Powered by Deep Web Technologies
Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sand Hills EA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- - Office Name and State goes here Environmental Assessment Sand Hills Wind Energy Facility Albany County, Wyoming May 2011 High Desert District Rawlins Field Office The BLM's multiple-use mission is to sustain the health and productivity of the public lands for the use and enjoyment of present and future generations. The Bureau accomplishes this by managing such activities as outdoor recreation, livestock grazing, mineral development, and energy production, and by conserving natural, historical, cultural, and other resources on public lands. BLM/WY/PL-11/035+1430 WY-030-EA09-314 Contents Chapter Page Acronyms and Abbreviations .................................................................................................. ix

2

EA-1581: Sand Hills Wind Project, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

The Bureau of Land Management, with DOEs Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line.

3

EA-1581: Sand Hills Wind Project, Wyoming | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81: Sand Hills Wind Project, Wyoming 81: Sand Hills Wind Project, Wyoming EA-1581: Sand Hills Wind Project, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Summary The Bureau of Land Management, with DOE's Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line. Public Comment Opportunities No public comment opportunities available at this time. List of Available Documents

4

An Observational Analysis and Evaluation of Land Surface Model Accuracy in the Nebraska Sand Hills  

Science Conference Proceedings (OSTI)

In this study, the influence of subsurface water on the energy budget components of three locations with heterogeneous land surfaces in the Nebraska Sand Hills are examined through observations and use of the Noah land surface model (LSM). ...

David B. Radell; Clinton M. Rowe

2008-08-01T23:59:59.000Z

5

Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road,  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostics with an X-ray Laser? Lessons from the First Diagnostics with an X-ray Laser? Lessons from the First Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA What does airborne particulate matter look like? How do we develop quantitative descriptors for particles of complex morphology? These challenges were highlighted in the NIST workshop report "Aerosol Metrology Needs for Climate Science" (Dec, 2011). Sure, we can capture aerosol particles on surfaces - removing them from their airborne state - and probe them with high resolution optical and chemical imaging tools, but what information do we lose about the airborne particles? How can we follow dynamics? In this talk we will explore these very basic questions and their importance to combustion

6

Constitutive models for the Etchegoin Sands, Belridge Diatomite, and overburden formations at the Lost Hills oil field, California  

SciTech Connect

This report documents the development of constitutive material models for the overburden formations, reservoir formations, and underlying strata at the Lost Hills oil field located about 45 miles northwest of Bakersfield in Kern County, California. Triaxial rock mechanics tests were performed on specimens prepared from cores recovered from the Lost Hills field, and included measurements of axial and radial stresses and strains under different load paths. The tested intervals comprise diatomaceous sands of the Etchegoin Formation and several diatomite types of the Belridge Diatomite Member of the Monterey Formation, including cycles both above and below the diagenetic phase boundary between opal-A and opal-CT. The laboratory data are used to drive constitutive parameters for the Extended Sandler-Rubin (ESR) cap model that is implemented in Sandia's structural mechanics finite element code JAS3D. Available data in the literature are also used to derive ESR shear failure parameters for overburden formations. The material models are being used in large-scale three-dimensional geomechanical simulations of the reservoir behavior during primary and secondary recovery.

FOSSUM,ARLO F.; FREDRICH,JOANNE T.

2000-04-01T23:59:59.000Z

7

The Sand Hills Biocomplexity Project  

E-Print Network (OSTI)

(St. Olaf, 2006) · Susan Frack (teacher) · Polla Hartley (teacher) · Grant Ferris (teacher) · Joshua

Nebraska-Lincoln, University of

8

Engineering assessment of radioactive sands and residues, Lowman Site, Lowman, Idaho  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has reevaluated the Lowman site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive sands and residues at Lowman, Idaho. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of radioactive sands and residues and radiation exposure of individuals and nearby populations, and investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 191,000 tons of radioactive sands, residues, and contaminated soils at the Lowman site constitutes the most significant environmental impact, although windblown radioactive sands and external gamma radiation also are factors.

Not Available

1981-09-01T23:59:59.000Z

9

Geothermal exploration assessment and interpretation, Klamath Basin, Oregon: Swan Lake and Klamath Hills area  

DOE Green Energy (OSTI)

A synthesis and preliminary interpretation of predominantly geophysical information relating to the Klamath Basin geothermal resource is presented. The Swan Lake Valley area, northeast of Klamath Falls, and the Klamath Hills area, south of Klamath Falls, are discussed in detail. Available geophysical data, including gravity, magnetic, electrical resistivity, microearthquake, roving dipole resistivity, audio-magnetotelluric (AMT) and magnetotelluric (MT) data sets, are examined and reinterpreted for these areas. One- and two-dimensional modeling techniques are applied, and general agreement among overlapping data sets is achieved. The MT method appears well suited to this type of exploration, although interpretation is difficult in the complex geology. Roving dipole and AMT are useful in reconnaissance, while gravity and magnetics help in defining structure. For the Swan Lake Valley the data suggest buried electrically conductive zones beneath Meadow Lake Valley and Swan Lake, connected by a conductive layer at 1 kilometer depth. In the Klamath Hills area, the data suggest a conductive zone centered near the northwestern tip of Stukel Mountain, associated with a concealed northeast-trending cross-fault. Another conductive zone appears near some producing hot wells at the southwestern edge of the Klamath Hills. These conductive zones may represent geothermal reservoirs. Follow-up work is recommended for each target area.

Stark, M.; Goldstein, N.; Wollenberg, H.; Strisower, B.; Hege, H.; Wilt, M.

1979-05-01T23:59:59.000Z

10

Geothermal resource exploration assessment and data interpretation, Klamath Basin, Oregon: Swan Lake and Klamath Hills area  

DOE Green Energy (OSTI)

A synthesis and preliminary interpretation of predominantly geophysical information relating to the Klamath Basin geothermal resource is presented. The Swan Lake Valley area, northeast of Klamath Falls, and the Klamath Hills area, south of Klamath Falls, are discussed in detail. Available geophysical data, including gravity, magnetic, electrical resistivity, microseismic, roving dipole resistivity, audio-magnetotelluric (AMT) and magnetotelluric (MT) data sets, are examined and reinterpreted for these areas. One- and two-dimensional modeling techniques are applied, and general agreement among overlapping data sets is achieved. The MT method appears well suited to this type of exploration, although interpretation is difficult in the complex geology. Roving dipole and AMT are useful in reconnaissance, while gravity and magnetics help in defining structure. For the Swan Lake Valley the data suggest buried electrically conductive zones beneath Meadow Lake Valley and Swan Lake, connected by a conductive layer at 1 kilometer depth. In the Klamath Hills area, the data suggest a conductive zone centered near the northwestern tip of Stukel Mountain, associated with a concealed northeast-trending cross-fault. Another conductive zone appears near some producing hot wells at the southwestern edge of the Klamath Hills. These conductive zones may represent geothermal reservoirs. Specific types of follow-up work are recommended for each target area.

Stark, M.; Goldstein, N.; Wollenberg, H.; Strisower, B.; Hege, M.

1978-10-01T23:59:59.000Z

11

DOE/EA-1584: Final Environmental Assessment for Sand Point Wind Installation Project, Sand Point, Alaska (September 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sand Point Wind Installation Project Sand Point, Alaska DOE/EA -1584 U.S. Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401-3305 September 2009 TABLE OF CONTENTS Page 1.0 INTRODUCTION .............................................................................................................. 1 1.1 NATIONAL ENVIRONMENTAL POLICY ACT AND RELATED PROCEDURES....................................................................................................... 1 1.2 BACKGROUND .................................................................................................... 1 1.3 PURPOSE AND NEED.......................................................................................... 2 1.4 PUBLIC SCOPING AND CONSULTATION.......................................................

12

Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits  

SciTech Connect

The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

1981-10-13T23:59:59.000Z

13

Evaluation of metals release from oil sands coke : an ecotoxicological assessment of risk and hazard to aquatic invertebrates .  

E-Print Network (OSTI)

??The oil sands operations in northeast Alberta, Canada, employ unconventional processes to produce synthetic crude oil (SCO). Because the extracted bitumen, the form of oil (more)

PUTTASWAMY, NAVEEN V

2011-01-01T23:59:59.000Z

14

Silica Sand  

NLE Websites -- All DOE Office Websites (Extended Search)

the molds and cores in foundries that make steel castings, and for casting gray iron, brass, aluminum and magnesium metals. Since silica sand has a very high melting point, it is...

15

Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands  

SciTech Connect

Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.

Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

1980-02-01T23:59:59.000Z

16

EA-1581: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81: Draft Environmental Assessment 81: Draft Environmental Assessment EA-1581: Draft Environmental Assessment Sand Hills Wind Energy Facility Albany County, Wyoming WindEnergy, Inc. (SWE or applicant) submitted a request to the U.S. Department of the Interior, Bureau of Land Management (BLM), Rawlins Field Office for a right-of-way (ROW) on BLM-administered lands (Proposed Action). SWE proposes to construct, operate, and maintain the Sand Hills Wind Energy Facility (Facility) in Albany County, Wyoming. The Facility, which would be located approximately 30 miles west of Laramie, would have an aggregate nominal nameplate generating capacity of up to 50 megawatts (MW) of electricity and would include up to 25, 2.0-MW wind turbines.This Environmental Assessment (EA) has been prepared to analyze the

17

Sunny Hill Energy | Open Energy Information  

Open Energy Info (EERE)

Sunny Hill Energy Jump to: navigation, search Name Sunny Hill Energy Place San Jose, California Zip 95113 Sector Solar Product California-based solar financing and business support...

18

Spittal Hill Wind Farm | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Spittal Hill Wind Farm Jump to: navigation, search Name Spittal Hill Wind Farm Place United Kingdom...

19

Black Hills Corporation | Open Energy Information  

Open Energy Info (EERE)

Black Hills Corporation Jump to: navigation, search Name Black Hills Corporation Place Rapid City, South Dakota Zip 57709 Product Diversified energy and communications company....

20

Record Hill | Open Energy Information  

Open Energy Info (EERE)

Record Hill Record Hill Jump to: navigation, search Name Record Hill Facility Record Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wagner Wind Energy - Independence Wind LLC Developer Wagner Wind Energy - Independence Wind LLC Location Roxbury ME Coordinates 44.66175478°, -70.63453674° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.66175478,"lon":-70.63453674,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Glacier Hills | Open Energy Information  

Open Energy Info (EERE)

Glacier Hills Glacier Hills Jump to: navigation, search Name Glacier Hills Facility Glacier Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner We Energies Developer We Energies Energy Purchaser We Energies Location Between Portage and Randolph above Highway 33 WI Coordinates 43.572059°, -89.111309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.572059,"lon":-89.111309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Cedro Hill | Open Energy Information  

Open Energy Info (EERE)

Cedro Hill Cedro Hill Jump to: navigation, search Name Cedro Hill Facility Cedro Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Energy Developer DKRW Wind LLC Location Located in Bruni TX Coordinates 27.56341162°, -98.91720772° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.56341162,"lon":-98.91720772,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Mustang Hills | Open Energy Information  

Open Energy Info (EERE)

Hills Hills Jump to: navigation, search Name Mustang Hills Facility Mustang Hills (Alta VI) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terra-Gen Power Developer Terra-Gen Power Energy Purchaser Southern California Edison Co Location Tehachapi Pass CA Coordinates 35.01917213°, -118.3031845° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.01917213,"lon":-118.3031845,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Bull Hill | Open Energy Information  

Open Energy Info (EERE)

Hill Hill Jump to: navigation, search Name Bull Hill Facility Bull Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser NSTAR Location Hancock County ME Coordinates 44.723076°, -68.170852° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.723076,"lon":-68.170852,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California  

SciTech Connect

A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

Reid, S.A.; Thompson, T.W. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

1996-01-01T23:59:59.000Z

26

PP-118 Hill County Electric Cooperative Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18 Hill County Electric Cooperative Inc PP-118 Hill County Electric Cooperative Inc Presidential permit authorizing Hill County Electric Cooperative Inc to construct, operate, and...

27

Crosshole EM for oil field characterization and EOR monitoring: Field examples from Lost Hills, California  

SciTech Connect

A steamflood recently initiated by Mobil Development and Production U.S. at the Lost Hills No 3 oil field in California is notable for its shallow depth and the application of electromagnetic (EM) geophysical techniques to monitor the subsurface steam flow. Steam was injected into three stacked eastward-dipping unconsolidated oil sands at depths from 60 to 120 m; the plume is expected to develop as an ellipsoid aligned with the regional northwest-southeast strike. Because of the shallow depth of the sands and the high viscosity of the heavy oil, it is important to track the steam in the unconsolidated sediments for both economic and safety reasons. Crosshole and surface-to-borehole electromagnetic imaging were applied for reservoir characterization and steamflood monitoring. The crosshole EM data were collected to map the interwell distribution of the high-resistivity oil sands and to track the injected steam and hot water. Measurements were made in two fiberglass-cased observation wells straddling the steam injector on a northeast-southwest profile. Field data were collected before the steam drive, to map the distribution of the oil sands, and then 6 and 10 months after steam was injected, to monitor the expansion of the steam chest. Resistivity images derived from the collected data clearly delineated the distribution and dipping structure of the target oil sands. Difference images from data collected before and during steamflooding indicate that the steam chest has developed only in the middle and lower oil sands, and it has preferentially migrated westward in the middle oil sand and eastward in the deeper sand. Surface-to-borehole field data sets at Lost Hills were responsive to the large-scale subsurface structure but insufficiently sensitive to model steam chest development in the middle and lower oil sands. As the steam chest develops further, these data will be of more use for process monitoring.

Wilt, M.; Schenkel, C.; Wratcher, M.; Lambert, I.; Torres-Verdin, C.; Tseng H.W.

1996-07-16T23:59:59.000Z

28

Trinity Hills | Open Energy Information  

Open Energy Info (EERE)

Trinity Hills Trinity Hills Facility Trinity Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy Developer BP Wind Energy Energy Purchaser Merchant Location Archer and Yound Counties TX Coordinates 33.401504°, -98.7115027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.401504,"lon":-98.7115027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Laurel Hill | Open Energy Information  

Open Energy Info (EERE)

Laurel Hill Laurel Hill Facility Laurel Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Duke Energy Developer Duke Enegy Energy Purchaser Delaware Municipal Electric Corp Location Lycoming County PA Coordinates 41.5245155°, -77.04111099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5245155,"lon":-77.04111099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Sandy Hill Case Study Packet 2004  

Science Conference Proceedings (OSTI)

Sandy Hill Case Study Packet 2004. The Baldrige Case Study Packet is composed of documents used to train Baldrige ...

2010-10-05T23:59:59.000Z

31

Smoky Hill and River Valleys  

E-Print Network (OSTI)

.............................................................................3 - 13 Wind Energy and the Meridian Way Wind Farm County. This location is the site of a new wind farm development by Westar Energy, Horizon Wind EnergySmoky Hill and Republican River Valleys Water, Wind, and Economic Development 2008 Field Conference

Peterson, Blake R.

32

Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California  

Science Conference Proceedings (OSTI)

Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which has less measured fault displacement. The main difference between the DGZ and the LSOZ appears to be the presence of a sandpoor area in the LSOZ in eastern Elk Hills. The lack of permeable migration pathways in this area would not allow eastern bacterial gas to migrate farther updip into western Elk Hills. A similar sand-poor area does not appear to exist in the DGZ but future research may be necessary to verify this.

Janice Gillespie

2004-11-01T23:59:59.000Z

33

Union Hill-Novelty Hill, Washington: Energy Resources | Open Energy  

Open Energy Info (EERE)

Novelty Hill, Washington: Energy Resources Novelty Hill, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.6798082°, -122.016938° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6798082,"lon":-122.016938,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Long Hill Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Hill Energy Ltd Hill Energy Ltd Jump to: navigation, search Name Long Hill Energy Ltd Place United Kingdom Sector Wind energy Product JV formed by Snowmountain Eneterprises Ltd and Wind Direct Ltd to develop single wind turbine installations. References Long Hill Energy Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Long Hill Energy Ltd is a company located in United Kingdom . References ↑ "Long Hill Energy Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Long_Hill_Energy_Ltd&oldid=348446" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

35

Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site CH2M Hill Plateau Site CH2M Hill Plateau Remediation Company - November 2012 Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company - November 2012 November 2012 Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes This report documents the independent review of implementation verification review (IVR) processes at the Hanford Site CH2M Hill Plateau Remediation Company that were conducted by the Office of Enforcement and Oversight (Independent Oversight), which is within the U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS). The onsite review was performed by the HSS Office of Safety and Emergency Management Evaluations from August 13 to17, 2012. The objective of this assessment was to evaluate

36

Black Hills Power- Residential Customer Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

37

Black Hills Energy (Electric) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

unit Freezer: 30unit Dishwasher: 30unit RefrigeratorFreezer Recycling: 50unit CFLLED Bulbs: In-store rebates Black Hills Energy (BHE) offers rebates for residential...

38

Team Sand Point (SP)  

E-Print Network (OSTI)

The purpose of this flight report is to summarize the field activities of the ShoreZone aerial video imaging (AVI) survey conducted out of Sand Point and Cold Bay in

Team Cold Bay (cb

2011-01-01T23:59:59.000Z

39

NUFO Science Exhibition on Capitol Hill Draws Congressmen, Crowds  

NLE Websites -- All DOE Office Websites (Extended Search)

NUFO Science Exhibition on Capitol Hill Draws Congressmen, Crowds NUFO Science Exhibition on Capitol Hill Draws Congressmen, Crowds Print At the invitation of the House Science and...

40

Tar Sands | Open Energy Information  

Open Energy Info (EERE)

Tar Sands Tar Sands Jump to: navigation, search More info on OpenEI Oil and Gas Gateway Federal Environmental Statues Federal Oil and Gas Statutes Oil and Gas Companies United States Oil and Gas Boards International Oil and Gas Boards Related Reports Keystone Pipeline System Canada's Oil Sands Royal Society of Canada: Environmental and Health Impacts of Canada's Oil Sands Industry Dictionary.png Tar Sands: A resource, found in particular abundance in Canada, where viscous petroleum is mixed in with a layer of sand, clay, and water. The form of petroleum is often referred to as "bitumen". The resource has only recently been considered part of the world's oil reserves Other definitions:Wikipedia Reegle Tarsands1.png About Tar Sands The Tar Sands, also referred to as Oil Sands, or Bitumen Sands, are a

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Policy Analysis of the Canadian Oil Sands Experience  

SciTech Connect

For those who support U.S. oil sands development, the Canadian oil sands industry is often identified as a model the U.S. might emulate, yielding financial and energy security benefits. For opponents of domestic oil sands development, the Canadian oil sands experience illustrates the risks that opponents of development believe should deter domestic policymakers from incenting U.S. oil sands development. This report does not seek to evaluate the particular underpinnings of either side of this policy argument, but rather attempts to delve into the question of whether the Canadian experience has relevance as a foundational model for U.S. oil sands development. More specifically, this report seeks to assess whether and how the Canadian oil sands experience might be predictive or instructive in the context of fashioning a framework for a U.S. oil sands industry. In evaluating the implications of these underpinnings for a prospective U.S. oil sands industry, this report concentrates on prospective development of the oil sands deposits found in Utah.

None, None

2013-09-01T23:59:59.000Z

42

Sand consolidation methods  

SciTech Connect

This patent describes a method for consolidating unconsolidated mineral particles including sand in a subterranean petroleum formation penetrated by a well in fluid communication with at least a portion of the formation. It comprises: providing a sand consolidating fluid comprising a polymerizable monomer, diluent for the monomer, and a nonvolatile strong acid catalyst capable of causing polymerization of the monomer at fluid injection temperatures; mixing the sand consolidating fluid with steam to form a multiphase treating fluid; injecting the treating fluid into the formation to occupy the void space of at least a portion of the formation adjacent to the well; and allowing the injected fluids to remain in the formations for a period of time sufficient to accomplish at least partial polymerization of the monomer, forming a permeable consolidated mass around the wellbore. Also described is a method for forming a fluid impermeable zone in a permeable, subterranean oil-containing formation adjacent to a wellbore penetrating the formation.

Friedman, R.H.; Surles, B.W.; Fader, P.D.

1990-02-27T23:59:59.000Z

43

Campbell Hill Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Campbell Hill Wind Farm Campbell Hill Wind Farm Jump to: navigation, search Name Campbell Hill Wind Farm Facility Campbell Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Duke Energy Carolinas LLC Developer Duke Energy Carolinas LLC Energy Purchaser PacifiCorp Location Northeast of Casper WY Coordinates 42.998955°, -106.021366° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.998955,"lon":-106.021366,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

NPP Grassland: Beacon Hill, U.K.  

NLE Websites -- All DOE Office Websites (Extended Search)

Beacon Hill, U.K., 1972-1973 Beacon Hill, U.K., 1972-1973 [PHOTOGRAPH] Photograph: General view of study site in 1973 (click on the photo to view a series of images from this site). Data Citation Cite this data set as follows: Williamson, P., and J. Pitman. 1998. NPP Grassland: Beacon Hill, U.K., 1972-1973. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Productivity of a chalk grassland was studied from 1972 to 1973 at Beacon Hill, West Sussex, U.K. Measurements of above-ground live biomass and total dead matter were made approximately bi-monthly. Above-ground net primary production was estimated by several methods, including peak live biomass, peak total live and dead, and accounting for turnover determined from

45

Mendota Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hills Wind Farm Hills Wind Farm Jump to: navigation, search Name Mendota Hills Wind Farm Facility Mendota Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GE Energy Developer Navitas Energy Energy Purchaser Exelon Location Near Paw Paw IL Coordinates 41.738291°, -89.044032° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.738291,"lon":-89.044032,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Canadian Hills (Mitsubishi) | Open Energy Information  

Open Energy Info (EERE)

Hills (Mitsubishi) Hills (Mitsubishi) Jump to: navigation, search Name Canadian Hills (Mitsubishi) Facility Canadian Hills (Mitsubishi) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Atlantic Power Corp Developer Apex Wind Energy Energy Purchaser Oklahoma Municipal Power Authority / SWEPCO Location Calumet OK Coordinates 35.69756036°, -98.20438385° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.69756036,"lon":-98.20438385,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Chandler Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Chandler Hills Wind Farm Chandler Hills Wind Farm Jump to: navigation, search Name Chandler Hills Wind Farm Facility Chandler Hills Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terra-Gen Power Energy Purchaser Great River Energy Location Chandler Murray County MN Coordinates 43.916988°, -95.953898° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.916988,"lon":-95.953898,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Crofton Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Crofton Hills Wind Farm Crofton Hills Wind Farm Facility Crofton Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Crofton Hills Wind Developer Juhl Wind Energy Purchaser NPPD Location South of Crofton NE Coordinates 42.700138°, -97.505236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.700138,"lon":-97.505236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Canadian Hills (Repower) | Open Energy Information  

Open Energy Info (EERE)

Canadian Hills (Repower) Canadian Hills (Repower) Jump to: navigation, search Name Canadian Hills (Repower) Facility Canadian Hills (Repower) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Atlantic Power Corp Developer Apex Wind Energy Energy Purchaser Oklahoma Municipal Power Authority / SWEPCO Location Calumet OK Coordinates 35.66212553°, -98.12820911° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.66212553,"lon":-98.12820911,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Sibley Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hills Wind Farm Hills Wind Farm Jump to: navigation, search Name Sibley Hills Wind Farm Facility Sibley Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Northern Alternative Energy Developer Northern Alternative Energy Energy Purchaser Alliant/IES Utilities Location Sibley IA Coordinates 43.4037°, -95.7417° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4037,"lon":-95.7417,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Combine Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Combine Hills Wind Farm Combine Hills Wind Farm Jump to: navigation, search Name Combine Hills Wind Farm Facility Combine Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/Eurus Developer Eurus Energy Purchaser PacifiCorp Location Near Umapine OR Coordinates 45.94152°, -118.589137° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.94152,"lon":-118.589137,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Woodstock Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Woodstock Hills Wind Farm Woodstock Hills Wind Farm Jump to: navigation, search Name Woodstock Hills Wind Farm Facility Woodstock Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind and Edison Mission Group (owns majority) Developer Woodstock Windfarms Energy Purchaser Xcel Energy Location Pipestone County MN Coordinates 43.9948°, -96.3175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9948,"lon":-96.3175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Bishop Hill I | Open Energy Information  

Open Energy Info (EERE)

Bishop Hill I Bishop Hill I Jump to: navigation, search Name Bishop Hill I Facility Bishop Hill I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ivenergy Developer Ivenergy Energy Purchaser Tennessee Valley Authority Location Altona IL Coordinates 41.15978766°, -90.10059357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15978766,"lon":-90.10059357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Wilmont Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wilmont Hills Wind Farm Wilmont Hills Wind Farm Jump to: navigation, search Name Wilmont Hills Wind Farm Facility Wilmont Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Northern Alternative Energy Developer Northern Alternative Energy Energy Purchaser Alliant Energy Location Nobles County MN Coordinates 43.761108°, -95.8276° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.761108,"lon":-95.8276,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Goodnoe Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goodnoe Hills Wind Farm Goodnoe Hills Wind Farm Jump to: navigation, search Name Goodnoe Hills Wind Farm Facility Goodnoe Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco/Power Holdings Developer EnXco/Power Holdings Energy Purchaser PacifiCorp Location Goldendale Coordinates 45.784293°, -120.552475° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.784293,"lon":-120.552475,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Arbor Hills Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hills Biomass Facility Hills Biomass Facility Jump to: navigation, search Name Arbor Hills Biomass Facility Facility Arbor Hills Sector Biomass Facility Type Landfill Gas Location Washtenaw County, Michigan Coordinates 42.3076493°, -83.8473015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3076493,"lon":-83.8473015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Bunker Hill Sediment Characterization Study  

SciTech Connect

The long history of mineral extraction in the Coeur dAlene Basin has left a legacy of heavy metal laden mine tailings that have accumulated along the Coeur dAlene River and its tributaries (U.S. Environmental Protection Agency, 2001; Barton, 2002). Silver, lead and zinc were the primary metals of economic interest in the area, but the ores contained other elements that have become environmental hazards including zinc, cadmium, lead, arsenic, nickel, and copper. The metals have contaminated the water and sediments of Lake Coeur dAlene, and continue to be transported downstream to Spokane Washington via the Spokane River. In 1983, the EPA listed the Bunker Hill Mining and Metallurgical Complex on the National Priorities List. Since that time, many of the most contaminated areas have been stabilized or isolated, however metal contaminants continue to migrate through the basin. Designation as a Superfund site causes significant problems for the economically depressed communities in the area. Identification of primary sources of contamination can help set priorities for cleanup and cleanup options, which can include source removal, water treatment or no action depending on knowledge about the mobility of contaminants relative to water flow. The mobility of contaminant mobility under natural or engineered conditions depends on multiple factors including the physical and chemical state (or speciation) of metals and the range of processes, some of which can be seasonal, that cause mobilization of metals. As a result, it is particularly important to understand metal speciation (National Research Council, 2005) and the link between speciation and the rates of metal migration and the impact of natural or engineered variations in flow, biological activity or water chemistry.

Neal A. Yancey; Debby F. Bruhn

2009-12-01T23:59:59.000Z

58

Independent Oversight Review, Richland Operations Office and CH2M Hill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and CH2M and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 Independent Oversight Review, Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 April 2012 Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), was to observe and shadow1 a DOE Richland Operations Office (DOE-RL) assessment of its contractors at the Hanford Site. The HSS reviewer observed the implementation and effectiveness of the DOE-RL assessment of two of the contractors (CHPRC and

59

Independent Oversight Review, Richland Operations Office and CH2M Hill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richland Operations Office and CH2M Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 Independent Oversight Review, Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance - April 2012 April 2012 Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), was to observe and shadow1 a DOE Richland Operations Office (DOE-RL) assessment of its contractors at the Hanford Site. The HSS reviewer observed the implementation and effectiveness of the DOE-RL assessment of two of the contractors (CHPRC and

60

PROCESSING OF MONAZITE SAND  

DOE Patents (OSTI)

A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.

Calkins, G.D.; Bohlmann, E.G.

1957-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sand consolidation method  

SciTech Connect

This patent describes a method of treating a subterranean, unconsolidated sand and petroleum-containing formation whose temperature is less than 200{degrees}F penetrated by at least one well, which is in fluid communication with at least a portion of the unconsolidated sand-containing subterranean formation, in order to form a permeable barrier in the treatment zone around the well which restrains the movement of sand particles into the well while permitting the passage of formation fluids including petroleum therethrough. It comprises introducing a non aqueous gas into the treatment zone of the formation to reduce the water content of the portion of the formation where the permeable barrier is to be formed to less than 5 percent by volume based on the volume of pore space to be treated; introducing an effective volume of treating fluid into the treatment zone, comprising a compound which is capable of being acid catalyzed to undergo condensation polymerization at formation temperatures, an anhydride of a strong acid, and a diluent for the polymerizable compound and the anhydride; and allowing the treating fluid to remain in the treatment zone for a period of time sufficient to ensure substantially complete polymerization.

Friedman, R.H.; Surles, B.W.

1991-08-20T23:59:59.000Z

62

Development Of Reclamation Substrates For Alberta Oil Sands Using Mature Fine Tailings And Coke.  

E-Print Network (OSTI)

??Mature fine tailings and coke are waste products of the oil sands industry with potential for reclamation. A greenhouse study assessed whether substrates of various (more)

Luna-Wolter, Gabriela L.

2012-01-01T23:59:59.000Z

63

Loess Hills and Southern Iowa Development and Conservation (Iowa) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loess Hills and Southern Iowa Development and Conservation (Iowa) Loess Hills and Southern Iowa Development and Conservation (Iowa) Loess Hills and Southern Iowa Development and Conservation (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Loess Hills Alliance The Loess Hills Development and Conservation Authority, the Loess Hills

64

Barren Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hills Geothermal Project Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Barren Hills Geothermal Project Project Location Information Coordinates 39.01°, -119.19° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.01,"lon":-119.19,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Steamboat Hills Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat Hills Geothermal Facility General Information Name Steamboat Hills Geothermal Facility Facility Steamboat Hills Sector Geothermal energy Location Information Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5296329,"lon":-119.8138027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

Sou Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Sou Hills Geothermal Project Sou Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Sou Hills Geothermal Project Project Location Information Coordinates 40.143055555556°, -117.72638888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.143055555556,"lon":-117.72638888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Combine Hills II | Open Energy Information  

Open Energy Info (EERE)

Combine Hills II Combine Hills II Facility Combine Hills II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Eurus Developer Eurus Energy Purchaser Clark County PUD Location Near Milton-Freewater OR Coordinates 45.946742°, -118.56828° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.946742,"lon":-118.56828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Golden Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Golden Hills Wind Farm Golden Hills Wind Farm Facility Golden Hills Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Owner BP Alternative Energy Developer BP Alternative Energy Location Near Wasco in Sherman County OR Coordinates 45.547633°, -120.761232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.547633,"lon":-120.761232,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Red Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Red Hills Wind Farm Red Hills Wind Farm Facility Red Hills Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Acciona Developer Acciona Energy Purchaser N/A Location North of Elk City OK Coordinates 35.531944°, -99.403889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.531944,"lon":-99.403889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Cedar Hills Wind Facility | Open Energy Information  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search Name Cedar Hills Wind Facility Facility Cedar Hills Wind Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MDU Utilities Developer MDU Utilities Energy Purchaser MDU Utilities Location Cedar Hills west of Rhame ND Coordinates 46.249235°, -103.756285° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.249235,"lon":-103.756285,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

71

DOE/EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon  

Energy.gov (U.S. Department of Energy (DOE))

Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

72

Black Hills as a green area sink for atmospheric pollutants: first annual report  

SciTech Connect

A study of small particle pollution in the Black Hills area of western South Dakota has been initiated. The sampling was conducted over thirteen hills and surrounding plains stations for a period of twelve months using a Gardner small particle counter. The concentrations of both Aitken and near-CCN particles were obtained and supplemented by meteorological observations. The results of the analysis of these data indicate that the Black Hills area is a significant reservoir of clean air and that the observed low particle concentrations are the result of a) the natural decrease in concentration with elevation, b) the reduction in count due to frequent precipitation events over the Black Hills; and c) the true green area effect due to the particle removal mechanisms of vegetation. Several tests were developed to assess the magnitude of the green area effect. After corrections were applied for elevation changes, precipitation scavenging, and local pollution sources, the present analysis suggests the presence of significant particulate filtering by the heavy vegetation covering of the Black Hills. Additional data are needed to increase our understanding of the green area effect, but present indications are that a reduction in particulate concentration by as much as a factor of two (relative to plains concentrations) may be taking place as a result of these filtering processes.

Davis, B.L.; Blair, D.N.; Johnson, L.R.; Haggard, S.J.

1975-01-01T23:59:59.000Z

73

Enforcement Letter, CH2M Hill- October 4, 2004  

Energy.gov (U.S. Department of Energy (DOE))

Issued to CH2M Hill related to at a Lapse in Dosimetry Accreditation at the Separations Process Research Unit

74

Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome  

Science Conference Proceedings (OSTI)

Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

1981-09-01T23:59:59.000Z

75

Getty mines oil sands in California  

Science Conference Proceedings (OSTI)

A large deposit of oil-laden diatomaceous earth in the McKittrick oil field 40 miles west of Bakersfield, California, has resisted all efforts at production by standard means. Getty Oil Co. is in the pilot phase of a project to recover the Diatomite's oil by an open pit mining operation. It also could have significant implications for other California oil fields, possibly setting the stage for the mining of oil sands in shallow fields like Kern River, S. Belridge, and Lost Hills to maximize oil recovery. A report on the project is summarized. The Diatomite is estimated to have 500 million bbl of oil in reserves, of which 380 million bbl are recoverable. The estimated amount of recoverable oil exceeds the McKittrick field's cumulative production of 240 million bbl. A pilot plant was built to test solvent extraction method of recovering heavy oil. The multistep process involves a series of 6 extractors. The Lurgi retorting plant employs a 2-step heating process to separate hydrocarbons from crushed ore.

Rintoul, B.

1983-11-01T23:59:59.000Z

76

Shaokatan Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Shaokatan Hills Wind Farm Shaokatan Hills Wind Farm Jump to: navigation, search Name Shaokatan Hills Wind Farm Facility Shaokatan Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Northern Alternative Energy Energy Purchaser Xcel Energy Location Hendricks in Lincoln County MN Coordinates 44.4039°, -96.432767° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4039,"lon":-96.432767,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Rolling Hills (IA) | Open Energy Information  

Open Energy Info (EERE)

Rolling Hills (IA) Rolling Hills (IA) Jump to: navigation, search Name Rolling Hills (IA) Facility Rolling Hills (IA) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Company Developer MidAmerican Energy Company Energy Purchaser MidAmerican Energy Company Location Massena IA Coordinates 41.230443°, -94.75459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.230443,"lon":-94.75459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Hill-climbing SMT processor resource distribution  

Science Conference Proceedings (OSTI)

The key to high performance in Simultaneous MultiThreaded (SMT) processors lies in optimizing the distribution of shared resources to active threads. Existing resource distribution techniques optimize performance only indirectly. They infer potential ... Keywords: Hill-climbing algorithm, SMT processor, limit study

Seungryul Choi; Donald Yeung

2009-02-01T23:59:59.000Z

79

Deferredlrotation Grazing with Steers in the Kansas Flint Hills  

E-Print Network (OSTI)

Deferredlrotation Grazing with Steers in the Kansas Flint Hills CLENTON E. OWENSBY, ED F. SMITH, AND KLING L. ANDERSON Highlight: Deferred-rotation grazing of Kansas Flint Hills' range grazed by steers May was in the Flint Hills region of the True Prairie, 5 miles northwest of Manhattan, Kans. (described by Herbel

Owensby, Clenton E.

80

Nutritive Value of Tree Leaves m the Kansas Flint Hills  

E-Print Network (OSTI)

w . 11 `c7 Nutritive Value of Tree Leaves m the Kansas Flint Hills JR. FORWOOD AND C.E. OWENSBY Flint Hills, the tons of tree leaves that fall to the ground each autumn are largely ignored MANAGEMENT 38(l), January 1985 We have observed cattle grazing Flint Hills rangeland in the fall selecting

Owensby, Clenton E.

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Black Hills Energy (Gas) - Residential New Construction Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential New Construction Rebate Black Hills Energy (Gas) - Residential New Construction Rebate Program Black Hills Energy (Gas) - Residential New Construction Rebate Program < Back Eligibility Construction Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Builder Incentive: $800 - $2300 Provider Black Hills Energy Black Hills Energy offers new construction rebates for home builders in the eligible service area. Rebates between $800 and $5,000 are available for a range of efficiency measures incorporated into home construction. Qualifying homes must use natural gas and meet the minimum efficiency

82

Guide to Preparing SAND Reports  

E-Print Network (OSTI)

The Guide to Preparing SAND Reports contains guidelines for producing SAND Reports and other information releases. Its guidelines reflect DOE regulations and Sandia policy. The Guide includes in Section 1, policies for protecting and reproducing official information at Sandia, SAND number information, and Review & Approval procedures; in Section 2, basic writing instructions, which are illustrated in an annotated sample report; in Section 3, an explanation of the format, layout, and graphics of SAND Reports and a table that details the markings and legends needed for report covers and title pages; in Section 4, the procedures for reproducing and distributing SAND Reports; and in Section 5, information on presentations and conference papers, journal articles, book chapters, and brochures. The appendixes contain sections on Sandia's preferred style, usage, and grammar; equations; report references; and trademarks and copyrights. 4 May 1998 Intentionally Left Blank May 1998 5 Conten...

Tamara Locke Editor; Tamara K. Locke

1998-01-01T23:59:59.000Z

83

Hammars Hill Energy HHE Ltd | Open Energy Information  

Open Energy Info (EERE)

Hammars Hill Energy HHE Ltd Hammars Hill Energy HHE Ltd Jump to: navigation, search Name Hammars Hill Energy (HHE) Ltd Place Scotland, United Kingdom Sector Wind energy Product UK-based wind power project developer. References Hammars Hill Energy (HHE) Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hammars Hill Energy (HHE) Ltd is a company located in Scotland, United Kingdom . References ↑ "Hammars Hill Energy (HHE) Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Hammars_Hill_Energy_HHE_Ltd&oldid=346359" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

84

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Fenton Hill HDR Site References D. G. Brookins, A. W. Laughlin (1983) Rb-Sr Geochronologic Investigation Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Brookins_%26_Laughlin,_1983)&oldid=511281"

85

Singaraya Hills Green Power Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Singaraya Hills Green Power Pvt Ltd Singaraya Hills Green Power Pvt Ltd Jump to: navigation, search Name Singaraya Hills Green Power Pvt. Ltd. Place Vijayawada, Andhra Pradesh, India Zip 520 010 Sector Biomass Product Vijayawada based biomass project developers. References Singaraya Hills Green Power Pvt. Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Singaraya Hills Green Power Pvt. Ltd. is a company located in Vijayawada, Andhra Pradesh, India . References ↑ "Singaraya Hills Green Power Pvt. Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Singaraya_Hills_Green_Power_Pvt_Ltd&oldid=351110" Categories: Clean Energy Organizations Companies Organizations Stubs

86

Bishop Hill II | Open Energy Information  

Open Energy Info (EERE)

II II Jump to: navigation, search Name Bishop Hill II Facility Bishop Hill II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer Ivenergy Energy Purchaser Ameren Illinois Location Cambridge IL Coordinates 41.24438513°, -90.09338379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.24438513,"lon":-90.09338379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

Rolling Hills (WY) | Open Energy Information  

Open Energy Info (EERE)

WY) WY) Jump to: navigation, search Name Rolling Hills (WY) Facility Rolling Hills (WY) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer PacifiCorp Location Converse WY Coordinates 43.08080003°, -105.8497953° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.08080003,"lon":-105.8497953,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

Black Hills Power Inc | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Black Hills Power Inc Place Rapid City, South Dakota Utility Id 19545 Utility Location Yes Ownership I NERC Location WECC NERC MRO Yes NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Black Hills Power, Inc. Smart Grid Project was awarded $9.576 Recovery Act Funding with a total project value of $19,153,256. Utility Rate Schedules Grid-background.png GL (General Service Large) Commercial GS (General Service - Total Electric) Commercial

89

On convergence of the Flint Hills series  

E-Print Network (OSTI)

It is not known whether the Flint Hills series $\\sum_{n=1}^{\\infty} \\frac{1}{n^3\\cdot\\sin(n)^2}$ converges. We show that this question is closely related to the irrationality measure of $\\pi$, denoted $\\mu(\\pi)$. In particular, convergence of the Flint Hills series would imply $\\mu(\\pi) \\leq 2.5$ which is much stronger than the best currently known upper bound $\\mu(\\pi)\\leq 7.6063...$. This result easily generalizes to series of the form $\\sum_{n=1}^{\\infty} \\frac{1}{n^u\\cdot |\\sin(n)|^v}$ where $u,v>0$. We use the currently known bound for $\\mu(\\pi)$ to derive conditions on $u$ and $v$ that guarantee convergence of such series.

Alekseyev, Max A

2011-01-01T23:59:59.000Z

90

METHOD OF PROCESSING MONAZITE SAND  

DOE Patents (OSTI)

A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.

Calkins, G.D.

1957-10-29T23:59:59.000Z

91

Microsoft Word - SPP_Success_Story_Hill_AFB_FINAL.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Hill Air Force Base Hill Air Force Base 1820 Midpark Road, Suite C, Knoxville, TN 37921 75 CES/CEEE, 7302 Wardleigh Road, Bldg 15, Hill AFB, UT 84056-5223 Business: Energy Services Company (ESCO) Business: United States Air Force Joseph T. Price Kent Nomura, Deputy, Maintenance Engineering Phone: (865) 330-7216 / Fax: (865) 330-7217 Phone: (801) 777-7268 / (801) 777-5946 Email: jprice@ameresco.com Email: kent.nomura@hill.af.mil Hill Air Force and Ameresco Landfill Gas Generator Energy Project is the First of its Kind for the Department of Defense and the State of Utah. Project Scope Hill Air Force Base and Ameresco teamed up to create a generating facility which is powered by landfill gasses. The landfill gas extracted from the Davis County Landfill is used to fuel two 1400kW generators. These produce

92

Black Hills Energy - Solar Power Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy - Solar Power Program Black Hills Energy - Solar Power Program Black Hills Energy - Solar Power Program < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 7/1/2006 State Colorado Program Type Performance-Based Incentive Rebate Amount Systems up to 10 kW: $0.1267/kWh (only for first 5 kW) Systems larger than 10 kW up to 100 kW: $0.16/kWh Provider Black Hills Energy Black Hills Energy has a performance-based incentive (PBI) for photovoltaic (PV) systems up to 100 kilowatts (kW) in capacity. In exchange for these incentives, Black Hills Energy earns the right to the renewable energy credits (RECs) associated with the PV-generated electricity for a period of

93

Independent Activity Report, CH2M Hill Plateau Remediation Company -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, CH2M Hill Plateau Remediation Company Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 January 2011 Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003] The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security, during a site visit from January 10-14, 2011, presented the results of a technical review of the CH2M Hill Plateau Remediation Company (PRC) Unreviewed Safety Question (USQ) Procedure. Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 More Documents & Publications CX-009415: Categorical Exclusion Determination Independent Activity Report, Richland Operations Office - January 2011

94

DOE Settles Elk Hills Equity Claims | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Settles Elk Hills Equity Claims Settles Elk Hills Equity Claims DOE Settles Elk Hills Equity Claims April 22, 2011 - 4:58pm Addthis The Department of Energy announced today that it has settled a longstanding dispute over equity rights to the Naval Petroleum Reserve-1 (commonly referred to as "Elk Hills") located in Bakersfield, California. Under the agreement, Chevron U.S.A., Inc. has agreed to pay $108 million to the United States to resolve all outstanding equity claims. From World War II to 1998, the United States and Chevron (along with its predecessor Standard Oil of California) operated their respective interests in the Elk Hills oil field as a single unit. The Department sold its interest in Elk Hills in 1998. However, an agreement between Chevron and the Department allowed for equity interests in the field to be redetermined

95

Black Hills Energy (Gas) - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate All Incentives: $750/customer Ceiling/Wall/Foundation Insulation: $500 Infiltration Control/Caulking/Weather Stripping: $200 Duct Insulation: $150 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Qualified New Homes (Builders): Contact Black Hills Energy Evaluations: Free or reduced cost Storage Water Heater: $75 or $300 Tankless Water Heater: $300 Furnace/Boiler Maintenance: $30 or $100

96

Black Hills Energy (Gas) - Commercial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Commercial Energy Efficiency Program Black Hills Energy (Gas) - Commercial Energy Efficiency Program Black Hills Energy (Gas) - Commercial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate General: Contact Black Hills Energy; Rebates over $10,000 must be pre-approved Ceiling/Wall Insulation: $10,000 Infiltration Control: $1,500 Energy Evaluations: $1500 Custom: 50% of incremental cost Program Info Start Date 7/1/2010 State Colorado Program Type Utility Rebate Program

97

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME March 1st 2006 to May 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

98

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME December 1, 2006 ­ February 28, 2007...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

Massachusetts at Amherst, University of

99

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME June 1st 2006 to August 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

100

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME December 1st 2005 to February 28th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

WIND DATA REPORT Camden Hills Regional High School, ME  

E-Print Network (OSTI)

WIND DATA REPORT Camden Hills Regional High School, ME September 1st 2006 to November 30th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

102

Bunker Hill, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Bunker Hill, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

103

Town of Chapel Hill - Land-Use Management Ordinance | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land-Use Management Ordinance Town of Chapel Hill - Land-Use Management Ordinance Eligibility Residential Savings For Solar Buying & Making Electricity Heating & Cooling Commercial...

104

Green Hill, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Hill, Tennessee: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

105

Black Hills Energy (Gas)- Commercial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

Black Hills Energy offers commercial and industrial customers incentives to encourage energy efficiency in eligible businesses. Prescriptive rebates are available for furnace and boiler...

106

Black Hills Energy (Gas)- Commercial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Black Hills Energy offers multiple programs for Colorado commercial and industrial customers to save natural gas in eligible facilities. The commercial prescriptive rebate program provides...

107

Town of Chapel Hill - Worthwhile Investments Save Energy (WISE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to help subsidize energy efficiency improvements in Chapel Hill homes. Qualified homeowners can choose from a list of pre-qualified contractors who will conduct energy...

108

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration...

109

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken & Goff, 1983) Exploration...

110

Blue Hill Investment Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Investment Partners LLC Jump to: navigation, search Name Blue Hill Investment Partners LLC Place Philadelphia, Pennsylvania Zip PA 19118 Sector Renewable Energy Product A...

111

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details...

112

The Texas Hill Country and the looming water crisis.  

E-Print Network (OSTI)

??This report examines the cultural and economic growth of the Texas Hill Country resulting from the construction of the Highland Lake chain. It compares the (more)

Brah, Bryan Lewis

2011-01-01T23:59:59.000Z

113

A modeling approach for iron concentration in sand filtration effluent using adaptive neuro-fuzzy model  

Science Conference Proceedings (OSTI)

Effluent iron concentration is an important water quality criterion used for the assessment of the performance of rapid sand filters, in addition to other criteria. This study deals with the prediction of effluent iron concentrations by adaptive neuro-fuzzy ... Keywords: ANFIS, Effluent iron concentration, Modeling, Sand filtration

Mehmet akmakci; Cumali Kinaci; Mahmut Bayramo?lu; Y?lmaz Yildirim

2010-03-01T23:59:59.000Z

114

Blue Hill Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Logo: Blue Hill Partners LLC Name Blue Hill Partners LLC Address 40 W. Evergreen Ave. Place Philadelphia, Pennsylvania Zip 19118 Region Northeast - NY NJ CT PA Area Product Invests equity capital in venture-stage companies in the advanced industrial technology sector Phone number (215) 247-2400 Website http://www.bluehillpartners.co Coordinates 40.075493°, -75.208266° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.075493,"lon":-75.208266,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Definition: Tar Sands | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Tar Sands Jump to: navigation, search Dictionary.png Tar Sands A resource, found in particular abundance in Canada, where viscous petroleum is mixed in with a layer of sand, clay, and water. The form of petroleum is often referred to as "bitumen". The resource has only recently been considered part of the world's oil reserves View on Wikipedia Wikipedia Definition Oil sands, tar sands or, more technically, bituminous sands, are a type of unconventional petroleum deposit. The oil sands are loose sand or partially consolidated sandstone containing naturally occurring mixtures of sand, clay, and water, saturated with a dense and extremely viscous form of petroleum technically referred to as bitumen (or colloquially tar due to

116

FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.  

Science Conference Proceedings (OSTI)

A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe?s Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.

RICH, LAUREN

2013-09-30T23:59:59.000Z

117

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

118

McGuiness Hills Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

McGuiness Hills Geothermal Area McGuiness Hills Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: McGuiness Hills Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: McGuiness Hills Geothermal Area McGuiness Hills Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

119

DOE - Office of Legacy Management -- ANC Gas Hills Site - 040  

NLE Websites -- All DOE Office Websites (Extended Search)

ANC Gas Hills Site - 040 ANC Gas Hills Site - 040 FUSRAP Considered Sites Site: ANC Gas Hills Site (040) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The ANC Gas Hills site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Gas Hills, Wyoming. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. After the owner completes U.S. Nuclear Regulatory Commission license termination, the Department of Energy¿s

120

Town of Chapel Hill - Energy Conservation Requirements for Town Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Town of Chapel Hill - Energy Conservation Requirements for Town Town of Chapel Hill - Energy Conservation Requirements for Town Buildings Town of Chapel Hill - Energy Conservation Requirements for Town Buildings < Back Eligibility Construction Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Water Heating Program Info State North Carolina Program Type Energy Standards for Public Buildings Provider Town of Chapel Hill The Town of Chapel Hill's energy-conservation ordinance requires that all town-owned buildings be designed to achieve a goal of achieving a Silver level certification as defined by the Green Building Council's Leadership in Energy and Environmental Design (LEED) program.

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills  

Open Energy Info (EERE)

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Details Activities (0) Areas (0) Regions (0) Abstract: Recent studies suggested that Alban Hills (Rome) is a quiescent and not an extinct volcano, as it produced Holocene eruptions and several lahars until Roman times by water overflow from the Albano crater lake. Alban Hills are presently characterized by high PCO2 in groundwaters and by several cold gas emissions usually in sites where excavations removed the

122

DOE/EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOEEA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon DOEEA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon Summary...

123

Joint Cross Well and Single Well Seismic Studies at Lost Hills, California  

E-Print Network (OSTI)

were con- ducted in a diatomite reservoir to monitor theWater Saturation in Diatomite using Wireline Logs, Losttechniques. Lost Hills Diatomite The reservoir at Lost Hills

Gritto, Roland; Daley, Thomas M.; Myer, Larry R.

2002-01-01T23:59:59.000Z

124

Rolling Hills Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Electric Coop Jump to: navigation, search Name Rolling Hills Electric Coop Place Kansas Utility Id 16267 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Heat Pump Rider(single Phase) Residential Irrigation (I-10) Commercial Irrigation - Load Control (I-LC-10) Commercial Irrigation -Voluntary Load Management (I-VLM-10) Commercial Large Power (LP-10) Three phase for a demand of not less than 200 kW. Commercial Off Peak (OP-10), Three phase services >15kW Primary Power Service (PP-10) Commercial

125

Sand consolidation method employing latex  

SciTech Connect

A method is described of treating a subterranean, unconsolidated sand and petroleum containing formation penetrated by at least one well, which is in fluid communication with at least a portion of the unconsolidated sand containing subterranean formation. This forms a flexible, permeable barrier around the well which restrains the movement of sand particles into the well while permitting the passage of formation fluids including petroleum there through. The method comprises: a. forming a predetermined quantity of a treating fluid comprising a water external phase emulsion having as its dispersed or discontinuous phase, a predetermined amount of an oil-insoluble rubber. The emulsion also contains a predetermined quantity of a material which hydrolyzes at reservoir temperature to form an acid; b. injecting the treating fluid into the formation to be consolidated; and c. leaving the fluid undisturbed in the formation for a predetermined period of time sufficient to allow the emulsion to break so the oil insoluble rubber coats the sand grains, forming a competent permeable barrier around the wellbore.

Friedman, R.H.

1987-03-17T23:59:59.000Z

126

Characteristics and Applications of Copper Stamp Sand  

Science Conference Proceedings (OSTI)

The chemical, physical properties and antimicrobial activity of stamp sand were investigated, ... Characterization of Fluorescent Lamp Glass Waste Powders for...

127

Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs Black Hills Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Water Heating Maximum Rebate Insulation: $750 Weather-Stripping and Caulking: $200 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Evaluation: Free Clothes Washers: $100 Dishwashers: $20 Replacement Furnaces: $250 - $400 Replacement Boilers: $150 or $400 Duct Repair/Sealing: $200 Duct Insulation (R-8): $150 Insulation/Weather-Stripping/Caulking: 70% of project cost

128

Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company- November 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes

129

METHOD OF PROCESSING MONAZITE SAND  

DOE Patents (OSTI)

A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

Welt, M.A.; Smutz, M.

1958-08-26T23:59:59.000Z

130

Settlers Hill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Settlers Hill Gas Recovery Biomass Facility Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility Type Landfill Gas Location Kane County, Illinois Coordinates 41.987884°, -88.4016041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.987884,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Whitewater Hill Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

Whitewater Hill Wind Farm I Whitewater Hill Wind Farm I Jump to: navigation, search Name Whitewater Hill Wind Farm I Facility Whitewater Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Cannon Power Corp. Energy Purchaser L.A. Department of Water Resources Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

MHK Technologies/Davidson Hill Venturi DHV Turbine | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Davidson Hill Venturi DHV Turbine MHK Technologies/Davidson Hill Venturi DHV Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Davidson Hill Venturi DHV Turbine.jpg Technology Profile Primary Organization Tidal Energy Pty Ltd Project(s) where this technology is utilized *MHK Projects/QSEIF Grant Sea Testing *MHK Projects/Stradbroke Island *MHK Projects/Tidal Energy Project Portugal Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Davidson Hill Venturi DHV Turbine is a horizontal axis turbine that utilizes a Venturi structure in front of the intake The device can be mounted on the seabed or can float slack moored in a tidal stream

133

Puente Hills Energy Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Puente Hills Energy Recovery Biomass Facility Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Edom Hills (repower) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Edom Hills (repower) Wind Farm Edom Hills (repower) Wind Farm Jump to: navigation, search Name Edom Hills (repower) Wind Farm Facility Edom Hills (repower) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Alternative Energy Developer BP Alternative Energy Energy Purchaser Southern California Edison Co Location CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

City of Olive Hill, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Olive Hill, Kentucky (Utility Company) Olive Hill, Kentucky (Utility Company) Jump to: navigation, search Name Olive Hill City of Place Kentucky Utility Id 14103 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Residential Average Rates Residential: $0.0920/kWh Commercial: $0.1090/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Olive_Hill,_Kentucky_(Utility_Company)&oldid=410054

136

Golden Hills Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Hills Solar Power Plant Hills Solar Power Plant Jump to: navigation, search Name Golden Hills Solar Power Plant Facility Golden Hills Solar Sector Solar Facility Type Photovoltaic Developer PowerWorks Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Clean Cities: Triangle Clean Cities (Raleigh, Durham, Chapel Hill)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Triangle Clean Cities (Raleigh, Durham, Chapel Hill) Coalition Triangle Clean Cities (Raleigh, Durham, Chapel Hill) Coalition The Triangle Clean Cities (Raleigh, Durham, Chapel Hill) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Triangle Clean Cities (Raleigh, Durham, Chapel Hill) coalition Contact Information Lacey Jane Wolfe 919-558-2705 lacey@tjcog.org Coalition Website Clean Cities Coordinator Lacey Jane Wolfe Photo of Lacey Jane Wolfe Lacey Jane Wolfe began her work with Triangle Clean Cities Coalition in September 2009. She serves as the Energy and Environment Program Specialist at Triangle J Council of Governments. Her responsibilities include reporting for the Carolina Blue Skies and Green Jobs Initiative, directing the Turn Off Your Engine Campaign (idle reduction at public schools),

138

Energy Innovation Hub Directors Visit the Hill | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Innovation Hub Directors Visit the Hill Energy Innovation Hub Directors Visit the Hill Energy Innovation Hub Directors Visit the Hill April 24, 2013 - 5:39pm Addthis Rep. Chaka Fattah (D-PA) and Acting Secretary of Energy Daniel Poneman speak during an event on Capitol Hill featuring the directors of the five energy innovation hubs. | Energy Department video. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs What is an Energy Innovation Hub? Modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, the Energy Innovation Hubs are integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Yesterday, the directors of the Energy Department's Energy Innovation Hubs

139

Case Study - Hill Air Force Base, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hill Air Force Base, Utah Hill Air Force Base, Utah Case Study - Hill Air Force Base, Utah October 7, 2013 - 2:00pm Addthis Overview Energy savings performance contracting at Hill Air Force Base generated much interest during a recent training session on energy management that downlinked 12 Department of Defense sites. Energy systems in 940 buildings on the Base will be upgraded under an 18-year ESPC between the Government and the energy service company, CES/Way. Improvements are distributed over five task orders that will be completed in five years, with CES/Way providing $2.5 million in up-front costs for the first two task orders. Utah Power & Light will provide $8 million in rebates to help cover the contractor's initial investment, maintenance services, and interest costs.

140

Black Hills Power, Inc. Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Black Hills Power, Inc. Smart Grid Project Black Hills Power, Inc. Smart Grid Project Jump to: navigation, search Project Lead Black Hills Power, Inc. Country United States Headquarters Location Rapid City, South Dakota Additional Benefit Places North Dakota, Minnesota Recovery Act Funding $9.576,628 Total Project Value $19,153,256 Coverage Area Coverage Map: Black Hills Power, Inc. Smart Grid Project Coordinates 44.0805434°, -103.2310149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Smoky Hills II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Smoky Hills II Wind Farm Smoky Hills II Wind Farm Jump to: navigation, search Name Smoky Hills II Wind Farm Facility Smoky Hills II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel North America Developer TradeWind Energy Location Lincoln County KS Coordinates 38.886777°, -98.178906° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.886777,"lon":-98.178906,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Mars Hill (2006) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mars Hill (2006) Wind Farm Mars Hill (2006) Wind Farm Jump to: navigation, search Name Mars Hill (2006) Wind Farm Facility Mars Hill (2006) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner UPC Wind Partners Developer UPC Wind Partners Energy Purchaser Confidential Location Aroostook county ME Coordinates 46.551388°, -67.808333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.551388,"lon":-67.808333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Four Hills Nashua Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Four Hills Nashua Landfill Biomass Facility Four Hills Nashua Landfill Biomass Facility Jump to: navigation, search Name Four Hills Nashua Landfill Biomass Facility Facility Four Hills Nashua Landfill Sector Biomass Facility Type Landfill Gas Location Hillsborough County, New Hampshire Coordinates 42.8334794°, -71.6673352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8334794,"lon":-71.6673352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Energy Innovation Hub Directors Visit the Hill | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Directors Visit the Hill Directors Visit the Hill Energy Innovation Hub Directors Visit the Hill April 24, 2013 - 5:39pm Addthis Rep. Chaka Fattah (D-PA) and Acting Secretary of Energy Daniel Poneman speak during an event on Capitol Hill featuring the directors of the five energy innovation hubs. | Energy Department video. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs What is an Energy Innovation Hub? Modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, the Energy Innovation Hubs are integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Yesterday, the directors of the Energy Department's Energy Innovation Hubs

145

CH2M HILL Plateau Remediation Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company The Office of Hea1th, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances of a series of radiological work deficiencies at the Plutonium Finishing Plant (PFP) and the 105 K-East Reactor Facility (105KE Reactor) by CH2M HILL Plateau Remediation Company (CHPRC). The radiological work deficiencies at PFP are documented in the April 29, 2011, Department of Energy Richland Operations Office (DOE-RL) Surveillance Report S-11-SED-CHP~C-PFP-002, Planning and Execution of Radiological Work. S-11-SED-CHPRC-PFP-002 documented four examples where inadequate hazard analysis resulted in airborne radioactivity that exceeded the limits of the controlling radiological work permit.

146

Flint Hills Rural E C A, Inc | Open Energy Information  

Open Energy Info (EERE)

Flint Hills Rural E C A, Inc Place Kansas Utility Id 6431 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File...

147

Fenton Hill Hdr Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area Fenton Hill Hdr Geothermal Area (Redirected from Fenton Hill Hdr Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fenton Hill Hdr Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (26) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

148

Coupled Model Simulation of Snowfall Events over the Black Hills  

Science Conference Proceedings (OSTI)

Numerical simulations of two snowfall events over the Black Hills of South Dakota are made to demonstrate the use and potential of a coupled atmospheric and land surface model. The Coupled AtmosphericHydrologic Model System was used to simulate ...

J. Wang; M. R. Hjelmfelt; W. J. Capehart; R. D. Farley

2003-06-01T23:59:59.000Z

149

Hot Dry Rock at Fenton Hill, USA  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program, operated by the Los Alamos National Laboratory, has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the Precambrian basement rock at Fenton Hill, outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase 1, 1978--1980) producing up to 5 MWt at 132/degree/C. A second (Phase 2) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/degree/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development. 17 refs., 3 figs., 1 tab.

Hendron, R.H.

1988-01-01T23:59:59.000Z

150

Steamboat Hills exploratory slimhole: Drilling and testing  

DOE Green Energy (OSTI)

During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

1994-10-01T23:59:59.000Z

151

Recent government efforts regarding tar sands  

SciTech Connect

Conclusions from a workshop on tar sands are discussed. The workshop participants came to 3 conclusions: any oil-impregnated rock that is mined or quarried and then processed on the surface should be considered tar sands; some physical parameter should be used to differentiate tar sands from heavy oils, e.g., viscosity; and the dividing line between tar sands and heavy oil should be a point above which there is not currently significant commercial production. The resulting definition states that tar sand is any consolidated or unconsolidated rock other than coal, oil shale, or gilsonite, that contains a hydrocarbonaceous material with a gas-free viscosity, measured at reservoir temperature, greater than 10,000 cp, or contains a hydrocarbonaceous material that is extracted from the mined or quarried rock. Some consideration of resuming tar sands leasing also is discussed.

Pumphrey, D.

1980-12-01T23:59:59.000Z

152

Consent Order, Kaiser-Hill Company, LLC - EA 98-03 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kaiser-Hill Company, LLC - EA 98-03 Kaiser-Hill Company, LLC - EA 98-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 April 14, 1998 Price-Anderson Enforcement Consent Order issued to Kaiser-Hill Company, LLC related to three Radiological Events at the Rocky Flats Environmental Technology Site, (EA 98-03) This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances presented to DOE by Kaiser-Hill Company, L.L.C.'s(Kaiser-Hill) internal investigation reports of three events that occurred at the Rocky Flats EnvironmentalTechnology Site between January 1996 and January 1998. Consent Order, Kaiser-Hill Company, LLC - EA 98-03 More Documents & Publications Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998 Issued to Kaiser-Hill Company, LLC related to Failure to Perform Required

153

Consent Order, Kaiser-Hill Company, LLC - EA 98-03 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 April 14, 1998 Price-Anderson Enforcement Consent Order issued to Kaiser-Hill Company, LLC related to three Radiological Events at the Rocky Flats Environmental Technology Site, (EA 98-03) This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances presented to DOE by Kaiser-Hill Company, L.L.C.'s(Kaiser-Hill) internal investigation reports of three events that occurred at the Rocky Flats EnvironmentalTechnology Site between January 1996 and January 1998. Consent Order, Kaiser-Hill Company, LLC - EA 98-03 More Documents & Publications Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998 Issued to Kaiser-Hill Company, LLC related to Failure to Perform Required

154

Quantum theory of rotational isomerism and Hill equation  

SciTech Connect

The process of rotational isomerism of linear triatomic molecules is described by the potential with two different-depth minima and one barrier between them. The corresponding quantum-mechanical equation is represented in the form that is a special case of the Hill equation. It is shown that the Hill-Schroedinger equation has a Klein's quadratic group symmetry which, in its turn, contains three invariant subgroups. The presence of these subgroups makes it possible to create a picture of energy spectrum which depends on a parameter and has many merging and branch points. The parameter-dependent energy spectrum of the Hill-Schroedinger equation, like Mathieu-characteristics, contains branch points from the left and from the right of the demarcation line. However, compared to the Mathieu-characteristics, in the Hill-Schroedinger equation spectrum the 'right' points are moved away even further for some distance that is the bigger, the bigger is the less deep well. The asymptotic wave functions of the Hill-Schroedinger equation for the energy values near the potential minimum contain two isolated sharp peaks indicating a possibility of the presence of two stable isomers. At high energy values near the potential maximum, the height of two peaks decreases, and between them there appear chaotic oscillations. This form of the wave functions corresponds to the process of isomerization.

Ugulava, A.; Toklikishvili, Z.; Chkhaidze, S.; Abramishvili, R. [I. Javakhishvili Tbilisi State University, 3, I. Chavchavadze Avenue, 0179 Tbilisi (Georgia); Chotorlishvili, L. [Institut fuer Physik, Martin-Luther Universitat Halle-Wittenberg, Heinrich-Damerow-Str. 4, 06120 Halle (Germany)

2012-06-15T23:59:59.000Z

155

technology offer SandTES -High Temperature Sand Thermal Energy Storage  

E-Print Network (OSTI)

technology offer SandTES - High Temperature Sand Thermal Energy Storage key words: High Temperature together with Dr. Eisl of ENRAG GmbH. Background Thermal energy storage (TES) systems are essential Energy Storage | Fluidized Bed | Sand | The invention consists of a fluidized bed with internal heat

Szmolyan, Peter

156

Water quality in the vicinity of Fenton Hill, 1987 and 1988. [Fenton Hill site  

DOE Green Energy (OSTI)

Water-quality data have been collected since 1974 from established surface- and ground-water stations at, and in the vicinity of, Fenton Hill (site of the Laboratory's Hot Dry Rock Geothermal Project). The site is located on the southwest edge of the Valles Caldera in the Jemez Mountains. To determine the chemical quality of water, data were collected in 1987 and 1988 from 13 surface-water stations and 19 ground-water stations. The classification of the water quality is made on the basis of predominated ions and total dissolved solids. There are four classifications of surface water (sodium and chloride, calcium and bicarbonate, calcium and sulfate, and sodium and bicarbonate) and three classifications of ground water (sodium and chloride, calcium and bicarbonate, and sodium and bicarbonate). Variations in the chemical quality of the surface and ground water in 1987 and 1988 are apparent when data are compared with each other and with previous analyses. These variations are not considered significant, as they are in the range of normal seasonal changes. Cumulative production since 1976 from the supply well at Fenton Hill has been about 63 {times} 10{sup 6} gal, with a decline in the water level of the well of about 14 ft, or about 1.4 ft/yr. The aquifer penetrated by the well is still capable of reliable supply to the site for a number of years, based on past production. The quality of water from the well has deteriorated slightly; however, the water quality is in compliance with drinking water standards. The effects of discharge from the storage ponds into an adjacent canyon have been monitored by trace metal analyses of vegetation and soil. The study indicates minimal effects, which will be undetectable in a few years if there are no further releases of effluents into the canyon. 19 refs., 6 figs., 3 tabs.

Purtymun, W.D.; Ferenbaugh, R.W.; Maes, M.N.; Williams, M.C.

1991-03-01T23:59:59.000Z

157

City of Hill City, Kansas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hill City Hill City Place Kansas Utility Id 8599 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Residential Service Residential Average Rates Residential: $0.1260/kWh Commercial: $0.1190/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Hill_City,_Kansas_(Utility_Company)&oldid=409730

158

Black Hills Energy (Electric) - Commercial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Electric) - Commercial Energy Efficiency Black Hills Energy (Electric) - Commercial Energy Efficiency Program Black Hills Energy (Electric) - Commercial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate All Incentives: 50% of equipment and labor cost Custom: 50% of the incremental cost Program Info Start Date 7/1/2010 Expiration Date 12/31/2013 State Colorado Program Type Utility Rebate Program Rebate Amount T8/T5 Fluorescent Fixtures: $4-$18/system High-Bay Fluorescent Fixtures: $40-$125/fixture

159

City of Rock Hill, South Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

Rock Hill, South Carolina (Utility Company) Rock Hill, South Carolina (Utility Company) Jump to: navigation, search Name City of Rock Hill Place South Carolina Utility Id 16195 Utility Location Yes Ownership M NERC Location SERC Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 175 Watt HPS lighting Lighting Economic Development Rate (Schedule EDR -1) Commercial Economic Development Rate (Schedule EDR -2) Industrial Flood Lighting Rate 1000 Watt HPS Lighting Flood Lighting Rate 400 Watt HPS Lighting General Service/ Non Demand (Schedule GS) Commercial General Service/Demand (Schedule GD) Industrial

160

Auburn Hills, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Auburn Hills, Michigan: Energy Resources Auburn Hills, Michigan: Energy Resources (Redirected from Auburn Hills, MI) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6875323°, -83.2341028° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6875323,"lon":-83.2341028,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

El Centro/Superstition Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Centro/Superstition Hills Geothermal Project Centro/Superstition Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: El Centro/Superstition Hills Geothermal Project Project Location Information Coordinates 33.020833333333°, -115.81305555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.020833333333,"lon":-115.81305555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

McGinness Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

McGinness Hills Geothermal Project McGinness Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: McGinness Hills Geothermal Project Project Location Information Coordinates 39.493055555556°, -117.06638888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.493055555556,"lon":-117.06638888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Rochester Hills, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hills, Michigan: Energy Resources Hills, Michigan: Energy Resources (Redirected from Rochester Hills, MI) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6583661°, -83.1499322° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6583661,"lon":-83.1499322,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Fenton Hill Hdr Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area Fenton Hill Hdr Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fenton Hill Hdr Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (26) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

165

Southern Minnesota Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Southern Minnesota Hills Wind Farm Southern Minnesota Hills Wind Farm Facility Southern Minnesota Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Northern Alternative Energy Developer Northern Alternative Energy Energy Purchaser Southern Minnesota Municipal Power Agency Location Fairmont MN Coordinates 43.571537°, -94.449473° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.571537,"lon":-94.449473,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Grigsby, Et Al., 1983) Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511285

167

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Fenton Hill Hdr Fenton Hill Hdr Area (Laughlin, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Thin sections were prepared of the different lithologies from each core. Standard petrographic techniques were used to identify constituent minerals and to obtain modal analyses. The number of points counted varied from about 500 to several thousand, depending upon the grain size of the rock. Whole-rock chemical analysis was performed by John Husler, University of New Mexico, using a variety of techniques (Laughlin and Eddy, 1977). The precision for SiO2 is + 1% relative; for the other oxides it is + 2% relative. Accuracy was monitored by using USGS standard rock samples. Where

168

Three principal results from recent Fenton Hill flow testing  

DOE Green Energy (OSTI)

Results of recent flow testing at Fenton Hill, New Mexico, have been examined in light of their applicability to the development of commercial-scale hot dry rock (HDR) reservoirs at other sites. These test results, obtained during the cumulative 11 months of reservoir flow testing between 1992 and 1995, show that there was no significant production temperature drawdown during this time and that the reservoir flow became more dispersed as flow testing proceeded. Based on these test results together with previous HDR research at Fenton Hill and elsewhere, it is concluded that a three-well geometry, with one centrally located injection well and two production wells -- one at each end of the pressure-stimulated reservoir region -- would provide a much more productive system for future HDR development than the two-well system tested at Fenton Hill.

Brown, D. [Los Alamos National Lab., NM (United States); DuTeaux, R. [Stanford Univ., CA (United States)

1997-01-01T23:59:59.000Z

169

Laguna Hills, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Laguna Hills, California: Energy Resources Laguna Hills, California: Energy Resources (Redirected from Laguna Hills, CA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.599767°, -117.710878° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.599767,"lon":-117.710878,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Economic Development Benefits of the Mars Hill Wind Farm, Wind Powering America Rural Economic Development, Case Study (Fact Sheet)  

DOE Green Energy (OSTI)

This case study summarizes the economic development benefits of the Mars Hill Wind Farm to the community of Mars Hill, Maine. The Mars Hill Wind Farm is New England's first utility-scale wind farm.

Not Available

2009-06-01T23:59:59.000Z

171

Black Hills Energy (Electric) - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Residential Energy Efficiency Electric) - Residential Energy Efficiency Program Black Hills Energy (Electric) - Residential Energy Efficiency Program < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Attic Insulation: $500 Wall Insulation: $500 Air Sealing: $300 Program Info Start Date 7/1/2010 Expiration Date 12/31/2013 State Colorado Program Type Utility Rebate Program Rebate Amount Energy Star New Home: Contact Black Hills Energy Air-Source Heat Pump Split System: $400 Central A/C: $500-$700 Ground Source Heat Pumps: $1,200

172

Scientific progress on the Fenton Hill HDR project since 1983  

DOE Green Energy (OSTI)

The modern HDR concept originated at the Los Alamos National Laboratory and was first demonstrated at Fenton Hill, NM. Experience gained during the development of the deeper HDR reservoir at Fenton Hill clearly showed that HDR reservoirs are formed by opening pre-existing, but sealed, multiply connected joint sets. Subsequent flow testing indicated that sustained operation of HDR systems under steady state conditions is feasible. The most significant remaining HDR issues are related to economics and locational flexibility. Additional field test sites are needed to advance the understanding of HDR technology so that the vast potential of this resource can be economically realized around the world.

Brown, D.W.; Duchane, D.V.

1998-02-01T23:59:59.000Z

173

Analysis of Subsidence Data for the Big Hill Site, Texas  

Science Conference Proceedings (OSTI)

The elevation change data measured at the Big Hill SPR site over the last 10 years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Big Hill is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

Bauer, Stephen J.

1999-06-01T23:59:59.000Z

174

DOE Selects CH2M Hill Plateau Remediation Company for Plateau...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its...

175

Evaluation of Eastern Redcedar Infestations in theNorthern Kansas Flint Hills  

E-Print Network (OSTI)

Evaluation of Eastern Redcedar Infestations in theNorthern Kansas Flint Hills CLENTON E. OWENSBY than on loamy upland. The study area was in the True Prairie of northeast Kansas Flint Hills near Man

Owensby, Clenton E.

176

Reseeding "Go-Back" Land in The Flint Hills of Kansas'  

E-Print Network (OSTI)

224 Reseeding "Go-Back" Land in The Flint Hills of Kansas' CLENTON E. OWENSBY AND KLING L. ANDERSON in the Kansas Flint Hills, once cultivated, is now being allowed to "go-back" to grassland. Such areas have

Owensby, Clenton E.

177

Enforcement Letter, CH2M Hill Mound, Inc - December 22, 2004...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Letter, CH2M Hill Mound, Inc - December 22, 2004 December 22, 2004 Issued to CH2M Hill Mound, Inc. related to a Radioactive Contamination Event during Remediation Activities at...

178

Town of Chapel Hill- Worthwhile Investments Save Energy (WISE) Homes and Buildings Program  

Energy.gov (U.S. Department of Energy (DOE))

Chapel Hill is using money made available to it from the American Recovery and Reinvestment Act of 2009 to help subsidize energy efficiency improvements in Chapel Hill homes. Qualified homeowners...

179

Federal Energy Management Program: Case Study - Hill Air Force Base, Utah  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study - Hill Case Study - Hill Air Force Base, Utah to someone by E-mail Share Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Facebook Tweet about Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Twitter Bookmark Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Google Bookmark Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Delicious Rank Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Digg Find More places to share Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on AddThis.com... Energy Savings Performance Contracts Assistance & Contacts Resources Laws & Regulations Energy Service Companies Awarded Projects

180

DRAFT ENVIRONMENTAL ASSESSMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 FINAL ENVIRONMENTAL ASSESSMENT ENVIRONMENTAL ASSESSMENT FOR DEPARTMENT OF ENERGY LOAN GUARANTEE TO RECORD HILL WIND LLC FOR CONSTRUCTION OF A WIND ENERGY PROJECT IN ROXBURY, MAINE U.S. Department of Energy Loan Guarantee Program Office Washington, DC 20585 July 2011 DOE/EA-1824 i EXECUTIVE SUMMARY INTRODUCTION The U.S. Department of Energy (DOE) is proposing to issue a loan guarantee to Record Hill Wind LLC (Record Hill) for the construction of a 50.6 megawatt (MW) wind energy project located in Roxbury, Maine. 1 DOE has prepared this Final Environmental Assessment (EA) in compliance with the National Environmental Policy Act (NEPA) (42 United States Code [USC] 4321, et. seq.) Council on Environmental Quality regulations for implementing NEPA (40 Code of Federal Regulations

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Special Report Order, Issued to CH2M Hill Hanford Group, Inc.- October 22, 2001  

Energy.gov (U.S. Department of Energy (DOE))

Issued to CH2M Hill Hanford Group, Inc., related to Multiple Nuclear Safety Issues at the Hanford Site

182

Materials Science and Engineering in the Canadian Oil Sands  

Science Conference Proceedings (OSTI)

While people have heard about these "tar sands" in the news, relatively few know what oil sands are, and how they are extracted/processed. This presentation...

183

Loess Hills Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Loess Hills Wind Energy Center Loess Hills Wind Energy Center Jump to: navigation, search Name Loess Hills Wind Energy Center Facility Loess Hills Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital Group/John Deere Capital Developer Wind Capital Group/John Deere Capital Energy Purchaser Missouri Joint Municipal Electric Utility Commission Location Rock Port MO Coordinates 40.410864°, -95.514861° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.410864,"lon":-95.514861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Moulton Chandler Hills Wind Farm Phase II | Open Energy Information  

Open Energy Info (EERE)

Moulton Chandler Hills Wind Farm Phase II Moulton Chandler Hills Wind Farm Phase II Jump to: navigation, search Name Moulton Chandler Hills Wind Farm Phase II Facility Moulton Chandler Hills Wind Farm Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Great River Energy Developer EnXco Energy Purchaser Great River Energy Location Near Chandler MN Coordinates 43.9189°, -95.9557° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9189,"lon":-95.9557,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Whitewater Hill Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Whitewater Hill Wind Farm II Whitewater Hill Wind Farm II Jump to: navigation, search Name Whitewater Hill Wind Farm II Facility Whitewater Hill Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Cannon Power Corp. Developer Cannon Power Corp. Energy Purchaser Los Angeles Department of Water Resources/SDG&E Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Effects of Range Burning on Kansas Flint Hills Soil  

E-Print Network (OSTI)

Effects of Range Burning on Kansas Flint Hills Soil CLENTON E. OWENSBY AND JOHN BRUCE WYRILL, III Highlight: Two tallgrass prairie areas burned annually for 20 (grazed) nnd 48 (un. grazed) years ar-spring burned ungrared plots were generally higher in soil pH, organic ma~fer, and K than late-spring burned

Owensby, Clenton E.

187

Dutch Hill/Cohocton Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Dutch Hill/Cohocton Wind Farm Dutch Hill/Cohocton Wind Farm Jump to: navigation, search Name Dutch Hill/Cohocton Wind Farm Facility Dutch Hill/Cohocton Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Market Location Steuben County NY Coordinates 42.52342°, -77.500303° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.52342,"lon":-77.500303,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Ushikubo a,  

E-Print Network (OSTI)

Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Hills lithium weathering continental crust Hadean In situ Li analyses of 4348 to 3362 Ma detrital of REEs. The Jack Hills zircons also have fractionated lithium isotope ratios (7 Li=-19 to+13) about five

Mcdonough, William F.

189

Yield ResponsZs to Time of Burning in the Kansas Flint Hills1  

E-Print Network (OSTI)

Yield ResponsZs to Time of Burning in the Kansas Flint Hills1 CLENTON E. OWENSBY and KLING L Agricultural Experiment Station, Manhattan. Grazing managem,ent in the Kansas Flint Hills has tradition- ally, about 58 inches annually in central Louisiana and about 32 inches in the Flint Hills. Mc

Owensby, Clenton E.

190

Particle Size Changes in Rumens of Cattle Grazing Kansas Flint Hills Range  

E-Print Network (OSTI)

Particle Size Changes in Rumens of Cattle Grazing Kansas Flint Hills Range J.R. FORWOOD, C.E. OWENSBY, AND G. TOWNE Abstract A ruminally fistulated Hereford steer and heifer grazing Kansas Flint Hills particle size changes in rumens of cattle grazing native Kansas Flint Hills range forage. Materials

Owensby, Clenton E.

191

Intensive-Early Stocking and Season-Long Stocking of Kansas Flint Hills Range  

E-Print Network (OSTI)

Intensive-Early Stocking and Season-Long Stocking of Kansas Flint Hills Range ED F. SMITH AND CLENTON E. OWENSBY Highlight: Native Flint Hills bluestem range was stocked at twice the normal rate, 1 gains during the latter half of the growing season on Kansas Flint Hills range are barely one-half those

Owensby, Clenton E.

192

Stocking rate effects on intensive-early stocked Flint Hills bluestem range  

E-Print Network (OSTI)

Stocking rate effects on intensive-early stocked Flint Hills bluestem range CLENTON E. OWENSBY, ROBERT COCHRAN, AND ED F. SMITH Stocking rate effects on intensive-early stocked Kansas Flint Hills range- lands is limited to the first 2 1/ 2 months of the growing season in the Kansas Flint Hills. Grazing

Owensby, Clenton E.

193

Enforcement Letter, September 6, 2007, CH2M Hill Hanford Group Potential Violations of Nuclear Safety Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2007 6, 2007 Mr. John Fulton Chief Executive Officer CH2M Hill Hanford Group, Inc. 2440 Stevens Drive Richland, Washington 99352 Dear Mr. Fulton: The Department of Energy (DOE) held an Enforcement Conference on August 29, 2006, with CH2M Hill Hanford Group (CHG) to discuss potential violations of nuclear safety requirements described in our Investigation Summary Report dated July 26, 2006. At that time, DOE elected to defer a decision on a potential quality improvement violation related to recurring radiological events and deficiencies in the identification and control of radiological hazards at the Tank Farms. This decision was based upon the fact that CHG senior management had initiated radiological work improvements but insufficient data was available to assess their effectiveness. On July 12, 2007, Office of Enforcement

194

Generation of sand bars under surface waves  

E-Print Network (OSTI)

(cont.) Experiments were performed in a large wave flume to validate the theory and to study additional aspects of sand bar evolution. The wave envelope and bar profile were recorded for low and high beach reflection, ...

Hancock, Matthew James, 1975-

2005-01-01T23:59:59.000Z

195

Bald eagle habitat suitability on Melton Hill Reservoir and the Clinch River  

Science Conference Proceedings (OSTI)

The area around Melton Hill Reservoir and sections of the Clinch River along the Oak Ridge Reservation (ORR) provide suitable habitat for bald eagles for both breeding and wintering activities. Primary limitations on habitat suitability appear to be human activity in aquatic habitats and along shoreline areas, and human development along shoreline areas. ORR provides the majority of the suitable habitat because shoreline development is very limited. Four eagle management strategies discussed for ORR include planning development away from high-quality habitats, allowing forest stands near water to mature, conducting timber stand improvement to foster growth and development in pines and hardwoods, and using introductions to foster the development of a breeding population. The primary objective of this project was to make a qualitative assessment of bald eagle habitat suitability along Melton Hill Reservoir and the Clinch River and in adjacent areas on the ORR, including the proposed Advanced Neutron Source site. This survey`s aim was to provide ORR managers with an indication of whether suitable habitat exists and, if so, where it occurs on ORR. This information should provide the basis for incorporating eagle management into the overall ORR land management plan.

Buehler, D.A. [Univ., of Knoxville, TN (United States)

1994-09-01T23:59:59.000Z

196

Radon in Soil Gas Above Bedrock Fracture Sets at the Shepleys Hill Superfund Site  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL) recently provided technical support for ongoing environmental remediation activities at the Shepleys Hill remediation site near Devens, MA (Figure 1). The technical support was requested as follow-on work to an initial screening level radiation survey conducted in 2008. The purpose of the original study was to assess the efficacy of the INL-developed Backpack Sodium Iodide System (BaSIS) for detecting elevated areas of natural radioactivity due to the decay of radon-222 gases emanating from the underlying fracture sets. Although the results from the initial study were mixed, the BaSIS radiation surveys did confirm that exposed bedrock outcrops have higher natural radioactivity than the surficial soils, thus a high potential for detecting elevated levels of radon and/or radon daughter products. (INL 2009) The short count times associated with the BaSIS measurements limited the ability of the system to respond to elevated levels of radioactivity from a subsurface source, in this instance radon gas emanating from fracture sets. Thus, it was postulated that a different methodology be employed to directly detect the radon in the soil gases. The CR-39 particle track detectors were investigated through an extensive literature and technology search. The relatively long deployment or detection time of several days, as well as the sensitivity of the measurement and robustness of the detectors made the CR-39 technology promising for deployment at the Shepleys Hill site.

J.R. Giles; T.L. McLing; M.V. Carpenter; C.J. Smith; W. Brandon

2012-12-01T23:59:59.000Z

197

New method for sand control and well stimulation in unconsolidated dirty sands  

SciTech Connect

A new technique, the Solder Glass sand consolidation well completion method, has been developed which allows unlimited drawdown and improves productivity in wells completed in unconsolidated formations containing shales and clays. This technique eliminates the problems of sand production and fines migration by artificially consolidating a volume of reservoir sand near the wellbore. The consolidation is resistant to high temperature, chemical attack, and degradation resulting from high velocity fluid flow. Additionally, porosity and permeability in the consolidated volume of reservoir sand are improved as a result of irreversible dehydration of clays. 12 refs.

Aslesen, K.S.; Short, C.J.; Terwilliger, P.L.

1981-01-01T23:59:59.000Z

198

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Energy.gov (U.S. Department of Energy (DOE))

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

199

Sand-control alternatives for horizontal wells  

SciTech Connect

This paper reports that it has been well documented that horizontal completions increase production rates, as much as two to five times those of conventional techniques, because more of the producing formation is exposed to the wellbore. Although productivity improvements are highly sensitive to reservoir parameters, it is becoming generally accepted that optimum horizontal lengths will be 2,000 to 4,000 ft. The length of these completions generally causes the velocity of the fluid at the sandface to be an order of magnitude less than that observed in conventional completions. Because drag forces contributed to sand production, horizontal wells can produce at higher sand-free flow rates than conventional completions in the same reservoir. While it is frequently argued that horizontal wells do not need sand control, the potential for sand production increases significantly as reserves deplete and rock stresses increase. This is becoming more evident today in several major North Sea oil fields with conventional completions. Also, many unconsolidated formations produce sand for the first time with the onset of water production, a typical problem in such areas as the Gulf of Mexico. Operators must decide whether to implement sand control in the original horizontal-completion program because of an immediate concern or because the potential exists for a problem to arise as the well matures.

Zaleski, T.E. Jr. (Baker Sand Control (US))

1991-05-01T23:59:59.000Z

200

Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M Hill Hanford Group, Inc. - EA-2000-09 M Hill Hanford Group, Inc. - EA-2000-09 Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 July 25, 2000 Price-Anderson Enforcement Consent Order issued to CH2M Hill Hanford Group, Inc., related to Quality Problems at the Hanford Site Tank Farms, (EA-2000-09) This letter refers to the Department of Energy's (DOE) evaluation of an internal investigation conducted by CH2M Hill Group, Inc. (CHG) in February 2000. The investigation examined the facts and circumstances surrounding quality problems with the procurement of safety class piping for the W-314 Project at the Tank Farm Waste Remediation System. Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 More Documents & Publications Consent Order, Fluor Federal Services - EA-2000-10 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Foundry Sand Reclamation: CMP Report No. 90-6  

Science Conference Proceedings (OSTI)

Current environmental regulations have created a situation where the disposal of waste foundry sand has become difficult and expensive. One solution to this problem is the use of a sand reclamation system which "cleans" the sand to a sufficient degree to allow re-use of the sand in the foundry sand system. A large number of sand binder systems are in use for various reasons of cost and performance characteristics. There are also three main methods of sand reclamation and combinations of these. A basic un...

1991-11-30T23:59:59.000Z

202

Renewable Energy Opportunities at White Sands Missile Range, New Mexico  

DOE Green Energy (OSTI)

The document provides an overview of renewable resource potential at White Sands Missile Range (WSMR) based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewable Energy Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps (GSHPs) for heating and cooling buildings, as directed by IMCOM.

Chvala, William D.; Solana, Amy E.; States, Jennifer C.; Warwick, William M.; Weimar, Mark R.; Dixon, Douglas R.

2008-09-01T23:59:59.000Z

203

Cimarron Hills, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cimarron Hills, Colorado: Energy Resources Cimarron Hills, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8586057°, -104.6988617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8586057,"lon":-104.6988617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Shorewood Hills, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Shorewood Hills, Wisconsin: Energy Resources Shorewood Hills, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0774958°, -89.4456756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0774958,"lon":-89.4456756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Rocky Hill, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, Connecticut: Energy Resources Hill, Connecticut: Energy Resources Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Equivalent URI DBpedia Coordinates 41.6648216°, -72.6392587° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6648216,"lon":-72.6392587,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Crest Hill, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Crest Hill, Illinois: Energy Resources Crest Hill, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.554753°, -88.0986709° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.554753,"lon":-88.0986709,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Beverly Hills, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Beverly Hills, California: Energy Resources Beverly Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0736204°, -118.4003563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0736204,"lon":-118.4003563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

Society Hill, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, New Jersey: Energy Resources Hill, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.5339927°, -74.4579304° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5339927,"lon":-74.4579304,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Druid Hills, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Druid Hills, Georgia: Energy Resources Druid Hills, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7803832°, -84.3360359° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7803832,"lon":-84.3360359,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Chapel Hill, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chapel Hill, North Carolina: Energy Resources Chapel Hill, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9131996°, -79.0558445° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9131996,"lon":-79.0558445,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Marshfield Hills, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Marshfield Hills, Massachusetts: Energy Resources Marshfield Hills, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1459351°, -70.7397626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1459351,"lon":-70.7397626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Mint Hill, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mint Hill, North Carolina: Energy Resources Mint Hill, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1795892°, -80.6472904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1795892,"lon":-80.6472904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Agoura Hills, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Agoura Hills, California: Energy Resources Agoura Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1363945°, -118.7745348° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1363945,"lon":-118.7745348,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Mars Hill (2007) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

7) Wind Farm 7) Wind Farm Jump to: navigation, search Name Mars Hill (2007) Wind Farm Facility Mars Hill (2007) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner UPC Wind Partners Developer UPC Wind Partners Energy Purchaser Confidential Location Aroostook county ME Coordinates 46.551388°, -67.808333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.551388,"lon":-67.808333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Cedar Hills, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hills, Utah: Energy Resources Hills, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4141174°, -111.7585414° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4141174,"lon":-111.7585414,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

South San Jose Hills, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Jose Hills, California: Energy Resources Jose Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0127894°, -117.9047845° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0127894,"lon":-117.9047845,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Willoughby Hills, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Willoughby Hills, Ohio: Energy Resources Willoughby Hills, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5983823°, -81.4184471° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5983823,"lon":-81.4184471,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Signal Hill, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Signal Hill, California: Energy Resources Signal Hill, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8044614°, -118.1678456° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8044614,"lon":-118.1678456,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Moreland Hills, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Moreland Hills, Ohio: Energy Resources Moreland Hills, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4478312°, -81.4276153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4478312,"lon":-81.4276153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Inglewood-Finn Hill, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Inglewood-Finn Hill, Washington: Energy Resources Inglewood-Finn Hill, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.7141386°, -122.2402528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.7141386,"lon":-122.2402528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

View Park-Windsor Hills, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Park-Windsor Hills, California: Energy Resources Park-Windsor Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9929545°, -118.3491169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9929545,"lon":-118.3491169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Lea Hill, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, Washington: Energy Resources Hill, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3262117°, -122.1815078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3262117,"lon":-122.1815078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Pleasant Hill, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, California: Energy Resources Hill, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9479786°, -122.0607963° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9479786,"lon":-122.0607963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

224

Clyde Hill, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, Washington: Energy Resources Hill, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.6317656°, -122.2179015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6317656,"lon":-122.2179015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Homa Hills, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Homa Hills, Wyoming: Energy Resources Homa Hills, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9799661°, -106.3608619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9799661,"lon":-106.3608619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Fountain Hills, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fountain Hills, Arizona: Energy Resources Fountain Hills, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.60535°, -111.741113° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.60535,"lon":-111.741113,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Waite Hill, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waite Hill, Ohio: Energy Resources Waite Hill, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6186592°, -81.3840001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6186592,"lon":-81.3840001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Vine Hill, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, California: Energy Resources Hill, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.0085326°, -122.0960753° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0085326,"lon":-122.0960753,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Gold Hill, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hill, Oregon: Energy Resources Hill, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4317894°, -123.0506035° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4317894,"lon":-123.0506035,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Tara Hills, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hills, California: Energy Resources Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9935337°, -122.3163591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9935337,"lon":-122.3163591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Hidden Hills, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hidden Hills, California: Energy Resources Hidden Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1602832°, -118.6523096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1602832,"lon":-118.6523096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

North College Hill, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

College Hill, Ohio: Energy Resources College Hill, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2183911°, -84.5507778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2183911,"lon":-84.5507778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Farmington Hills, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Farmington Hills, Michigan: Energy Resources Farmington Hills, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4853125°, -83.3771553° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4853125,"lon":-83.3771553,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Barrington Hills, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hills, Illinois: Energy Resources Hills, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.13375°, -88.211186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.13375,"lon":-88.211186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Bunker Hill Village, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bunker Hill Village, Texas: Energy Resources Bunker Hill Village, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.7674508°, -95.5299427° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7674508,"lon":-95.5299427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Fruit Hill, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fruit Hill, Ohio: Energy Resources Fruit Hill, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0756169°, -84.3643835° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0756169,"lon":-84.3643835,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Nichols Hills, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nichols Hills, Oklahoma: Energy Resources Nichols Hills, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5508903°, -97.5489293° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5508903,"lon":-97.5489293,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Black Hills Power Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name Black Hills Power Inc Place Wyoming Utility Id 19545 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0867/kWh Commercial: $0.0948/kWh Industrial: $0.0627/kWh The following table contains monthly sales and revenue data for Black Hills Power Inc (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

239

Turpin Hills, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Turpin Hills, Ohio: Energy Resources Turpin Hills, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1100606°, -84.3799397° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1100606,"lon":-84.3799397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

Raleigh Hills, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Raleigh Hills, Oregon: Energy Resources Raleigh Hills, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4806734°, -122.7620422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.4806734,"lon":-122.7620422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Country Club Hills, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Club Hills, Illinois: Energy Resources Club Hills, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5680898°, -87.7203257° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5680898,"lon":-87.7203257,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

The Village of Indian Hill, Ohio: Energy Resources | Open Energy  

Open Energy Info (EERE)

Indian Hill, Ohio: Energy Resources Indian Hill, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.180136°, -84.347958° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.180136,"lon":-84.347958,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Kirtland Hills, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kirtland Hills, Ohio: Energy Resources Kirtland Hills, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6239365°, -81.3070506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6239365,"lon":-81.3070506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Wesley Hills, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wesley Hills, New York: Energy Resources Wesley Hills, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1592618°, -74.0698645° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1592618,"lon":-74.0698645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

McGraw-Hill dictionary of science and engineering  

Science Conference Proceedings (OSTI)

This dictionary contains over 35,000 terms representing more than 100 fields of science and engineering. It was derived from the comprehensive McGraw-Hill Dictionary of Scientific and Technical terms (Third Edition, 1984). Since it is much smaller and less than half the price of the comprehensive reference, it is suitable for personal collections of students, teachers, writers, and general readers. It provides definitions not available in standard dictionaries.

Parker, S.P.

1984-01-01T23:59:59.000Z

246

Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR).  

Science Conference Proceedings (OSTI)

3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Sobolik, Steven Ronald (Sandia National Laboratories, Albuquerque, NM); Lee, Moo Yul (Sandia National Laboratories, Albuquerque, NM)

2005-07-01T23:59:59.000Z

247

Black Hills Power Inc (Montana) | Open Energy Information  

Open Energy Info (EERE)

Black Hills Power Inc Black Hills Power Inc Place Montana Utility Id 19545 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0851/kWh Commercial: $0.0941/kWh Industrial: $0.0496/kWh The following table contains monthly sales and revenue data for Black Hills Power Inc (Montana). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 0.727 9.649 13 1.313 12.983 20 129.126 2,874.645 1 131.166 2,897.277 34

248

Frame moduli of unconsolidated sands and sandstones  

SciTech Connect

In this study, the authors investigate the elastic moduli of the empty grain framework (the frame moduli) in unconsolidated sands and consolidated sandstones. The work was done to improve the interpretation of seismic amplitude anomalies and amplitude variations with offset (AVO) associated with hydrocarbon reservoirs. They developed a laboratory apparatus to measure the frame Poisson's ratio and Young's modulus of unconsolidated sands at seismic frequencies (0.2 to 155 Hz) in samples approximately 11 cm long. They used ultrasonic pulse velocity measurements to measure the frame moduli of consolidated sandstones. They found that the correlation coefficient between the frame Poisson's ratio [sigma][sub A] and the mineral Poisson's ratio [sigma][sub M] is 0.84 in consolidated sandstones and only 0.28 in unconsolidated sands. The range of [sigma][sub A] values in unconsolidated sands is 0.115 to 0.237 (mean = 0.187, standard deviation = 0.030), and [sigma][sub A] cannot be estimated without core or log analyses. Frame moduli analyses of core samples can be used to calibrate the interpretation of seismic amplitude anomalies and AVO effects. For use in areas without core or log analyses, the authors developed an empirical relation that can be used to estimate [sigma][sub A] in unconsolidated sands and sandstones from [sigma][sub M] and the frame P-wave modulus.

Spencer, J.W. Jr.; Cates, M.E.; Thompson, D.D. (Chevron Petroleum Technology Co., La Habra, CA (United States))

1994-09-01T23:59:59.000Z

249

EA-1849: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1849: Final Environmental Assessment EA-1849: Final Environmental Assessment EA-1849: Final Environmental Assessment Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGuiness Hills Geothermal Project, Lander County, Nevada Ormat Nevada Inc. (ORMAT), through its subsidiaries, proposes to construct and operate three geothermal power production facilities and associated power transmission lines in northern Nevada. The power production facilities include the Tuscarora Geothermal Power Plant Facility (Tuscarora Facility) in Elko County, the Jersey Valley Geothermal Development Facility (Jersey Valley Facility) in Pershing County, and the McGinness Hills Geothermal Facility (McGinness Hills Facility) in Lander County (Figure 1).

250

U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M HILL CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement The U.S. Department of Energy (DOE) Richland Operations Office (DOE-RL) and CH2M HILL Plateau Remediation Company (CHPRC) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to enhance teaming to further execute the Plateau Remediation Contract. U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement More Documents & Publications CH2M HILL Plateau Remediation Company

251

Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Conduct, Parent Company Agrees to Cooperate in Ongoing Investigation and Pay $18.5 Million to Resolve Civil and Criminal Allegations Department of Justice: CH2M Hill Hanford Group Inc. Admits Criminal Conduct, Parent Company Agrees to Cooperate in Ongoing Investigation and Pay $18.5 Million to Resolve Civil and Criminal Allegations March 7, 2013 - 12:00pm Addthis The Justice Department, in conjunction with the U.S. Attorney's Office for the Eastern District of Washington, announced today that Colorado-based CH2M Hill Hanford Group Inc. (CHG) and its parent company, CH2M Hill Companies Ltd. (CH2M Hill) have agreed that CHG committed federal criminal violations, defrauding the public by engaging in years of widespread time

252

DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Plateau Remediation Company for Plateau CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site June 19, 2008 - 1:29pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that CH2M Hill Plateau Remediation Company has been selected as the plateau remediation contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $4.5 billion over ten years (a five-year base period with the option to extend it for another five years). CH2M Hill Plateau Remediation Company is a limited liability company formed by CH2M Hill Constructors, Inc. The team also includes AREVA Federal

253

Development Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Development Wells Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Development_Wells_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511310"

254

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Injectivity Test Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Injectivity_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511316"

255

Observation Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Observation Wells Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Observation_Wells_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511330"

256

Sand control method employing special hydraulic fracturing technique  

SciTech Connect

A novel sand control method is disclosed wherein high viscosity, high sand concentration, fracturing fluids are pumped through sets of vertically oriented perforations in borehole casings located in unconsolidated or loosely consolidated pay zones. Various techniques are utilized to insure that sand fills disposed on either side of the borehole casing cover and substantially overlap each borehole casing perforation set. Procedures are then followed to bring the well into production without washing out the sand fills in these areas, whereby the resulting perforation-sand fill configurations effectively control sand production from the treated zone.

Medlin, W.L.; Mullins, L.D.; Zumwalt, G.L.

1983-04-05T23:59:59.000Z

257

Granular size segregation in underwater sand ripples  

E-Print Network (OSTI)

We report an experimental study of a binary sand bed under an oscillating water flow. The formation and evolution of ripples is observed. The appearance of a granular segregation is shown to strongly depend on the sand bed preparation. The initial wavelength of the mixture is measured. In the final steady state, a segregation in volume is observed instead of a segregation at the surface as reported before. The correlation between this phenomenon and the fluid flow is emphasised. Finally, different ``exotic'' patterns and their geophysical implications are presented.

G. Rousseaux; H. Caps; J. -E. Wesfreid

2004-03-29T23:59:59.000Z

258

Pore-scale mechanisms of gas flow in tight sand reservoirs  

E-Print Network (OSTI)

pore space. Although the grains in tight sand samples do notfluid displacement. For tight sands, the simulations predictflow properties of tight sand imply that a small amount of

Silin, D.

2011-01-01T23:59:59.000Z

259

Black Hills Energy - On-Site Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- On-Site Solar PV Rebate Program Black Hills Energy - On-Site Solar PV Rebate Program Eligibility Commercial Fed. Government General PublicConsumer Industrial Local Government...

260

The Sweet Grass Hills and Blackfeet Indians: Sacredness, Land, and Institutional Discrimination.  

E-Print Network (OSTI)

??The Sweet Grass Hills of north-central Montana are part of the four Tribes of the Blackfoot Confederacys traditional territory and play a vital role in (more)

Sheets, Cassie

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Water Sampling At Fenton Hill Hdr Geothermal Area (Rao, Et Al...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Exploration Activity...

262

Sand Bluff Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Sand Bluff Wind Farm Sand Bluff Wind Farm Jump to: navigation, search Name Sand Bluff Wind Farm Facility Sand Bluff Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Energy Purchaser Direct Energy Location Near Big Spring TX Coordinates 32.201622°, -101.404799° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.201622,"lon":-101.404799,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

The Time of Sands: Quartz-rich Sand Deposits as a Renewable Resource  

E-Print Network (OSTI)

rich Sand Deposits as a Renewable Resource Nelson R. Shaffercan even be considered a renewable resource. The reader willbuild our society, and its renewable nature. We are not the

Shaffer, Nelson R.

2006-01-01T23:59:59.000Z

264

Imaging of Acoustic Waves in Sand  

SciTech Connect

There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

2003-08-01T23:59:59.000Z

265

Well completion process for formations with unconsolidated sands  

DOE Patents (OSTI)

A method for consolidating sand around a well, involving injecting hot water or steam through well casing perforations in to create a cement-like area around the perforation of sufficient rigidity to prevent sand from flowing into and obstructing the well. The cement area has several wormholes that provide fluid passageways between the well and the formation, while still inhibiting sand inflow.

Davies, David K. (Kingwood, TX); Mondragon, III, Julius J. (Redondo Beach, CA); Hara, Philip Scott (Monterey Park, CA)

2003-04-29T23:59:59.000Z

266

Oil shale and tar sands technology: recent developments  

SciTech Connect

The detailed, descriptive information in this book is based on US patents, issued since March 1975, that deal with the technology of oil shale and tar sands. The book contains an introductory overview of the subject. Topics included are oil shale retorting, in situ processing of oil shale, shale oil refining and purification processes, in situ processing of tar sands, tar sands separation processes.

Ranney, M.W.

1979-01-01T23:59:59.000Z

267

The Application of Fuzzy Technique to Coal Gangue Hills Reliability Analysis  

Science Conference Proceedings (OSTI)

Gangue hill is a production in mining area which piles up by the disordered accumulation of coal waste. Because of its poor stability, landslide may easily arise when meet disadvantages and accordingly cause enormous destruction of geological hazard. ... Keywords: gangue hills, stability, fuzzy-random reliability, fuzzy point evaluation

Kun Yang; Zhichao Ma

2010-12-01T23:59:59.000Z

268

EA-1876: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment and Finding of No Significant Impact Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Natural Contamination from the Mancos Shale...

269

Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc. - October 22, CH2M Hill Hanford Group, Inc. - October 22, 2001 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 October 22, 2001 Special Report Order ssued to CH2M Hill Hanford Group, Inc., related to Multiple Nuclear Safety Issues at the Hanford Site On September 18, 2001, the Office of Price-Anderson Enforcement (OE) in coordination with the DOE Office of River Protection (ORP) conducted a review of the actions taken by CH2M Hill Hanford Group (CHG) in response to an Enforcement Letter dated April 24, 2001. This Enforcement Letter referenced three Noncompliance Tracking System (NTS) reports submitted by CHG which collectively suggested weaknesses in your nuclear safety operations related to (1) corrective action management, (2) worker training

270

Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Groundwater Sampling Activity Date 1983 Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Groundwater_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=689261"

271

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=689258

272

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff_%26_Janik,_2002)&oldid=689255"

273

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al.,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown References Fraser E. Goff, Charles O. Grigsby, Pat E. Trujillo Jr, Dale Counce, Andrea Kron (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff,_Et_Al.,_1981)&oldid=692519

274

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983)  

Open Energy Info (EERE)

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Injectivity Test Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Injectivity_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511318

275

U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy, Richland Operations Office And CH2M HILL U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement The U.S. Department of Energy (DOE) Richland Operations Office (DOE-RL) and CH2M HILL Plateau Remediation Company (CHPRC) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to enhance teaming to further execute the Plateau Remediation Contract. U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement

276

Enforcement Letter, Kaiser-Hill Company, L.L.C. - June 19, 2002 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 19, 2002 June 19, 2002 Enforcement Letter, Kaiser-Hill Company, L.L.C. - June 19, 2002 June 19, 2002 Enforcement Letter issued to Kaiser-Hill Company, LLC related to Unplanned Radioactive Material Uptakes at the Rocky Flats Environmental Technology Site This letter refers to the Department of Energy's evaluation of facts and circumstances concerning the October 2001 unplanned uptakes of radioactive material by two Radiological Control Technicians (RCT) in Building [ ]. These issues were reported into the Noncompliance Tracking System (NTS) by your staff (NTS-RFO--KHLL-[ ] 2002-0001) on February 11, 2002. Enforcement Letter, Kaiser-Hill Company, L.L.C. - June 19, 2002 More Documents & Publications Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998

277

Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind December 21, 2011 - 11:26am Addthis These two General Electric wind turbines, erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5 million kWh of electricity annually. | Photo courtesy of Lancaster County Solid Waste Management Authority. These two General Electric wind turbines, erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5 million kWh of electricity annually. | Photo courtesy of Lancaster County Solid

278

Town of Kill Devil Hills - Wind Energy Systems Ordinance | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Town of Kill Devil Hills - Wind Energy Systems Ordinance Town of Kill Devil Hills - Wind Energy Systems Ordinance Town of Kill Devil Hills - Wind Energy Systems Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Kill Devil Hills Planning and Inspections In October 2007, the town of Kill Devil Hills adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy system to obtain a zoning permit from the town planning board. '''Size Requirements:''' Wind turbine towers are restricted to a height of 80 feet with a maximum rotor size of 23 feet in diameter. The combined

279

Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc. - April 24, 2001 CH2M Hill Hanford Group, Inc. - April 24, 2001 Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 April 24, 2001 Enforcement Letter issued to CH2M Hill Hanford Group, Inc., related to Nuclear Safety Management at the Hanford Site Tank Farms This letter refers to a recent investigation by the Department of Energy (DOE), regarding potential noncompliances with the requirements of 10 CFR 830, "Nuclear Safety Management," occurring at the Hanford Tank Farms. The investigation reviewed three issues that were reported into the Noncompliance Tracking System (NTS) by CH2M Hill Hanford Group, Inc. Two of the NTS reports involve the failure to perform the Technical Safety Requirement (TSR) for [ ] gas monitoring. The initial potential noncompliance occurred in January 2000, in which a Zip Cord was installed

280

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc. - CH2M Hill Hanford Group, Inc. - EA-2003-06 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 August 29, 2003 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Quality Assurance Issues at the Hanford Site Tank Farms This letter refers to the Department of Energy's Office of Price-Anderson Enforcement (OE) investigation of the facts and circumstances concerning quality assurance issues affecting nuclear safety at the Hanford Tank Farms. These issues involve the inadvertent deenergization of annulus leak detectors, dilution tank overfills, and dome loading control, over the period August 2002 to November 2002. Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 More Documents & Publications

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc. -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HILL Hanford Group, Inc. - HILL Hanford Group, Inc. - NEA-2008-02 Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc. - NEA-2008-02 June 5, 2008 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to a Radioactive Waste Spill at the Hanford Site Tank Farms This letter refers to the Department of Energy's (DOE) investigation into the facts and circumstances associated with the July 27, 2007, spill of radioactive waste in the vicinity of the S-102 retrieval pump discharge at the Hanford Tank Farm. The results of the onsite investigation were provided in an Investigation Report dated March 5, 2008. Press Release Preliminary Notice of Violation, CH2M HILL Hanford Group, Inc. - NEA-2008-02 More Documents & Publications Preliminary Notice of Violation, Bechtel National, Inc. - NEA-2008-04

282

I SAND95-2448C  

Office of Scientific and Technical Information (OSTI)

SAND95-2448C SAND95-2448C eddfigt6qI7-*+ To be presented at the 32"d AIANASMEISAEIASEE Joint Propulsion Conference, Lake Buena Vista, FL, July 1-3, 1996 A SURVEY OF COMBUSTIBLE METALS, THERMITES, AND INTERMETALLICS FOR PYROTECHNIC APPLICATIONS* S. H. Fischer and M. C. Grubelich Sandia National Laboratories Albuquerque, NM 87185-1453 ABSTRACT Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantage of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, we review the applications, benefits, and characteristics

283

SAND76-0260 Unlimited Release  

NLE Websites -- All DOE Office Websites (Extended Search)

SAND76-0260 SAND76-0260 Unlimited Release Printed July 1976 . POWER SUPPLIES FOR SPACE SYSTEMS QUALITY ASSURANCE BY SANDIA LABORATORIES Robert L. Hannigan Robert R. Harnar Electronic and Electrical Devices Division 951 2 Sandia Laboratories Albuquerque, NM 87115 AB STRAC T This report summarizes the Sandia Laboratories participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used i n space systems over the past 10 years. Basic elements of this QA program a r e briefly de- scribed and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems f o r which Sandia has had the QA responsibility a r e presented, including SNAP 1 9 (Nimbus, Pioneer, Viking), SNAP 27 (Apollo),

284

Solvent extraction of Southern US tar sands  

SciTech Connect

The Department of Chemical Engineering at the University of Arkansas, in association with Diversified Petroleum Recovery, Inc. (DPR) of Little Rock, Arkansas, has been developing a solvent extraction process for the recovery of bitumen from tar sands for the past five years. The unique feature of the process is that the bitumen is recovered from the solvent by contacting with a co-solvent, which causes the bitumen to precipitate. The overall purpose of this project is to study both the technical and economic feasibility of applying this technology for recovery of bitumen from tar sands by (1) investigating the socioeconmic factors which affect (a) plant siting and (b) the market value of recovered bitumen; (2) operating a process demonstration unit at the rate of 1 lb/hr recovered bitumen while producing clean sand and recyclable solvents; and (3) determine the economic conditions which will make a bitumen recovery project economical. DPR has analyzed the historical trends of domestic production, consumption, discoveries and reserves of crude oil. They have started an investigation of the volatility in the price of crude oil and of gasoline prices and of the differential between gasoline and crude oil. DPR continues to analyze the geographical movement and demand for asphalt products. Utah does not appear economically attractive as a site for a bitumen from tar sands asphalt plant. Oklahoma sites are now being studied. This report also contains the quarterly progress report from a University of Nevada study to determine bitumen composition, oxygen uptake rates, and viscosities of Alabama and Utah bitumens. Both reports have been indexed separately for inclusion on the data base.

Penney, W.R.

1990-01-01T23:59:59.000Z

285

Western gas sands: Technology status report  

Science Conference Proceedings (OSTI)

Research on western gas sands is conducted by the US Department of Energy's Morgantown Technology Center to encourage the development of very low permeability gas sands in the western United States. The current search is an outgrowth of earlier Government research on tight sands in which nuclear and massive hydraulics fracturing stimulations were tested without definitive results. Based on input from the gas industry, universities, and geologic and engineering consulting firms, activites were broadened to include fundamental research and development. Consequently, the focus of the research for the last several years has been on improving diagnostic instruments for evaluating reservoir and stimulation performances, interpreting geophysical and engineering data, and stimulation techniques. Intergrated geologic studies of three depositional basins that contain tight lenticular sandstone units have also been pursued as part of this new effort. To date, the following tentative conclusions have been formulated: The permeability of the tight gas sands can be as much as three to four orders of magnitude lower than that of conventional gas deposits. Nineteen western geologic basins and trends have been identified that contain significant volumes of tight gas. Gas resources in the priority geologic basins have been estimated as follows: Piceance Basin, 420 Tcf.; Greater Green River Basin, 4971 Tcf.; and Uinta Basin, 21 Tcf. The critical parameters for successfully developing tight sandstone resources are the presence of natural fractures within a reservoir and the effective propped length of hydraulically induced fractures. Stimulation technology is presently insufficient to efficiently recover gas from lenticular, tight reservoirs. 15 refs., 14 figs., 3 tabs.

Not Available

1988-01-01T23:59:59.000Z

286

Guide to preparing SAND reports. Revised  

SciTech Connect

This guide contains basic information needed to produce a SAND report. Its guidelines reflect DOE regulation and Sandia policy. The guide includes basic writing instructions in an annotated sample report; guidance for organization, format, and layout of reports produced by line organizations; and information about conference papers, journal articles, and brochures. The appendixes contain sections on Sandia`s preferred usage, equations, references, copyrights and permissions, and publishing terms.

Locke, T.K. [ed.

1996-04-01T23:59:59.000Z

287

Effects of dormant-season herbage removal on Flint Hills LISA M. AUEN AND CLENTON E. OWENSBY  

E-Print Network (OSTI)

Effects of dormant-season herbage removal on Flint Hills rangeland LISA M. AUEN AND CLENTON E. OWENSBY Ab8trWt Intensive-early stocking in the Kansas Flint Hills has greatly increased livestock production efficiency.The potential grrziap of regrowth on intensive-early stocked Flint Hills pastures

Owensby, Clenton E.

288

City of Blue Hill, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Nebraska (Utility Company) Nebraska (Utility Company) Jump to: navigation, search Name City of Blue Hill Place Nebraska Utility Id 20848 Utility Location Yes Ownership M NERC Location MRO Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Electric Service Industrial Industrial Electric Service(Primary Service) Industrial Non-Residential Electric Rate- Single Phase Commercial Non-Residential Electric Rate- Single Phase(Primary Metering) Commercial Non-Residential Electric Rate- Three Phase Commercial Non-Residential Electric Rate- Three Phase(Primary Metering) Commercial

289

Loess Hills Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Loess Hills Wind Energy LLC Address PO Box 198 Place Malvern, Iowa Zip 51551 Sector Wind energy Product ReDriven Wind Energy Systems Year founded 2009 Number of employees 1-10 Phone number 712.527.0412 Website http://www.loesshillswindenerg Coordinates 41.0052059°, -95.5827334° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0052059,"lon":-95.5827334,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Massive hydraulic fracture of Fenton Hill HDR Well EE-3  

DOE Green Energy (OSTI)

Subsequent to a 5.6 million gallon massive hydraulic fracturing (MHF) experiment in Fenton Hill Hot Dry Rock (HDR) Well EE-2, a 2 million gallon MHF was planned for Well EE-3. Although hydraulic communication between wells EE-2 and EE-3 was not established during the initial MHF, a large reservoir was created around EE-2 which seemed to be in proximity with EE-3. The objective of this 2nd MHF was two-fold, to test the reservoir and seismic characteristics of the EE-3 openhole region from 11,390 to 11,770 ft and to drive fractures into the fractured region created earlier by the EE-2 MHF experiment. This paper discusses well repairs to prepare EE-3 for the MHF, the pumping operations, and injection parameters and briefly summarizes seismic results. 2 refs., 6 figs.

Dash, Z.V.; Dreesen, D.S.; Walter, F.; House, L.

1985-01-01T23:59:59.000Z

291

Hill Airforce Base Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Airforce Base Geothermal Project Airforce Base Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hill Airforce Base Geothermal Project Project Location Information Coordinates 41.238888888889°, -111.97277777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.238888888889,"lon":-111.97277777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Black Hills Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Utility Id 1769 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Heat Rate Commercial General Commercial Irrigation Commercial Large Commercial Commercial Residential Residential Residential All-Electric Rate Residential Seasonal Commercial Small Commercial Three Phase Commercial Average Rates Residential: $0.0901/kWh Commercial: $0.0960/kWh The following table contains monthly sales and revenue data for Black Hills

293

El Centro/Superstition Hills Geothermal Project (2) | Open Energy  

Open Energy Info (EERE)

Project (2) Project (2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: El Centro/Superstition Hills Geothermal Project (2) Project Location Information Coordinates 33.020833333333°, -115.81305555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.020833333333,"lon":-115.81305555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Water quality in vicinity of Fenton Hill Site, 1975  

DOE Green Energy (OSTI)

Water quality at 9 surface water stations, 14 ground water stations, and drilling and testing operations at the Fenton Hill Site has been studied as a measure of the environmental impact on the Los Alamos Scientific Laboratory's geothermal site in the Jemez Mountains. Slight variations in the chemical quality of the water at individual stations were observed during the year. Predominant ions and total dissolved solids in the surface and ground water declined slightly in comparison to previous data. These variations in quality are not considered significant considering seasonal and annual stream flow variations. Surface water discharge records from three U.S. Geological Survey gaging stations on the Rio Guadalupe and Jemez River were analyzed to provide background data for the impact study. Direct correlations were determined between mean annual discharge at each of two stations in the upper reach of the drainage and at the station in the lower reach.

Purtymun, W.D.; Adams, W.H.; Stoker, A.K.; West, F.G.

1976-09-01T23:59:59.000Z

295

Water quality in vicinity of Fenton Hill Site, 1974  

DOE Green Energy (OSTI)

The water quality at nine surface water stations, eight ground water stations, and the drilling operations at the Fenton Hill Site have been studied as a measure of the environmental impact of the Los Alamos Scientific Laboratory geothermal experimental studies in the Jemez Mountains. Surface water quality in the Jemez River drainage area is affected by the quality of the inflow from thermal and mineral springs. Ground water discharges from the Cenozoic Volcanics are similar in chemical quality. Water in the main zone of saturation penetrated by test hole GT-2 is highly mineralized, whereas water in the lower section of the hole, which is in granite, contains a higher concentration of uranium. (auth)

Purtymun, W.D.; Adams, W.H.; Owens, J.W.

1975-09-01T23:59:59.000Z

296

Cookson Hills Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Elec Coop, Inc Elec Coop, Inc Jump to: navigation, search Name Cookson Hills Elec Coop, Inc Place Oklahoma Utility Id 4296 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Service, Rate 18 Industrial Commercial and Small Power - Single Phase, Rate 2 Commercial Commercial and Small Power - Three Phase, Rate 3 Commercial Farm and Home, Rate 1 Residential Irrigation Service - Single Phase, Rate 27 Industrial Irrigation Service - Three Phase, Rate 28 Industrial Security Light Lighting

297

Oil shale, tar sands, and related materials  

SciTech Connect

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

298

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Alabama Program Type Utility Loan Program Rebate Amount 7% interest rate 5 or 10 year pay schedule maximum of $12,000 Provider Sand Mountain Electric Cooperative The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least one year, have the home electric bill and deeds in the same name, and pass a credit check. Heat pumps must be installed by a [http://www.smec.coop/heatpumpcontractors.htm

299

Unconsolidated sand grain shape, size impact frac-pack design  

SciTech Connect

The shape and size of sand grains, as well as the saturating fluid, influence the mechanical properties of unconsolidated sands and need to be considered in frac-pack design. These mechanical properties of unconsolidated properties of unconsolidated sands play an important role in determining the geometry of frac-pack treatments. Stress-strain curves obtained for unconsolidated sands at elevated stresses show highly nonlinear hysteretic behavior. The impact of these findings on frac-pack design can be significant. The nonlinear elastic properties of unconsolidated sand can give rise to some unique features in the pressure response and in the fracture geometry that may not be observed in hard rocks. This article focuses on the impact of mechanical properties of poorly consolidated and unconsolidated sands on the geometry of frac packs. The paper discusses frac packs, mechanical properties (Young`s modulus, shear failure) and effective treatments.

Wang, E.; Sharma, M.M. [Univ. of Texas, Austin, TX (United States)

1997-05-19T23:59:59.000Z

300

Oil shales and tar sands: a bibliography  

DOE Green Energy (OSTI)

Five thousand one hundred forty-two citations of reports, journal articles, patents, conference papers, and monographs resulting from research on oil shales and tar sands are presented. These citations and approximately 5100 additional citations are a part of the Department of Energy's Energy Data Base. The citations, with abstracts, are arranged by subject category. Within the categories references to reports are listed in alphanumeric order by report number. Other citations follow in inverse chronological order. Five indexes are provided: Corporate, Author, Subject, Contract Number, and Report Number.

Grissom, M.C. (ed.)

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Flotation behavior of digested asphalt ridge tar sands  

SciTech Connect

The hot water process for Utah tar sands differs from that used for Canadian tar sands due to inherent differences in respective bitumen viscosities and the nature of bitumen-sand association. Although contact angle measurements of solvent extracted Asphalt Ridge bitumen indicated moderate hydrophobicity, air bubble attachment to the bitumen concentrate is not possible. This suggests that flotation separation is dependent on air bubble entrapment. Improved separation at higher flotation temperatures was due to the decrease in bitumen viscosity. 16 refs.

Smith, R.J.; Miller, J.D.

1981-12-01T23:59:59.000Z

302

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2000-05 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2000-05 Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2000-05 May 19, 2000 Preliminary Notice of Violation issued to Kaiser-Hill Company, LLC, related to an Unplanned, Radioactive Material Uptake at the Rocky Flats Environmental Technology Site, (EA-2000-05) This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances concerning an event, which occurred on February 2, 1999, in Building 779 at the Rocky Flats Environmental Technology Site. During this event, which involved glovebox decontamination and decommissioning (D&D) activities, a worker received an unplanned, uncontrolled radiological uptake of [ ] radioactive material. As a result

303

Department of Energy Finalizes $102 Million Loan Guarantee to Record Hill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finalizes $102 Million Loan Guarantee to Finalizes $102 Million Loan Guarantee to Record Hill Wind, LLC for Maine Wind Project Department of Energy Finalizes $102 Million Loan Guarantee to Record Hill Wind, LLC for Maine Wind Project August 15, 2011 - 11:08am Addthis Project Expected to Fund Approximately 200 Jobs and Provide Improvements to Wind Turbine Performance Washington D.C. - U.S. Energy Secretary Steven Chu today announced the Department of Energy finalized a $102 million loan guarantee to Record Hill Wind, LLC. The loan guarantee, in conjunction with an investment by the Yale University Endowment, will support the Record Hill wind project, which consists of a 50.6 megawatt wind power plant, an eight mile transmission line and associated interconnection equipment near the town of Roxbury,

304

Preliminary Notice of Violation, Kaiser-Hill Company,LLC - EA-1999-06 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLC - LLC - EA-1999-06 Preliminary Notice of Violation, Kaiser-Hill Company,LLC - EA-1999-06 August 18, 1999 Preliminary Notice of Violation issued to Kaiser-Hill Company, LLC, related to the Procurement of Waste Containers at the Rocky Flats Environmental Technology Site, August 18, 1999 This letter refers to the Department of Energy's (DOE) evaluation of a number of deficiencies related to the procurement, design control, work processes, and quality improvement aspects of nuclear waste containers and nuclear waste components during 1997 and 1998. Kaiser-Hill Company, L.L.C. (KHLL) procured many of these items for initial use at the Rocky Flats Environmental Technology Site and for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Preliminary Notice of Violation, Kaiser-Hill Company,LLC - EA-1999-06

305

Petrography Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al.,  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Petrography Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Thin sections were prepared of the different lithologies from each core. Standard petrographic techniques were used to identify constituent minerals and to obtain modal analyses. The number of points counted varied from about 500 to several thousand, depending upon the grain size of the rock. Whole-rock chemical analysis was performed by John Husler, University of New Mexico, using a variety of techniques (Laughlin and Eddy, 1977). The

306

Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky  

E-Print Network (OSTI)

This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

Isaacs, Mark Andrew

1980-01-01T23:59:59.000Z

307

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - Inc. - EA-2003-06 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 August 29, 2003 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Quality Assurance Issues at the Hanford Site Tank Farms This letter refers to the Department of Energy's Office of Price-Anderson Enforcement (OE) investigation of the facts and circumstances concerning quality assurance issues affecting nuclear safety at the Hanford Tank Farms. These issues involve the inadvertent deenergization of annulus leak detectors, dilution tank overfills, and dome loading control, over the period August 2002 to November 2002. Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2003-06 More Documents & Publications Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2006-06

308

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken &  

Open Energy Info (EERE)

Heiken & Heiken & Goff, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken & Goff, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Development of a geologically-based model of the thermal and hydrothermal potential of the Fenton Hill HDR area. References Grant Heiken, Fraser Goff (1983) Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Fenton_Hill_Hdr_Geothermal_Area_(Heiken_%26_Goff,_1983)&oldid=511328

309

Black Hills/Colorado Electric Utility Co. Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Hills/Colorado Electric Utility Co. Smart Grid Project Hills/Colorado Electric Utility Co. Smart Grid Project Jump to: navigation, search Project Lead Black Hills/Colorado Electric Utility Co. Country United States Headquarters Location Pueblo, Colorado Recovery Act Funding $6,142,854.00 Total Project Value $12,285,708.00 Coverage Area Coverage Map: Black Hills/Colorado Electric Utility Co. Smart Grid Project Coordinates 38.2544472°, -104.6091409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

310

Cuttings Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al.,  

Open Energy Info (EERE)

Laughlin, Et Al., Laughlin, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Fenton Hill Hdr Geothermal Area (Laughlin, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes A few cores (see Table I), cuttings collected at 1.5- or 3-m intervals, and random samples from a "junk basket" run behind the drill bit provided material for characterizing the basement rocks. References A. W. Laughlin, A. C. Eddy, R. Laney, M. J. Aldrich Jr (1983) Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Laughlin,_Et_Al.,_1983)&oldid=511306"

311

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) (Redirected from Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown References Fraser E. Goff, Charles O. Grigsby, Pat E. Trujillo Jr, Dale Counce,

312

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2001-04 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2001-04 Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2001-04 July 17, 2001 Preliminary Notice of Violation issued to Kaiser-Hill Company, LLC, related to Nuclear Safety, Work Control, and Radiation Protection Deficiencies at the Rocky Flats Environmental Technology Site This letter refers to the Department of Energy's (DOE, Department) evaluation of the facts and circumstances concerning a number of events and programmatic failures affecting nuclear safety at the Department's Rocky Flats Environmental Technology Site. The DOE Office of Price-Anderson Enforcement, in coordination with the DOE Rocky Flats Field Office (RFFO), conducted an on-site investigation during April 3-5, 2001. The results of

313

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) (Redirected from Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J.

314

Issued to Kaiser-Hill Company, LLC related to Failure to Perform Required  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issued to Kaiser-Hill Company, LLC related to Failure to Perform Issued to Kaiser-Hill Company, LLC related to Failure to Perform Required Surveillances at the Rocky Flats Environmental Technology Site, August 2, 2000 Issued to Kaiser-Hill Company, LLC related to Failure to Perform Required Surveillances at the Rocky Flats Environmental Technology Site, August 2, 2000 This letter refers to the Department of Energy's (DOE) evaluation of potential noncompliances with the requirements of 10 CFR 830.120 (Quality Assurance Rule). The potential noncompliances involved inadequate implementation of work controls, specifically failure to perform required combustible gas surveillances. The failure to fully perform the required surveillances was identified by the contractor during a comprehensive Kaiser-Hill (KHLL) Implementation Validation Review

315

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Hanford Group, Inc - CH2M Hill Hanford Group, Inc - EA-2005-01 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01 March 10, 2005 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological and Operational Events at the Hanford Tank Farms This letter refers to the recent investigation by the Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) at the Hanford Tank Farms of four radiological and operational events occurring during 2003 and 2004. The events included (1) the June 2003 multiple personnel contamination event at the [ ]; (2) the November 2003 Technical Safety Requirement violation during a cross-site waste transfer; (3) the November 2003 valve positioning error during S-112 waste retrieval operations; and

316

Enforcement Letter, Kaiser-Hill Company - August 12, 2004 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kaiser-Hill Company - August 12, 2004 Kaiser-Hill Company - August 12, 2004 Enforcement Letter, Kaiser-Hill Company - August 12, 2004 August 12, 2004 Enforcement Letter issued to Kaiser-Hill Company, LLC related to a Water Treatment System Breach and Foam Fire at the Rocky Flats Environmental Technology Site The Office of Price-Anderson Enforcement (OE) has reviewed the details and circumstances regarding two recent site events: the Building 771 unauthorized breach of the Water Treatment System in December 2003; and the February 2004 Building 991 foam fire. Both of these events represent significant breakdowns in your safety programs. Additionally, the general failure to adequately recognize hazards and implement effective controls observed in association with the Building 991 foam fire was an underlying deficiency in the 2003 Building

317

Asymptotics of instability zones of the Hill operator with a two term potential  

E-Print Network (OSTI)

Let $\\gamma_n $ denote the length of the $n$-th zone of instability of the Hill operator $Ly= -y^{\\prime \\prime} - [4t\\alpha \\cos2x + 2 \\alpha^2 \\cos 4x ] y,$ where $\\alpha \

Plamen Djakov; Boris Mityagin

2005-09-16T23:59:59.000Z

318

A Modified Logarithmic Law for Neutrally Stratified Flow over Low-Sloped Hills  

Science Conference Proceedings (OSTI)

The study of the atmospheric boundary layer flow over two-dimensional low-sloped hills under a neutral atmosphere finds numerous applications in meteorology and engineering, such as the development of large-scale atmospheric models, the siting of ...

Cludio C. Pellegrini; Gustavo C. R. Bodstein

2005-06-01T23:59:59.000Z

319

Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5...

320

CH2M Hill Hanford Group Inc (CHG) Information Resource Management (IRM) Strategic Plan  

SciTech Connect

The CH2M Hill Hanford Group, Inc., Information Resource Management Strategic Plan is the top-level planning document for applying information and information resource management to achieve the CHG mission for the management of the River Protection Project

NELSON, R.L.

2000-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Cites CH2M Hill Hanford for Violating Nuclear Safety Rules | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Violating Nuclear Safety Rules for Violating Nuclear Safety Rules DOE Cites CH2M Hill Hanford for Violating Nuclear Safety Rules March 10, 2005 - 10:44am Addthis Hanford Tank Farm Contractor Faces Fine of more than $300,000 WASHINGTON, DC - The Department of Energy (DOE) today notified the CH2M Hill Hanford Group, Inc. (CH2M Hill) - that it will fine the company $316,250 for violations of the department's nuclear safety requirements. CH2M Hill is the department's contractor responsible for storage of highly radioactive and hazardous liquid waste at the Hanford Tank Farms near Richland, Wash. The Preliminary Notice of Violation (PNOV) issued today, cites four events that took place in 2003 and 2004. These events include the contamination of several workers while removing equipment from a valve pit

322

Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

323

Focusing Mechanisms in the Texas Hill Country Flash FIOMS of 1978  

Science Conference Proceedings (OSTI)

During the early morning of 2 August 1978, a stationary thunderstorm complex drenched the Balcones Escarpment of Texas and unleashed flash floods in the Hill Country which killed 27 people and produced extensive damage. After the storm, an ...

F. Caracena; J. M. Fritsch

1983-12-01T23:59:59.000Z

324

SANDIA REPORT SAND93-1076  

Office of Scientific and Technical Information (OSTI)

SANDIA SANDIA REPORT SAND93-1076 * u_qo UnlimitedRelease 1 Pdnted November 1993 :ii l Standard Testing Procedures for Optical Fiber and Unshielded Twisted Pair at Sandia National Laboratories R. L. Adams Pe,_e,d by Sand!a Nm#ocml L.abomlodN Albuquerque, NewMexlooI71U and Uvermore,California$M860 for the UnitedStatesDepartment ofEnergy underContract DE.ACOI-MALIIf_D SF2900Q(8-81 } _IITRIEIUTION OF THiS DGCU,VltZNT 18 UNLIMITED k Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their c_ntractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability

325

Microstructural characterization of a Canadian oil sand  

E-Print Network (OSTI)

The microstructure of oil sand samples extracted at a depth of 75 m from the estuarine Middle McMurray formation (Alberta, Canada) has been investigated by using high resolution 3D X-Ray microtomography ($\\mu$CT) and Cryo Scanning Electron Microscopy (CryoSEM). $\\mu$CT images evidenced some dense areas composed of highly angular grains surrounded by fluids that are separated by larger pores full of gas. 3D Image analysis provided in dense areas porosity values compatible with in-situ log data and macroscopic laboratory determinations, showing that they are representative of intact states. $\\mu$CT hence provided some information on the morphology of the cracks and disturbance created by gas expansion. The CryoSEM technique, in which the sample is freeze fractured within the SEM chamber prior to observation, provided pictures in which the (frozen) bitumen clearly appears between the sand grains. No evidence of the existence of a thin connate water layer between grains and the bitumen, frequently mentioned in th...

Dinh, Hong Doan; Nauroy, Jean-Franois; Tang, Anh-Minh; Souhail, Youssef; 10.1139/T2012-072

2013-01-01T23:59:59.000Z

326

TESTING OF TMR SAND MANTIS FINAL REPORT  

SciTech Connect

Screening tests of Sand Mantis candidate materials selected for erosion resistance have been completed. The results of this testing identified that over a relatively short period of operation (<1 hour), measurable erosion will occur in each of the candidate zoom tube materials given equal operating exposure. Additionally, this testing has shown that erosion of the rubber discharge hose directly downstream of the vehicle could be expected to limit the service life of the discharge hose. On the basis of these test results, SRNL recommends the following; {lg_bullet} redesign of critical system components (e.g., zoom tube, discharge hose) should be conducted to improve system characteristics relative to erosion and capitalize on the results of this testing, {lg_bullet} continued efforts to deploy the Sand Mantis should include testing to better define and optimize operating parameters, and gain an understanding of system dynamics, {lg_bullet} discontinue wear testing with the selected materials pending redesign of critical system components (1st recommendation) and inclusion of other candidate materials. The final selection of additional candidate materials should be made following design changes, but might include a Stellite alloy or zirconia.

Krementz, D; William Daugherty, W

2007-06-12T23:59:59.000Z

327

Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah  

DOE Green Energy (OSTI)

Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

1980-03-01T23:59:59.000Z

328

Peer Review of the Hot Dry Rock Project at Fenton Hill, New Mexico  

Science Conference Proceedings (OSTI)

This report briefly describes the history of the hot dry rock experiment project conducted by the U.S. Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico, from about 1971 through 1995. The authors identify the primary lessons learned and techniques developed during the course of the Fenton Hill project, and summarize the extent to which these technologies have been transferred to the U.S. geothermal industry.

None

1998-12-01T23:59:59.000Z

329

Barriers to faulting in the Basin-Range province: evidence from the Sou Hills transverse block  

Science Conference Proceedings (OSTI)

Transverse structural blocks may inhibit the propagation of fault ruptures in the Basin-Range province. The Sou Hills, between Dixie and Pleasant Valleys, is a block of uplifted Tertiary bedrock transverse to the NNE-SSW trend of the central Nevada seismic belt. Three lines of evidence indicate that offset due to normal faulting is much less in the Sou Hills compared to adjacent segments of the seismic belt. First, estimates of total late Cenozoic offsets of pre-extension basalts show that the total offset is less in the Sou Hills. Second, analyses of landforms that reflect rates of relative uplift show that Quaternary tectonic activity on range-bounding faults declines where faults join the Sou Hills. Third, measurements of late Quaternary fault scarps show that individual rupture segments in the Sou Hills are shorter in length and have smaller displacements compared to the nearly continuous ruptures of several meters offset found along the Tobin and Stillwater Ranges to the north and south. The Sou Hills rupture pattern is distinctive: ruptures are dispersed over a wide zone rather than being concentrated along well-defined range fronts. Normal faulting patterns produced by the 1915 Pleasant Valley, Nevada and the 1983 Borah Peak, Idaho earthquakes indicate that a discontinuous, spatially dispersed faulting style typifies ruptures which die out in transverse bedrock features. These historic analogues support a model for prehistoric faulting in which ruptures have repeatedly died out in the Sou Hills. Transverse blocks such as the Sou Hills appear to present barriers to propagating ruptures.

Fonseca, J.E.

1985-01-01T23:59:59.000Z

330

Orebody Modelling for Exploration: The Western Mineralisation, Broken Hill, NSW  

Science Conference Proceedings (OSTI)

The Western Mineralisation in the Broken Hill deposit was studied to identify the zonation sequence of lithogeochemical haloes along and across the strike of the orebody. Samples used are from 77 drill holes and the samples were assayed for Pb, Zn, Fe, S, Cu, Ag, Cd, Sb, Bi and As. Variogram analyses were calculated for all the elements and kriging was used to construct the 3D block model. Analysis of cross sections along and across the strike of the orebody shows that Bi and Sb form broader halos around sulphide masses and this suggests that they are pathfinder elements for the Pb and Zn elements of this orebody. The threshold concentrations (minimum anomaly) of the 10 elements were determined using the concentration-area analysis. On east-west vertical cross sections, the values of linear productivity, variability gradient and zonality index were calculated for each element. Based on the maximum zonality index of each element, the sequence of geochemical zonation pattern was determined from top to bottom of the orebody. The result shows that S, Pb, Zn and Cd tend to concentrate in the upper part of the mineralisation whereas Ag, Cu, Bi and As have a tendency to concentrate in the lower part of the mineralised rocks. Also, an empirical product ratio index was developed based on the position of the elements in the zonation sequence. The methods and results of this research are applicable to exploration of similar Zn and Pb sulphide ore deposits.

Lotfolah Hamedani, Mohammad, E-mail: mlotfham@gmail.com; Plimer, Ian Rutherford [University of Adelaide, School of Earth and Environmental Sciences (Australia); Xu Chaoshui [University of Adelaide, School of Civil, Environmental and Mining Engineering (Australia)

2012-09-15T23:59:59.000Z

331

Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.  

Science Conference Proceedings (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

2007-11-01T23:59:59.000Z

332

Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Genetic Genetic Variability of Cell Wall Degradability for the Selection of Alfalfa with Improved Saccharification Efficiency Marc-Olivier Duceppe & Annick Bertrand & Sivakumar Pattathil & Jeffrey Miller & Yves Castonguay & Michael G. Hahn & Réal Michaud & Marie-Pier Dubé # Her Majesty the Queen in Right of Canada 2012 Abstract Alfalfa (Medicago sativa L.) has a high potential for sustainable bioethanol production, particularly because of its low reliance on N fertilizer. We assessed near-infrared reflec- tance spectroscopy (NIRS) as a high-throughput technique to measure cell wall (CW) degradability in a large number of lignified alfalfa stem samples. We also used a powerful immu- nological approach, glycome profiling, and chemical analyses to increase our knowledge of the composition of CW poly- saccharides of alfalfa stems with various levels

333

EA-1584: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84: Final Environmental Assessment 84: Final Environmental Assessment EA-1584: Final Environmental Assessment Sand Point Wind Installation Project Sand Point, Alaska Based on an action by the U.S Congress, the U.S. Department of Energy (DOE) has funding available to support the Alaska Energy Authority (AEA)'s Alaska Wind Energy Program. AEA proposes to provide funding received from DOE to Aleutian Wind Energy, LLC (AWE) to support the installation of a wind power generation system at the existing Tanadgusix Corporation (TDX) Power generation facility in Sand Point, Alaska. Environmental Assessment for Sand Point Wind Installation Project Sand Point, Alaska, DOE/EA -1584 (September 2009) More Documents & Publications EA-1584: Finding of No Significant Impact EA-1280: Final Environmental Assessment

334

Thermal reclaimer apparatus for a thermal sand reclamation system  

SciTech Connect

A thermal reclaimer apparatus is disclosed for thermally removing from the used foundry sand the organic matter that is present therein. The subject thermal reclaimer apparatus includes chamber means in which the used foundry sand is heated to a predetermined temperature for a preestablished period in order to accomplish the burning away of the organic matter that the used foundry sand contains. The chamber means includes inlet means provided at one end thereof and outlet means provided at the other end thereof. Feed means are cooperatively associated with the pipe means and thereby with the inlet means for feeding the used foundry sand through the inlet means into the chamber means. The subject thermal reclaimer apparatus further includes rotating means operative for effecting the rotation of the chamber means as the used foundry sand is being heated therein. The chamber means has cooperatively associated therewith burner means located at the same end thereof as the outlet means. The burner means is operative to effect the heating of the used foundry sand to the desired temperature within the chamber means. Tumbling means are provided inside the chamber means to ensure that the used foundry sand is constantly turned over, i.e., tumbled, and that the lumps therein are broken up as the chamber means rotates. Lastly, the used foundry sand from which the organic matter has been removed leaves the chamber means through the outlet means.

Deve, V.

1984-02-07T23:59:59.000Z

335

Tight gas sands study breaks down drilling and completion costs  

Science Conference Proceedings (OSTI)

Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

1994-06-06T23:59:59.000Z

336

Triaxial behavior of sand-mica mixtures using genetic programming  

Science Conference Proceedings (OSTI)

This study investigates an application of genetic programming (GP) for modeling of coarse rotund sand-mica mixtures. An empirical model equation is developed by means of GP technique. The experimental database used for GP modeling is based on a laboratory ... Keywords: Genetic programming, Leighton Buzzard Sand, Mica, Modeling, Triaxial testing

Ali Firat Cabalar; Abdulkadir Cevik

2011-08-01T23:59:59.000Z

337

Sand Mountain Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Mountain Electric Coop Mountain Electric Coop Jump to: navigation, search Name Sand Mountain Electric Coop Place Alabama Utility Id 16629 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Drainage Pumping Station LS - Outdoor Lighting Service Lighting RS - Residential Service Residential Schedule GSA - General Power Service - Part 1 Commercial Schedule GSA - General Power Service - Part 2 Commercial Schedule GSA - General Power Service - Part 3 Commercial Schedule GSB Commercial Schedule GSD Commercial

338

Direct Production of Silicones From Sand  

Science Conference Proceedings (OSTI)

Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

2001-09-30T23:59:59.000Z

339

Acoustic sand detector for fluid flowstreams  

DOE Patents (OSTI)

The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

Beattie, Alan G. (Corrales, NM); Bohon, W. Mark (Frisco, TX)

1993-01-01T23:59:59.000Z

340

Sand control in horizontal wells in heavy-oil reservoirs  

SciTech Connect

Recent advances in horizontal-well technology has greatly improved the potential for heavy oil recovery. Such recovery may be hampered, however, by sanding problems associated with most heavy-oil reservoirs. These reservoir sands are mostly unconsolidated and may lead to severe productivity-loss problems if produced freely. This paper offers recommendations for sand control in three Canadian heavy-oil reservoirs. Experimental evidence has shown that minimizing the annular space between the casing and the open hole is important, especially in the case of smaller wire space, lower oil viscosity, and thinner pay zone. Several types of wire-wrapped screens and flexible liners were tested for sand control. Only flexible liners reduced sand production to a negligible amount.

Islam, M.R. (Nova Husky Research Corp. (CA)); George, A.E. (Energy, Mines, and Resources (CA))

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Method and apparatus for hydrocarbon recovery from tar sands  

DOE Patents (OSTI)

A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.

Westhoff, James D. (Laramie, WY); Harak, Arnold E. (Laramie, WY)

1989-01-01T23:59:59.000Z

342

Method and apparatus for hydrocarbon recovery from tar sands  

DOE Patents (OSTI)

A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.

Westhoff, J.D.; Harak, A.E.

1988-05-04T23:59:59.000Z

343

Boundary layer eddies at the Goodnoe Hills site  

DOE Green Energy (OSTI)

Data from nine instrumented meteorological towers at the MOD-2 wind turbine site at Goodnoe Hills in Washington State were analyzed to evaluate high-frequency perturbations, which were observed in the lower boundary-layer flow. Horizontal winds and temperature measurements for a period of 8 min, undisturbed by turbine operation, were available for this study. The data are in 1-s values from June 27, 1985. Throughout the study, departures from the mean for the period and for each sensor were used on area maps and on line-time and tower-time cross sections. Conventional streamline and isotach analyses were employed; they show highly organized flow fields with embedded perturbations traversing the site. Most of the flow fields have a well-developed vortical structure that reaches from the surface through the top level of the highest tower. These structures consist of a system of clockwise and counter-clockwise circulations. The wave length is about 500 to 600 m. Their wave speed is slightly greater than the mean wind speed and their movement is in the general direction of the mean flow. The results of the study show two main reasons why wind conditions and turbine power output in a wind farm may vary in a remarkable and abrupt fashion in space and time under certain circumstances: (1) The boundary-layer flow contains highly organized coherent perturbations with a typical size of 300 {times} 300 M{sup 2}. (2) The transition zones between the perturbations moving through a wind farm are associated with very definitive changes in the wind field that are on the order of meters and seconds. 2 refs., 11 figs.

Aspliden, C.I.; Wendell, L.L.; Clem, K.S.; Gower, G.L.

1991-05-01T23:59:59.000Z

344

Determination of critical cracking temperature of oil sands at low temperature conditions.  

E-Print Network (OSTI)

??This research is intended to predict the viscoelastic behavior of oil sand mixesunder low temperature conditions. The oil sand used in this project is a (more)

Chandika, Charan kumar

2013-01-01T23:59:59.000Z

345

Environmental Assessments (EA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 4, 2009 September 4, 2009 EA-1655: Final Environmental Assessment Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development September 1, 2009 EA-1584: Final Environmental Assessment Sand Point Wind Installation Project Sand Point, Alaska September 1, 2009 EA-1788: Final Environmental Assessment Sapphire Energy, Inc.'s Integrated Algal Biorefinery (IABR) Facility in Columbus, New Mexico August 3, 2009 EA-1674: Final Environmental Assessment 10 CFR 431 Energy Conservation Program: Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines August 3, 2009 EA-1659: Final Environmental Assessment Proposed Demolition of Building 330 at Argonne National Laboratory August 3, 2009 EA-1652: Final Environmental Assessment

346

Regional assessment of geothermal potential along the Balcones and Luling-Mexia-Talco Fault Zones, Central Texas. Final report  

DOE Green Energy (OSTI)

A region-wide inventory and assessment of aquifers known to yield warm water (greater than 90/sup 0/F, 32/sup 0/C) is presented. This study was conducted to ascertain the potential for obtaining geothermal energy for space heating and water heating. The aquifers investigated include the Hosston/Trinity Sands, the Hensel Sand, the Paluxy Sand, the Edwards Limestone, and the Woodbine Sand. Each aquifer was examined in terms of its stratigraphic and structural framework and its hydrogeological properties. (MHR)

Woodruff, C.M. Jr.; McBride, M.W.

1979-05-01T23:59:59.000Z

347

The apparent surface roughness of moving sand transported by wind  

E-Print Network (OSTI)

We present a comprehensive analytical model of aeolian sand transport in saltation. It quantifies the momentum transfer from the wind to the transported sand by providing expressions for the thickness of the saltation layer and the apparent surface roughness. These expressions are for the first time entirely derived from basic physical principles. The model further predicts the sand transport rate (mass flux) and the impact threshold shear velocity. We show that the model predictions are in very good agreement with experiments and numerical state of the art simulations of aeolian saltation.

Thomas Phtz; Jasper F. Kok; Hans J. Herrmann

2011-11-05T23:59:59.000Z

348

EA-1824: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment Final Environmental Assessment EA-1824: Final Environmental Assessment Loan Guarantee to Record Hill Wind, LLC for Construction of a Wind Energy Project in Roxbury, Maine The U.S. Department of Energy (DOE) is proposing to issue a loan guarantee to Record Hill Wind LLC (Record Hill) for the construction of a 50.6 megawatt (MW) wind energy project located in Roxbury, Maine. DOE has prepared this Final Environmental Assessment (EA) in compliance with the National Environmental Policy Act (NEPA) (42 United States Code [USC] 4321, et. seq.) Council on Environmental Quality regulations for implementing NEPA (40 Code of Federal Regulations [CFR] Parts 1500-1508) and DOE NEPA regulations (10 CFR Part 1021). The EA examines the potential environmental impacts associated with the proposed action, as well as alternatives

349

GASIFICATION IN THE CANADIAN OIL SANDS:  

E-Print Network (OSTI)

The Long Lake integrated bitumen and upgrading project, now under construction by OPTI Canada Inc. and Nexen Inc., is the first application of large-scale gasification in Canada. It also represents the first implementation of a gasification project in conjunction with a heavy oil recovery and upgrading project. The Canadian oil sands are a vast petroleum resource that currently produces over one million barrels per day (bpd) using proven mining and in-situ recovery technologies. Production is projected to rise to over two million bpd by the end of the decade. However the large volumes of natural gas normally needed by the bitumen recovery and upgrading facilities are a significant barrier to economic development of the resource. The Long Lake Project uses a unique combination of technologies to provide a solution to the natural gas supply and cost issue. A key component is a gasification facility using the Shell Gasification Process (SGP) which is integrated with the bitumen upgrading to convert the liquid asphaltene by-product stream into hydrogen for the secondary upgrading step and syngas fuel. An Air Liquide air separation unit (ASU) will provide

unknown authors

2004-01-01T23:59:59.000Z

350

Western Gas Sands Project. Status report  

SciTech Connect

The progress during December, 1977 of the major government sponsored endeavors undertaken to increase gas production from the low permeability gas sands of the western United States is summarized. The USGS is continuing geological and geophysical studies in the four major western basins to better characterize the resource base. Shipping arrangements for the core donated to the USGS by Inexco WASP (a well drilled for possible nuclear explosive stimulation in Wyoming) have been made, and cores for macrofossil and ostracode analysis from the Bowdoin Dome area have been collected. The National Laboratories, funded by DOE, are continuing their work in the area of research and development. The emphasis is on the development of new tools and instrumentation systems, rock mechanics, mathematical modeling and data analysis. Field tests and demonstrations active in the Uinta and Piceance Basins are Gas Producing Enterprises (GPE) Natural Buttes, Wells No. 14, 18, 19, 20, 21, and 22; Mobil Research and Development, Well No. F-31-13G; and Rio Blanco Natural Gas Company, Well No. 498-4-1. Colorado Interstate Gas Company has initiated activity on its project with the installation of equipment, and Mitchell Energy Company's proposal to conduct an MHF test in the Cotton Valley lime gas reservoir in Texas is nearing the contract negotiation stage.

1978-02-01T23:59:59.000Z

351

Flow Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) | Open  

Open Energy Info (EERE)

Grigsby, Et Al., 1983) Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511312" Category: Exploration Activities What links here Related changes

352

Enforcement Letter, CH2M Hill Hanford Group Inc, - September 6, 2007 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group Inc, - September 6, Group Inc, - September 6, 2007 Enforcement Letter, CH2M Hill Hanford Group Inc, - September 6, 2007 September 6, 2007 Enforcement Letter issued to CH2M Hill Hanford Group, Inc., related to Quality Improvement Deficiencies at the Hanford Tank Farms The Department of Energy (DOE) held an Enforcement Conference on August 29, 2006, with CH2M Hill Hanford Group (CHG) to discuss potential violations of nuclear safety requirements described in our Investigation Summary Report dated July 26, 2006. At that time, DOE elected to defer a decision on a potential quality improvement violation related to recurring radiological events and deficiencies in the identification and control of radiological hazards at the Tank Farms. This decision was based upon the fact that CHG senior management had initiated radiological work

353

Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 1998 0, 1998 Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998 July 20, 1998 Issued to Kaiser-Hill Company, LLC related to Recurring Weaknesses in Implementing Quality Assurance Rule Requirements at the Rocky Flats Environmental Technology Site This letter refers to the Department of Energy's (DOE) evaluation of noncompliances reported in four Noncompliance Tracking System (NTS) entries, identified in the subject line above. The four NTS reports were submitted between September 24, 1997, and March 3, 1998. The reports identified potential noncompliances with requirements of 10 CFR 830.120 (Quality Assurance Rule) and 10 CFR 835 (Radiation Protection Rule). Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998 More Documents & Publications

354

Up-Hill ET in (NH3)5Ru(III)-Modified Ferrocytochrome c  

NLE Websites -- All DOE Office Websites (Extended Search)

Up-Hill Electron Transfer in Pentaammineruthenium(III)-Modified Up-Hill Electron Transfer in Pentaammineruthenium(III)-Modified Ferrocytochrome c: Rates, Thermodynamics, and the Mediating Role of the Ruthenium Moiety Ji Sun, James F. Wishart, and Stephan S. Isied Inorg. Chem. 34, 3998-4000 (1995) Abstract: At moderate to high ionic strengths (>0.1 M), Co(oxalate)33- oxidizes native cytochrome c very slowly, however it undergoes a rapid reaction with pendant ruthenium complexes covalently attached to the surface of the protein. Under these conditions, the rate of the thermodynamically unfavorable (up-hill) FeII-to-RuIII electron transfer process in pentaammineruthenium-modified horse-heart cytochrome c can be revealed using sufficiently high Co(oxalate) 33- concentrations. Rate measurements performed over a wide range of CoIII concentrations confirm the proposed

355

Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Details Activities (4) Areas (1) Regions (0) Abstract: The Phase I prototype hot dry rock (HDR) geothermal system was developed in Precambrian basement rocks at Fenton Hill, New Mexico. Core and cuttings samples from the four deep wells indicate that the reservoir of this Phase I HDR system lies within a homogeneous biotite granodiorite body of very low permeability. Natural fractures, although present, are

356

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References U. Fehn, R. T. D. Teng, Usha Rao, Fraser E. Goff (1996) Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Retrieved from

357

Microsoft Word - CX - Olallie Yellow Lake Sea Lea Hill.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Olallie, Yellow Lake, Sea Lea Hill Wireless Communication Projects Olallie, Yellow Lake, Sea Lea Hill Wireless Communication Projects Budget Information: Work Order #254675, Task 01; WO#255947, Task 01; WO#258439, Task 01 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 Acquisition, installation, operation, and removal of communication systems... B1.19 Siting, construction, and operation of microwave and radio communication towers and associated facilities... Location: All three projects will be located in King County, Washington Olallie Township 25 North, Range 5 East, Section 35 Yellow Lake Township 24 North, Range 6 East, Section 11 Sea Lea Hill Township 21 North, Range 5 East, Section 4 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to attach wireless communication

358

Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 21, 1998 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 1998 1, 1998 Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 21, 1998 This letter refers to the Department of Energy's (DOE) evaluation of potential noncompliances with the requirements of 10 CFR 830.120 (Quality Assurance Rule). The potential noncompliances involved inadequate implementation of work controls, specifically failure of workers to perform required surveillance of the Fire Protection System. The failure to fully perform the required surveillance was identified by Safe Sites of Colorado (SSOC) on June 2, 1997, and reported to DOE in the subject Noncompliance Tracking System report on June 26, 1997. Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 21, 1998 More Documents & Publications Enforcement Letter, Kaiser-Hill Company, L.L.C. - July 20, 1998

359

A Touch of Green for Des Moines' Sherman Hill | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Touch of Green for Des Moines' Sherman Hill A Touch of Green for Des Moines' Sherman Hill A Touch of Green for Des Moines' Sherman Hill November 3, 2011 - 4:47pm Addthis This 1930s grocery store is currently under renovation by the Green & Main initiative. When complete in Spring 2012, the previously abandoned building will be LEED Platinum certified and feature a green roof and 54 original windows retrofitted to achieve high energy efficiency standards. | Photo courtesy of Green & Main. This 1930s grocery store is currently under renovation by the Green & Main initiative. When complete in Spring 2012, the previously abandoned building will be LEED Platinum certified and feature a green roof and 54 original windows retrofitted to achieve high energy efficiency standards. | Photo courtesy of Green & Main.

360

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff &  

Open Energy Info (EERE)

Decker, 1983) Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff_%26_Decker,_1983)&oldid=511326"

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - April 24, 2001 Inc. - April 24, 2001 Enforcement Letter, CH2M Hill Hanford Group, Inc. - April 24, 2001 April 24, 2001 Enforcement Letter issued to CH2M Hill Hanford Group, Inc., related to Nuclear Safety Management at the Hanford Site Tank Farms This letter refers to a recent investigation by the Department of Energy (DOE), regarding potential noncompliances with the requirements of 10 CFR 830, "Nuclear Safety Management," occurring at the Hanford Tank Farms. The investigation reviewed three issues that were reported into the Noncompliance Tracking System (NTS) by CH2M Hill Hanford Group, Inc. Two of the NTS reports involve the failure to perform the Technical Safety Requirement (TSR) for [ ] gas monitoring. The initial potential noncompliance occurred in January 2000, in which a Zip Cord was installed

362

Water quality impacts from mining in the Black Hills, South Dakota, USA  

Science Conference Proceedings (OSTI)

The focus of this research was to determine if abandoned mines constitute a major environmental hazard in the Black Hills. Many abandoned gold mines in the Black Hills contribute acid and heavy metals to streams. In some areas of sulfide mineralization local impacts are severe, but in most areas the impacts are small because most ore deposits consist of small quartz veins with few sulfides. Pegmatite mines appear to have negligible effects on water due to the insoluble nature of pegmatite minerals. Uranium mines in the southern Black Hills contribute some radioactivity to surface water, but he impact is limited because of the dry climate and lack of runoff in that area. 26 refs.

Rahn, P.H.; Davis, A.D.; Webb, C.J. [South Dakota School of Mines and Technology, Rapid City, SD (United States)] [South Dakota School of Mines and Technology, Rapid City, SD (United States); Nichols, A.D. [Versar, Inc., Eden Prairie, MN (United States)] [Versar, Inc., Eden Prairie, MN (United States)

1996-02-01T23:59:59.000Z

363

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

364

Geothermal Literature Review At Fenton Hill Hdr Geothermal Area (Goff &  

Open Energy Info (EERE)

Goff & Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff_%26_Decker,_1983)&oldid=511314"

365

RFC Sand Creek Development LLC | Open Energy Information  

Open Energy Info (EERE)

RFC Sand Creek Development LLC RFC Sand Creek Development LLC Jump to: navigation, search Name RFC Sand Creek Development LLC Place Aurora, Colorado Zip 80014 Product Subsidiary of Republic Financial Corporation set up to invest in Sand Creek Energy LLC, a planned gas to liquid facility. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Sand Ridges and Dunes in the Calumet Region  

NLE Websites -- All DOE Office Websites (Extended Search)

when the U. S. Steel corporation purchased 8000 acres of sand dunes and swamps for its mills and a new city, Gary, you can still see ridge after ridge paralleling the lake shore...

367

Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Facility Sand Dunes Hot Spring Sector Geothermal energy Type Aquaculture Location Hooper, Colorado Coordinates 37.7427775°, -105.8752987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

368

CONTRACTOR REPORT SAND96-2555 UC-1243 Unlimited Release  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTRACTOR REPORT SAND96-2555 UC-1243 Unlimited Release A Study of Productionlnjection Data from Slim Holes and Large-Diameter Wells at the Takigami Geothermal Field, Kyushu,...

369

Ameresco and Hill Air Force Base: SPP Success Story | ENERGY STAR Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Hill Air Force Base: SPP Success Story Hill Air Force Base: SPP Success Story Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

370

Environmental analysis of the Fenton Hill Hot Dry Rock Geothermal Test Site  

DOE Green Energy (OSTI)

Techniques for the extraction of geothermal energy from hot dry rock within the earth's crust were tested at the first experimental system at Fenton Hill and proved successful. Because new concepts were being tried and new uses of the natural resources were being made, environmental effects were a major concern. Therefore, at all phases of development and operation, the area was monitored for physical, biological, and social factors. The results were significant because after several extended operations, there were no adverse environmental effects, and no detrimental social impacts were detected. Although these results are specific for Fenton Hill, they are applicable to future systems at other locations.

Kaufman, E.L.; Siciliano, C.L.B. (comps.)

1979-05-01T23:59:59.000Z

371

The method of Hill determinants in PT-symmetric quantum mechanics  

E-Print Network (OSTI)

Hill-determinant method is described and shown applicable within the so called PT-symmetric quantum mechanics. We demonstrate that in a way paralleling its traditional Hermitian applications and proofs the method guarantees the necessary asymptotic decrease of wave functions as resulting from a fine-tuned mutual cancellation of their asymptotically growing exponential components. Technically, the rigorous proof is needed/offered that in a quasi-variational spirit the method allows us to work, in its numerical implementations, with a sequence of truncated forms of the rigorous Hill-determinant power series for the normalizable bound states.

Miloslav Znojil

2004-10-04T23:59:59.000Z

372

Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels  

DOE Green Energy (OSTI)

The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

Not Available

1979-05-16T23:59:59.000Z

373

The effects of psammophilous plants on sand dune dynamics  

E-Print Network (OSTI)

Psammophilous plants are special plants that flourish in sand moving environments. There are two main mechanisms by which the wind affects these plants: (i) sand drift exposes roots and covers branches--the exposed roots turn into new plants and the covered branches turn into new roots; both mechanisms result in an enhanced growth rate of the psammophilous plant cover of the dunes; (ii) strong winds, often associated with sand movement, tear branches and seed them in nearby locations, resulting in new plants and an enhanced growth rate of the psammophilous plant cover of the dunes. Despite their important role in dune dynamics, to our knowledge, psammophilous plants have never been incorporated into mathematical models of sand dunes. Here, we attempt to model the effects of these plants on sand dune dynamics. We construct a set of three ordinary differential equations for the fractions of surface cover of regular vegetation, biogenic soil crust and psammophilous plants. The latter reach their optimal growth under (i) specific sand drift or (ii) specific wind power. We show that psammophilous plants enrich the sand dune dynamics. Depending on the climatological conditions, it is possible to obtain one, two, or three steady dune states. The activity of the dunes can be associated with the surface cover--bare dunes are active, and dunes with significant cover of vegetation, biogenic soil crust, or psammophilous plants are fixed. Our model shows that under suitable precipitation rates and wind power, the dynamics of the different cover types is in accordance with the common view that dunes are initially stabilized by psammophilous plants that reduce sand activity, thus enhancing the growth of regular vegetation that eventually dominates the cover of the dunes and determines their activity.

Golan Bel; Yosef Ashkenazy

2013-08-30T23:59:59.000Z

374

Western tight gas sands advanced logging workshop proceedings  

SciTech Connect

An advanced logging research program is one major aspect of the Western Tight Sands Program. Purpose of this workshop is to help BETC define critical logging needs for tight gas sands and to allow free interchange of ideas on all aspects of the current logging research program. Sixteen papers and abstracts are included together with discussions. Separate abstracts have been prepared for the 12 papers. (DLC)

Jennings, J B; Carroll, Jr, H B [eds.

1982-04-01T23:59:59.000Z

375

Western gas sands project status report  

SciTech Connect

The Western Gas Sands Project Plan, Project Implementation Plans and Project Plan Document FY 78 are in various stages of preparation. Information gathering by U.S. Geological Survey (USGS) of the initial data base for many of the project activities is nearing completion. Some base maps are complete and field investigations in the principal areas of interest are being conducted. Research and development by Energy Research Centers and National Laboratories were directed toward new tools and instrumentation systems, rock mechanics experiments, mathematical modeling, and data analysis. The Uinta Basin in Utah and Piceance Basin in Colorado have ongoing massive hydraulic fracture (MHF) experiments in the Upper Cretaceous tight gas formations. These are: CER Corporation, MHF 3; Gas Producing Enterprises, Natural Buttes No. 14, 18, 19, 20; Mobil Oil, F-31-13G; and Rio Blanco Natural Gas, 498-4-1. Colorado Interstate Gas Company has been awarded a contract to determine if productivity in low permeability reservoirs can be improved by reducing the interstitialwater saturation. They will be using two wells, the Sprague No. 1 and Miller No. 1, completed in the Dakota J formation in the Wattenberg Field in north central Colorado. All of the massive hydraulic fracture wells, with the exception of the Pacific Transmission well, have been fractured as planned. The Mobil and GPE No. 14, 18, and 20 wells show significant improvement as compared to original flow rates. The Mobil well is being tested for additional MHF treatments. Sandia Laboratories is continuing their research program in hydraulic fracturing at DOE's Nevada Test Site (NTS).

1977-11-01T23:59:59.000Z

376

The extraction of bitumen from western tar sands. Annual report, July 1990--July 1991  

Science Conference Proceedings (OSTI)

Contents of this report include the following: executive summary; characterization of the native bitumen from the Whiterocks oil sand deposit; influence of carboxylic acid content on bitumen viscosity; water based oil sand separation technology; extraction of bitumen from western oil sands by an energy-efficient thermal method; large- diameter fluidized bed reactor studies; rotary kiln pyrolysis of oil sand; catalytic upgrading of bitumen and bitumen derived liquids; ebullieted bed hydrotreating and hydrocracking; super critical fluid extraction; bitumen upgrading; 232 references; Appendix A--Whiterocks tar sand deposit bibliography; Appendix B--Asphalt Ridge tar sand deposit bibliography; and Appendix C--University of Utah tar sands bibliography.

Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1992-04-01T23:59:59.000Z

377

Consent Order between Department of Energy and Kaiser-Hill Company, LLC, EA 98-03, April 14, 1998  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1998 1998 Mr. Robert Card [ ] Kaiser-Hill Company, L.L.C. Rocky Flats Environmental Technology Site P.O. Box 464 Golden, CO 80402-0464 EA 98-03 Subject: Consent Order Incorporating Agreement between U.S. Department of Energy and Kaiser-Hill Company, L.L.C. This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances presented to DOE by Kaiser-Hill Company, L.L.C.'s (Kaiser-Hill) internal investigation reports of three events that occurred at the Rocky Flats Environmental Technology Site between January 1996 and January 1998. These events involved (1) an unplanned [radioactive material] uptake by two workers during a CERCLA Tank Remediation Project conducted by Rocky Mountain Remediation Service (RMRS), a sub-contractor to Kaiser-Hill; (2) seventeen workers

378

EA-1849: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Final Environmental Assessment 9: Final Environmental Assessment EA-1849: Final Environmental Assessment Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGuiness Hills Geothermal Project, Lander County, Nevada Ormat Nevada Inc. (ORMAT), through its subsidiaries, proposes to construct and operate three geothermal power production facilities and associated power transmission lines in northern Nevada. The power production facilities include the Tuscarora Geothermal Power Plant Facility (Tuscarora Facility) in Elko County, the Jersey Valley Geothermal Development Facility (Jersey Valley Facility) in Pershing County, and the McGinness Hills Geothermal Facility (McGinness Hills Facility) in Lander County (Figure 1). The Hot Sulphur Springs Transmission Line (Transmission Line) would connect

379

Method of tagging sand with ruthenium-103 and the resultant product  

DOE Patents (OSTI)

A procedure for tagging sand with a radioisotope for use in the study of sediment transport involves the precipitation of a metal radioisotope in the form of an iodide directly on the sand, followed by heating the sand to a temperature sufficient to effect a phase transformation of the sand and a decomposition of the metal iodide, leaving the metal firmly attached to the sand.

Case, Forrest N. (Oak Ridge, TN); McFarland, Clyde E. (Knoxville, TN)

1976-01-01T23:59:59.000Z

380

Painted Hills B&C Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

Painted Hills B&C Wind Farm I Painted Hills B&C Wind Farm I Jump to: navigation, search Name Painted Hills B&C Wind Farm I Facility Painted Hills B&C Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Zond Systems Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Painted Hills B&C Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Painted Hills B&C Wind Farm II Painted Hills B&C Wind Farm II Jump to: navigation, search Name Painted Hills B&C Wind Farm II Facility Painted Hills B&C Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Zond Systems Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

VBA-0033 - In the Matter of Kaiser-Hill Company, L.L.C. | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

L.L.C. On August 26 and 27, 1999, Kaiser-Hill Company, L.L.C. (K-H) and EG&G Rocky Flats, Inc. (EG&G) respectively filed Notices of Appeal from an Initial Agency Decision...

383

Geology and alteration of the Baltazor Hot Springs and Painted Hills Thermal Areas, Humboldt County, Nevada  

DOE Green Energy (OSTI)

The Baltazor Hot Springs KGRA and nearby Painted Hills thermal area are situated in Humboldt County, northwestern Nevada along the northwestern margin of the Basin and Range province. The oldest rocks exposed in the Baltazor area are eugeosynclinal metasedimentary and subordinate metavolcanic rocks of Permian to Triassic age intruded by Cretaceous diorite and quartz diorite. These are overlain by a thick volcanic and volcaniclastic sequence of Miocene through Pliocene age. Pre-Tertiary rocks are not exposed in the Painted Hills. Principal structures in the Baltazor area are intersecting high-angle normal faults which trend northerly and northwesterly. Quaternary landslides are dominant in the Painted Hills, although northerly- and northwesterly-trending high-angle faults are also present. Hydrothermal alteration and mineralization at Baltazor and in the Painted Hills are of several different styles and ages. Copper-bearing quartz veins in pre-Tertiary rocks antedate Cenozoic volcanism and sedimentation. The heat source for thermal phenomena and alteration in both areas is probably deep fault-controlled fluid circulation coupled with an abnormally high regional thermal gradient. (MHR)

Hulen, J.B.

1979-12-01T23:59:59.000Z

384

Analysis of fracturing pressures in the South Belridge and Lost Hills Fields  

Science Conference Proceedings (OSTI)

A presentation is made of both theories and rules of thumb believed applicable to everyday fracturing situations in the Lost Hills and South Belridge fields. Pressure analysis is featured with emphasis on bottom hole fracturing pressure calculation and interpretation. Suggestions for the application of findings are offered in hopes of increasing the efficiency of current frac completion and treating methods. 3 refs.

Swanson, G.S.; Meeken, R.B.

1981-01-01T23:59:59.000Z

385

Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota  

E-Print Network (OSTI)

isotope geochemistry by documenting the Li isotopic variations in different geological reservoirsLithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota Fang. Geochemistry Laboratory, Department of Geology, University of Maryland, College Park, MD 20742, U.S.A. 2

Rudnick, Roberta L.

386

Bottom Currents near a Small Hill on the Maderia Abyssal Plain  

Science Conference Proceedings (OSTI)

Near-bottom currents at depths in exceeds of 5000 m have been measured in the Great Meteor East study area (near 3130?N, 25W) over a 3 year period. The sites selected were on top of a small abyssal hill, on its flank, and on the abyssal plain ...

Peter M. Saunders

1988-06-01T23:59:59.000Z

387

CH2M Hill Hanford Group Inc (CHG) Information Resource Management (IRM) Strategic Plan  

SciTech Connect

The CH2M HILL Hanford Group, Inc. (CHG), Information Resource Management Strategic Plan is the top-level planning document for applying information and information resource management to achieve the CHG mission for the management of the River Protection Project waste tank farm.

NELSON, R.L.

2000-06-06T23:59:59.000Z

388

Numerical Simulation of the 910 June 1972 Black Hills Storm Using CSU RAMS  

Science Conference Proceedings (OSTI)

Strong easterly flow of low-level moist air over the eastern slopes of the Black Hills on 910 June 1972 generated a storm system that produced a flash flood, devastating the area. Based on observations from this storm event, and also from the ...

U. S. Nair; Mark R. Hjelmfelt; Roger A. Pielke Sr.

1997-08-01T23:59:59.000Z

389

Fertilizing and Burning Flint Hills Bluestem CLENTON E. OWENSBY AND ED F. SMITH  

E-Print Network (OSTI)

Fertilizing and Burning Flint Hills Bluestem CLENTON E. OWENSBY AND ED F. SMITH Abstract Burned of nitrogen applied more than 80 lb N/acre did. Maintenance of good quality range was favored by burning and 0 and 40 lb N/acre compared to not burning and the same fertilizer rates. Eighty lb N/acre produced poor

Owensby, Clenton E.

390

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network (OSTI)

1966, Energy and power of geothermal resources: Dept. o fTelluric exploration for geothermal anomalies i n Oregon:Bowen, R.G. , 1972, Geothermal o v k i e w s of t h e '

Stark, M.

2011-01-01T23:59:59.000Z

391

Geothermal resource assessment of the New England states  

DOE Green Energy (OSTI)

With the exception of Sand Springs in Williamstown, Massachusetts, there are no identifiable hydrothermal geothermal resources in the New England region. The radioactive plutons of the White Mountains of New Hampshire do not, apparently, contain sufficient stored heat to make them a feasible target for an induced hydrothermal system such as exists at Fenton Hill near Los Alamos, New Mexico. The only potential source of low grade heat is the large volume of ground water contained within the unconsolidated sediments related to the Pleistocene glaciation of the region. During the course of the survey an unusual and unexplained thermal anomaly was discovered in St. Johnsbury, Vermont, which is described.

Brophy, G.P.

1982-01-01T23:59:59.000Z

392

Method for manufacturing a well production and sand screen assembly  

SciTech Connect

A method for forming and assembling a well production and sand screen assembly in a well having a screen therein forming an outer annulus and a wash pipe internally of the screen forming an inner annulus comprising further (A) mounting a high pressure fluid pump means and a valve means on each wash pipe, inner annulus, and outer annulus, and (B) connecting the valve means in fluid communication with the high pressure fluid pump means for controlling the ingress and egress of the high pressure fluids and removed formation material for forming a sand pack in the well and simultaneously for applying and maintaining a positive fluid pressure against the overburden during work in the well for preventing cave-ins and sloughing of the unconsolidated formation well walls until the sand pack is formed.

Widmyer, R.H.

1982-10-12T23:59:59.000Z

393

DOE Cites CH2M Hill Hanford Group for Price-Anderson Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group for Price-Anderson Violations Group for Price-Anderson Violations DOE Cites CH2M Hill Hanford Group for Price-Anderson Violations November 17, 2006 - 9:25am Addthis WASHINGTON, DC - The Department of Energy (DOE) today notified CH2M Hill Hanford Group (CHG) that it will fine the company $82,500 for violations of the Department's nuclear safety requirements. CHG is the prime contractor responsible for managing the storage and retrieval of highly radioactive and hazardous waste at the DOE Hanford Tank Farm site. The Preliminary Notice of Violation (PNOV) issued today cited a series of violations associated with two separate events involving the radioactive contamination of multiple CHG employees. The first event occurred on September 21, 2005, during disassembly and removal of auxiliary equipment

394

Sale of the Elk Hills Naval Petroleum Reserve | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Petroleum Reserves » Naval Reserves » Sale of the Elk Services » Petroleum Reserves » Naval Reserves » Sale of the Elk Hills Naval Petroleum Reserve Sale of the Elk Hills Naval Petroleum Reserve Energy Secretary Federico Pena (left) and Occidental Petroleum's David Hentschel sign the historic transfer agreement with Patricia Godley, DOE's Assistant Secretary for Fossil Energy, who orchestrated the sale, looking on. Energy Secretary Federico Pena (left) and Occidental Petroleum's David Hentschel sign the historic transfer agreement with Patricia Godley, DOE's Assistant Secretary for Fossil Energy, who orchestrated the sale, looking on. On February 5, 1998, the Department of Energy and Occidental Petroleum Corporation concluded the largest divestiture of federal property in the history of the U.S. government.

395

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2006-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - Inc. - EA-2006-06 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc. - EA-2006-06 November 16, 2006 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological Contamination Events at the Hanford Site Tank Farms This letter refers to the recent investigation at the Hanford Tank Farms by the Department of Energy's (DOE) Office of Enforcement, now within the Office of Health, Safety and Security. The investigation involved (1) the September 2005 Tank C-202 Mobile Retrieval System (MRS) multi-personnel contamination event, (2) the March 2006 ER-311 catch tank camera removal radiological event, and (3) additional radiological contamination events that occurred between 2003-2006 as they relate to quality improvement

396

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2000-01 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2000-01 2000-01 Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-2000-01 January 24, 2000 Preliminary Notice of Violation issued to Kaiser-Hill Company, LLC, related to Recurring Procurement Quality Problems at the Rocky Flats Environmental Technology Site, January 24, 2000 (EA-2000-01) This letter refers to the Department of Energy's (DOE) evaluation of recurring procurement quality problems identified to you in Preliminary Notice of Violation (PNOV) EA-1999-06 and the effectiveness of corrective actions you identified in your response to the PNOV. Our letter of August 18, 1999, transmitting PNOV EA-1999-06 stated that DOE would defer enforcement action on additional similar violations contingent upon your taking corrective actions that effectively prevent recurrence of the

397

MEMORANDUM TO: File FROM: David R. Hill RE: Meeting Concerning Potential Test Procedures and Energy Conservation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEMORANDUM MEMORANDUM TO: File FROM: David R. Hill RE: Meeting Concerning Potential Test Procedures and Energy Conservation Standards for Set-Top Boxes and Network Equipment DATE: March 14, 2012 In compliance with the Department of Energy's guidance on ex parte communications (74 Fed. Reg. 52795 (Oct. 14, 2009)), this memorandum provides a summary of a March 7, 2012, meeting with DOE officials concerning potential test procedures and energy conservation standards for set-top boxes and network equipment. Meeting attendees: John Cymbalski (DOE - EE) Jeremy Dommu (DOE - EE) Ashley Armstrong (DOE - EE) Dan Cohen (DOE - GC) Celia Sher (DOE - GC) Cecilia Martaus (AT&T) Mike Pfau (AT&T) Jeff Dygert (AT&T) David Hill (Sidley Austin) The AT&T representatives discussed a number of concerns with DOE's potential promulgation

398

DOE Cites CH2M Hill Hanford Group, Inc. for Price-Anderson Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group, Inc. for Price-Anderson Group, Inc. for Price-Anderson Violations DOE Cites CH2M Hill Hanford Group, Inc. for Price-Anderson Violations June 5, 2008 - 12:51pm Addthis WASHINGTON, DC - The Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to CH2M Hill Hanford Group, Inc. (CHG) for nuclear safety violations. CHG is the tank operations contractor for the tank farms located at DOE's Hanford Site in southeastern Washington State. The PNOV cites a series of violations that occurred on July 27, 2007, when waste being pumped out of tank S-102 spilled in the vicinity of the tank's retrieval pump. During waste transfer operations, a supply line became over-pressurized with tank waste, causing a rupture in the dilution water supply line and resulted in a spill of approximately 85 gallons of

399

Enforcement Letter, Kaiser-Hill Company, L.L.C - September 11, 2000 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C - September 11, 2000 C - September 11, 2000 Enforcement Letter, Kaiser-Hill Company, L.L.C - September 11, 2000 September 11, 2000 Issued to Kaiser-Hill Company, LLC related to Noncompliances with Design and Procurement Requirements at the Rocky Flats Environmental Technology Site This letter refers to an evaluation by the Department of Energy (DOE) of noncompliance report number NTS-RFO--KHLL-SITEWIDE-2000-0005, which describes noncompliances with the design and procurement requirements of 10 CFR 830.120 (Quality Assurance Rule). 10 CFR 830.120(c)(2)(iii) requires that procured items and services shall meet established requirements and perform as required; 10 CFR 830.120(c)(2)(ii) requires that design work including changes, shall incorporate applicable requirements and design

400

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - March 10,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc - Inc - March 10, 2005 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - March 10, 2005 March 10, 2005 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological and Operational Events at the Hanford Tank Farms This letter refers to the recent investigation by the Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) at the Hanford Tank Farms of four radiological and operational events occurring during 2003 and 2004. The events included (1) the June 2003 multiple personnel contamination event at the [ ]; (2) the November 2003 Technical Safety Requirement violation during a cross-site waste transfer; (3) the November 2003 valve positioning error during S-112 waste retrieval operations; and

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc - Inc - EA-2005-01 Preliminary Notice of Violation, CH2M Hill Hanford Group, Inc - EA-2005-01 March 10, 2005 Preliminary Notice of Violation issued to CH2M Hill Hanford Group, Inc., related to Radiological and Operational Events at the Hanford Tank Farms This letter refers to the recent investigation by the Department of Energy's (DOE) Office of Price-Anderson Enforcement (OE) at the Hanford Tank Farms of four radiological and operational events occurring during 2003 and 2004. The events included (1) the June 2003 multiple personnel contamination event at the [ ]; (2) the November 2003 Technical Safety Requirement violation during a cross-site waste transfer; (3) the November 2003 valve positioning error during S-112 waste retrieval operations; and (4) the July 2004 extremity exposure during hermocouple removal activities.

402

Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-96-04 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

96-04 96-04 Preliminary Notice of Violation, Kaiser-Hill Company, LLC - EA-96-04 October 7, 1996 Preliminary Notice of Violation issued to Kaiser-Hill Company, LLC related to Radiological and Work Control Deficiencies associated with Two Radiological Release Events at the Rocky Flats Environmental Technology Site, (EA-96-04) This letter refers to the Department of Energy's (DOE) evaluation of the circumstances surrounding a number of radiological and work control deficiencies associated with two incidents: one in [a building] on March 4, 1996, and the other in [a different building] on April 18, 1996. The evaluation also considered a substantial number of other recent failures to adhere to your established worker radiological protection program requirements. On June 5-7, 1996, the DOE Office of Enforcement and

403

Technical safety appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California  

Science Conference Proceedings (OSTI)

The existing Elk Hills facilities for fluid production consist of tank settings, gas and oil/water gathering pipelines, gas plants, compressor facilities, lease automatic custody transfer units which meter the crude oil going to sales, and natural gas sales meters and pipelines, water injection and source wells, and gas injection pipelines and wells. The principal safety concerns presented by operations at Elk Hills are fire, occupational safety and industrial hygiene considerations. Transportation and motor vehicle accidents are also of great concern because of the large amount of miles driven on more than 900 miles of roads. Typical operations involve hazardous materials and processing equipment such as vessels, compressors, boilers, piping and valves. The aging facilities, specifically the 35R Gas Plant (constructed in 1952) and many of the pipelines, introduce an additional element of hazard to the operations.

Not Available

1989-04-01T23:59:59.000Z

404

Enforcement Letter, Kaiser-Hill Company - August 12, 2004 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company - August 12, 2004 Company - August 12, 2004 Enforcement Letter, Kaiser-Hill Company - August 12, 2004 August 12, 2004 Enforcement Letter issued to Kaiser-Hill Company, LLC related to a Water Treatment System Breach and Foam Fire at the Rocky Flats Environmental Technology Site The Office of Price-Anderson Enforcement (OE) has reviewed the details and circumstances regarding two recent site events: the Building 771 unauthorized breach of the Water Treatment System in December 2003; and the February 2004 Building 991 foam fire. Both of these events represent significant breakdowns in your safety programs. Additionally, the general failure to adequately recognize hazards and implement effective controls observed in association with the Building 991 foam fire was an underlying deficiency in the 2003 Building

405

InertiaGravity Wave and Neutral Eady Wave Trains Forced by Directionally Sheared Flow over Isolated Hills  

Science Conference Proceedings (OSTI)

Analytical solutions are obtained to the linearized equations describing a particular class of directionally sheared flow over isolated hills or ridges. The flows are characterized by constant buoyancy frequency and vertical wind shear, though ...

Glenn Shutts

2003-02-01T23:59:59.000Z

406

Microearthquakes induced during hydraulic fracturing at the Fenton Hill HDR site: the 1982 experiments  

DOE Green Energy (OSTI)

The on-site real-time processing of microearthquake signals that occur during massive hydraulic fracturing provides a notion of the location and growth of the fracture system being created. This enables quick decisions to be made in regard to the ongoing operations. The analytical results and impact of the hypocenter mapping during the 1982 fracturing experiments in the Fenton Hill Phase II Hot Dry Rock geothermal reservoir are reported.

Keppler, H.; Pearson, C.F.; Potter, R.M.; Albright, J.N.

1983-01-01T23:59:59.000Z

407

Enhancing permeability in oil shale and applications to tar sands  

SciTech Connect

Explosive fracturing and rubblization are used to enhance oil shale permeability. Blasting strategy and results are discussed, in particular the Geokinetics blasting. The field data desired are listed. Comments are offered on the extension of the blasting techniques to tar sands. (DLC)

Schamaun, J.T.

1980-01-01T23:59:59.000Z

408

Mechanism of acoustic emissions from booming sand dunes  

E-Print Network (OSTI)

The classical elastic mechanics shows that the fundamental frequency of a sand grain chain is similar to the typical frequency of acoustic emission generated by the booming dunes. The "song of dunes" is therefore considered to originate from the resonance of grain chains occurring within a solid layer only several centimeters thick.

Zhen-Ting Wang

2013-05-10T23:59:59.000Z

409

CO{sub 2}/sand fracturing in low permeability reservoirs  

Science Conference Proceedings (OSTI)

The objectives of this study are: to demonstrate the effectiveness of a non-damaging liquid, carbon dioxide (CO{sub 2}) in creating sand-propped hydraulic fractures in ``tight`` gas bearing formations within the Appalachian Basin; and to compare and rank the gas production responses from wells treated with liquid CO{sub 2} with other types of treatments (shooting, water based, nitrogen, etc.). The preliminary results are encouraging, and although only a few months of production is available, the rate of gas production from the CO{sub 2} treated candidate wells is greater than that from the control wells. The CO{sub 2}/sand fracs appear to be 56 percent better than the nitrogen fracs in Pike County. In addition, the CO{sub 2}/sand fracs are 4.8 times better than conventional shot wells in the Pike County study area. It should be recognized that these results are from a very limited data set and overall conclusions may change as more control wells are added to the analysis. From a stimulation process achievement viewpoint, the maximum amount of sand pumped is 46,000 pounds at an average concentration of 3.1 pound per gallon. It should be pointed out that additional foam and nitrogen stimulations have recently been performed by the operator in the Pike County area, and subsequent discussions in the future will include additional control wells to the baseline data sets.

Mazza, R.L.; Gehr, J.B.

1993-12-31T23:59:59.000Z

410

Nitrate-Cancrinite Precipitation on Quartz Sand in Simulated Hanford  

E-Print Network (OSTI)

Nitrate-Cancrinite Precipitation on Quartz Sand in Simulated Hanford Tank Solutions B A R R Y R . B minerals at the U.S. Department of Energy's Hanford site in Washington. Nitrate-cancrinite began's (DOE) Hanford Site in southeast Washington since the late 1950s (1). To predict the fate

Illinois at Chicago, University of

411

SAND2006-1982J Solid-State Environmentally Safe  

E-Print Network (OSTI)

battery packs in parallel.The commercial target cost is expected to open at $50 per 1.5-volt cellSAND2006-1982J #12;Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1 Entry with High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia

412

Western Gas Sands Project. Quarterly basin activities report  

SciTech Connect

A summation is presented of the coring program site identification, and drilling and testing activity in the four primary study areas of the Western Gas Sands Project (WGSP). Pertinent information for January, February, and March, 1978 is included for each study area. The areas are the Northern Great Plains Province, the Greater Green River Basin, the Piceance Basin, and the Uinta Basin.

1978-04-01T23:59:59.000Z

413

Water Balance of a Stock-Watering Pond in the Flint Hills of Kansas J. L. Duesterhaus,1  

E-Print Network (OSTI)

Water Balance of a Stock-Watering Pond in the Flint Hills of Kansas J. L. Duesterhaus,1 J. M. Ham,2 in the Flint Hills region of east-central Kansas from June 2005 to October 2006. The 0.35-ha pond supplied´n de las colinas de Flint en la regio´n central del este de Kansas a partir de junio del 2005 hasta

Owensby, Clenton E.

414

Lake Whitney Comprehensive Water Quality Assessment, Phase 1B- Physical and Biological Assessment (USDOE)  

Science Conference Proceedings (OSTI)

Baylor University Center for Reservoir and Aquatic Systems Research (CRASR) has conducted a phased, comprehensive evaluation of Lake Whitney to determine its suitability for use as a regional water supply reservoir. The area along the Interstate 35 corridor between Dallas / Fort Worth Metroplex and the Waco / Temple Centroplex represents one of the fastest growth areas in the State of Texas and reliable water supplies are critical to sustainable growth. Lake Whitney is situated midway between these two metropolitan areas. Currently, the City of Whitney as well as all of Bosque and Hill counties obtain their potable water from the Trinity Sands aquifer. Additionally, parts of the adjoining McLennan and Burleson counties utilize the Trinity sands aquifer system as a supplement to their surface water supplies. Population growth coupled with increasing demands on this aquifer system in both the Metroplex and Centroplex have resulted in a rapid depletion of groundwater in these rural areas. The Lake Whitney reservoir represents both a potentially local and regional solution for an area experiencing high levels of growth. Because of the large scope of this project as well as the local, regional and national implications, we have designed a multifaceted approach that will lead to the solution of numerous issues related to the feasibility of using Lake Whitney as a water resource to the region. Phase IA (USEPA, QAPP Study Elements 1-4) of this research focused on the physical limnology of the reservoir (bathymetry and fine scale salinity determination) and develops hydrodynamic watershed and reservoir models to evaluate how salinity would be expected to change with varying hydrologic and climatic factors. To this end, we implemented a basic water quality modeling program in collaboration with the Texas Parks and Wildlife Department and the Texas Commission on Environmental Quality to add to the developing long-term database on Lake Whitney. Finally, we conducted an initial assessment of knowledge of watershed and water quality related issues by local residents and stakeholders of Lake Whitney and design an intervention educational program to address any deficiencies discovered. Phase IA was funded primarily from EPA Cooperative Agreement X7-9769 8901-0. Phase IC (USEPA, QAPP Study Element 5) of this research focused on the ambient toxicity of the reservoir with respect to periodic blooms of golden algae. Phase IC was funded primarily from Cooperative Agreement EM-96638001. Phase 1B (USDOE, Study Elements 6-11) complemented work being done via EPA funding on study elements 1-5 and added five new study elements: 6) Salinity Transport in the Brazos Watershed to Lake Whitney; 7) Bacterial Assessment; 8) Organic Contaminant Analysis on Lake Whitney; 9) Plankton Photosynthesis; 10) Lake Whitney Resident Knowledge Assessment; and 11) Engineering Scoping Perspective: Recommendations for Use.

Doyle, Robert D; Byars, Bruce W

2009-11-24T23:59:59.000Z

415

Extensional wave attenuation and velocity in partially-saturated sand in the sonic frequency range  

E-Print Network (OSTI)

sands can be viewed as an end-member of the spectrum of naturally-occurring granular materials, with tight

Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.

2002-01-01T23:59:59.000Z

416

Extensional wave attenuation and velocity in partially saturated sand in the sonic frequency range  

E-Print Network (OSTI)

sands can be viewed as an end-member of the spectrum of naturally-occurring granular materials, with tight

Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.

2001-01-01T23:59:59.000Z

417

Paleo-Storminess in the Southern Lake Michigan Basin, as Recorded by Eolian Sand Downwind of Dunes.  

E-Print Network (OSTI)

??Eolian sand deposited in lakes downwind of coastal sand dunes record a history of paleoclimatic fluctuations. Studies from embayed lakes along the east-central coast of (more)

Hanes, Barbara E.

2010-01-01T23:59:59.000Z

418

Geochemical Evidence for an Eolian Sand Dam across the North and South Platte Rivers in Nebraska  

E-Print Network (OSTI)

microcracks saturating the ECC (Fig. 1(b)) before localization. This tight crack width is essential designation M45) along with green ECC mixture proportions (ECC with green foundry sand, ECC with bag house calcinator sand) Mixture proportions, *high-range water reducer M45 M45G M45 Calcin Cement 1 1 1 F-110 sand 0

Nebraska-Lincoln, University of

419

Velocities of deep water reservoir sands De-hua Han, University of Houston  

E-Print Network (OSTI)

and shale, which is not focus for this study. Sorting HP Shale ShallowDeep Sorting HP Shale Sorting HP Shale sands. Grain density is 2.65 gm/cc, typical for clean sands. Measured gas permeability ranged from 100 have revealed gradual effect of clay content on porosity and velocity of shaly sands and sandy shales

420

The extraction of bitumen from western oil sands. Final report, July 1989--September 1993  

Science Conference Proceedings (OSTI)

Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Examination of pulverized waste recycled glass as filter media in slow sand filtration. Final report  

SciTech Connect

The purpose of this study was to investigate the pulverization of waste recycled glass to produce glass sand for slow sand filters. Pulverization experiments were performed using a fail mill pulverizer. The glass sand product from the pulverizer meets the size distribution requirements of ASTM-C-33 without size distribution adjustment. The size distribution must be adjusted to meet the grain size distribution requirements of the Ten States Standards and the USEPA for filter media used in slow sand filters. Pulverized glass that meet slow sand filter media specifications is an effective alternative to silica sand as a filter media for slow sand filtration. Three pilot plant slow sand filters with glass sand filter media were compared to a fourth filter containing silica sand filter media. Over an 8 month period of continuous operation, the performance of the glass sand filter media was as good or better than the silica sands, with removals of 56% to 96% for turbidity; 99.78% to 100.0% for coliform bacteria; 99.995% to 99.997% for giardia cysts; 99.92% and 99.97% for cryptosporidium oocysts. Based on a cost-benefit analysis, converting waste glass into filter media may be economically advantageous for recycling facilities.

Piccirillo, J.B.; Letterman, R.D.

1997-10-01T23:59:59.000Z

422

28 THE HILL TIMES, MONDAY, FEBRUARY 25, 2013 It has been a persistent problem in Cana-  

E-Print Network (OSTI)

of the Canadian Manufacturers and Exporters, noted"The government will be hard-pressed to show how outcomes. Certainly, investments in the U.S. have been outpacing Canada. U.S. President Barack Obama's new tone efficiency of the mining sector, reducing waste water in the oil sands, cutting deeply into the price

Graham, Nick

423

SAND97-8490 UC-404 Unlimited Release  

Office of Scientific and Technical Information (OSTI)

SAND97-8490 UC-404 SAND97-8490 UC-404 Unlimited Release Printed March 1997 J Mechanical Properties and Energy Absorption Characteristics of a Polyurethane Foam S. H. Goods, C. L. Neuschwanger, C. Henderson, D. M. Skala DISCLAIMER This report was prepared as a n account of work sponsored by a n agenq of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warrantyy express or impIied, or assumes any legal liabili- ty or responsibility for the accuracy, completeness, or usefulness of any information, appa- ratus, product, or process disdased, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necrsariiy constitute or

424

Shredded tires and rubber-sand as lightweight backfill  

Science Conference Proceedings (OSTI)

The growing interest in utilizing waste materials in civil engineering applications has opened the possibility of constructing reinforced soil structures with unconventional backfills. Scrap tires are a high-profile waste material for which several uses have been studied, including the use of shredded tires as backfill. A triaxial testing program was conducted to investigate the stress-strain relationship and strength of tire chips and a mixture of sand and tire chips. The test results and additional information from the literature were used in the numerical modeling of wall backfills, both unreinforced and reinforced with geosynthetics. The numerical modeling results suggest tire shreds, particularly when mixed with sand, may be effectively used as a backfill.

Lee, J.H.; Salgado, R.; Lovell, C.W. [Purdue Univ., West Lafayette, IN (United States). School of Civil Engineering; Bernal, A. [GeoHidra, Caracas (Venezuela)

1999-02-01T23:59:59.000Z

425

White Sands, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sands, New Mexico: Energy Resources Sands, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.38319°, -106.481499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.38319,"lon":-106.481499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Shallow horizontal drilling in unconsolidated sands offshore California  

SciTech Connect

Four shallow horizontal wells were drilled from Platform C in Dos Cuadras field offshore California to recover reserves inaccessible with conventional drilling techniques. The wells had true vertical depths (TVD's) ranging from 746 to 989 ft with total horizontal displacements from 1,613 to 3,788 ft. The wells had horizontal displacement TVD ratios up to 3.95. The targets were unconsolidated, high-permeability sands. This paper details well planning, drilling, and completion.

Payne, J.D.; Bunyak, M.J. (Unocal Corp., Los Angeles, CA (United States)); Huston, C.W. (Smith International Inc., Tyler, TX (United States))

1993-12-01T23:59:59.000Z

427

Method for diverting a gaseous sand-consolidating fluid  

SciTech Connect

An unconsolidated gas-producing sand in which the permeability is layered and the productivity can be impaired by liquid blocking can be consolidated by wetting the rock surfaces with a limited amount of water, injecting a smoke which selectively reduces the permeability of the most permeable layers by depositing on their faces unconsolidated masses of substantially inert solid particles and injecting a gaseous silicon polyhalide to convert a significant proportion of the rock surface-wettingwater to a grain bonding silica gel.

Davies, D. R.; Richardson, E. A.

1980-12-30T23:59:59.000Z

428

Project Drum Inlet: explosive excavation in saturated sand  

SciTech Connect

Seasonal storms during February of 1971 completely closed the Drum Inlet navigation channel through the Outer Banks off the North Carolina coast. This channel is highly useful to commercial and sport fishing industries in the Carteret County vicinity of North Carolina, and is vital to maintenance of the ecological balance in the inland Core Sound waters. To reopen Drum Inlet, an alignment about 2.1 miles south of the original location was selected. A contract dredge excavated a channel from the inland Core Sound waterway to and part way through the Outer Banks. The final 385-ft-long section of sand separating the Core Sound from the Atlantic Ocean was excavated with large explosive charges, This report describes the explosive excavation of that portion of the channel. Twenty-two separate canisters, each containing 1 ton of aluminized ammonium-nitrate slurry blasting agent, were emplaced in two rows. All charges were detonated simultaneously at 1327 hours, 23 Decembcr 1971. The detonation successfully removed the sand barrier, forming a continuous channel over 80 ft in width. This channel subsequently washed out to a width of about 1000 ft and was used:is an access route to the Raleigh Bay fishing grounds. The Drum Inlet project demonstrated the practicality of explosive channel excavation in saturated sand under the special conditions encountered at this site. (auth)

Snell, C.M.; Gillespie, R.H.

1973-10-01T23:59:59.000Z

429

Improved core recovery in laminated sand and shale sequences  

SciTech Connect

Coring and core analysis are essential to the exploration, development, and production phases of the oil and gas industry. Large-diameter (4-in. (10-cm)) core provides engineers and geologists with direct means to measure physical properties of reservoir rocks at both the microscopic and macroscopic levels. This information provides engineers with clues to improve their understanding of the reservoir and prediction of its performance. If stored properly, core may assist in development of the reservoir many years after the well is drilled. In microlaminated reservoirs, laboratory core analysis is very important because of inherent limitations in wireline log resolution. In these cases, petrophysical information, such as saturation, porosity, and net feet of pay, cannot be calculated from wireline data. Instead, these data must be measured directly from core plugs in the laboratory. Historically, core recovery in these types of reservoirs has not been good (Fig. 1A) using methods designed for firmly consolidated formations. These methods did not achieve satisfactory recovery in unconsolidated sand interbedded with hard shale stringers for two reasons: unconsolidated sand was eroded by mechanical or hydraulic means and shale ''jammed'' in the core barrel, thereby preventing more core from entering. Changes in coring strategies and equipment have nearly eliminated recovery problems in unconsolidated sand while reducing jams in shale (Fig. 1B). This paper discusses several of these changes and presents ideas for further improvements.

Bradburn, F.R.; Cheatham, C.A. (Shell Offshore Inc. (US))

1988-12-01T23:59:59.000Z

430

File:OilSands.pdf | Open Energy Information  

Open Energy Info (EERE)

OilSands.pdf OilSands.pdf Jump to: navigation, search File File history File usage File:OilSands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 1.69 MB, MIME type: application/pdf, 85 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:24, 14 February 2012 Thumbnail for version as of 14:24, 14 February 2012 1,275 × 1,650, 85 pages (1.69 MB) Graham7781 (Talk | contribs)

431

Mineralogical and geochemical characterisation of phosphogypsum waste material and its potential for use as backfill at WMC Fertilizers' Mine site, Phosphate Hill, N-W Queensland.  

E-Print Network (OSTI)

??The WMC Fertilizers operation at Phosphate Hill, north-west Queensland, began production of ammonium phosphate fertilizer in late 1999. In the production process, Cambrian marine phosphorites (more)

Dippel, Susan Katherine

2004-01-01T23:59:59.000Z

432

Well completion and operations for MHF of Fenton Hill HDR Well EE-2  

DOE Green Energy (OSTI)

Previous attempts to connect Fenton Hill Hot Dry Rock Geothermal Site Wells EE-2 and EE-3 by pumping 150 thousand to 1.3 million gallons of water had not achieved a detectable hydraulic fracture connection. Therefore, preparations were made to conduct, in December 1983, a 4 to 6 million gallon, 50 BPM water injection in EE-2. The objective was to enlarge the previously created reservoir in EE-2 using massive hydraulic facturing (MHF). The planning, preparations, operations and results of the MHF are presented here. 4 refs., 7 figs.

Dreesen, D.S.; Nicholson, R.W.

1985-01-01T23:59:59.000Z

433

Microsoft Word - Roosevelt-HW-Hill_Landfill-G0335-I0019-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2009 1, 2009 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum James Hall Customer Service Engineer - TPC-TPP-4 Proposed Action: H.W. Hill / Roosevelt Landfill Gas Generation Expansion Project (#I0019 and #G0335) Budget Information: Work Order # 244620, Task # 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7: "Acquisition, installation, operation, and removal of communication systems..." B4.6: "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area..." Location: Klickitat County, Washington Proposed by: Klickitat County Public Utility District No.1 (KPUD) and Bonneville Power

434

Data Review of the Hot Dry Rock Project at Fenton Hill, New Mexico  

DOE Green Energy (OSTI)

This report reviews the data collected during the hot dry rock experimental project conducted by the US Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico from about 1971 through 1995. Five main categories of data were reviewed: (1) geologic data; (2) flow test data; (3) reservoir modeling data; (4) chemical tracer data; and (5) seismic data. The review determines the important data sets from the project, determines where and how these data are stored, and evaluates whether further analyses of the data might be likely to yield additional information valuable to the geothermal industry or to the further development of enhanced geothermal systems.

GeothermEx, Inc.

1998-12-01T23:59:59.000Z

435

Canyon dissolution of sand, slag, and crucible residues  

Science Conference Proceedings (OSTI)

An alternative to the FB-Line scrap recovery dissolver was desired for the dissolution of sand, slag, and crucible (SS{ampersand}C) residues from the plutonium reduction process due to the potential generation of hydrogen gas concentrations above the lower flammability limit. To address this concern, a flowsheet was developed for the F-Canyon dissolvers. The dissolvers are continually purged with nominally 33 SCFM of air; therefore the generation of flammable gas concentrations should not be a concern. Following removal of crucible fragments, small batches of the remaining sand fines or slag chunks containing less than approximately 350 grams of plutonium can be dissolved using the center insert in each of the four annular dissolver ports to address nuclear criticality safety concerns. Complete dissolution of the sand fines and slag chunks was achieved in laboratory experiments by heating between 75 and 85 degrees Celsius in a 9.3M nitric acid/0.013M (hydrogen) fluoride solution. Under these conditions, the sand and slag samples dissolved between 1 and 3 hours. Complete dissolution of plutonium and calcium fluorides in the slag required adjusting the dissolver solution to 7.5 wt% aluminum nitrate nonahydrate (ANN). Once ANN was added to a dissolver solution, further dissolution of any plutonium oxide (PuO2) in successive charges was not practical due to complexation of the fluoride by aluminum. During the laboratory experiments, well mixed solutions were necessary to achieve rapid dissolution rates. When agitation was not provided, sand fines dissolved very slowly. Measurement of the hydrogen gas generation rate during dissolution of slag samples was used to estimate the amount of metal in the chunks. Depending upon the yield of the reduction, the values ranged between approximately 1 (good yield) and 20% (poor yield). Aging of the slag will reduce the potential for hydrogen generation as calcium metal oxidizes over time. The potential for excessive corrosion in the dissolvers was evaluated using experimental data reported in the literature. Corrosion data at the exact flowsheet conditions were not available; however, the corrosion rate for 304L stainless steel (wrought material) corrosion coupons in 10M nitric acid/0.01M hydrofluoric acid at 95 degrees Celsius was reported as 21 mils per year. If the fluoride in the dissolver is complexed with aluminum, the corrosion rate will decrease to approximately 5 mils per year.

Rudisill, T.S.; Gray, J.H.; Karraker, D.G.; Chandler, G.T.

1997-12-01T23:59:59.000Z

436

National Metal Casting Research Institute final report. Volume 1, Sand reclamation  

Science Conference Proceedings (OSTI)

A mobile thermal foundry sand reclamation unit was designed and constructed. This unit consisted of thermal and mechanical sand reclamation equipment installed on the bed of a 50 foot low-boy trailer. It was transported to a number of Midwest foundries for on-site demonstration of the sand reclamation process. This allowed participating foundries to have their own refuse sand (10-100 tons) processed and then reused in production for evaluation. The purpose for building the unit was to demonstrate to foundries through ``hands on`` experience that refuse sands can be reclaimed and successfully reused particularly in regard to product quality. Most of the participating foundries indicated a high level of satisfaction with the reclaimed sand. Laboratory testing of samples of the used sand, before and after processing by the demonstration unit, verified the usability of the reclaimed sand. One of the foundries participating was a brass foundry, the sand from this foundry contained lead and is classified as a hazardous material. After reclamation the sand was no longer hazardous and could also be reused in the foundry.

Vondra, L.F.; Burningham, J.S. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Industrial Technology

1995-08-01T23:59:59.000Z

437

The extraction of bitumen from western oil sands: Volume 2. Final report  

Science Conference Proceedings (OSTI)

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

438

Seven Mile Hill I & II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I & II Wind Farm I & II Wind Farm Jump to: navigation, search Name Seven Mile Hill I & II Wind Farm Facility Seven Mile Hill I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp Developer PacifiCorp Energy Purchaser PacifiCorp Location Between Hanna and Medicine Bow WY Coordinates 41.939079°, -106.372225° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.939079,"lon":-106.372225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Water quality in the vicinity of Fenton Hill. Progress report 1981 and 1982  

DOE Green Energy (OSTI)

As part of a continuing program of environmental studies, water quality data have been collected from established surface and ground water stations and from ponds and pond discharges at Fenton Hill Site located in the Jemez Mountains. Most of these stations were established in 1973, and water quality data have been collected since that time. There have been slight variations in the chemical quality of water from the surface and ground water locations; however, these variations are within normal seasonal fluctuations. The discharge from ponds at Fenton Hill infiltrates into canyon alluvium within 400 m of the site. Monitoring surface and spring discharge downgradient from the ponds failed to detect any effects resulting from water released from the ponds. Total dissolved solids and calcium have increased in water from well FH-1, which furnishes the water supply for the site. This increase is caused by the decreasing water level in the well resulting in yield from beds with a slightly different quality than has been found in previous years.

Purtymun, W.D.; Ferenbaugh, R.W.; Becker, N.M.; Adams, W.H.; Maes, M.N.

1983-09-01T23:59:59.000Z

440

Geological structures from televiewer logs of GT-2, Fenton Hill, New Mexico: Part 1, Feature extraction  

DOE Green Energy (OSTI)

Patterns in reflected sonic intensity recognized during examination of televiewer logs of basement gneiss at the Hot Dry Rock Site, Fenton Hill, New Mexico, are due to geological fractures and foliations and to incipient breakouts. These features are obscured by artifacts caused by wellbore ellipticity, tool off-centering, and tool oscillations. An interactive method, developed for extraction of the structural features (fractures and foliations), uses human perception as a pattern detector and a chi-square test of harmonic form as a pattern discriminator. From imagery of GT-2, 733 structures were recovered. The acceptance rate of the discriminator was 54%. Despite these positive results, the general conclusion of this study is that intensity-mode imagery from Fenton Hill is not directly invertible for geological information because of the complexity of the televiewer imaging process. Developing a forward model of the intensity-imaging process, or converting to caliper-mode imagery, or doing both, will be necessary for high-fidelity feature extraction from televiewer data.

Burns, K.L.

1987-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site  

DOE Green Energy (OSTI)

An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

1984-05-01T23:59:59.000Z

442

1995 verification flow testing of the HDR reservoir at Fenton Hill, New Mexico  

Science Conference Proceedings (OSTI)

Recent flow testing of the Fenton Hill HDR reservoir has demonstrated that engineered geothermal systems can be shut-in for extended periods of d= with apparently no adverse effects. However, when this particular reservoir at Venton Hill was shut-in for 2 years in a pressurized condition, natural convection within the open-jointed reservoir region appears to have leveled out the preexisting temperature gradient so that the gradient has now approached a condition more typical of liquid-dominated hydrothermal reservoirs which air invariably almost isothermal due to natural convection. As a result of the sudden flow impedance reduction that led to an almost 50% increase in Production flow new the end of the Second Phase of the LTFR in May 1993, we were uncertain as to the state of the reservoir after being shut-in for 2 years. The flow performance observed during the current testing was found to be intermediate between that at-the end of the Second Phase of the LTFT and that following, the subsequent sudden flow increase, implying that whatever caused the sudden reduction in impedance in the first place is probably somehow associated with the cooldown of the reservoir near the injection interval, since temperature recovery at the surfaces of the surrounding open joints is the most obvious phenomenon expected to occur over time within the reservoir.

Brown, D.

1995-01-01T23:59:59.000Z

443

HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel  

SciTech Connect

Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or Omega may offer additional advantages and we would expect these to be explored and evaluated during the CD process. Question 3 - A laser/optics experts group should review this proposal to ensure the level of R&D is reasonable to provide a sufficient chance of success (>50%). In the preparation of the HILL proposal, we sent our proposal and cost estimates to laser designers/scientists across the complex. Though risks were identified with our design, the prevailing view of those we engaged was that the risks were appropriately represented by the TRL levels assigned and that the enabling R&D planned in our proposal was adequate for risk mitigation. Question 4 - More data and peer review is needed from its sister facilities around the world. It is our specific intent to conduct both scientific and technical workshops with the user community if the High Intensity Science field is further encouraged as part of the NNSA Roadmap. Question 5 - Does HILL have to be co-located with MARIE 1.0? Is that feasible from the point of view of TA-53 real estate? Multiple siting options were considered for HILL, including co-location with MaRIE 1.0 (the most cost-effective and flexible option), as well as in a separate, stand-alone building and in a retro-fitted existing building. The cost estimate included these contingencies and candidate locations for HILL in TA-53 were identified. There is actually significant space at TA-53 on the hill in the northeast end of the mesa. Question 6 - What would be the impact on the weapons program if this facility were NOT built? An inability to elucidate aspects of weapons science in the dense plasma regime and validate computer models for same. This will lead to reduced confidence in the computer tools used for certification. Question 7 - Will HILL allow some of the x-ray vulnerability studies proposed by SPARC? If so what does Sandia's vulnerability group think of this method versus SPARC. It is possible that some of the scope envisioned for SPARC could be achieved on HILL, although likely that the energy produced at HILL not bei

Albright, B J [Los Alamos National Laboratory

2012-08-02T23:59:59.000Z

444

Colloid Transport and Deposition in Water-Saturated and Unsaturated Sand and Yucca Mountain Tuff: Effect of Ionic Strength and Moisture Saturation  

Science Conference Proceedings (OSTI)

Colloid-aided radionuclide transport has been considered a potentially important mechanism for the candidate spent fuel and high level waste (HLW) repository at Yucca Mountain. This mechanism, however, has not been treated in Yucca Mountain Total System Performance Assessments (TSPAs) until recently. Even then there has been little discussion of possible colloid retention in the unsaturated zone. This report summarizes investigations of potential colloid retention in sand and Yucca Mountain tuff as a fun...

1999-12-03T23:59:59.000Z

445

Non-Darcy flow analysis through tight sand formations  

SciTech Connect

An experimental setup was designed and constructed to measure the flow parameters through tight sand porous media. The two kinds of coreholders being used are Hassler-type and one in which the core sample is encapsulated in layers of epoxy resin and metal alloy. A gas flow measuring system was also developed for accurately measuring very low gas flow rates. Using Darcy's Law as a tool for analysis of the experimental data, we obtained that the gas permeability of the SFE No. 3 (Staged Field Experiment No. 3) core samples is a linear function of reciprocal mean pressure, and decreases with overburden pressure. The water permeability is also decreased with overburden pressure and is about 6 times smaller than gas permeability for the samples that we have tested. No significant hysteresis effect was obtained for dry gas permeability after several two phase flow runs. We successfully tested our encapsulated coreholder and measured gas flow rate through a tight sand core sample at different pressure drops. The results showed that the experimental runs using Hassler-type coreholder at overburden pressures higher than 2000 psig will probably give us the reliable experimental data. The experimental data obtained from the two different types of tight sandstones were analyzed using the Non-Darcy flow equation. The results showed the importance and reliability of the Non-Darcy formulation for describing the flow behavior under different overburden and system pressures. Non-Darcy's velocity for both gas and liquid phase were incorporated into an existing FORTRAN code for simulation of the tight gas reservoirs. The modified program was tested to compare the initial production data of SFE No. 2 well. Our simulation showed in the case of local turbulence and non-uniformities in the tight sand formation, the value of [beta] increases and Non-Darcy effect becomes important.

Wang, Ching-Huei.

1992-01-01T23:59:59.000Z

446

Completion methods in thick, multilayered tight gas sands  

E-Print Network (OSTI)

Tight gas sands, coal-bed methane, and gas shales are commonly called unconventional reservoirs. Tight gas sands (TGS) are often described as formations with an expected average permeability of 0.1mD or less. Gas production rates from TGS reservoirs are usually low due to poor permeability. As such, state-of-the-art technology must be used to economically develop the resource. TGS formations need to be hydraulically fractured in order to enhance the gas production rates. A majority of these reservoirs can be described as thick, multilayered gas systems. Many reservoirs are hundreds of feet thick and some are thousands of feet thick. The technology used to complete and stimulate thick, tight gas reservoirs is quite complex. It is often difficult to determine the optimum completion and stimulating techniques in thick reservoirs. The optimum methods are functions of many parameters, such as depth, pressure, temperature, in-situ stress and the number of layers. In multilayered reservoirs, it is important to include several sand layers in a single completion. The petroleum literature contains information on the various diversion techniques involved in the completion of these multilayered reservoirs. In this research, we have deduced and evaluated eight possible techniques that have been used in the oil and gas industry to divert multilayered fracture treatments in layered reservoirs. We have developed decision charts, economic analyses and computer programs that will assist completion engineers in determining which of the diversion methods are feasible for a given well stimulation. Our computer programs have been tested using case histories from the petroleum literature with results expressed in this thesis. A limited entry design program has also being developed from this research to calculate the fluid distribution into different layers when fracture treating multilayered tight gas reservoirs using the limited entry technique. The research is aimed at providing decision tools which will eventually be input into an expert advisor for well completions in tight gas reservoirs worldwide.

Ogueri, Obinna Stavely

2007-12-01T23:59:59.000Z

447

CO{sub 2}/sand fracturing in Devonian shales  

Science Conference Proceedings (OSTI)

A total of five carbon dioxide (CO{sub 2})/sand well stimulations were successfully executed with two Devonian shale operators in Perry and Pike Counties, Kentucky. This new stimulation method offers a minimum formation damage proppant stimulation approach for natural gas producers in the United States. Some operators have been concerned about the frac fluid formation damage associated with the water and chemicals used in conventional foam stimulations, whereas other operators have been concerned about the lack of proppant in straight nitrogen fracs used by service companies today. Two carefully screened geological areas of established Devonian shale production were selected based on active ongoing drilling and completion operations. One selected control area contained an existing set of wells with established production histories. More specifically, one operator furnished three offset wells which were stimulated with the carbon dioxide/sand frac method. The quantity of proppant and fluids pumped during each well stimulation ranged from 23,000 to 43,000 pounds of proppant and from 120 to 160 tons of liquid carbon dioxide. Another operator furnished two offset wells which were each stimulated with approximately 47,000 pounds of proppant and 120 tons of carbon dioxide. The logistics and field layout of a typical carbon dioxide/sand frac treatment has been described and highlighted. The importance and unique aspects of the closed system blender that is required for job execution is discussed. Five stimulation treatments have been reviewed, and stimulation and preliminary production data compared to offset wells stimulated with nitrogen, and explosives. Initial production results indicate more than a 50 percent increase in production rate compared to nitrogen fraced wells in the Pike County area.

Yost, A.B. II [USDOE Morgantown Energy Technology Center, WV (United States); Mazza, R.L. [Petroleum Consulting Services, Canton, OH (United States); Gehr, J.B. [Natural Gas Resources Corporation (United States)

1993-12-31T23:59:59.000Z

448

Production process for glass sand from the quartz waste from the beneficiation of kingiseppsk phosphorites  

SciTech Connect

This paper presents a process developed for the production of molding sand from the quartz waste which makes it possible to simplify the system for obtaining glass sand. According to this system, the main operation in the removal of most of the residual phosphate shell and alkaline earth metal oxides from the quartz waste is foam separation, using the residual concentration of reagents in the pulp (tallow and kerosene). After the subsequent washing and hydraulic classification, the sands meet the requirements set for molding sands grade Ob2K. The characteristics of the original flotation tailings and molding sand are presented. The mineralogical analysis of the molding sand showed that the iron-containing impurities are grains of glauconite, films of iron oxide on the surface of the grains, grains of ferrous-dolomite cement, and iron from the apparatus.

Ershov, V.I.; Lezhnev, Y.P.; Novofastovskaya, E.M.; Rants, G.F.; Shalamova, V.G.; Sinyakova, E.I.; Sokolova, E.I.

1985-12-01T23:59:59.000Z

449

Costs Models in Design and Manufacturing of Sand Casting Products  

E-Print Network (OSTI)

In the early phases of the product life cycle, the costs controls became a major decision tool in the competitiveness of the companies due to the world competition. After defining the problems related to this control difficulties, we will present an approach using a concept of cost entity related to the design and realization activities of the product. We will try to apply this approach to the fields of the sand casting foundry. This work will highlight the enterprise modelling difficulties (limits of a global cost modelling) and some specifics limitations of the tool used for this development. Finally we will discuss on the limits of a generic approach.

Perry, Nicolas; Bernard, Alain

2010-01-01T23:59:59.000Z

450

Costs Models in Design and Manufacturing of Sand Casting Products  

E-Print Network (OSTI)

In the early phases of the product life cycle, the costs controls became a major decision tool in the competitiveness of the companies due to the world competition. After defining the problems related to this control difficulties, we will present an approach using a concept of cost entity related to the design and realization activities of the product. We will try to apply this approach to the fields of the sand casting foundry. This work will highlight the enterprise modelling difficulties (limits of a global cost modelling) and some specifics limitations of the tool used for this development. Finally we will discuss on the limits of a generic approach.

Nicolas Perry; Magali Mauchand; Alain Bernard

2010-11-26T23:59:59.000Z

451

Production from multiple zones of a tar sands formation  

DOE Patents (OSTI)

A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.

Karanikas, John Michael; Vinegar, Harold J

2013-02-26T23:59:59.000Z

452

Systems and methods for producing hydrocarbons from tar sands formations  

DOE Patents (OSTI)

A system for treating a tar sands formation is disclosed. A plurality of heaters are located in the formation. The heaters include at least partially horizontal heating sections at least partially in a hydrocarbon layer of the formation. The heating sections are at least partially arranged in a pattern in the hydrocarbon layer. The heaters are configured to provide heat to the hydrocarbon layer. The provided heat creates a plurality of drainage paths for mobilized fluids. At least two of the drainage paths converge. A production well is located to collect and produce mobilized fluids from at least one of the converged drainage paths in the hydrocarbon layer.

Li, Ruijian (Katy, TX); Karanikas, John Michael (Houston, TX)

2009-07-21T23:59:59.000Z

453

Pore-scale mechanisms of gas flow in tight sand reservoirs  

E-Print Network (OSTI)

include tight gas sands, gas shales, and coal-bed methane.Figure 3. Although the gas-shale production grows at a

Silin, D.

2011-01-01T23:59:59.000Z

454

Non-Incineration Treatment to Reduce Benzene and VOC Emissions from Green Sand Molding Systems  

SciTech Connect

Final report describing laboratory, pilot scale and production scale evaluation of advanced oxidation systems for emissions and cost reduction in metal casting green sand systems.

Fred S. Cannon; Robert C. Voigt

2002-06-28T23:59:59.000Z

455

Development of Optimal Energy Infrastructures for the Oil Sands Industry in a CO?-constrained World.  

E-Print Network (OSTI)

??Western Canadian bitumen is becoming a predominant source of energy for North American markets. The bitumen extraction and upgrading processes in the oil sands industry (more)

Ordorica Garcia, Jesus Guillermo

2007-01-01T23:59:59.000Z

456

Adsorption of Single-ring Model Naphthenic Acid from Oil Sands ...  

Science Conference Proceedings (OSTI)

Presentation Title, Adsorption of Single-ring Model Naphthenic Acid from Oil Sands Tailings Pond Water Using Petroleum Coke-derived Activated Carbon.

457

An investigation of the combustion of oil sand derived bitumen-in-water emulsions.  

E-Print Network (OSTI)

?? Dwindling conventional oil resources has caused exploration efforts to focus elsewhere. Bitumen from oil sands has emerged as one of the primary unconventional oil (more)

Kennelly, Timothy Robert

2009-01-01T23:59:59.000Z

458

O-1: Using of Spent Moulding Sands for Production of Burned ...  

Science Conference Proceedings (OSTI)

The measurements of exhaust gases emissions performed during burning the products containing spent moulding sands as well as during the normal...

459

I-8: Research on the Influence of Moulding Sand with Furan Resin ...  

Science Conference Proceedings (OSTI)

Presentation Title, I-8: Research on the Influence of Moulding Sand with Furan Resin ... Study of Different metallurgical Waste for Preparation of Glass-Ceramics.

460

Meso-Scale Simulations to Examine the Role of Sand Paper Grit on ...  

Science Conference Proceedings (OSTI)

The surface between the platen and LX-10 sample includes a layer of sand particulates to .... Shock-Induced Phase Transformations in Ce-Al Metallic Glass.

Note: This page contains sample records for the topic "assessment sand hills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Preparation of Activated Carbon from Oil Sands Coke by Chemical and Physical Activation Techniques.  

E-Print Network (OSTI)

??Oil sands coke is a by-product resulting from the upgrading of heavy crude bitumen to light synthetic oil. This research investigates the preparation of activated (more)

Morshed, Golam

2012-01-01T23:59:59.000Z

462

Appraisal of the tight sands potential of the Sand Wash and Great Divide Basins. Final report, June 1989--June 1991  

Science Conference Proceedings (OSTI)

The volume of future tight gas reserve additions is difficult to estimate because of uncertainties in the characterization and extent of the resource and the performance and cost-effectiveness of stimulation and production technologies. Ongoing R&D by industry and government aims to reduce the risks and costs of producing these tight resources, increase the certainty of knowledge of their geologic characteristics and extent, and increase the efficiency of production technologies. Some basins expected to contain large volumes of tight gas are being evaluated as to their potential contribution to domestic gas supplies. This report describes the results of one such appraisal. This analysis addresses the tight portions of the Eastern Greater Green River Basin (Sand Wash and Great Divide Subbasins in Northwestern Colorado and Southwestern Wyoming, respectively), with respect to estimated gas-in-place, technical recovery, and potential reserves. Geological data were compiled from public and proprietary sources. The study estimated gas-in-place in significant (greater than 10 feet net sand thickness) tight sand intervals for six distinct vertical and 21 areal units of analysis. These units of analysis represent tight gas potential outside current areas of development. For each unit of analysis, a ``typical`` well was modeled to represent the costs, recovery and economics of near-term drilling prospects in that unit. Technically recoverable gas was calculated using reservoir properties and assumptions about current formation evaluation and extraction technology performance. Basin-specific capital and operating costs were incorporated along with taxes, royalties and current regulations to estimate the minimum required wellhead gas price required to make the typical well in each of unit of analysis economic.

Not Available

1993-08-01T23:59:59.000Z

463

Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California  

Science Conference Proceedings (OSTI)

Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

NONE

1998-01-01T23:59:59.000Z