Energy Information  

Open Energy Info (EERE)

Light and Power Light and Power Jump to: navigation, search Name Anchorage Municipal Light and Power Place Alaska Utility Id 599 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting Service 1000 W Lighting Area Lighting Service 150 W Lighting Area Lighting Service 175 W Lighting Area Lighting Service 250 W Lighting Area Lighting Service 400 W Lighting

50

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 s o l u b i li t y at r o o m temperature. CO 2 solubility testing of the most prom- ising eutectic combinations was completed. The results indicate that increasing the...

51

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

412-386-7343 Hunaid.Nulwala@contr.netl.doe.gov David Luebke Technical Co-ordinator for Carbon Capture National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940...

52

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55...

53

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

54

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical com- ponent of realistic strategies for arresting the rise in...

55

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

56

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University Carbon Capture Simulation Initiative The Carbon Capture Simulation Initiative (CCSI) is a...

57

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Midwest Regional Carbon Sequestration Partnership - Development Phase Large-Scale Field Project Background The U.S. Department of Energy Regional Carbon Sequestration Partnership...

58

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic...

59

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. industry in a complementary research program designed to develop and demonstrate oil and natural gas drilling and production methodologies in ultra-deep formations. This...

60

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power-words like these mean the future of energy to NETL's in-house...

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

estimates could result in a 4 - 6% gain in overall system efficiency. Rotating Detonation Combustion (RDC) capitalizes on this cycle and offers potential as a drop in...

62

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov RESEARCH...

63

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

needs of advanced power systems. Industries that utilize natural gas, gasifier syngas, biogas, landfill gas, or any type of fuel gas can benefit from knowing the composition of the...

64

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of feedstock, gasifier geometry and flow conditions. Using palladium sorbents for high temperature capture of mercury and other trace elements in flue gases is also under...

65

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

66

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

541-967-5885 david.alman@netl.doe.gov David Hopkinson Technical Portfolio Lead Carbon Capture 304-285-4360 david.hopkinson@netl.doe.gov OTHER PARTNERS Energy Frontiers Research...

67

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical com- ponent of realistic strategies for arresting the rise in...

68

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

541-967-5885 david.alman@netl.doe.gov David Hopkinson Technical Portfolio Lead Carbon Capture 304-285-4360 david.hopkinson@netl.doe.gov Figure 1: Film made from a...

69

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

science to ensure safe, essentially permanent carbon sequestration; develop reliable measurement, monitoring and verification technologies acceptable to permitting agencies;...

70

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

can simulate reservoirs that are multi-layered, exhibit dip, and have variable thickness, rock porosity, and rock permeability. The reservoirs can have fractures that open and...

71

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment Partnership Initiative The National Risk Assessment Partnership (NRAP) is a DOE initiative that harnesses core capabilities developed across the National Laboratory...

72

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

to offshore hydrocarbon production and the recovery of unconventional resources like shale gas, estimating CO 2 storage potential in various types of geologic formations, and...

73

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

these emissions can negatively impact air quality. The environmental risks of shale gas and shale oil development may be very different from that of conventional oil and gas...

74

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of carbon dioxide in tight formations. Benefits Production of natural gas from hydraulically-fractured shales surrounding horizontal wells is a relatively recent and...

75

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

waters with geologic media such as confining layers and fossil fuels (e.g., coal, oil shale, natural gas bearing formations); and unconventional fossil fuel extraction...

76

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

AND DEVELOPMENT Cynthia Powell Director 514-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

77

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

78

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Portfolio Lead Carbon Storage 412-386-4962 angela.goodman@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

79

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological and Environmental Sciences Division 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Acting Geology Team Lead Office of Research and Development National Energy...

80

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Acting Geology Team Lead Office of Research and Development National Energy...

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Collins Ferry Road Morgantown, WV 26507-0880 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator, Ultra-Deepwater Resources Portfolio Office of Research and...

82

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator National Energy Technology Laboratory 1450 Queen Ave SW...

83

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

REARCH AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

84

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Portfolio Lead National Risk Assessment Program 304-285-4688 grant.bromhal@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

85

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon...

86

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting (MVA) and...

87

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. The major areas of focus...

88

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

related impacts to human health and the natural environment, and induced seismicity from hydraulic fracturing. Project Description Through collaboration with its research...

89

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

related impacts to human health and the natural environment, and induced seismicity from hydraulic fracturing. Project Description Through collaboration with its Regional...

90

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geomechanical Impacts of Shale Gas Activities Background Hydraulic fracturing of gas shale is the injection of large volumes of fluid at high pressures in low permeability shale to...

91

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with remote and challenging...

92

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

93

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

number of individual break-through tasks in diverse number of areas. These range from identification of new materials for gas capture, storage or separation to optimization of...

94

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface...

95

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Association of American Railroads Augusta Systems, Incorporated Southeast Regional Carbon Sequestration Partnership-Development Phase Cranfield Site and Citronelle Site...

96

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

EOR Field Project - Development Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The...

97

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Services Vecta Oil & Gas, Ltd. Washington State University Big Sky Regional Carbon Sequestration Partnership-Kevin Dome Development Phase Project Background The U.S....

98

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwestern United States Carbon Sequestration Training Center Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance...

99

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

to 200 o C for combustion is inefficient from both a cost and net electricity perspective. Hydrophobic solvents could be operated at higher temperatures and minimize...

100

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

heat in a combustion process while producing a concentrated CO 2 stream to facilitate carbon capture. Chemical looping research efforts can be categorized as: modeling tool...

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

that are difficult or impossible to measure, such as coal jet penetration into a gasifier. This system provides the capabilities for running modeling tools at various scales...

102

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

and implementing a Sponsorship Development Program that allows SECARB-Ed to be self-sustaining after the initial three-year period by establishing an advisory board, developing...

103

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

priations) to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. The FutureGen 2.0 Program...

104

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

from Fossil Energy R&D 1 Bezdek, R. Wendling, R., The Return on Investment of the Clean Coal Technology Program in the USA. Energy Policy, Vol. 54, March 2013, pp. 104-112 2...

105

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust...

106

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D 070, November 2011, rev 1114 Research facilities include the Severe Environment Corrosion Erosion Research Facility (SECERF) for assessing materials performance in a variety...

107

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If the geological formations of interest are deep and have high...

108

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

well and post- placement. Foamed cement stability depends on time evolution of the gas bubble-size distribution (BSD) and varies as it is pumped and placed in the well. Unstable...

109

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

or particles. * High-definition, high-speed video capabilities: - Detailed information on bubble hydrodynamics. - Unprecedented resolution of hydrate surface morphology. * Provide...

110

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

changes in CO 2 -water inter- facial tension. * Experimental CO 2 injection tests in pore micro-models and parallel network model simulations demonstrate that the sweep efficiency...

111

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

pollutants and CO 2 . Oxy-fuel combustion of hydrocarbon fuel (coal, natural-gas, biomass) generates denitrified combustion gas comprising dominantly CO 2 and H 2 O. The...

112

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency loss, so it will...

113

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

near 276 MPa. Therefore, the per turbed-chain statistical associating fluid theory (PC-SAFT) model was used to calculate the fluid density, which is an input into the improved...

114

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of meeting such a challenge is the combination of a high temperature fuel cell and a gas turbine with a gasifier or reformer. This hybrid technology has been studied...

115

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's...

116

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

are used to characterize the fundamental properties of unconventional natural gas and oil reservoirs, ultra-deepwater and frontier-region reservoirs, and reservoirs that offer...

117

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

being developed for geologic carbon storage are focused on five storage types: (1) oil and natural gas reservoirs; (2) saline formations; (3) unmineable coal seams; (4)...

118

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Performance Project Research programs initiated by the U.S. Department of Energy (DOE) to achieve increased efficiency and reduced emissions are expected to result in the...

119

Anchorage, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Anchorage, Alaska: Energy Resources Anchorage, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.2180556°, -149.9002778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2180556,"lon":-149.9002778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Anchorage Municipal Light and Power (Alaska) EIA Revenue and...  

Open Energy Info (EERE)

Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-December2008&oldid19263...

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

on Local and Regional Air on Local and Regional Air Quality Impacts of Oil and Natural Gas Development Goal The NETL research effort in improving the assessment of impacts to air quality from oil and gas exploration and production activities has the following goals: (1) using NETL's mobile air monitoring laboratory, conduct targeted on-site measurements of emissions from oil and gas production activities that may impact the environment and (2) use collected data in atmospheric chemistry and transport models to further understanding of local and regional air quality impacts. Background The development of shale gas and shale oil resources requires horizontal drilling and multi-stage hydraulic fracturing, two processes that have been known for many years but have only recently become common practice. In addition, fugitive atmospheric

122

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Carbon Sequestration Evaluation of the Carbon Sequestration Potential of the Cambro Ordovician Strata of the Illinois and Michigan Basins Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

123

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Filtration to Improve Single Filtration to Improve Single Crystal Casting Yield-Mikro Systems Background Single crystal (SX) nickel superalloys are a primary material choice for gas turbine hot gas path component castings because of their high resistance to deformation at elevated temperatures. However, the casting yields of these components need to be improved in order to reduce costs and encourage more widespread use within the gas turbine industry. Low yields have been associated with a number of process-related defects common to the conventional casting of SX components. One innovative improvement, advanced casting filter designs, has been identified as a potential path toward increasing the yield rates of SX castings for high-temperature gas turbine applications. Mikro Systems, Inc. (Mikro) proposes to increase SX casting yields by developing

124

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Siemens Energy Siemens Energy Background Siemens Energy, along with numerous partners, has an ongoing U.S. Department of Energy (DOE) program to develop hydrogen turbines for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). Siemens Energy is expanding this program for industrial applications such as cement, chemical, steel, and aluminum plants, refineries, manufacturing facilities, etc., under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines for industrial CCS. ARRA industrial technology acceleration,

125

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Design of Advanced Engineering Design of Advanced Hydrogen-Carbon Dioxide Palladium and Palladium/Alloy Composite Membrane Separations and Process Intensification Background Technologies for pre-combustion carbon dioxide (CO2) capture and economical hydrogen (H2) production will contribute to the development of a stable and sustainable U.S. energy sector. The integrated gasification combined cycle (IGCC) system can produce synthesis gas (syngas) that can be used to produce electricity, hydrogen, fuels, and/or chemicals from coal and coal/biomass-mixtures in an environmentally responsible manner. The water-gas shift (WGS) reaction is a key part of this process for production of H2. The application of H2 separation technology can facilitate the production of high-purity H2 from gasification-based systems, as well as allow for process

126

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhancement of SOFC Cathode Electro- Enhancement of SOFC Cathode Electro- chemical Performance Using Multi-Phase Interfaces- University of Wisconsin Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by

127

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Materials Design of Computational Materials Design of Castable SX Ni-based Superalloys for IGT Blade Components-QuesTek Innovations Background Higher inlet gas temperatures in industrial gas turbines (IGTs) enable improved thermal efficiencies, but creep-the tendency of materials to deform gradually under stress-becomes more pronounced with increasing temperature. In order to raise inlet temperatures of IGTs, turbine blade materials are required to have superior creep rupture resistance. Nickel (Ni)-based single crystal (SX) blades have higher creep strength in comparison with directionally solidified blades and are widely used in aerospace engines. However, their use in IGTs, which require larger-size castings (two to three times the size needed in aerospace applications), is limited

128

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maira Reidpath Maira Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Steven S.C. Chuang Principal Investigator The University of Akron Department of Chemical and Biomolecular Engineering 230 E. Buchtel Commons Akron, OH 44325 330-972-6993 schuang@uakron.edu PARTNERS None PROJECT DURATION Start Date End Date 09/01/2009 08/31/2013 COST Total Project Value $1,713,961 DOE/Non-DOE Share $1,370,977/$342,984 AWARD NUMBER Techno-Economic Analysis of Scalable Coal-Based Fuel Cells-University of Akron Background In this congressionally directed project, the University of Akron (UA) will develop a scalable coal fuel cell manufacturing process to a megawatt scale. UA has demonstrated the

129

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Pressure, Temperature Combined Pressure, Temperature Contrast, and Surface-Enhanced Separation of Carbon Dioxide (CO 2 ) for Post-Combustion Carbon Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control tech- nologies and CO 2 compression is focused on advancing technological options for new and existing coal-fired

130

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conductivity, High Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments-University of Connecticut Background Improved turbine materials are needed to withstand higher component surface temperatures and water vapor content for successful development and deployment of integrated gasification combined cycle (IGCC) power plants. Thermal barrier coatings (TBCs) in particular are required to have higher surface temperature capability, lower thermal conductivity, and resistance to attack at high temperature by contaminants such as calcium-magnesium-alumina-silicate (CMAS) and water vapor. There is also a concurrent need to address cost and availability issues associated with rare earth elements used in all low thermal conductivity TBCs.

131

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Uncertainties in Model Reducing Uncertainties in Model Predictions via History Matching of CO2 Migration and Reactive Transport Modeling of CO2 Fate at the Sleipner Project, Norwegian North Sea Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is todevelop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations

132

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Separations Using Micro- Molecular Separations Using Micro- Defect Free Ultra-Thin Films Background Current methods for separating carbon dioxide (CO 2 ) from methane (CH 4 ) in fuel gas streams are energy and cost-intensive. Molecular sieve membrane development for carbon capture has been pursued for several decades because of the potential these membranes have for high selectivity while using less energy than cryogenic separation methods and greater flux (permselectivity) than is possible from polymeric membranes. However, the adoption of molecular sieve membrane technology has been hindered by high production costs and the micro-defect fissures that always accompany this type of membrane when fabricated using conventional techniques. The Department of Energy's (DOE) National Energy Technology Laboratory (NETL), has

133

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of the South Characterization of the South Georgia Rift Basin for Source Proximal CO 2 Storage Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional

134

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Erik Westman Principal Investigator Virginia Polytechnic Institute and State University 100 Holden Hall Blacksburg, VA 24061 540-0231-7510 Fax: 540-231-4070 ewestman@vt.edu PROJECT DURATION Start Date End Date 12/01/2009 12/31/2012 COST Total Project Value $257,818 DOE/Non-DOE Share $248,441 / $9,377 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. P R OJ E C T FAC T

135

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Scale Liquids Production Laboratory Scale Liquids Production and Assessment: Coal and Biomass to Drop-In Fuels Background A major problem with the production of liquid fuels from coal is that the production process and subsequent combustion of the fuel generate excessive greenhouse gases over the entire production and usage lifecycle. Adding lignocellulosic biomass (as a raw feed material) along with coal has the potential to reduce lifecycle greenhouse gas emissions to below those of petroleum products. Altex Technologies Corporation (Altex) has developed an innovative thermo-chemical process capable of converting coal and biomass to transportation fuel ready for blending. The Department of Energy (DOE) National Energy Technology Laboratory (NETL) has partnered with Altex to

136

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Training Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification, and accounting (MVA); geology-related

137

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Technology Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal Investigator California Energy Commission 1516 Ninth Street, MS 43 Sacramento, CA 95814 916-327-1370 mgravely@energy.state.ca.us Elizabeth Burton Technical Director Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90-1116 Berkeley, CA 94720 925-899-6397 eburton@lbl.gov West Coast Regional Carbon

138

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrea Dunn Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602 mgutierr@mines.edu PROJECT DURATION Start Date 12/01/2009 End Date 5/31/2013 COST Total Project Value $297,505 DOE/Non-DOE Share $297,505 / $0 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

139

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency Molten Bed Oxy- Coal Combustion with Low Flue Gas Recirculation Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO 2 ) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO 2 capture. Additionally, the program looks to accomplish this while maintaining near

140

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Characteristics of Gasification Characteristics of Coal/Biomass Mixed Fuels Background Domestically abundant coal is a primary energy source and when mixed with optimum levels of biomass during the production of liquid fuels may have lower carbon footprints compared to petroleum fuel baselines. Coal and biomass mixtures are converted via gasification into synthesis gas (syngas), a mixture of predominantly carbon monoxide and hydrogen, which can be subsequently converted to liquid fuels by Fischer-Tropsch chemistry. The Department of Energy (DOE) is supporting research focused on using coal and biomass to produce clean and affordable power, fuels and chemicals. The DOE's National Energy Technology Laboratory (NETL) is partnering with Leland Stanford Junior

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbonaceous Chemistry for Carbonaceous Chemistry for Computational Modeling (C3M) Description C3M is chemistry management software focused on computational modeling of reacting systems. The primary function of C3M is to provide direct links between r e l i a b l e s o u r c e s o f k i n e t i c information (kinetic modeling soft- ware, databases, and literature) and commonly used CFD software su ch as M FIX , FLUEN T, an d BARRACUDA with minimal effort from the user. C3M also acts as a virtual kinetic laboratory to allow a CFD practitioner or researcher to evaluate complex, large sets of kinetic expressions for reliability and suitability and can interact with spreadsheet and process models. Once the chemical model is built within C3M, the software also allows the user to directly export

142

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Electro-deposited Phase III Xlerator Program: Electro-deposited Mn-Co Alloy Coating for Solid Oxide Fuel Cell Interconnects-Faraday Technology Background Based on preliminary cost analysis estimates, Faraday Technology has shown that its FARADAYIC TM electrodeposition process for coating interconnects is cost competitive. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed toward developing, optimizing, and validating the FARADAYIC process as an effective and economical manufacturing method for coating interconnect materials with a manganese-cobalt (Mn-Co) alloy for use in solid oxide fuel cell (SOFC) stacks. This project is managed by the U.S. Department of Energy (DOE) National Energy

143

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology to Mitigate Syngas Technology to Mitigate Syngas Cooler Fouling Background Coal gasification, in conjunction with integrated gasification combined cycle (IGCC) power production, is under development to increase efficiency and reduce greenhouse gas emissions associated with coal-based power production. However, coal gasification plants have not achieved their full potential for superior performance and economics due to challenges with reliability and availability. In particular, performance of the syngas cooler located downstream of the gasifier has been an issue. The syngas cooler is a fire tube heat exchanger located between the gasifier and the gas turbine. The purpose of the syngas cooler is to cool the raw syngas from the gasifier and recover heat. Although

144

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies to Enable Robust, Studies to Enable Robust, Reliable, Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels-University of Michigan Background The University of Michigan will perform experimental and computational studies which can provide an improved and robust understanding of the reaction kinetics and other fundamental characteristics of combustion of high hydrogen content (HHC) fuels that are vital to advancing HHC turbine design and to making coal gasification power plants environmentally sustainable and cost- competitive. The scope of work includes Rapid Compression Facility (RCF) studies of HHC ignition delay times and hydroxyl radical (OH) time-histories, flame speeds, and flammability limits. A range of temperatures, pressures, and test gas mixture compositions will

145

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maria Reidpath Maria Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Bogdan Gurau Principal Investigator NuVant Systems, Inc. 130 N West Street Crown Point, IN 46307 219-644-3232 b.gurau@nuvant.com PARTNERS None PROJECT DURATION Start Date End Date 08/01/2009 05/31/2013 COST Total Project Value $1,142,481 DOE/Non-DOE Share $913,985 / $228,496 AWARD NUMBER Improved Flow-field Structures for Direct Methanol Fuel Cells-NuVant Systems, Inc. Background In this congressionally directed project, NuVant Systems, Inc. (NuVant) will improve the performance of direct methanol fuel cells (DMFCs) by designing anode flow-fields specifically for the delivery of liquid methanol. The goal is to deliver concentrated

146

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Considerations and Environmental Considerations and Cooling Strategies for Vane Leading Edges in a Syngas Environment- University of North Dakota Background Cooling airfoil leading edges of modern first stage gas turbine vanes presents a con- siderable challenge due to the aggressive heat transfer environment and efficiency penalties related to turbine hot gas path cooling. This environment is made more complex when natural gas is replaced by high hydrogen fuels (HHF) such as synthesis gas (syngas) derived from coal gasification with higher expected levels of impurities. In this project the University of North Dakota (UND) and The Ohio State University (OSU) will explore technology opportunities to improve the reliability of HHF gas turbines by analyzing the effects

147

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Low-Cost Process for Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications-Tennessee Technological University Background One of the material needs for the advancement of integrated gasification combined cycle (IGCC) power plants is the development of low-cost effective manufacturing processes for application of coating architectures with enhanced performance and durability in coal derived synthesis gas (syngas)/hydrogen environments. Thermal spray technologies such as air plasma spray (APS) and high-velocity oxy-fuel (HVOF) are currently used to fabricate thermal barrier coating (TBC) systems for large land- based turbine components. In this research Tennessee Technological University (TTU) will develop metal chromium-aluminum-yttrium (MCrAlY; where M = nickel [Ni], cobalt

148

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-Fueled Pressurized Chemical Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO2 Capture Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while

149

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hafnia-Based Nanostructured Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology- University of Texas at El Paso Background Thermal barrier coatings (TBCs) are protective layers of low thermal conductivity ceramic refractory material that protect gas turbine components from high temperature exposure. TBCs improve efficiency by allowing gas turbine components to operate at higher temperatures and are critical to future advanced coal-based power generation systems. Next generation gas turbine engines must tolerate fuel compositions ranging from natural gas to a broad range of coal-derived synthesis gasses (syngas) with high hydrogen content. This will require TBCs to withstand surface temperatures much higher than those currently experienced by standard materials. In this project the University of Texas at El Paso (UTEP)

150

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Utilization of Coal Syngas in High Direct Utilization of Coal Syngas in High Temperature Fuel Cells-West Virginia University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. West Virginia University's (WVU) project will establish the tolerance limits of contaminant

151

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility in an Underground Mine in the Keweenaw Basalts Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCUS technical and non-technical disciplines that are currently under-represented in the United States. Education and training

152

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

National Risk Assessment Partnership National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a reality in the U.S. at a large scale. From a technical point of view, carbon storage risk analysis is complicated by the fact that all geologic storage sites are not created equally. Every potential site comes with an individual set of characteristics, including type of storage formation, mineral make-

153

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

FACTS FACTS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Joseph Labuz Principal Investigator University of Minnesota 500 Pillsbury Drive SE Room 122 CivE 0851 Minneapolis, MN 55455 612-625-9060 jlabuz@umn.edu PARTNERS None PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,568 DOE/Non-DOE Share $299,568 / $0 PROJECT NUMBER DE-FE0002020 Government funding for this project is provided in whole or in part through the

154

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Development-LG Fuel Model Development-LG Fuel Cell Systems Background In this congressionally directed project, LG Fuel Cell Systems Inc. (LGFCS), formerly known as Rolls-Royce Fuel Cell Systems (US) Inc., is developing a solid oxide fuel cell (SOFC) multi-physics code (MPC) for performance calculations of their fuel cell structure to support product design and development. The MPC is based in the computational fluid dynamics software package STAR-CCM+ (from CD-adapco) which has been enhanced with new models that allow for coupled simulations of fluid flow, porous flow, heat transfer, chemical, electrochemical and current flow processes in SOFCs. Simulations of single cell, five-cell, substrate and bundle models have been successfully validated against experimental data obtained by LGFCS. The MPC is being

155

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Highest- of the Highest- Priority Geologic Formations for CO 2 Storage in Wyoming Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

156

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Factors Influencing Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

157

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reflection Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

158

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Sorbent Technology Dry Sorbent Technology for Pre-Combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Capture Program is the development of carbon capture technologies for power systems. Capturing carbon dioxide (CO 2 ) from mixed-gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and practical CO 2 loading volumes. Current technologies that are effective at separating CO 2 from typical CO 2 -containing gas mixtures, such as coal-derived shifted synthesis gas (syngas), are both capital and energy intensive. Research and development is being conducted to identify technologies that will provide improved economics and

159

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Thermal Gas Turbine Thermal Performance-Ames Laboratory Background Developing turbine technologies to operate on coal-derived synthesis gas (syngas), hydrogen fuels, and oxy-fuels is critical to the development of advanced power gener-ation technologies such as integrated gasification combined cycle and the deployment of near-zero-emission type power plants with capture and separation of carbon dioxide (CO 2 ). Turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's

160

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Turbines Hydrogen Turbines CONTACTS Richard A. Dennis Technology Manager, Turbines National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4515 richard.dennis@netl.doe.gov Travis Shultz Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507-0880 304-285-1370 travis.shultz@netl.doe.gov Jacob A. Mills Principal Investigator Florida Turbine Technologies, Inc 1701 Military Trail Suite 110 Jupiter, FL 33458-7887 561-427-6349 jmills@fttinc.com PARTNERS None PROJECT DURATION Start Date End Date 06/28/2012 08/13/2015 COST Total Project Value $1,149,847 DOE/Non-DOE Share $1,149,847 / $0 AWARD NUMBER SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines-Florida Turbine

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rodosta Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax: 618-453-1056 vmalhotra@physics.siu.edu PARTNERS None Risk Assessment and Monitoring of Stored CO2 in Organic Rock under Non-Equilibrium Conditions Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

162

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Statistical Analysis of CO2 Exposed Wells Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

163

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO2) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and nonprofit organizations. These partnerships are the core of a nationwide network helping to establish the most suitable technologies, regulations, and infrastructure needs for carbon storage. The partnerships include more than 400 distinct organizations, spanning 43 states

164

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations and Investigations and Rational Design of Durable High- Performance SOFC Cathodes- Georgia Institute of Technology Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration of solid SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Cathode durability is critical to long-term SOFC performance for commercial deployment.

165

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Carriers for Coal-Fueled Oxygen Carriers for Coal-Fueled Chemical Looping Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

166

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Supercritical Carbon Dioxide Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-combustion in Conjunction with Cryogenic Compression Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near

167

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PO Box 880 PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Charles D. Gorecki Technical Contact Senior Research Manager Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5279 esteadman@undeerc.org John A. Harju Associate Director for Research Energy & Environmental Research Center University of North Dakota

168

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological & Environmental Sciences Geological & Environmental Sciences Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at NETL study subsurface systems in order to better characterize and understand gas-fluid-rock and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging tools and techniques. As a result, NETL's Experimental Laboratory encompasses multi-functional, state-of-the-art facilities that perform a wide spectrum of geological studies providing an experimental basis for modeling of various subsurface phenomena and processes. This includes, but is not

169

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Durability of Turbine Components through Trenched Film Cooling and Contoured Endwalls-University of Texas at Austin Background Gas turbine operation utilizing coal-derived high hydrogen fuels (synthesis gas, or syngas) requires new cooling configurations for turbine components. The use of syngas is likely to lead to degraded cooling performance resulting from rougher surfaces and partial blockage of film cooling holes. In this project the University of Texas at Austin (UT) in cooperation with The Pennsylvania State University (Penn State) will investigate the development of new film cooling and endwall cooling designs for maximum performance when subjected to high levels of contaminant depositions. This project was competitively selected under the University Turbine Systems Research

170

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Background Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions including high temperatures (1,200-1,600 degrees Celsius [°C]), high pressures (up to 1000 pounds per square inch gauge [psig]), chemical corrosiveness, and high flow rates, all of which lead to corrosion, erosion, embrittlement, and cracking of gasifier components as well as sensor failure. Temperature measurement is a critical gasifier control parameter because temperature is a critical factor influencing the gasification and it leads to impacts in efficiency and

171

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unraveling the Role of Transport, Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode Oxygen Reduction Reaction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The electrochemical performance of SOFCs can be substantially influenced by

172

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Swirl Injectors for Hydrogen Gas Low-Swirl Injectors for Hydrogen Gas Turbines in Near-Zero Emissions Coal Power Plants-Lawrence Berkeley National Laboratory Background The U.S. Department of Energy Hy(DOE) Lawrence Berkeley National Laboratory (LBNL) is leading a project in partnership with gas turbine manufacturers and universities to develop a robust ultra-low emission combustor for gas turbines that burn high hydrogen content (HHC) fuels derived from gasification of coal. A high efficiency and ultra-low emissions HHC fueled gas turbine is a key component of a near-zero emis- sions integrated gasification combined cycle (IGCC) clean coal power plant. This project is managed by the DOE National Energy Technology Laboratory (NETL). NETL is researching advanced turbine technology with the goal of producing reliable,

173

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of a Coal-Based Demonstration of a Coal-Based Transport Gasifier Background Coal is an abundant and indigenous energy resource and currently supplies almost 38 percent of the United States' electric power. Demand for electricity, vital to the nation's economy and global competitiveness, is projected to increase by almost 28 percent by 2040. The continued use of coal is essential for providing an energy supply that supports sustainable economic growth. Unfortunately, nearly half of the nation's electric power generating infrastructure is more than 30 years old and in need of substantial refurbishment or replacement. Additional capacity must also be put in service to keep pace with the nation's ever-growing demand for electricity. It is in the public interest

174

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Foamed Wellbore Cement Foamed Wellbore Cement Stability under Deep Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into regions with high-stress environments, for example, isolating problem formations typical in the Gulf of Mexico. In addition to its light-weight application, foamed cement has a unique resistance to temperature and pressure-induced stresses. Foamed cement exhibits superior fluid

175

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Computational Design and Scale Computational Design and Synthesis of Protective Smart Coatings for Refractory Metal Alloys Background The goal of the University Coal Research (UCR) Program within the Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to further the understanding of coal utilization. Since the program's inception in 1979, its primary objectives have been to (1) improve understanding of the chemical and physical processes involved in the conversion and utilization of coal so it can be used in an environmentally acceptable manner, (2) maintain and upgrade the coal research capabilities of and facilities at U.S. colleges and universities, and (3) support the education of students in the area of coal science. The National Energy Technology Laboratory's Office of Coal and Power Systems supports

176

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of CO2 in Commercial Conversion of CO2 in Commercial Materials using Carbon Feedstocks Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

177

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental and Chemical Kinetics Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels- Pennsylvania State University Background Pennsylvania State University is teaming with Princeton University to enhance scientific understanding of the underlying factors affecting combustion for turbines in integrated gasification combined cycle (IGCC) plants operating on synthesis gas (syngas). The team is using this knowledge to develop detailed, validated combustion kinetics models that are useful to support the design and future research and development needed to transition to fuel flexible operations, including high hydrogen content (HHC) fuels derived from coal syngas, the product of gasification of coal. This project also funda- mentally seeks to resolve previously reported discrepancies between published ex-

178

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Coating Issues in Coal-Derived Synthesis Coating Issues in Coal-Derived Synthesis Gas/Hydrogen-Fired Turbines-Oak Ridge National Laboratory Background The Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) is leading research on the reliable operation of gas turbines when fired with synthesis gas (syngas) and hydrogen-enriched fuel gases with respect to firing temperature and fuel impurity levels (water vapor, sulfur, and condensable species). Because syngas is derived from coal, it contains more carbon and more impurities than natural gas. In order to achieve the desired efficiency, syngas-fired systems need to operate at very high temperatures but under combustion conditions necessary to reduce nitrogen oxide (NO X ) emissions. ORNL's current project is focused on understanding the performance of high-

179

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Processes Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the

180

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation and Testing of Corrosion- Preparation and Testing of Corrosion- and Spallation-Resistant Coatings- University of North Dakota Background The life of turbine components is a significant issue in gas fired turbine power systems. In this project the University of North Dakota (UND) will advance the maturity of a process capable of bonding oxide-dispersion strengthened alloy coatings onto nickel-based superalloy turbine parts. This will substantially improve the lifetimes and maximum use temperatures of parts with and without thermal barrier coatings (TBCs). This project is laboratory research and development and will be performed by UND at their Energy & Environmental Research Center (EERC) facility and the Department of Mechanical Engineering. Some thermal cycle testing will occur at Siemens Energy

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Assessment Model for Predicting Integrated Assessment Model for Predicting Potential Risks to Groundwater and Surface Water Associated with Shale Gas Development Background The EPAct Subtitle J, Section 999A-999H established a research and development (R&D) program for ultra-deepwater and unconventional natural gas and other petroleum resources. This legislation identified three program elements to be administered by a consortium under contract to the U.S. Department of Energy. Complementary research performed by the National Energy Technology Laboratory's (NETL) Office of Research and Development (ORD) is a fourth program element of this cost-shared program. NETL was also tasked with managing the consortium: Research Partnership to Secure Energy for America (RPSEA). Historically, the Complementary R&D Program being carried out by NETL's ORD has focused

182

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Enabling Spar-Shell Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines - Florida Turbine Technologies Background The Florida Turbine Technologies (FTT) spar-shell gas turbine airfoil concept has an internal structural support (the spar) and an external covering (the shell). This concept allows the thermal-mechanical and aerodynamic requirements of the airfoil design to be considered separately, thereby enabling the overall design to be optimized for the harsh environment these parts are exposed to during operation. Such optimization is one of the major advantages of the spar-shell approach that is not possible with today's conventional monolithic turbine components. The proposed design integrates a novel cooling approach based on Advanced Recircu-

183

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory - Los Alamos National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization and Pre-Combustion Capture Goals Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing greenhouse gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS) - the capture of CO 2 from large point sources and subsequent injection into deep geologic formations for permanent storage - is one option that is receiving considerable attention. NETL is devoted to improving geologic carbon sequestration technology by funding research projects aimed at removing barriers to commercial-scale

184

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials for Robust Repair Materials for Robust Repair of Leaky Wellbores in CO2 Storage Formations Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

185

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-fired Pressurized Fluidized Bed Oxy-fired Pressurized Fluidized Bed Combustor Development and Scale-up for New and Retrofit Coal-fired Power Plants Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy-combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to

186

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantification Quantification of Wellbore Leakage Risk Using Non-Destructive Borehole Logging Techniques Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

187

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Sequestration Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the skills required for implementing and deploying CCS technologies.

188

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

R& R& D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

189

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf of Mexico Miocene CO Gulf of Mexico Miocene CO 2 Site Characterization Mega Transect Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional storage types are porous permeable clastic or carbonate rocks that have

190

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

General Electric General Electric Background GE Power & Water, along with GE Global Research Center, has an ongoing U.S. Depart- ment of Energy (DOE) program to develop gas turbine technology for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). GE is broadening this development effort, along with expanding applicability to industrial applications such as refineries and steel mills under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines with industrial CCS. ARRA industrial technology acceleration,

191

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore National Laboratory Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO 2 by injecting and permanently storing it in underground geologic formations. NETL is working to advance geologic carbon sequestration technology by funding research projects that aim to accelerate deployment and remove barriers to commercial-scale carbon sequestration. Lawrence Livermore National Laboratory

192

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbo Machinery Oxy-Fuel Turbo Machinery Development for Energy Intensive Industrial Applications-Clean Energy Systems Background Clean Energy Systems (CES), with support from Siemens Energy and Florida Turbine Technologies (FTT), has an ongoing U.S. Department of Energy (DOE) program to develop an oxy-fuel combustor for highly efficient near zero emission power plants. CES is expanding this development for an industrial-scale, oxy-fuel reheat combustor- equipped intermediate-pressure oxy-fuel turbine (IP-OFT) under the American Recovery and Reinvestment Act (ARRA). Through the design, analysis, and testing of a modified Siemens SGT-900 gas turbine, the team will demonstrate a simple-cycle oxy-fuel system. ARRA funding is accelerating advancement in OFT technology for

193

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Passive Wireless Acoustic Wave Sensors Passive Wireless Acoustic Wave Sensors for Monitoring CO 2 Emissions for Geological Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

194

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria for Flame- Criteria for Flame- holding Tendencies within Premixer Passages for High Hydrogen Content Fuels-University of California, Irvine Background The gas turbine community must develop low emissions systems while increasing overall efficiency for a widening source of fuels. In this work, the University of California, Irvine (UCI) will acquire the fundamental knowledge and understanding to facilitate the development of robust, reliable, and low emissions combustion systems with expanded high hydrogen content (HHC) fuel flexibility. Specifically, understanding flashback and the subsequent flameholding tendencies associated with geometric features found within combustor fuel/air premixers will enable the development of design guides to estimate flame holding tendencies for lean, premixed emission combustion systems

195

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Space Geodesy, Seismology, Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO2, with a high level of confidence that the CO2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

196

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Analytical Simulation Tool for Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

197

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive Transport Models with Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

198

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Prototype Commercial a Prototype Commercial Gasifier Sensor Background Integrated gasification combined cycle (IGCC) technology has the potential to improve the efficiency and environmental performance of fossil fuel based electric power production. During the IGCC process, coal and/or biomass is gasified at high temperature and pressure to form synthesis gas (syngas), a mixture of hydrogen, carbon monoxide, carbon dioxide, and small amounts of contaminants such as hydrogen sulfide. The syngas can be used to produce power, chemicals, and/or fuels. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Gasification Technologies Program is focused on enhancing the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of

199

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Rapid Phase III Xlerator Program: Rapid Commercialization of Advanced Turbine Blades for IGCC Power Plants-Mikro Systems Background Mikro Systems, Inc. is developing their proprietary TOMO SM manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that are beyond current manufacturing state-of-the-art, thus enabling higher operating temperatures. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed towards accelerating commercial adoption of TOMO SM technology by leading turbine manufacturers through the demonstration of superior manufacturability, cost, and performance. Ultimately, this technology will lead to improved efficiency

200

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma for Fossil Energy Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic properties related to fossil energy conversion and carbon dioxide decomposition. Non-thermal plasma is an ionized gas comprised of a mixture of charged particles (electrons, ions), active chemical radicals (O 3 , O, OH), and highly excited species that are known to accelerate reforming reactions in

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJEC PROJEC T FAC TS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Gordon Bierwagen Principal Investigator North Dakota State University P.O. Box 6050 Department 2760 Fargo, ND 58108-6050 701-231-8294 gordon.bierwagen@ndsu.edu PARTNERS None PROJECT DURATION Start Date 12/01/2009 End Date 11/30/2011 COST Total Project Value $298,949 DOE/Non-DOE Share $298,949 / $0 PROJECT NUMBER DE-FE0002054 Government funding for this project is provided in whole or in part through the

202

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Toward Advanced 3-D Seismic Training Toward Advanced 3-D Seismic Methods for CO 2 Monitoring, Verification, and Accounting Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effective- ness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely af fecting energy use or hindering economic grow th. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

203

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cathode Surface Chemistry and Cathode Surface Chemistry and Optimization Studies-Carnegie Mellon University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Carnegie Mellon University's (CMU) project was selected to acquire the fundamental knowledge and understanding that will facilitate research and development to enhance

204

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Jose Castillo Principal Investigator San Diego State University 5500 Campanile Drive San Diego, CA 92122 619-594-7205 castillo@myth.sdsu.edu PARTNERS Sienna Geodynamics and Consulting, Inc. PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,993 DOE/Non-DOE Share $299,993 / $0 PROJECT NUMBER DE-FE0002069 Government funding for this project is provided in whole or in part through the

205

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Coal-Biomass to Liquids a Coal-Biomass to Liquids Plant in Southern West Virginia Background Concerns regarding global supplies of oil, energy security, and climate change have generated renewed interest in alternative energy sources. The production of liquid fuels from coal provides an option for reducing petroleum use in the U.S. transportation sector and enhancing national and economic security by decreasing the nation's reliance on foreign oil. Two basic methods can be employed to produce liquid fuels

206

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Creep-Fatigue-Environment Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. One goal of the AR Materials Program is to conduct research leading to a scientific understanding of high-performance materials capable of service in the hostile environments associated with advanced ultrasupercritical (A-USC) coal-fired power plants. A-USC plants will increase coal-fired power plant efficiency by allowing operation

207

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL's Fluid Chemistry Analysis NETL's Fluid Chemistry Analysis Capacity Background Establishing the geochemistry of surface and ground waters requires an arsenal of techniques devoted to determining the constituents these waters contain and the environment in which they exist. Many standard techniques have been developed over the years, and new ones continue to be explored as more complex matrices and harsher environments are encountered. Deep geologic storage of carbon dioxide and the development of unconventional oil and gas resourses are two areas of current concern where the study of geochemical processes is challenging due to the complex nature of the natural samples, and where routine analytical techniques are being pushed to their limits. The facilities at NETL include both conventional and cutting-edge instrumentation

208

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

29,759 29,759 PROJECT NUMBER FWP-2012.03.03 Task 3 Conversion and Fouling Background Coal and biomass gasification is an approach to cleaner power generation and other uses of these resources. Currently, the service life of gasifiers does not meet the performance needs of users. Gasifiers fail to achieve on-line availability of 85-95 percent in utility applications and 95 percent in applications such as chemical production. The inability to meet these goals has created a potential roadblock to widespread acceptance and commercialization of advanced gasification technologies. Gasifier output is a hot gas mixture consisting primarily of hydrogen and carbon monoxide (CO), known as synthesis gas (syngas). The syngas cooler is one of the key components identified as negatively impacting gasifier availability. Ash originating from impurities

209

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact Eye-safe Scanning Differential Compact Eye-safe Scanning Differential Absorption LIDAR (DIAL) for Spatial Mapping of Carbon Dioxide for MVA at Geologic Carbon Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that

210

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy California Project Hydrogen Energy California Project Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Clean Coal Power Initiative (CCPI) Round 3 program, the U.S. Department of Energy (DOE) is providing financial assistance, including funding under the American Recovery and Reinvestment Act (ARRA) of 2009, to industry to demonstrate the commercial viability of technologies that will capture CO

211

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of CO Simulation of CO 2 Leakage and Caprock Remediation Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing carbon credit trading markets

212

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Membrane Contactors for Pressure Membrane Contactors for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for new and existing coal- fired power plants in the event of carbon constraints. Post-combustion separation and capture of CO

213

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACTS Joseph Stoffa Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-0285 joseph.stoffa@netl.doe.gov Xingbo Liu Principal Investigator Dept. MechanaWest Virginia University P.O. Box 6106 Morgantown, WV 26506-6106 304-293-3339 xingbo.liu@mail.wvu.edu Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7515 shailesh.vora@netl.doe.gov PARTNERS None PROJECT DURATION Start Date End Date 08/31/2012 09/30/2015 COST Total Project Value $634,839 DOE/Non-DOE Share $499,953 / $134,886 AWARD NUMBER FE0009675 Fundamental Understanding of Oxygen Reduction and Reaction Behavior and Developing High Performance and Stable

214

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Shizhong Yang Shizhong Yang Principal Investigator Department of computer science/LoNI southern University and a&M college Baton rouge, Louisiana 70813 225-771-2060 shizhong_yang@subr.edu PROJECT DURATION Start Date End Date 06/01/2012 05/31/2015 COST Total Project Value $200,000 DOE/Non-DOE Share $200,000 / $0 Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study Background Ferritic oxide dispersion strengthened (oDs) steel alloys show promise for use at higher temperatures than conventional alloys due to their high-temperature oxidation resistance and dislocation creep properties. the development of oDs alloys with nanoscale powders of transition metal oxides (yttrium and chromium) dispersed in

215

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Power Initiative (CCPI 3) Clean Coal Power Initiative (CCPI 3) NRG Energy: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Background Additional development and demonstration is needed to improve the cost and efficiency of carbon management technologies that capture and store carbon dioxide (CO 2 ) that would otherwise be emitted from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. The U.S. Department of Energy (DOE) is providing financial assistance through the Clean Coal Power Initiative (CCPI) Round 3, which includes funding from the American Recovery and Reinvestment Act (ARRA), to demonstrate the commercial viability

216

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiocarbon as a Reactive Tracer for Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

217

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Degradation of TBC Systems in Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems- University of Pittsburgh Background The conditions inside integrated gasification combined cycle (IGCC) systems, such as high steam levels from hydrogen firing, high carbon dioxide steam mixtures in oxy- fired systems, and different types of contaminants, introduce complexities associated with thermal barrier coating (TBC) durability that are currently unresolved. In this work the University of Pittsburgh will team with Praxair Surface Technologies (PST) to deter- mine the degradation mechanisms of current state-of-the-art TBCs in environments consisting of deposits and gas mixtures that are representative of gas turbines using coal-derived synthesis gas (syngas).

218

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Alloys for High-Temperature Low-Cost Alloys for High-Temperature SOFC Systems Components - QuesTek Innovations Background One of the key opportunities for cost reduction in a solid oxide fuel cell (SOFC) system is the set of balance of plant (BOP) components supporting the fuel cell itself, including the heat exchanger and air/fuel piping. These represent about half of the overall cost of the system. A major enabling technological breakthrough is to replace incumbent nickel-based superalloys in high-temperature BOP components with low-cost ferritic stainless steel. However, the ferritic alloys are unsuitable for SOFC application without additional coatings due to the inherent volatile nature of the alloy's chromium oxide (Cr2O3) element, which tends to poison the fuel cell's cathode

219

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwestern United States Carbon Southwestern United States Carbon Sequestration Training Center Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification,

220

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Beneficial Use of CO2 in Precast Beneficial Use of CO2 in Precast Concrete Products Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Barrier Coatings for Thermal Barrier Coatings for Operation in High Hydrogen Content Fueled Gas Turbines-Stony Brook University Background Traditional thermal barrier coatings (TBCs) based on yttria-stabilized zirconia (YSZ) will likely not be suitable in gas turbines used in integrated gasification combined cycle (IGCC) power plants. This is due to higher operating temperatures that will not only affect phase stability and sintering but will accelerate corrosive degradation phenomena. Coatings provide a framework to combat degradation issues and provide performance improvements needed for higher temperature environments. The Center for Thermal Spray Research (CTSR) at Stony Brook University, in partnership with its industrial Consortium for Thermal Spray Technology, is investigating science and

222

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling for IGCC Turbine Cooling for IGCC Turbine Blades-Mikro Systems Background Turbine blade and vane survivability at higher operating temperatures is the key to improving turbine engine performance for integrated gasification combined cycle (IGCC) power plants. Innovative cooling approaches are a critical enabling technology to meet this need. Mikro Systems, Inc. is applying their patented Tomo-Lithographic Molding (TOMO) manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that go beyond the current manufacturing state-of-the-art to enable higher operating temperatures. This project addresses two important aspects. First is the need to increase the quality and reliability of the core manufacturing process capability to

223

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Dynamics in Multi-Nozzle Combustion Dynamics in Multi-Nozzle Combustors Operating on High- Hydrogen Fuels-Pennsylvania State University Background Combustion dynamics is a major technical challenge to the development of efficient, low emission gas turbines. Current information is limited to single-nozzle combustors operating on natural gas and neglects combustors with configurations expected to meet operability requirements using a range of gaseous fuels such as coal derived synthesis gas (syngas). In this project, Pennsylvania State University (Penn State) in collaboration with Georgia Institute of Technology (Georgia Tech) will use multiple-nozzle research facilities to recreate flow conditions in an actual gas turbine to study complicated interactions between flames that can aggravate the combustion dynamics in syngas-

224

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Texas Clean Energy, LLC: Texas Summit Texas Clean Energy, LLC: Texas Clean Energy Project: Pre-Combustion CO 2 Capture and Sequestration Background A need exists to further develop carbon management technologies that capture and store, or beneficially reuse, carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer the potential to significantly reduce CO 2 emissions and mitigate the anthropogenic contribution to global climate change, while substantially reducing or minimizing the economic impacts of the solution. Under Round 3 of the Clean Coal Power Initiative (CCPI), the U.S. Department of Energy (DOE) is providing up to $450 million in co-funded financial assistance to industry,

225

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Solar-Based Catalytic Efficiency Solar-Based Catalytic Structure for CO2 Reforming Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

226

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-WRI Cooperative Research and DOE-WRI Cooperative Research and Development Program for Fossil Energy- Related Resources Background Our nation's demand for cleaner and more efficient fossil energy production will increase during the coming decades, necessitating the development of new energy technologies to achieve energy independence in an environmentally responsible manner. The University of Wyoming (UW) Research Corporation's Western Research Institute (WRI) has been supporting the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) and its mission of developing fossil energy and related environmental technologies for over two decades. Federal funding for these research efforts has usually been provided through congressionally mandated cooperative agreements, with cost share

227

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unconventional Resources Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005, the National Energy Technology Laboratory is charged with developing a complementary research program supportive of improving safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology

228

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Staged, High-Pressure Oxy-Combustion Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available CO2 capture and storage significantly reduces efficiency of the power cycle. The aim of the ACS program is to develop advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near zero emissions of other flue gas pollutants.

229

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cells Operating on Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels- Pennsylvania State University Background In this congressionally directed project, the Earth and Mineral Science (EMS) Energy Institute at Pennsylvania State University (PSU) focuses on the development of fuel processors, reforming catalysts, and chemical sorbents to support the production of electricity from anaerobic digester gas (ADG) and ultra-low sulfur diesel (ULSD) via solid-oxide fuel cells (SOFCs). PSU will use the fuel processors, reforming catalysts, and chemical sorbents developed under this work to transform and clean ADG and ULSD into a syngas stream suitable as a feedstock for SOFCs. This project is managed by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), whose mission is to advance energy options to fuel

230

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Cathode Enhancement Solid Oxide Fuel Cell Cathode Enhancement Through a Vacuum-assisted Infiltration- Materials and Systems Research, Inc. Background Solid oxide fuel cell (SOFC) technology promises to provide an efficient method to generate electricity from coal-derived synthesis gas (syngas), biofuels, and natural gas. The typical SOFC composite cathode (current source) possesses excellent performance characteristics but is subject to chemical stability issues at elevated temperatures both during manufacturing and power generation. Costs attributed to the cathode and its long-term stability issues are a current limitation of SOFC technologies. These must be addressed before commercial SOFC power generation can be realized. Materials and Systems Research, Inc. (MSRI) will develop a vacuum-assisted infiltration

231

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of the Durability of Doped Study of the Durability of Doped Lanthanum Manganite and Cobaltite Based Cathode Materials under "Real World" Air Exposure Atmospheres- University of Connecticut Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO

232

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Briggs White Briggs White Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-5437 briggs.white@netl.doe.gov Jeff Stevenson Principal Investigator Pacific Northwest National Laboratory P.O. Box 999, MS K2-44 Richland, WA 99352 509-372-4697 jeff.stevenson@pnl.com PARTNERS Oak Ridge National Laboratory University of Connecticut PROJECT DURATION Start Date End Date 10/01/1999 09/30/2013 (annual continuations) COST Total Project Value $52,889,667 DOE/Non-DOE Share $52,889,667 / $0 AWARD NUMBER FWP40552 PR OJ E C T FAC T S Fuel Cells Low Cost Modular SOFC Development- Pacific Northwest National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security,

233

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Karen Kluger Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6667 karen.kluger@netl.doe.gov Gary Mavko Principal Investigator Stanford University 397 Panama Mall Stanford, CA 94305-2215 650-723-9438 Fax: 650-723-1188 mavko@stanford.edu PROJECT DURATION Start Date 12/01/2009 End Date 06/30/2013 COST Total Project Value $385,276 DOE/Non-DOE Share $295,777/ $89,499 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Rock Physics of Geologic Carbon Sequestration/Storage

234

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Comprehensive Monitoring Techniques to Verify the Integrity of Geological Storage Reservoirs Containing Carbon Dioxide Background Research aimed at monitoring the long-term storage stability and integrity of carbon dioxide (CO2) stored in geologic formations is one of the most pressing areas of need if geological storage is to become a significant factor in meeting the United States' stated objectives to reduce greenhouse gas emissions. The most promising geologic formations under consideration for CO2 storage are active and depleted oil and gas formations, brine formations, and deep, unmineable coal seams. Unfortunately, the long-term CO2 storage capabilities of these formations are not yet well understood. Primary Project Goal The goal of this effort is to develop

235

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies for Monitoring Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic

236

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring and Numerical Modeling of Monitoring and Numerical Modeling of Shallow CO 2 Injection, Greene County, Missouri Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the

237

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Tagging Carbon Dioxide to Enable Tagging Carbon Dioxide to Enable Quantitative Inventories of Geological Carbon Storage Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

238

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoporous, Metal Carbide, Surface Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations Background Both coal and biomass are readily available in the U.S. and can be thermally processed to produce hydrogen and/or power. The produced hydrogen can be sent directly to a fuel cell or hydrogen turbines for efficient and environmentally clean power generation. More efficient hydrogen production processes need to be developed before coal and biomass can become economically viable sources of hydrogen. To meet this need, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is partnering with the Colorado School of Mines and Pall Corporation to develop nanoporous metal carbide surface diffusion membranes for use in high temperature

239

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation on Flame Characteristics Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently underrepresented in the United States. Education and training activities

240

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Object Optimization Approaches Object Optimization Approaches for the Design of Carbon Geological Sequestration Systems Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Control Sensors and Control CONTACTS Ben Chorpening Sensors & Controls Technical Team Coordinator 304-285-4673 benjamin.chorpening@netl.doe.gov Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Michael Buric Co-Principal Investigator 304-285-2052 michael.buric@netl.doe.gov Raman Gas Composition Sensor System for Natural Gas and Syngas Applications Goal The goal of this project is to develop and test a Raman laser spectroscopy system for responsive gas composition monitoring, and to transfer the technology to industry for commercial implementation. The instrument provides state-of-the-art improvement of reduced size and increased sensitivity and sample rate to facilitate the process control

242

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Joining of Advanced Joining of Advanced High-Temperature Materials Background To remain economically competitive, the coal-fired power generation industry needs to increase system efficiency, improve component and system reliability, and meet ever tightening environmental standards. In particular, cost-effective improvements in thermal efficiency are particularly attractive because they offer two potential benefits: (1) lower variable operating cost via increased fuel utilization (fuel costs represent over 70 percent of the variable operating cost of a fossil fuel-fired power plant) and (2) an economical means of reducing carbon dioxide (CO2) and other emissions. To achieve meaningful gains, steam pressure and temperature must be increased to

243

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin-Scale Leakage Risks from Geologic Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

244

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

R R &D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

245

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface-Modified Electrodes: Enhancing Surface-Modified Electrodes: Enhancing Performance Guided by In-Situ Spectroscopy and Microscopy- Stanford University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by mass and

246

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Eddy Simulation Modeling of Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines using a Hierarchical Validation Approach- University of Texas at Austin Background The focus of this project is the development of advanced large eddy simulation (LES)-based combustion modeling tools that can be used to design low emissions combustors burning high hydrogen content fuels. The University of Texas at Austin (UT) will develop models for two key topics: (1) flame stabilization, lift- off, and blowout when fuel-containing jets are introduced into a crossflow at high pressure, and (2) flashback dynamics of lean premixed flames with detailed description of flame propagation in turbulent core and near-wall flows. The jet- in-crossflow (JICF) configuration is widely used for rapid mixing of reactants

247

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Efficient Regeneration of Physical and Chemical Solvents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

248

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Scale CO2 Injection and Commercial Scale CO2 Injection and Optimization of Storage Capacity in the Southeastern United States Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

249

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbine Thermal Management-NETL-RUA Turbine Thermal Management-NETL-RUA Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is researching advanced turbine technology with the goal of producing reliable, affordable, and environmentally friendly electric power in response to the nation's increasing energy challenges. With the Hydrogen Turbine Program, NETL is leading the research, development, and demonstration of technologies to achieve power production from high-hydrogen-content fuels derived from coal that is clean, efficient, and cost-effective, and minimizes carbon dioxide (CO 2 ) emissions, and will help maintain the nation's leadership in the export of gas turbine equipment. The NETL Regional University Alliance (RUA) is an applied research collaboration that

250

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoping Studies to Evaluate the Benefits Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low Rank Coal in Integrated Gasification Combined Cycle Background Gasification of coal or other solid feedstocks (biomass, petroleum coke, etc.) produces synthesis gas (syngas), which can be cleaned and used to produce electricity and a variety of commercial products that support the U.S. economy, decrease U.S. dependence on oil imports, and meet current and future environmental emission standards. The major challenge is cost, which needs to be reduced to make integrated gasification combined cycle (IGCC) technology competitive. An IGCC plant combines a combustion turbine operating on a gasified fuel stream--syngas--with a steam turbine to capture what would otherwise be waste heat. Currently, the estimated cost of power from IGCC is higher than

251

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reliability and Durability of Materials Reliability and Durability of Materials and Components for SOFCs - Oak Ridge National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Oak Ridge National Laboratory's (ORNL) project was selected to acquire the fundamental

252

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

SOFC Protection Coatings Based on a SOFC Protection Coatings Based on a Cost-Effective Aluminization Process- NexTech Materials Background To make solid oxide fuel cell (SOFC) systems easier to manufacture and reduce costs, less expensive stainless steels have been substituted into the stack design as alternatives to ceramic interconnects. Stainless has also been substituted for high-cost, nickel-based superalloys in balance of plant (BOP) components. For successful implementation of these steels, protective coatings are necessary to protect the air-facing metal surfaces from high-temperature corrosion/oxidation and chromium (Cr) volatilization. NexTech Materials Ltd. (NexTech) will develop an aluminide diffusion coating as a low- cost alternative to conventional aluminization processes and evaluate the ability of the

253

To appear: Proceedings of the 28 IEEE Photovoltaic Specialists Conference, Anchorage, September 19-22, 2000  

E-Print Network (OSTI)

To appear: Proceedings of the 28 th IEEE Photovoltaic Specialists Conference, Anchorage, September the n/i and p/i interfaces. Measured with 20 kHz, 1.6 Vpp modulation. #12;To appear: Proceedings of the 28 th IEEE Photovoltaic Specialists Conference, Anchorage, September 19-22, 2000 Manuscript Page 2

Schiff, Eric A.

254

The history of the anchorage at Serce Liman, Turkey  

E-Print Network (OSTI)

, the shore resumes its normal hill profile. The recess ends in a ridge, extending underwater several tens of meters toward the center of the bay; this ridge figured largely in the survey. Beyond the ridge, the shoreline curves back convexly to the dog...-leg. It was in this section that the slope floor was sur- veyed extending from the. ridge into the harbor for 56 meters. That this area was used as an anchorage in antiquity is testified by the number of anchors recovered: Figure 2. Serge Liman harbor. a stone anchor, a...

Slane, Dorothy Anne

1982-01-01T23:59:59.000Z

255

E-Print Network 3.0 - anchorages Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Ecology 15 LIFE SCIENCES SEMINAR Kevin McCracken Summary: Field Station for research. Joe Margraf, 98-916, to Anchorage to attend the 135th Annual Meeting... of the American...

256

Scale-up of suspension and anchorage-dependent animal cells  

Science Journals Connector (OSTI)

Alternative culture processes for laboratory scale-up (to 20 L) are described for both suspension and anchorage-dependent cells. Systems range from simple multiple culture units such as the roller bottle, thro...

Bryan Griffiths

2001-01-01T23:59:59.000Z

257

Matlab assignment 5  

E-Print Network (OSTI)

Matlab assignment 5. Read section 11 of Matlab for Math 303. Consider the heat equation with boundary condition. ?. ??. ?? uxx = ut u(x,0) = x u(0,t) = u(40,t)=...

2010-06-17T23:59:59.000Z

258

Intergovernmental Personnel Act Assignments  

Directives, Delegations, and Requirements

This Manual implements provisions of the Intergovernmental Personnel Act (IPA) within the Department of Energy (DOE) and establishes requirements, responsibilities, and authority for effecting assignments under the Act. Does not cancel other directives.

2000-08-24T23:59:59.000Z

259

Homework Help for Exam 1 Assignments  

E-Print Network (OSTI)

WebAssign Homework Hints: Lessons 1 ? 14. Lesson 1 assignment: - On every problem in every assignment, be aware that WebAssign is case sensitive; if a.

Devlin, Patrick M

2014-08-15T23:59:59.000Z

260

Homework Help for Exam 1 Assignments  

E-Print Network (OSTI)

WebAssign Homework Hints: Lessons 1 ? 8. Lesson 1 assignment: - On every problem in every assignment, be aware that WebAssign is case sensitive; if a.

Devlin, Patrick M

2014-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Assignment: Greedy Algorithms Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

E-Print Network (OSTI)

Algorithms Assignment: Greedy Algorithms Name to finding the largest set of jobs that can be scheduled on one machine. · Ordering by a non-decreasing order, there are inputs for which this greedy algorithm produces a solution whose profit is almost 1/n of the optimal

Bar-Noy, Amotz

262

Induction of Anchorage-independent Growth in Human Fibroblasts by Propane Sultone  

Science Journals Connector (OSTI)

...Anchorage-independent Growth in Human Fibroblasts by Propane Sultone 1 1 Supported in part by Department...growth after treatment with the carcinogen propane sultone, followed by exponential growth...Exposure to these same concentrations of propane sultone also resulted in a dose-dependent...

K. Charles Silinskas; Suzanne A. Kateley; John E. Tower; Veronica M. Maher; J. Justin McCormick

1981-05-01T23:59:59.000Z

263

Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000  

E-Print Network (OSTI)

Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

Sites, James R.

264

Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per...  

Annual Energy Outlook 2012 (EIA)

Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Russia (Dollars per Thousand Cubic Feet) Decade...

265

MATLAB: Introduction Part 1 Assignment  

E-Print Network (OSTI)

MATLAB: Introduction Part 1 ­ Assignment Bruno Abreu Calfa Assigned: September 8th , 2011 Due Calculate the value of the function y(x) = |x| sin x2 for values of x = 3 and 6 . Hint 1: Use the MATLAB

Grossmann, Ignacio E.

266

Welcome to WebAssign!  

E-Print Network (OSTI)

Welcome to WebAssign! #12;How to Self-Enroll in WebAssign #12;Enter and Submit the Class Key #12;Verify Class Informa@on #12;· If you have used Web to WebAssign, follow the instruc@ons on Create A New Account, Enter New Account

Larson, Craig E.

267

User_CatalogItemAssign  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Self-Assign Items Self-Assign Items © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Self-Assign Items Purpose The purpose of this job aid is to guide users through the step-by-step process of using the catalog to locate and assign items to their To-Do List. Each task demonstrates a different method of searching the catalog. Task A. Locate and Self-Assign Items Using Simple Catalog Search Navigate to the Catalog search box above Easy Links. Enter keywords to search for in the item's title and description. Click the Search icon ( ). 2 1 3 Locate and Self-Assign Items Using Simple Catalog Search - 4 Steps Task A Locate and Self-Assign Items Using Advance Catalog Search - 7 Steps Task B

268

Preparing for Project Implementation Assigning Accountability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assigning Accountability for Each Project, April 14, 2010 Preparing for Project Implementation Assigning Accountability for Each Project, April 14, 2010 Assigning Accountability...

269

AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK Energy Efficiency and Conservation Block Grant Program Location: Tribe AK-TRIBE-NATIVE VILLAGE OF NAPAKIAK AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Native Village of Napakiak proposes to renovate/retrofit two buildings (Health Clinic and Community Center [former Transportation Building]) to become more energy efficient. Energy efficiency retrofits would include improvements to lighting systems, supplemental loads, air distribution systems, and/or heating and cooling systems, insulation, and windows/doors. Conditions: None Categorical Exclusion(s) Applied: B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

270

Unclassified Foreign Visits and Assignments  

Directives, Delegations, and Requirements

To define a program for unclassified foreign national access to Department of Energy sites, information, and technologies. This Order cancels DOE P 142.1, Unclassified Foreign Visits and Assignments, dated 7-14-99; DOE N 142.1, Unclassified Foreign Visits and Assignments, dated 7-14-99; Secretarial Memorandum Unclassified Foreign Visits and Assignments, dated 7-14-99; Memorandum from Francis S. Blake, Departmental Use of Foreign Access Central Tracking System, dated 11-05-01; Memorandum from Kyle E. McSlarrow, Interim Guidance for Implementation of the Department's Unclassified Foreign Visits and Assignments Program, dated 12-17-02; and Secretarial Memorandum, Policy Exclusion for Unclassified Foreign National's Access to Department of Energy Facilities in Urgent or Emergency Medical Situations, dated 4-10-01. Cancels: DOE P 142.1 and DOE N 142.1

2004-06-18T23:59:59.000Z

271

Program Assignments | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Procurement Services » Program Assignments Services » Procurement Services » Program Assignments Program Assignments Office of Headquarters Procurement Services (MA-64) Program Assignments Office of Headquarters Procurement Services (MA-64) Mark C. Brady, Director, 287-1389 Patricia Davies, Acting Deputy Director, 586-8975 CORPORATE SERVICES OFFICE - Barry Ross, Director, MA-64.1, 287-5484 Competition Advocate Contracting Activity Task/Delivery Order Ombudsman Policy Flashes Independent Review Craig Ashline - 287-1412 Acquisition Planning Coordinator Balanced Scorecard Program Officer Federal Manager's Financial Integrity Act Action Officer Foreign Ownership, Control or Influence Point-of-Contact Inspector General/Government Accountability Office Liaison Freedom of Information Act (FOIA) Officer Deborah Black - 287-1416

272

Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador  

E-Print Network (OSTI)

in tropical forests in Ecuador. Increasing altitude was accompanied by higher wind speeds and more shallow anchorage in soils with low bulk density and in environments with high wind speeds. Abbreviations: AR m. At 3000 m, 48% of the trees were inclined, lying or even partly uprooted. At this altitude, all

Lehmann, Johannes

273

HW Help for Assignments after Exam 3  

E-Print Network (OSTI)

WebAssign Homework Hints: Lessons 34 ? 40. Lesson 34 assignment: - On problem #1, verify that each graph represents a function (passes the vertical line

Devlin, Patrick M

2014-08-15T23:59:59.000Z

274

Homework Help for Exam 3 Assignments  

E-Print Network (OSTI)

WebAssign Homework Hints: Lessons 23 ? 33. Lesson 23 assignment: - On problem #1, the graph of the function given at the beginning of the problem is used...

Devlin, Patrick M

2014-08-15T23:59:59.000Z

275

Foreign Visits & Assignments Guidelines | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Visits and Assignments Request Form, as well as the Ames Laboratory Specific Security Plan Form. Form 473 Foreign Visits and Assignments Request Form Specific Security Plan...

276

User_Sup_AssignDelegate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an Alternate Supervisor (Supervisor) an Alternate Supervisor (Supervisor) © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Assigning an Alternate Supervisor (Supervisor) Purpose The purpose of this job aid is to guide you through the step-by-step process of managing alternate supervisors within SuccessFactors Learning. When employees work for an extended period on a project where they report to a different manager or supervisor, you may want to transfer responsibility for completing the primary supervisor's tasks, for example, a performance review or competency assessment, to an alternate supervisor. The Manage Alternate Supervisors function allows you to identify other users as alternate supervisors and assign primary responsibility to them. After you assign a user as an alternate supervisor, the system

277

M. Bahrami ENSC 388 Assignment # 4 1 Assignment #4  

E-Print Network (OSTI)

for utilizing the combustion products combines a heat-recovery steam generator with a turbine. At steady state surfaces of the steam generator and turbine can be ignored, as can the changes in kinetic and potential of operation annually. Steam Generator 2 5 Turbine Power out 1 3 4 #12;M. Bahrami ENSC 388 Assignment # 4 3

Bahrami, Majid

278

3211 Providence Drive, Gordon Hartlieb Hall, Room 111, Anchorage, AK 99508 P: 907.786.6475 | F: 907.786.6474 | www.uaa.alaska.edu/transportation  

E-Print Network (OSTI)

or higher wages. The UAA grant program will also provide North Slope Training Cooperative instruction completing this cohort will also receive North Slope Training Cooperative Safety instruction. Course Number to Work in the Oil & Gas Industry Grant Pays Student Tuition & Fees A group of 12 students

Pantaleone, Jim

279

The U.S. Department of Energy Office of Indian Energy Policy and Programs, Anchorage, Alaska, Roundtable Summary  

SciTech Connect

The Anchorage, Alaska Roundtable on Tribal Energy Policy convened at 10:00 a.m., Thursday April 15th, at the downtown Anchorage Hilton. The meeting was held by the Department of Energy (DOE) Office of Indian Energy Policy and Programs (Office of Indian Energy). Tracey LeBeau, Director of the Office of Indian Energy, and Pilar Thomas, Deputy Director?Policy of the Office of Indian Energy, represented DOE. Approximately twenty?seven people attended the meeting, including representatives of three native Alaskan villages, four Alaskan tribal corporations representing more than 40 tribal governments, as well as representatives from tribal associations and conferences. Interested state, federal, and non?profit representatives also were present. A full list of attendees is at the end of this summary. The meeting was facilitated by the Udall Foundations U.S. Institute for Environmental Conflict Resolution (U.S. Institute).

none,

2011-04-14T23:59:59.000Z

280

GA CLASSROOM ASSIGNMENT PROCEDURES POST-PUBLICATION REASONS YOU MAY WANT TO CHANGE A CLASSROOM ASSIGNMENT  

E-Print Network (OSTI)

GA CLASSROOM ASSIGNMENT PROCEDURES POST-PUBLICATION REASONS YOU MAY WANT TO CHANGE A CLASSROOM for disabled instructor and/or students PROCEDURES FOR GENERAL ASSIGNMENT CLASSROOM ASSIGNMENTS Requests

Wisconsin at Madison, University of

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

RAPID/Roadmap/6-AK-a | Open Energy Information  

Open Energy Info (EERE)

About Bulk Transmission Geothermal Solar Tools Contribute Contact Us 6-AK-a Transportation Permit 06AKATransportationOversizeOverweight.pdf Click to View Fullscreen Permit...

282

RAPID/Roadmap/14-AK-a | Open Energy Information  

Open Energy Info (EERE)

RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Resources Contribute Contact Us 14-AK-a Nonpoint Source...

283

Homework Help for Exam 2 Assignments  

E-Print Network (OSTI)

WebAssign Homework Hints: Lessons 15 ? 22. Lesson 15 assignment: - Inequality signs are available in the calcPad under Relations. o To make the calcPad...

Devlin, Patrick M

2014-08-15T23:59:59.000Z

284

User_Sup_AssignDelegate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delegates (Supervisor) Delegates (Supervisor) © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Assigning Delegates (Supervisor) Purpose The purpose of this job aid is to guide you through the step-by-step process of using the delegate feature within SuccessFactors Learning. A delegate is another user who you identify to act on the work that you need to complete in the user interface. When you identify a user as a delegate through the Delegates area in your Options and Settings screen, the system adds that user's name to the Delegators list. Typically, you identify a user as a delegate when you want the user to perform some of your tasks. You can use the Delegates area to add or edit the permissions for a delegate, which you might want to do, for example, if you plan to take an

285

National Strategy for the Arctic Region Stakeholder Outreach...  

Office of Environmental Management (EM)

Outreach Meeting: Anchorage October 24, 2014 10:00AM to 12:00PM AKDT Anchorage, Alaska U.S. Fish and Wild Service Office, Gordon Watson Room 1011 E. Tudor Rd. Anchorage, AK 9950...

286

Unclassified Foreign National Visits & Assignments Questionnaire |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Calibration Facilities » Unclassified Foreign National Services » Calibration Facilities » Unclassified Foreign National Visits & Assignments Questionnaire Unclassified Foreign National Visits & Assignments Questionnaire Visitors who are foreign nationals must complete and submit the Unclassified Foreign National Visits & Assignments Questionnaire 30 days before accessing facilities. Unclassified Foreign National Visits.doc Description Unclassified Foreign National Visits & Assignments Questionnaire More Documents & Publications NEUP Foreign Travel Request Form FAQS Qualification Card - Safeguards and Security General Technical Base FAQS Qualification Card - Safeguards and Security Calibration Facilities Ecosystem Management Team Environmental Justice Environmental Management System Long-Term Surveillance - Operations and Maintenance

287

Policy for Dropped/Excused Assignments  

E-Print Network (OSTI)

Policy for Dropped and Excused Quizzes/Homework. QUIZZES/HOMEWORK. On average, students can expect about 1 quiz and 3 homework assignments per

Devlin, Patrick M

2014-08-18T23:59:59.000Z

288

Preparing for Project Implementation Assigning Accountability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Project Implementation Assigning Accountability for Each Project Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference...

289

UMD WebAssign -General Information Logging into the WebAssign system  

E-Print Network (OSTI)

UMD WebAssign - General Information · Logging into the WebAssign system o If you registered for the course later than the day before classes started you will not yet be enrolled in the course on Web

Johnson, Raymond L.

290

Assignment of Orthologous Genes via Genome Rearrangement  

E-Print Network (OSTI)

Assignment of Orthologous Genes via Genome Rearrangement Xin Chen, Jie Zheng, Zheng Fu, Peng Nan of genomes is a fundamental and challenging problem in comparative genomics. Existing methods that assign sequence similarity and evolutionary events at a genome level, where orthologous genes are assumed

Lonardi, Stefano

291

Solving Multiagent Assignment Markov Decision Scott Proper  

E-Print Network (OSTI)

681 Solving Multiagent Assignment Markov Decision Processes Scott Proper Oregon State University]. On the Cite as: Solving Multiagent Assignment Markov Decision Processes, Scott Proper and Prasad Tadepalli, Sierra and Castelfranchi (eds.), May, 10­15, 2009, Bu- dapest, Hungary, pp. XXX-XXX. Copyright c 2009

292

Ak-Chin Electric Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Ak-Chin Electric Utility Authority Ak-Chin Electric Utility Authority Jump to: navigation, search Name Ak-Chin Electric Utility Authority Place Arizona Utility Id 25866 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1010/kWh Commercial: $0.0815/kWh Industrial: $0.0550/kWh The following table contains monthly sales and revenue data for Ak-Chin Electric Utility Authority (Arizona).

293

Building Energy Software Tools Directory: AkWarm  

NLE Websites -- All DOE Office Websites (Extended Search)

AkWarm AkWarm AkWarm logo. Innovative, user-friendly, Windows-based software for home energy modeling. AkWarm is designed for weatherization assessment and the EPA Energy Star Home energy rating program. Features include: Graphical display of energy use by building component, improvement options analysis, design heat load, calculates CO2 emissions, and shows code compliance. Utility, weather data, and other libraries are maintained in a database library for easy updating. A separate database is available to archive all input and output data for detailed analysis of housing types, trends, amd energy use. Keywords home energy rating systems, home energy, residential modeling, weatherization Validation/Testing N/A Expertise Required Basic understanding of building construction, with a minimal level of

294

RAPID/Roadmap/1-AK-a | Open Energy Information  

Open Energy Info (EERE)

Under AS 38.04.060, the DNR is required to prepare and maintain current statewide inventory of all state land and water for resources and other values. 1-AK-a.4 - Prepare...

295

RAPID/Roadmap/20-AK-a | Open Energy Information  

Open Energy Info (EERE)

operations will commence so that a representative of the commission can witness the operations. (20 AAC 25.112(h)). 20-AK-a.4 - Conduct Plugging or Abandonment Operation...

296

RAPID/Roadmap/19-AK-b | Open Energy Information  

Open Energy Info (EERE)

9-AK-b Temporary Use of Water Permit 19AKBTemporaryUseOfWaterPermit.pdf Click to View Fullscreen Permit Overview In Alaska, water is declared a public resource belonging to the...

297

AK-TRIBE-CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AK-TRIBE-CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS AK-TRIBE-CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS Location: Tribe AK-TRIBE- CENTRAL COUNCIL OF TLINGIT AND HAIDA INDIANS AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Central Council of the Tlingit and Haida Indian Tribes of Alaska propose to conduct energy audits of tribally owned facilities. Specific retrofit activities will be determined based on the results of the audits, and these retrofit activities will be submitted for appropriate NEPA review. Conditions: None Categorical Exclusion(s) Applied: A9, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21 This action would not: threaten a violation of applicable statutory, regulatory, or permit requirements for environment, safety, and health,

298

Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Dollars per Thousand Cubic Feet) Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

299

Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

300

Role of Valence State and Solubility of Chromium Compounds on Induction of Cytotoxicity, Mutagenesis, and Anchorage Independence in Diploid Human Fibroblasts  

Science Journals Connector (OSTI)

...were counted with a dissecting micro scope. Induction of Anchorage...not directly determine the oxidation state of the ultrapure chromium...Fig. 1). In addition, oxidation of chromium(III) to chromium...soluble chromium(VI) compounds arc mutagenic in human cells...

Kim A. Biedermann and Joseph R. Landolph

1990-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

3-D Tracking of Shoes for Virtual Mirror Applications Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Anchorage, Alaska, June 2008.  

E-Print Network (OSTI)

and Pattern Recognition, Anchorage, Alaska, June 2008. P. Eisert, P. Fechteler, J. Rurainsky Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institute Einsteinufer 37, D-10587 Berlin, Germany peter.eisert@hhi.fraunhofer in two stores, one at the Champs Elys´ees, Paris, the other in Lille, France. At their innovation center

Eisert, Peter

302

Quantitation of the Rate of Spontaneous Generation and Carcinogen-induced Frequency of Anchorage-independent Variants of Rat Tracheal Epithelial Cells in Culture  

Science Journals Connector (OSTI)

...alepithelial; EGV, enhanced growth variant; CFE, colony-forming efficiency; MNNG, N-methyl-W...equation M No. of colonies observed in agarose CFE in agarose of cells from isolated colonies...optimize conditions to obtain the maximum CFE and colony size of anchorage-independent...

David G. Thomassen; Paul Nettesheim; Thomas E. Gray; J. Carl Barrett

1985-04-01T23:59:59.000Z

303

Enhanced Induction of the Anchorage-independent Phenotype in Initiated Rat Tracheal Epithelial Cell Cultures by the Tumor Promoter 12-O-Tetradecanoylphorbol-13-acetate  

Science Journals Connector (OSTI)

...carioylphorbol-13-acetate; FBS, fe tal bovine serum; CFE, colony-forming efficiency; DMSO, dimethyl...exposure media was 0.2%. Cell Number and CFE Measurement. At Day 40, all cultures were...anchorage- independent growth by measuring CFE in soft agarose by a modified MacPherson...

Vernon E. Steele; Diane K. Beeman; Paul Nettesheim

1984-11-01T23:59:59.000Z

304

"1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220 "3. North Pole","Petroleum","Golden Valley Elec Assn Inc",144 "4. Bradley Lake","Hydroelectric","Homer Electric Assn Inc",126 "5. Anchorage 1","Gas","Anchorage Municipal Light and Power",88 "6. Snettisham","Hydroelectric","Alaska Electric Light&Power Co",78 "7. Bernice Lake","Gas","Chugach Electric Assn Inc",62 "8. Lemon Creek","Petroleum","Alaska Electric Light&Power Co",58

305

JOBAID-SELF ASSIGNING COURSES (ITEMS)  

Energy.gov (U.S. Department of Energy (DOE))

In this jobaid you will learn to use the Course Catalog, Browse Catalog, Recommended Items, Locate and Self-Assign Items (Courses) Using the Search Catalog features, Narrow Course Searches using...

306

Handbook on Overseas Assignments | Department of Energy  

Office of Environmental Management (EM)

DOE HANDBOOK ON OVERSEAS ASSIGNMENTS Responsible Contacts Bruce Murray HR Policy Advisor E-mail bruce.murray@hq.doe.gov Phone 202-586-3372 More Documents & Publications DOE F...

307

Frugal Sensor Assignment Matthew P. Johnson1  

E-Print Network (OSTI)

Frugal Sensor Assignment Matthew P. Johnson1 Hosam Rowaihy2 Diego Pizzocaro3 Amotz Bar-Noy1 Stuart many simultaneous missions. While the current user #12;2 Johnson, Rowaihy, Pizzocaro, Bar-Noy, Chalmers

Preece, Alun

308

Unclassified Foreign National Visits & Assignments Questionnaire  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unclassified Foreign National Visits & Assignments Questionnaire Unclassified Foreign National Visits & Assignments Questionnaire |Welcome to U.S. Department of Energy Office of Legacy Management! We are looking forward to your visit or assignment with us. In order to comply with our security requirements and ensure that your time with the Department of Energy goes smoothly we need to obtain some information from you prior to your arrival. Please take a few minutes to provide the information requested below for each member of your party that is not a U.S. citizen and then return the form(s) to your host. Please be sure to comply with the deadlines your host has communicated to you for returning this form.| |Part 1: Completed by Visitor Please complete all questions below, as applicable. | |1.|Given (first) name (exactly as it appears on passport)| |

309

Help:Assigning permissions | Open Energy Information  

Open Energy Info (EERE)

Assigning permissions Assigning permissions Jump to: navigation, search "Assigning permissions" means granting users extra rights within the wiki software (or revoking these rights). This is done by going to the Special:UserRights page, and adding users into a "group" which has specific rights. The first thing to note however, is that this action requires special permissions itself! Tools.png Tip for wiki admins: See Manual:User rights and Manual:User rights management for information on fine grained permissions tweaks, and how to define new groups, or adjust existing groups to give different rights. Note that this help page describes the default MediaWiki configuration, but every aspect of permissions is highly customisable with server config settings. You may wish to rewrite this help page to reflect your wiki configuration

310

AK-TRIBE-ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title AK-TRIBE-ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC Location: Tribe AK-TRIBE- ASSOCIATION OF VILLAGE COUNCIL PRESIDENTS, INC AK American Recovery and Reinvestment Act: Proposed Action or Project Description: The Association of Village Council Presidents, Inc., (AVCP) proposes to renovate a steel-constructed building, built circa 1990 (First Avenue Building, US Survey 1002 Parcel 1, Lot 1), located in Bethel, Alaska, to an office building. Proposed building retrofits would include installation of an (EPA certified) wood-fired central boiler, a conventional (household size) energy efficient oil-fired boiler, a heat distribution

311

Contractor's Assignment of Refunds, Rebates, Credits, and  

E-Print Network (OSTI)

Contractor's Assignment of Refunds, Rebates, Credits, and Other Amounts National Aeronautics OF AMERICA(hereinafter called the Government)all right, title, and interest to all refunds, rebates, credits action may be necessary to effect prompt collection of all refunds, rebates, credits and other amounts

Myers, Lawrence C.

312

DEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT  

E-Print Network (OSTI)

of the response of travelers to real-time pre- trip information. The demand simulator is an extension of dynamicDEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT Constantinos Antoniou, Moshe Ben-Akiva, Michel Bierlaire, and Rabi Mishalani Massachusetts Institute of Technology, Cambridge, MA 02139 Abstract

Bierlaire, Michel

313

Paper Number (Assigned by IFPE Staff)  

E-Print Network (OSTI)

Paper Number (Assigned by IFPE Staff) Compressed Air Energy Storage for Offshore Wind Turbines pumped hydro, compressed air energy storage, a variety of battery chemistries, capacitors, flywheels of this paper, compressed air energy storage, is highly scalable, reasonably inexpensive, provides moderate ramp

Li, Perry Y.

314

assignments processes and if-then-else  

E-Print Network (OSTI)

not sequential execution! Vector Assignments -- Binary Coded Decimal to Excess 3 converter -- xs3 bcd + 3 circuits » circuits are inherently parallel with many things going on at once Binary Coded Decimal to Excess-3 Code W=A+BC+BD X=B'C+B'D+BC'D' Y=CD+C'D' Z=D' -- Binary Coded Decimal to Excess 3 converter

Chamberlain, Roger

315

GIS and Geospatial applications Assignment 7  

E-Print Network (OSTI)

GIS and Geospatial applications Assignment 7 Point Pattern Analysis By: Leigh Stuemke Presented to: Dr. I-Kuai Hung In Partial Fulfillment of the requirements for GIS 553 STEPHEN F. AUSTIN STATE Analysis allows GIS users to infer spatial relationships among their datasets using both visual

Hung, I-Kuai

316

KRNFYSIK AK FKF011 Nuclear Physics, Basic Course  

E-Print Network (OSTI)

K?RNFYSIK AK FKF011 Nuclear Physics, Basic Course Poäng: 3.0 Betygskala: TH Obligatorisk för: F3 Valfri för: E4 Kursansvarig: Docent Per Kristiansson, per.kristiansson@nuclear.lu.se Förkunskapskrav

317

KRNFYSIK AK FKF 011 Nuclear Physics, Basic Course  

E-Print Network (OSTI)

K?RNFYSIK AK FKF 011 Nuclear Physics, Basic Course Antal poäng: 3.0. Obligatorisk för: F3. Valfri för: E4. Kursansvarig: Docent Per Kristiansson, per.kristiansson@nuclear.lu.se Förkunskapskrav

318

Ak-Chin Indian Community Biomass Feasiiblity Study  

SciTech Connect

Study of the conversion of chicken litter to biogas for the production of energy. There was an additional requirement that after extracting the energy from the chicken litter the nutrient value of the raw chicken litter had to be returned to the Ak-Chin Farms for use as fertilizer in a form and delivery method acceptable to the Farm.

Mark A. Moser, RCM Digesters, Inc.; Mark Randall, Daystar Consulting, LLC; Leonard S. Gold, Ak-Chin Energy Services & Utility Strategies Consulting Group

2005-12-31T23:59:59.000Z

319

Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Japan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,856 1,908 1,915 1,913 1,915...

320

Microsoft Word - CLP_Credit_Assignment_Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learning Points Credit Assignments Learning Points Credit Assignments CLP Opportunity Description* Unit = DOE CLP Units TRAINING/EDUCATION Attendance at academic courses at an accredited college or university 1 credit hour = 10 Audited academic courses at an accredited college or university 1 semester credit = 5 Instructing at an accredited college or university 1 semester credit = 10 Online training geared toward continuous learning and planned as part of individual's professional development. Online training must be supported by a record of completion 1 training hour = 1 Audit a course in your certification program and provide feedback. This must be approved by the Professional Development Division 1 course = 5 PROFESSIONAL ACTIVITIES Attendance at educational portions of technical

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Unclassified Foreign Visits and Assignments Program  

Directives, Delegations, and Requirements

The order defines a program for unclassified foreign national access to Department of Energy sites, information, and technologies. The page change streamlines the HQs Management Panel review process to include reviews by HSS, IN, and a representative of the cognizant under secretary for access requests involving foreign nationals. Cancels Secretarial Memorandum, Unclassified Foreign Visits and Assignments, dated 7-14-99; Memorandum from Francis S. Blake, Departmental Use of Foreign Access Central Tracking System, dated 11-05-01; Memorandum from Kyle E. McSlarrow, Interim Guidance for Implementation of the Department's Unclassified Foreign Visits and Assignments Program, dated 12-17-02; and Secretarial Memorandum, Policy Exclusion for Unclassified Foreign National's Access to Department of Energy Facilities in Urgent or Emergency Medical Situations, dated 4-10-01. Cancels: DOE P 142.1 and DOE N 142.1

2004-06-18T23:59:59.000Z

322

Optimization of Storage Location Assignment for Fixed Rack Systems  

Science Journals Connector (OSTI)

A multi-objective mathematical model and an improved Genetic Algorithm (GA) are formulated for storage location assignment of the fixed rack system. According to the assignment rules, ... efficiency and to keep t...

Qinghong Wu; Ying Zhang; Zongmin Ma

2010-01-01T23:59:59.000Z

323

Exact and Heuristic Methods for the Weapon Target Assignment Problem  

E-Print Network (OSTI)

The Weapon Target Assignment (WTA) problem is a fundamental problem arising in defense-related applications of operations research. This problem consists of optimally assigning n weapons to m targets so ...

Ahuja, Ravindra

2004-12-10T23:59:59.000Z

324

Exact and Heuristic Methods for the Weapon Target Assignment Problem  

E-Print Network (OSTI)

The Weapon Target Assignment (WTA) problem is a fundamental problem arising in defense-related applications of operations research. This problem consists of optimally assigning n weapons to m targets so that the total ...

Ahuja, Ravindra K.

2004-04-02T23:59:59.000Z

325

Alpha Proton Detection Based Backbone Assignment of Intrinsically Disordered Proteins  

Science Journals Connector (OSTI)

Assignment of NMR resonance frequencies to a particular atom in the molecule establishes a vital step for any detailed structural study. Approaches for sequential assignment typically involve amide proton detecti...

Perttu Permi; Maarit Hellman

2012-01-01T23:59:59.000Z

326

An Approach for Optimal Goal Position Assignment in Vehicle Formations  

Science Journals Connector (OSTI)

In this paper one methodology to solve the goal position assignment (GPA) problem is developed, this is, to assign the corresponding goal position (desired position) for a group of vehicles, knowing the initial positions and the established formation ... Keywords: Assignment, Optimization, Quad-rotor, Vehicle formations

Luis Garca-Delgado; R. Gmez-Fuentes; A. Garca-Jurez; A. L. Leal-Cruz; D. Berman-Mendoza; A. Vera-Marquina; A. G. Rojas-Hernndez

2014-01-01T23:59:59.000Z

327

Dynamic Traffic Assignment Incorporating Commuters Trip Chaining Behavior  

E-Print Network (OSTI)

DYNAMIC TRAFFIC ASSIGNMENT INCORPORATING COMMUTERS TRIP CHAINING BEHAVIOR A Thesis by WEN WANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 2011 Major Subject: Civil Engineering Dynamic Traffic Assignment Incorporating Commuters Trip Chaining Behavior Copyright 2011 Wen Wang DYNAMIC TRAFFIC ASSIGNMENT...

Wang, Wen

2012-10-19T23:59:59.000Z

328

Assign Ad Hoc Reviewer Step-By-Step Procedure  

E-Print Network (OSTI)

Proposal Management Reviewer Assign Ad Hoc Reviewer Step-By-Step Procedure Last updated: 12/19/2013 1 of 2 http://eresearch.umich.edu Assign an Ad Hoc Reviewer Based on the information provided as a Reviewer. Anyone who has an account in the system can be added as an Ad Hoc Reviewer. Who Can Assign Ad Hoc

Shyy, Wei

329

File:INL-geothermal-ak.pdf | Open Energy Information  

Open Energy Info (EERE)

ak.pdf ak.pdf Jump to: navigation, search File File history File usage Alaska Geothermal Resources Size of this preview: 697 × 599 pixels. Other resolution: 698 × 600 pixels. Full resolution ‎(5,418 × 4,660 pixels, file size: 2.26 MB, MIME type: application/pdf) Description Alaska Geothermal Resources Sources Idaho National Laboratory Authors Patrick Laney; Julie Brizzee Related Technologies Geothermal Creation Date 2003-11-01 Extent State Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:21, 16 December 2010 Thumbnail for version as of 12:21, 16 December 2010 5,418 × 4,660 (2.26 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

330

Recovery Act: Waste Energy Project at AK Steel Corporation Middletown  

SciTech Connect

In 2008, Air Products and Chemicals, Inc. (Air Products) began development of a project to beneficially utilize waste blast furnace topgas generated in the course of the iron-making process at AK Steel Corporations Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

Joyce, Jeffrey

2012-06-30T23:59:59.000Z

331

WebAssign Student Guide WebAssign Essentials Guide is published by Advanced Instructional Systems, Inc.  

E-Print Network (OSTI)

WebAssign Student Guide June 2009 #12;WebAssign Essentials Guide is published by Advanced in the United States of America. 06.02.2009 WebAssign® is a registered service mark of North Carolina State with a specific textbook have been used with the permission of the publisher who owns the copyright. Order the Web

Finotti, Luís Renato Abib

332

A Bayesian approach to simultaneously quantify assignments and linguistic uncertainty  

SciTech Connect

Subject matter expert assessments can include both assignment and linguistic uncertainty. This paper examines assessments containing linguistic uncertainty associated with a qualitative description of a specific state of interest and the assignment uncertainty associated with assigning a qualitative value to that state. A Bayesian approach is examined to simultaneously quantify both assignment and linguistic uncertainty in the posterior probability. The approach is applied to a simplified damage assessment model involving both assignment and linguistic uncertainty. The utility of the approach and the conditions under which the approach is feasible are examined and identified.

Chavez, Gregory M [Los Alamos National Laboratory; Booker, Jane M [BOOKER SCIENTIFIC FREDERICKSBURG; Ross, Timothy J [UNM

2010-10-07T23:59:59.000Z

333

Glossary of Intellectual Property related terminology Assigned Duty of Employment (or Assigned Duty)  

E-Print Network (OSTI)

) Duty(ies) or activity(ies), within an employee's Scope of Employment, that an employer assigns research agreement. that is patentable, copyrightable, a trade secret, or otherwise protectable efforts to protect or to commercialize these Inventions back to that funding agency. The Act also reserves

Salama, Khaled

334

GRR/Section 6-AK-a - Transportation | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 6-AK-a - Transportation GRR/Section 6-AK-a - Transportation < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-AK-a - Transportation 06AKATransportationOversizeOverweight.pdf Click to View Fullscreen Contact Agencies Alaska Department of Transportation and Public Facilities Regulations & Policies 17 AAC 25: Operations, Wheeled Vehicles Triggers None specified Click "Edit With Form" above to add content 06AKATransportationOversizeOverweight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 6-AK-a.1 to 6-AK-a.2 - Does the Load Exceed the Size or Weight Regulations for State Highway Transportation Established by 17 AAC 25?

335

SWAMC Economic Summit | Department of Energy  

Office of Environmental Management (EM)

SWAMC Economic Summit SWAMC Economic Summit March 4, 2015 6:00AM AKST to March 6, 2015 3:00PM AKST Anchorage, Alaska Hotel Captain Cook 939 West 5th Avenue Anchorage, AK 99501 The...

336

On Computation of Performance Bounds of Optimal Index Assignment  

E-Print Network (OSTI)

On Computation of Performance Bounds of. Optimal Index Assignment. Xiaolin Wu. Department of Electrical and Computer Engineering. McMaster University...

2010-01-20T23:59:59.000Z

337

Linear Sum Assignment Algorithms for Distributed Multi-robot Systems  

E-Print Network (OSTI)

Multi-robot task assignment (allocation) involves assigning robots to tasks in order to optimize the entire teams performances. Until now, one of the most useful non-domain-specific ways to coordinate multi-robot systems is through task allocation...

Liu, Lantao

2013-04-30T23:59:59.000Z

338

POLE ASSIGNMENT FOR A VIBRATING SYSTEM WITH AERODYNAMIC EFFECT #  

E-Print Network (OSTI)

POLE ASSIGNMENT FOR A VIBRATING SYSTEM WITH AERODYNAMIC EFFECT # J. N. WANG + , S. H. CHOU # , Y. C­input state feedback control arising from a one­dimensional vibrating system with aerodynamic e real axis. Key words. vibrating system, aerodynamic e#ect, state feedback control, pole assignment AMS

Chou, So-Hsiang

339

POLE ASSIGNMENT FOR A VIBRATING SYSTEM WITH AERODYNAMIC EFFECT  

E-Print Network (OSTI)

POLE ASSIGNMENT FOR A VIBRATING SYSTEM WITH AERODYNAMIC EFFECT J. N. WANG, S. H. CHOU, Y. C. CHEN feedback control arising from a one-dimensional vibrating system with aerodynamic effect. On the practical real axis. Key words. vibrating system, aerodynamic effect, state feedback control, pole assignment AMS

Lin, Wen-Wei

340

Learning to Rank and Quadratic Assignment Thomas Mensink  

E-Print Network (OSTI)

Learning to Rank and Quadratic Assignment Thomas Mensink TVPA - XRCE & LEAR - INRIA Grenoble NICTA Sydney, Australia Abstract In this paper we show that the optimization of several ranking of quadratic assignment problems. Both the task of test-time predic- tion of the best ranking and the task

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Robust door assignment in less-than-truckload terminals  

Science Journals Connector (OSTI)

The assignment of incoming trailers to strip doors is one of the critical decisions that affect the performance of cross docking operations in less-than-truckload terminals. This paper introduces a mixed integer quadratic model with the objective of ... Keywords: Cross docking, Door assignment, Less-than-truckload, Transportation, Uncertainty

Korhan Acar; Ali Yalcin; Daniel Yankov

2012-12-01T23:59:59.000Z

342

Channel assignment using block design in wireless mesh networks  

Science Journals Connector (OSTI)

With the advantages of both wireless LAN and ad hoc, wireless mesh network (WMN) has its characteristic performance in the following aspects: capacity, speed and coverability. In order to solve channel assignment problems in WMN, connectivity of the ... Keywords: Channel assignment, Connectivity, Interference, Routing, Wireless mesh network

Hejiao Huang; Xiaolu Cao; Xiaohua Jia; Xiaolong Wang

2009-05-01T23:59:59.000Z

343

GRR/Section 3-AK-c - Encroachment Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-AK-c - Encroachment Permit GRR/Section 3-AK-c - Encroachment Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-c - Encroachment Permit 03AKCEncroachmentOverview.pdf Click to View Fullscreen Contact Agencies Alaska Department of Transportation and Public Facilities Regulations & Policies 17 AAC 10.011: Encroachments Authorized 17 AAC 10.012: Approval Requirements 17 AAC 15.011: Utility Permits Triggers None specified Click "Edit With Form" above to add content 03AKCEncroachmentOverview.pdf 03AKCEncroachmentOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 3-AK-c.1 - Will the Developer Construct a Utility Within ADOT ROW or

344

Some courses use both Blackboard and WebAssign. Your instructor linked the WebAssign and Blackboard courses so you can access WebAssign directly from Blackboard. Once the instructor  

E-Print Network (OSTI)

LOG IN Some courses use both Blackboard and WebAssign. Your instructor linked the WebAssign and Blackboard courses so you can access WebAssign directly from Blackboard. Once the instructor syncs the Blackboard class roster, you are automatically enrolled in the WebAssign course

Stanislavova, Milena

345

Electricity Suppliers' Service Area Assignments (Indiana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Suppliers' Service Area Assignments (Indiana) Electricity Suppliers&#039; Service Area Assignments (Indiana) Electricity Suppliers' Service Area Assignments (Indiana) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Siting and Permitting Provider Utility Regulatory Commission To promote efficiency and avoid waste and duplication, rural and

346

Management Alert - Extended Assignments at Princeton Plasma Physics Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extended Assignments at Princeton Extended Assignments at Princeton Plasma Physics Laboratory DOE/IG-0864 May 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 May 17, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Management Alert on "Extended Assignments at Princeton Plasma Physics Laboratory" BACKGROUND Princeton University operates the Princeton Plasma Physics Laboratory (Princeton) under a contract with the Department of Energy's Office of Science. Princeton works with partners around the world to develop fusion as an energy source. The Laboratory's annual operating costs

347

Linear assignment maps for correlated system-environment states  

SciTech Connect

Assignment maps are mathematical operators that describe initial system-environment states for open quantum systems. We re-examine the notion of assignments that account for correlations between the system and the environment and show that these maps can be made linear at the expense of giving up positivity or consistency of the map. We study the role of positivity and consistency of the map and show the effects of relaxing these. Finally, we establish a connection between the violation of the positivity of linear assignments and the no-broadcasting theorem.

Rodriguez-Rosario, Cesar A.; Aspuru-Guzik, Alan [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts (United States); Modi, Kavan [Centre for Quantum Technologies, National University of Singapore (Singapore)

2010-01-15T23:59:59.000Z

348

Results from ORNL characterization of ZrO2-500-AK2 - surrogate TRISO material  

SciTech Connect

This document is a compilation of the characterization data for the TRISO-coated surrogate particles designated ZrO2-500-AK2 that was produced at Oak Ridge National Laboratory (ORNL) as part of the Advanced Gas Reactor Fuel Development and Qualification (AGR) program. The ZrO2-500-AK2 material contains nominally 500 {micro}m kernels of yttria-stabilized zirconia (YSZ) coated with all TRISO layers (buffer, inner pyrocarbon, silicon carbide, and outer pyrocarbon). The ZrO2-500-AK2 material was created for: (1) irradiation testing in the High Flux Isotope Reactor (HFIR) and (2) limited dissemination to laboratories as deemed appropriate to the AGR program. This material was created midway into a TRISO fuel development program to accommodate a sudden opportunity to perform irradiation testing on surrogate material. While the layer deposition processes were chosen based on the best technical understanding at the time, technical progress at ORNL has led to an evolution in the perceived optimal deposition conditions since the creation of ZrO2-500-AK2. Thus, ZrO2-500-AK2 contains a reasonable TRISO microstructure, but does differ significantly from currently produced TRISO surrogates and fuel at ORNL. In this document, characterization data of the ZrO2-500-AK2 surrogate includes: size, shape, coating thickness, and density.

Kercher, Andrew K [ORNL; Hunn, John D [ORNL

2005-06-01T23:59:59.000Z

349

Results from ORNL Characterization of Zr02-500-AK2 - Surrogate TRISO Material  

SciTech Connect

This document is a compilation of the characterization data for the TRISO-coated surrogate particle batch designated ZrO2-500-AK2 that was produced at Oak Ridge National Laboratory (ORNL) as part of the Advanced Gas Reactor Fuel Development and Qualification (AGR) program. The ZrO2-500-AK2 material contains nominally 500 {micro}m kernels of yttria-stabilized zirconia (YSZ) coated with all TRISO layers (buffer, inner pyrocarbon, silicon carbide, and outer pyrocarbon). The ZrO2-500-AK2 material was created for: (1) irradiation testing in the High Flux Isotope Reactor (HFIR) and (2) limited dissemination to laboratories as deemed appropriate to the AGR program. This material was created midway into a TRISO fuel development program to accommodate a sudden opportunity to perform irradiation testing on surrogate material. While the layer deposition processes were chosen based on the best technical understanding at the time, technical progress at ORNL has led to an evolution in the perceived optimal deposition conditions since the createion of ZrO2-500-AK2. Thus, ZrO2-500-AK2 contains a reasonable TRISO microstructure, but does differ significanly from currently produced TRISO surrogates and fuel at ORNL. In this document, characterization data of the ZrO2-500-AK2 surrogate includes: size, shape, coating thickness, and density.

Hunn, John D [ORNL; Kercher, Andrew K [ORNL

2005-06-01T23:59:59.000Z

350

Passenger-to-train assignment model based on automated data  

E-Print Network (OSTI)

This thesis aims at developing a methodology for assigning passengers to individual trains using: (i) fare transaction records from Automatic Fare Collection (AFC) system and (ii) the train tracking data from Automatic ...

Zhu, Yiwen, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

351

Reconsidering complete search algorithms for protein backbone NMR assignment  

Science Journals Connector (OSTI)

......03755, USA Motivation: Nuclear magnetic resonance...cannot scale to realistic datasets. Results: This paper...software license. The datasets featured in the Results...backbone NMR assignment. | Nuclear magnetic resonance...cannot scale to realistic datasets. This paper presents......

Olga Vitek; Chris Bailey-Kellogg; Bruce Craig; Paul Kuliniewicz; Jan Vitek

2005-09-01T23:59:59.000Z

352

2210R1 ES&H Staff Assignments  

NLE Websites -- All DOE Office Websites (Extended Search)

TITLE: ES&H Manual DOCUMENT ID: 2210 Appendix R1 Staff Assigned to ES&H Activities 1.0 Purpose This appendix provides information for current Environmental, Safety and Health...

353

On Computation of Performance Bounds of Optimal Index Assignment  

E-Print Network (OSTI)

Dec 1, 2010 ... ... of QAP problems including those in the quadratic assignment problem library .... 1232-1254, 1996. [18] X. Y. Zhao, D. F. Sun, and K. C. Toh.

2011-08-07T23:59:59.000Z

354

PHYSICAL AND BIOLOGICAL SCIENCES ACADEMIC PERSONNEL/PAYROLL UNIT ASSIGNMENTS  

E-Print Network (OSTI)

PHYSICAL AND BIOLOGICAL SCIENCES ACADEMIC PERSONNEL/PAYROLL UNIT ASSIGNMENTS Updated: 7 Medina BIOLOGICAL SCIENCES Ecology and Evolutionary Biology (EEB) Molecular, Cell and Developmental Biology (MCD) Health Sciences MBRS/MARC/CAMP Pat Gross Laura Brogan Deb Millward CHEMISTRY & BIOCHEMISTRY

California at Santa Cruz, University of

355

Anemometer Data (Wind Speed, Direction) for Ugashik, AK (2001 - 2002) |  

Open Energy Info (EERE)

0 0 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278290 Varnish cache server Anemometer Data (Wind Speed, Direction) for Ugashik, AK (2001 - 2002) Dataset Summary Description Wind data collected from Ugashik Traditional Village in Alaska from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2001 through 2002, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp.

356

Anemometer Data (Wind Speed, Direction) for Tanana, AK (2001 - 2002) |  

Open Energy Info (EERE)

40 40 Varnish cache server Anemometer Data (Wind Speed, Direction) for Tanana, AK (2001 - 2002) Dataset Summary Description Wind data collected from Tanana Village in Alaska from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2001 through 2002, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp. Source EERE Date Released November 09th, 2010 (4 years ago) Date Updated November 09th, 2010 (4 years ago)

357

Due date assignment using ADRES and simulated annealing  

Science Journals Connector (OSTI)

In this paper, flowtime estimation and/or Due Date Assignment (DDA) is studied by making use of a statistical technique, namely Adaptive Response Rate Exponential Smoothing (ADRES) and Simulated Annealing (SA). Primary objective of this study is to compare accuracies of the Due Date Assignment Models (DDAMs). In order to achieve this objective, simulation models are constructed representing different shop load level and using different despatching rules. Case by case findings are summarised in this paper.

Adil Baykasoglu; Mustafa Gocken; Zeynep D. Unutmaz

2008-01-01T23:59:59.000Z

358

Classroom Assignment using Constraint Logic Programming Slim Abdennadher, Matthias Saft and Sebastian Will  

E-Print Network (OSTI)

Classroom Assignment using Constraint Logic Programming Slim Abdennadher, Matthias Saft fabdennad, saft, willsg@informatik.uni­muenchen.de Abstract The Classroom Assignment problem consists

Will, Sebastian

359

Variation in capacity for anchorage-independent growth among agar-derived clones of spontaneously transformed BALB/3T3 cells  

SciTech Connect

A subline of cloned spontaneously transformed BALB/3T3 cells had a colony-forming efficiency (CFE) in agar of 5 to 20%. Individual agar colonies isolated and reseeded into agar were not significantly more efficient at initiating colonies than the original unselected subline. Four successive cycles of agar growth and selection also failed to increase the mean CFE in agar. Randomly selected clones isolated on a plastic surface all had the capacity to grow in agar. These results suggest that the failure of the majority of the cells to grow in agar is not the result of an intrinsic or heritable inability to do so. The ability to initiate a colony in agar seems to vary phenotypically from cell to cell. In contrast, agar colonies isolated from some tumor cell lines (originating from related spontaneously transformed 3T3 cells) and reseeded in agar had a higher CFE than the unselected tumor cell lines. In one case, this increased CFE in agar was lost when the cells were passaged on plastic without further selection for agar growth. Thus, expression of the anchorage-independent phenotype may vary, even among related cloned populations of transformed cells. 39 references, 3 tables.

Romerdahl, C.A.; Rubin, H.

1984-12-01T23:59:59.000Z

360

Conditions for compatibility of quantum-state assignments  

Science Journals Connector (OSTI)

Suppose N parties describe the state of a quantum system by N possibly different density operators. These N state assignments represent the beliefs of the parties about the system. We examine conditions for determining whether the N state assignments are compatible. We distinguish two kinds of procedures for assessing compatibility, the first based on the compatibility of the prior beliefs on which the N state assignments are based and the second based on the compatibility of predictive measurement probabilities they define. The first procedure leads to a compatibility criterion proposed by Brun, Finkelstein, and Mermin [BFM, Phys. Rev. A 65, 032315 (2002)]. The second procedure leads to a hierarchy of measurement-based compatibility criteria which is fundamentally different from the corresponding classical situation. Quantum mechanically none of the measurement-based compatibility criteria is equivalent to the BFM criterion.

Carlton M. Caves; Christopher A. Fuchs; Rdiger Schack

2002-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Two modelling approaches using spreadsheets for the transportation assignment problem  

Science Journals Connector (OSTI)

This paper presents two modelling approaches for teaching the transportation assignment problem that have been very successful in teaching and learning. We have illustrated it using a numerical example and formulated two spreadsheets models using the popular spreadsheet package Microsoft Excel. In the first approach, we formulated an algebraic model, then transfered it to a spreadsheet. In the second approach, we formulated a spreadsheet model directly by using spreadsheet modelling techniques. We have demonstrated that students can understand and solve the transportation assignment problem more easily using these two approaches.

Xiang Ye; Xiao Zong

2006-01-01T23:59:59.000Z

362

GRR/Section 9-AK-a - Alaska Environmental Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 9-AK-a - Alaska Environmental Process GRR/Section 9-AK-a - Alaska Environmental Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-AK-a - Alaska Environmental Process 09AKAStateEnvironmentalProcess (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Regulations & Policies AS 38.05.035: Powers & Duties of ADNR Director AS 38.05.082: Leases for Shore Fisheries AS 38.05.115: Conditions of Sale AS 38.05.850: Permits AS 38.05.945: Notice AS 38.05.946: Hearings Triggers None specified Click "Edit With Form" above to add content 09AKAStateEnvironmentalProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

363

GRR/Section 14-AK-c - Alaska UIC Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-AK-c - Alaska UIC Permit GRR/Section 14-AK-c - Alaska UIC Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-c - Alaska UIC Permit 14AKCAlaskaUICPermit.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 14AKCAlaskaUICPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Underground Injection Control Permit is regulated by the Environmental Protection Agency. The EPA regulates Class V injection wells on Federal lands, many tribal lands, and in some states like Alaska. Injection wells are overseen by either a state or Tribal Agency or one of

364

GRR/Section 8-AK-a - Transmission | Open Energy Information  

Open Energy Info (EERE)

8-AK-a - Transmission 8-AK-a - Transmission < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-AK-a - Transmission 08AKATransmission.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 08AKATransmission.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Under the Alaska Public Utilities Regulatory Act, transmission is included in Alaska's regulation of public utilities. According to AS 42.05.990(5), "public utility" or "utility" includes every corporation whether public, cooperative, or otherwise, company, individual, or association of

365

GRR/Section 4-AK-c - Geothermal Exploration Permit | Open Energy  

Open Energy Info (EERE)

4-AK-c - Geothermal Exploration Permit 4-AK-c - Geothermal Exploration Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-AK-c - Geothermal Exploration Permit 04AKCGeothermalExplorationPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 04AKCGeothermalExplorationPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Department of Natural Resources requires filing an application

366

GRR/Section 14-AK-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-AK-a - Nonpoint Source Pollution GRR/Section 14-AK-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-a - Nonpoint Source Pollution 14AKANonpointSourcePollution.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 14AKANonpointSourcePollution.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Alaska's Nonpoint Source Water Pollution Control Strategy is a statewide plan for protecting Alaska's natural resources from polluted runoff also

367

GRR/Section 19-AK-a - Water Access and Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-AK-a - Water Access and Water Rights Issues GRR/Section 19-AK-a - Water Access and Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-AK-a - Water Access and Water Rights Issues 19AKAWaterAccessWaterRights.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Water Use Act Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 19AKAWaterAccessWaterRights.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Alaska, water is declared a public resource belonging to the people of

368

GRR/Section 3-AK-b - Right of Ways (ROWs) | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-AK-b - Right of Ways (ROWs) GRR/Section 3-AK-b - Right of Ways (ROWs) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-b - Right of Ways (ROWs) 03AKBRightOfWaysROWs.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKBRightOfWaysROWs.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Division of Mining Land and Water (ML&W) oversees land use within the state and issues right of ways, easements or permit to use state

369

GRR/Section 3-AK-e - Land Use Permit | Open Energy Information  

Open Energy Info (EERE)

3-AK-e - Land Use Permit 3-AK-e - Land Use Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-e - Land Use Permit 03AKELandUsePermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKELandUsePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A land use permit in Alaska covers a number of uses of state land that are less invasive and do not require a full property interest such as a lease

370

DOE - Office of Legacy Management -- Amchitka Island Test Center - AK 01  

NLE Websites -- All DOE Office Websites (Extended Search)

Amchitka Island Test Center - AK 01 Amchitka Island Test Center - AK 01 FUSRAP Considered Sites Site: Amchitka Island Test Center (AK.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Amchitka Island Test Center Documents Related to Amchitka Island Test Center Draft Long-Term Surveillance Plan for the Amchitka Island, Alaska, Project Site (September 2013) An Assessment of the Reported Leakage of Anthropogenic Radionuclides From the Underground Nuclear Test Sites at Amchitka Island, Alaska, USA to the Surface Environment. Conceptual Site Models as a Tool in Evaluation Ecological health; The Case of the Department of Energys Amchitka Island Nuclear Test Site.

371

GRR/Section 11-AK-a - State Cultural Considerations | Open Energy  

Open Energy Info (EERE)

1-AK-a - State Cultural Considerations 1-AK-a - State Cultural Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-AK-a - State Cultural Considerations 11AKAStateCulturalConsiderations (2).pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Regulations & Policies AS 41.35.060: Power to Acquire AS 41.35.070: Preservation of Historic Resources AS 41.35.090: Notice AS 41.35.100: Excavation Triggers None specified Click "Edit With Form" above to add content 11AKAStateCulturalConsiderations (2).pdf 11AKAStateCulturalConsiderations (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative It is the policy of the State of Alaska to preserve and protect the

372

GRR/Section 3-AK-a - State Competitive Mineral Leasing Process | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-a - State Competitive Mineral Leasing Process GRR/Section 3-AK-a - State Competitive Mineral Leasing Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-a - State Competitive Mineral Leasing Process 03AKAStateCompetitiveMineralLeasingProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Land Act: AS 38.05 Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKAStateCompetitiveMineralLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

373

GRR/Section 5-AK-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-AK-a - Drilling and Well Development GRR/Section 5-AK-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-AK-a - Drilling and Well Development 05AKADrillingWellDevelopment.pdf Click to View Fullscreen Contact Agencies Alaska Oil and Gas Conservation Commission Alaska Department of Natural Resources Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 05AKADrillingWellDevelopment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative All wells drilled in search or in support of the recovery of geothermal

374

GRR/Section 14-AK-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-AK-d - Section 401 Water Quality Certification GRR/Section 14-AK-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-d - Section 401 Water Quality Certification 14AKDSection401WaterQualityCertification.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency U S Army Corps of Engineers Regulations & Policies Alaska Water Quality Standards Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 14AKDSection401WaterQualityCertification.pdf 14AKDSection401WaterQualityCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

375

GRR/Section 18-AK-c - Waste Disposal Permit Process | Open Energy  

Open Energy Info (EERE)

AK-c - Waste Disposal Permit Process AK-c - Waste Disposal Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-c - Waste Disposal Permit Process 18AKC - WasteDisposalPermitProcess (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies AS 46.03.110 Waste Disposal Permit Regulations 18 AAC 60.200 et seq Triggers None specified Click "Edit With Form" above to add content 18AKC - WasteDisposalPermitProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Department of Environmental Conservation (DEC) is responsible

376

GRR/Section 15-AK-a - Air Quality Assessment Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 15-AK-a - Air Quality Assessment Process GRR/Section 15-AK-a - Air Quality Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-AK-a - Air Quality Assessment Process 15AKAAirQualityAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies Alaska Statutes Alaska Statute Title 46 Alaska Administrative Code 18 AAC 50 Air Quality Regulations 40 CFR 71 Operating Permits Triggers None specified Click "Edit With Form" above to add content 15AKAAirQualityAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

377

GRR/Section 7-AK-c - Certificate of Public Convenience and Necessity | Open  

Open Energy Info (EERE)

GRR/Section 7-AK-c - Certificate of Public Convenience and Necessity GRR/Section 7-AK-c - Certificate of Public Convenience and Necessity < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-AK-c - Certificate of Public Convenience and Necessity 07AKCCertificateOfPublicConvenienceAndNecessity.pdf Click to View Fullscreen Contact Agencies Regulatory Commission of Alaska Regulations & Policies AS 42.05.175: Timeline for Final Orders AS 42.05.221: Certificates Required AS 42.05.711: Exemptions 3 AAC 48.645: Application 3 AAC 48.648: Complete Applications 3 AAC 48.650: Incomplete Applications AAC Title 3 2012 Supplement Triggers None specified Click "Edit With Form" above to add content 07AKCCertificateOfPublicConvenienceAndNecessity.pdf Error creating thumbnail: Page number not in range.

378

GRR/Section 20-AK-a - Well Abandonment Process | Open Energy Information  

Open Energy Info (EERE)

20-AK-a - Well Abandonment Process 20-AK-a - Well Abandonment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20-AK-a - Well Abandonment Process 20AKAWellAbandonmentProcess.pdf Click to View Fullscreen Contact Agencies Alaska Oil and Gas Conservation Commission Regulations & Policies 20 AAC 25.105 20 AAC 25.112 Triggers None specified Click "Edit With Form" above to add content 20AKAWellAbandonmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for abandoning wells in the state of Alaska. The Alaska Oil and Gas Conservation Commission ("commission")

379

GRR/Section 6-AK-b - Construction Storm Water Permitting | Open Energy  

Open Energy Info (EERE)

GRR/Section 6-AK-b - Construction Storm Water Permitting GRR/Section 6-AK-b - Construction Storm Water Permitting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-AK-b - Construction Storm Water Permitting 06AKBConstructionStormWaterPermitting (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies 18 AAC 72: Wastewater Treatment and Disposal Triggers None specified Click "Edit With Form" above to add content 06AKBConstructionStormWaterPermitting (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative From DEC Website: The goal of the Storm Water Program is to reduce or eliminate pollutants in

380

GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-d - State Noncompetitive Mineral Leasing Process 03AKDStateNoncompetitiveMineralLeasingProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Land Act: AS 38.05 Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKDStateNoncompetitiveMineralLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

GRR/Section 18-AK-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

8-AK-b - Hazardous Waste Permit Process 8-AK-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-b - Hazardous Waste Permit Process 18AKB - HazardousWastePermitProcess (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency Regulations & Policies AS 46.03.302 18 AAC 60.020 Triggers None specified Click "Edit With Form" above to add content 18AKB - HazardousWastePermitProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Department of Environmental Conservation defers to the federal

382

GRR/Section 15-AK-c - Title V Operating Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 15-AK-c - Title V Operating Permit GRR/Section 15-AK-c - Title V Operating Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-AK-c - Title V Operating Permit 15AKCTitleVOperatingPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency Regulations & Policies Alaska Statutes Alaska Administrative Code 18 AAC 50 Air Quality Control Triggers None specified Click "Edit With Form" above to add content 15AKCTitleVOperatingPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative One of the major initiatives Congress added to the Clean Air Act in 1990 is

383

GRR/Section 6-AK-c - Drinking Water Permit | Open Energy Information  

Open Energy Info (EERE)

6-AK-c - Drinking Water Permit 6-AK-c - Drinking Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-AK-c - Drinking Water Permit 06AKCDrinkingWaterPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies 18 AAC 80 Drinking Water 40 CFR 141 40 CFR 142 40 CFR 143 Triggers None specified Click "Edit With Form" above to add content 06AKCDrinkingWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Alaska's drinking water program is monitored under the Alaska Department of Environmental Conservation. The type of permit required depends on the

384

GRR/Section 15-AK-b - Air Quality Minor Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 15-AK-b - Air Quality Minor Permit GRR/Section 15-AK-b - Air Quality Minor Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-AK-b - Air Quality Minor Permit 15AKBAirQualityMinorPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies Alaska Statutes Alaska Administrative Code 18 AAC 50 Air Quality Control Regulations 40 CFR Chapter I, Subchapter C - Air Programs Triggers None specified Click "Edit With Form" above to add content 15AKBAirQualityMinorPermit.pdf 15AKBAirQualityMinorPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The mission of the Air Permit Program is to protect the Alaskan environment

385

GRR/Section 18-AK-a - Storage Tank Registration | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 18-AK-a - Storage Tank Registration GRR/Section 18-AK-a - Storage Tank Registration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-a - Storage Tank Registration 18AKA - StorageTankRegistration (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies AS 46.03.380 As 46.03.385 18 AAC 78 Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18AKA - StorageTankRegistration (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Any project that requires installation or operation of a storage tank must

386

GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit  

Open Energy Info (EERE)

GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit 14AKBAlaskaPollutantDischargeEliminationSystemPermit (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 14AKBAlaskaPollutantDischargeEliminationSystemPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

387

GRR/Section 4-AK-b - Geophysical Exploration Permit | Open Energy  

Open Energy Info (EERE)

4-AK-b - Geophysical Exploration Permit 4-AK-b - Geophysical Exploration Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-AK-b - Geophysical Exploration Permit 04AKBGeophysicalExplorationPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 04AKBGeophysicalExplorationPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A Geophysical Exploration Permit is necessary for conducting seismic

388

GRR/Section 19-AK-b - Temporary Use of Water Permit | Open Energy  

Open Energy Info (EERE)

9-AK-b - Temporary Use of Water Permit 9-AK-b - Temporary Use of Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-AK-b - Temporary Use of Water Permit 19AKBTemporaryUseOfWaterPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Water Use Act Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 19AKBTemporaryUseOfWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Alaska, water is declared a public resource belonging to the people of

389

Updated 8/15/11 Undergraduate Academic Advising: Advisor Assignments in Banner1  

E-Print Network (OSTI)

Updated 8/15/11 1 Undergraduate Academic Advising: Advisor Assignments in Banner1 Academic Departments and Advising Centers are responsible for updating and "cleaning up" inaccurate academic advisor assignments in Banner. When a student is assigned a new or additional academic advisor, this assignment should

Kelly, Scott David

390

Domain assignments for FSSP representative set using DomainParser  

NLE Websites -- All DOE Office Websites (Extended Search)

Domain assignments for the FSSP representative set Domain assignments for the FSSP representative set The following are the domain assignments for the FSSP representative set (released on January 31, 2000, 1987 chains in total) using DomainParser. Each line shows a PDB entry (with a chain identifier if any), total number of residues, number of domains, and domain assignments. The result is obtained fully automatically without manual editing. 12asa 327 2 (33-86; 271-288) (4-32; 87-270; 289-330) 153l 185 1 16pk 415 2 (5-205; 409-419) (206-408) 16vpa 311 2 (47-130; 164-233; 324-349) (131-163; 234-323; 395-402) 1914 171 1 19hca 292 2 (45-107) (1-44; 108-292) 1a02f 53 1 1a02j 52 1 1a02n 280 2 (399-569) (570-678) 1a04a 205 2 (5-126) (127-216) 1a0aa 63 1 1a0ca 437 1 1a0fa 201 2 (1-81) (82-201) 1a0ha 159 1 1a0i 332 2 (2-239) (240-349)

391

Some Basic WebAssign Usage for Students  

E-Print Network (OSTI)

Some Basic WebAssign Usage for Students Department of Mathematics Purdue University Fall 2012 #12;Useful Web-Sites For student login: http://www.webassign.net/purdue/login.html use your Purdue Career Account information. (The web-site: http://www.webassign.net/ is for instructors' use, not for students

Brown, Johnny E.

392

Some Basic WebAssign Usage for Students  

E-Print Network (OSTI)

Some Basic WebAssign Usage for Students Department of Mathematics Purdue University Fall 2011 #12;Useful Web-Sites For student login: http://www.webassign.net/purdue/login.html use your Purdue Career Account information. (The web-site: http://www.webassign.net/ is for instructors' use, not for students

Cai, Zhiqiang

393

AER1301: KINETIC THEORY OF GASES Assignment #2  

E-Print Network (OSTI)

AER1301: KINETIC THEORY OF GASES Assignment #2 1. Using the formalism of the text book is as follows. Assume that the particle number density is a slowly varying function of the z coordinate #27; ? is a constant. 3. Show that if the potential function, U(r), varies as 1=r 4

Groth, Clinton P. T.

394

AER1301: KINETIC THEORY OF GASES Assignment #2  

E-Print Network (OSTI)

AER1301: KINETIC THEORY OF GASES Assignment #2 1. Using the formalism of the text book the particle number density and temperature are both slowly varying functions of the z coordinate of the previous problem is as follows. Assume that the particle number density is a slowly varying function

Groth, Clinton P. T.

395

Priority Assignment in Emergency Response Evin Uzun Jacobson1  

E-Print Network (OSTI)

Priority Assignment in Emergency Response Evin Uzun Jacobson1 , Nilay Tanik Argon2 , Serhan Ziya2 and operating rooms) can be overwhelmed by the sudden jump in patient demand. To ration these resources for the greatest number. This article investigates how this can be done and what the potential benefits would be

Ziya, Serhan

396

Utilization and Fairness in Spectrum Assignment for Opportunistic Spectrum Access  

E-Print Network (OSTI)

. INTRODUCTION Wireless devices are becoming ubiquitous, placing increas­ ing stress on the fixed radio spectrum by software defined radio (SDR) technology [5], [15], [23], Open Spectrum allows unlicensed (secondary) users1 Utilization and Fairness in Spectrum Assignment for Opportunistic Spectrum Access Chunyi Peng

Zhao, Ben Y.

397

Utilization and Fairness in Spectrum Assignment for Opportunistic Spectrum Access  

E-Print Network (OSTI)

. INTRODUCTION Wireless devices are becoming ubiquitous, placing increas- ing stress on the fixed radio spectrum by software defined radio (SDR) technology [5], [16], [24], Open Spectrum allows unlicensed (secondary) users1 Utilization and Fairness in Spectrum Assignment for Opportunistic Spectrum Access Chunyi Peng

Almeroth, Kevin C.

398

RESEARCH Open Access ZAP: a distributed channel assignment algorithm  

E-Print Network (OSTI)

(CR) networks. CRs are capable of identifying underutilized licensed bands of the spectrum, allowing is overloaded, a large part of the frequency spectrum licensed to primary users is being underutilized or neverRESEARCH Open Access ZAP: a distributed channel assignment algorithm for cognitive radio networks

Paris-Sud XI, Université de

399

EARTH AND OCEAN SCIENCES 453 MATLAB homework assignment # 1  

E-Print Network (OSTI)

EARTH AND OCEAN SCIENCES 453 MATLAB homework assignment # 1: FOSSIL FUEL EFFECTS ON THE GLOBAL. Include a 1 or 2 paragraph discussion of your plan with this figure if you wish. · Write a MATLAB script water) over time. (MATLAB files emissionplotmain.m and emissions

Jellinek, Mark

400

Liquid Crystal Optics and Photonics CPHY Assignment 2.  

E-Print Network (OSTI)

Liquid Crystal Optics and Photonics CPHY 74495 Assignment 2. P. Pal¤y-Muhoray Jan. 24, 2014 Due: Feb 4, 2014 1. Read pages 25 - 37 of the text (Guenther, Modern Optics). 2. Read Ch 2., Review of Electricity and Magnetism (http://mpal¤y.lci.kent.edu/optics) 3. Red light with wavelength = 632:8nm

Palffy-Muhoray, Peter

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

TIGER:Thermal-Aware File Assignment in Storage Clusters  

E-Print Network (OSTI)

% of total energy consumption [4]. Energy and cooling cost caused by data nodes motivate us to study file for clusters by offering about 10 to 15 percent cooling energy savings without significantly degrading I--In this paper, we present thermal-aware file assign- ment technique called TIGER for reducing cooling cost

Qin, Xiao

402

GEOL 104 Dinosaurs: A Natural History Geology Assignment  

E-Print Network (OSTI)

rocks is the energy of the environment: that is, how fast the water (or wind) was moving. EssentiallyName: 1 GEOL 104 Dinosaurs: A Natural History Geology Assignment DUE: Mon. Sept. 18 Part I, the higher the energy, the larger the size of the particles of sediment. Slow moving water can only move

Holtz Jr., Thomas R.

403

PHYSICAL AND BIOLOGICAL SCIENCES ACADEMIC PERSONNEL/PAYROLL UNIT ASSIGNMENTS  

E-Print Network (OSTI)

PHYSICAL AND BIOLOGICAL SCIENCES ACADEMIC PERSONNEL/PAYROLL UNIT ASSIGNMENTS Updated: 11 & ASTROPHYSICS UCO/LICK OBSERVATORY Kristin Mott Laura Brogan Leticia Medina BIOLOGICAL SCIENCES Ecology and Evolutionary Biology (EEB) Molecular, Cell and Developmental Biology (MCD) Health Sciences MBRS/MARC/CAMP Pat

California at Santa Cruz, University of

404

Phase-space explorations in time-dependent density functional theory A.K. Rajam a  

E-Print Network (OSTI)

Phase-space explorations in time-dependent density functional theory A.K. Rajam a , Paul Hessler b online xxxx Keywords: Time-dependent density functional theory Phase-space Momentum-distributions Density to phase-space densities, discuss some formal aspects of such a ``phase-space density functional theory

405

Rack Number Assignments Location TFTR TFTR NSTX NSTX  

E-Print Network (OSTI)

Rack Number Assignments Location TFTR TFTR NSTX NSTX Prefix Number range Prefix Number range-853 C-Site RF Balcony CRFB 900,901 CRFB 900,901 Most Safety Racks CSS 949-973 CSS 949-973 Oddball Control Room CCR 999 Pump Room CCI-IR 1-3 CCI-IR 1-3 Pump House CPH 1 CPH 1 Bakeout Racks VVS-ETC- 001

Princeton Plasma Physics Laboratory

406

Assignment 5 Verification of ANSI-C with PVS  

E-Print Network (OSTI)

15-820-a Assignment 5 Verification of ANSI-C with PVS Due Apr. 30, 2003 1 Find the Minimum 1. Write a function in ANSI­C that finds the minumum number in an array. The size of the array is passed as a parameter. 2. Translate your ANSI­C code into PVS language, as described in the class. You may assume

Clarke, Edmund M.

407

Evaluation of Dynamic Channel and Power Assignment for Cognitive Networks  

SciTech Connect

In this paper, we develop a unifying optimization formulation to describe the Dynamic Channel and Power Assignment (DCPA) problem and evaluation method for comparing DCPA algorithms. DCPA refers to the allocation of transmit power and frequency channels to links in a cognitive network so as to maximize the total number of feasible links while minimizing the aggregate transmit power. We apply our evaluation method to five algorithms representative of DCPA used in literature. This comparison illustrates the tradeoffs between control modes (centralized versus distributed) and channel/power assignment techniques. We estimate the complexity of each algorithm. Through simulations, we evaluate the effectiveness of the algorithms in achieving feasible link allocations in the network, as well as their power efficiency. Our results indicate that, when few channels are available, the effectiveness of all algorithms is comparable and thus the one with smallest complexity should be selected. The Least Interfering Channel and Iterative Power Assignment (LICIPA) algorithm does not require cross-link gain information, has the overall lowest run time, and highest feasibility ratio of all the distributed algorithms; however, this comes at a cost of higher average power per link.

Syed A. Ahmad; Umesh Shukla; Ryan E. Irwin; Luiz A. DaSilva; Allen B. MacKenzie

2011-03-01T23:59:59.000Z

408

1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09  

U.S. Energy Information Administration (EIA) Indexed Site

STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09 1990,"AK","Combined Heat and Power, Commercial Power","Coal",3,65.5,61.1 1990,"AK","Combined Heat and Power, Commercial Power","Petroleum",1,20.4,18.99 1990,"AK","Combined Heat and Power, Industrial Power","All Sources",23,229.4,204.21 1990,"AK","Combined Heat and Power, Industrial Power","Natural Gas",28,159.32,136.67 1990,"AK","Combined Heat and Power, Industrial Power","Petroleum",8,68.28,65.86

409

Dynamic Weapon Target Assignment Method Based on Artificial Fish Swarm Algorithm  

Science Journals Connector (OSTI)

Aiming at the problem of weapon target assignment when multiple weapon units on diverse battle platforms head off ... model of this problem is established. A weapon target assignment method based on Artificial Fi...

Chengfei Wang; Zhaohui Zhang; Runping Xu

2012-01-01T23:59:59.000Z

410

An approach to predict operational performance of airline schedules using aircraft assignment key performance indicators  

E-Print Network (OSTI)

This thesis presents an approach for predicting operational performance of airlines on the basis of flight schedules and aircraft assignments. The methodology uses aggregate measures of properties of aircraft assignments, ...

Riedel, Robin

2006-01-01T23:59:59.000Z

411

Policy Flash 2013-76 Term Assignments of Contractors to the DC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Term Assignments of Contractors to the DC Area Policy Flash 2013-76 Term Assignments of Contractors to the DC Area Questions concerning this policy flash should be directed to A...

412

HA-detected experiments for the backbone assignment of intrinsically disordered proteins  

Science Journals Connector (OSTI)

We propose a new alpha proton detection based approach for the sequential assignment of natively unfolded proteins. The proposed protocol superimposes on following features ... detection (1) enables assignment of...

Sampo Mntylahti; Olli Aitio; Maarit Hellman; Perttu Permi

2010-07-01T23:59:59.000Z

413

AC 2007-253: ENCOURAGING CREATIVITY IN INTRODUCTORY COMPUTER SCIENCE PROGRAMMING ASSIGNMENTS  

E-Print Network (OSTI)

AC 2007-253: ENCOURAGING CREATIVITY IN INTRODUCTORY COMPUTER SCIENCE PROGRAMMING ASSIGNMENTS Tammy technology, multimedia, software engineering, and CS theory. © American Society for Engineering Education, 2007 #12;Encouraging Creativity in Introductory Computer Science Programming Assignments Abstract

VanDeGrift, Tammy

414

Weapon Target Assignment Decision Based on Markov Decision Process in Air Defense  

Science Journals Connector (OSTI)

This paper proposed a MDP based approach to resolve the weapon target assignment (WTA) problem in air...

Yaofei Ma; Chaohong Chou

2012-01-01T23:59:59.000Z

415

Assigning Seismic Design Category to Large Reactors: A Case Study of the ATR  

Energy.gov (U.S. Department of Energy (DOE))

Assigning Seismic Design Category to Large Reactors: A Case Study of the ATR Stuart Jensen October 21, 2014

416

CISC 327 -Fall 2014 ! Course Project Assignment #5 -Back End Unit Testing!  

E-Print Network (OSTI)

CISC 327 - Fall 2014 ! ! Course Project Assignment #5 - Back End Unit Testing! !Due Wednesday Nov 19! !In this assignment, you will practice (partial) white box testing of the Back Office you programmed in assignment #4. ! !You are to create two separate sets of white box unit tests, one

Cordy, James R.

417

Resolution On The Assignment of Materials From Which Faculty Derive Royalties April 27, 2005  

E-Print Network (OSTI)

Resolution On The Assignment of Materials From Which Faculty Derive Royalties April 27, 2005 assigning class materials from which a faculty member derives royalties. In light of these principles, faculty who choose to assign materials from which they incidentally derive royalties should: Consider

Swaddle, John

418

GRR/Section 19-AK-c - Permit to Appropriate | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 19-AK-c - Permit to Appropriate < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-AK-c - Permit to Appropriate 19AKCPermitToAppropriate.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Water Use Act Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 19AKCPermitToAppropriate.pdf 19AKCPermitToAppropriate.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Alaska, water is declared a public resource belonging to the people of

419

File:EIA-AK-CookInlet-Liquids.pdf | Open Energy Information  

Open Energy Info (EERE)

AK-CookInlet-Liquids.pdf AK-CookInlet-Liquids.pdf Jump to: navigation, search File File history File usage Alaska's Cook Inlet By 2001 Liquids Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 10.19 MB, MIME type: application/pdf) Description Alaska's Cook Inlet By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

420

GRR/Section 17-AK-a - Aesthetic Resource Assessment | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 17-AK-a - Aesthetic Resource Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-AK-a - Aesthetic Resource Assessment 17AKAAestheticResourceAssessment.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 17AKAAestheticResourceAssessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

GRR/Section 4-AK-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 4-AK-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-AK-a - State Exploration Process 04AKAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 04AKAStateExplorationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

422

GRR/Section 12-AK-a - Flora & Fauna Considerations | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 12-AK-a - Flora & Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-AK-a - Flora & Fauna Considerations 12AKAFloraFaunaConsiderations (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Fish and Game Regulations & Policies AS 16.05.841: Fishways AS 16.05.871: Protection of Fish and Game AS 16.20: Conservation and Protection 5 AAC 95.011: Waters Important to Anadromous Fish Triggers None specified Click "Edit With Form" above to add content 12AKAFloraFaunaConsiderations (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

423

Anemometer Data (Wind Speed, Direction) for YKHC-Bethel, AK (2003 - 2004) |  

Open Energy Info (EERE)

YKHC-Bethel, AK (2003 - 2004) YKHC-Bethel, AK (2003 - 2004) Dataset Summary Description Wind data collected from YKHC - Bethel in Alaska from an anemometer as part of the Native American anemometer loan program. Monthly mean wind speed is available for 2003 through 2004, as is wind direction and turbulence data. Data is reported from a height of 20 m. The data was originally made available by Wind Powering America, a DOE Office of Energy Efficiency & Renewable Energy (EERE) program. A dynamic map displaying all available data from DOE anemometer loan programs is available http://www.windpoweringamerica.gov/anemometerloans/projects.asp. Source EERE Date Released November 09th, 2010 (4 years ago) Date Updated November 09th, 2010 (4 years ago) Keywords wind wind direction wind speed

424

Ocean Acidification Workshop in Anchorage  

Energy.gov (U.S. Department of Energy (DOE))

This workshop aims to bring concerned and/or interested individuals together to hear the latest research, policy implications, community perspectives, and potential impacts along Alaskas coast and...

425

In-Class Poster Session Assignment: This is an assignment of in-class poster presentations of research papers. The idea and intention is  

E-Print Network (OSTI)

In-Class Poster Session Assignment: This is an assignment of in-class poster presentations of the poster session is 12/7/10. Each of you is required to give a poster based on some papers that you read will be happy to help you on this as well. Review papers are ideal for this type of excises. Your posters should

Xie, Minge

426

UPMASK: unsupervised photometric membership assignment in stellar clusters  

E-Print Network (OSTI)

We develop a method for membership assignment in stellar clusters using only photometry and positions. The method, UPMASK, is aimed to be unsupervised, data driven, model free, and to rely on as few assumptions as possible. It is based on an iterative process, principal component analysis, clustering algorithm, and kernel density estimations. Moreover, it is able to take into account arbitrary error models. An implementation in R was tested on simulated clusters that covered a broad range of ages, masses, distances, reddenings, and also on real data of cluster fields. Running UPMASK on simulations showed that it effectively separates cluster and field populations. The overall spatial structure and distribution of cluster member stars in the colour-magnitude diagram were recovered under a broad variety of conditions. For a set of 360 simulations, the resulting true positive rates (a measurement of purity) and member recovery rates (a measurement of completeness) at the 90% membership probability level reached ...

Krone-Martins, A

2013-01-01T23:59:59.000Z

427

GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW GRR/Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-g - Utility Permit to Construct on ADOT&PF ROW 03AKGUtilityPermitToConstructOnADOTROW (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Transportation and Public Facilities U S Army Corps of Engineers United States Coast Guard Bureau of Indian Affairs Bureau of Land Management Federal Aviation Administration Alaska Department of Natural Resources Regulations & Policies 11 AAC 195.010: Anadromous Fish 17 AAC 15.021: Application for Utility Permit Triggers None specified Click "Edit With Form" above to add content 03AKGUtilityPermitToConstructOnADOTROW (1).pdf

428

Energy Efficient Routing and Spectrum Assignment With Regenerator Placement in Elastic Optical Networks  

Science Journals Connector (OSTI)

In this paper, we present a dynamic energy efficient routing and spectrum assignment algorithm with regenerator placement (RP) capability for elastic optical networks. In this...

Fallahpour, Ahmad; Beyranvand, Hamzeh; Nezamalhosseini, S Alireza; Salehi, Jawad A

2014-01-01T23:59:59.000Z

429

E-Print Network 3.0 - airport gate assignment Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage, Conversion and Utilization 9 When the Model Hits the Runway: The DOZE Algorithm for optimal dispatching of Summary: the problem of assigning es- corts to accompany...

430

E-Print Network 3.0 - assigning backbone resonances Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

to the well-studied backbone resonance assignment problem, ... Source: Donald, Bruce Randall - Departments of Biochemistry & Computer Science, Duke University Collection:...

431

E-Print Network 3.0 - assigning reciprocal vision Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Medicine 2 Cooperation, Reciprocity, and the Collective Action Heuristic Mark Lubell Summary: ) are randomly assigned to non-reciprocal 12;19 or reciprocal strategic...

432

Math 138 Assignment #20 Make two pie charts using Excel. Pie ...  

E-Print Network (OSTI)

Math 138. Assignment #20. Make two pie charts using Excel. Pie Chart I: Using a week day as an example, indicate the number of hours you spend doing.

rroames

2007-10-11T23:59:59.000Z

433

String-and Permutation-Coded Genetic Algorithms for the Static Weapon-Target Assignment Problem  

E-Print Network (OSTI)

String- and Permutation-Coded Genetic Algorithms for the Static Weapon-Target Assignment Problem julstrom@stcloudstate.edu ABSTRACT In the Weapon-Target Assignment Problem, m enemy tar- gets are inbound, each with a value Vj representing the dam- age it may do. The defense has n weapons, and the prob

Julstrom, Bryant A.

434

NMR-assignments of a cytosolic domain of the C-terminus of polycystin-2  

E-Print Network (OSTI)

ARTICLE NMR-assignments of a cytosolic domain of the C-terminus of polycystin-2 Frank H. Schumann ?. The backbone and side chain resonances were assigned by multidimensional NMR methods, the obtained chemical contained 1 g NH4Cl, 6 g glucose, F. H. Schumann Á M. Schmidt Á R. Bader Á H. R. Kalbitzer (&) Institute

Witzgall, Ralph - Naturwissenschaftliche Fakultät III

435

Assignment 9: Hacking a Game Page 1 of 1 600.112: Introduction to Programming  

E-Print Network (OSTI)

Assignment 9: Hacking a Game Page 1 of 1 600.112: Introduction to Programming for Scientists and Engineers Assignment 9: Hacking a Game Peter H. Fr¨ohlich phf@cs.jhu.edu Joanne Selinski joanne with something a bit more relaxed: you'll hack a video game. The handout itself is also not going to be very

Fröhlich, Peter

436

Assignment 6: Heat Transfer Page 1 of 8 600.112: Introduction to Programming  

E-Print Network (OSTI)

Assignment 6: Heat Transfer Page 1 of 8 600.112: Introduction to Programming for Scientists and Engineers Assignment 6: Heat Transfer Peter H. Fr¨ohlich phf@cs.jhu.edu Joanne Selinski joanne to Programming for Scientists and Engineers is all about heat transfer and how to simulate it. There are three

Fröhlich, Peter

437

Postponing commitment to preserve opportunities when dynamically assigning new goals to UAVs  

E-Print Network (OSTI)

Postponing commitment to preserve opportunities when dynamically assigning new goals to UAVs Pierre Vehicles (UAVs). Decisions to assign new goals are not instantaneous and they tend to become obsolete because UAVs move continuously. We use the date of commitment to handle this. This paper introduces how we

Paris-Sud XI, Université de

438

Bioinformatic Genome Comparisons for Taxonomic and Phylogenetic Assignments Using Aeromonas as a Test Case  

Science Journals Connector (OSTI)

...Phylogenetic Assignments Using Aeromonas as a Test Case Sophie M. Colston a Matthew S. Fullmer...phylogenetic assignments using Aeromonas as a test case. mBio 5(6):e02136-14. doi...were reassigned to different species as a test case. We generated improved, high-quality...

Sophie M. Colston; Matthew S. Fullmer; Lidia Beka; Brigitte Lamy; J. Peter Gogarten; Joerg Graf

2014-12-01T23:59:59.000Z

439

Usage of Assignable Space 78 Number of Buildings and Square Metres 79  

E-Print Network (OSTI)

of University of Toronto Students in Residence 81 77 #12;USAGE OF ASSIGNABLE SPACE 2008-09 ST. GEORGE 2009 NUMBER OF NET ASSIGNABLE NET SQUARE GROSS BUILDINGS SQUARE METRES METRES SQUARE METRES University St. George 120 617,032 1,004,611 1,170,350 Leased St. George 5 3,052 3,786 4,255 Scarborough 33 63

Sun, Yu

440

Assignment 2: Turtle Graphics Page 1 of 6 600.112: Introduction to Programming  

E-Print Network (OSTI)

Assignment 2: Turtle Graphics Page 1 of 6 600.112: Introduction to Programming for Scientists and Engineers Assignment 2: Turtle Graphics Peter H. Fr¨ohlich phf@cs.jhu.edu Joanne Selinski joanne programming. We will focus on drawing things on the screen using Python's Turtle Graphics module to make

Fröhlich, Peter

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assignment 2: Turtle Graphics Page 1 of 6 600.112: Introduction to Programming  

E-Print Network (OSTI)

Assignment 2: Turtle Graphics Page 1 of 6 600.112: Introduction to Programming for Scientists and Engineers Assignment 2: Turtle Graphics Peter H. Fr�ohlich phf@cs.jhu.edu Joanne Selinski joanne programming. We will focus on drawing things on the screen using Python's Turtle Graphics module to make

Fröhlich, Peter

442

Frank Masci Page 1 06/17/2003 Initial Pipeline Assignment Procedure  

E-Print Network (OSTI)

Frank Masci Page 1 06/17/2003 Initial Pipeline Assignment Procedure (The SIRTF "Pipeline Picker") F and request (AOR, IER or SER) is assigned a pipeline thread to initiate processing. It was developed by J, the "pipeline picker" routine is triggered to uniquely determine an appropriate pipeline script-ID (pl

Masci, Frank

443

Air Pollution Physics and Chemistry EAS 6790 Home Work Assignment Ozone Chemistry 2  

E-Print Network (OSTI)

1 Air Pollution Physics and Chemistry EAS 6790 Fall 2010 Home Work Assignment Ozone Chemistry 2 and Chemistry EAS 6790 Fall 2006 Home Work Assignment No. 4, Ozone Chemistry Problems 11.8 and 11.9 (sub-part 1 and 2 only). Daniel Jacob, Atmospheric Chemistry #12;2 Problem 2: 2 2. Consider an air parcel ventilated

Weber, Rodney

444

Energy-aware Job Assignment in Server Farms with Setup Delays under LCFS and PS  

E-Print Network (OSTI)

Energy-aware Job Assignment in Server Farms with Setup Delays under LCFS and PS Esa Hyytiä of Communications and Networking Aalto University, Finland Abstract--We consider the job (or task) assignment problem to heterogeneous parallel servers, where servers can be switched off to save energy. However

Hyytiä, Esa

445

Audit Report - Follow-up Audit on Term Assignments of Contractor Employees, DOE-IG-0890  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Term on Term Assignments of Contractor Employees DOE/IG-0890 July 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 July 2, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-up Audit on Term Assignments of Contractor Employees" BACKGROUND The Department of Energy frequently assigns facility contractor personnel to the Washington, DC, area on a temporary basis when program officials consider it necessary to obtain technical expertise not available locally. Commonly referred to as term assignments, the estimated cost of all such assignments for Fiscal Year (FY) 2012 was over $37 million, all of which was

446

File:NREL-ak2-50m.pdf | Open Energy Information  

Open Energy Info (EERE)

ak2-50m.pdf ak2-50m.pdf Jump to: navigation, search File File history File usage Alaska Panhandle Annual Average Wind Speed at 50 Meters (PDF) Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 1.8 MB, MIME type: application/pdf) Title Alaska Panhandle Annual Average Wind Speed at 50 Meters (PDF) Description Alaska Panhandle Annual Average Wind Speed at 50 Meters (PDF) Sources National Renewable Energy Laboratory Related Technologies Wind Creation Date 2010/01/15 Extent State Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:46, 21 December 2010 Thumbnail for version as of 17:46, 21 December 2010 1,275 × 1,650 (1.8 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

447

File:NREL-ak-50m.pdf | Open Energy Information  

Open Energy Info (EERE)

ak-50m.pdf ak-50m.pdf Jump to: navigation, search File File history File usage Alaska Mainland Regions Annual Average Wind Speed at 50 Meters (PDF) Size of this preview: 776 × 599 pixels. Other resolution: 777 × 600 pixels. Full resolution ‎(1,647 × 1,272 pixels, file size: 6.1 MB, MIME type: application/pdf) Title Alaska Mainland Regions Annual Average Wind Speed at 50 Meters (PDF) Description Alaska Mainland Regions Annual Average Wind Speed at 50 Meters (PDF) Sources National Renewable Energy Laboratory Related Technologies Wind Creation Date 2010/01/15 Extent State Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:08, 21 December 2010 Thumbnail for version as of 15:08, 21 December 2010 1,647 × 1,272 (6.1 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

448

Annual Assignment Instructions for FAIR 3.0 To reach the Annual Assignment page, click the Annual Assignment link in the Modules section (see green box) or by selecting the Annual  

E-Print Network (OSTI)

) #12;You can search for the faculty member(s) for whom annual assignments are to be entered several ways. By default, the option to Search Records By Campus/College/Department is selected. If you wish narrow the results by specifying the college and/or department and by restricting the search to active

Fernandez, Eduardo

449

2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5  

U.S. Energy Information Administration (EIA) Indexed Site

TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5 2012,"Total Electric Power Industry","AK","Petroleum",4,4.8,4.8 2012,"Total Electric Power Industry","AK","Wind",1,24.6,24 2012,"Total Electric Power Industry","AK","All Sources",11,274.1,239.3 2012,"Total Electric Power Industry","AR","Coal",1,755,600 2012,"Total Electric Power Industry","AR","Natural Gas",1,22,20 2012,"Total Electric Power Industry","AR","All Sources",2,777,620

450

Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments  

Science Journals Connector (OSTI)

A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The ... of the assignment procedure to a particularly difficult protein, ?...

Veronika Mot?kov; Ji? Nov?ek; Anna Zawadzka-Kazimierczuk

2010-11-01T23:59:59.000Z

451

Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm  

E-Print Network (OSTI)

ARTICLE Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non, for disordered membrane proteins (H A multi-objective genetic algorithm is intro- duced to predict the assignment of protein solid-state NMR

Hong, Mei

452

Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983)  

Energy.gov (U.S. Department of Energy (DOE))

Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983)

453

Electric Utility Company Assigned to a Zip Code? | OpenEI Community  

Open Energy Info (EERE)

Electric Utility Company Assigned to a Zip Code? Electric Utility Company Assigned to a Zip Code? Home I have found an error in the utility company assigned to a zip code. I am not sure if the "assigned" utility company covers part of the zip code in question or not. How do I report an error like this for correction? Thanks. Submitted by Conroyt on 23 May, 2013 - 09:01 1 answer Points: 0 Thanks for submitting this. The Utilities Gateway (http://en.openei.org/wiki/Gateway:Utilities) uses the developer.nrel.gov service for zip-code lookups (http://developer.nrel.gov/doc/api/utility_rates/v3). This in turn uses Google for geocoding, and finds the centroid of the geographic region in question. This means that the result is based on the center of a zip code region, which may have no data. This question is timed well as we are

454

SELLER'S ASSIGNMENT OF REFUNDS, REBATES, CREDITS, AND OTHER AMOUNTS (Apr 2000)  

E-Print Network (OSTI)

SELLER'S ASSIGNMENT OF REFUNDS, REBATES, CREDITS, AND OTHER AMOUNTS (Apr 2000) Pursuant refunds, rebates, credits, and other amounts (including any interest thereon), arising out refunds, rebates, credits, and other amounts (including any interest thereon) due or which may become due

Pennycook, Steve

455

A linear programming solution to the gate assignment problem at airport terminals  

E-Print Network (OSTI)

This research solves the flight-to-gate assignment problem at airports in such a way as to minimize, or at least reduce, walking distances for passengers inside terminals. Two solution methods are suggested. The first is ...

Mangoubi, Rami

1980-01-01T23:59:59.000Z

456

Using News Assignments To Develop Skills for Learning about Science from Public Information Sources  

Science Journals Connector (OSTI)

Assignments based on contemporary issues with a science and technology basis were developed for use in general education chemistry classes. Students learned about issues such as the influenza vaccine through newspaper articles and other information ...

Mary M. Walczak

2007-06-01T23:59:59.000Z

457

Development of a genetic algorithm for multi-objective assembly line balancing using multiple assignment approach  

Science Journals Connector (OSTI)

In this study, a new genetic algorithm is developed for solving multi-objective single-model assembly line balancing problems. The proposed genetic algorithm is called multiple-assignment genetic algorithm (MA...

Tarek Al-Hawari; Marwan Ali; Omar Al-Araidah

2014-11-01T23:59:59.000Z

458

New 13C-detected experiments for the assignment of intrinsically disordered proteins  

Science Journals Connector (OSTI)

NMR assignment of intrinsically disordered proteins (IDPs) by conventional HN-detected methods...13C? and 15N chemical shifts holds even in IDPs, we recently proposed two 13C-detected experiments to directly corr...

David Pantoja-Uceda; Jorge Santoro

2014-05-01T23:59:59.000Z

459

Spatiotemporal Assignment of Energy Harvesters on a Self-Sustaining Medical Shoe  

E-Print Network (OSTI)

Spatiotemporal Assignment of Energy Harvesters on a Self-Sustaining Medical Shoe James B. Wendt does it address integration into existing sensing systems. We solve these issues and present a self-sustaining

Potkonjak, Miodrag

460

Topic Assignment as of 1/29/2011 Android hardware API (max # of presenter)  

E-Print Network (OSTI)

Topic Assignment as of 1/29/2011 Android hardware API (max # of presenter) 1. Taking a picture) Sevada Abraamyan; Other Android API 7. Android search framework (1) Dillon Kearns; 8. Web

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Assignment Carbon Footprints Name__Lachniet__ 1) See Figure 1.1a at the back of the assignment (from IPCC)  

E-Print Network (OSTI)

) How does the United States rank in terms of 'carbon intensity', the amount of emissions per capita, relative to other countries? The United States (and Canada) rank #1 in the highest 'carbon intensity' perAssignment Carbon Footprints Name__Lachniet__ 1) See Figure 1.1a at the back

Lachniet, Matthew S.

462

How to set up WebAssign The class key for this course is utah 6162 8688  

E-Print Network (OSTI)

How to set up WebAssign The class key for this course is utah 6162 8688 What to purchase: The text. Regardless of whether you do this, you must purchase Enhanced WebAssign (EWA), which will be used for homework, and additionally gives you many resources alongside the book. The textbook/WebAssign can

Singh, Anurag

463

Why Sequence Sinorhizobium meliloti strains AK83 and BL225C?  

NLE Websites -- All DOE Office Websites (Extended Search)

Sinorhizobium meliloti Sinorhizobium meliloti strains AK83 and BL225C? Nitrogen is a crucial element for plant growth and makes up nearly 80 percent of the Earth's atmosphere. Unfortunately plants can't use atmospheric nitrogen unless it is converted into another form. Fertilizers can supply the needed nitrogen, but they are made using processes that contribute to the amount of greenhouse gases in the atmosphere. On the other hand, symbiotic nitrogen fixation done by bacteria such as Rhizobia residing in the soil or in the roots of plants bypasses the need for nitrogen fertilizers and allows farmers to plant crops in marginal lands that might not normally be used as such. Symbiotic nitrogen fixation contributes some 90 million tons of fixed nitrogen annually for legume crops such as soybeans, red clover and peas. S meliloti is a symbiotic

464

File:EIA-AK-CookInlet-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

File File Edit with form History Facebook icon Twitter icon » File:EIA-AK-CookInlet-Gas.pdf Jump to: navigation, search File File history File usage Alaska's Cook Inlet By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 10.19 MB, MIME type: application/pdf) Description Alaska's Cook Inlet By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time.

465

File:EIA-AK-NorthSlope-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

File File Edit with form History Facebook icon Twitter icon » File:EIA-AK-NorthSlope-BOE.pdf Jump to: navigation, search File File history File usage Alaskan North Slope By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 2.16 MB, MIME type: application/pdf) Description Alaskan North Slope By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

466

3AK RIDGE NATIONAL LABORATORY OPERAiEO BY MARTIN MARIE,TA ENERGY SYSTEMS, INC.  

Office of Legacy Management (LM)

.I Y. ,J,.- i .I Y. ,J,.- i - 3AK RIDGE NATIONAL LABORATORY OPERAiEO BY MARTIN MARIE,TA ENERGY SYSTEMS, INC. POST OFFICE BOX X OAK RIOGE. TENNESSEE 37631 July 20, 1984 Ms. Gale P. Turi Division of Remedial Action Projects Office of Nuclear Energy U.S. Department of Energy MS - NE24 Washington, D.C. 20545 Dear Ms. Turi: Radfoloafcal Survey of the Guterl Steel Fad1 ftya 1 o&a As requested, a visit was made to the Guterl Steel facility (formerly Simonds Saw and Steel) on July 9, 1984 to determine if there have been significant changes in the radiological status of the facility since the last survey. In general, measurements made during this survey are con- sistent with those made during the 1977 survey (ORNL) and a follow-up survey in 1981 (FBD). Significant amounts of contaminated material are present in the rolling

467

RH-TRU Waste Inventory Characterization by AK and Proposed WIPP RH-TRU Waste Characterization Objectives  

SciTech Connect

The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. The DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay, and other sampling and analytical data. RH-TRU waste cannot be shipped to WIPP on the basis of AK alone if documentation demonstrating that all of the prescribed limits in the RH-WAC are met is not available, discrepancies exist among AK source documents describing the same waste stream and the most conservative assumptions regarding those documents indicates that a limit will not be met, or all required data are not available for a given waste stream.

Most, W. A.; Kehrman, R.; Gist, C.; Biedscheid, J.; Devarakonda, J.; Whitworth, J.

2002-02-26T23:59:59.000Z

468

Method and system for assigning a confidence metric for automated determination of optic disc location  

DOE Patents (OSTI)

A method for assigning a confidence metric for automated determination of optic disc location that includes analyzing a retinal image and determining at least two sets of coordinates locating an optic disc in the retinal image. The sets of coordinates can be determined using first and second image analysis techniques that are different from one another. An accuracy parameter can be calculated and compared to a primary risk cut-off value. A high confidence level can be assigned to the retinal image if the accuracy parameter is less than the primary risk cut-off value and a low confidence level can be assigned to the retinal image if the accuracy parameter is greater than the primary risk cut-off value. The primary risk cut-off value being selected to represent an acceptable risk of misdiagnosis of a disease having retinal manifestations by the automated technique.

Karnowski, Thomas P. (Knoxville, TN); Tobin, Jr., Kenneth W. (Harriman, TN); Muthusamy Govindasamy, Vijaya Priya (Knoxville, TN); Chaum, Edward (Memphis, TN)

2012-07-10T23:59:59.000Z

469

The Department of Energy's International Offices and Foreign Assignments, OAS-L-13-05  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy's Department of Energy's International Offices and Foreign Assignments OAS-L-13-05 January 2013 Department of Energy Washington, DC 20585 January 16, 2013 MEMORANDUM FOR THE ASSOCIATE PRINCIPAL DEPUTY ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION PRINCIPAL DEPUTY ASSISTANT SECRETARY FOR POLICY AND INTERNATIONAL AFFAIRS DEPUTY DIRECTOR FOR FIELD OPERATIONS, OFFICE OF SCIENCE FROM: David Sedillo Director, Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's International Offices and Foreign Assignments" BACKGROUND The mission of the Department of Energy and its semi-autonomous National Nuclear Security Administration (NNSA) is to ensure America's security and prosperity by addressing its energy,

470

Unclassified Foreign National Visits and Assignments at Oak Ridge National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unclassified Foreign National Visits Unclassified Foreign National Visits and Assignments at Oak Ridge National Laboratory INS-O-13-05 September 2013 Department of Energy Washington, DC 20585 September 16, 2013 MEMORANDUM FOR THE MANAGER, OAK RIDGE NATIONAL LABORATORY SITE OFFICE FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Unclassified Foreign National Visits and Assignments at Oak Ridge National Laboratory" BACKGROUND In support of its research and development mission, the Department of Energy's national laboratories host thousands of foreign national visitors and assignees (foreign nationals) every year for research collaborations and access to scientific user facilities. During calendar year

471

CNT4704: Analysis of Computer Communication Networks (Fall 2014) Programming Assignment 3: Port Scanning Tool  

E-Print Network (OSTI)

CNT4704: Analysis of Computer Communication Networks (Fall 2014) Programming Assignment 3: Port will reinforce your socket programming knowledge and skill to generate a small but useful port scanning tool, which can scan a remote machine for a range of TCP ports in order to find which TCP services have been

Zou, Cliff C.

472

Math 0280 Introduction to Matrices and Linear Algebra Exploration Assignment #2  

E-Print Network (OSTI)

multiplication and finding inverses in MATLAB, we discuss 1) Markov chains and 2) graphs. MATLAB CONCEPTS.e., A = AT ). In fact, the adjacency matrix of any graph is symmetric, because if there is an edge between vertices iMath 0280 Introduction to Matrices and Linear Algebra Exploration Assignment #2 (Matrix Operations

Wang, Dehua

473

Assigning mass values to in-house standard UF/sub 6/ cylinders  

SciTech Connect

A statistical experimental design called the Fast 4-1 Series is used to assign mass values to in-house standard UF/sub 6/ cylinders. This design is intended to minimize the number of weighings of large cylinders yet provide acceptable estimates of mass values and their precision. 5 refs.

Goldman, A.; McGuire, D.; Croarkin, C.

1987-01-01T23:59:59.000Z

474

ME 4171 Environmentally Conscious Design & Manufacturing (Bras) Assignment Aircraft Fuel Tank Production Pollution Prevention  

E-Print Network (OSTI)

ME 4171 ­ Environmentally Conscious Design & Manufacturing (Bras) Assignment ­ Aircraft Fuel Tank Production Pollution Prevention A local company manufactures a wide variety of fabric fuel tanks for use mainly in the aircraft industry. The main reasons for using fabric in the construction of these tanks

475

Vehicles as big data carriers: Road map space reduction and efficient data assignment  

E-Print Network (OSTI)

Vehicles as big data carriers: Road map space reduction and efficient data assignment Benjamin used mode of transport. We argue in favor of equipping standard electric vehicles with data storage´es Inria, U. de Lyon, INSA-Lyon CITI CNRS Abstract--We advocate the use of a data shuttle service model

Boyer, Edmond

476

Raman excitation profiles for the (n1, n2) assignment in carbon nanotubes  

E-Print Network (OSTI)

Raman excitation profiles for the (n1, n2) assignment in carbon nanotubes H. Telg , J. Maultzsch indices n1 and n2 in semiconducting and metallic nanotubes was performed comparing resonance Raman nanotube families. Ever since the discovery of how to keep isolated nanotubes from rebundeling in solu

Nabben, Reinhard

477

MULTI-TARGET ASSIGNMENT AND PATH PLANNING FOR GROUPS OF UAVS  

E-Print Network (OSTI)

Chapter 1 MULTI-TARGET ASSIGNMENT AND PATH PLANNING FOR GROUPS OF UAVS Theju Maddula Ali A. Minai of Cincinnati Cincinnati, OH 45221 Abstract Uninhabited autonomous vehicles (UAVs) have many useful military in the possibility of using large teams (swarms) of UAVs functioning cooperatively to accomplish a large number

Minai, Ali A.

478

Assignment on Algebra for Coding Theory EE512: Error Control Coding  

E-Print Network (OSTI)

of polynomials with coefficients from Z18. Find a, b Z18 (a = 1) such that 2x(x + 1) = 2x(ax + b) in Z18[xAssignment on Algebra for Coding Theory EE512: Error Control Coding Questions marked (Q) or (F

Thangaraj, Andrew

479

Physics 212E Classical and Modern Physics Spring 2012 Assignments for Week 5  

E-Print Network (OSTI)

Physics 212E Classical and Modern Physics Spring 2012 Assignments for Week 5 Reading Class Date coils, and rapid relative motion. Suppose you could move a large 1.0 T magnet over the face of a 10 cm diameter 200-turn coil. What time interval between maximum flux and no flux would you need to produce

Vollmayr-Lee, Ben

480

Assigning African elephant DNA to geographic region of origin: Applications to the ivory trade  

E-Print Network (OSTI)

Assigning African elephant DNA to geographic region of origin: Applications to the ivory trade for review May 7, 2004) Resurgence of illicit trade in African elephant ivory is placing the elephant geographic- specific allele frequencies over the entire African elephants' range for 16 microsatellite loci

Stephens, Matthew

Note: This page contains sample records for the topic "assignments ak anchorage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

HN(CA)N and HN(COCA)N experiments for assignment of large disordered proteins  

Science Journals Connector (OSTI)

Two new 3D HN-based experiments are proposed for backbone assignment of large disordered proteins. The spectra obtained with the new pulse...iNiNi) and provide sequential correlations (HiNiNi+1 and HiNiNi?1......

Xiao Liu; Daiwen Yang

2013-10-01T23:59:59.000Z

482

CS1428 : Honors Assignment 0: Algorithms in Real Life and Hello World  

E-Print Network (OSTI)

CS1428 : Honors Assignment 0: Algorithms in Real Life and Hello World 100 Points Due: Friday, Sep 6. The write-up does not need to be elaborate (1 page is sufficient). 2 Hello World Description For part two of this assginment you will write the hello world program in C++. This program has traditionally been the first

Qasem, Apan - Department of Computer Science, Texas State University

483

Simultaneous Team Assignment and Behavior Recognition from Spatio-temporal Agent Traces  

E-Print Network (OSTI)

-embodied agent teams. We define team activity recognition as the process of identifying team behaviors from to be static; this paper specif- ically addresses the problem of behavior recognition for teams with dynamic to perform multiple be- haviors in parallel. Relaxing the assumption of static team assignment is desirable

Sukthankar, Gita Reese

484

The Stiff Is Moving---Conjugate Direction Frank-Wolfe Methods with Applications to Traffic Assignment*  

Science Journals Connector (OSTI)

We present versions of the Frank-Wolfe method for linearly constrained convex programs, in which consecutive search directions are made conjugate. Preliminary computational studies in a MATLAB environment applying pure Frank-Wolfe, conjugate direction ... Keywords: conjugate directions, multicommodity flow, traffic assignment

Maria Mitradjieva; Per Olov Lindberg

2013-05-01T23:59:59.000Z

485

Minimum Power Assignment in Wireless Ad Hoc Networks with Spanner Property  

E-Print Network (OSTI)

be tested in polynomial time and is monotone [1], to minimize the maximum assigned power. We also give, they communicate through multi-hop wireless links by using intermediate nodes to relay the message. Larger distance uv . In other words, wuv > wxy if uv > xy and wuv = wxy if uv = xy . For example

Li, Xiang-Yang

486

Minimum Power Assignment in Wireless Ad Hoc Networks with Spanner Property  

E-Print Network (OSTI)

be tested in polynomial time, to minimize the maximum assigned power. We also give polynomial time through multi-hop wireless links by using intermediate nodes to relay the message. Generally, nodes nodes u and v is a monotone increasing function of the Euclidean #12;distance uv . In other words, wuv

Li, Xiang-Yang

487

A Memory Hierarchical Layer Assigning and Prefetching Technique to Overcome the Memory Performance/Energy Bottleneck  

E-Print Network (OSTI)

A Memory Hierarchical Layer Assigning and Prefetching Technique to Overcome the Memory Performance thanail@ee.duth.gr Abstract The memory subsystem has always been a bottleneck in performance as well as significant power contributor in memory intensive applications. Many researchers have pre- sented multi

Paris-Sud XI, Université de

488

Photometric analysis of overcontact binaries AK Her, HI Dra, V1128 Tau and V2612 Oph  

E-Print Network (OSTI)

We analyze new, high quality multicolor light curves of four overcontact binaries: AK Her, HI Dra, V1128 Tau and V2612 Oph, and determine their orbital and physical parameters using the modeling program of G. Djurasevic and recently published results of radial velocity studies. The achieved precision in absolute masses is between 10 and 20%, and in absolute radii between 5 and 10%. All four systems are W UMa type binaries with bright or dark spots indicative of mass and energy transfer or surface activity. We estimate the distances and the ages of the systems using the luminosities computed through our analysis, and perform an O-C study for V1128 Tau, which reveals a complex period variation that can be interpreted in terms of mass loss/exchange and either the presence of the third body, or the magnetic activity on one of the components. We conclude that further observations of these systems are needed to deepen our understanding of their nature and variability.

Caliskan, S; Djurasevic, G; Ozavci, I; Basturk, O; Cseki, A; Senavci, H V; Kilicoglu, T; Yilmaz, M; Selam, S O

2014-01-01T23:59:59.000Z

489

MATLAB Assignments  

E-Print Network (OSTI)

The graph is pretty crude because 9 oscillates more as x increases. A second way to .... The diagonal matrix V lists the eigenvalues of A and the corresponding

490

Assignment Sheet  

E-Print Network (OSTI)

the Matlab projects. Download these from the MA 266 course webpage. The "?" problems have slightly different numbers in the other edition. Lesson. Section.

2014-08-14T23:59:59.000Z

491

Assignment Sheet  

E-Print Network (OSTI)

A one-line, scientific calculator with logarithm and exponential functions is required. ... Problems in bold print are to be completed on paper and may be collected by .... LAST DAY TO WITHDRAW FROM THE COURSE (WILL RECEIVE A 'W').

Bailey, Charlotte M

2012-12-12T23:59:59.000Z

492

Assignment 4  

E-Print Network (OSTI)

represents the electric current ?owing from the capacitor to the ?ash bulb ... If you watch the speedometer of a car as you travel in city traf?c, you see that the...

493

Assignment 2  

E-Print Network (OSTI)

(See Figure 2 and the following chart, where the results of other stretching ... For instance, in order to get the graph of y = 2 cos x we multiply the y-coordinate of each ..... the average brightness (or magnitude) of the star is 4.0, and its brightness...

494

ASSIGNMENT 5 :  

E-Print Network (OSTI)

and other fish eating fish than was true before or after the war. Let x=x(t) denote the population of prey and y=y(t) the population of predators. From section.

495

Assignment 3  

E-Print Network (OSTI)

ria in a limited nutrient medium; the size of the bacteria population was ... Horizontol line Test A function is one-to-one if and only if no horizontal line inter-.

496

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

2,174 2,174 129,783 12,857.0 9.91 Alaska Power and Telephone Co AK Investor Owned 2,173 40,397 10,705.0 26.50 Alaska Village Elec Coop, Inc AK Cooperative 1,775 42,871 23,433.0 54.66 Anchorage Municipal Light and Power AK Municipal 6,304 953,876 83,738.0 8.78 Barrow Utils & Elec Coop, Inc AK Cooperative 400 38,069 3,929.0 10.32 Bethel Utilities Corp AK Investor Owned 1,017 30,229 16,102.0 53.27 Chugach Electric Assn Inc AK Cooperative 9,204 574,284 67,370.0 11.73 City & Borough of Sitka - (AK) AK Municipal 1,622 58,534 5,638.0 9.63 City of Petersburg - (AK) AK Municipal 717 9,064 1,030.5 11.37 City of Seward - (AK) AK Municipal 503 8,651 1,869.0 21.60 City of Unalaska - (AK) AK Municipal 242 11,183 4,906.4 43.87 City of Wrangell - (AK) AK Municipal 778 19,919 2,132.0 10.70 Copper Valley Elec Assn, Inc AK Cooperative 797 65,757

497

Entity State Ownership  

U.S. Energy Information Administration (EIA) Indexed Site

3,912 3,912 142,255 16,970.0 11.93 Alaska Power and Telephone Co AK Investor Owned 4,803 24,391 7,470.0 30.63 Alaska Village Elec Coop, Inc AK Cooperative 6,148 31,085 19,275.0 62.01 Anchorage Municipal Light and Power AK Municipal 24,443 146,789 17,221.2 11.73 Barrow Utils & Elec Coop, Inc AK Cooperative 1,471 11,511 1,364.0 11.85 Bethel Utilities Corp AK Investor Owned 1,671 10,677 5,990.0 56.10 Chugach Electric Assn Inc AK Cooperative 69,495 549,748 76,083.0 13.84 City & Borough of Sitka - (AK) AK Municipal 3,669 47,899 4,570.0 9.54 City of Petersburg - (AK) AK Municipal 1,354 20,803 2,010.2 9.66 City of Seward - (AK) AK Municipal 2,064 16,488 3,344.0 20.28 City of Unalaska - (AK) AK Municipal 686 4,009 1,997.6 49.83 City of Wrangell - (AK) AK Municipal 1,170 15,273 1,604.0 10.50 Copper Valley Elec Assn, Inc AK Cooperative

498

A Mixed-Integer Linear Programming Model for Optimizing the Scheduling and Assignment of Tank Farm Operations  

E-Print Network (OSTI)

1 A Mixed-Integer Linear Programming Model for Optimizing the Scheduling and Assignment of Tank) formulation for the Tank Farm Operation Problem (TFOP), which involves simultaneous scheduling of continuous multi-product processing lines and the assignment of dedicated storage tanks to finished products

Grossmann, Ignacio E.

499

Blackboard Learning Services V-F1 Page 1 Blackboard Inc. Digital Drop Box vs. Assignment Manager Tip Sheet  

E-Print Network (OSTI)

Blackboard Learning Services V-F1 Page 1 Blackboard Inc. Digital Drop Box vs. Assignment Manager Tip Sheet Blackboard Best Practices: Digital Drop Box vs. Assignment Manager A Blackboard Learning causes confusion for students and instructors alike. Adding a File When a user elects to Add File

500

User 'To Do' List as Soon as Beam Time is Assigned | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

'To Do' List as Soon as Beam Time is Assigned 'To Do' List as Soon as Beam Time is Assigned Safety Review of Scheduled Experiments Identify potential safety issues on proposals and beam time requests. If there are any potential hazards with your samples, materials you are using, or overall set up you may be contacted by the safety office depending on the degree of the hazard indicated. If you want to bring hazardous equipment or substances to SSRL and have not previously indicated this on either your proposal or beam time request (BTR), contact the safety office immediately. Additionally, any changes you may wish to make to your proposal or BTR must be reviewed and approved by the safety office in advance. Late changes that involve potential hazards may not be possible. The experiment information provided by users is used to generate a Safety