Powered by Deep Web Technologies
Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FINAL ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS...  

NLE Websites -- All DOE Office Websites (Extended Search)

private lands owned by GZC. Operation of the proposed Combined Power and Biomass Heating System would help stabilize volatile fuel prices and provide economic development...

2

FINAL ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM FORT YUKON, ALASKA APPENDIX C DRAFT FORT YUKON WOODY BIOMASS FUEL IMPLEMENTATION PLAN (RBEGR 2011) C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8...

3

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

heat and power; distributed generation; premium powerand operation of distributed generation, combined heat andcost combination of distributed generation technologies that

Norwood, Zack

2010-01-01T23:59:59.000Z

4

Assessment of Residential Combined Heat and Power Systems: Application Benefits and Vendors  

Science Conference Proceedings (OSTI)

This report provides an analysis of the benefits of installing a residential combined heat and power (RCHP) plant in several U.S. geographies and under a number of dispatch scenarios. The report also provides an assessment of 14 companies developing or selling RCHP systems in North American, Europe, and Japan.

2005-03-29T23:59:59.000Z

5

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

Science Conference Proceedings (OSTI)

This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities. Through a series of three case studies, key trade-offs are analyzed with regard to the provision of black-out ridethrough capability with the CHP systems and the resutling ability to avoid the need for at least some diesel backup generator capacity located at the case study sites. Each of the selected sites currently have a CHP or combined heating, cooling, and power (CCHP) system in addition to diesel backup generators. In all cases the CHP/CCHP system have a small fraction of the electrical capacity of the diesel generators. Although none of the selected sites currently have the ability to run the CHP systems as emergency backup power, all could be retrofitted to provide this blackout ride-through capability, and new CHP systems can be installed with this capability. The following three sites/systems were used for this analysis: (1) Sierra Nevada Brewery - Using 1MW of installed Molten Carbonate Fuel Cells operating on a combination of digestor gas (from the beer brewing process) and natural gas, this facility can produce electricty and heat for the brewery and attached bottling plant. The major thermal load on-site is to keep the brewing tanks at appropriate temperatures. (2) NetApp Data Center - Using 1.125 MW of Hess Microgen natural gas fired reciprocating engine-generators, with exhaust gas and jacket water heat recovery attached to over 300 tons of of adsorption chillers, this combined cooling and power system provides electricity and cooling to a data center with a 1,200 kW peak electrical load. (3) Kaiser Permanente Hayward Hospital - With 180kW of Tecogen natural gas fired reciprocating engine-generators this CHP system generates steam for space heating, and hot water for a city hospital. For all sites, similar assumptions are made about the economic and technological constraints of the power generation system. Using the Distributed Energy Resource Customer Adoption Model (DER-CAM) developed at the Lawrence Berkeley National Laboratory, we model three representative scenarios and find the optimal operation scheduling, yearly energy cost, and energy technology investments for each scenario below: Scenario 1 - Diesel generators and CHP/CCHP equipment as installed in the current facility. Scenario 1 represents a baseline forced investment in currently installed energy equipment. Scenario 2 - Existing CHP equipment installed with blackout ride-through capability to replace approximately the same capacity of diesel generators. In Scenario 2 the cost of the replaced diesel units is saved, however additional capital cost for the controls and switchgear for blackout ride-through capability is necessary. Scenario 3 - Fully optimized site analysis, allowing DER-CAM to specify the number of diesel and CHP/CCHP units (with blackout ride-through capability) that should be installed ignoring any constraints on backup generation. Scenario 3 allows DER-CAM to optimize scheduling and number of generation units from the currently available technologies at a particular site. The results of this analysis, using real data to model the optimal schedulding of hypothetical and actual CHP systems for a brewery, data center, and hospital, lead to some interesting conclusions. First, facilities with high heating loads will typically prove to be the most appropriate for CHP installation from a purely economic standpoint. Second, absorption/adsorption cooling systems may only be economically feasible if the technology for these chillers can increase above current best system efficiency. At a coefficient of performance (COP) of 0.8, for instance, an adsorption chiller paired with a natural gas generator with waste heat recovery at a facility with large cooling loads, like a data center, will cost no less on a yearly basis than purchasing electricity and natural gas directly from a utility. Third, at marginal additional cost, if the reliability of CHP systems proves to be at

Norwood, Zack; Lipman, Tim; Marnay, Chris; Kammen, Dan

2008-09-30T23:59:59.000Z

6

FINAL ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM FORT YUKON, ALASKA U.S. Department of Energy Office of Energy Efficiency and Renewable Energy GOLDEN FIELD OFFICE In Cooperation with USDA RURAL UTILITIES SERVICE DENALI COMMISSION APRIL 2013 ABBREVIATIONS AND ACRONYMS ADEC Alaska Department of Environmental Conservation AFRPA Alaska Forest Resources Practices Act BFE Base Flood Elevation BMP best management practice BTU British Thermal Unit CATG Council of Athabascan Tribal Governments CEQ Council on Environmental Quality CFR Code of Federal Regulations CHP Combined Heat and Power CO carbon monoxide CO 2 carbon dioxide CWA Clean Water Act dBA A-weighted decibel DBH diameter at breast height DOE U.S. Department of Energy EA Environmental Assessment

7

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

and operation of distributed generation, combined heat andcost combination of distributed generation technologies thatdesires to install distributed generation to minimize the

Norwood, Zack

2010-01-01T23:59:59.000Z

8

Life cycle assessment of a biomass gasification combined-cycle power system  

DOE Green Energy (OSTI)

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01T23:59:59.000Z

9

Life cycle assessment of a biomass gasification combined-cycle power system  

DOE Green Energy (OSTI)

The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

Mann, M.K.; Spath, P.L.

1997-12-01T23:59:59.000Z

10

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

incentives to install CHP, the least expensive method to power the facility would be to buy all electricity and natural gas

Norwood, Zack

2010-01-01T23:59:59.000Z

11

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

incentives to install CHP the least expensive method to power the facility would be to buy all electricity and natural gas

Norwood, Zack

2010-01-01T23:59:59.000Z

12

Technical and Economic Assessment of Combined Heat and Power Technologies for Commercial Customer Applications  

Science Conference Proceedings (OSTI)

In general, the overall efficiency of energy utilization by conventional power systems averages around 33 percent. Combined heat and power (CHP) technologies installed at commercial and industrial sites, however, can increase the overall efficiency beyond 85 percent by recovering waste heat and putting it to beneficial use. Thus, CHP reduces the energy consumption and improves environmental quality. Currently, CHP accounts for approximately only 7 percent of total generation capacity and 40 percent of th...

2003-03-12T23:59:59.000Z

13

Industrial Distributed Energy: Combined Heat & Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Distributed Energy: Combined Heat & Power Industrial Distributed Energy: Combined Heat & Power Information about the Department of Energy's Industrial Technologies...

14

Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

Ulsh, M.; Wheeler, D.; Protopappas, P.

2011-08-01T23:59:59.000Z

15

Combined-cycle power tower  

DOE Green Energy (OSTI)

This paper evaluates a new power tower concept that offers significant benefits for commercialization of power tower technology. The concept uses a molten nitrate salt centralreceiver plant to supply heat, in the form of combustion air preheat, to a conventional combined-cycle power plant. The evaluation focused on first commercial plants, examined three plant capacities (31, 100, and 300 MWe), and compared these plants with a solar-only 100-MWe plant and with gas-only combined-cycle plants in the same three capacities. Results of the analysis point to several benefits relative to the solar-only plant including low energy cost for first plants, low capital cost for first plants, reduced risk with respect to business uncertainties, and the potential for new markets. In addition, the concept appears to have minimal technology development requirements. Significantly, the results show that it is possible to build a first plant with this concept that can compete with existing gas-only combined-cycle plants.

Bohn, M.S.; Williams, T.A.; Price, H.W.

1994-10-01T23:59:59.000Z

16

Efficiency combined cycle power plant  

SciTech Connect

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

17

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE))

Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

18

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

19

Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Combined Heat and Power Combined Heat and Power Jump to: navigation, search All power plants release a certain amount of heat during electricity generation. This heat can be used to serve thermal loads, such as building heating and hot water requirements. The simultaneous production of electrical (or mechanical) and useful thermal power from a single source is referred to as a combined heat and power (CHP) process, or cogeneration. Contents 1 Combined Heat and Power Basics 2 Fuel Types 2.1 Rural Resources 2.2 Urban Resources 3 CHP Technologies 3.1 Steam Turbine 3.2 Gas Turbine 3.3 Microturbine 3.4 Reciprocating Engine 4 Example CHP Systems[7] 4.1 University of Missouri (MU) 4.2 Princeton University 4.3 University of Iowa 4.4 Cornell University 5 Glossary 6 References Combined Heat and Power Basics

20

Combined power plants -- Past, present, and future  

Science Conference Proceedings (OSTI)

The early history of combined power plants is described, together with the birth of the CCGT plant (the combined cycle gas turbine). Sustained CCGT development in the 1970s and 1980s, based on sound thermodynamic considerations, is outlined. Finally more recent developments and future prospects for the combined gas turbine/steam turbine combined plant are discussed.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Assessment of the Cheng Simplified Combined Cycle  

Science Conference Proceedings (OSTI)

This report will help resource planners assess the cost-effectiveness of retrofitting increased steam injection to a cogeneration plant or power station with gas turbines.

2010-12-17T23:59:59.000Z

22

Wood Burning Combined Cycle Power Plant  

E-Print Network (OSTI)

A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas turbine combined cycle system that obtains its heat input from a high temperature, high pressure ceramic air heater burning wood waste products as a fuel. This paper presents the results of the design study including the cycle evaluation and a description of the major components of the power plant. The cycle configuration is based on maximum fuel efficiency with minimum capital equipment risk. The cycle discussion includes design point performance of the power plant. The design represents a significant step forward in wood-fueled power plants.

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

23

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network (OSTI)

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk-emission and efficient gas turbine technology made combined-cycle gas turbine power plants the "resource of choice

24

THE STIRLING ENGINE: THERMODYNAMICS AND APPLICATIONS IN COMBINED COOLING, HEATING, AND POWER SYSTEMS.  

E-Print Network (OSTI)

?? The goal of this study is to assess the potential of the Stirling engine in alternative energy applications including combined cooling, heating, and power… (more)

Harrod, James C

2010-01-01T23:59:59.000Z

25

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

26

Combined cycle power plant incorporating coal gasification  

DOE Patents (OSTI)

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

27

Renewable Combined Heat and Power Dairy Operations  

E-Print Network (OSTI)

horsepower Guascor model SFGLD-560 biogas-fired lean burn internal combustion (IC) engine and generator set and modify the existing biogas toelectricity combined heat and power (CHP) system operated at Fiscalini bacteria to remove hydrogen sulfide presented in the biogas. Source: Fiscalini Farms Term: March 2011

28

Federal Energy Management Program: Combined Heat and Power Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Heat and Power Basics to someone by E-mail Share Federal Energy Management Program: Combined Heat and Power Basics on Facebook Tweet about Federal Energy Management...

29

Changing Structure of Electric Power Industry 1999: Mergers and Other Corporate Combinations, The  

Reports and Publications (EIA)

Presents data about corporate combinations involving investor-owned utilities in the United States, discusses corporate objectives for entering into such combinations, and assesses their cumulative effects on the structure of the electric power industry.

Information Center

1999-12-01T23:59:59.000Z

30

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

31

Combined heat and power technology fills an important energy ...  

U.S. Energy Information Administration (EIA)

Home; Browse by Tag; Most ... Combined heat and power technology fills an important ... CHP capacity additions followed the pattern of the electric power industry ...

32

Combined heat and power technology fills an important energy ...  

U.S. Energy Information Administration (EIA)

Combined heat and power (CHP), also called cogeneration, is an efficient approach to generating electric power and useful thermal energy for heating ...

33

Western Area Power Administration. Combined power system financial statements  

Science Conference Proceedings (OSTI)

This report presents the results of the independent certified public accountants` audit of the Western Area Power Administration`s combined power system statements of assets, Federal investment and liabilities, and the related combined statements of revenues, expenses and accumulated net revenues, and cash flows. The auditors` report on Westerns internal control structure disclosed three new reportable conditions concerning the lack of: (1) a reconciliation of stores inventory from subsidiary ledgers to summary financial information, (2) communication of interest during construction and related adjustments to interest on Federal investment, and (3) a system to prevent and detect power billing errors. None of the conditions were considered to be material weaknesses. Western provided concurrence and corrective action plans. The auditors` report on Western`s compliance with laws and regulations also disclosed two new instances of noncompliance. Western failed to calculate nonreimbursable expenses in accordance with the Grand Canyon Protection Act and had an unexplained difference in gross Federal investment balances used to calculate interest on Federal investment. Western provided concurrence and corrective action plans for the instances.

NONE

1998-02-26T23:59:59.000Z

34

Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)  

SciTech Connect

D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

Not Available

2013-07-01T23:59:59.000Z

35

Lossless multi-way power combining and outphasing for radio frequency power amplifiers  

E-Print Network (OSTI)

For applications requiring the use of power amplifiers (PAs) operating at high frequencies and power levels, it is often preferable to construct multiple low power PAs and combine their output powers to form a high-power ...

Jurkov, Alexander S

2013-01-01T23:59:59.000Z

36

HVDC power transmission technology assessment  

SciTech Connect

The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

Hauth, R.L.; Tatro, P.J.; Railing, B.D. [New England Power Service Co., Westborough, MA (United States); Johnson, B.K.; Stewart, J.R. [Power Technologies, Inc., Schenectady, NY (United States); Fink, J.L.

1997-04-01T23:59:59.000Z

37

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

38

Optimal Scheduling of Industrial Combined Heat and Power Plants  

E-Print Network (OSTI)

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices Sumit Mitra , Lige Sun , Ignacio E. Grossmann December 24, 2012 Abstract Combined heat and power companies. However, under-utilization can be a chance for tighter interaction with the power grid, which

Grossmann, Ignacio E.

39

PureComfort 240 Combined Cooling, Heating, and Power Unit  

Science Conference Proceedings (OSTI)

This report is an interim case study of a PureComfort 240 combined cooling, heating and power project at the University of Toronto, Mississauga.

2006-03-28T23:59:59.000Z

40

Combined Heat and Power, Waste Heat, and District Energy  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Equilibrium Modeling of Combined Heat and Power deployment in Philadelphia.  

E-Print Network (OSTI)

??Combined heat and power (CHP) generates electricity and heat from the same fuel source and can provide these services at higher equivalent conversion efficiency relative… (more)

Govindarajan, Anand

2013-01-01T23:59:59.000Z

42

Utility Incentives for Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Utility Incentives for Combined Heat and Power Utility Incentives for Combined Heat and Power Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Utility Incentives for Combined Heat and Power Focus Area: Solar Topics: Policy Impacts Website: www.epa.gov/chp/documents/utility_incentives.pdf Equivalent URI: cleanenergysolutions.org/content/utility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental Protection Agency study that researched 41 U.S. utilities and found that nearly half provided some kind of support for combined heat and power (CHP). Here they profile 16 utility programs that support CHP in ways excluding direct financial incentives. References Retrieved from "http://en.openei.org/w/index.php?title=Utility_Incentives_for_Combined_Heat_and_Power&oldid=514610

43

Combined Heat and Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Basics Combined Heat and Power Basics Combined Heat and Power Basics November 1, 2013 - 11:40am Addthis Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP CHP Process Flow Diagram The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. CHP technology can be deployed quickly, cost-effectively, and with few

44

Water Power Program: Resource Assessment and Characterization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the United States Ocean Wave Energy Resource This report, created by the Electric Power Research Institute, assesses ocean wave energy potential along the U.S. coasts....

45

EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

741: Seattle Steam Company Combined Heat and Power at Post 741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington Summary This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This project has been cancelled. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 16, 2010 EA-1741: Draft Environmental Assessment Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington (June 2010)

46

GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS  

E-Print Network (OSTI)

Description 1 CHP System Name 2 CEC Plant ID 3 EIA Plant ID 4 Qualifying Facility ID (if applicable) 5 Thermal, and emissions related to combined heat and power (CHP) system power plant operations. This information is used the power plant is first reported on Form CEC-2843. The respondent should use the Commission assigned code

47

Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report  

DOE Green Energy (OSTI)

A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

None

1979-11-01T23:59:59.000Z

48

Southwest Gas Corporation - Combined Heat and Power Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program < Back Eligibility Commercial Industrial Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 50% of the installed cost of the project Program Info State Arizona Program Type Utility Rebate Program Rebate Amount $400/kW - $500/kW up to 50% of the installed cost of the project Provider Southwest Gas Corporation Southwest Gas Corporation (SWG) offers incentives to qualifying commercial and industrial facilities who install efficient Combined Heat and Power systems (CHP). CHP systems produce localized, on-site power and heat which can be used in a variety of ways. Incentives vary based upon the efficiency

49

Using a Balun Transformer Combiner for High Power Microwave Experiments  

Science Conference Proceedings (OSTI)

A novel coaxial power combiner design has been duplicated that has distinct advantages over other combiner geometries that can handle high power. This design is being applied to combine four 3 kW power supplies to obtain a 10 kW, 5 MHz system for an ICRF antenna on HSX. In the past, Wilkinson type combiners have had limited application to high power systems because of the lack of non-inductive, high power, 100 Omega balance loads. With this new design, standard 50 Omega dummy loads can be used instead for the balance load. The cost is considerably lower than lumped element combiner designs which are dominated by capacitor costs. At such a relatively low frequency, a 3-dB quarter-wave coupled-line coupler becomes impractically long, and a conventional branch-line hybrid requires 35 Omega-line, which is commercially unavailable. The balun combiner uses less transmission line than a ring hybrid and has good bandwidth characteristics even away from its best line impedance. Theoretical calculations and modeling were performed for line impedances from 65 Omega to 75 Omega. Measurements from a low-power test device show excellent agreement with theory, and construction of the high power system is underway.

Kaufman, Michael C [ORNL; Pesavento, Philip V [ORNL

2011-01-01T23:59:59.000Z

50

Combined Heat and Power with Your Local Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership Working Group Combined Heat and Power C.A. Skip Cofield October 16, 2012 Agenda * Southern Company * Combined Heat and Power (CHP) * Southern Company CHP * Utility Partnerships 2 Southern Company Overview Operating Companies: * Alabama Power * Georgia Power * Gulf Power * Mississippi Power Subsidiaries: * Southern LINC * Southern Nuclear * Southern Power * Southern Telecom 3 Retail Generating Units Wholesale Generating Units * 4.4 million customers * 43,500+ MW * 26,000+ employees * 120,000 square miles of retail service territory * 27,000 mi. of transmission lines * 3,700 substations * $17.7B in operating revenue * $2.2B in net income * $39.2B in market cap * $59.3B in assets * $13.5B annual op. expense 4 Southern Company Overview

51

Assessment of a satellite power system and six alternative technologies  

DOE Green Energy (OSTI)

The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

1981-04-01T23:59:59.000Z

52

Environmental Assessment for power marketing policy for Southwestern Power Administration  

Science Conference Proceedings (OSTI)

Southwestern Power Administration (Southwestern) needs to renew expiring power sales contracts with new term (10 year) sales contracts. The existing contracts have been in place for several years and many will expire over the next ten years. Southwestern completed an Environmental Assessment on the existing power allocation in June, 1979 (a copy of the EA is attached), and there are no proposed additions of any major new generation resources, service to discrete major new loads, or major changes in operating parameters, beyond those included in the existing power allocation. Impacts from a no action plan, proposed alternative, and market power for less than 10 years are described.

Not Available

1993-12-01T23:59:59.000Z

53

Technical Assessment Guide (TAG) - Power Generation and Storage Technology Options  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide (TAG)Power Generation and Storage Technology Options helps energy company decision makers optimize capital investments in power generation and energy storage infrastructure. The 2009 TAG has been significantly enhanced. The following topics are among those that are new or enhanced: several options on CO2 capture controls and costs for existing retrofits and for new Pulverized Coal and Combustion Turbine Combined Cycle plants; several options on hybrid and dry cooling f...

2009-12-11T23:59:59.000Z

54

Southwest Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southwest www.southwestCHPTAP.org Christine Brinker Southwest Energy Efficiency Project 720-939-8333 cbrinker@swenergy.org Arizona Ina Road Water Pollution Control Facility, Tucson University of Arizona, Tucson View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Arizona. Colorado Metro Wastewater Reclamation District, Denver MillerCoors, Golden New Belgium Brewery, Fort Collins Trailblazer Pipeline, Fort Collins View EEA's database of all known CHP installations in Colorado.

55

Pacific Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

56

Southeast Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southeast www.southeastCHPTAP.org Isaac Panzarella North Carolina State University 919-515-0354 ipanzarella@ncsu.edu Alabama View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Alabama. Arkansas Fourche Creek Wastewater Treatment Facility, Little Rock View EEA's database of all known CHP installations in Arkansas. Florida Howard F. Curren Advanced Wastewater Treatment Plant, Tampa Shands Hospital, Gainesville View EEA's database of all known CHP installations in Florida.

57

Midwest Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Midwest www.midwestCHPTAP.org John Cuttica University of Illinois at Chicago 312-996-4382 cuttica@uic.edu Cliff Haefke University of Illinois at Chicago 312-355-3476 chaefk1@uic.edu Illinois Adkins Energy, Lena Advocate South Suburban Hospital, Hazel Crest Antioch Community High School, Antioch Elgin Community College, Elgin Evanston Township High School, Evanston Hunter Haven Farms, Inc., Pearl City Jesse Brown VA Medical Center, Chicago Lake Forest Hospital, Lake Forest

58

Pacific Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

59

Northwest Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Northwest www.northwestCHPTAP.org David Sjoding Washington State University 360-956-2004 sjodingd@energy.wsu.edu Alaska Alaska Village Electric Cooperative, Anvik Alaska Village Electric Cooperative, Grayling Exit Glacier - Kenai Fjords National Park, Seward Golovin City, Golovin Inside Passage Electric Cooperative, Angoon Kokhanok City, Kokhanok St. Paul Island, St. Paul Island Village Council, Kongiganak City Village Council, Kwigillingok City Village Council, Stevens Village

60

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Distributed Solar-Thermal Combined Heat and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Solar-Thermal Combined Heat and Power Speaker(s): Zack Norwood Date: February 22, 2007 - 12:00pm Location: 90-3122 This seminar will examine the potential for the mild...

62

Assessing Power Substation Network Security and Survivability  

E-Print Network (OSTI)

This paper reports our experiences with identifying cyber-based threats to the survivability of power substation control networks. Observations from the initial application of vulnerability and hardening assessment techniques have been presented. The paper also discusses the state of the power industry cyber security, which appears to lag behind the state-ofthe-practice in both network security and ultrareliable systems design.

Carol Taylor; Paul Oman; Axel Krings

2003-01-01T23:59:59.000Z

63

Nuclear Power 2010 Program: Combined Construction and Operating License &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power 2010 Program: Combined Construction and Operating Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States. As with all significant endeavors, there are lessons to be learned from the

64

NREL: Climate Neutral Research Campuses - Combined Heat and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Heat and Power Combined Heat and Power Combined heat and power (CHP) systems on research campuses can reduce climate impact by 15% to 30% and yield a positive financial return, because they recover heat that is typically wasted in the generation of electric power and deliver that energy in a useful form. The following links go to sections that describe how CHP may fit into your climate action plans. Considerations Sample Project Related Links CHP systems can take advantage of large central heating plants and steam distribution systems that are available on many campuses. CHP systems may be new at a particular facility, but the process and equipment involve well-established industrial technologies. The U.S. Environmental Protection Agency CHP Partnership offers technical information and resources that

65

Nuclear Power 2010 Program: Combined Construction and Operating License &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power 2010 Program: Combined Construction and Operating Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States. As with all significant endeavors, there are lessons to be learned from the

66

Green Power Marketing in Retail Competition: An Early Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power Marketing in Retail Competition: An Early Assessment Title Green Power Marketing in Retail Competition: An Early Assessment Publication Type Report Year of Publication...

67

Combined Heat and Power in Biofuels Production and Use of Biofuels for Power Generation  

Science Conference Proceedings (OSTI)

The rise of the biofuels industry presents electric utilities with two types of opportunities: combined heat and power (CHP) applications in biofuel production facilities using topping and bottoming power generation cycles and the use of the biofuels as a fuel in electric power generation. This report reviews production processes for ethanol and biodiesel, including the prospects for CHP applications, and describes power generation opportunities for the use of biofuels in power production, especially in ...

2007-12-17T23:59:59.000Z

68

Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Projects Combined Heat and Power Projects Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles. Search the project profiles database. Project profiles can be searched by state, CHP TAP, market sector, North American Industry Classification System (NAICS) code, system size, technology/prime mover, fuel, thermal energy use, and year installed. View a list of project profiles by market sector. To view project profiles by state, click on a state on the map or choose a state from the drop-down list below. "An image of the United States representing a select number of CHP project profiles on a state-by-state basis View Energy and Environmental Analysis Inc.'s (EEA) database of all known

69

Combined cycle meets Thailand's growing power demands  

SciTech Connect

This article describes how an ample supply of natural gas led the Electricity Generating Authority of Thailand (EGAT) to choose gas-fired combustion turbines. Thailand's rapid industrialization, which began in the late 1980's, placed a great strain on the country's electricity supply system. The demand for electricity grew at an astonishing 14% annually. To deal with diminishing reserve capacity margins, the EGAT announced, in 1988, a power development program emphasizing gas-fired combined cycle power plants. Plans included six 320-MW combined cycle blocks at three sites, and an additional 600-MW gas- and oil-fired thermal plant at Bang Pakong. As electricity demand continued to increase, EGAT expanded its plans to include two additional 320-MW combined cycle blocks, a 600-MW combined cycle block, and a 650-MW gas- and oil-fired thermal plant. All are currently in various stages of design and construction.

Sheets, B.A. (Black and Veatch, Kansas City, MO (United States)); Takabut, K. (Electricity Generating Authority of Thailand, Nonthaburi (Thailand))

1993-08-01T23:59:59.000Z

70

Hybrid solar central receiver for combined cycle power plant  

DOE Patents (OSTI)

A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

Bharathan, D.; Bohn, M.S.; Williams, T.A.

1995-05-23T23:59:59.000Z

71

Hybrid solar central receiver for combined cycle power plant  

DOE Patents (OSTI)

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

72

Definition: Combined heat and power | Open Energy Information  

Open Energy Info (EERE)

heat and power heat and power Jump to: navigation, search Dictionary.png Combined heat and power The production of electricity and heat from a single process. Almost synonymous with the term cogeneration, but slightly more broad. Under the Public Utility Regulatory Policies Act (PURPA), the definition of cogeneration is the production of electric energy and "another form of useful thermal energy through the sequential use of energy." Since some facilities produce both heat and power but not in a sequential fashion, the term CHP is used.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Cogeneration power plants produce electricity but do not waste the heat this process creates. The heat is used for district heating or other purposes, and thus the overall efficiency is improved. For example could

73

Secondary steam models of a combined cycle power plant simulator  

Science Conference Proceedings (OSTI)

In this paper, the general description of a full scope simulator for a combined cycle power plant is presented; the antecedents of this work are explained; the basis of the models of the auxiliary and turbine gland steam systems are exposed and some ...

Edgardo J. Roldan-Villasana; Ma. de Jesus Cardoso-Goroztieta; Adriana Verduzco-Bravo; Jorge J. Zorrilla-Arena

2011-04-01T23:59:59.000Z

74

Cost and carbon emissions of coal and combined cycle power plants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and carbon emissions of coal and combined cycle power plants in India: international implications Title Cost and carbon emissions of coal and combined cycle power plants in...

75

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

76

Combined Heat and Power (CHP) Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development » Smart Grid » Distributed Technology Development » Smart Grid » Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of electronic data and signal processing have become a cornerstone in the U.S. economy. These industries represent high potential for CHP and distributed energy due to their ultra-high reliability and power quality requirements and related large

77

Yankee nuclear power station license renewal assessment  

Science Conference Proceedings (OSTI)

Nuclear power plants are initially licensed to operate for 40 years. Recent changes to US Nuclear Regulatory Commission regulations allow licenses to be renewed for up to 20 additional years. The new regulations require a comprehensive plant assessment to ensure continued effective aging management of equipment important to license renewal (ILR). Under the industry's lead plant program, Yankee Atomic Electric Company (YAEC) has assisted with development and demonstration of a generic license renewal assessment process. The generic assessment process developed under the lead plant program is the Nuclear Management and Resources Council methodology.

Hinkle, W.D. (Yankee Atomic Electric Co., Bolten, MA (United States))

1992-01-01T23:59:59.000Z

78

Combined cycle phosphoric acid fuel cell electric power system  

DOE Green Energy (OSTI)

By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

Mollot, D.J.; Micheli, P.L.

1995-12-31T23:59:59.000Z

79

Encouraging Combined Heat and Power in California Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

267E 267E Encouraging Combined Heat and Power in California Buildings Michael Stadler, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Environmental Energy Technologies Division http://microgrid.lbl.gov This project was funded by the California Energy Commission Public Interest Energy Research (PIER) Program under WFO Contract No. 500-10-052 and by the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. We are appreciative of the Commission's timely support for this project. We particularly thank Golam Kibrya and Chris Scruton for their guidance and assistance through all phases of the project. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Encouraging Combined Heat and Power in California

80

Using and Measuring the Combined Heat and Power Advantage  

E-Print Network (OSTI)

Combined Heat and Power (CHP), also known as cogeneration, refers to the integration of thermal energy with power generation. CHP is a powerful energy conservation measure that has been identified as an important greenhouse gas reduction measure with net economic benefits. It complements other energy conservation measures. CHP can be used any place that heat is needed so it is used with a variety of applications, fuels, and equipment. There are ancillary benefits of CHP to the host site and the public including air quality, reliability, reduced water consumption, and economic development. There is no universal practice for reporting the efficiency of CHP systems which can result in both overstatement and understatement of the benefits of CHP compared to other power generation systems. Fuel Charged to Power (FCP) is the fuel, net of credit for thermal output, required to produce a kilowatt-hour of electricity. This provides a metric that is used for comparison to the heat rate of other types of generation and insight into the development of CHP projects that maximize economic and environmental benefits. Biomass generation is generally less efficient than fossil fuel generation due to size and combustion characteristics, which means that there is more benefit from CHP because there is more waste heat available for recovery. An example is presented demonstrating that CHP significantly improves the economics and environmental benefits for biomass to power.

John, T.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a  

E-Print Network (OSTI)

Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate · Coal-fired Power Plant: Supercritical pulverized coal (SC PC) Illinois #6 Coal Capacity Factor 75

82

INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION  

DOE Green Energy (OSTI)

Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

2003-03-01T23:59:59.000Z

83

California Energy Commission Assessment of Natural Gas Combined Cycle  

E-Print Network (OSTI)

California Energy Commission 1 Assessment of Natural Gas Combined Cycle Plants for Carbon Dioxide Capture and Storage in a Gas-Dominated Electricity Market California Energy Commission Request for Proposals RFP # 500-10-502 Pre-Bid Conference Date: Wednesday, November 3, 2010 #12;California Energy

84

Assessment of Natural Gas Combined Cycle (NGCC) Plants with  

E-Print Network (OSTI)

Assessment of Natural Gas Combined Cycle (NGCC) Plants with CO2 Capture and Storage Mike Gravely.5 Million Annual Budget FY 10/11 · $62.5 million electric · $24 million natural gas · Program Research Areas:45 Bevilacqua-Knight, Inc's Role and Reference Documents Rich Myhre ­ Bevilacqua-Knight, Inc 3:05 Pacific Gas

85

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview and Overview and Federal Sector Deployment Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company Bob Slattery Oak Ridge National Laboratory CHP is an integrated energy system that:  is located at or near a facility  generates electrical and/or mechanical power  recovers waste heat for ◦ heating ◦ cooling ◦ dehumidification  can utilize a variety of technologies and fuels  is also referred to as cogeneration The on-site simultaneous generation of two forms of energy (heat and electricity) from a single fuel/energy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP

86

Method for the shutdown and restarting of combined power plant  

SciTech Connect

In shutting down a combined power plant, a steam turbine is first shutdown while operation of a gas turbine at high load is being continued, and the steam generated in a waste heat recovery boiler is passed on to a condenser through a bypass system bypassing the steam turbine. The gas turbine is then shutdown when this condition prevails, and gland sections of the steam turbine receive a supply of gland sealing steam which has been heated by a heater to a temperature level close to that of the steam attained while the steam turbine is in operation, thereby to maintain the temperature of the metal of the steam turbine gland sections at a desired level during the time the steam and gas turbines are shutdown. In restarting the combined plant, the gas turbine is first started and then the steam turbine is started.

Hashimoto, T.; Kuribayashi, T.

1981-08-11T23:59:59.000Z

87

Combined Heat and Power Pilot Grant Program (Connecticut ) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Program (Connecticut ) Grant Program (Connecticut ) Combined Heat and Power Pilot Grant Program (Connecticut ) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority State Connecticut Program Type State Grant Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The initial application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

88

Combined Heat and Power Pilot Loan Program (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Program (Connecticut) Loan Program (Connecticut) Combined Heat and Power Pilot Loan Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority Start Date 06/18/2012 State Connecticut Program Type State Loan Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

89

Encouraging Combined Heat and Power in California Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging Combined Heat and Power in California Buildings Encouraging Combined Heat and Power in California Buildings Title Encouraging Combined Heat and Power in California Buildings Publication Type Report LBNL Report Number LBNL-6267E Year of Publication 2013 Authors Stadler, Michael, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Abstract Governor Brown's research priorities include an additional 6.5 GW of combined heat and power (CHP) by 2030. As of 2009, roughly 0.25 GW of small natural gas and biogas fired CHP is documented by the Self-Generation Incentive Program (SGIP) database. The SGIP is set to expire, and the anticipated grid de-carbonization based on the development of 20 GW of renewable energy will influence the CHP adoption. Thus, an integrated optimization approach for this analysis was chosen that allows optimizing the adoption of distributed energy resources (DER) such as photovoltaics (PV), CHP, storage technologies, etc. in the California commercial sector from the building owners' perspective. To solve this DER adoption problem the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed by the Lawrence Berkeley National Laboratory and used extensively to address the problem of optimally investing and scheduling DER under multiple settings, has been used. The application of CHP at large industrial sites is well known, and much of its potential is already being realized. Conversely, commercial sector CHP, especially those above 50 to 100 kW peak electricity load, is widely overlooked. In order to analyze the role of DER in CO2 reduction, 147 representative sites in different climate zones were selected from the California Commercial End Use Survey (CEUS). About 8000 individual optimization runs, with different assumptions for the electric tariffs, natural gas costs, marginal grid CO2 emissions, and nitrogen oxide treatment costs, SGIP, fuel cell lifetime, fuel cell efficiency, PV installation costs, and payback periods for investments have been performed. The most optimistic CHP potential contribution in this sector in 2020 will be 2.7 GW. However, this result requires a SGIP in 2020, 46% average electric efficiency for fuel cells, a payback period for investments of 10 years, and a CO2 focused approach of the building owners. In 2030 it will be only 2.5 GW due to the anticipated grid de-carbonization. The 2030 result requires a 60% electric efficiency and 20 year life time for fuel cells, a payback period of 10 years, and a CO2 minimization strategy of building owners. Finally, the possible CHP potential in 2030 shows a significant variance between 0.2 GW and 2.5 GW, demonstrating the complex interactions between technologies, policies, and customer objectives.

90

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

DOE Green Energy (OSTI)

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

91

Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE))

NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

92

Tracking Progress Last updated 10/7/2013 Combined Heat and Power 1  

E-Print Network (OSTI)

of obtaining heat from a boiler and power from the electric grid. Additionally, since CHP system energyTracking Progress Last updated 10/7/2013 Combined Heat and Power 1 Combined Heat and Power Combined heat and power (CHP) systems, also referred to as cogeneration, generate on-site electricity

93

Understanding Emissions from Combined Heat and Power Systems  

E-Print Network (OSTI)

Combined Heat and Power (CHP) is more energy efficient than separate generation of electricity and thermal energy. In CHP, heat that is normally wasted in conventional power generation is recovered as useful energy for satisfying an existing thermal demand thus avoiding the losses that would otherwise be incurred from separate generation of power. Modeling analyses has demonstrated significant air emissions, transmission and price benefits of clean CHP technologies. Despite these benefits, CHP remains an underutilized technology hindered by a number of disincentives, including treatment under current air quality permitting practice, which does not recognize the efficiency benefits of CHP. Output-based standards begin to address these permitting shortcomings. This paper will discuss how to view emissions from CHP systems from an output-basis and compares emission from different technologies. Treatment of distributed generation is compared with central generation, and emissions from an integrated system that produces more than one usable output are discussed. Regulatory and policy strategies that encourage clear and efficient CHP are also discussed.

Shipley, A. M.; Greene, N.; Carter, S.; Elliott, R. N.

2002-04-01T23:59:59.000Z

94

Catalytic combustor for integrated gasification combined cycle power plant  

DOE Patents (OSTI)

A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

2008-12-16T23:59:59.000Z

95

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

solar power (CSP) troughs in the central valley of California (Pricesolar combined heat and power with desalination Figure 2.7: Comparison of desalination plants; price

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

96

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Systems: A Combined Assessment of Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Title Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Publication Type Report LBNL Report Number LBNL-5969E Year of Publication 2012 Authors Turner, William J. N., Jennifer M. Logue, and Craig P. Wray Date Published 07/2012 Keywords commissioning, energy, health, indoor air quality, residential, valuation, ventilation Abstract Due to changes in building codes, whole-house mechanical ventilation systems are being installed in new California homes. Few measurements are available, but the limited data suggest that these systems don't always perform as code and forecasts predict. Such deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and IAQ.

97

Thermal Energy Corporation Combined Heat and Power Project  

Science Conference Proceedings (OSTI)

To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nationâ??s best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission â?? providing top quality medical care and instruction â?? without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power outages. TECOâ??s operation is the largest Chilled Water District Energy System in the United States. The company used DOEâ??s funding to help install a new high efficiency CHP system consisting of a Combustion Turbine and a Heat Recovery Steam Generator. This CHP installation was just part of a larger project undertaken by TECO to ensure that it can continue to meet TMCâ??s growing needs. The complete efficiency overhaul that TECO undertook supported more than 1,000 direct and indirect jobs in manufacturing, engineering, and construction, with approximately 400 of those being jobs directly associated with construction of the combined heat and power plant. This showcase industrial scale CHP project, serving a critical component of the nationâ??s healthcare infrastructure, directly and immediately supported the energy efficiency and job creation goals established by ARRA and DOE. It also provided an unsurpassed model of a district energy CHP application that can be replicated within other energy intensive applications in the industrial, institutional and commercial sectors.

E. Bruce Turner; Tim Brown; Ed Mardiat

2011-12-31T23:59:59.000Z

98

EA-1741: Seattle Steam Company Combined Heat and Power at Post...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown...

99

Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Analysis: Integrated Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant Revision 2, March 2012 DOE/NETL-2012/1551 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

100

Reliability Assessment of Power Systems with Wind Power Generation.  

E-Print Network (OSTI)

??Wind power generation, the most promising renewable energy, is increasingly attractive to power industry and the whole society and becomes more significant in the portfolio… (more)

Wang, Shu

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

Science Conference Proceedings (OSTI)

We investigate and compare several generic depreciation methods to assess the effectiveness of possible policy measures with respect to the depreciation schedules for investments in combined heat and power plants in the United States. We assess the different depreciation methods for CHP projects of various sizes (ranging from 1 MW to 100 MW). We evaluate the impact of different depreciation schedules on the tax shield, and the resulting tax savings to potential investors. We show that a shorter depreciation cycle could have a substantial impact on the cost of producing power, making cogeneration more attractive. The savings amount to approximately 6-7 percent of capital and fixed operation and maintenance costs, when changing from the current system to a 7 year depreciation scheme with switchover from declining balance to straight line depreciation. Suggestions for further research to improve the analysis are given.

Kranz, Nicole; Worrell, Ernst

2001-11-15T23:59:59.000Z

102

A modified unit decommitment algorithm in combined heat and power production planning  

Science Conference Proceedings (OSTI)

This paper addresses the unit commitment in multi-period combined heat and power (CHP) production planning, considering the possibility to trade power on the spot market. We present a modified unit decommitment algorithm (MUD) that starts with a good ... Keywords: combined heat and power production, deregulated power market, energy optimization, modelling, modified unit decommitment, unit commitment

Aiying Rong; Risto Lahdelma

2007-01-01T23:59:59.000Z

103

Western Area Power Administration combined power system financial statements, 30 September 1995 and 1994  

SciTech Connect

The attached report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Western Area Power Administration`s (Western) combined financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on Western`s 1995 statements. Their reports on Western`s internal control structure and on compliance with laws and regulations are also provided.

NONE

1995-12-31T23:59:59.000Z

104

Method and apparatus for operating a combined cycle power plant having a defective deaerator  

Science Conference Proceedings (OSTI)

This patent describes a combined cycle power plant. It comprises: a deaerator having primary and secondary functions, the primary function to degasify feedwater for use in the combined cycle power plant; means for normally coupling the deaerator to the combined cycle power plant as a normally functioning part thereof; means for isolating the deaerator from the combined cycle power plant during operations thereof; and alternate means for performing the primary and secondary functions when the deaerator is isolated from the combined cycle power plant, during operations thereof, by the isolating means.

Pavel, J.; Richardson, B.L.; Myers, G.A.

1990-01-30T23:59:59.000Z

105

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network (OSTI)

grid, the few buildings equipped with Combined Heat andthe grid system. 29 Source: EPA Combined Heat and Powergrid system. 21 Alternatively, a CHP system collects the wasted heat

Ferraina, Steven

2014-01-01T23:59:59.000Z

106

Deaerator heat exchanger for combined cycle power plant  

SciTech Connect

This patent describes a combined cycle power plant. It comprises a steam turbine including an inlet portion for receiving motive steam and an exhaust portion for exhausting the motive steam that is spent by the steam turbine; a condenser connected to the exhaust portion of the steam turbine for receiving the spent motive steam and for condensing the spent motive steam to a supply of condensate; a gas turbine including an exhaust portion for exhausting waste heat that is produced by the gas turbine in the form of exhaust gases; a heat recovery steam generator connected between the exhaust portion of the gas turbine and the steam turbine, for receiving the waste heat exhausted by the gas turbine, for generating the motive steam from a supply of feedwater heated by the waste heat, and for supplying the motive steam to the steam turbine; a deaerator connected to the condenser for receiving the supply of condensate and for deaerating the condensate to provide the supply of feedwater to the heat recovery steam generator; and a heat exchanger.

Pavel, J.; Richardson, B.L.

1990-10-09T23:59:59.000Z

107

CO2 Offset Options: Comparative Assessment of Terrestial Sinks vs. Natural Gas Combined Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

W. South (south@energyresources.com; 202-785-8833) W. South (south@energyresources.com; 202-785-8833) Energy Resources International, Inc. 1015 18 th Street, N.W., Suite 650 Washington, DC 20036 CO 2 Offset Options: Comparative Assessment of Terrestial Sinks vs. Natural Gas Combined Cycle 1 Abstract This study compares the economic value of two CO 2 mitigation actions: terrestrial reforestation to sequester CO 2 emitted from coal-fired power generation versus natural gas combined cycle (NGCC) power generation to avoid (minimize) CO 2 release. The same quantity of carbon offset was assumed for both actions. Tree stock growth, carbon absorption/release cycles, and replanting were considered to maintain the quantity of carbon offset via reforestation. The study identified important parameters with both CO 2 mitigation options that should be considered when examining alternative strategies.

108

Novel and Innovative Power Cycles: A Preliminary Assessment  

Science Conference Proceedings (OSTI)

Thermal-electric power plants employing steam-Rankine and combustion turbine power cycles are the predominant method of supplying electric power worldwide and will continue to be for the foreseeable future. Three factors drive research and development of technologies for use in fossil fueled electric power plants in the 21st century—higher efficiency, near-zero emissions, and decreased CO2 emissions. This report assesses a selection of novel thermal-electric power ...

2013-12-01T23:59:59.000Z

109

AMO Industrial Distributed Energy: Combined Heat and Power Basics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating andor cooling. CHP...

110

Anaerobic Digestion and Combined Heat and Power Study  

DOE Green Energy (OSTI)

One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

Frank J. Hartz

2011-12-30T23:59:59.000Z

111

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values William J.N. Turner, Jennifer M. Logue, Craig P. Wray Environmental Energy Technologies Division July 2012 LBNL-5969E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

112

NREL: Energy Analysis - Nuclear Power Results - Life Cycle Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Power Results - Life Cycle Assessment Harmonization Nuclear Power Results - Life Cycle Assessment Harmonization Over the last 30 years, analysts have conducted life cycle assessments on the environmental impacts associated with a variety of nuclear power technologies and systems. These life cycle assessments have had wide-ranging results. To better understand greenhouse gas (GHG) emissions from nuclear power systems, NREL completed a comprehensive review and analysis of life cycle assessments focused on light water reactors (LWRs)-including both boiling water reactors (BWRs) and pressurized water reactors (PWRs)-published between 1980 and 2010. NREL developed and applied a systematic approach to review life cycle assessment literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions

113

Combined desalination and power generation using solar energy.  

E-Print Network (OSTI)

??Integrated desalination and power generation using solar energy is a prospective way to help solve the twin challenges of energy and fresh water shortage, while… (more)

Zhao, Y

2009-01-01T23:59:59.000Z

114

Combined heat and power technology fills an important energy niche ...  

U.S. Energy Information Administration (EIA)

Fuel consumption at CHP plants. Useful thermal output ... data on all generators at plants greater than one megawatt on the Annual Power Plant Operations ...

115

Combined Heat and Power (CHP) Project Profiles Database  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

112210 Hog and Pig Farming 211112 Natural Gas Liquid Extraction 221112 Fossil Fuel Electric Power Generation 221210 Natural Gas Distribution 221310 Water Supply and...

116

Section 5.8.8 Combined Heat and Power: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Combined Heat and Power Technical Information Thermal-energy losses from power plants in the U.S. currently total approximately 23 quads (one quad is 10 15 Btu)-more than...

117

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power ...  

U.S. Energy Information Administration (EIA)

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Trillion Btu)

118

Top 10 Things You Didn't Know About Combined Heat and Power ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Didn't Know About..." Be sure to check back for more entries soon. 10. Often called cogeneration or CHP, a combined heat and power system provides both electric power and heat from...

119

A Ranking of State Combined Heat and Power Policies  

E-Print Network (OSTI)

Combined Heat and Power (CHP) has been identified as a significant opportunity for greater energy efficiency and decreased environmental impacts of energy consumption. Despite this, the regulatory and policy landscape for CHP is often quite discouraging to the deployment of these systems, despite their many benefits to customers and society at large. That the landscape changes considerably from state to state only confuses the matter. Of all the various types of distributed generation, CHP systems encompass technologies particularly hard hit by policies and regulations that do not actively support their deployment. Given the large size of some CHP systems, interconnection standards that clearly delineate interconnection processes for multi-megawatt systems are necessary. In addition, since many CHP technologies emit incremental criteria pollutants as part of their operation, the manner in which emissions are regulated by a state can significantly impact the financial realities of running a CHP system. In the absence of strong federal guidance, interconnection standards, tax incentives, tariff designs, environmental regulations and other policy measures that dramatically impact the attractiveness of CHP projects can only be significantly addressed by state lawmakers and regulators. State activity is essential to creating a policy framework that encourages CHP. Within the past several years, a number of states have made significant strides in implementing more “CHP-friendly” policies. Some states have worked to develop these policies at an accelerated rate while others have done little. In many cases the difference between states that are proactively encouraging CHP and states that are ignoring it all together is stark. This paper will identify which states are leading the way, which states are following, and what the policies of all states look like at this current point in time. It will define what “CHP-friendly” policies are, what makes a good policy better, and discuss the manners in which a variety of states have chosen to approach CHP. CHP system developers will come away with a clearer picture of each state’s unique CHP barriers, potential CHP customers will understand how their current CHP climate compares to that of other locations, and state lawmakers and CHP advocates will be able to learn about best practices in policy creation that already exist in the field.

Chittum, A.; Kaufman, N.

2009-05-01T23:59:59.000Z

120

A New Method for Power Estimation and Optimization of Combinational Circuits  

E-Print Network (OSTI)

and toggle rate of 0.5. We used a custom wire load model (CWLM) [8] to perform the power calculations. We power changes due to power transformations. REFERENCES [1] F. Najm, "Transition density, a stochastic1 A New Method for Power Estimation and Optimization of Combinational Circuits Ahmed Sammy Aldeen

Al-Asaad, Hussain

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

PureComfort 240 Combined Cooling,Heating,and Power Unit  

Science Conference Proceedings (OSTI)

This report is the second interim case study of a PureComfort 240 combined cooling, heating and power project at the University of Toronto, Mississauga.

2006-12-06T23:59:59.000Z

122

Integration of Combined Heat and Power Generators into Small Buildings - A Transient Analysis Approach.  

E-Print Network (OSTI)

??Small combined heat and power generators have the potential to reduce energy consumption and greenhouse gas emissions of residential buildings. Recently, much attention has been… (more)

DeBruyn, Adrian Bryan

2007-01-01T23:59:59.000Z

123

Power quality assessment of specially connected transformers  

Science Conference Proceedings (OSTI)

This paper examines and compares the voltage deviation, voltage unbalance, and harmonic distortion of V-V, Scott, and Le Blanc connected transformers by a novel approach. The power quality factors are needed to truly reflect the loading characteristics ... Keywords: Le Blanc connection, V-V connection, power quality, scott connection

Yao-Hung Chan; Chi-Jui Wu; Shu-Chen Wang

2010-04-01T23:59:59.000Z

124

Novel Power Cycle for Combined-Cycle Systems and Utility Power Plants  

E-Print Network (OSTI)

The description of a new power cycle, based on the use of a multicomponent working fluid, was published earlier. A thermodynamic analysis of this cycle has demonstrated its superiority over the currently used Rankine Cycle, and a distribution of losses in the subsystems of this cycle has been established. A new, improved variant of the cycle, which provides 10% efficiency improvement over the initial variant, has been developed. The new variant employs a cooling of the working fluid between turbine stages and a recuperation of the released heat for supplementation of the boiler heat supply. Analysis shows that with this new, improved cycle efficiencies of up to 52% for a combined-cycle system employing standard turbines, and of up to 55% when modern high-temperature gas turbines are employed, can be achieved. The same cycle can be utilized to retrofit existing direct-fired power plants, providing an efficiency of up to 42%. The possible implications off such a cycle implementation are briefly discussed. The Electric Power Research Institute (EPRI) is now conducting a study of this cycle.

Kalina, A. L.

1986-06-01T23:59:59.000Z

125

Review of Potential Federal and State Green House Gas Policy Drivers for Combined Heat and Power Systems  

Science Conference Proceedings (OSTI)

The electric power generation sector contributes about one-third of all green house gas (GHG) emissions in the United States. To curb the reduction of green house gas emissions, all options in the electric power value chain must be considered and evaluated. The more efficient utilization of natural gas fuel via use of distributed combined cooling, heating, and power (CHP) systems in the end-use sector may be one option to mitigating GHG emissions. This research project was undertaken to assess the extent...

2007-12-19T23:59:59.000Z

126

Opportunities for Combined Heat and Power in Data Centers  

SciTech Connect

Data centers represent a rapidly growing and very energy intensive activity in commercial, educational, and government facilities. In the last five years the growth of this sector was the electric power equivalent to seven new coal-fired power plants. Data centers consume 1.5% of the total power in the U.S. Growth over the next five to ten years is expected to require a similar increase in power generation. This energy consumption is concentrated in buildings that are 10-40 times more energy intensive than a typical office building. The sheer size of the market, the concentrated energy consumption per facility, and the tendency of facilities to cluster in 'high-tech' centers all contribute to a potential power infrastructure crisis for the industry. Meeting the energy needs of data centers is a moving target. Computing power is advancing rapidly, which reduces the energy requirements for data centers. A lot of work is going into improving the computing power of servers and other processing equipment. However, this increase in computing power is increasing the power densities of this equipment. While fewer pieces of equipment may be needed to meet a given data processing load, the energy density of a facility designed to house this higher efficiency equipment will be as high as or higher than it is today. In other words, while the data center of the future may have the IT power of ten data centers of today, it is also going to have higher power requirements and higher power densities. This report analyzes the opportunities for CHP technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure. This report is organized into the following sections: (1) Data Center Market Segmentation--the description of the overall size of the market, the size and types of facilities involved, and the geographic distribution. (2) Data Center Energy Use Trends--a discussion of energy use and expected energy growth and the typical energy consumption and uses in data centers. (3) CHP Applicability--Potential configurations, CHP case studies, applicable equipment, heat recovery opportunities (cooling), cost and performance benchmarks, and power reliability benefits (4) CHP Drivers and Hurdles--evaluation of user benefits, social benefits, market structural issues and attitudes toward CHP, and regulatory hurdles. (5) CHP Paths to Market--Discussion of technical needs, education, strategic partnerships needed to promote CHP in the IT community.

Darrow, Ken [ICF International; Hedman, Bruce [ICF International

2009-03-01T23:59:59.000Z

127

Top 10 Things You Didn't Know About Combined Heat and Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Top Things: Top 9 Things You Didn't Know About America's Power Grid Top 9 Things You Didn't Know about Carbon Fiber

128

Top 10 Things You Didn't Know About Combined Heat and Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Top Things: Top 9 Things You Didn't Know About America's Power Grid Top 9 Things You Didn't Know about Carbon Fiber

129

Combining Nuclear Power With Coal-to-Gasoline Conversion  

Science Conference Proceedings (OSTI)

With coal representing 95% and oil only 2.5% of the US fossil fuel reserves and with the abundant nuclear fuel reserves in the US, such combined plants should be built in the near future. (authors)

Hamel, H.J.; Jaeger, Walter; Termuehlen, Heinz

2006-07-01T23:59:59.000Z

130

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

131

Technology assessments of advanced power generation systems 2: Kalina bottoming cycle: Final report  

SciTech Connect

A preliminary assessment of the Kalina cycle as the bottoming system of a small, combined-cycle power plant found that the cost of electricity for this plant was calculated to be somewhat less than that of competing steam-bottoming systems. This new system requires further analysis, however, particularly of the trade-off between heat exchanger cost and cycle performance.

1986-11-01T23:59:59.000Z

132

Technology Assessments of Advanced Power Generation Systems II--Kalina Bottoming Cycle  

Science Conference Proceedings (OSTI)

A preliminary assessment of the Kalina cycle as the bottoming system of a small, combined-cycle power plant found that the cost of electricity for this plant was calculated to be somewhat less than that of competing steam-bottoming systems. This new system requires further analysis, however, particularly of the trade-off between heat exchanger cost and cycle performance.

1986-11-14T23:59:59.000Z

133

Technical Assessment Guide (TAG) -- Power Generation and Storage Technology Options: 2010 Topics  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide (TAG )151Power Generation and Storage Technology Options helps energy company decision makers optimize capital investments in the power generation and energy storage infrastructure. The 2010 TAG has been significantly enhanced to reflect current market conditions and technology trends, with cost and performance updates for pulverized coal (PC), large combustion turbine (CT) and combustion turbine combined-cycle (CTCC), nuclear, solar thermal (ST), photovoltaic (PV), b...

2010-12-21T23:59:59.000Z

134

Assessment of Magtube Power Ring Flywheel Technology  

Science Conference Proceedings (OSTI)

This report provides an assessment of a novel flywheel technology being developed by Magtube Inc. as a concept that is potentially scalable to MW ratings and MWh storage capabilities.

2004-01-22T23:59:59.000Z

135

DRAFT ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C DRAFT FORT YUKON WOODY BIOMASS FUEL IMPLEMENTATION PLAN (RBEGR 2011) C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 C-11 C-12 C-13 C-14 C-15 C-16 C-17 C-18 C-19 C-20 C-21 C-22 C-23...

136

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Callaway Spring 2011 #12;Abstract A Better Steam Engine: Designing a Distributed Concentrating Solar of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

137

Combined heat and power economic dispatch by mesh adaptive direct search algorithm  

Science Conference Proceedings (OSTI)

The optimal utilization of multiple combined heat and power (CHP) systems is a complex problem. Therefore, efficient methods are required to solve it. In this paper, a recent optimization technique, namely mesh adaptive direct search (MADS) is implemented ... Keywords: Combined heat and power, Economic dispatch, Mesh adaptive direct search algorithm, Optimization

Seyyed Soheil Sadat Hosseini; Ali Jafarnejad; Amir Hossein Behrooz; Amir Hossein Gandomi

2011-06-01T23:59:59.000Z

138

COMBINATION OF MSWC AND COAL FIRED POWER PLANT Jiirgen Vehlow, Hans Hunsinger, Siegfried Kreisz, Helmut Seifert  

E-Print Network (OSTI)

COMBINATION OF MSWC AND COAL FIRED POWER PLANT Jiirgen Vehlow, Hans Hunsinger, Siegfried Kreisz for the combination of a municipal solid waste combustion plant and a coal fired power plant in such a way that the dedusted and pre cleaned offgas of the waste combustion serves as carrier gas for the pulverized coal

Columbia University

139

Combined heat and power for drinking water production  

Science Conference Proceedings (OSTI)

ABB Kraftwerke AG, of Mannheim, Germany, is presently involved in two huge projects aimed at supplying electric power and drinking water in the Arabian Gulf. To limit fuel consumption as much as possible, electricity and water are produced in CHP plants. These plants are powered either by gas turbines equipped with HRSGs, or by conventional boilers feeding controlled extraction-condensing steam turbines. The selection of one of the two systems depends mainly on the type of fuel available (oil or natural gas), on the power/water loads through the year and other local factors. The gas turbine-based CHP systems can be setup in a shorter time and feature a slightly higher overall efficiency. The steam turbine solution, once the plant is commissioned, needs less maintenance. In the final analysis, operating costs of the two solutions are equivalent.

Chellini, R.

1996-04-01T23:59:59.000Z

140

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

142

Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology  

SciTech Connect

Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M. [Chemical and Petroleum Engineering Department, Sharif University of Technology, No 593 Azadi Ave., Tehran (Iran)

2010-09-15T23:59:59.000Z

143

Exxon Chemical's Coal-Fired Combined Cycle Power Technology  

E-Print Network (OSTI)

Exxon Chemical's Central Engineering Division has recently developed and patented CAT-PAC for Industrial Cogeneration and Utility Power Plants. It involves the marriage of a conventional direct pulverized coal-fired boiler radiant section with a convection section adapted from our furnace experience. In particular, it is an open-cycle, hot air turbine arrangement with indirect heating of the air in the boiler convection section. The turbine exhaust is then used as pre-heated combustion air for the boiler. The air coil heats the 150 psig air from the standard gas turbine axial compressor to approximately, 1750°F. Today, CAT-PAC would require about 10% less fuel (or 1000 Btu/kwh) than the best coal-fired Utility Plant for the same net power output, at a comparable investment. With improved air heater metallurgy, and/or trim firing of a premium fuel (up to 2000° F permissible gas turbine temperature), CAT-PAC savings would double to 20%. Today, in an industrial coal-fired cogeneration plant, CAT-PAC can produce up to 75% more power for a given steam load, while maintaining the highest cogeneration efficiencies. With improved metallurgy, and/or trim firing, the additional power would approach 100%.

Guide, J. J.

1985-05-01T23:59:59.000Z

144

Application of Combined Thermal Equivalen in Thermal Power Plant Reduction  

Science Conference Proceedings (OSTI)

The 3.8MPa medium-pressure steam of Yuntianhua Company get low pressure steam through reducing temperature and pressure, which is used as a heat tracing, a reserve supply of heat. For this situation, the article based on the analysis of energy and chemical ... Keywords: combined thermal equivalent, turbine, economize on energy

Zhang Zhuming; Li Hu; Wang Hua; Qing Shan; Li Liangqing; He Ping; Ma Linzhuan

2011-02-01T23:59:59.000Z

145

Gas turbine effects on integrated-gasification-combined-cycle power plant operations  

SciTech Connect

This study used detailed thermodynamic modeling procedures to assess the influence of different gas turbine characteristics and steam cycle conditions on the design and off-design performance of integrated gasification-combined-cycle (IGCC) power plants. IGCC plant simulation models for a base case plant with Texaco gasifiers and both radiant and convective syngas coolers were developed, and three different types of gas turbines were evaluated as well as non-reheat and reheat steam systems. Results indicated that improving the gas turbine heat rate significantly improves the heat rate of the IGCC power plant. In addition results indicated that using a reheat steam system with current gas turbines improves IGCC performance, though as gas turbine efficiency increases, the impact of using a reheat steam system decreases. Increasing gas turbine temperatures from 1985{degree}F to 2500{degree}F was also found to have the potential to reduce overall IGCC system heat rates by approximately 700 BTU/kWh. The methodologies and models developed for this work are extremely useful tools for investigating the impact of specific gas turbine and steam cycle conditions on the overall performance of IGCC power plants. Moreover, they can assist utilities during the preliminary engineering phase of an IGCC project in evaluating the cost effectiveness of using specific gas turbines and steam cycles in the overall plant design. 45 refs., 20 figs., 10 tabs.

Eustis, F.H. (Stanford Univ., CA (USA). High Temperature Gasdynamics Lab.)

1990-03-01T23:59:59.000Z

146

An Engineering and Economic Evaluation of Post-Combustion CO2 Capture for Natural Gas-Fired Combined-Cycle Power Plants  

Science Conference Proceedings (OSTI)

This report presents an Electric Power Research Institute (EPRI) assessment on the technical feasibility, performance, and associated costs of applying post-combustion carbon dioxide (CO2) capture technology to a natural gas–fired combined-cycle (NGCC) power station.

2012-03-23T23:59:59.000Z

147

Biennial Assessment of the Fifth Power Plan Transmission Issues  

E-Print Network (OSTI)

unscheduled electricity flows over transmission lines leading to increased risks to electric system-construction alternatives to transmission; · Inability to effectively monitor the wholesale electricity market, identifyBiennial Assessment of the Fifth Power Plan Transmission Issues INTRODUCTION The Fifth Power Plan

148

Advanced Power Supplies: Scoping Study and Technology Assessment  

Science Conference Proceedings (OSTI)

This report provides a scoping study and a technology assessment for advanced power supplies in three target markets: residential, commercial, and industrial. The study focuses on two general categories of applications that create additional value for utility end users: applications where electrotechnologies create opportunity for increased use of electricity, or where new processes based on power electronics and electricity can replace traditional methods.

1998-04-27T23:59:59.000Z

149

Green Power Marketing in Retail Competition: An Early Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

5939 5939 LBNL-42286 February 1999 Green Power Marketing in Retail Competition: An Early Assessment Ryan Wiser, Ernest Orlando Lawrence Berkeley National Laboratory Jeff Fang, Kevin Porter, and Ashley Houston, National Renewable Energy Laboratory National Renewable Energy Laboratory A national laboratory of the U.S. Department of Energy The Topical Issues Brief series is sponsored by DOE's Office of Energy Efficiency and Renewable Energy Office of Power Technologies Green Power Marketing in Retail Competition i Contents Abstract ........................................................................................................................................ ii Acknowledgments ..........................................................................................................................

150

Assessment of DC Backup Power Technology Options for Nuclear Power Generation Stations  

Science Conference Proceedings (OSTI)

The March 2011 Fukushima nuclear power plant accident in Japan created a renewed industry interest in examining potential improvements for backup power options to support plant accident scenarios in both near-term and long-term implementation time periods. This report assesses technology options that can be considered in improving DC backup power. Options with near-term applicability were considered and reviewed. Certain energy storage systems and hydrogen power fuel cells were identified that could ...

2013-10-15T23:59:59.000Z

151

National-Scale Wind Resource Assessment for Power Generation (Presentation)  

SciTech Connect

This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

Baring-Gould, E. I.

2013-08-01T23:59:59.000Z

152

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

153

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

154

1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09  

U.S. Energy Information Administration (EIA) Indexed Site

STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09 1990,"AK","Combined Heat and Power, Commercial Power","Coal",3,65.5,61.1 1990,"AK","Combined Heat and Power, Commercial Power","Petroleum",1,20.4,18.99 1990,"AK","Combined Heat and Power, Industrial Power","All Sources",23,229.4,204.21 1990,"AK","Combined Heat and Power, Industrial Power","Natural Gas",28,159.32,136.67 1990,"AK","Combined Heat and Power, Industrial Power","Petroleum",8,68.28,65.86

155

NREL: Energy Analysis - Wind Power Results - Life Cycle Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind LCA Harmonization (Fact Sheet) Wind LCA Harmonization (Fact Sheet) Cover of the LWind LCA Harmonization Fact Sheet Download the Fact Sheet Wind Power Results - Life Cycle Assessment Harmonization To better understand the state of knowledge of greenhouse gas (GHG) emissions from utility-scale wind power systems, NREL developed and applied a systematic approach to review life cycle assessment literature, identify sources of variability and, where possible, reduce variability in GHG emissions estimates through a meta-analytical process called "harmonization." Over the last 30 years, several hundred life cycle assessments have been conducted for wind power technologies with wide-ranging results. Harmonization for onshore and offshore wind power systems was performed by adjusting published greenhouse gas estimates to achieve:

156

title Life Cycle Assessment of Electric Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Assessment of Electric Power Systems Life Cycle Assessment of Electric Power Systems journal Annual Review of Environment and Resources volume year month abstract p The application of life cycle assessment LCA to electric power EP technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts While LCA is an evolving methodology with a number of barriers and challenges to its effective use LCA studies to date have clearly improved our understanding of the life cycle energy GHG emissions air pollutant emissions and water use implications of EP technologies With continued progress LCA offers promise for assessing and comparing EP technologies in an analytically thorough and environmentally holistic manner for more robust deployment

157

The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS  

E-Print Network (OSTI)

Integrated Gasification Combined Cycle (IGCC) Power Plant.Analysis: Natural Gas Combined Cycle (NGCC) Power Plant.assessment of natural gas combined cycle power plant with

Sathre, Roger

2011-01-01T23:59:59.000Z

158

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network (OSTI)

Integrated Gasification Combined Cycle (IGCC) Power Plant.Analysis: Natural Gas Combined Cycle (NGCC) Power Plant.assessment of natural gas combined cycle power plant with

Sathre, Roger

2013-01-01T23:59:59.000Z

159

The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS  

E-Print Network (OSTI)

assessment of natural gas combined cycle power plant withAnalysis: Natural Gas Combined Cycle (NGCC) Power Plant.

Sathre, Roger

2011-01-01T23:59:59.000Z

160

Thermal energy storage for an integrated coal gasification combined-cycle power plant  

DOE Green Energy (OSTI)

This study investigates the use of molten nitrate salt thermal energy storage in an integrated gasification combined-cycle power plant allowing the facility to economically provide peak- and intermediate-load electric power. The results of the study show that an integrated gasification combined-cycle power plant with thermal energy storage can reduce the cost of coal-fired peak- or intermediate-load electric power by between 5% and 20% depending on the plants operating schedule. The use of direct-contact salt heating can further improve the economic attractiveness of the concept. 11 refs., 1 fig., 4 tabs.

Drost, M.K.; Antoniak, Z.I.; Brown, D.R.

1990-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermal energy storage for an integrated coal gasification combined-cycle power plant  

Science Conference Proceedings (OSTI)

This study investigates the use of molten nitrate salt thermal energy storage in an integrated gasification combined-cycle power plant allowing the facility to economically provide peak- and intermediate-load electric power. The results of the study show that an integrated gasification combined-cycle power plant with thermal energy storage can reduce the cost of coal-fired peak- or intermediate-load electric power by between 5% and 20% depending on the plants operating schedule. The use of direct-contact salt heating can further improve the economic attractiveness of the concept. 12 refs., 1 fig., 5 tabs.

Drost, K.; Antoniak, Z.; Brown, D.; Somasundaram, S.

1991-10-01T23:59:59.000Z

162

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

163

Mid-Atlantic Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Mid-Atlantic www.midatlanticCHPTAP.org Jim Freihaut Pennsylvania State University 814-863-0083 jdf11@psu.edu Delaware View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Delaware. District of Columbia View EEA's database of all known CHP installations in the District of Columbia. Maryland Baltimore Refuse Energy Co., Baltimore View EEA's database of all known CHP installations in Maryland. New Jersey View EEA's database of all known CHP installations in New Jersey.

164

Distributed Generation as Combined Heat and Power (DG-CHP) (New...  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Distributed Generation as Combined Heat and Power (DG-CHP) (New York) This is the approved revision of...

165

Table 8.3c Useful Thermal Output at Combined-Heat-and-Power ...  

U.S. Energy Information Administration (EIA)

Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Trillion ...

166

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network (OSTI)

Resources: The CERTS MicroGrid Concept. ” Berkeley Lab1. Energy Characteristics of Microgrid’s Individual MembersEffects of a Carbon Tax on Microgrid Combined Heat and Power

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

167

Guideline for Assessing Maintenance Effectiveness: A Self-Assessment Guideline for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The EPRI Technologies for Equipment Assessment and Maintenance (TEAM) group has prepared this guideline to assist EPRI-member nuclear power plants in further improving their maintenance processes by presenting, in detail, a collection of the key elements and activities that contribute to a well-organized maintenance program. An honest assessment of these activities then provides tools that can be used to perform a self-assessment of an existing maintenance program. This assessment is directed toward how ...

2002-12-10T23:59:59.000Z

168

Combined Heat & Power (CHP) -A Clean Energy Solution for Industry  

E-Print Network (OSTI)

From the late 1970's to the early 1990's cogeneration or CHP saw enormous growth, especially in the process industries. By 1994, CHP provided 42 GW of electricity generation capacity -about 6 percent of the U.S. total. Three manufacturing industries (Pulp and paper -59 Twh; Chemicals -47 Twh; Petroleum refuting -IS Twh) accounted for 85% of all cogenerated electricity in 1994. But since the mid-1990s, installation of new CHP has slowed dramatically. This slow down is due to uncertainties and policies associated with electric utility restructuring and impending environmental regulations. By 1997, a group comprising CHP manufacturers and nonprofit groups had formed to identify these CHP barriers and to work to remove them. At the same time several studies on the role of energy efficiency in greenhouse gas emissions reductions identified CHP as one of the most promising options. These studies showed a key window of opportunity-many new or updated highly-efficient and lower-cost CHP systems will become available just when the industrial "boiler baby boom" retires. These technology opportunities take advantage of advances in materials, power electronics, and computer-aided design techniques have increased equipment efficiency and reliability dramatically, while reducing costs and emissions of pollutants. This next generation of turbines, fuel cells, and reciprocating engines is the result of intensive, collaborative research, development, and demonstration by government and industry. These have allowed for new configurations that reduce size yet increase output. Turbines are now cost-effective for systems down to 50 KW, the size of a small office or restaurant. Even smaller equipment is on the horizon. However, without rapid action, this opportune nexus of market, regulatory, and technology opportunities could dissipate. In fiscal year 1999, we launched the U. S. Department of Energy CHP Challenge program. By 2002 when the Challenge is complete, it should have substantially increased the use of CHP systems in industry and buildings. We estimate that efforts such as CHP Challenge could result in more than 50 MW of additional CHP electricity generation being installed at greater than 60 percent fuel-use efficiency (nearly double the average grid efficiency) by 2010. This paper will report on the first results of CHP Challenge and discuss future activities-especially in the industrial sector.

Parks, H.; Hoffman, P.; Kurtovich, M.

1999-05-01T23:59:59.000Z

169

Low Power and Shutdown Risk Assessment Benchmarking Study  

SciTech Connect

(B204)Probabilistic risk assessment (PRA) insights are now used by the United States Nuclear Regulatory Commission (USNRC) to confirm the level of safety for plant operations and to justify changes in nuclear power plant operating requirements, both on an exception basis and as changeds to a plant's licensing basis. This report examines qualitative and quantitative risk assessments during shutdown plant states, providing feedback to utilities in the use of qualitative models for outage risk management, and also providing input to the development of the American Nuclear Society (ANS) Low Power and Shutdown PRA Standard.

J.Mitman, J. Julius, R. Berucio, M. Phillips, J. Grobbelaaar, D. Bley, R. Budniz

2002-12-15T23:59:59.000Z

170

Life-Cycle Assessment of Electric Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Life-Cycle Assessment of Electric Power Systems Life-Cycle Assessment of Electric Power Systems Title Life-Cycle Assessment of Electric Power Systems Publication Type Journal Article Year of Publication 2013 Authors Masanet, Eric R., Yuan Chang, Anand R. Gopal, Peter H. Larsen, William R. Morrow, Roger Sathre, Arman Shehabi, and Pei Zhai Journal Annual Review of Environment and Resources Volume 38 Date Published 2013 Keywords electricity, energy policy, environmental analysis, life-cycle impact, life-cycle inventory Abstract The application of life-cycle assessment (LCA) to electric power (EP) technologies is a vibrant research pursuit that is likely to continue as the world seeks ways to meet growing electricity demand with reduced environmental and human health impacts. While LCA is an evolving methodology with a number of barriers and challenges to its effective use, LCA studies to date have clearly improved our understanding of the life-cycle energy, GHG emissions, air pollutant emissions, and water use implications of EP technologies. With continued progress, LCA offers promise for assessing and comparing EP technologies in an analytically-thorough and environmentally-holistic manner for more robust deployment decisions. This article summarizes: (1) major challenges in applying LCA to EP technologies thus far, (2) LCA results to date on the various impacts of EP technologies, and (3) opportunities for improving LCAs as applied to EP technologies moving forward.

171

Cost and performance analysis of biomass-based integrated gasification combined-cycle (BIGCC) power systems  

DOE Green Energy (OSTI)

To make a significant contribution to the power mix in the United States biomass power systems must be competitive on a cost and efficiency basis. We describe the cost and performance of three biomass-based integrated gasification combined cycle (IGCC) systems. The economic viability and efficiency performance of the IGCC generation technology appear to be quite attractive.

Craig, K. R.; Mann, M. K.

1996-10-01T23:59:59.000Z

172

Combined compressed air storage-low BTU coal gasification power plant  

DOE Patents (OSTI)

An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

Kartsounes, George T. (Naperville, IL); Sather, Norman F. (Naperville, IL)

1979-01-01T23:59:59.000Z

173

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

174

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

175

The mediation of environmental assessment's influence: What role for power?  

Science Conference Proceedings (OSTI)

Considerable empirical research has been conducted on why policy tools such as environmental assessment (EA) often appear to have 'little effect' (after Weiss) on policy decisions. This article revisits this debate but looks at a mediating factor that has received limited attention to-date in the context of EA - political power. Using a tripartite analytical framework, a comparative analysis of the influence and significance of power in mediating environmental policy integration is undertaken. Power is analysed, albeit partially, through an exploration of institutions that underpin social order. Empirically, the research examines the case of a new approach to policy-level EA (essentially a form of Strategic Environmental Assessment) developed by the World Bank and its trial application to urban environmental governance and planning in Dhaka mega-city, Bangladesh. The research results demonstrate that power was intimately involved in mediating the influence of the policy EA approach, in both positive (enabling) and negative (constraining) ways. It is suggested that the policy EA approach was ultimately a manifestation of a corporate strategy to maintain the powerful position of the World Bank as a leading authority on international development which focuses on knowledge generation. Furthermore, as constitutive of an institution and reflecting the worldviews of its proponents, the development of a new approach to EA also represents a significant power play. This leads us to, firstly, emphasise the concepts of strategy and intentionality in theorising how and why EA tools are employed, succeed and fail; and secondly, reflect on the reasons why power has received such limited attention to-date in EA scholarship. - Highlights: Black-Right-Pointing-Pointer Conducts empirical research on the neglected issue of power. Black-Right-Pointing-Pointer Employs an interpretation of power in which it is viewed as a productive phenomenon. Black-Right-Pointing-Pointer Analyses the influence of power in the trial application of a new approach to policy environmental assessment. Black-Right-Pointing-Pointer Demonstrates the importance of power dynamics in understanding the successes and failures of environmental assessment.

Cashmore, Matthew, E-mail: cashmore@plan.aau.dk [Danish Centre for Environmental Assessment, Department of Development and Planning, Aalborg University Copenhagen, A.C. Meyers Vaenge 15, DK-2450 Copenhagen SV (Denmark); Axelsson, Anna [Naturskyddsforeningen, Box 4625, 116 91 Stockholm (Sweden)

2013-02-15T23:59:59.000Z

176

Wind power resource assessment in complex urban environments  

E-Print Network (OSTI)

in availability of small-scale wind turbines for dense urban environments highlight the need for detailed wind installation of a small wind turbine. The procedure of resource assessment includes estimation of the average wind power available for energy production on campus and identification of optimal location for turbine

177

Wind Power Resource Assessment in Ohio and Puerto Rico  

E-Print Network (OSTI)

Wind Power Resource Assessment in Ohio and Puerto Rico: A Motivational and Educational Tool Juan University, Athens, Ohio Abstract This paper presents an educational guide and example of a wind resource calculations. New data representing wind speed and direction for locations in Ohio and Puerto Rico

Womeldorf, Carole

178

Risk Assessment of Toxic Pollutants From Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

Utilities operating coal-fired power plants must weigh the cost of controlling toxic releases against the risk of adverse human health effects. An EPRI-developed analytic framework offers guidance for such assessments, outlining mathematical modeling procedures for tracking pollutants in the environment and for estimating potential health risks to nearby populations.

1987-08-14T23:59:59.000Z

179

Technical and economic evaluation of a Brayton-Rankine combined-cycle solar-thermal power plant  

DOE Green Energy (OSTI)

The objective of this study is to conduct an assessment of gas-liquid direct-contact heat exchange and of a new storage-coupled system (the open-cycle Brayton/steam Rankine combined cycle). Both technical and economic issues are evaluated. Specifically, the storage-coupled combined cycle is compared with a molten salt system. The open Brayton cycle system is used as a topping cycle, and the reject heat powers the molten salt/Rankine system. In this study the molten salt system is left unmodified, the Brayton cycle is integrated on top of a Martin Marietta description of an existing molten salt plant. This compares a nonoptimized combined cycle with an optimized molten salt system.

Wright, J. D.

1981-05-01T23:59:59.000Z

180

Thermal Design of an Ultrahigh Temperature Vapor Core Reactor Combined Cycle Nuclear Power Plant  

SciTech Connect

Current work modeling high temperature compact heat exchangers may demonstrate the design feasibility of a Vapor Core Reactor (VCR) driven combined cycle power plant. For solid nuclear fuel designs, the cycle efficiency is typically limited by a metallurgical temperature limit which is dictated by fuel and structural melting points. In a vapor core, the gas/vapor phase nuclear fuel is uniformly mixed with the topping cycle working fluid. Heat is generated homogeneously throughout the working fluid thus extending the metallurgical temperature limit. Because of the high temperature, magnetohydrodynamic (MHD) generation is employed for topping cycle power extraction. MHD rejected heat is transported via compact heat exchanger to a conventional Brayton gas turbine bottoming cycle. High bottoming cycle mass flow rates are required to remove the waste heat because of low heat capacities for the bottoming cycle gas. High mass flow is also necessary to balance the high Uranium Tetrafluoride (UF{sub 4}) mass flow rate in the topping cycle. Heat exchanger design is critical due to the high temperatures and corrosive influence of fluoride compounds and fission products existing in VCR/MHD exhaust. Working fluid compositions for the topping cycle include variations of Uranium Tetrafluoride, Helium and various electrical conductivity seeds for the MHD. Bottoming cycle working fluid compositions include variations of Helium and Xenon. Some thought has been given to include liquid metal vapor in the bottoming cycle for a Cheng or evaporative cooled design enhancement. The NASA Glenn Lewis Research Center code Chemical Equilibrium with Applications (CEA) is utilized for evaluating chemical species existing in the gas stream. Work being conducted demonstrates the compact heat exchanger design, utilization of the CEA code, and assessment of different topping and bottoming working fluid compositions. (authors)

Bays, Samuel E.; Anghaie, Samim; Smith, Blair; Knight, Travis [Innovative Space Power and Propulsion Institute, University of Florida, 202 Nuclear Science Building, Gainesville, FL 32611 (United States)

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Use of Time-Aggregated Data in Economic Screening Analyses of Combined Heat and Power Systems  

Science Conference Proceedings (OSTI)

Combined heat and power (CHP) projects (also known as cogeneration projects) usually undergo a series of assessments and viability checks before any commitment is made. A screening analysis, with electrical and thermal loads characterized on an annual basis, may be performed initially to quickly determine the economic viability of the proposed project. Screening analyses using time-aggregated data do not reflect several critical cost influences, however. Seasonal and diurnal variations in electrical and thermal loads, as well as time-of-use utility pricing structures, can have a dramatic impact on the economics. A more accurate economic assessment requires additional detailed data on electrical and thermal demand (e.g., hourly load data), which may not be readily available for the specific facility under study. Recent developments in CHP evaluation tools, however, can generate the needed hourly data through the use of historical data libraries and building simulation. This article utilizes model-generated hourly load data for four potential CHP applications and compares the calculated cost savings of a CHP system when evaluated on a time-aggregated (i.e., annual) basis to the savings when evaluated on an hour-by-hour basis. It is observed that the simple, aggregated analysis forecasts much greater savings (i.e., greater economic viability) than the more detailed hourly analysis. The findings confirm that the simpler tool produces results with a much more optimistic outlook, which, if taken by itself, might lead to erroneous project decisions. The more rigorous approach, being more reflective of actual requirements and conditions, presents a more accurate economic comparison of the alternatives, which, in turn, leads to better decision risk management.

Hudson II, Carl Randy [ORNL

2004-09-01T23:59:59.000Z

182

Western Area Power Administration combined power system financial statements September 30, 1994 and 1993 and management overview and performance measurements  

SciTech Connect

The attached report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Western Area Power Administration`s (Western) combined financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on Western`s 1994 statements. Their reports on Western`s internal control structure and on compliance with laws and regulations are also provided. Western was established in December 1977, and has the responsibility for the Federal electric power marketing and transmission functions in 15 central and western states. Western markets power, as required by existing law, at the lowest possible rates consistent with sound business principles to recover the costs of operation and capital invested in power facilities.

Marwick, P.

1994-12-31T23:59:59.000Z

183

Fire models for assessment of nuclear power plant fires  

SciTech Connect

This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs.

Nicolette, V.F.; Nowlen, S.P.

1989-01-01T23:59:59.000Z

184

A systems assessment of the five Starlite tokamak power plants  

SciTech Connect

The ARIES team has assessed the power-plant attractiveness of the following five tokamak physics regimes: (1) steady state, first stability regime; (2) pulsed, first stability regime; (3) steady state, second stability regime; (4) steady state, reversed shear; and (5) steady state, low aspect ratio. Cost-based systems analysis of these five tokamak physics regimes suggests that an electric power plant based upon a reversed-shear tokamak is significantly more economical than one based on any of the other four physics regimes. Details of this comparative systems analysis are described herein.

Bathke, C.G.

1996-07-01T23:59:59.000Z

185

Combined Heat and Power System Implementation — A Management Decision Guide: Industrial Center of Excellence Application Guide  

Science Conference Proceedings (OSTI)

This guide discusses how a well-balanced Combined Heat and Power (CHP) project is the most efficient power generation resource available and suggests the open exploration of collaboration and sharing of benefits between utilities and their key customers who have coincident electric and thermal loads for solid CHP project development. The overriding objective of the guide is to present a balanced and effective approach for potential CHP project developers, owners, and participants to make well-informed ...

2013-11-18T23:59:59.000Z

186

CoalFleet RD&D Augmentation Plan for Integrated Gasification Combined Cycle (IGCC) Power Plants  

Science Conference Proceedings (OSTI)

Advanced, clean coal technologies such as integrated gasification combined cycle (IGCC) offer societies around the world the promise of efficient, affordable power generation at markedly reduced levels of emissions8212including "greenhouse gases" linked to global climate change8212relative to today's current fleet of coal-fired power plants. To help accelerate the development, demonstration, and market introduction of IGCC and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiati...

2007-01-24T23:59:59.000Z

187

Assessment of Biogas-Fueled Electric Power Systems  

Science Conference Proceedings (OSTI)

This report provides an assessment of technologies, opportunities, and markets for generation of electricity from biogas sources. Topics covered include sources of biogas; typical characteristics of biogas as produced from various waste products; engines and associated equipment to convert biogas to electricity; electrical design and connection issues; and markets for heat and power produced by biogas to electricity systems. The report describes the process of anaerobic digestion for converting organic w...

2004-03-31T23:59:59.000Z

188

Assessment of Power Quality Data in Smart Meters  

Science Conference Proceedings (OSTI)

Traditionally, most revenue meters have been electromechanical types that simply measure and display one parameter such as cumulative watt-hours. Electric utilities could most certainly benefit from the additional power quality (PQ) information afforded by a fleet of digital/solid-state smart meters in terms of new ways to visualize, understand, and quickly respond to PQ events. This report assesses potential opportunities for increasing the footprint of PQ data collection and applying the results in dis...

2011-11-15T23:59:59.000Z

189

Combined flux compression and plasma opening switch on the Saturn pulsed power generator  

E-Print Network (OSTI)

A wire-array flux-compression cartridge installed on Sandia's Saturn pulsed power generator doubled the current into a 3-nH load to 6 MA and halved its rise time to 100 ns. The current into the load, however, was unexpectedly delayed by almost 1 microsecond. Estimates of a plasma flow switch acting as a long-conduction-time opening switch are consistent with key features of the power compression. The results suggest that microsecond-conduction-time plasma flow switches can be combined with flux compression both to amplify currents and to sharpen pulse rise times in pulsed power drivers.

Felber, Franklin S; Mazarakis, Michael G

2010-01-01T23:59:59.000Z

190

Combinational logic optimization for low power using implication-based transformations  

E-Print Network (OSTI)

The demand for portable equipment has increased the emphasis on low-power designs. Higher power consumption results in shorter battery-lifetime of portable electronic devices. As a result larger batteries are required for a reasonable operational time and this reduces the portability of the devices. There are several techniques which reduce power consumption during design of a it. This work presents one such technique which is applicable to a gate-level design. A combinational logic optimizer, Minpower, which reduces power consumption is presented. Heuristics and methods which help in guiding the optimization procedure towards a circuit with minimal power cost will be presented. Finally, experimental results on the ISCAS85 benchmark set and a comparision with various other techniques will be presented to demonstrate the effectiveness of the proposed technique.

Swarna, Madhukiran V.

1997-01-01T23:59:59.000Z

191

Biennial Assessment of the Fifth Power Plan Assessment of Other Generating Technologies  

E-Print Network (OSTI)

. In combination with the aggressive 2010 target of the California, this will likely lead to a continued rapid rate generation since adoption of the Fifth Plan. The most feasible near-term uses of biofuels for electric power and animal manure energy recovery and chemical recovery boiler upgrades. Other possible sources of biofuels

192

Preliminary environmental assessment for the satellite power system (SPS)  

DOE Green Energy (OSTI)

A preliminary assessment of the impact of the Satellite Power System (SPS) on the environment is presented. Information that has appeared in documents referenced herein is integrated and assimilated. The state-of-knowledge as perceived from recently completed DOE-sponsored studies is disclosed, and prospective research and study programs that can advance the state-of-knowledge and provide an expanded data base for use in an assessment planned for 1980 are defined. Alternatives for research that may be implemented in order to achieve this advancement are also discussed in order that a plan can be selected which will be consistent with the fiscal and time constraints on the SPS Environmental Assessment Program. Health and ecological effects of microwave radiation, nonmicrowave effects on health and the environment (terrestrial operations and space operations), effects on the atmosphere, and effects on communications systems are examined in detail. (WHK)

Not Available

1978-10-01T23:59:59.000Z

193

Technology assessment report for the Soyland Power Cooperative, Inc. compressed air energy storage system (CAES)  

DOE Green Energy (OSTI)

The design and operational features of compressed air energy storage systems (CAES) in general and, specifically, of a proposed 220 MW plant being planned by the Soyland Power Cooperative, Inc. in Illinois are described. This technology assessment discusses the need for peaking capacity, CAES requirements for land, fuel, water, and storage caverns, and compares the costs, environmental impacts and licensing requirements of CAES with those of power plants using simple cycle or combined cycle combustion turbines. It is concluded that during the initial two years of CAES operation, the CAES would cost more than a combustion turbine or combined cycle facility, but thereafter the CAES would have a increasing economic advantage; the overall environmental impact of a CAES plant is minimal, and that there should be no great difficulties with CAES licensing. (LCL)

Not Available

1982-01-01T23:59:59.000Z

194

State Opportunities for Action: Review of States' Combined Heat and Power Activities  

E-Print Network (OSTI)

Combined heat and power (CHP) has been the focus of federal attention since the mid-1990s. However, many of the market barriers to CHP are at the state level. As a sign of the maturing CHP market, a number of states are now undertaking activities to addre

Brown, E.; Elliott, N.

2004-01-01T23:59:59.000Z

195

Customer Sited Combined Heat and Power on Maui: A Case Study  

Science Conference Proceedings (OSTI)

This report documents the experience of Maui Electric Company (MECO) in developing and operating a 150 kW combined heat and power (CHP) project at a resort on Maui. Tests conducted during the project evaluated the heat rate and performance of the packaged CHP system, which had been originally designed for natural gas fueling but was fueled by commercial propane in this application.

2005-02-14T23:59:59.000Z

196

Ontario Power Generation's 250 kWe Class Atmospheric Solid Oxide Fuel Cell (SOFC): Combined Heat and Power (CHP) Power Plant  

Science Conference Proceedings (OSTI)

This case study documents the demonstration experiences and lessons learned from a 250 kW solid oxide fuel cell system in a combined heat and power demonstration operating on natural gas. The project was a collaboration initiative between Siemens Westinghouse Power Corporation (SWPC) and Ontario Power Generation (OPG) to install and test a first-of-a-kind SOFC system at OPG site in Toronto, Canada. This test and evaluation case study is one of several distributed generation project case studies under res...

2005-01-26T23:59:59.000Z

197

Preliminary assessment of the modular block power plant concept  

SciTech Connect

Adding capacity to coal-fired plants in small increments of an overall integrated program may be the solution to the 10-year lead time required for the construction of a new plant. A preliminary study evaluates the technical and economic feasibility of a modular natural gas and coal-fired combined-cycle power plant which can be installed in three distinct phases. The plant sizes are suitable for large industrial and utility applications. The Modular Block Power Plant (MBPP) concept offers the advantages of phase construction, lower capital cost, lower cost electricity, lower air emissions, lower water requirements, and reduced solid waste discharge. Other advantages include part load availability, reduced coal inventory requirements, and easier plant siting. 11 figures, 4 tables.

1984-01-01T23:59:59.000Z

198

Integrated gasification-combined-cycle power plants - Performance and cost estimates  

SciTech Connect

Several studies of Integrated Gasification-combined-cycle (IGCC) power plants have indicated that these plants have the potential for providing performance and cost improvements over conventional coal-fired steam power plants with flue gas desulfurization. Generally, IGCC power plants have a higher energy-conversion efficiency, require less water, conform with existing environmental standards at lower cost, and are expected to convert coal to electricity at lower costs than coal-fired steam plants. This study compares estimated costs and performance of various IGCC plant design configurations. A second-law analysis identifies the real energy waste in each design configuration. In addition, a thermoeconomic analysis reveals the potential for reducing the cost of electricity generated by an IGCC power plant.

Tsatsaronis, G.; Tawfik, T.; Lin, L. (Tennessee State Univ., Nashville (USA))

1990-04-01T23:59:59.000Z

199

Assessment of tritium breeding requirements for fusion power reactors  

Science Conference Proceedings (OSTI)

This report presents an assessment of tritium-breeding requirements for fusion power reactors. The analysis is based on an evaluation of time-dependent tritium inventories in the reactor system. The method presented can be applied to any fusion systems in operation on a steady-state mode as well as on a pulsed mode. As an example, the UWMAK-I design was analyzed and it has been found that the startup inventory requirement calculated by the present method significantly differs from those previously calculated. The effect of reactor-parameter changes on the required tritium breeding ratio is also analyzed for a variety of reactor operation scenarios.

Jung, J.

1983-12-01T23:59:59.000Z

200

Power plant system assessment. Final report. SP-100 Program  

SciTech Connect

The purpose of this assessment was to provide system-level insights into 100-kWe-class space reactor electric systems. Using these insights, Rockwell was to select and perform conceptual design studies on a ''most attractive'' system that met the preliminary design goals and requirements of the SP-100 Program. About 4 of the 6 months were used in the selection process. The remaining 2 months were used for the system conceptual design studies. Rockwell completed these studies at the end of FY 1983. This report summarizes the results of the power plant system assessment and describes our choice for the most attractive system - the Rockwell SR-100G System (Space Reactor, 100 kWe, Growth) - a lithium-cooled UN-fueled fast reactor/Brayton turboelectric converter system.

Anderson, R.V.; Atkins, D.F.; Bost, D.S.; Berman, B.; Clinger, D.A.; Determan, W.R.; Drucker, G.S.; Glasgow, L.E.; Hartung, J.A.; Harty, R.B.

1983-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Preliminary environmental assessment for the Satellite Power System (SPS). Revision 1. Volume 2. Detailed assessment  

DOE Green Energy (OSTI)

The Department of Energy (DOE) is considering several options for generating electrical power to meet future energy needs. The satellite power system (SPS), one of these options, would collect solar energy through a system of satellites in space and transfer this energy to earth. A reference system has been described that would convert the energy to microwaves and transmit the microwave energy via directive antennas to large receiving/rectifying antennas (rectennas) located on the earth. At the rectennas, the microwave energy would be converted into electricity. The potential environmental impacts of constructing and operating the satellite power system are being assessed as a part of the Department of Energy's SPS Concept Development and Evaluation Program. This report is Revision I of the Preliminary Environmental Assessment for the Satellite Power System published in October 1978. It refines and extends the 1978 assessment and provides a basis for a 1980 revision that will guide and support DOE recommendations regarding future SPS development. This is Volume 2 of two volumes. It contains the technical detail suitable for peer review and integrates information appearing in documents referenced herein. The key environmental issues associated with the SPS concern human health and safety, ecosystems, climate, and electromagnetic systems interactions. In order to address these issues in an organized manner, five tasks are reported: (I) microwave-radiation health and ecological effects; (II) nonmicrowave health and ecological effectss; (III) atmospheric effects; (IV) effects on communication systems due to ionospheric disturbance; and (V) electromagnetic compatibility. (WHK)

Not Available

1980-01-01T23:59:59.000Z

202

A combined power and ejector refrigeration cycle for low temperature heat sources  

Science Conference Proceedings (OSTI)

A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

Zheng, B.; Weng, Y.W. [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

2010-05-15T23:59:59.000Z

203

Aging assessment of surge protective devices in nuclear power plants  

SciTech Connect

An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters.

Davis, J.F.; Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States); Carroll, D.P. [Florida Univ., Gainesville, FL (United States)] [Florida Univ., Gainesville, FL (United States)

1996-01-01T23:59:59.000Z

204

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

DOE Green Energy (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

205

Performance Assessment of Flashed Steam Geothermal Power Plant  

DOE Green Energy (OSTI)

Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor is the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.

Alt, Theodore E.

1980-12-01T23:59:59.000Z

206

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

Secondly, waste heat driven thermal cooling systems are onlyelectricity and thermal energy for cooling and heatingrecovery and cooling technologies, including the thermal-

Norwood, Zack

2010-01-01T23:59:59.000Z

207

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

Technologies on Microgrid Viability: An Investigation forother benefits to the CHP or microgrid system host site. See

Norwood, Zack

2010-01-01T23:59:59.000Z

208

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

Storage and Reliability on Microgrid Viability: A Study ofother benefits to the CHP or microgrid system host site. Seecapability in a CERTS Microgrid configuration in reference [

Norwood, Zack

2010-01-01T23:59:59.000Z

209

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

customer’s default electricity tariff, natural gas prices,NetApp electricity prices are based on utility tariffs intariffs during the weekends (as compared to the weekdays) results in the CCP system remaining always off, as purchase of electricity

Norwood, Zack

2010-01-01T23:59:59.000Z

210

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

August 2002. PG&E electricity tariffs. http://www.pge.com/May 2008. PG&E electricity tariffs. http://www.pge.com/customer’s default electricity tariff, natural gas prices,

Norwood, Zack

2010-01-01T23:59:59.000Z

211

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

C. Edwards, J. : Distributed Energy Resources CustomerC. Siddiqui, A. : Distributed Energy Resources On-SiteStadler, M. : The Distributed Energy Resources Costumer

Norwood, Zack

2010-01-01T23:59:59.000Z

212

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

compared to adsorption/absorption chiller systems. Expensiveonsite (without absorption chiller offset) Effectiveonsite (includes absorption chiller offset) Heating Load

Norwood, Zack

2010-01-01T23:59:59.000Z

213

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

to adsorption/absorption chiller systems. So, facilitiesabsorption / published in the International Journal of Distributed Energy Resources, vol 6(2),1 Apr-Jun 2010 adsorption chiller);

Norwood, Zack

2010-01-01T23:59:59.000Z

214

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

pdf/E-20.pdf, May 2008. PG&E natural gas tariffs. http://pdf/G-NT.pdf, May 2008. PG&E natural gas tariffs. http://than less expensive natural gas fired reciprocating engine

Norwood, Zack

2010-01-01T23:59:59.000Z

215

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

engine-generators this CHP system generates steam for spaceengine-generators this CHP system generates steam for space

Norwood, Zack

2010-01-01T23:59:59.000Z

216

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

the customer’s end-use load profiles (typically for spacemade in constructing the load profiles for a couple of thesome of the ‘typical’ load profiles input to our economic

Norwood, Zack

2010-01-01T23:59:59.000Z

217

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

the customer’s end-use load profiles (typically for spacemade in constructing the load profiles for a couple of thesome of the ‘typical’ load profiles input to our economic

Norwood, Zack

2010-01-01T23:59:59.000Z

218

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

Natural Gas-Only Heating Load Annual Total Energy Demand (Natural Gas-Only Heating Load Annual Total Energy Demand (Natural Gas-Only Heating Load Annual Total Energy Demand (

Norwood, Zack

2010-01-01T23:59:59.000Z

219

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

standpoint. Second, absorption/adsorption cooling systemsUse Met by Absorption Chiller Fraction of Cooling End-UseUse Met by Absorption Chiller Fraction of Cooling End-Use

Norwood, Zack

2010-01-01T23:59:59.000Z

220

Externalities and electric power: an integrated assessment approach  

Science Conference Proceedings (OSTI)

This paper describes an integrated assessment approach for considering the options that electric utilities have to meet the anticipated demand for their power. The objective that this paper considers is one of meeting the demand for power, with an acceptable degree of reliability, at minimum cost. The total cost is the sum of the private cost of producing the electric power plus the external costs that result from its production. These external costs, or externalities, are effects on the well-being of third parties that producers and consumers of electric power do not take into account in their decisions. The external costs include many different types of effects such as illness, ecosystem damage, and road damage. The solution to the problem of minimizing total cost is addressed in two steps. The first step uses damage function methods to establish a common metric for the weights of the different objectives (i.e., external costs). The damage function analysis also reduces the dimensionality of the analysis in the second step, and identifies criteria to include in that analysis. The second step uses multi-criteria decision methods. This analysis includes the most important externalities that the damage function analysis identifies and, in addition, potentially important factors that can not be quantified reliably using damage function methods. An example of the latter are the damages from global climate change. The two-step method that this paper describes addresses many of the limitations of the damage function method and multi-criteria methods, that arise when they are used separately. This linked method can be used by electric utilities for their integrated resource planning. It can also be adapted to other applications.

Lee, R.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint  

DOE Green Energy (OSTI)

Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

2012-06-01T23:59:59.000Z

222

Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint  

SciTech Connect

Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

2012-06-01T23:59:59.000Z

223

Life-Cycle Assessment of Electric Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Life-Cycle Life-Cycle Assessment of Electric Power Systems Eric Masanet, 1 Yuan Chang, 1 Anand R. Gopal, 2 Peter Larsen, 2,3 William R. Morrow III, 2 Roger Sathre, 2 Arman Shehabi, 2 and Pei Zhai 2 1 McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208; email: eric.masanet@northwestern.edu, yuan.chang@northwestern.edu 2 Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; email: argopal@lbl.gov, wrmorrow@lbl.gov, rsathre@lbl.gov, ashehabi@lbl.gov, pzhai@lbl.gov 3 Management Science and Engineering Department, Stanford University, Stanford, California 94305; email: phlarsen@lbl.gov Annu. Rev. Environ. Resour. 2013. 38:107-36 First published online as a Review in Advance on August 7, 2013 The Annual Review of Environment and Resources is online at http://environ.annualreviews.org

224

Reliability assessment of autonomous power systems incorporating HVDC interconnection links  

SciTech Connect

The objective of this paper is to present an improved computational method for the overall reliability assessment of autonomous power systems that may or may not contain HVdc interconnection links. This is a hybrid method based on a Monte-Carlo simulation sequential approach which incorporates an analytical approach for the reliability modeling of the HVdc transmission links. The developed models and techniques have been implemented into a computer program that can be used to simulate the operational practices and characteristics of the overall system under study efficiently and realistically. A set of reliability indices are calculated for each load-point of interest and the entire system while a set of additional indices is calculated for quantifying the reliability performance of the interconnection links under the specified operating requirements. The analysis of a practical system is also included for a number of studies representing its various operating and design characteristics.

Dialynas, E.N.; Koskolos, N.C. [National Technical Univ., Athens (Greece). Dept. of Electrical and Computer Engineering; Agoris, D. [Public Power Corp., Athens (Greece)

1996-01-01T23:59:59.000Z

225

Technology assessment of laser-fusion power production  

SciTech Connect

The inherent features of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described. Technology developments for ultimate commercial application are outlined.

Booth, L.A.; Frank, T.G.

1976-01-01T23:59:59.000Z

226

Preliminary assessment of the Satellite Power System (SPS) and six other energy technologies  

DOE Green Energy (OSTI)

The comparative assessment portion of the Satellite Power System (SPS) Concept Development and Evaluation program established by the Department of Energy and the National Aeronautics and Space Administration to generate information from which a rational decision could be made regarding the viability of the SPS is presented. The objective of the comparative assessment is to develop an initial understanding of the SPS with respect to a limited set of energy alternatives. Six alternative technologies (conventional coal combustion; light water reactor; coal gasification/combined cycle; liquid-metal, fast-breeder reactor; terrestrial photovoltaic; and fusion) were compared to the SPS on the basis of available data on cost and performance, health and safety, environmental welfare, resource requirements, and economics. These comparisons are descriptive and do not culminate in any bottom line regarding the overall viability of the SPS.

Wolsko, T.; Brown, C.; Cirillo, R.

1980-04-01T23:59:59.000Z

227

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

Science Conference Proceedings (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

228

Geothermal power production: impact assessments and environmental monitoring  

DOE Green Energy (OSTI)

The role that baseline and postoperational environmental monitoring plays in assessing impacts of geothermal power production is emphasized. Based on experience in the Imperial Valley, where substantial geothermal resources exist, the important characteristics of monitoring programs involving subsidence, seismicity, and air and water quality are examined. The importance of environmental monitoring for situations where predictive models either do not exist (e.g., seismicity), or are still being developed (e.g., land subsidence) are discussed. In these cases the need for acquiring and analyzing data that can provide timely information on changes caused by geothermal operations are emphasized. Monitoring is also useful in verifying predictions of air quality changes - in particular, violations of ambient standards after control technologies are implemented. Water quality can be monitored with existing sampling programs where the potential for geothermal impacts is thought to be rather small. The significant issues in these environmental areas, the status of baseline data and predictive capability that currently exists, and the need for future monitoring and modeling programs to assess the impacts of geothermal development are summarized.

Layton, D.W.; Pimentel, K.D.

1980-01-01T23:59:59.000Z

229

Combined Power Generation and Carbon Sequestration Using Direct FuelCell  

DOE Green Energy (OSTI)

The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.

Hossein Ghezel-Ayagh

2006-03-01T23:59:59.000Z

230

Assessment of instrumentation needs for advanced coal power plant applications: Final report  

DOE Green Energy (OSTI)

The purpose of this study was to identify contaminants, identify instrumentation needs, assess available instrumentation and identify instruments that should be developed for controlling and monitoring gas streams encountered in the following power plants: Integrated Gasification Combined Cycle, Pressurized Fluidized Bed Combustion, and Gasification Molten Carbonate Fuel Cell. Emphasis was placed on hot gas cleanup system gas stream analysis, and included process control, research and environmental monitoring needs. Commercial process analyzers, typical of those currently used for process control purposes, were reviewed for the purpose of indicating commercial status. No instrument selection guidelines were found which were capable of replacing user interaction with the process analyzer vendors. This study leads to the following conclusions: available process analyzers for coal-derived gas cleanup applications satisfy current power system process control and regulatory requirements, but they are troublesome to maintain; commercial gas conditioning systems and in situ analyzers continue to be unavailable for hot gas cleanup applications; many research-oriented gas stream characterization and toxicity assessment needs can not be met by commercially available process analyzers; and greater emphasis should be placed on instrumentation and control system planning for future power plant applications. Analyzers for specific compounds are not recommended other than those needed for current process control purposes. Instead, some generally useful on-line laser-based and inductively coupled plasma methods are recommended for further development because of their potential for use in present hot gas cleanup research and future optimization, component protection and regulation compliance activities. 48 refs., 21 figs., 26 tabs.

Nelson, E.T.; Fischer, W.H.; Lipka, J.V.; Rutkowski, M.D.; Zaharchuk, R.

1987-10-01T23:59:59.000Z

231

Thermal energy storage for integrated gasification combined-cycle power plants  

SciTech Connect

There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.

Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.

1990-07-01T23:59:59.000Z

232

Thermal energy storage for integrated gasification combined-cycle power plants  

DOE Green Energy (OSTI)

There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.

Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.

1990-07-01T23:59:59.000Z

233

Shell-based gasification-combined-cycle power plant evaluations. Final report  

SciTech Connect

This report presents the results of a detailed engineering and economic evaluation of shell-based integrated gasification - combined-cycle (IGCC) power plants. Two complete nominal 1000 MW capacity Shell-based grass roots IGCC plant designs and cost estimates were prepared. The following conclusions were made: Shell-based IGCC plants firing Illinois coal and employing current technology gas turbines (2000/sup 0/F firing temperature) have the potential to be cost competitive with conventional coal-fired steam plants with FGD. Shell-based IGCC plants firing Texas lignite have the potential to generate power at costs that are competitive with those based on firing high rank coal. Shell-based IGCC plants firing Illinois No. 6 coal have equivalent performance and costs similar to Texaco-based IGCC systems.

Hartman, J.J.

1983-06-01T23:59:59.000Z

234

Alaska Power Administration combined financial statements, schedules and supplemental reports, September 30, 1996 and 1995  

SciTech Connect

This report presents the results of the independent certified public accountants` audit of the Department of Energy`s Alaska Power Administration`s (Alaska) financial statements as of September 30, 1996. The auditors have expressed an unqualified opinion on the 1996 combined statements of assets, Federal investment and liabilities, and the related combined statements of revenues, expenses and accumulated net revenues, and cash flows. The auditors` report on Alaska`s internal control structure disclosed no reportable conditions that could have a material effect on the financial statements. The auditors also considered the overview and performance measure data for completeness and material consistency with the basic financial statements, as noted in the internal control report. The auditor`s report on compliance with laws and regulations disclosed no instances of noncompliance by Alaska.

NONE

1997-04-01T23:59:59.000Z

235

Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines  

Science Conference Proceedings (OSTI)

Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

1984-08-01T23:59:59.000Z

236

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

237

Retrofit of CO2 Capture of Natural Gas Combined Cycle Power Plants  

Science Conference Proceedings (OSTI)

A significant target for control of CO2 emission would be stationary power plants as they are large sources and relatively easy to control. Most of the focus of studies has been on new plants Only a few have looked at retrofits of the existing plants and those have mainly concentrated on coal-fired systems. However, there are a large number of existing gas-fired combined cycle plant in existence and understanding whether retrofit of these plants is realistic is important. This study considers retrofit of...

2005-12-08T23:59:59.000Z

238

Deaerator pressure control system for a combined cycle steam generator power plant  

Science Conference Proceedings (OSTI)

In a combined cycle steam generation power plant, until steam extraction can be used to reheat the deaerator, the economizer and/or the pegging recirculation are controlled so as to track the pressure upwards of the autocirculation reheater from the low pressure evaporator with a certain lag in pressure, and to establish pressure in the deaerator on the decreasing trend of the autocirculation reheater at a slower rate and without lowering below a minimum pressure so as to prevent the occurrence of bubbling and cavitation effect.

Martens, A.; Myers, G. A.

1985-12-03T23:59:59.000Z

239

The power balance method For aerodynamic performance assessment  

E-Print Network (OSTI)

This thesis describes the use of the power balance method for performance estimation of aircraft configurations. In this method, mechanical power production and mechanical power consumption of the aircraft are balanced, ...

Sato, Sho, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

240

RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT  

E-Print Network (OSTI)

ON METHODOLOGY: FROM WIND POWER FREQUENCY TO LOSS-OF-LOADJ.P. , "Some Aspects of Wind Power Statistics, " J. of Appl.S£CTION Reliability of Wind Power From Dispersed Sites: A Pr

Kahn, E.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

Not Available

1993-05-01T23:59:59.000Z

242

Pridneprovsk Power Plant Dniperpetrosk, Ukraine. Combined cycle project. Export trade information  

Science Conference Proceedings (OSTI)

The report presents the results of an inspection of the Pridneprovsk Power Plant near Kiev, Ukraine made by a team of engineers to assess the feasibility of repowering the 600 MW portion of the existing 2400 MW plant. The study develops concepts and cost estimates for repowering the Pridneprovsk plant in two phases or blocks. The study develops costs for Phase I only. The report is presented in seven sections which include an Introduction, a Summary, a Facsimile of Protocol Agreement Signed by the NRG and the Ministry of Power and Electrification of Ukraine, a description of the Mechanical Systems and Equipment, a description of the Structural Systems and Equipment, a description of the Chemical Systems and Equipment, and a description of the Electrical Equipment and Systems. The report includes appendices which provide detailed information on the cost, schedules, heat balances, and piping instrument diagrams for the first block of the project.

NONE

1992-11-01T23:59:59.000Z

243

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

244

Market Assessment of Power Quality Problems and Mitigation Options in the Telecommunications Industry  

Science Conference Proceedings (OSTI)

This report addresses a specific market segment, the telecommunications industry, and provides a detailed assessment of power conditioning technologies and other solutions to power quality problems that could be economically justified.

1999-10-31T23:59:59.000Z

245

Assessing the costs of solar power plants for the Island of Roatàn  

E-Print Network (OSTI)

This is an analysis assessing the installation costs of different solar power plant technologies and the current commercial availability for installation on the Island or Roatàn. Commercial large-scale power plants have ...

Huwe, Ethan (Ethan L.)

2011-01-01T23:59:59.000Z

246

Nuclear power plant performance assessment pertaining to plant aging in France and the United States  

E-Print Network (OSTI)

The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

Guyer, Brittany (Brittany Leigh)

2013-01-01T23:59:59.000Z

247

Cost Estimation Methodology for NETL Assessments of Power Plant Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Q Q Q U U A A L L I I T T Y Y G G U U I I D D E E L L I I N N E E S S F F O O R R E E N N E E R R G G Y Y S S Y Y S S T T E E M M S S T T U U D D I I E E S S C C o o s s t t E E s s t t i i m m a a t t i i o o n n M M e e t t h h o o d d o o l l o o g g y y f f o o r r N N E E T T L L A A s s s s e e s s s s m m e e n n t t s s o o f f P P o o w w e e r r P P l l a a n n t t P P e e r r f f o o r r m m a a n n c c e e March 2010 DOE/NETL-2010/???? April 2011 DOE/NETL-2011/1455 National Energy Technology Laboratory Office of Program Planning and Analysis 2 Power Plant Cost Estimation Methodology Quality Guidelines for Energy Systems Studies April 2011 Quality Guidelines for Energy Systems Studies Cost Estimation Methodology for NETL Assessments of Power Plant Performance Introduction This paper summarizes the costing methodology employed by NETL in its costing models and baseline reports. Further, it defines the specific levels of capital cost as well as outlines the costing metrics by which

248

A Preliminary Study on Designing Combined Heat and Power (CHP) System for the University Environment  

E-Print Network (OSTI)

Combined heat and power (CHP) systems are an evolving technology that is at the front of the energy conservation movement. With the reduction in energy consumption and green house gas emissions, CHP systems are improving the efficiency of power generation. Our goal for this research is to develop a specification for a CHP System that will improve the University of Louisiana at Lafayette’s operating efficiency. This system will reduce the operating cost of the university and provide reliable, clean energy to the College of Engineering and surrounding buildings. If this system is implemented correctly, it has the ability to meet the economic and reliability needs of the university. CHP systems are the combination of various forms of equipment to meet the electrical and thermal needs from one single fuel source. Major steps involved in the development of a CHP system including data collection and analysis, system calculations and system specifications will be discussed. This research also examines the barriers that CHP systems encounter with environmental regulations and grid interconnection.

Kozman, T. A.; Reynolds, C. M.; Lee, J.

2008-01-01T23:59:59.000Z

249

Power System Online Stability Assessment using Synchrophasor Data Mining  

E-Print Network (OSTI)

Traditional power system stability assessment based on full model computation shows its drawbacks in real-time applications where fast variations are present at both demand side and supply side. This work presents the use of data mining techniques, in particular the Decision Trees (DTs), for fast evaluation of power system oscillatory stability and voltage stability from synchrophasor measurements. A regression tree-based approach is proposed to predict the stability margins. Modal analysis and continuation power flow are the tools used to build the knowledge base for off-line DT training. Corresponding metrics include the damping ratio of critical electromechanical oscillation mode and MW-distance to the voltage instability region. Classification trees are used to group an operating point into predefined stability state based on the value of corresponding stability indicator. A novel methodology for knowledge base creation has been elaborated to assure practical and sufficient training data. Encouraging results are obtained through performance examination. The robustness of the proposed predictor to measurement errors and system topological variations is analyzed. A scheme has been proposed to tackle the problem of when and how to update the data mining tool for seamless online stability monitoring. The optimal placement for the phasor measurement units (PMU) based on the importance of DT variables is suggested. A measurement-based voltage stability index is proposed and evaluated using field PMU measurements. It is later revised to evaluate the impact of wind generation on distribution system voltage stability. Next, a new data mining tool, the Probabilistic Collocation Method (PCM), is presented as a computationally efficient method to conduct the uncertainty analysis. As compared with the traditional Monte Carlo simulation method, the collocation method could provide a quite accurate approximation with fewer simulation runs. Finally, we show how to overcome the disadvantages of mode meters and ringdown analyzers by using DTs to directly map synchrophasor measurements to predefined oscillatory stability states. The proposed measurement-based approach is examined using synthetic data from simulations on IEEE test systems, and PMU measurements collected from field substations. Results indicate that the proposed method complements the traditional model-based approach, enhancing situational awareness of control center operators in real time stability monitoring and control.

Zheng, Ce

2013-05-01T23:59:59.000Z

250

Assessment of Thermal Control Technologies for Cooling Electric Vehicle Power Electronics  

DOE Green Energy (OSTI)

NREL is assessing thermal control technologies to improve the thermal performance of power electronics devices for electric vehicles, while reducing the cost, weight, and volume of the system.

Kelly, K.; Abraham, T.; Bennion, K.; Bharathan, D.; Narumanchi, S.; O'Keefe, M.

2008-01-01T23:59:59.000Z

251

Reliability Assessment of a Power Grid with Customer Operated CHP Systems Using Monte Carlo Simulation.  

E-Print Network (OSTI)

??This thesis presents a method for reliability assessment of a power grid with distributed generation providing support to the system. The distributed generation units considered… (more)

Manohar, Lokesh Prakash

2009-01-01T23:59:59.000Z

252

Water Power Program: Marine and Hydrokinetic Resource Assessment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Tidal Streams Resource Map. Tidal Streams Resource Assessment The Assessment of the Energy Production from Tidal Streams in the United States report, created by Georgia Tech,...

253

Cooldown control system for a combined cycle electrical power generation plant  

SciTech Connect

This patent describes a combined cycle electrical power plant including a steam turbine, a heat recovery steam generator for supplying steam to the steam turbine, a gas turbine for supplying heat to the heat recovery steam generator. The steam generator and gas turbine both produce electrical power under load, and the gas turbine has a control circuit determining the operation therof. A cooldown control system is described for the power generation plant. The system comprises: first means for detecting one of a steaming condition and a non-steaming condition in the heat recovery steam generator; second means responsive to the steaming condition and to a gas turbine STOP signal for reducing the load of the gas turbine toward a minimum load level; third means responsive to the non-steaming condition and to the minimum load level being reached for generating a STOP command and applying the STOP command to the control circuit of the gas turbine, thereby to indicate a sequence of steps to stop the gas turbine.

Martens, A.; Snow, B.E.

1987-01-27T23:59:59.000Z

254

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

Technologies in a µGrid Application heat, usually in thethe µGrid. In this µGrid the heat loads are not that great,Combined Heat and Power Technologies in a µGrid Application

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

255

A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies  

E-Print Network (OSTI)

Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

Guyer, Brittany (Brittany Leigh)

2009-01-01T23:59:59.000Z

256

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

and/or cooling, and micro-CHP systems in the Californiaand/or cooling, and micro-CHP systems with and without heatmicro-generation systems, e.g. fuel cells with or without combined heat and power (CHP)

Marnay, Chris

2010-01-01T23:59:59.000Z

257

Validation of seismic probabilistic risk assessments of nuclear power plants  

SciTech Connect

A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves.

Ellingwood, B. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

1994-01-01T23:59:59.000Z

258

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

shaded regions represent power generation costs . . 11 Heat-against conventional power generation technologies when thephotovoltaic and wind power generation have recently seen

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

259

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

MWh) KA natural gas consumed by power generation (MWh LMWh) KA natural gas consumed by power generation (MWh) LMWh) KA natural gas consumed by power generation (MWh) L

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

260

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the standard efficiency natural gas power plant case, highand imports Natural gas plants providing power to Californianatural gas and petroleum products as well as the remote power plant

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

262

Western Area Power Administration combined power system financial statements, September 30, 1996 and 1995 (with independent auditors` report thereon)  

SciTech Connect

This report presents the results of the independent certified public accountants` audit of the Department of Energy`s Western Area Power Administration`s (Western) combined financial statements as of September 30, 1996. The auditors have expressed an unqualified opinion on the 1996 statements. The auditors` report on Western`s internal control structure disclosed two new reportable conditions and discussed the status of an unresolved condition from prior years. The new conditions involved the write-off of aging accounts receivable and the understatement of interest expense for inactive construction work orders. These reportable conditions are not considered to be material weaknesses. Western concurred with the audit recommendations and is responsible for necessary corrective actions. The auditors also considered the overview and performance measure data for completeness and material consistency with the basic financial statements as noted in the internal control report. The report also disclosed an additional reportable condition directed to the Bureau of Reclamation (Reclamation) which is not considered to be a material weakness. Reclamation concurred with the audit recommendation and is responsible for necessary corrective action. The auditors` report on Western`s compliance with laws and regulations disclosed two new instances of noncompliance involving interest charges on all construction costs funded with Federal appropriations and other capitalized costs. The report also discussed the status of one instance of noncompliance from prior years. Western provided concurrence and corrective action plans for all of these instances of noncompliance.

1997-04-01T23:59:59.000Z

263

CoalFleet User Design Basis Specification for Coal-Based Integrated Gasification Combined Cycle (IGCC) Power Plants  

Science Conference Proceedings (OSTI)

The Duke Edwardsport integrated gasification combined-cycle (IGCC) power plant started up in 2012, and Mississippi Power’s Kemper County IGCC plant is in construction. The capital cost of these initial commercial scale IGCC plants is high. The industry needs specifications that encourage greater standardization in IGCC design in order to bring down the investment cost for the next generation of plants. Standardization also supports repeatable, reliable performance and reduces the time and cost ...

2012-12-12T23:59:59.000Z

264

Combined cycle electric power plant with coordinated steam load distribution control  

SciTech Connect

A combined cycle electric power plant includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube through which a fluid, e.g., water, is directed to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner further heats the exhaust gas turbine gases passed to the superheater tube. The temperature of the gas turbine exhaust gases is sensed for varying the fuel flow to the afterburner by a fuel valve, whereby the temperatures of the gas turbine exhaust gases and therefore of the superheated steam, are controlled. Loading and unloading of the steam turbine is accomplished automatically in coordinated plant control as a function of steam throttle pressure.

Uram, R.

1979-09-25T23:59:59.000Z

265

Nuclear steam turbines for power production in combination with district heating and desalination  

SciTech Connect

The optimization of the turbine plant of a nuclear power station in combination with heat production is dependent upon many factors, the most important being the heat requirements, full-load equivalent operating time, and the heat transport distance, i.e., the trunk mains' costs. With hot-water-based heat transport, this usually results in a large temperature difference between supply and return water and heating in two or three stages. The turbine can consist of a back-pressure turbine, a back-pressure turbine with condensing tail, or a condensing turbine with heat extractions. The most attractive solution from technical as well as economic points of view is the condensing turbine with extraction for district heating or desalination as appropriate. The turbines can be of conventional design, with only minor modifications needed to adapt them to the operating conditions concerned.

Frilund, B.; Knudsen, K.

1978-04-01T23:59:59.000Z

266

Combined Heat and Power (CHP): Is It Right For Your Facility?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership with the US DOE Partnership with the US DOE Combined Heat and Power (CHP) Is It Right For Your Facility U.S. DOE Industrial Technologies Program Webcast Series May 14 th , 2009 John J. Cuttica Cliff Haefke 312/996-4382 312/355-3476 cuttica@uic.edu chaefk1@uic.edu In Partnership with the US DOE Mid Atlantic www.chpcenterma.org Midwest www.chpcentermw.org Pacific www.chpcenterpr.org Northwest Region www.chpcenternw.org Northeast www.northeastchp.org Intermountain www.IntermountainCHP.org Gulf Coast www.GulfCoastCHP.org Southeastern www.chpcenterse.org In Partnership with the US DOE CHP Decision Making Process Presented by Ted Bronson & Joe Orlando Webcast Series January 8, 2009 CHP Regional Application Centers Walkthrough STOP Average Costs Typical Performance Yes No Energy Rates Profiles

267

State Opportunities for Action: Review of States' Combined Heat and Power Activities  

E-Print Network (OSTI)

Combined heat and power (CHP) has been the focus of federal attention since the mid-1990s. However, many of the market barriers to CHP are at the state level. As a sign of the maturing of the CHP market, a number of states are now undertaking activities to address barriers to CHP, and some states have begun to provide incentives to encourage the development of systems in their states. This report outlines current state-level activities regarding CHP in the areas of interconnection, emissions standards, and financial incentives offered for CHP. Moreover, because this report intends to educate the public about the difficulties of installing CHP, specifically not covered in this report are utility-owned CHP facilities and large investor-owned utilities (IOUs).

Brown, E.; Scott, K.; Elliott, R. N.

2003-05-01T23:59:59.000Z

268

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

Science Conference Proceedings (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

269

Generation reliability assessment in power markets using Monte Carlo simulation and soft computing  

Science Conference Proceedings (OSTI)

Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In the present research, generation reliability is considered, and a method for its assessment is proposed using intelligent systems. ... Keywords: Generation reliability, Intelligent systems, Monte Carlo simulation, Power pool market

H. Haroonabadi; M. -R. Haghifam

2011-12-01T23:59:59.000Z

270

Generation reliability assessment in power pool market using MCS and intelligent systems  

Science Conference Proceedings (OSTI)

Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In this paper, generation reliability is considered, and a method for its assessment using intelligent systems is proposed. Also, because ... Keywords: generation reliability, intelligent systems, monte carlo simulation, power pool market

H. Haroonabadi; M.-R. Haghifam

2008-07-01T23:59:59.000Z

271

Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration: the  

E-Print Network (OSTI)

: a danish study case," Int. Journal of Eletrical Power and Energy Systems, vol. 28, no. 1, pp 48-57, Oct on the transient fault behavior of the Nordic power system," Int. Journal of Eletrical Power and Energy Systems

Chen, Zhe

272

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices  

E-Print Network (OSTI)

Combined heat and power (CHP) plants are widely used in industrial applications. In the aftermath of the recession, many of the associated production processes are under-utilized, which challenges the competitiveness of chemical companies. However, under-utilization can be a chance for tighter interaction with the power grid, which is in transition to the so-called smart grid, if the CHP plant can dynamically react to time-sensitive electricity prices. In this paper, we describe a generalized mode model on a component basis that addresses the operational optimization of industrial CHP plants. The mode formulation tracks the state of each plant component in a detailed manner and can account for different operating modes, e.g. fuel-switching for boilers and supplementary firing for gas turbines, and transitional behavior. Transitional behavior such as warm and cold start-ups, shutdowns and pre-computed start-up trajectories is modeled with modes as well. The feasible region of operation for each component is described based on input-output relationships that are thermodynamically sound, such as the Willans line for steam turbines. Furthermore, we emphasize the use of mathematically efficient logic constraints that allow solving the large-scale models fast. We provide an industrial case study and study the impact of different scenarios for under-utilization. 1

Sumit Mitra; Ignacioe. Grossmann

2012-01-01T23:59:59.000Z

273

Single-shaft combined cycle packs power in at low cost  

Science Conference Proceedings (OSTI)

Worldwide demand for combined cycle (CC) powerplants has grown exponentially over the past decade, and most forecasts call for the boom to continue. Reasons, by now, are clear: the CC powerplant--in its basic form, a gas turbine exhausting into a heat-recovery steam generator (HRSG) that supplies a steam turbine--is the most efficient electric generating system commercially available today. It also exhibits capital costs significantly lower than competing nuclear, fossil-fired steam, and renewable-energy stations. In addition, its low air emissions, water consumption, space requirements, and physical profile are no trifling advantages in an era marked by tough permitting and siting processes. A relatively recent advance that may further cement the CC`s front-running position is combining the gas turbine, steam turbine, and electric generator on a single shaft. Locking together the turbines and generator to form one single-train operating system promises to simplify plant design and operation, and may lower first costs. Trade-offs of the single-shaft approach, however, include the need for higher starting power and less operating flexibility, particularly if no synchronous clutch is used between the gas and steam turbine. Also worth noting: the arrangement takes away the phased construction option where a simple-cycle gas turbine is installed first and the steam cycle is added later. But depending on project specifics, the rewards of the single-shaft CC can outweigh its drawbacks, as a look at several recent installations reveals in this article.

Swanekamp, R.

1996-01-01T23:59:59.000Z

274

Effects of a carbon tax on microgrid combined heat and power adoption  

DOE Green Energy (OSTI)

This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A microgrid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The microgrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without combined heat and power (CHP) equipment, such as water and space heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the microgrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-11-01T23:59:59.000Z

275

Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications  

SciTech Connect

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

2013-10-30T23:59:59.000Z

276

Distributed energy resources customer adoption modeling with combined heat and power applications  

SciTech Connect

In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-07-01T23:59:59.000Z

277

Environmental Assessment for the Warren Station externally fired combined cycle demonstration project  

SciTech Connect

The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

NONE

1995-04-01T23:59:59.000Z

278

Potential hydroelectric power. Vertical turbine: spillway combine Broadwater Dam. Final report  

DOE Green Energy (OSTI)

A feasibility study was made of the hydroelectric power potential at Broadwater Dam in western Montana. Two alternative configurations for the potential project were evaluated and the economics of four possible sources of project funding were assessed. The configurations analyzed were an apron-mounted configuration, in which the turbine-generator units are located on the downstream apron of the existing dam, and a conventional configuration, in which the units are located in a new powerhouse adjacent to the existing dam. The funding sources considered were the Department of Energy loan program, the United States Bureau of Reclamation PL-984 loan program and conventional revenue bonds, both taxable and tax-exempt. The optimal project alternative was determined to be the apron-mounted configuration. The final choice of funding would be dependent on the power purchaser. It was shown that, regardless of the configuraton or funding source selected, the project would be feasible. The cost of the apron-mounted configuration, which would consist of four turbine-generator units for a total installed capacity of 9.76 MW, was estimated as $13,250,000 with financing provided by either a PL-984 loan or tax-exempt bonds. The cost per installed kilowatt was therefore $1,350, and the cost per kilowatt-hour was 19.6 mills. The average annual energy was estimated to be 56.44 million kWh, the equivalent of approximately 87,000 barrels of oil per y. It is therefore recommended that the Montana Department of Natural Resources and Conservation proceed with the project and that discussions be initiated with potential power purchasers as soon as possible.

Willer, D.C.

1979-04-23T23:59:59.000Z

279

Biennial Assessment of the Fifth Power Plan Appendix A Regional Economy  

E-Print Network (OSTI)

-effectiveness of natural gas power plants are the cost of natural gas (assessed elsewhere), capital cost and thermal of coal-fired electricity generation. In addition, the delivered price of coal to power plants located used in the plan are more appropriate to a power plant that has purchased pipeline capacity to ensure

280

Circular Economy Assessment for Coal-fired Power Plants Based on Supper-Efficiency DEA Model  

Science Conference Proceedings (OSTI)

Coal-fired power plants are the main pollution source in most areas of China. The implementation of circular economy in coal-fired power plants is necessary for environmental protection and also an effective way of energy saving and emission reduction. ... Keywords: circular economy assessment, circular economy improvement, coal-fired power plant, super-efficiency data envelopment analysis

Shao-lun Zeng; Hong Hu; Wei Wang

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assessment of the Economic Potential of Microgrids for Reactive Power Supply  

E-Print Network (OSTI)

Assessment of the Economic Potential of Microgrids for Reactive Power Supply Jan von Appen1 , Chris. This paper outlines the economic potential of DERs coordinated in a microgrid to provide reactive power possibilities of creating an incentive for microgrids to provide reactive power. Index Terms ­ microgrids

282

Utility Response to Railroad Market Power: Assessment of Options  

Science Conference Proceedings (OSTI)

Coal transportation is one of the largest and potentially least competitive costs of power generation. This report reviews possible strategies and recourse available to utilities to counter railroad market power. The implosion of the major carriers into just two major companies in the east and the west heralds an era of duopoly pricing for which no single solution presents itself, past strategies may no longer apply, and the prospect of burgeoning power transactions may offer surprisingly little help to ...

1997-10-31T23:59:59.000Z

283

RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT  

E-Print Network (OSTI)

Coincidence of Demand and Wind Resource Diurnal PowerOutput Variations for Three Wind Regimes List of TablesCAPACITY CREDIT FOR WIND ARRAYS: THE PROBLEM . . . . . . .

Kahn, E.

2011-01-01T23:59:59.000Z

284

Life cycle assessment of a pumped storage power plant.  

E-Print Network (OSTI)

?? Wind and solar power plants are gaining increasing attention due to low green house gas emissions associated with electricity generation. The installed capacity of… (more)

Torres, Octavio

2011-01-01T23:59:59.000Z

285

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

286

Reliability of wind power from dispersed sites: a preliminary assessment  

DOE Green Energy (OSTI)

The reliability benefit of geographically dispersed wind turbine generators is analyzed. Electricity produced from wind machines experiences wide fluctuations of output at a given site. Yet the value of electricity is a function of its reliability. Pricing schedules have traditionally valued firm power, that is, reliably available power, much more highly than ''dump power;'' that is, power which is available intermittently on an ''if and when'' basis. The conventional wisdom on wind power suggests that it is unrealistic to expect that wind generation will be sufficiently reliable to displace conventional capacity. While such conclusions may be valid for analysis of individual sites, the main thesis of this paper is that geographical dispersal improves aggregate reliability.

Kahn, E.

1978-04-01T23:59:59.000Z

287

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

by CHP heat output P e Electrical power output of system Qratio of thermal to electrical power output R d Desiredratio of thermal to electrical power output T a Ambient

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

288

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

fossil-fuel based thermal power plants. Chapter 3 exploresthermal energy to be dissipated in concentrating solar power plants.thermal energy to electricity in a natural gas, coal or nuclear power plant

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

289

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

the burning of natural gas for on-site power generation andnatural gas absorption chiller GenL i , m , t , h , u Generated power by distributed generation

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

290

Energy Efficiency Assessment Case Study: Drawing a Bead on Energy Savings and Power Quality at a Wire Manufacturer  

Science Conference Proceedings (OSTI)

An energy and power quality assessment was conducted at a manufacturer of wire stock. After defining the energy usage and power quality concerns, the audit team identified ...

2012-08-28T23:59:59.000Z

291

HEATMAP©CHP - The International Standard for Modeling Combined Heat and Power Systems  

E-Print Network (OSTI)

HEATMAP©CHP is a software tool that can provide a comprehensive simulation of proposed and existing combined heat and power (CHP) plant and system applications, The software model provides a fully integrated analysis of central power production plants that are linked to district energy applications using hot water or steam for heating and/or chilled water-cooling and/or refrigeration connected to a network of buildings or other residential commercial, institutional, or industrial facilities. The program will provide designers, planners. engineers, investors, utilities, and operators with extensive technical, economical, and air emission information about a specific CHP application. The software can also be a valuable tool for community, military, regional, or national planners in defining all aspects of developing, evaluating, and justifying a new CHP project or upgrading an existing thermal system for CHP. Program output may be used to evaluate existing system performance or model the effects of various potential alternative system strategies including upgrades, expansions or conversion of thermal fluids (e.g., steam to hot water). A major feature of the program is its capability to comprehensively analyze a central CHP plant interface application involving thermal storage for both heating and cooling systems in conjunction with various technical distribution parameters covering both the supply and return elements of an extensive piping distribution system. Important features of the software include: the capability to utilize a myriad of fuel and equipment options; determination of air emission impacts that can result from CHP or central energy plant implementation; and the evaluation of extensive economic scenarios including the influence of environmental taxes on a variety of fuel alternatives.

Bloomquist, R. G.; O'Brien, R. G.

2000-04-01T23:59:59.000Z

292

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

2007-01-15T23:59:59.000Z

293

Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm  

Science Conference Proceedings (OSTI)

Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

2011-06-01T23:59:59.000Z

294

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

295

RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT  

E-Print Network (OSTI)

Electric Company, Wind Energy Mission Analysis, COO/2578-C.G. and W.R. Hargraves, Wind Energy Statistics for Largeng Power Supply from Wind Energy Converting Sys t ems, "

Kahn, E.

2011-01-01T23:59:59.000Z

296

Assessment of Electromagnetic Interference Events in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report presents a study and analysis of reported electromagnetic interference (EMI-) related incidents in nuclear power plants. These incidents were gathered primarily from the total body of incidents reported to the Institute of Nuclear Power Operations (INPO) database, with a few incidents coming from U.S. Nuclear Regulatory Commission (NRC) reports. This report analyzes trends and common factors in these events. The analysis is intended to inform the estimation of risk from EMI and offer suggesti...

2011-12-23T23:59:59.000Z

297

Technology Assessment of Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

Significant research and development (R&D) investments in fuel cell technology have led to functioning prototypes of residential fuel power systems operating on natural gas. Efforts by at least four leading companies are expected to lead to early field trials of residential power systems in 2000 and early 2001, followed by pre-commercial prototypes during 2001-2002, and commercial introduction in the 2002-2005 time frame. Other technology companies are expected to follow suit.

2000-12-12T23:59:59.000Z

298

Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms  

DOE Green Energy (OSTI)

California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

Vick, B. D.; Clark, R. N.; Mehos, M.

2008-01-01T23:59:59.000Z

299

Heat recovery steam generator outlet temperature control system for a combined cycle power plant  

Science Conference Proceedings (OSTI)

This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

1986-04-01T23:59:59.000Z

300

Utility-scale combined-cycle power systems with Kalina bottoming cycles  

SciTech Connect

A new power-generation technology, often referred to as the Kalina cycle, is being developed as a direct replacement for the Rankine steam cycle. It can be applied to any thermal heat source, low or high temperature. Among several Kalina cycle variations, there is one that is particularly well suited as a bottoming cycle for utility combined-cycle applications. It is the subject of this paper. Using an ammonia/water mixture as the working fluid and a condensing system based on absorption-refrigeration principles, the Kalina bottoming cycle outperforms a triple-pressure steam cycle by 16%. Additionally, this version of the Kalina cycle is characterized by an intercooling feature between turbine stages, diametrically opposite to normal reheating practice in steam plants. Energy and mass balances are presented for a 200-MW(electric) Kalina bottoming cycle. Kalina cycle performance is compared to a triple-pressure steam plant. Energy and mass balances are presented as well for a 200-MW(electric) Kalina direct-fired cycle designed for utility purposes.

Kalina, A.I.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Assessment of power-frequency based algorithms for fault location in power grids  

Science Conference Proceedings (OSTI)

The increased accuracy of the faults' location is a very actual request of the power grids' operation and management, reason to develop new and as precise as possible techniques for the estimation of the short-circuits' location. The actual fault locating ... Keywords: ATP simulation, fault location, power grids, power-frequency based algorithms

Marcel Istrate

2010-10-01T23:59:59.000Z

302

Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration: the  

E-Print Network (OSTI)

of HVDC connection to manage the imbalance at the system interconnections with the increased wind power. 2 is based on a 400 kV and 150 kV transmission system with HVDC connections to Nordel systems, Norway at the planned power exchange. Earlier studies in [4] and [5] have shown that the power exchange through the HVDC

Chen, Zhe

303

Impact of Cycling on the Operation and Maintenance Cost of Conventional and Combined-Cycle Power Plants  

Science Conference Proceedings (OSTI)

The ongoing privatization of electricity generation across the world, competition and shareholder demand for higher profits, stricter regulations on environmental impacts, changes in fuel prices, and the increasing penetration of nondispatchable energy have resulted in an increasing need for larger energy generators to operate as non-baseload units. As a result, both conventional power plants and combined-cycle power plants are increasingly being subjected to load-following and cyclic operation. ...

2013-09-30T23:59:59.000Z

304

Preliminary assessment of high power, NERVA-class dual-mode space nuclear propulsion and power systems  

Science Conference Proceedings (OSTI)

A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on the NERVA rocket engine has been completed. Results indicate that the coupling of the ROVER reactor to a direct Brayton power conversion system can be accomplished through a number of design features. Furthermore, based on previously published and independently calculated component masses, the dual-mode system was found to have the potential to be mass competitive with propulsion/power systems that use separate reactors. The uncertainties of reactor design modification and shielding requirements were identified as important issues requiring future investigation.

Buksa, J.J.; Kirk, W.L.; Cappiello, M.W. (Nuclear Technology and Engineering Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (US))

1991-01-05T23:59:59.000Z

305

A safety and regulatory assessment of generic BWR and PWR permanently shutdown nuclear power plants  

SciTech Connect

The long-term availability of less expensive power and the increasing plant modification and maintenance costs have caused some utilities to re-examine the economics of nuclear power. As a result, several utilities have opted to permanently shutdown their plants. Each licensee of these permanently shutdown (PSD) plants has submitted plant-specific exemption requests for those regulations that they believe are no longer applicable to their facility. This report presents a regulatory assessment for generic BWR and PWR plants that have permanently ceased operation in support of NRC rulemaking activities in this area. After the reactor vessel is defueled, the traditional accident sequences that dominate the operating plant risk are no longer applicable. The remaining source of public risk is associated with the accidents that involve the spent fuel. Previous studies have indicated that complete spent fuel pool drainage is an accident of potential concern. Certain combinations of spent fuel storage configurations and decay times, could cause freshly discharged fuel assemblies to self heat to a temperature where the self sustained oxidation of the zircaloy fuel cladding may cause cladding failure. This study has defined four spent fuel configurations which encompass all of the anticipated spent fuel characteristics and storage modes following permanent shutdown. A representative accident sequence was chosen for each configuration. Consequence analyses were performed using these sequences to estimate onsite and boundary doses, population doses and economic costs. A list of candidate regulations was identified from a screening of 10 CFR Parts 0 to 199. The continued applicability of each regulation was assessed within the context of each spent fuel storage configuration and the results of the consequence analyses.

Travis, R.J.; Davis, R.E.; Grove, E.J.; Azarm, M.A. [Brookhaven National Lab., Upton, NY (United States)

1997-08-01T23:59:59.000Z

306

Economic assessment of polymer concrete usage in geothermal power plants  

DOE Green Energy (OSTI)

Results of a study established to review the Heber and Niland, California 50 MWe conceptual geothermal power plants designs and to identify areas where non-metallic materials, such as polymer concrete, can be technically and economically employed are reported. Emphasis was directed toward determining potential economic advantages and resulting improvements in plant availability. It is estimated that use of polymer concrete in the Heber plant will effect a savings of 6.18 mills per KWH in the cost of power delivered to the network, a savings of 9.7%. A similar savings should be effected in the Niland plant.

Not Available

1977-11-01T23:59:59.000Z

307

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

Science Conference Proceedings (OSTI)

The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inland areas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

2009-11-16T23:59:59.000Z

308

Assessment of HVAC sound power data for sensitive spaces.  

Science Conference Proceedings (OSTI)

Certification testing of air handling unit sound power (PWL) indicates that individual unit PWL can vary significantly from manufacturer published data. Published data are typically based on a limited number of actual tests with results extrapolated for other fan sizes and operating conditions. Although published data are normally acceptable for routine applications

Kevin C. Miller; Martin J. Beam

1996-01-01T23:59:59.000Z

309

Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)  

DOE Green Energy (OSTI)

Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

2010-04-01T23:59:59.000Z

310

Total power optimization combining placement, sizing and multi-Vt through slack distribution management  

Science Conference Proceedings (OSTI)

Power dissipation is quickly becoming one of the most important limiters in nanometer IC design for leakage increases exponentially as the technology scaling down. However, power and timing are often conflicting objectives during optimization. In this ...

Tao Luo; David Newmark; David Z. Pan

2008-01-01T23:59:59.000Z

311

Effects of a carbon tax on combined heat and power adoption by a microgrid  

E-Print Network (OSTI)

Energy Resources: The CERTS MicroGrid Concept. Berkeley Laband Power Adoption by a Microgrid Chris Marnay, Jennifer L.and Power Adoption by a Microgrid Chris Marnay ? , Jennifer

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-01-01T23:59:59.000Z

312

Combined Heat and Power: Effective Energy Solutions for a Sustainable Future  

SciTech Connect

Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure modernization. The energy efficiency benefits of CHP offer significant, realistic solutions to near- and long-term energy issues facing the Nation. With growing demand for energy, tight supply options, and increasing environmental constraints, extracting the maximum output from primary fuel sources through efficiency is critical to sustained economic development and environmental stewardship. Investment in CHP would stimulate the creation of new 'green-collar' jobs, modernize aging energy infrastructure, and protect and enhance the competitiveness of US manufacturing industries. The complementary roles of energy efficiency, renewable energy, and responsible use of traditional energy supplies must be recognized. CHP's proven performance and potential for wider use are evidence of its near-term applicability and, with technological improvements and further elimination of market barriers, of its longer term promise to address the country's most important energy and environmental needs. A strategic approach is needed to encourage CHP where it can be applied today and address the regulatory and technical challenges preventing its long-term viability. Experience in the United States and other countries shows that a balanced set of policies, incentives, business models, and investments can stimulate sustained CHP growth and allow all stakeholders to reap its many well-documented benefits.

Shipley, Ms. Anna [Sentech, Inc.; Hampson, Anne [Energy and Environmental Analysis, Inc., an ICF Company; Hedman, Mr. Bruce [Energy and Environmental Analysis, Inc., an ICF Company; Garland, Patricia W [ORNL; Bautista, Paul [Sentech, Inc.

2008-12-01T23:59:59.000Z

313

Lessons Learned: Designing Successful Green Power Services: Phase I - Assessment of Green Power Service Providers  

Science Conference Proceedings (OSTI)

Electric sector restructuring has been accompanied by the development of green power markets, where electricity generated, at least partially, from renewable energy sources is offered as an option to customers wanting to take advantage of retail choice. This report focuses on green power marketing in those states where a green power market has begun to evolve, with a particular emphasis on two states where such markets have had more time to develop: California and Pennsylvania.

2000-12-05T23:59:59.000Z

314

Integrating gray system theory and logistic regression into case-based reasoning for safety assessment of thermal power plants  

Science Conference Proceedings (OSTI)

Safety assessment of thermal power plants (TPPs) is one of the important means to guarantee the safety of production in thermal power production enterprises. Due to various technical limitations, existing assessment approaches, such as analytic hierarchy ... Keywords: Case-based reasoning, Gray system theory, Intelligent decision support system, Logistic regression, Management safety assessment, Thermal power plants

Changyong Liang; Dongxiao Gu; Isabelle Bichindaritz; Xingguo Li; Chunrong Zuo; Wenen Cheng

2012-04-01T23:59:59.000Z

315

Proposing a decision-making model using analytical hierarchy process and fuzzy expert system for prioritizing industries in installation of combined heat and power systems  

Science Conference Proceedings (OSTI)

Restructuring electric power and increasing energy cost encourage large energy consumers to utilize combined heat and power (CHP) systems. In addition to these two factors, the gradual exclusion of subsidies is the third factor intensifying the utilization ... Keywords: Analytic hierarchy process, Combined heat and power, Decision making, Fuzzy expert system, Industry

Mehdi Piltan; Erfan Mehmanchi; S. F. Ghaderi

2012-01-01T23:59:59.000Z

316

Effects of a carbon tax on combined heat and power adoption by a microgrid  

E-Print Network (OSTI)

Application of MicroGrids. Power System Engineering Researchand consumed locally within microgrids (µGrids) that are

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-01-01T23:59:59.000Z

317

An Engineering-Economic Analysis of Combined Heat and Power Technologies in a Grid Application  

E-Print Network (OSTI)

of increased overall conversion efficiency. First, carbon emissions from power plants and generators would be reduced. Second, the environmental problem of disposing of power plant waste heat into the environment of heat using conventional separate heat and power. For typical electrical and thermal efficiencies, CHP

318

1?10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review  

DOE Green Energy (OSTI)

This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

Maru, H. C.; Singhal, S. C.; Stone, C.; Wheeler, D.

2010-11-01T23:59:59.000Z

319

Radiological Assessment for the Removal of Legacy BPA Power Lines that Cross the Hanford Site  

SciTech Connect

This paper discusses some radiological field monitoring and assessment methods used to assess the components of an old electrical power transmission line that ran across the Hanford Site between the production reactors area (100 Area) and the chemical processing area (200 Area). This task was complicated by the presence of radon daughters?both beta and alpha emitters?residing on the surfaces, particularly on the surfaces of weathered metals and metals that had been electrically-charged. In many cases, these activities were high compared to the DOE Surface Contamination Guidelines, which were used as guides for the assessment. These methods included the use of the Toulmin model of argument?represented using Toulmin diagrams-- to represent the combined force of several strands of evidences, rather than a single measurement of activity, to demonstrate beyond a reasonable doubt that no or very little Hanford activity was present and mixed with the natural activity. A number of forms of evidence were used: the overall chance of Hanford contamination; measurements of removable activity, beta and alpha; 1-minute scaler counts of total surface activity, beta and alpha, using ?background makers?; the beta activity to alpha activity ratios; measured contamination on nearby components; NaI gamma spectral measurements to compare uncontaminated and potentially-contaminated spectra, as well as measurements for the sentinel radionuclides, Am- 241 and Cs-137 on conducting wire; comparative statistical analyses; and in-situ measurements of alpha spectra on conducting wire showing that the alpha activity was natural Po-210, as well as to compare uncontaminated and potentially-contaminated spectra.

Millsap, William J.; Brush, Daniel J.

2013-11-13T23:59:59.000Z

320

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

Science Conference Proceedings (OSTI)

The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production  

SciTech Connect

Carbon dioxide is an environmental benign natural working fluid and has been proposed as a working media for a solar-driven power system. In the current work, the dynamic performance of a small scale solar-driven carbon dioxide power system is analyzed by dynamic simulation tool TRNSYS 16 and Engineering Equation Solver (EES) using co-solving technique. Both daily performance and yearly performance of the proposed system have been simulated. Different system operating parameters, which will influence the system performance, have been discussed. Under the Swedish climatic condition, the maximum daily power production is about 12 kW h and the maximum monthly power production is about 215 kW h with the proposed system working conditions. Besides the power being produced, the system can also produce about 10 times much thermal energy, which can be used for space heating, domestic hot water supply or driving absorption chillers. The simulation results show that the proposed system is a promising and environmental benign alternative for conventional low-grade heat source utilization system. (author)

Chen, Y.; Lundqvist, Per [Div. of Applied Thermodynamics and Refrigeration, Department of Energy Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Pridasawas, Wimolsiri [King Mongkut's University of Technology Thonburi, Dept. of Chemical Engineering, Bangkok (Thailand)

2010-07-15T23:59:59.000Z

322

Wind Power Integration Technology Assessment and Case Studies  

Science Conference Proceedings (OSTI)

Application of power electronics, energy storage, and other wind integration technologies can mitigate the impacts of adding large blocks of wind generation and raise the amount of wind capacity that can be connected to the grid without adversely affecting grid reliability, reserve and regulation requirements, and ancillary service costs. The engineering and economic data and case studies presented in this report can be used to address the available wind integration technology options.

2004-03-30T23:59:59.000Z

323

Predictive Maintenance Self-Assessment Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

There is a need at nuclear power plants for optimization and continuous improvement in the predictive maintenance (PdM) process. This need is based upon increased reliance on PdM to contribute to low unplanned capability loss factors, prevent significant equipment failures, reduce resources for maintenance, manage assets in support of license renewal and aging control, incorporate new technologies and advanced information management, and manage the risk associated with maintenance activities. This docume...

2000-11-28T23:59:59.000Z

324

Assessment of Air Preheater Effects on Power Plant Efficiency  

Science Conference Proceedings (OSTI)

Air Preheaters (APHs) improve overall boiler efficiency by transferring heat from the boiler exhaust gases to the incoming air used for combustion and coal drying. APH performance can have a significant impact on plant efficiency, and therefore fuel consumption, carbon dioxide (CO2) emissions and power plant economics. This report summarizes the major relationship between APH parameters and heat rate, and presents some preliminary guidelines for evaluating APH upgrades.

2008-12-17T23:59:59.000Z

325

City of Redding: Lake Redding Power Project, feasibility assessment report  

DOE Green Energy (OSTI)

The feasibility of constructing a low-head hydroelectric power generating facility on the Sacramento River in California was investigated considering technical, economic, legal, and environmental factors. It was concluded that the proposed plant is feasible and, with 5 generating units operating on a gross head of 14 ft, 79 GWh could be generated annually. The cost of the project with a 1984 completion date is estimated at $44.3 million. (LCL)

None

1979-03-01T23:59:59.000Z

326

Analysis of combined hydrogen, heat, and power as a bridge to a hydrogen transition.  

DOE Green Energy (OSTI)

Combined hydrogen, heat, and power (CHHP) technology is envisioned as a means to providing heat and electricity, generated on-site, to large end users, such as hospitals, hotels, and distribution centers, while simultaneously producing hydrogen as a by-product. The hydrogen can be stored for later conversion to electricity, used on-site (e.g., in forklifts), or dispensed to hydrogen-powered vehicles. Argonne has developed a complex-adaptive-system model, H2CAS, to simulate how vehicles and infrastructure can evolve in a transition to hydrogen. This study applies the H2CAS model to examine how CHHP technology can be used to aid the transition to hydrogen. It does not attempt to predict the future or provide one forecast of system development. Rather, the purpose of the model is to understand how the system works. The model uses a 50- by 100-mile rectangular grid of 1-square-mile cells centered on the Los Angeles metropolitan area. The major expressways are incorporated into the model, and local streets are considered to be ubiquitous, except where there are natural barriers. The model has two types of agents. Driver agents are characterized by a number of parameters: home and job locations, income, various types of 'personalities' reflective of marketing distinctions (e.g., innovators, early adopters), willingness to spend extra money on 'green' vehicles, etc. At the beginning of the simulations, almost all driver agents own conventional vehicles. They drive around the metropolitan area, commuting to and from work and traveling to various other destinations. As they do so, they observe the presence or absence of facilities selling hydrogen. If they find such facilities conveniently located along their routes, they are motivated to purchase a hydrogen-powered vehicle when it becomes time to replace their present vehicle. Conversely, if they find that they would be inconvenienced by having to purchase hydrogen earlier than necessary or if they become worried that they would run out of fuel before encountering a facility, their motivation to purchase a hydrogen-powered vehicle decreases. At vehicle purchase time, they weigh this experience, as well as other factors such as social influence by their peers, fuel cost, and capital cost of a hydrogen vehicle. Investor agents build full-service hydrogen fueling stations (HFSs) at different locations along the highway network. They base their decision to build or not build a station on their (imperfect) estimates of the sales the station would immediately generate (based on hydrogen-powered vehicle traffic past the location and other factors), as well as the growth in hydrogen sales they could expect throughout their investment horizon. The interaction between driver and investor agents provides the basis for growth in both the number of hydrogen vehicles and number of hydrogen stations. For the present report, we have added to this mix smaller, 'bare-bones' hydrogen dispensing facilities (HDFs) of the type that owners of CHHP facilities could provide to the public. The locations of these stations were chosen to match existing facilities that might reasonably incorporate CHHP plants in the future. Unlike the larger commercial stations, these facilities are built according to exogenously supplied timetables, and no attempt has been made to model the financial basis for the facilities. Rather, our objective is to understand how the presence of these additional stations might facilitate the petroleum-to-hydrogen transition. We discuss a base case in which the HDFs are not present, and then investigate the effects of introducing HDFs in various numbers; according to different timetables; with various production capacities; and with hydrogen selling at prices above, equal to, and below the commercial stations selling price. We conclude that HDFs can indeed be helpful in accelerating a petroleum-to-hydrogen transition. Placed in areas where investors might not be willing to install large for-profit HFSs, HDFs can serve as a bridge until demand for hydrogen increases to the point where l

Mahalik, M.; Stephan, C. (Decision and Information Sciences)

2011-01-18T23:59:59.000Z

327

Wind power resource assessment in complex urban environments: MIT campus case-study using CFD Analysis  

E-Print Network (OSTI)

Wind power resource assessment in complex urban environments: MIT campus case-study using CFD of Technology, 2Meteodyn Objectives Conclusions References [1] TopoWind software, User Manual [2] Wind Resource Assessment Handbook: Fundamentals for Conducting a Successful Wind Monitoring Program, AWS Scientific, Inc

328

The European nuclear power industry: Restructuring for combined strength and worldwide leadership  

Science Conference Proceedings (OSTI)

The European nuclear power industry is being restructured from an industry drawn along national lines to a European-wide industry. This, in part, reflects growth of the European Economic Community, but it also reflects changes in the international nuclear power industry. The objectives of the participants, beyond better integration of the nuclear industry in Western Europe, are to (1) obtain European leadership of the worldwide commercial nuclear power industry, (2) improve medium- and long-term safety of Eastern Europe and the former Soviet Union (FSU) power reactors, and (3) reduce domestic concerns about nuclear power. The activities to achieve these goals include (1) formation of Nuclear Power International (a joint venture of the German and French nuclear power plant vendors for design and construction of nuclear power plants), (2) formation of a utility group to forge agreement throughout Europe on what the requirements are for the next generation of nuclear power plants, and (3) agreement by regulators in multiple European countries to harmonize regulations. This is to be achieved before the end of the decade. These changes would allow a single design of nuclear power plant to be built anywhere in Europe. The creation of European-wide rules (utility requirements, engineering standards, and national regulations) would create strong economic and political forces for other European countries (Eastern Europe and FSU) to meet these standards.

Forsberg, C.W.; Norman, R.E.; Reich, W.J.; Hill, L.J.

1993-06-18T23:59:59.000Z

329

Draft Environmental Assessment Ormat Nevada Northern Nevada Geothermal Power Plant Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 FINAL ENVIRONMENTAL ASSESSMENT Ormat Nevada Northern Nevada Geothermal Power Plant Projects Department of Energy Loan Guarantee for ORMAT LLC's Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGinness Hills Geothermal Project, Lander County, Nevada U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 August 2011 NORTHERN NEVADA GEOTHERMAL POWER PLANT PROJECTS - ORMAT NEVADA AUGUST 2011 FINAL ENVIRONMENTAL ASSESSMENT i TABLE OF CONTENTS 1.0 INTRODUCTION.................................................................................................................1 1.1 SUMMARY AND LOCATION OF PROPOSED ACTION .....................................................1

330

Assessment of solar-powered cooling of buildings. Final report  

DOE Green Energy (OSTI)

Three solar-powered cooling concepts are analyzed and evaluated. These are: (1) the solar Rankine concept in which a Rankine cycle driven by solar energy is used to drive a vapor compression refrigeration machine, (2) the solar-assisted Rankine concept in which a Rankine cycle driven by both solar energy and fuel combustion is used to drive a vapor compression refrigeration machine, and (3) the solar absorption concept in which solar energy is used to drive an absorption refrigeration machine. These concepts are compared on the bases of coefficient of performance, requirements for primary fuel input, and economic considerations. Conclusions and recommendations are presented. (WHK)

Curran, H.M.

1975-04-01T23:59:59.000Z

331

Combined cycle and waste heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation  

SciTech Connect

A new thermodynamic energy cycle has been developed, using a multicomponent working agent. Condensation is supplemented with absorption, following expansion in the turbine. Several combined power systems based on this cycle have been designed and cost-estimated. Efficiencies of these new systems are 1.35 to 1.5 times higher than the best Rankine Cycle system, at the same border conditions. Investment cost per unit of power output is about two-thirds of the cost of a comparable Rankine Cycle system. Results make cogeneration economically attractive at current energy prices. The first experimental installation is planned by Fayette Manufacturing Company and Detroit Diesel Allison Division of General Motors.

Kalina, A.I.

1983-01-01T23:59:59.000Z

332

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network (OSTI)

Application of MicroGrids” Power System Engineering ResearchLasseter 2002). These microgrids will operate according toauthority. By contrast microgrids will develop in accordance

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

333

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

GHG preferable to grid power only when the waste heat can bethe grid electricity it displaces when the waste heat from

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

334

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

in-state and imports Natural gas plants providing power toand Imports 20% RPS 2010, 33% RPS 2020 California Electricity Generation (TWh/a) Natural Gas

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

335

Development of a tool for simulating performance of sub systems of a combined cycle power plant;  .  

E-Print Network (OSTI)

?? Abstract In Sri Lanka, around 50% of the electrical energy generation is done using thermal energy, and hence maintaining generation efficiencies of thermal power… (more)

Jayasinghe, Prabodha

2012-01-01T23:59:59.000Z

336

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

2002). Advances in parabolic trough solar power technology.use comparable to a parabolic trough with air cooling sincethe working fluid in parabolic trough collectors is in the

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

337

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

case, such as total electricity bill, electricity generationHeat and Power Applications electricity bill for electricityK$ Investment Costs Annual Electricity Bill for Purchases

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

338

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Environmental impact study: CSP vs. CdTe thin filmsolar · CHP · Rankine · CSP · concentrating · distributed ·the concentrating solar power (CSP) troughs in the central

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

339

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

ios in which distributed generation and heat recovery486-7976 Keywords: distributed generation; combined heat andCERTS) Microgrid. Distributed generation would alleviate the

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

340

The Combined Otto and Stirling Cycle Prime-Mover-Based Power Plant.  

E-Print Network (OSTI)

?? An exploratory study of the combined Otto and Stirling cycle prime mover is presented. The Stirling cycle acts as the bottoming cycle on the… (more)

Cullen, Barry, (Thesis)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Preliminary materials assessment for the Satellite Power System (SPS)  

DOE Green Energy (OSTI)

Presently, there are two SPS reference design concepts (one using silicon solar cells; the other using gallium arsenide solar cells). A materials assessment of both systems was performed based on the materials lists set forth in the DOE/NASA SPS Reference System Report: Concept Development and Evaluation Program. This listing identified 22 materials (plus miscellaneous and organics) used in the SPS. Tracing the production processes for these 22 materials, a total demand for over 20 different bulk materials (copper, silicon, sulfuric acid, etc.) and nealy 30 raw materials (copper ore, sand, sulfur ore, etc.) was revealed. Assessment of these SPS material requirements produced a number of potential material supply problems. The more serious problems are those associated with the solar cell materials (gallium, gallium arsenide, sapphire, and solar grade silicon), and the graphite fiber required for the satellite structure and space construction facilities. In general, the gallium arsenide SPS option exhibits more serious problems than the silicon option, possibly because gallium arsenide technology is not as well developed as that for silicon. Results are presented and discussed in detail. (WHK)

Teeter, R.R.; Jamieson, W.M.

1980-01-01T23:59:59.000Z

342

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the importance of grid carbon intensity. Natural-gas-fired CHP is GHG preferable to grid power only when supply projection, in-state and imports Natural gas plants providing power to California are a mix ....................................................................................................................... 12 Table 7. 2020 forecasts of California electricity and natural gas prices

343

Life Cycle Assessment: Using Wildland Biomass to Generate Electrical Power  

E-Print Network (OSTI)

California faces significant threats from wildfire due to excessive accumulations of forest and wildland fuels. Much of this fuel loading is in the form of small-diameter woody material, or biomass. Fire suppression over the past century, combined with intensive forest management and a generally warmer and wetter climate, has led to increasingly dense vegetation. When wildfires occur, the heavy accumulation of biomass often makes those fires larger and more severe. The increase in forest biomass threatens public health and safety, watersheds, and wildlife habitat with unacceptable losses to wildfire. Public land management agencies and private landowners are focusing efforts on treating biomass to reduce wildfire hazards. These treatments typically create a significant volume of biomass wood waste. California law and policy, as well as several studies, assert a range of benefits associated with removing and using biomass from forests, as well as from agricultural

I. The Problem

2005-01-01T23:59:59.000Z

344

Designing power system simulators for the smart grid: combining controls, communications, and electro-mechanical dynamics  

Science Conference Proceedings (OSTI)

Open source software has a leading role in research on simulation technology for electrical power systems. Research simulators demonstrate new features for which there is nascent but growing demand not yet provided for by commercial simulators. Of particular interest is the inclusion of models of software-intensive and communication-intensive controls in simulations of power system transients. This paper describes two features of the ORNL power system simulator that help it meet this need. First is its use of discrete event simulation for all aspects of the model: control, communication, and electro-mechanical dynamics. Second is an interoperability interface that enables the ORNL power system simulator to be integrated with existing, discrete event simulators of digital communication systems. The paper concludes with a brief discussion of how these aspects of the ORNL power system simulator might be inserted into production-grade simulation tools.

Nutaro, James J [ORNL

2011-01-01T23:59:59.000Z

345

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

SciTech Connect

This report describes an investigation at Ernesto Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) of the potential for coupling combined heat and power (CHP) with on-site electricity generation to provide power and heating, and cooling services to customers. This research into distributed energy resources (DER) builds on the concept of the microgrid (mGrid), a semiautonomous grouping of power-generating sources that are placed and operated by and for the benefit of its members. For this investigation, a hypothetical small shopping mall (''Microgrid Oaks'') was developed and analyzed for the cost effectiveness of installing CHP to provide the mGrid's energy needs. A mGrid consists of groups of customers pooling energy loads and installing a combination of generation resources that meets the particular mGrid's goals. This study assumes the mGrid is seeking to minimize energy costs. mGrids could operate independently of the macrogrid (the wider power network), but they are usually assumed to be connected, through power electronics, to the macrogrid. The mGrid in this study is assumed to be interconnected to the macrogrid, and can purchase some energy and ancillary services from utility providers.

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-03-01T23:59:59.000Z

346

Assessment of Evaporative Cooling Enhancement Methods for Air-Cooled Geothermal Power Plants: Preprint  

DOE Green Energy (OSTI)

Many binary-cycle geothermal power plants are air cooled because insufficient water is available to provide year-round water cooling. The performance of air-cooled geothermal plants is highly dependent on the dry bulb temperature of the air (much more so than fossil fuel plants that operate at higher boiler temperatures), and plant electric output can drop by 50% or more on hot summer days, compared to winter performance. This problem of reduced summer performance is exacerbated by the fact that electricity has a higher value in the summer. This paper describes a spreadsheet model that was developed to assess the cost and performance of four methods for using supplemental evaporative cooling to boost summer performance: (1) pre-cooling with spray nozzles, (2) pre-cooling with Munters media, (3) a hybrid combination of nozzles and Munters media, and (4) direct deluge cooling of the air-cooled condenser tubes. Although all four options show significant benefit, deluge cooling has the potential to be the most economic. However, issues of scaling and corrosion would need to be addressed.

Kutscher, C.; Costenaro, D.

2002-08-01T23:59:59.000Z

347

Combined Borehole Seismic and Electromagnetic Inversion For High-Resolution Petrophysical Assessment Of Hydocarbon Reservoirs  

Science Conference Proceedings (OSTI)

This report summarizes the work performed between January 2005 and December 2007, under DOE research contract DE-FC26-04NT15507. The project is was performed by the Center for Petroleum and Geosystems Engineering of The University of Texas at Austin and Lawrence Berkeley National Laboratory under the auspices of the National Energy Technology Office (NETL) and the Strategic Center for Natural Gas and Oil (SCNGO). During the three-year project, we developed new methods to combine borehole sonic and electromagnetic (EM) measurements for the improved assessment of elastic and petrophysical properties of rock formations penetrated by a well. Sonic measurements consisted of full waveform acoustic amplitudes acquired with monopole and dipole sources, whereas EM measurements consisted of frequency-domain voltages acquired with multi-coil induction systems. The combination of sonic and EM measurements permitted the joint estimation of elastic and petrophysical properties in the presence of mud-filtrate invasion. It was conclusively shown that the combined interpretation of sonic and EM measurements reduced non-uniqueness in the estimation of elastic and petrophysical properties and improved the spatial resolution of the estimations compared to estimations yielded separately from the two types of measurements. Moreover, this approach enabled the assessment of dynamic petrophysical properties such as permeability, as it incorporated the physics of mud-filtrate invasion in the interpretation of the measurements. The first part of the project considered the development of fast and reliable numerical algorithms to simulate borehole sonic waveforms in 2D, 3D, and radial 1D media. Such algorithms were subsequently used in the quantitative estimation of elastic properties jointly from borehole sonic and EM measurements. In the second part of the project we developed a new algorithm to estimate water saturation, porosity, and dry-rock elastic moduli jointly from borehole sonic and EM measurements. This algorithm assumed radial 1D variations of fluid saturation due to mud-filtrate invasion. Subsequently, we adapted the estimation method to interpret borehole field measurements acquired in both a shaly-sand sedimentary sequence and a tight-gas sandstone formation. In the two cases, we simulated the process of mud-filtrate invasion and concomitantly honored sonic and EM measurements. We produced reliable estimates of permeability and dry-rock moduli that were successfully validated with rock-core measurements. Finally, we introduced a new stochastic inversion procedure to estimate elastic, electrical, and petrophysical properties of layered media jointly from waveform sonic and frequency-domain EM measurements. The procedure was based on Bayesian statistical inversion and delivered estimates of uncertainty under various forms of a-priori information about the unknown properties. Tests on realistic synthetic models confirmed the reliability of this procedure to estimate elastic and petrophysical properties jointly from sonic and EM measurements. Several extended abstracts and conference presentations stemmed from this project, including 2 SEG extended abstracts, 1 SPE extended abstract, and 2 SPWLA extended abstracts. Some of these extended abstracts have been submitted for publication in peer-reviewed journals.

Carlos Torres-Verdin; G. Michael Hoversten; Ki Ha Lee; Gregory Newman; Kurt Nihei

2008-12-31T23:59:59.000Z

348

Assessment of solar options for small power systems applications. Volume II. Identification and characterization of concepts for analysis  

DOE Green Energy (OSTI)

The primary purpose of this study is to provide DOE with an independent, objective assessment of the principal solar thermal conversion concepts that have the potential for achieving commercial success as small electric power sytems in the 1- to 10-MWe range. Seven generic types of collectors, together with associated subsystems for electric power generation, were considered in this study. The collectors can be classified into three categories: (1) two-axis tracking (with compound curvature reflecting surfaces); (2) one-axis tracking (with single-curvature reflecting surfaces); and (3) nontracking (with low-concentration reflecting surfaces). These collectors can be combined with energy transport, energy storage, and power conversion subsystems in a wide variety of ways to formulate conceptual systems for electric power generation. In this study, attention was restricted to configurations that are potentially suitable for development as small power systems (1 to 10 MWe) in the long term (1990 to 2000), with initial commercialization by the mid-1980s. Cogeneration and total energy systems were beyond the scope of this study. All seven types of collectors were analyzed in conceptual system configurations with Rankine-cycle engines. Because they can operate at particularly high concentration ratios, two of the collectors (the Point Focus Central Receiver and the Point Focus Distributed Receiver) were also analyzed with Brayton-cycle engines. In addition, the latter of the two was analyzed with Stirling-cycle engines. With these engine options, 10 conceptual systems were formulated for analysis. Results are presented in detail. (WHK)

Laity, W.W.; Aase, D.T.; Apley, W.J.; Bird, S.P.; Drost, M.K.; Williams, T.A.

1980-06-01T23:59:59.000Z

349

Southeastern Federal Power Program. Combined financial statements, September 30, 1996 and 1995  

SciTech Connect

The Southeastern Federal Power Program (SEFPP) consists of all activities associated with the production, transmission and disposition of Federal power marketed under Section 5 of the Flood Control Act of 1944 from projects in the ten southeastern states. The ten states are: Virginia, West Virginia, North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Tennessee, and Kentucky. Power is marketed to customers in 11 states - the above ten plus Illinois. SEFPP includes the accounts of two separate Federal government agencies- the Southeastern Power Administration (Southeastern) of the Department of Energy and the U.S. Army Corps of Engineers (Corps). Southeastern purchases, transmits, and markets power within four separate power systems (each including one or more Corps generating projects for which rates are set). Specific and joint-use costs allocated to power are included in the attached statements of assets. Federal investment and liabilities under utility plant and cash. The accounts of SEFPP are maintained in conformity with generally accepted accounting principles and the Uniform System of Accounts prescribed for electric utilities by the Federal Energy Regulatory Commission (FERC). SEFPP`s accounting policies also reflect requirements of specific legislation and executive directives issued by the applicable government agencies. Southeastern and Corps properties and income are exempt from taxation. Southeastern and the Corps receive Congressional appropriations through the Department of Energy (DOE) and the Department of Defense to finance their operations. The Corps also receives Congressional appropriations to finance construction of its hydroelectric projects.

1998-05-01T23:59:59.000Z

350

Assessment of Ice Plugging of the Cooling Water Intake at American Electric Power's Conesville Power Plant  

Science Conference Proceedings (OSTI)

The American Electrical Power (AEP) Conesville power plant is shutting down the last unit that uses a once-through cooling system. Currently, warm water from the existing cooling system is routed to the intake area to control ice buildup. After the last unit is shut down, there will be no control of the ice buildup in the trash racks, making complete blockage of the intake facility a possibility. A sediment-control structure was built in 2000 to prevent sediment buildup at the intake facility. The sedime...

2011-12-14T23:59:59.000Z

351

AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES  

Science Conference Proceedings (OSTI)

An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

Hansen, James Gerald [ORNL

2012-02-01T23:59:59.000Z

352

Demonstration of Recessed Downlight Technologies: Power and Illumination Assessment  

SciTech Connect

Solid state lighting (SSL), specifically light-emitting diodes (LED), has been advancing at a rapid pace, and there are presently multiple products available that serve as direct replacements for traditional luminaires. In this demonstration, conventional recessed lights in a conference room were used to compare conventional incandescent A-lamps, incandescent reflector R-lamps, dimming compact fluorescent lamps (CFL), to an LED replacement product. The primary focus during the study was on light delivered to the task plane as provided by the power required by the lighting system. Vertical illuminance, dimming range, and color shift are also important indicators of lighting quality and are discussed in the report. The results clearly showed that LEDs, with dimming-capable drivers, are much more efficient than incandescent and CFLs. Further, LEDs provide much smoother and consistent dimming than dimmable CFLs. On the potential negative side, it is important that the dimming switch be identified as compatible with the LED driver. A wide variety of dimmer switches are capable of dimming LEDs down to 15% of full light output, while select others can be capable of dimming LEDs down to 5%. In addition, LEDs can be intensive light sources, which can result in uncomfortable glare in some applications and to some occupants. Higher ceiling (9-foot or greater) or non-specular reflectors can act to alleviate the potential for glare.

Parker, Steven A.; Beeson, Tracy A.

2009-11-20T23:59:59.000Z

353

EA-1922: Notice of Availability of a Draft Environmental Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Availability of a Draft Environmental Assessment EA-1922: Notice of Availability of a Draft Environmental Assessment Combined Power and Biomass Heating System, Fort...

354

EA-1922: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment EA-1922: Draft Environmental Assessment Combined Power and Biomass Heating System, Fort Yukon, Alaska This DOE Draft EA, in cooperation with RUS and the...

355

EA-1922: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment EA-1922: Final Environmental Assessment Combined Power and Biomass Heating System, Fort Yukon, Alaska DOE (lead agency), Denali Commission (cooperating...

356

EA-1741: Draft Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment EA-1741: Draft Environmental Assessment Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington (June 2010) This EA...

357

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

E-Print Network (OSTI)

included. Therefore, the cost per kWh should not necessarilyproduction, i.e. the cost per kWh only relates to theof the tax shield and cost per kWh of power produced for

Kranz, Nicole; Worrell, Ernst

2001-01-01T23:59:59.000Z

358

Aging assessment of large electric motors in nuclear power plants  

Science Conference Proceedings (OSTI)

Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

Villaran, M.; Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)

1996-03-01T23:59:59.000Z

359

Power upgrading of transmission line by combining AC-DC transmission  

Science Conference Proceedings (OSTI)

Long extra high voltage (EHV) ac lines cannot be loaded to their thermal limits in order to keep sufficient margin against transient instability. With the scheme proposed in this project, it is possible to load these lines very close to their thermal ... Keywords: extra high voltage (EHV)transmission, flexible ac transmission system (FACTS), power system computer-aided design(PSCAD), simultaneous ac-dc power transmission

Jarupula Somlal

2010-07-01T23:59:59.000Z

360

Emissions Performance of an 85 kWe Packaged Combined Heat and Power System  

Science Conference Proceedings (OSTI)

Distributed energy resources (DER) offer industrial, commercial, institutional, and residential customers a means of providing electric power close to the load while at the same time increasing their electrical reliability, energy efficiency, and power quality. In most cases, the cost to fuel a continuously operating generator with natural gas or distillate is greater than the value of the electricity generated. It is only when co-generated heat is recovered from the generator and used to reduce fuel cos...

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Integration of Ion Transport Membrane Technology with Integrated Gasification Combined Cycle Power Generation Systems  

Science Conference Proceedings (OSTI)

EPRI, in conjunction with Air Products and Chemicals, Inc. (AP), has reviewed the integrated gasification combined cycle (IGCC) process, whereby coal (or some other hydrocarbon such as petroleum coke or heavy oil) is broken down into its constituent volatile and nonvolatile components through the process of oxidative-pyrolysis. Combustible synthetic gas created in the process can be used in a traditional combined cycle. IGCC is particularly appealing for its potentially higher efficiencies compared ...

2013-10-30T23:59:59.000Z

362

Assessment of the Economic Potential of Microgrids for Reactive Power Supply  

DOE Green Energy (OSTI)

As power generation from variable distributed energy resources (DER) grows, energy flows in the network are changing, increasing the requirements for ancillary services, including voltage support. With the appropriate power converter, DER can provide ancillary services such as frequency control and voltage support. This paper outlines the economic potential of DERs coordinated in a microgrid to provide reactive power and voltage support at its point of common coupling. The DER Customer Adoption Model assesses the costs of providing reactive power, given local utility rules. Depending on the installed DER, the cost minimizing solution for supplying reactive power locally is chosen. Costs include the variable cost of the additional losses and the investment cost of appropriately over-sizing converters or purchasing capacitors. A case study of a large health care building in San Francisco is used to evaluate different revenue possibilities of creating an incentive for microgrids to provide reactive power.

Appen, Jan von; Marnay, Chris; Stadler, Michael; Momber, Ilan; Klapp, David; Scheven, Alexander von

2011-05-01T23:59:59.000Z

363

DOE/EA-1753 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BEACON POWER CORPORATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1753 DOE/EA-1753 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BEACON POWER CORPORATION FLYWHEEL FREQUENCY REGULATION PLANT, CHICAGO HEIGHTS, ILLINOIS (SITE 1), AND HAZLE TOWNSHIP, PENNSYLVANIA (SITE 2) U.S. Department of Energy National Energy Technology Laboratory Arpil 2011 DOE/EA-1753 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BEACON POWER CORPORATION FLYWHEEL FREQUENCY REGULATION PLANT, CHICAGO HEIGHTS, ILLINOIS (SITE 1), AND HAZLE TOWNSHIP, PENNSYLVANIA (SITE 2) U.S. Department of Energy National Energy Technology Laboratory April 2011 DOE/EA-1753 iii April 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for the Beacon Power Corporation Flywheel Frequency Regulation Plant, Chicago Heights, Illinois (Site 1), and Hazle Township, Pennsylvania

364

Alaska Power Administration combined financial statements, schedules, and supplemental reports, September 30, 1997 and 1996 with independent auditors` report thereon  

SciTech Connect

The Alaska Power Administration (APA) will continue to encourage economic and industrial development in Alaska through implementing the sale of APA assets in a manner consistent with the authorizing legislation while balancing all the stakeholders` interests. Alaska Power Administration will provide their employees opportunities for successful career transitions and conduct an efficient transfer of assets and closeout of APA, while continuing to provide customers reliable, low-cost hydroelectric energy during the transition. The attached report presents the results of the independent certified public accounts` audit of the Alaska Power Administration`s (APA) combined power system statements of assets; Federal investment and liabilities; and the related combined statements of revenues, expenses and accumulated net revenues, and cash flows. The auditors` reports on APA`s internal control structure and compliance with laws and regulations disclosed no reportable conditions or instances of noncompliance. Based on the unqualified opinion of the independent public accounting firm of KPMG Peak Marwick LLP and review of their audit work, the authors believe the financial statements fairly present the financial condition and results of the operations of APA for the period under audit.

1998-04-01T23:59:59.000Z

365

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

366

Technical Assessment Guide (TAG) -- Power Generation and Storage Technology Options: 2011 Update  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide (TAG) Power Generation and Storage Technology Options provides cost and performance data and analysis for energy company decision makers to optimize capital investments in the power generation and energy storage infrastructure. The 2011 TAG has been significantly enhanced to reflect current market conditions and technology trends, with cost and performance updates for pulverized coal (PC), large combustion turbine (CT), nuclear, solar thermal (ST), photovoltaic (PV), b...

2011-12-30T23:59:59.000Z

367

Technical Assessment Guide (TAG) - Power Generation and Storage Technology Options: 2013 Topics (DRAFT)  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide™ (TAG®)—Power Generation and Storage Technology Options report provides cost and performance data and analysis for energy company decision makers to optimize capital investments in the power generation and energy storage infrastructure. The topics chosen by the TAG® members in 2013 reflect the transition of the industry in the last few years from a heavily coal and nuclear technologies-based generation to natural ...

2013-12-12T23:59:59.000Z

368

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study: Fuel Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central Office in Garden City, New York. This fuel cell power plant, the largest in the United States at the time, is reaping environmental benefits and demonstrating the viabil- ity of fuel cells in a commercial, critical telecommunications setting. Background Verizon's Central Office in Garden City,

369

Estimation of steady-state unbalanced system conditions combining conventional power flow and fault analysis software  

Science Conference Proceedings (OSTI)

In real three-phase power systems the voltages and currents are not fully symmetrical. A method has been developed to estimate the effects of slight unbalanced network conditions for steady-state operation. A conventional power flow is followed by a linear incremental calculation using a three-phase model of the network. The unbalanced condition is handled like a multiple unbalanced fault. The process is illustrated for the case of a transformer bank with non-identical single phase units. The results show the effects of different transformer reactances and different voltage ratios, respectively.

Reichelt, D.; Ecknauer, E. [Nordostschweizerische Kraftwerke AG, Baden (Switzerland); Glavitsch, H. [Swiss Federal Inst. of Tech., Zurich (Switzerland)

1996-02-01T23:59:59.000Z

370

Health and safety. Preliminary comparative assessment of the satellite power system (SPS) and other energy alternatives  

DOE Green Energy (OSTI)

Existing data on the health and safety risks of a satellite power system and four electrical generation systems are analyzed: a combined-cycle coal power system with a low-Btu gasifier and open-cycle gas turbine, a fission power system with fuel reprocessing, a central-station, terrestrial, solar-photovoltaic power system, and a first-generation design for a fusion power system. The systems are compared on the basis of expected deaths and person-days lost per year associated with 1000 MW of average electricity generation and the number of health and safety risks that are identified as potentially significant but unquantifiable. The appendices provide more detailed information on risks, uncertainties, additional research needed, and references for the identified impacts of each system.

Habegger, L.J.; Gasper, J.R.; Brown, C.D.

1980-04-01T23:59:59.000Z

371

Biennial Assessment of the Fifth Power Plan Assessment of Other Generating Technologies  

E-Print Network (OSTI)

and animal manure energy recovery and chemical recovery boiler upgrades. Other possible sources of biofuels generation since adoption of the Fifth Plan. The most feasible near-term uses of biofuels for electric power. The wood is more valuable as a fiber crop. The most significant development regarding biofuels since

372

Evaluating the Effects of Power Plants on Aquatic Communities: Guidelines for Selection of Assessment Methods  

Science Conference Proceedings (OSTI)

This report provides guidelines for selecting methods to estimate effects of cooling water withdrawals on aquatic populations and communities. The report is a companion to the EPRI 1999 report TR-112013, "Catalog of Assessment Methods for Evaluating Effects of Power Plant Operations on Aquatic Communities." These two documents describe approaches for estimating the magnitude of cooling water intake structure effects as part of assessing the potential for adverse environmental impact (AEI) under Section 3...

2002-05-24T23:59:59.000Z

373

Program on Technology Innovation: The Galvin Path to Perfect Power--A Technical Assessment  

Science Conference Proceedings (OSTI)

The Galvin Electricity Initiative is a landmark project conducted to catalyze the transformation of the U.S. electric power system. Funded by former Motorola CEO and Chairman Robert W. Galvin, the Initiative goal is to assess how to create Perfect Powera system that is absolutely reliable and trouble-free to the consumer. The EPRI Office of Technology Innovation was engaged by the Galvin Electricity Initiative to perform technical assessments that can guide industry development and design of the Perfect ...

2007-03-30T23:59:59.000Z

374

Preliminary environmental assessment for the satellite power system (SPS). Revision 1. Volume 1. Executive summary  

DOE Green Energy (OSTI)

A preliminary assessment of the environmental impacts of the proposed satellite power system (SPS) is summarized here. In this system, satellites would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on earth. At the rectennas, the microwaves would be converted to electricity. The assessment considers microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and disruption of communications and other electromagnetic systems.

Not Available

1980-01-01T23:59:59.000Z

375

Thermo economic comparison of conventional micro combined heat and power systems with  

E-Print Network (OSTI)

heat and power systems (CHP) on this scale is called micro CHP (mCHP). First, the energy consumption-family household. The SOFC-mCHP system provides electricity as well as hot water for use and space heating heating located in larger cities. Secondly, there are CHP systems used in a decentralized form

Liso, Vincenzo

376

Multifuel fossil fired Power Plant combined with off-shore wind  

E-Print Network (OSTI)

diagram of the Multifuel Concept Biomass Gas/Coal/ Oil/ Boiler Steam Turbine plant Gas turbine with waste Straw Wood Oil ESP Desulphurisation plant Air preheater De-NOx plant Heat recovery units Gas turbines-Royce-Trent Gas/gas Efficiency Biomasse/Gas Coal/Gas Efficiency Electric Power MW Three Rolls-Royce Trent turbiner

377

Thermodynamics of combined-cycle electric power plants Harvey S. Leffa)  

E-Print Network (OSTI)

by the fuel. In 2010, U.S. Department of Energy data shows a net generation of 3:97 Ã? 1012 kWh of electrical an average thermal efficiency of about 0.34 for U.S. electricity generating plants. With clever use fossil fuel, nuclear, and geothermal electric power plants. For example, a plant with combustion

378

The importance of combined cycle generating plants in integrating large levels of wind power generation  

Science Conference Proceedings (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

379

Start-up Optimization of a Combined Cycle Power Plant A. Linda, E. Sllberga,  

E-Print Network (OSTI)

bModelon AB, Lund, Sweden cSiemens AG, Energy Sector, Erlangen, Germany Abstract In the electricity market of today, with increasing de- mand for electricity production on short notice, the combined cycle to opti- mize are explored. Results are encouraging and show that energy production during start-up can

380

Combined Heat and Power: Coal-Fired Air Turbine (CAT)-Cycle Plant  

DOE Green Energy (OSTI)

By combining an integrated system with a gas turbine, coal-fired air turbine cycle technology can produce energy at an efficiency rate of over 40%, with capital and operating costs below those of competing conventional systems. Read this fact sheet to discover the additional benefits of this exciting new technology.

Recca, L.

1999-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)  

SciTech Connect

This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.

Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

2011-03-20T23:59:59.000Z

382

Security assessment of power systems including energy storage. Progress report, July 1, 1978--September 30, 1978  

DOE Green Energy (OSTI)

Progress in assessing the security of power systems is reviewed. Further evaluation has been performed on the previously developed simplified model of the current-fed force-commutated converter (CFFCC). Validation studies were performed using the CFFCC as a control interface between a one-machine, three-bus power system equivalent and a superconducting magnetic energy storage device. The highlights of this investigation are reported. The identification of power system electromechanical models from systems measurements, with only normal load variation as a disturbing input, is being studied. A maximum liklihood estimation procedure has been partly developed. The procedure uses auto correlation information as an input rather than the observed time series.

Carroll, D.P.; Triezenberg, D.M.

1978-10-01T23:59:59.000Z

383

OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons  

Science Conference Proceedings (OSTI)

This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

1992-03-01T23:59:59.000Z

384

Biomass power industry: Assessment of key players and approaches for DOE and industry interaction  

DOE Green Energy (OSTI)

A review team established by the Department of Energy conducted an assessment of the US biomass power industry. The review team visited with more than 50 organizations representing all sectors of the biomass power industry including utilities, independent power producers, component manufacturers, engineering and construction contractors, agricultural organizations, industrial users, and regulatory organizations. DOE solicited industry input for the development of the Biomass Power Division`s Five Year Plan. DOE believed there was a critical need to obtain industry`s insight and working knowledge to develop the near- and long-term plans of the program. At the heart of this objective was the desire to identify near-term initiatives that the program could pursue to help accelerate the further development of biomass power projects.

Not Available

1994-01-01T23:59:59.000Z

385

Assessment of the technology transfer potential of federal photovoltaic power system applications to commercial markets. Final report  

DOE Green Energy (OSTI)

An assessment of the market potential of photovoltaic power supplies is presented. Markets analyzed include the water pumping market, marine navigational aids, cathodic protection, remote general power sources, telecommunications, air navigational aids, mobile generator market, instrumentation, and utility connected applications.

Jaras, T F

1979-06-01T23:59:59.000Z

386

Life Cycle Assessment of a Natural Gas Combined Cycle Power Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

% of total from natural gas production & distribution % of total from ammonia production & distribution Natural gas (in ground) 169.2 97.6% 0.0% 99.9% 0.1% Coal (in ground) 1.8...

387

Preliminary Feasibility Assessment of Geologic Carbon Sequestration Potential for TVA's John Sevier and Kingston Power Plants  

Science Conference Proceedings (OSTI)

This is a preliminary assessment of the potential for geologic carbon sequestration for the Tennessee Valley Authority's (TVA) John Sevier and Kingston power plants. The purpose of this assessment is to make a 'first cut' determination of whether there is sufficient potential for geologic carbon sequestration within 200 miles of the plants for TVA and Oak Ridge National Laboratory (ORNL) to proceed with a joint proposal for a larger project with a strong carbon management element. This assessment does not consider alternative technologies for carbon capture, but assumes the existence of a segregated CO{sub 2} stream suitable for sequestration.

Smith, Ellen D [ORNL; Saulsbury, Bo [ORNL

2008-03-01T23:59:59.000Z

388

Combined Heating and Power Using Microturbines in a Major Urban Hotel  

SciTech Connect

This paper describes the results of a cooperative effort to install and operate a Cooling, Heating and Power (CHP) System at a major hotel in San Francisco, CA. The packaged CHP System integrated four microturbines, a double-effect absorption chiller, two fuel gas boosters, and the control hardware and software to ensure that the system operated predictably, reliably, and safely. The chiller was directly energized by the recycled hot exhaust from the microturbines, and could be configured to provide either chilled or hot water. As installed, the system was capable of providing up to 227 kW of net electrical power and 142 Refrigeration Tons (RT) of chilled water at a 59oF (15oC) ambient temperature. For the year, the CHP efficiency was 54 percent. Significant lessons learned from this test and verification project are discussed as well as measured performance and economic considerations.

Sweetser, Richard [Exergy Partners Corp.; Wagner, Timothy [United Technologies Research Center (UTRC); Leslie, Neil [Gas Technology Institute; Stovall, Therese K [ORNL

2009-01-01T23:59:59.000Z

389

Alaska Power Administration combined financial statements, schedules and supplemental reports, September 30, 1995 and 1994  

Science Conference Proceedings (OSTI)

This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Alaska Power Administration`s (Alaska) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on Alaska`s internal control structure and on compliance with laws and regulations are also provided. The Alaska Power Administration operates and maintains two hydroelectric projects that include five generator units, three power tunnels and penstocks, and over 88 miles of transmission line. Additional information about Alaska Power Administration is provided in the notes to the financial statements. The 1995 financial statement audit was made under the provisions of the Inspector General Act (5 U.S.C. App.), as amended, the Chief Financial Officers (CFO) Act (31 U.S.C. 1500), and Office of Management and Budget implementing guidance to the CFO Act. The auditor`s work was conducted in accordance with generally accepted government auditing standards. To fulfill the audit responsibilities, the authors contracted with the independent public accounting firm of KPMG Peat Marwick (KPMG) to conduct the audit for us, subject to review. The auditor`s report on Alaska`s internal control structure disclosed no reportable conditions that could have a material effect on the financial statements. The auditor also considered the overview and performance measure data for completeness and material consistency with the basic financial statements, as noted in the internal control report. The auditor`s report on compliance with laws and regulations disclosed no instances of noncompliance by Alaska.

NONE

1995-12-31T23:59:59.000Z

390

Evaluation of Thermal Zero Liquid Discharge Treatment Technologies for Combined Cycle Gas Turbine Power Plants  

Science Conference Proceedings (OSTI)

A study was conducted to identify and update key details of zero liquid discharge (ZLD) water management systems currently operating at U.S. gas-fired combined cycle generating stations (CC). The study focused on not only the technologies applied, but also on the advantages and shortcomings of the various processes and summarized the lessons learned from the operating systems. Most ZLD's were found to employ one of four different types of water pretreatment process assemblies consisting of the following:...

2011-12-19T23:59:59.000Z

391

Standardization of HRSG production components for large, combined-cycle power plants  

SciTech Connect

Stein Industrie's experience in the development of heat recovery steam generators (HRSG) for combined cycle applications is briefly reviewed. Standardization of several components, the extended use of N.C. machine tools and automatic welding procedures have made it possible to improve quality as well as production costs. This process has been concentrated on three types of HRSG for 35, 100 and 200 MW class gas turbines. 4 figs.

Chellini, R.

1993-06-01T23:59:59.000Z

392

Preliminary comparative assessment of land use for the satellite power system (SPS) and alternative electric energy technologies  

DOE Green Energy (OSTI)

A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies has been conducted. The alternative technologies are coal-gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). Fusion was not included in this preliminary work but will be a part of the final evaluation based on available research, to identify a suitable assessment methodology, and to identify data deficiencies. The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts at comparative or single-technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research. (WHK)

Newsom, D.E.; Wolsko, T.D.

1980-04-01T23:59:59.000Z

393

Report to Congress on Assessment of Potential Impact of Concentrating Solar Power for Electriicty Generation (EPACT 2005--Section 934(c))  

DOE Green Energy (OSTI)

Summary of DOE's assessment of issues regarding EPAct 2005, which requires the Secretary of Energy to assess conflicting guidance on the economic potential of concentrating solar power for electricity production.

Wilkins, F.

2007-02-01T23:59:59.000Z

394

On the Complexity of Market Power Assessment in the Electricity Spot Markets  

E-Print Network (OSTI)

On the Complexity of Market Power Assessment in the Electricity Spot Markets Poonsaeng Visudhiphan David Bertagnoli of the New England ISO for the informative discussion and insights. This work was supported in part by the members of the Massachusetts Institute of Technology Energy Laboratory's Consortium

Ilic, Marija D.

395

Satellite power system concept development and evaluation program system definition technical assessment report  

DOE Green Energy (OSTI)

The results of the system definition studies conducted by NASA as a part of the Department of Energy/National Aeronautics and Space Administration SPS Concept Development and Evaluation Program are summarized. The purpose of the system definition efforts was to identify and define candidate SPS concepts and to evaluate the concepts in terms of technical and cost factors. Although the system definition efforts consisted primarily of evaluation and assessment of alternative technical approaches, a reference system was also defined to facilitate economic, environmental, and societal assessments by the Department of Energy. This reference system was designed to deliver 5 GW of electrical power to the utility grid. Topics covered include system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

Not Available

1980-12-01T23:59:59.000Z

396

Comparison of the leading candidate combinations of blanket materials, thermodynamic cycles, and tritium systems for full scale fusion power plants  

SciTech Connect

The many possible combinations of blanket materials, tritium generation and recovery systems, and power conversion systems were surveyed and a comprehensive set of designs were generated by using a common set of ground rules that include all of the boundary conditions that could be envisioned for a full- scale commercial fusion power plant. Particular attention was given to the effects of blanket temperature on power plant cycle efficiency and economics, the interdependence of the thermodynamic cycle and the tritium recovery system, and to thermal and pressure stresses in the blanket structure. The results indicate that, of the wide variety of systems that have been considered, the most promising employs lithium recirculated in a closed loop within a niobium blanket structure and cooled with boiling potassium or cesium. This approach gives the simplest and lowest cost tritium recovery system, the lowest pressure and thermal stresses, the simplest structure with the lowest probability of a leak, the greatest resistance to damage from a plasma energy dump, and the lowest rate of plasma contamination by either outgassing or sputtering. The only other blanket materials combination that appears fairly likely to give a satisfactory tritium generation and recovery system is a lithium-beryllium fluoride-Incoloy blanket, and even this system involves major uncertainties in the effectiveness, size, and cost of the tritium recovery system. Further, the Li$sub 2$BeF$sub 4$ blanket system has the disadvantage that the world reserves of beryllium are too limited to support a full-blown fusion reactor economy, its poor thermal conductivity leads to cooling difficulties and a requirement for a complex structure with intricate cooling passages, and this inherently leads to an expansive blanket with a relatively high probability of leaks. The other blanket materials combinations yield even less attractive systems. (auth)

Fraas, A.P.

1975-01-01T23:59:59.000Z

397

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network (OSTI)

assessment of natural gas combined cycle power plant withAnalysis: Natural Gas Combined Cycle (NGCC) Power Plant.of CO 2 emissions. Natural gas- and oil-fired power plants

Sathre, Roger

2013-01-01T23:59:59.000Z

398

1…10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1-10 kW Stationary Combined Heat 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL/BK-6A10-48265 November 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

399

Multimodel Combination by a Bayesian Hierarchical Model: Assessment of Ice Accumulation over the Oceanic Arctic Region  

Science Conference Proceedings (OSTI)

The performance of general circulation models (GCMs) varies across regions and periods. When projecting into the future, it is therefore not obvious whether to reject or to prefer a certain GCM. Combining the outputs of several GCMs may enhance ...

Malaak Kallache; Elena Maksimovich; Paul-Antoine Michelangeli; Philippe Naveau

2010-10-01T23:59:59.000Z

400

Subcontract Report: Modular Combined Heat & Power System for Utica College: Design Specification  

Science Conference Proceedings (OSTI)

Utica College, located in Utica New York, intends to install an on-site power/cogeneration facility. The energy facility is to be factory pre-assembled, or pre- assembled in modules, to the fullest extent possible, and ready to install and interconnect at the College with minimal time and engineering needs. External connections will be limited to fuel supply, electrical output, potable makeup water as required and cooling and heat recovery systems. The proposed facility will consist of 4 self-contained, modular Cummins 330kW engine generators with heat recovery systems and the only external connections will be fuel supply, electrical outputs and cooling and heat recovery systems. This project was eventually cancelled due to changing DOE budget priorities, but the project engineers produced this system design specification in hopes that it may be useful in future endeavors.

Rouse, Greg [Gas Technology Institute

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Model predictive control system and method for integrated gasification combined cycle power generation  

DOE Patents (OSTI)

Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

2013-04-09T23:59:59.000Z

402

Environmental assessment for the satellite power system concept development and evaluation program: atmospheric effects  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) has undertaken a preliminary, three-year program to investigate the impacts of the construction and operation of a satellite power system, of unprecedented scale. The Department of Energy's program, titled The Concept Development and Evaluation Program, focused its investigations on a Reference System description that calls for the use of either silicon (Si) or gallium aluminum-arsenide (GaAlAs) photovoltaic cells on 60 satellites to be constructed in GEO over a 30-yr period. Rectennas would be constructed on the ground to receive microwave energy from the satellites. Each satellite-rectenna pair is designed to produce 5 GW of power on an essentially continuous basis for use as a baseload power source for an electric power distribution system. The environmental assessment part of the program was divided into five interdependent task areas. The present document constitutes the final technical report on one of the five task areas, the Assessment of the Atmospheric Effects, and as such presents an in-depth summary of work performed during the assessment program. The issues associated with SPS activities in the troposphere are examined. These include tropospheric weather modification related to rectenna operations and rocket launches, and air quality impacts related to rocketlaunch ground clouds. Then progressing upward through the various levels of the atmosphere, the principal middle and upper atmospheric effects associated with rocket effluents are analyzed. Finally, all of the potential SPS atmospheric effects are summarized.

Rote, D.M.; Brubaker, K.L.; Lee, J.L.

1980-11-01T23:59:59.000Z

403

Satellite Power Systems (SPS): concept development and evaluation program, preliminary assessment  

DOE Green Energy (OSTI)

The Satellite Power System (SPS) is an emerging concept for capturing solar energy in space for use in producing electrical energy on earth. To develop an understanding of the technical and economic feasibility and of the environmental and societal acceptability of the SPS is an enormous challenge. The Department of Energy and the National Aeronautics and Space Administration are engaged in a three-year assessment of the SPS that began in the fall of 1977 and will be completed in the summer of 1980. The DOE/NASA assessment is engaging the efforts of many organizations in the United States and is developing a large body of information. At approximately the mid-point of the assessment, this preliminary project assessment report describes what has been done and what has been learned with an emphasis on the overriding issues.

Not Available

1979-09-01T23:59:59.000Z

404

Assessing Long-Term Wind Conditions by Combining Different Measure-Correlate-Predict Algorithms: Preprint  

DOE Green Energy (OSTI)

This paper significantly advances the hybrid measure-correlate-predict (MCP) methodology, enabling it to account for variations of both wind speed and direction. The advanced hybrid MCP method uses the recorded data of multiple reference stations to estimate the long-term wind condition at a target wind plant site. The results show that the accuracy of the hybrid MCP method is highly sensitive to the combination of the individual MCP algorithms and reference stations. It was also found that the best combination of MCP algorithms varies based on the length of the correlation period.

Zhang, J.; Chowdhury, S.; Messac, A.; Hodge, B. M.

2013-08-01T23:59:59.000Z

405

Development of hydrogeological modelling approaches for assessment of consequences of hazardous accidents at nuclear power plants  

SciTech Connect

This paper introduces some modeling approaches for predicting the influence of hazardous accidents at nuclear reactors on groundwater quality. Possible pathways for radioactive releases from nuclear power plants were considered to conceptualize boundary conditions for solving the subsurface radionuclides transport problems. Some approaches to incorporate physical-and-chemical interactions into transport simulators have been developed. The hydrogeological forecasts were based on numerical and semi-analytical scale-dependent models. They have been applied to assess the possible impact of the nuclear power plants designed in Russia on groundwater reservoirs.

Rumynin, V.G.; Mironenko, V.A.; Konosavsky, P.K.; Pereverzeva, S.A. [St. Petersburg Mining Inst. (Russian Federation)

1994-07-01T23:59:59.000Z

406

Effects of a carbon tax on microgrid combined heat and power adoption  

Science Conference Proceedings (OSTI)

This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A microgrid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The microgrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (microgrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-11-01T23:59:59.000Z

407

Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation  

SciTech Connect

A control system for a combined cycle electric power plant is described. It contains: at least one gas turbine including an exit through which heated exhaust gases pass; means for generating steam coupled to said gas turbine exit for transferring heat from the exhaust gases to a fluid passing through the steam generator; a steam turbine coupled to the steam generator and driven by the steam supplied thereby; means for generating electric power by the driving power of the turbines; condenser means for receiving and converting the spent steam from the steam turbine into condensate; and steam generating means comprising a low pressure storage tank, a first heat exchange tube, a boiler feedwater pump for directing fluid from a low pressure storage tank through the first heat exchange tube, a main storage drum, a second heat exchange tube, and a high pressure recirculation pump for directing fluid from the main storage pump through the second heat exchange tube. The control system monitors the temperature of the exhaust gas turbine gases as directed to the steam generator and deactuates the steam turbine when a predetermined temperature is exceeded.

Martz, L.F.; Plotnick, R.J.

1974-08-08T23:59:59.000Z

408

A feasibility assessment of magnetic bearings for free-piston Stirling space power converters  

DOE Green Energy (OSTI)

This report describes work performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061, {open_quotes}A Feasibility Assessment of Magnetic Bearings for Free-Piston Stirling Space Engines.{close_quotes} The work was performed over the period from July 1990 through August 1991. The objective of the effort was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in future long-term space missions.

Curwen, P.W.; Rao, D.K.; Wilson, D.S. [Mechanical Technology Inc., Latham, NY (United States)

1992-06-01T23:59:59.000Z

409

Effects of a carbon tax on combined heat and power adoption by a microgrid  

DOE Green Energy (OSTI)

This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid ((mu)Grid) consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A (mu)Grid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The (mu)Grid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without CHP equipment, such as water- and space-heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the (mu)Grid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean generation in California.

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-10-01T23:59:59.000Z

410

The Confusing Allure of Combined Heat and Power: The Financial Attraction and Management Challenge of Reducing Energy Spend and Resulting Carbon Emissions Through Onsite Power Generation  

E-Print Network (OSTI)

Sixty-one percent of global executives surveyed by McKinsey & Co. (in 2008) expect the issues associated with climate change to boost profits—if managed well. What these executives recognize is that new regulations, higher energy costs, and increased scrutiny by private gate-keepers (such as Wal-Mart) offer an opportunity to identify and implement more efficient practices in commercial and industrial environments. One of the most impactful solutions for the industrial sector—from the perspective of reducing energy spending and energy-related carbon emissions—is combined heat and power ("CHP"), sometimes referred to as cogeneration. However, the results of CHP deployment to date have been mixed—largely because companies do not fully appreciate the challenges of maintaining and operating a CHP system, optimizing its performance, and taking full advantage of the many benefits it offers. Despite these challenges, the slogan for CHP should perhaps be: "CHP, now more than ever".

Davis, R.

2009-05-01T23:59:59.000Z

411

Methodology for the comparative assessment of the Satellite Power System (SPS) and alternative technologies  

DOE Green Energy (OSTI)

A description of the initial methodology for the Comparative Assessment of the Satellite Power System Concept Development and Evaluation Program of NASA and DOE is presented. Included are study objectives, issue identification, units of measurement, methods, and data bases. The energy systems concerned are the satellite power system, several coal technologies, geothermal energy, fission, fusion, terrestrial solar systems, and ocean thermal energy conversion. Guidelines are suggested for the characterization of these systems, side-by-side analysis, alternative futures analysis, and integration and aggregation of data. The bulk of this report is a description of the methods for assessing the technical, economic, environmental, societal, and institutional issues surrounding the development of the selected energy technologies.

Wolsko, T.; Buehring, W.; Cirillo, R.; Gasper, J.; Habegger, L.; Hub, K.; Newsom, D.; Samsa, M.; Stenehjem, E.; Whitfield, R.

1980-01-01T23:59:59.000Z

412

Combining ultrasonic sward height and spectral signatures to assess the biomass of legume-grass swards  

Science Conference Proceedings (OSTI)

In binary mixtures of either white clover (Trifolium repens L.), red clover (Trifolium pratense L.) or lucerne (Medicago sativa L.) with perennial ryegrass (Lolium perenne L.) as well as in pure swards of each single species, biomass has been assessed ... Keywords: Grassland, Precision farming, Ultrasonic sensor, Vegetation index, Yield

Thomas Fricke, Michael Wachendorf

2013-11-01T23:59:59.000Z

413

Assessment of research directions for high-voltage direct-current power systems. Final report  

Science Conference Proceedings (OSTI)

High voltage direct current (HVDC) power transmission continues to be an emerging technology nearly thirty years after its introduction into modern power systems. To date its use has been restricted to either specialized applications having identifiable economic advantages (e.g., breakeven distance) or, rarely, applications where decoupling is needed. Only recently have the operational advantages (e.g., power modulation) of HVDC been realized on operating systems. A research project whose objective was to identify hardware developments and, where appropriate, system applications which can exemplify cost and operational advantages of integrated ac/dc power systems is discussed. The three principal tasks undertaken were: assessment of equipment developments; quantification of operational advantages; and interaction with system planners. Interest in HVDC power transmission has increased markedly over the past several years, and many new systems are now being investigated. The dissemination of information about HVDC, including specifically the symposium undertaken for Task 3, is a critical factor in fostering an understanding of this important adjunct to ac power transmission.

Long, W F

1982-09-01T23:59:59.000Z

414

DOE ORDER 5480.14, PHASE I - INSTALLATION ASSESSMENT FOR THE BETTIS ATOMIC POWER LABORATORY  

Office of Legacy Management (LM)

DOE ORDER 5480.14, PHASE I - INSTALLATION ASSESSMENT FOR THE BETTIS ATOMIC POWER LABORATORY Prepared for the U.S. Department of Energy by Westinghouse Electric Corporation West Mifflin, Pennsylvania 15122-0079 i' Vendor Contract Number: DE-ACll-76PN00014 : IAELE OF CONTENTS I. Executive Summary ............................................. 2. Introduction .................................................. a. Background......;.........................................i b. Authority .......................................................... : ; c. Purpose I ........................................................ 3 d Scope..................................................~..! e: Methodology...............................................! ........

415

Assessing Cancer Risk of Coal-Fired Power Plant Workers Exposed to PAHs  

Science Conference Proceedings (OSTI)

To study the relationship between the concentration of urinary 1-OH-Py, 3-OH-BaP and the degree as well as the pathways of human exposure to PAHs, we collected 24-hour air, dietary and urine samples of 60 oven workers in a coal-fired power plant of Central ... Keywords: biomarkers, medium-air and food, polycyclic aromatic hydrocarbons (PAHs), exposure assessment, cancer risk

Bin Li; Zhaolong Zhang; Haitao Fan; Cheng Zeng

2012-05-01T23:59:59.000Z

416

An assessment of mercury emissions and health risks from a coal-fired power plant  

Science Conference Proceedings (OSTI)

Title 3 of the 1990 Clean Air Act Amendments (CAAA) mandated that the US Environmental Protection Agency (EPA) evaluate the need to regulate mercury emissions from electric utilities. In support of this forthcoming regulatory analysis the U.S. DOE, sponsored a risk assessment project at Brookhaven (BNL) to evaluate methylmercury (MeHg) hazards independently. In the US MeHg is the predominant way of exposure to mercury originated in the atmosphere. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1,000 MW coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms was estimated to be quite small, especially when compared with the estimated background incidence in the population. The current paper summarizes the basic conclusions of this assessment and highlights issues dealing with emissions control and environmental transport.

Fthenakis, V.M.; Lipfert, F.; Moskowitz, P. [Brookhaven National Lab., Upton, NY (United States). Analytical Sciences Div.

1994-12-01T23:59:59.000Z

417

Direct-flash-steam geothermal-power-plant assessment. Final report  

DOE Green Energy (OSTI)

The objective of the project was to analyze the capacity and availability factors of an operating direct flash geothermal power plant. The analysis was to include consideration of system and component specifications, operating procedures, maintenance history, malfunctions, and outage rate. The plant studied was the 75 MW(e) geothermal power plant at Cerro Prieto, Mexico, for the years 1973 to 1979. To describe and assess the plant, the project staff reviewed documents, visited the plant, and met with staff of the operating utility. The high reliability and availability of the plant was documented and actions responsible for the good performance were identified and reported. The results are useful as guidance to US utilities considering use of hot water geothermal resources for power generation through a direct flash conversion cycle.

Alt, T.E.

1982-01-01T23:59:59.000Z

418

Published assessments bearing on the future use of ceramic superconductors by the electric power sector  

Science Conference Proceedings (OSTI)

Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report's purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

Giese, R.F.; Wolsky, A.M.

1992-08-25T23:59:59.000Z

419

Published assessments bearing on the future use of ceramic superconductors by the electric power sector  

Science Conference Proceedings (OSTI)

Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report`s purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science & Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

Giese, R.F.; Wolsky, A.M.

1992-08-25T23:59:59.000Z

420

Assessment of the status of fuel cell/battery vehicle power systems  

DOE Green Energy (OSTI)

An assessment of the status of the integrated fuel cell/battery power system concept for electric vehicle propulsion is reported. The fuel cell, operating on hydrogen or methanol (indirectly), acts as a very high capacity energy battery for vehicle sustaining operation, while a special power battery provides over-capacity transient power on demand, being recharged by the fuel cell, e.g., during cruising. A focused literature search and a set of industrial and Government contacts were carried out to establish views, outlooks, and general status concerning the concept. It is evident that, although vehicle battery R and D is being actively pursued, little of today's fuel cell work is directed to transportation usage. Only very limited attention has been, and is being, given to the fuel cell/battery power system concept itself. However, judging largely from computer-simulated driving cycle results, the concept can provide needed range capabilities and general operating flexibility to electric vehicles. New transportation applications, conventionally viewed as beyond the capability of electric vehicles, may thereby be practical, e.g., rail, trucks. In view of these potential and important benefits, and the absence of any comprehensive research, development, and demonstration activities which are supportive of the fuel cell/battery system concept, the initiation of an appropriate effort is recommended by the Assessment Team. This general recommendation is supported by applicable findings, observations, and conclusions.

Escher, W.J.D.; Foster, R.W.

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assessment of the status of fuel cell/battery vehicle power systems  

SciTech Connect

An assessment of the status of the integrated fuel cell/battery power system concept for electric vehicle propulsion is reported. The fuel cell, operating on hydrogen or methanol (indirectly), acts as a very high capacity energy battery for vehicle sustaining operation, while a special power battery provides over-capacity transient power on demand, being recharged by the fuel cell, e.g., during cruising. A focused literature search and a set of industrial and Government contacts were carried out to establish views, outlooks, and general status concerning the concept. It is evident that, although vehicle battery R and D is being actively pursued, little of today's fuel cell work is directed to transportation usage. Only very limited attention has been, and is being, given to the fuel cell/battery power system concept itself. However, judging largely from computer-simulated driving cycle results, the concept can provide needed range capabilities and general operating flexibility to electric vehicles. New transportation applications, conventionally viewed as beyond the capability of electric vehicles, may thereby be practical, e.g., rail, trucks. In view of these potential and important benefits, and the absence of any comprehensive research, development, and demonstration activities which are supportive of the fuel cell/battery system concept, the initiation of an appropriate effort is recommended by the Assessment Team. This general recommendation is supported by applicable findings, observations, and conclusions.

Escher, W.J.D.; Foster, R.W.

1980-02-01T23:59:59.000Z

422

Preliminary assessment of the environmental impacts of the Satellite Power System (SPS)  

DOE Green Energy (OSTI)

The impact of the Satellite Power System (SPS) Microwave Power Transmission System (MPTS) as well as impacts related to other elements of the total SPS on the environment are being determined. The goal of these programs is to advance the state of knowledge by the year 1980 to the point where an assessment can be made of the probability and severity of the impacts of the SPS. Assessments will be made of the effects on the health and safety of the public, and occupationally involved personnel, and the ecology; the upper and lower atmosphere including climatological impacts; and on communications systems including electromagnetic compatibility, the effects of microwave heating of the ionosphere and magnetosphere, and the effects of F-layer depletion by launch vehicle and transport vehicle effluents. If the assessment indicates that the impacts are acceptable or that feasible mitigating strategies can be implemented and if other related assessments (the impact on society and a competitive comparison of the SPS with other energy alternatives) are favorable, a decision may be made to implement the development of the SPS related technologies. This paper identifies postulated effects and summarizes the research efforts to determine whether or not these effects will occur.

Halverson, S.L.; Rote, D.M.; Rush, C.M.; Davis, K.; White, M.; Cahill, D.F.

1978-01-01T23:59:59.000Z

423

Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants  

Science Conference Proceedings (OSTI)

Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

Woo, H.H.; Lu, S.C.

1981-09-15T23:59:59.000Z

424

Comparative health and safety assessment of the satellite power system and other electrical generation alternatives  

DOE Green Energy (OSTI)

The work reported here is an analysis of existing data on the health and safety risks of a satellite power system and six electrical generation systems: a combined-cycle coal power system with a low-Btu gasifier and open-cycle gas turbine; a light water fission power system without fuel reprocessing; a liquid-metal, fast-breeder fission reactor; a centralized and decentralized, terrestrial, solar-photovoltaic power system; and a first-generation design for a fusion power system. The systems are compared on the basis of expected deaths and person-days lost per year associated with 1000 MW of average electricity generation. Risks are estimated and uncertainties indicated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The appendices provide more detailed information on risks, uncertainties, additional research needed, and references for the identified impacts of each system.

Not Available

1980-12-01T23:59:59.000Z

425

Combined cycle electric power plant with a steam turbine having a sliding pressure main bypass and control valve system  

SciTech Connect

A combined cycle electric power plant includes two gas turbines, a steam turbine, and a digital control system with an operator analog or manual backup. Each of the gas turbines has an exhaust heat recovery steam generator connected to a common header from which the steam is supplied by one or both of the steam generators for operating the steam turbine. The control system is of the sliding pressure type and maintains a predetermined steam pressure as a function of steam flow according to a predetermined characterization depending on the number of steam generators in service to limit the maximum steam velocity through the steam generators, and reduce the probability of water carryover into the steam turbine. Such control is always maintained by the bypass valve. The turbine control valve responds to the speed/load demand only, except when the bypass valve is closed and the rate of steam generation is insufficient to maintain a predetermined pressure flow relationship.

Uram, R.

1980-05-06T23:59:59.000Z

426

Nuclear Power 2010 Program Lessons Learned Report on the Combined Construction and Operating License/Design Certification Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power 2010 Program Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report August 30, 2012 Prepared by Longenecker and Associates DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not

427

A Design Tool for the Optimization of Stand-alone Electric Power Systems with Combined Hydrogen-Battery Energy Storage  

E-Print Network (OSTI)

A simulation design tool was developed to investigate the design and performance of stand-alone distributed renewable electric power systems. The temporal mismatch between energy production and use results in the inclusion of energy storage devices that can become an important and expensive component of these systems. To properly size all system components, a time response model with one hour resolution was developed. Specifically, the model developed here simulates one year of grid operation with the constraint that it be "stand-alone" - that is, that there be no net change in stored energy. With two storage components, hydrogen and batteries, the system size was calculated as a function of the battery storage size, and the total system was costed with battery size as the parameter. Calculations were performed for the specific case of residential use in Yuma, Arizona. In addition to determining the size and cost of this grid, it was found that the system costs using a combination of h...

Steven Vosen Combustion; S. R. Vosen; Microfiche Copy Ao; Steven R. Vosen

1997-01-01T23:59:59.000Z

428

Simulating Field-Scale Moisture Flow Using a Combined Power-Averaging and Tensorial Connectivity-Tortuosity Approach  

SciTech Connect

Various stochastic methods have been developed over the past two decades to estimate effective unsaturated hydraulic properties. We develop in this paper an alternative practical approach to estimate three-dimensional effective unsaturated hydraulic conductivity via a combined power-averaging and tensorial connectivity-tortuosity (PA-TCT) model. An application of the new approach to data collected at a field injection site suggests that the PA-TCT model provides 1) a reasonable framework for upscaling core-scale measurements and 2) an accurate simulation of moisture flow in a heterogeneous vadose zone. The heterogeneous media at the injection site is composed of multiple geologic units, each of which is represented by an anisotropic equivalent homogeneous medium (EHM). The directional effective hydraulic conductivity for each anisotropic EHM was determined by upscaling the laboratory-measured hydraulic properties with the combined PA-TCT approach. A larger difference between the power values in the horizontal and vertical directions indicates a larger macroscopic anisotropy in unsaturated hydraulic conductivity. A moment analysis was used to quantify the center of mass and the spread of the moisture content difference. Numerical simulations showed that, if the flow domain were treated as being isotropic, the vertical migration was significantly overestimated while the lateral movement was underestimated when compared to observations. To the contrary, if the media was treated as perfectly stratified, the lateral moisture movement was considerably overestimated while the vertical movement was underestimated. However, when the flow domain was modeled as being mildly anisotropic with the PA-TCT based parameters, the model can successfully predict the moisture flow and the simulated plume matched the observed moisture plume the best.

Zhang, Z. F.; Khaleel, Raziuddin

2010-09-02T23:59:59.000Z

429

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power  

Science Conference Proceedings (OSTI)

The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

2009-08-15T23:59:59.000Z

430

Recovery, transport, and disposal of CO{sub 2} from an integrated gasification combined-cycle power plant  

SciTech Connect

Initiatives to limit CO{sub 2} emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production and is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy efficiency impacts of controlling CO{sub 2} in such a system, and to provide the CO{sub 2} budget, or an equivalent CO{sub 2} budget, associated with each of the individual energy-cycle steps. The value used for the equivalent CO{sub 2} budget is 1 kg CO{sub 2}/kWh. The base case for the comparison is a 458-MW IGCC system using an air-blown Kellogg Rust Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No.6 bituminous coal, and in-bed sulfur removal. Mining, transportation, and preparation of the coal and limestone result in a net electric power production of 448 MW with a 0.872 kg/kWh CO{sub 2} release rate. For comparison, the gasifier output was taken through a water-gas shift to convert CO to CO{sub 2}, and processed in a Selexol unit to recover CO{sub 2} prior to the combustion turbine. A 500-km pipeline then took the CO{sub 2} to geological sequestering. The net electric power production was 383 MW with a 0.218 kg/kWh CO{sub 2} release rate.

Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

1993-12-31T23:59:59.000Z

431

Appropriate Methodology for Assessing the Economic Development Impacts of Wind Power  

DOE Green Energy (OSTI)

OAK-B135 Interest in wind power development is growing as a means of expanding local economies. Such development holds promise as a provider of short-term employment during facility construction and long-term employment from ongoing facility operation and maintenance. It may also support some expansion of the local economy through ripple effects resulting from initial increases in jobs and income. However, there is a need for a theoretically sound method for assessing the economic impacts of wind power development. These ripple effects stem from subsequent expenditures for goods and services made possible by first-round income from the development, and are expressed in terms of a multiplier. If the local economy offers a wide range of goods and services the resulting multiplier can be substantial--as much as three or four. If not, then much of the initial income will leave the local economy to buy goods and services from elsewhere. Loss of initial income to other locales is referred to as a leakage. Northwest Economic Associates (NEA), under contract to the National Wind Coordinating Committee (NWCC), investigated three case study areas in the United States where wind power projects were recently developed. The full report, ''Assessing the Economic Development Impacts of Wind Power,'' is available at NWCC's website http://www.nationalwind.org/. The methodology used for that study is summarized here in order to provide guidance for future studies of the economic impacts of other wind power developments. The methodology used in the NEA study was specifically designed for these particular case study areas; however, it can be generally applied to other areas. Significant differences in local economic conditions and the amount of goods and services that are purchased locally as opposed to imported from outside the will strongly influence results obtained. Listed below are some of the key tasks that interested parties should undertake to develop a reasonable picture of local economic impacts that may accrue from existing or future wind development.

NWCC Economic Development Work Group

2003-12-17T23:59:59.000Z

432

Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems  

SciTech Connect

Small-scale experimental work at Lawrence Livermore National Laboratory (LLNL) has confirmed that a direct carbon fuel cell (DCFC) containing a molten carbonate electrolyte completely reacts solid elemental carbon with atmospheric oxygen contained in ambient air at a temperature of 650-800 C. The efficiency of conversion of the chemical energy in the fuel to DC electricity is 75-80% and is a result of zero entropy change for this reaction and the fixed chemical potentials of C and CO{sub 2}. This is about twice as efficient as other forms power production processes that utilize solid fuels such as petroleum coke or coal. These range from 30-40% for coal fired conventional subcritical or supercritical boilers to 38-42% for IGCC plants. A wide range of carbon-rich solids including activated carbons derived from natural gas, petroleum coke, raw coal, and deeply de-ashed coal have been evaluated with similar conversion results. The rate of electricity production has been shown to correlate with disorder in the carbon structure. This report provides a preliminary independent assessment of the economic potential of DCFC for competitive power generation. This assessment was conducted as part of a Director's Research Committee Review of DCFC held at Lawrence Livermore National Laboratory (LLNL) on April 9, 2004. The key question that this assessment addresses is whether this technology, which appears to be very promising from a scientific standpoint, has the potential to be successfully scaled up to a system that can compete with currently available power generation systems that serve existing electricity markets. These markets span a wide spectrum in terms of the amount of power to be delivered and the competitive cost in that market. For example, DCFC technology can be used for the personal power market where the current competition for delivery of kilowatts of electricity is storage batteries, for the distributed generation market where the competition for on-site power generation in the range of 0.5 to 50 MW is small engines fueled with natural gas or liquid fuels or in the bulk power markets supplied usually by remote central station power plants with capacities of 250-1250 MW that deliver electricity to customers via the transmission and distribution grid. New power generation technology must be able to offer a significant cost advantage over existing technologies serving the same market to attract the interest of investors that are needed to provide funding for the development, demonstration, and commercialization of the technology. That path is both lengthy and expensive. One of the key drivers for any new power generation technology is the relative amount of pollutant emissions of all types, particularly those that are currently regulated or may soon be regulated. The new focus on greenhouse gas emissions offers a window of opportunity to DCFC technology because of its much higher conversion efficiency and the production of a very concentrated stream of CO{sub 2} in the product gas. This should offer a major competitive advantage if CO{sub 2} emissions are constrained by regulation in the future. The cost of CO{sub 2} capture, liquefaction, and pressurization has the potential to be much less costly with DCFC technology compared to other currently available forms of fossil fuel power generation.

Wolk, R

2004-04-23T23:59:59.000Z

433

Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems  

DOE Green Energy (OSTI)

Small-scale experimental work at Lawrence Livermore National Laboratory (LLNL) has confirmed that a direct carbon fuel cell (DCFC) containing a molten carbonate electrolyte completely reacts solid elemental carbon with atmospheric oxygen contained in ambient air at a temperature of 650-800 C. The efficiency of conversion of the chemical energy in the fuel to DC electricity is 75-80% and is a result of zero entropy change for this reaction and the fixed chemical potentials of C and CO{sub 2}. This is about twice as efficient as other forms power production processes that utilize solid fuels such as petroleum coke or coal. These range from 30-40% for coal fired conventional subcritical or supercritical boilers to 38-42% for IGCC plants. A wide range of carbon-rich solids including activated carbons derived from natural gas, petroleum coke, raw coal, and deeply de-ashed coal have been evaluated with similar conversion results. The rate of electricity production has been shown to correlate with disorder in the carbon structure. This report provides a preliminary independent assessment of the economic potential of DCFC for competitive power generation. This assessment was conducted as part of a Director's Research Committee Review of DCFC held at Lawrence Livermore National Laboratory (LLNL) on April 9, 2004. The key question that this assessment addresses is whether this technology, which appears to be very promising from a scientific standpoint, has the potential to be successfully scaled up to a system that can compete with currently available power generation systems that serve existing electricity markets. These markets span a wide spectrum in terms of the amount of power to be delivered and the competitive cost in that market. For example, DCFC technology can be used for the personal power market where the current competition for delivery of kilowatts of electricity is storage batteries, for the distributed generation market where the competition for on-site power generation in the range of 0.5 to 50 MW is small engines fueled with natural gas or liquid fuels or in the bulk power markets supplied usually by remote central station power plants with capacities of 250-1250 MW that deliver electricity to customers via the transmission and distribution grid. New power generation technology must be able to offer a significant cost advantage over existing technologies serving the same market to attract the interest of investors that are needed to provide funding for the development, demonstration, and commercialization of the technology. That path is both lengthy and expensive. One of the key drivers for any new power generation technology is the relative amount of pollutant emissions of all types, particularly those that are currently regulated or may soon be regulated. The new focus on greenhouse gas emissions offers a window of opportunity to DCFC technology because of its much higher conversion efficiency and the production of a very concentrated stream of CO{sub 2} in the product gas. This should offer a major competitive advantage if CO{sub 2} emissions are constrained by regulation in the future. The cost of CO{sub 2} capture, liquefaction, and pressurization has the potential to be much less costly with DCFC technology compared to other currently available forms of fossil fuel power generation.

Wolk, R

2004-04-23T23:59:59.000Z

434

Advanced power assessment for Czech lignite. Task 3.6, Volume 1  

SciTech Connect

The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is a challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.

Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

1995-12-01T23:59:59.000Z

435

Estimation of the reliability of space nuclear power systems by probabilistic risk assessment techniques  

E-Print Network (OSTI)

A successful space mission depends on the reliable operation of the spacecraft's electrical power system. For payloads requiring high power levels, various designs of space nuclear power systems (SNPS) are available. Designers have conducted limited spacecraft component reliability analysis and full-scale testing of SNPS is impractical. Therefore, a properly-designed reliability analysis, systematically applied, may provide an effective means for making judgments about the relative reliability of competing SNPSS. This work examines the applicability of probabilistic risk assessment (PRA) techniques for estimating SNPS reliability from design studies. The nuclear electric power industry has used PRA techniques to accurately analyze the reliability of complex systems. However, these PRA techniques for nuclear power plants require modifications for SNPS reliability assessment. This study validates these modified PRA techniques by examining the reliability of the SP-I 00 and the Small Ex-core Heat Pipe Thermionic Reactor (SEHPTR). The present analysis focuses on the SNPS failure to produce nominal electrical power. Typical events threatening the reliability of the SNPS will consist of hardware failures, external events, and command errors or software deficiencies. This work involves the following systematic steps for each SNPS: e System familiarization ³Performance of a "failure modes and effects analysis" to deten-nine how the failures of components might cause a system failure ³Construction of system and component fault trees ³Reliability data estimation³Fault tree quantification (using CAFTA'O and UNCERT'O) 'Me reliability data estimation relies on occurrence probabilities for each component failure mode. Various methods for estimating failure rates from existing reliability databases or from engineering approximations were investigated. This work employs the Monte Carlo sampling technique to associate numerical uncertainty levels with the quantitative reliability estimates produced for each SNPS. The quantitative results estimate the reliability of the systems studied as 0.9494 for the SP-100 and 0.9453 for the SEHPTR. The associated error factor is approximately 2.0, corresponding to the system modeling and reliability data uncertainties. Importance measures and sensitivity analyses indicate that the fuel damage, sensor, electrical component, mechanical component, drive, and power conditioning, control, and distribution subsystem failures can be critical to the system's reliability.

Gutner, Sophie Isabelle

1996-01-01T23:59:59.000Z

436

Assessment of the radiological impact of a decommissioning nuclear power plant in Italy  

E-Print Network (OSTI)

The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

A. Petraglia; C. Sabbarese; M. De Cesare; N. De Cesare; F. Quinto; F. Terrasi; A. D'Onofrio; P. Steier; L. K. Fifield; A. M. Esposito

2012-07-17T23:59:59.000Z

437

ASSESSMENT OF LOW COST NOVEL SORBENTS FOR COAL-FIRED POWER PLANT MERCURY CONTROL  

Science Conference Proceedings (OSTI)

This is a Technical Report under a program funded by the Department of Energy's National Energy Technology Laboratory (NETL) to obtain the necessary information to assess the viability of lower cost alternatives to commercially available activated carbon for mercury control in coal-fired utilities. During this reporting period, several sorbent samples have been tested by URS in their laboratory fixed-bed system. The sorbents were evaluated under conditions simulating flue gas from power plants burning Powder River Basin (PRB) and low sulfur eastern bituminous coals. The equilibrium adsorption capacities of the sorbents for both elemental and oxidized mercury are presented. A team meeting discussing the overall program and meetings with Midwest Generation and Wisconsin Electric Power Company (WEPCO) concerning field testing occurred during this reporting period.

Sharon Sjostrom

2002-02-22T23:59:59.000Z

438

Assessment of the radiological impact of a decommissioning nuclear power plant in Italy  

E-Print Network (OSTI)

The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

Petraglia, A; De Cesare, M; De Cesare, N; Quinto, F; Terrasi, F; D'Onofrio, A; Steier, P; Fifield, L K; Esposito, A M; 10.1051/radiopro/2012010

2012-01-01T23:59:59.000Z

439

Enloe power development feasibility assessment report. Public utility district No. 1 of Okanogan County  

DOE Green Energy (OSTI)

The feasibility of rehabilitating an existing power house at the Enloe Dam in Washington was evaluated with consideration of expected power production, social and environmental impacts, regulatory aspects, technical requirements, financing, costs, and market potential. This assessment showed that rebuilding the existing powerhouse and appurtenant facilities is technically feasible. Rebuilding the existing turbines and generators proved to be the most desirable of three alternatives considered. The following four factors lead to this conclusion: rebuilding the old equipment is less costly than installing new turbines and generators; no major structural changes to the powerhouse would be required; rebuilding the turbines with increased flow capacity made the rebuilding alternative competitive with new equipment from an energy production standpoint; and rebuilding is compatible with the Enloe site's recent addition to the National Register of Historic Places.

None

1979-02-01T23:59:59.000Z

440

Capturing Historical Knowledge for Decommissioning of Nuclear Power Plants: Summary of Historical Site Assessments at Eight Decommis sioning Plants  

Science Conference Proceedings (OSTI)

This report describes approaches utilized and experience gained in the development of early characterization activities by a number of nuclear power plants undergoing decommissioning. In particular, the report provides experience and lessons of performing the Historical Site Assessment, or HSA.

2004-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "assessment combined power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lessons Learned: Designing Successful Green Power Services: Phase II - Assessment of Green Power Products and Services in the United States  

Science Conference Proceedings (OSTI)

"Green power" -- electricity produced from renewable resources -- has emerged as a key product in the restructuring of electricity markets around the world. Residential and commercial end-use customers have been able to purchase green-power products everywhere that retail competition is allowed, and the "greenness" of power products is universally recognized as a unique product differentiator in competitive markets. This report focuses on green-power marketing and green-power products in states where a c...

2002-04-11T23:59:59.000Z

442

Identification of hazards in non-nuclear power plants. [Public health hazards of fossil-fuel, combined cycle, combustion turbine, and geothermal power plants  

DOE Green Energy (OSTI)

Public health and safety hazards have been identified for five types of power plants: coal-fired, oil-fired steam turbine, combined cycle, combustion (gas) turbine, and geothermal. The results of the analysis show that air pollutants are the major hazard that affects the health and safety of the general public. A total of ninety plant hazards were identified for the five plant types. Each of these hazards were rated in six categories as to their affect on the general public. The criteria used in the analysis were: area/population exposed; duration; mitigation; quantity to toxicity ratio; nature of health effects; and public attitude. Even though ninety hazards were identified for the five plants analyzed, the large majority of hazards were similar for each plant. Highest ratings were given to the products of the combustion cycle or to hydrogen sulfide emissions from geothermal plants. Water pollution, cooling tower effects and noise received relatively low ratings. The highest rated of the infrequent or hypothetical hazards were those associated with potential fires, explosions, and chlorine releases at the plant. Hazards associated with major cooling water releases, water pollution and missiles received the lowest ratings. Since the results of the study clearly show that air pollutants are currently considered the most severe hazard, additional effort must be made to further understand the complex interactions of pollutants with man and his environment. Of particular importance is the determination of dose-response relationships for long term, low level exposure to air pollutants. (EDB)

Roman, W.S.; Israel, W.J.; Sacramo, R.F.

1978-07-01T23:59:59.000Z

443

Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications  

SciTech Connect

A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

Soinski, Arthur; Hanson, Mark

2006-06-28T23:59:59.000Z

444

Steady-state simulation and optimization of an integrated gasification combined cycle power plant with CO2 capture  

SciTech Connect

Integrated gasification combined cycle (IGCC) plants are a promising technology option for power generation with carbon dioxide (CO2) capture in view of their efficiency and environmental advantages over conventional coal utilization technologies. This paper presents a three-phase, top-down, optimization-based approach for designing an IGCC plant with precombustion CO2 capture in a process simulator environment. In the first design phase, important global design decisions are made on the basis of plant-wide optimization studies with the aim of increasing IGCC thermal efficiency and thereby making better use of coal resources and reducing CO2 emissions. For the design of an IGCC plant with 90% CO2 capture, the optimal combination of the extent of carbon monoxide (CO) conversion in the water-gas shift (WGS) reactors and the extent of CO2 capture in the SELEXOL process, using dimethylether of polyethylene glycol as the solvent, is determined in the first phase. In the second design phase, the impact of local design decisions is explored considering the optimum values of the decision variables from the first phase as additional constraints. Two decisions are made focusing on the SELEXOL and Claus unit. In the third design phase, the operating conditions are optimized considering the optimum values of the decision variables from the first and second phases as additional constraints. The operational flexibility of the plant must be taken into account before taking final design decisions. Two studies on the operational flexibility of the WGS reactors and one study focusing on the operational flexibility of the sour water stripper (SWS) are presented. At the end of the first iteration, after executing all the phases once, the net plant efficiency (HHV basis) increases to 34.1% compared to 32.5% in a previously published study (DOE/NETL-2007/1281; National Energy Technology Laboratory, 2007). The study shows that the three-phase, top-down design approach presented is very useful and effective in a process simulator environment for improving efficiency and flexibility of IGCC power plants with CO2 capture. In addition, the study identifies a number of key design variables that has strong impact on the efficiency of an IGCC plant with CO2 capture.

Bhattacharyya, D.; Turton, R.; Zitney, S.

2011-01-01T23:59:59.000Z

445

White Paper to California Energy Commission on Assessment of Concentrated Solar Power David Barlev, Ruxandra Vidu, Pieter Stroeve  

E-Print Network (OSTI)

1 White Paper to California Energy Commission on Assessment of Concentrated Solar Power David Barlev, Ruxandra Vidu, Pieter Stroeve California Solar Energy Collaborative, University of California is put into the harvest and storage of solar energy for power generation. There are two mainstream

Islam, M. Saif

446

Probabilistic safety assessment and reliability based maintenance policies: application to the emergency diesel generators of a nuclear power plant  

Science Conference Proceedings (OSTI)

This study is performed on the four 2.5 MWe emergency diesel generator (EDG) sets of Hydro-Quebec Gentilly-2 Nuclear Power Station. EDGs are safety related systems for the case of the loss of off-site power. This study establishes the basis of an enhanced ... Keywords: emergency diesel generator, maintenance policy, probabilistic safety assessment

Georges Abdul-Nour; Michel Demers; Raynald Vaillancourt

2002-06-01T23:59:59.000Z

447

Assessment of the potential of solar thermal small power systems in small utilities. Final report  

DOE Green Energy (OSTI)

This study involved an assessment of the potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities. Five different solar thermal small power system configurations were considered in the study representing three different solar thermal technologies. The configurations included: (1) 1-MW, 2-MW, and 10-MW parabolic dish concentrators with a 15-kW heat engine mounted at the focal point of each dish. These systems utilized advanced battery energy storage. (2) A 10-MW system with variable slat concentrators and central steam Rankine energy conversion. This system utilized sensible thermal energy storage. (3) A 50-MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system. This system also utilized sensible thermal storage. The approach used in determining the potential for solar thermal small power systems in the small utility market involved a comparison of the economics of power supply expansion plans for seven hypothetical small utilities through the year 2000 both with and without the solar thermal small power systems. Insolation typical of the Southwestern US was assumed. A comparison of the break-even capital costs with the range of plant costs estimated in this study yields the following conclusions: (1) The parabolic dish concentrator systems could be economically competitive with conventional generation if the lowest capital costs can be achieved. (2) The variable slat concentrator and central receiver systems would have to achieve lower costs than the lowest in the cost ranges generally assumed in the study to become economically competitive. (3) All of the solar thermal plant types are potentially more competitive in utilities which are heavily dependent upon oil.

Steitz, P.; Mayo, L.G.; Perkins, S.P. Jr.

1978-11-01T23:59:59.000Z

448

Drawing a Bead on Energy Savings and Power Quality at a Wire Manufacturer: Energy Efficiency Assessment Case Study  

Science Conference Proceedings (OSTI)

An energy and power quality assessment was conducted at a manufacturer of wire stock. After defining the energy usage and power quality concerns, the audit team identified areas where energy could be saved and power quality issues mitigated. System losses, waste heat recovery, belt drive optimization, indoor and outdoor lighting, motor efficiency, and the electrical system were examined. After identifying possible savings and associated costs, the simple payback for suggested improvements was ...

2013-02-25T23:59:59.000Z

449

Quantitative Assessment of Human-Induced Loss of Offsite Power (HI-LOOP) Event Frequencies at U.S. Commercial Nuclear Power Plants (NPP)  

Science Conference Proceedings (OSTI)

This report provides a framework for developing improved methods and models for quantifying the frequencies of human-induced loss of offsite power (HI-LOOP) initiators at U.S. commercial nuclear power plants (NPPs). Leveraging these methods and models should enhance the NPP probabilistic risk assessment model completeness and would be useful for the NPP on-line risk models. The primary focus of the report is on investigating the impact of human activities on the frequencies of switchyard-centered ...

2013-04-04T23:59:59.000Z

450

Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes an economizer tube and a high pressure evaporator tube and a boiler feed pump for directing the heat exchange fluid serially through the aforementioned tubes. A condenser is associated with the steam turbine for converting the spent steam into condensate water to be supplied to a deaerator for removing undesired air and for preliminarily heating the water condensate before being pumped to the economizer tube. Condensate flow through the economizer tube is maintained substantially constant by maintaining the boiler feed pump at a predetermined, substantially constant rate. A bypass conduit is provided to feed back a portion of the flow heated in the economizer tube to the deaerator; the portion being equal to the difference between the constant flow through the economizer tube and the flow to be directed through the high pressure evaporator tube as required by the steam turbine for its present load.

Martz, L.F.; Plotnick, R.J.

1976-06-29T23:59:59.000Z