National Library of Energy BETA

Sample records for asphalt ethane propane

  1. Availability of Canadian imports to meet U.S. demand for ethane, propane and butane

    SciTech Connect (OSTI)

    Hawkins, D.J.

    1996-12-31

    Historically, Canada has had a surplus of ethane, propane and butane. Almost all of the available propane and butane in Canadian natural gas streams is recovered. While there is significant ethane recovery in Canada, ethane that cannot be economically sold is left in the gas streams. All of the surplus Canadian ethane and most of the Canadian surplus propane and butane is exported to the US. Some volumes of Canadian propane and butane have been moved offshore by marine exports to the Asia-Pacific region or South America, or directly to Mexico by rail. Essentially all of the Canadian ethane, 86% of the propane and 74% of the butane are recovered by gas processing. Canadian natural gas production has increased significantly over the last 10 years. Canadian gas resources in the Western Canadian Sedimentary Basin should permit further expansion of gas exports, and several gas pipeline projects are pending to expand the markets for Canadian gas in the US. The prospective increase in Canadian gas production will yield higher volumes of ethane, propane and butane. While there is a potential to expand domestic markets for ethane, propane and butane, a significant part of the incremental production will move to export markets. This paper provides a forecast of the expected level of ethane, propane and butane exports from Canada and discusses the supply, demand and logistical developments which may affect export availability from Canada.

  2. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation

    SciTech Connect (OSTI)

    Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T.

    2011-10-28

    Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

  3. Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation

    SciTech Connect (OSTI)

    Yoon, S.S.; Anh, D.H.; Chung, S.H.

    2008-08-15

    Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

  4. Ignition of ethane, propane, and butane in counterflow jets of cold fuel versus hot air under variable pressures

    SciTech Connect (OSTI)

    Fotache, C.G.; Wang, H.; Law, C.K.

    1999-06-01

    This study investigates experimentally the nonpremixed ignition of ethane, propane, n-butane, and isobutane in a configuration of opposed fuel versus heated air jets. For each of these fuels the authors explore the effects of inert dilution, system pressure, and flow strain rate, for fuel concentrations ranging between 3--100% by volume, pressures between 0.2 and 8 atm, and strain rates of 100--600 s{sup {minus}1}. Qualitatively, these fuels share a number of characteristics. First, flame ignition typically occurs after an interval of mild oxidation, characterized by minimal heat release, fuel conversion, and weak light emission. The temperature extent of this regime decreases with increasing the fuel concentration, the ambient pressure, or the flow residence time. Second, the response to strain rate, pressure, and fuel concentration is similar for all investigated fuels, in that the ignition temperatures monotonically decrease with increasing fuel content, decreasing flow strain, and increasing ambient pressure. The C{sub 4} alkanes, however, exhibit three distinct p-T ignition regimes, similar to the homogeneous explosion limits. Finally, at 1 atm, 100% fuel, and a fixed flow strain rate the ignition temperature increases in the order of ethane < propane < n-butane < i-butane. Numerical simulation was conducted for ethane ignition using detailed reaction kinetics and transport descriptions. The modeling results suggest that ignition for all fuels studied at pressures below 5 atm is initiated by fuel oxidation following the high-temperature mechanism of radical chain branching and with little contribution by low-to-intermediate temperature chemistry.

  5. Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions

    SciTech Connect (OSTI)

    Huang, J.; Bushe, W.K.

    2006-01-01

    The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

  6. Selective adsorption of ethylene over ethane and propylene over...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) ... of ethylene-ethane and propylene-propane mixtures could potentially be realized ...

  7. Ethan Hecht

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethan Hecht - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  8. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  9. Propane Basics

    SciTech Connect (OSTI)

    NREL

    2010-03-01

    Propane powers about 190,000 vehicles in the U.S. and more than 14 million worldwide. Propane vehicles are a good choice for many fleet applications including school buses, shuttle buses, taxies and light-duty trucks.

  10. Propane update

    U.S. Energy Information Administration (EIA) Indexed Site

    update March 30,2016 | Washington, DC (Inventory data as of 3/25/16; residential heating fuel prices as of 3/28/16) By U.S. Energy Information Administration 0 5 10 15 20 25 30 35 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 5-year range Inventories rolling 5-year Avg PADD 2 (Midwest) propane inventories near top of 5-year range U.S. Energy Information Administration 2 PADD 2 propane* inventories million barrels Source: EIA, Weekly Petroleum Status Report, data through March 25, 2016

  11. Residential propane prices surges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Midwest and Northeast propane prices much higher this winter than last year Households that heat with propane will pay for that propane at prices averaging 39 percent higher in the ...

  12. 2013 Propane Market Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    domestic propane prices will not fully delink from oil prices, and competition against electricity and natural gas in traditional propane markets will remain very challenging....

  13. Selective dehydrogenation of propane over novel catalytic materials

    SciTech Connect (OSTI)

    Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

    1998-02-01

    The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

  14. Propane Fuel Basics

    Broader source: Energy.gov [DOE]

    Propane, also known as liquefied petroleum gas (LPG), or autogas, is a clean-burning, high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles.

  15. Residential propane price decreases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    propane price decreases The average retail price for propane is 2.32 per gallon, down 2 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  16. Residential propane price increases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    propane price increases The average retail price for propane is 1.98 per gallon, up 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  17. Residential propane price decreases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    05, 2014 Residential propane price decreases The average retail price for propane fell to 2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel ...

  18. Residential propane prices increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane prices increase The average retail price for propane rose 3.9 cents from a week ago to 2.80 per gallon. That's up 53.7 cents from a year ago, based on the residential ...

  19. Residential propane prices stable

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    propane prices stable The average retail price for propane is 2.37 per gallon. That's down 4-tenths of a penny from a week ago, based on the U.S. Energy Information ...

  20. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is 2.39 per gallon, up 3.9 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  1. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is 2.38 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  2. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential propane price decreases The average retail price for propane fell to 3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel ...

  3. Residential propane price decreases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8, 2015 Residential propane price decreases The average retail price for propane is 2.34 per gallon, down 1.7 cents from last week, based on the residential heating fuel survey by ...

  4. Residential propane prices stable

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    propane price decreases The average retail price for propane is 2.40 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  5. Residential propane prices available

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4, 2015 Residential propane price increases The average retail price for propane is 1.92 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by ...

  6. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 2.03 per gallon, down 2-tenths of a cent from last week, based on the residential heating fuel survey ...

  7. Residential propane price

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane price increases The average retail price for propane is 2.29 per gallon, down 3.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  8. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    8, 2015 Residential propane price increases The average retail price for propane is 1.91 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by ...

  9. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    propane prices surges The average retail price for propane rose to an all-time high of 4.01 a gallon, that's up 1.05 from a week ago, based on the residential heating fuel survey ...

  10. Residential propane price increases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    propane price increases The average retail price for propane is 1.96 per gallon, up 1.8 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  11. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    5, 2014 Residential propane price decreases The average retail price for propane fell to 3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel ...

  12. Residential propane price decreases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane price decreases The average retail price for propane is 2.36 per gallon, down 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  13. Residential propane price

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    propane price decreases The average retail price for propane is 2.35 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  14. Residential propane price decreases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane price decreases The average retail price for propane is 2.39 per gallon, down 2.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  15. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is 2.02 per gallon, down 5-tenths of a cent from last week, based on the residential heating fuel survey ...

  16. Residential propane prices decreases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5, 2014 Residential propane prices decreases The average retail price for propane fell to 3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating ...

  17. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 1.91 per gallon, down 6.7 cents from last week, based on the residential heating fuel survey by the ...

  18. Residential propane price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane price increases The average retail price for propane is 2.03 per gallon, up 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy ...

  19. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose to 2.40 per gallon, up 1.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy ...

  20. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    2, 2014 Residential propane price decreases The average retail price for propane fell to 3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel ...

  1. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is 2.36 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  2. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is 2.36 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  3. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.41 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  4. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is 1.96 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  5. Residential propane price increases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential propane virtually unchanged The average retail price for propane is 2.02 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey ...

  6. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    propane prices available The average retail price for propane is 2.30 per gallon, based on the U.S. Energy Information Administration's weekly residential heating fuel survey. ...

  7. Residential propane prices increase

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    propane prices increase The average retail price for propane rose 4.8 cents from a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential ...

  8. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price increases The average retail price for propane is 1.94 per gallon, up 2 cents from last week, based on the residential heating fuel survey by the ...

  9. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is 2.01 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  10. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 1.92 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey ...

  11. Residential propane prices available

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1, 2015 Residential propane price increases The average retail price for propane is 1.90 per gallon, up 2-tenths of a cent from last week, based on the residential heating fuel ...

  12. Residential propane prices increase

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    propane prices increase The average retail price for propane rose 5.5 cents per gallon from last week to 2.62 per gallon; up 37.4 cents from a year ago, based on the residential ...

  13. Residential propane price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane price increases The average retail price for propane is 2.00 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  14. Residential propane prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    propane prices increase The average retail price for propane rose 10.3 cents from a week ago to 2.96 per gallon. That's up 68.1 cents from a year ago, based on the residential ...

  15. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 3.2 cents from a week ago to 2.86 per gallon. That's up 59.3 cents from a year ago, based on the residential ...

  16. Residential propane price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential propane price decreases The average retail price for propane is 2.01 per gallon, down 8-tenths of a cent from last week, based on the residential heating fuel survey ...

  17. Residential propane price decreases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane price decreases The average retail price for propane is 2.35 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  18. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 9.1 cents from a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential ...

  19. Residential propane prices increase

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    propane prices increase The average retail price for propane rose 2.3 cents per gallon from last week to 2.57 per gallon; up 32.2 cents from a year ago, based on the residential ...

  20. Residential propane price increases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    propane price increases The average retail price for propane is 2.02 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  1. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    propane prices available The average retail price for propane is 1.94 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. ...

  2. Residential propane prices increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane prices increase The average retail price for propane rose 2.5 cents from a week ago to 2.83 per gallon. That's up 56 cents from a year ago, based on the residential ...

  3. Residential propane price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane price increases The average retail price for propane is 1.98 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  4. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 1.99 per gallon, up 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  5. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is 2.01 per gallon, up 1.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  6. Residential propane price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane price increases The average retail price for propane is 2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  7. Residential propane prices surges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2014 Residential propane price decreases The average retail price for propane fell to 3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel ...

  8. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is 2.03 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey ...

  9. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is 2.36 per gallon, down 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy ...

  10. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is 2.37 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  11. Residential propane price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane price increases The average retail price for propane is 1.97 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. ...

  12. Residential propane price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2015 Residential propane price increases The average retail price for propane is 2.36 per gallon, up half of a cent from last week, based on the residential heating fuel survey ...

  13. Residential propane price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential propane price virtually unchanged The average retail price for propane is 2.03 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel ...

  14. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decrease The average retail price for propane is 2.37 per gallon, down 1.3 cents from last week, based on the residential heating fuel survey by the U.S. Energy ...

  15. Alternative Fuels Data Center: Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on

  16. Propane Bakery Delivery Step Vans

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Case Study - Propane Bakery Delivery Step Vans April 2016 1 Contents Background .......................................................................................................................................................................... 3 Motivation for Adopting Propane ................................................................................................................................... 3 Financial Benefits

  17. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    propane price increases The average retail price for propane is $2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 1-tenth of a cent from last week, and down 43

  18. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Residual Fuel Oil 511 Asphalt and Road Oil 931 * Includes propane, propylene, ethane, ethylene, normal butane, butylene, isobutane, isobutylene, and pentanes plus. Quantities ...

  19. EIA-801

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Residual Fuel Oil 511 Asphalt and Road Oil 931 Product Code PADD 1 Item Description * Includes ethane, ethylene, propane, propylene, normal butane, butylene, isobutane, ...

  20. Auto propane -- Some technical considerations

    SciTech Connect (OSTI)

    1998-12-31

    This booklet reviews some of the facts about propane as a vehicle fuel. It describes propane fuel properties, propane vehicle fuel systems and their components, propane vehicles and engines obtainable as original equipment from the vehicle manufacturer, after-market propane fuel system installations, propane vehicle operational characteristics, propane-fueled vehicle maintenance, government regulations and safety measures related to propane vehicles, and the environmental benefits of propane and propane-fueled vehicles. The final sections discuss the economics of propane vehicle ownership and the factors to be considered when estimating annual or lifetime savings or payback periods. Appendices include a directory of information sources, a sample worksheet for calculating payback, and examples of success stories relating the positive experiences of vehicle fleets with propane fueling.

  1. Propane Vehicle Basics

    Broader source: Energy.gov [DOE]

    There are more than 147,000 on-road propane vehicles in the United States. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce fewer harmful emissions.

  2. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  3. Residential propane price decreases slightly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propane price decreases slightly The average retail price for propane is 2.38 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by ...

  4. Residential propane price is unchanged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13, 2014 Residential propane price is unchanged The average retail price for propane is 2.40 per gallon, down one-tenth of a cent from last week, based on the residential heating ...

  5. Heating Oil and Propane Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  6. Alternative Fuels Data Center: Propane Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share

  7. Alternative Fuels Data Center: Propane Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production &

  8. Alternative Fuels Data Center: Propane Benefits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious Rank Alternative Fuels Data Center: Propane Benefits on Digg Find More places to share Alternative Fuels Data Center: Propane Benefits on AddThis.com... More in this section... Propane Basics

  9. Alternative Fuels Data Center: Propane Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Related Links to someone by E-mail Share Alternative Fuels Data Center: Propane Related Links on Facebook Tweet about Alternative Fuels Data Center: Propane Related Links on Twitter Bookmark Alternative Fuels Data Center: Propane Related Links on Google Bookmark Alternative Fuels Data Center: Propane Related Links on Delicious Rank Alternative Fuels Data Center: Propane Related Links on Digg Find

  10. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    The Federal forms below are required for State Energy Officials participating in the State Heating Oil and Propane Program (SHOPP) to execute their cooperative agreements with the ...

  11. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard ...

  12. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  13. Alternative Fuels Data Center: Propane Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane

  14. Alternative Fuels Data Center: Propane Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle

  15. Alternative Fuels Data Center: Propane Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on ...

  16. This Week In Petroleum Propane Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential propane prices (dollars per gallon) more price data Note: The heating season is over. Data for residential and wholesale prices for heating oil and propane will ...

  17. Sandia Energy - Sandia's Katrina Groth and Ethan Hecht win inaugural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Katrina Groth and Ethan Hecht win inaugural Robert Schefer Best Paper award Home CRF News News & Events Sandia's Katrina Groth and Ethan Hecht win inaugural Robert Schefer Best...

  18. Case Study … Propane School Bus Fleets

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane ................................................................................................................................... 4 Financial Benefits ........................................................................................................................................................... 4 Environmental and Energy Benefits ........................................................................................................................... 6 Project-Specific

  19. Propane Market Assessment for Winter

    Reports and Publications (EIA)

    1997-01-01

    1997-1998 Final issue of this report. This article reviews the major components of propane supply and demand in the United States and their status entering the 1997-1998 heating season.

  20. Propane Supply & Infrastructure Suggested Slides

    U.S. Energy Information Administration (EIA) Indexed Site

    Winter 2014-15: Propane Supply & Infrastructure For State Heating Oil and Propane Program (SHOPP) Workshop October 8, 2014 | Washington, DC By T. Mason Hamilton, Petroleum Markets Analyst U.S. Energy Information Administration Winter 2014-15 takeaways and potential issues- propane * Primary propane stocks in the Gulf Coast and Midwest are currently 10 million barrels (17%) above this time last year * Propane production from natural gas plants is up and is projected to average 970,000 bbl/d

  1. Microsoft Word - Joe Rose - Providence remarks.propane.JUR -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Propane Industries Goal: Ensure Propane Consumers are Served The winter of 2013-2014 proved a challenge for propane consumers in acquiring adequate supply at affordable prices. ...

  2. Liquefied propane carburetor modification system

    SciTech Connect (OSTI)

    Batchelor, D.R.; Batchelor, W.H.

    1983-01-25

    A system which can be retrofit into an existing conventional gasoline powered vehicle for enabling the vehicle to operate on either gasoline or liquefied propane fuel. The system includes a mixer in the form of an adapter to fit on the top of an existing carburetor. The mixer has a unique spring balanced metering device which controls flow of gaseous propane to the carburetor in proportion to airflow through the carburetor. The mixer is connected to a regulator assembly which receives liquid propane in a first chamber, heats the liquid propane to form a vapor, and feeds the vapor through an idle valve to control idling of the engine. The vapor is also passed to a second chamber of the regulator assembly in response to demand from the metering device which is sensed by a diaphragm actuated gas flow valve. From the second chamber, the gaseous propane is fed to a high speed inlet of the mixer. Engine manifold vacuum is also used to provide additional control for the gas flow valve to increase efficiency of the system. Other features include a special purpose fuel tank and an optional exhaust system oxygen sensor for further regulating gas flow to the engine.

  3. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    Respondents Q1: What is the purpose of this survey? The U.S. Energy Information Administration (EIA) Form EIA-877, "Winter Heating Fuels Telephone Survey," is designed to collect data on State-level stocks and residential prices of No. 2 heating oil and propane during the heating season. The data are used to monitor the prices of propane and No. 2 heating oil during the heating season, and to report to the Congress and others when requested. Q2: How does the survey work? The EIA-877

  4. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  5. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  6. Propane - A Mid-Heating Season Assessment

    Reports and Publications (EIA)

    2001-01-01

    This report will analyze some of the factors leading up to the rapid increase in propane demand and subsequent deterioration in supply that propelled propane prices to record high levels during December and early January.

  7. Residential propane price continues to decrease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2014 Residential propane price continues to decrease The average retail price for propane fell to 3.76 per gallon, down 13.4 cents from a week ago, based on the residential ...

  8. Residential propane price decreases slightly decreases slightly

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential propane price decreases slightly The average retail price for propane is 2.38 per gallon, down 3-tenths of a cent from last week, based on the residential ...

  9. Residential propane price continues to decrease

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0, 2014 Residential propane price decreases The average retail price for propane fell to 3.64 per gallon, down 12.7 cents from a week ago, based on the residential heating fuel ...

  10. Liquid Propane Injection Technology Conductive to Today's North...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection ...

  11. State Heating Oil and Propane Program Expansion of Propane Data Collection

    U.S. Energy Information Administration (EIA) Indexed Site

    State Heating Oil and Propane Program Expansion of Propane Data Collection Marcela Rourk April 14, 2014 | Washington, DC Key Topics Marcela Rourk, Washington, DC April 14, 2014 2 * Overview and history of State Heating Oil and Propane Program (SHOPP) * Expansion of propane data collection * What is expected of SEOs that participate? * Benefits of participation What is SHOPP? Marcela Rourk, Washington, DC April 14, 2014 3 * State Heating Oil and Propane Program (SHOPP) - cooperative data

  12. Surface Termination of M1 Phase and Rational Design of Propane Ammoxidation Catalysts

    SciTech Connect (OSTI)

    Guliants, Vadim

    2015-02-16

    This final report describes major accomplishments in this research project which has demonstrated that the M1 phase is the only crystalline phase required for propane ammoxidation to acrylonitrile and that a surface monolayer terminating the ab planes of the M1 phase is responsible for their activity and selectivity in this reaction. Fundamental studies of the topmost surface chemistry and mechanism of propane ammoxidation over the Mo-V-(Te,Sb)-(Nb,Ta)-O M1 and M2 phases resulted in the development of quantitative understanding of the surface molecular structure – reactivity relationships for this unique catalytic system. These oxides possess unique catalytic properties among mixed metal oxides, because they selectively catalyze three alkane transformation reactions, namely propane ammoxidation to acrylonitrile, propane oxidation to acrylic acid and ethane oxidative dehydrogenation, all of considerable economic significance. Therefore, the larger goal of this research was to expand this catalysis to other alkanes of commercial interest, and more broadly, demonstrate successful approaches to rational design of improved catalysts that can be applied to other selective (amm)oxidation processes.

  13. EERE Success Story-Nationwide: Southeast Propane Autogas Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Brings 1200 Propane Vehicles to the Road | Department of Energy Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road EERE Success Story-Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road February 10, 2014 - 12:00am Addthis The Southeast Propane Autogas Development Program, an $8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 new stations to

  14. Ethane from associated gas still the most economical

    SciTech Connect (OSTI)

    Farry, M.

    1998-06-08

    Ethane extracted from associated gas is one of the cheapest ways to produce ethylene. This is the conclusion reached by a set of recent studies on natural gas processing and conversion published by Chem Systems Ltd. Ethane cracking usually requires a large gas project for ethane to be produced in sufficient quantity for a world-scale cracker, limiting the number of cases where this is feasible. Ethane extracted from LNG plants is an alternative source of cracker feedstock. Although more costly, gas-to-olefins technology is a potential alternative to ethane cracking.

  15. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    SciTech Connect (OSTI)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-03-20

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  16. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  17. State heating oil and propane program

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

  18. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  19. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  20. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

  1. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

  2. Microsoft PowerPoint - Propane_Briefing_140312.pptx

    U.S. Energy Information Administration (EIA) Indexed Site

    Midwest West U.S. total 116 million homes natural gas propane heating oil electricity wood keroseneotherno heating propane 4.5% 7% Of all homes heated by propane, 36% are in the ...

  3. Alternative Fuels Data Center: Boston Public Schools Moves to Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Boston Public Schools Moves to Propane to someone by E-mail Share Alternative Fuels Data Center: Boston Public Schools Moves to Propane on Facebook Tweet about Alternative Fuels Data Center: Boston Public Schools Moves to Propane on Twitter Bookmark Alternative Fuels Data Center: Boston Public Schools Moves to Propane on Google Bookmark Alternative Fuels Data Center: Boston Public Schools Moves to Propane on Delicious Rank Alternative Fuels Data Center: Boston Public Schools Moves to Propane on

  4. Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in

  5. Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg

  6. GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open...

    Open Energy Info (EERE)

    FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE:...

  7. Propane vehicles : status, challenges, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

    2010-06-17

    Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle

  8. Ethane-xenon mixtures under shock conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle Robert; Flicker, Dawn G.

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, themore » DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.« less

  9. Ethane-xenon mixtures under shock conditions

    SciTech Connect (OSTI)

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle Robert; Flicker, Dawn G.

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, the DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.

  10. Cool Asphalt Shingles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cool Asphalt Shingles Cool Asphalt Shingles Berkeley Lab Heat Island Group research assistant Sharon Chen prepares a prototype of high-performance cool shingle roofing. Credit: Heat Island Group, Lawrence Berkeley National Laboratory Berkeley Lab Heat Island Group research assistant Sharon Chen prepares a prototype of high-performance cool shingle roofing. Credit: Heat Island Group, Lawrence Berkeley National Laboratory Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA

  11. Knoxville Area Transit: Propane Hybrid Electric Trolleys

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

  12. Liquid Propane Injection Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquid propane injection technology meets manufacturing/assembly guidelines, maintenance/repair strategy, and regulations, with same functionality, horsepower, and torque as gasoline counterpart. deer10_arnold.pdf (2.29

  13. QER- Comment of Propane Education & Research Council

    Broader source: Energy.gov [DOE]

    I plan to attend and ask a question of the Secretary regarding propane supply for the upcoming winter. Please do not hesitate to call or email if you have questions. Tucker Perkins

  14. QER- Comment of National Propane Gas Association

    Office of Energy Efficiency and Renewable Energy (EERE)

    Ladies and Gentlemen: Please find attached the QER comments of the National Propane Gas Association. Please feel to contact us if we can provide further information. Thank you for your attention to our submission.

  15. Alternative Fuels Data Center: Federal Laws and Incentives for Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Propane to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Propane on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Propane on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for

  16. Alternative Fuels Data Center: Propane Buses Save Money for Virginia

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Google Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Delicious Rank Alternative Fuels Data

  17. Alternative Fuels Data Center: Propane Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative

  18. Alternative Fuels Data Center: Propane Mowers Help National Park Cut

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Propane Mowers Help National Park Cut Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Google Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Delicious Rank Alternative

  19. Alternative Fuels Data Center: Propane Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Propane Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Propane Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Google Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Delicious Rank Alternative Fuels Data Center: Propane Production and Distribution on Digg Find More places to

  20. Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Company Rolling Propane Vans Keep Kansas City Transportation Company Rolling to someone by E-mail Share Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation Company Rolling on Facebook Tweet about Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation Company Rolling on Twitter Bookmark Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation Company Rolling on Google Bookmark Alternative Fuels Data Center: Propane Vans Keep

  1. Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vans Renzenberger Inc Saves Money With Propane Vans to someone by E-mail Share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Facebook Tweet about Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Twitter Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Google Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Delicious Rank Alternative Fuels Data

  2. Rapid determination of actinides in asphalt samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  3. Rapid determination of actinides in asphalt samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  4. State Heating Oil and Propane Program

    U.S. Energy Information Administration (EIA) Indexed Site

    Program Marcela Rourk 2014 SHOPP Workshop October 8, 2014 | Washington, DC Key Topics Marcela Rourk, Washington, DC October 8, 2014 2 * Expansion of propane data collection * EIA resources available to States * Improvements to SHOPP What is SHOPP? Marcela Rourk, Washington, DC October 8, 2014 3 * State Heating Oil and Propane Program (SHOPP) - cooperative data collection effort between EIA and State Energy Offices (SEOs) - data used by policymakers, industry analysts, and consumers - collects

  5. New Cool Roof Coatings and Affordable Cool Color Asphalt

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak ... roof coatings and asphalt shingles to reduce energy consumption of new and existing roofs. ...

  6. Heating Oil and Propane Update - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    all Petroleum Reports Heating Oil and Propane Update Note: The heating season is over. Data for residential and wholesale prices for heating oil and propane will return in October 2016. Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. Propane Heating oil Residential propane graphs Residential Propane (dollars per gallon)more price data › change from 03/28/16 week ago year ago U.S. Average 2.008 -0.006 -0.284 East

  7. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect (OSTI)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  8. No. 2 heating oil/propane program

    SciTech Connect (OSTI)

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  9. Electron attenuation in free, neutral ethane clusters

    SciTech Connect (OSTI)

    Winkler, M.; Harnes, J.; Brve, K. J.; Myrseth, V.

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (?), allowing N and ? to be determined by optimizing the goodness-of-fit ?{sup 2}(N, ?) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4??1.9 , in good agreement with an independent estimate of 10 formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  10. Bakery Switches to Propane Vans | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bakery Switches to Propane Vans By Jo Napolitano * April 21, 2016 Tweet EmailPrint A switch to propane from diesel by a major Midwest bakery fleet showed promising results, ...

  11. EERE Success Story-Nationwide: Southeast Propane Autogas Development...

    Broader source: Energy.gov (indexed) [DOE]

    Services converted 29 vans to run on propane, saving more than 1.50 per gallon on ... Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Green Means Go for Hybrid and ...

  12. NREL: Transportation Research - NREL Evaluates Propane-to-Electricity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shuttle Bus Conversion at Zion National Park Evaluates Propane-to-Electricity Shuttle Bus Conversion at Zion National Park July 14, 2016 Photo of shuttle buses in mountain setting. NREL is evaluating the drive-cycle characteristics of a fleet of propane-powered shuttle buses operating at Zion National Park. The National Park Service (NPS) originally deployed the propane buses in 2000 to reduce congestion along the park's main traffic corridor. As the propane-powered fleet ages and associated

  13. Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Savings for Years to Come Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come to someone by E-mail Share Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Facebook Tweet about Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Twitter Bookmark Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Google

  14. Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Buses to Its Fleet Delaware Transit Corporation Adds Propane Buses to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Google Bookmark Alternative Fuels Data Center: Delaware Transit

  15. Liquid Propane Injection Technology Conductive to Today's North American Specification

    Office of Energy Efficiency and Renewable Energy (EERE)

    Liquid propane injection technology can offer the same power, torque, and environmental vehicle performance while reducing imports of foreign oil

  16. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

  17. Texas Propane Vehicle Pilot Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt058_ti_ball_2012_o.pdf (1.29 MB) More Documents & Publications Texas Propane Vehicle Pilot Project Texas Propane Fleet Pilot Program Southeast Propane AutoGas Development Program

  18. Case Study - Propane School Bus Fleets

    SciTech Connect (OSTI)

    Laughlin, M; Burnham, A.

    2014-08-31

    As part of the U.S. Department of Energy’s (DOE’s) effort to deploy transportation technologies that reduce U.S. dependence on imported petroleum, this study examines five school districts, one in Virginia and four in Texas, successful use of propane school buses. These school districts used school buses equipped with the newly developed liquid propane injection system that improves vehicle performance. Some of the school districts in this study saved nearly 50% on a cost per mile basis for fuel and maintenance relative to diesel. Using Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool developed for the DOE’s Clean Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty vehicles, the results showed payback period ranges from 3—8 years, recouping the incremental cost of the vehicles and infrastructure. Overall, fuel economy for these propane vehicles is close to that of displaced diesel vehicles, on an energy-equivalent basis. In addition, the 110 propane buses examined demonstrated petroleum displacement, 212,000 diesel gallon equivalents per year, and GHG benefits of 770 tons per year.

  19. Portland Public School Children Move with Propane

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 2-page Clean Cities fact sheet describes the use of propane as a fuel source for Portland Public Schools' fleet of buses. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Portland Public Schools.

  20. Investigation of Compton profiles of molecular methane and ethane

    SciTech Connect (OSTI)

    Zhao, Xiao-Li; Xu, Long-Quan; Kang, Xu; Liu, Ya-Wei; Ni, Dong-Dong; Zhu, Lin-Fan; Yang, Ke Ma, Yong-Peng; Yan, Shuai

    2015-02-28

    The Compton profiles of methane and ethane molecules have been determined at an incident photon energy of 20 keV based on the third generation synchrotron radiation, and the statistical accuracy of 0.2% is achieved near p{sub z} = 0. The density functional theory with aug-cc-pVTZ basis set was used to calculate the Compton profiles of methane and ethane. The present experimental Compton profiles are in better agreement with the theoretical calculations in the whole p{sub z} region than the previous experimental results, which indicates that the present experimental Compton profiles are accurate enough to serve as the benchmark data for methane and ethane molecules.

  1. Surface roughness effects on the solar reflectance of cool asphalt...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Surface roughness effects on the solar reflectance of cool asphalt shingles Citation Details In-Document Search Title: Surface roughness effects on the solar ...

  2. High ethylene to ethane processes for oxidative coupling

    DOE Patents [OSTI]

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  3. High ethylene to ethane processes for oxidative coupling

    DOE Patents [OSTI]

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  4. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

  5. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  6. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  7. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  8. Alternative Fuels Data Center: Propane Powers Airport Shuttles...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Electric Ice Resurfacers Improve Air Quality in Minnesota Sept. 14, 2013 Photo ... Fuels Dec. 25, 2010 Tennessee Reduces Pollution With Propane Hybrid Trolleys Dec. 11, ...

  9. Emissions with butane/propane blends

    SciTech Connect (OSTI)

    1996-11-01

    This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

  10. Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Rolls on as Reliable Fleet Fuel to someone by E-mail Share Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel on Facebook Tweet about Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel on Twitter Bookmark Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel on Google Bookmark Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel on Delicious Rank Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet

  11. Method for the removal of carbonyl sulfide from liquid propane

    SciTech Connect (OSTI)

    McClure, G.

    1980-06-17

    A method for the removal of carbonyl sulfide from liquid propane under liquid-liquid contact conditions by mixing liquid propane containing carbonyl sulfide as an impurity with 2-(2-aminoethoxy) ethanol as the principal agent for the carbonyl sulfide removal. The 2(2-aminoethoxy) ethanol is reclaimed and reused for further carbonyl sulfide removal. 5 claims.

  12. Southeast Propane AutoGas Development Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt065_ti_jenkins_2011_p.pdf (1.23 MB) More Documents & Publications Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program State of Indiana/Greater IN Clean Cities Alternative Fuels Implementation Plan

  13. Texas Propane Vehicle Pilot Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt058_ti_kelly_2011_p.pdf (429.22 KB) More Documents & Publications Texas Propane Vehicle Pilot Project Texas Propane Fleet Pilot Program Progress Report Template

  14. National propane safety week caps fifth anniversary of GAS Check

    SciTech Connect (OSTI)

    Prowler, S.

    1990-09-01

    This paper reports on National Propane Safety Week. The publicity encompassed everything from preventative maintenance to safe winter storage of cylinders. This campaign focused much of its attention on GAS (gas appliance system) Check, the propane industry's most well-known safety program.

  15. Microsoft PowerPoint - Joe Rose.Providence.Propane Supply Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propane Supply & Infrastructure Prepared for Quadrennial Energy Review Home Heating Panel ... between October 2013 and March 2014, propane demand came in about 570 million gallons ...

  16. Safety evaluation for packaging (onsite) nitrogen trailers propane tanks

    SciTech Connect (OSTI)

    Ferrell, P.C.

    1998-01-28

    The purpose of the Safety Evaluation for Packaging (SEP) is the evaluation and authorization of the onsite transport of propane tanks that are mounted on the Lockheed Martin Hanford Corporation Characterization Project`s nitrogen trailers. This SEP authorizes onsite transport of the nitrogen trailers, including the propane tanks, until May 31, 1998. The three nitrogen trailers (HO-64-4966, HO-64-4968, and HO-64-5170) are rated for 1,361 kg (30,000 lb) and are equipped with tandem axles and pintel hitches. Permanently mounted on each trailer is a 5,678 L (1,500 gal) cryogenic dewar that is filled with nitrogen, and a propane fired water bath vaporizer system, and a 454 L (1 20 gal) propane tank. The nitrogen trailer system is operated only when it is disconnected from the tow vehicle and is leveled and stabilized. When the trailers are transported, the propane tanks are isolated via closed supply valves.

  17. Ethane oxidative dehydrogenation pathways on vanadium oxide catalysts

    SciTech Connect (OSTI)

    Argyle, Morris; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-12-10

    Kinetic and isotopic tracer and exchange measurements were used to determine the identity and reversibility of elementary steps involved in ethane oxidative dehydrogenation (ODH) on VOx/Al2O3 and VOx/ZrO2. C2H6-C2D6-O2 and C2H6-D2O-O2 react to form alkenes and COx without concurrent formation of C2H6-xDx orC2H4-xDx isotopomers, suggesting that C-H bond cleavage in ethane and ethene is an irreversible and kinetically relevant step in ODH and combustion reactions. Primary ethane ODH reactions show normal kinetic isotopic effects (kC-H/kC-D) 2.4; similar values were measured for ethane and ethene combustion(1.9 and 2.8, respectively). 16O2-18O2-C2H6 reactions on supported V16Ox domains led to the initial appearance of 16O from the lattice in H2O, CO, and CO2, consistent with the involvement of lattice oxygen in C-H bond activation steps. Isotopic contents are similar in H2O, CO, and CO2, suggesting that ODH and combustion reactions use similar lattice oxygen sites. No 16O-18O isotopomer s were detected during reactions of 16O2-18O2-C2H6 mixtures, as expected if dissociative O2 chemisorption steps were irreversible. The alkyl species formed in these steps desorb irreversibly as ethene and the resulting O-H groups recombine to form H2O and reduced V centers in reversible desorption steps. These reduced V centers reoxidize by irreversible dissociative chemisorption of O2. A pseudo-steady state analysis of these elementary steps together with these reversibility assumptions led to a rate expression that accurately describes the observed inhibition of ODH rates by water and the measured kinetic dependence of ODH rates on C2H6 and O2 pressures. This kinetic analysis suggests that surface oxygen, OH groups, and oxygen vacancies are the most abundant reactive intermediates during ethane ODH on active VOx domains.

  18. Ethane oxidative dehydrogenation pathways on vanadium oxide catalysts

    SciTech Connect (OSTI)

    Argyle, Morris; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-12-10

    Kinetic and isotopic tracer and exchange measurements were used to determine the identity and reversibility of elementary steps involved in ethane oxidative dehydrogenation (ODH) on VOx/Al2O3 and VOx/ZrO2. C2H6-C2D6-O2 and C2H6-D2O-O2 react to form alkenes and COx without concurrent formation of C2H6-xDx orC2H4-xDx isotopomers, suggesting that C-H bond cleavage in ethane and ethene is an irreversible and kinetically relevant step in ODH and combustion reactions. Primary ethane ODH reactions show normal kinetic isotopic effects (kC-H/kC-D 2.4); similar values were measured for ethane and ethene combustion(1.9 and 2.8, respectively). 16O2-18O2-C2H6 reactions on supported V16Ox domains led to the initial appearance of 16O from the lattice in H2O, CO, and CO2, consistent with the involvement of lattice oxygen in C-H bond activation steps. Isotopic contents are similar in H2O, CO, and CO2, suggesting that ODH and combustion reactions use similar lattice oxygen sites. No 16O-18O isotopomer s were detected during reactions of 16O2-18O2-C2H6 mixtures, as expected if dissociative O2 chemisorption steps were irreversible. The alkyl species formed in these steps desorb irreversibly as ethene and the resulting O-H groups recombine to form H2O and reduced V centers in reversible desorption steps. These reduced V centers reoxidize by irreversible dissociative chemisorption of O2. A pseudo-steady state analysis of these elementary steps together with these reversibility assumptions led to a rate expression that accurately describes the observed inhibition of ODH rates by water and the measured kinetic dependence of ODH rates on C2H6 and O2 pressures. This kinetic analysis suggests that surface oxygen, OH groups, and oxygen vacancies are the most abundant reactive intermediates during ethane ODH on active VOx domains.

  19. Emissions results for dedicated propane Chrysler minivans: the 1996 propane vehicle challenge

    SciTech Connect (OSTI)

    Buitrago, C.; Sluder, S.; Larsen, R.

    1997-02-01

    The U.S. Department of Energy (US DOE), through Argonne National Laboratory, and in cooperation with Natural Resources-Canada and Chrysler Canada, sponsored and organized the 1996 Propane Vehicle Challenge (PVC). For this competition , 13 university teams from North America each received a stock Chrysler minivan to be converted to dedicated propane operation while maintaining maximum production feasibility. The converted vehicles were tested for performance (driveability, cold- and hot-start, acceleration, range, and fuel economy) and exhaust emissions. Of the 13 entries for the 1996 PVC, 10 completed all of the events scheduled, including the emissions test. The schools used a variety of fuel-management, fuel-phase and engine-control strategies, but their strategies can be summarized as three main types: liquid fuel-injection, gaseous fuel-injection, and gaseous carburetor. The converted vehicles performed similarly to the gasoline minivan. The University of Windsor`s minivan had the lowest emissions attaining ULEV levels with a gaseous-injected engine. The Texas A&M vehicle, which had a gaseous-fuel injection system, and the GMI Engineering and Management Institute`s vehicle, which had a liquid-injection system both reached LEV levels. Vehicles with an injection fuel system (liquid or gaseous) performed better in terms of emissions than carbureted systems. Liquid injection appeared to be the best option for fuel metering and control for propane, but more research and calibration are necessary to improve the reliability and performance of this design.

  20. Large-Scale Computational Screening of Zeolites for Ethane/Ethene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were performed with graphics processing units (GPUs) to obtain pure component adsorption isotherms for both ethane and ethene. We have utilized the ideal adsorbed solution...

  1. Ethane ignition and oxidation behind reflected shock waves

    SciTech Connect (OSTI)

    de Vries, Jaap; Hall, Joel M.; Simmons, Stefanie L.; Kalitan, Danielle M.; Petersen, Eric L.; Rickard, Matthew J.A.

    2007-07-15

    Several diluted C{sub 2}H{sub 6}/O{sub 2}/Ar mixtures of varying concentrations and equivalence ratios (0.5<{phi}<2.0) were studied at temperatures between 1218 and 1860 K and at pressures between 0.57 and 3.0 atm using a shock tube. The argon dilution ranged from 91 to 98% by volume. Reaction progress was monitored using chemiluminescence emission from OH{sup *} and CH{sup *} at 307 and 431 nm, respectively. The dependence of ignition delay time on temperature, activation energy, and reactant concentrations is given in a master correlation of all the experimental data. The overall activation energy was found to be 39.6 kcal/mol over the range of conditions studied. For the first time in a shock-tube C{sub 2}H{sub 6} oxidation study, detailed species profile data and quantitative OH{sup *} time histories were documented, in addition to ignition delay times, and compared against modern detailed mechanisms. Because of the comprehensive scope of the present study and the high precision of the experimental data, several conclusions can be drawn that could not have been reached from earlier studies. Although there is some discrepancy among previous ethane oxidation data, the present work clearly shows the convergence of ignition delay time measurements to those herein and the remarkable accuracy of current kinetics models over most of the parameter space explored, despite the variation in the literature data. However, two areas shown to still need more measurements and better modeling are those of higher pressures and fuel-rich ethane-air mixtures. After appropriate OH{sup *} and CH{sup *} submechanisms are added, two modern chemical kinetics mechanisms containing high-temperature ethane chemistry are compared to the data to gauge the current state of C{sub 2}H{sub 6} oxidation modeling over the conditions of this study. The reproduction of the OH{sup *} and CH{sup *} profiles, together with {tau}{sub ign} predictions by these models, are compared against the profiles

  2. Metallurgical failure analysis of a propane tank boiling liquid...

    Office of Scientific and Technical Information (OSTI)

    The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A ...

  3. Revised Propane Stock Levels for 6/7/13

    Gasoline and Diesel Fuel Update (EIA)

    Revised Propane Stock Levels for 6713 Release Date: June 19, 2013 Following the release of the Weekly Petroleum Status Report (WPSR) for the week ended June 7, 2013, EIA...

  4. Advisory on the reporting error in the combined propane stocks...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Advisory on the reporting error in the combined propane stocks for PADDs 4 and 5 Release Date: June 12, 2013 The U.S. Energy Information Administration issued the following...

  5. Can propane school buses save money and provide other benefits...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can propane school buses save money and provide other benefits? October 1, 2014 Tweet EmailPrint School districts across the country are looking for ways to save money and be more...

  6. Propane Basics (Fact Sheet), Clean Cities, Energy Efficiency...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    As of 2014, more than 99% of the U.S. propane supply was produced in North America. 3 ... The National Fire Protection Association (NFPA), U.S. Department of Transportation, and ...

  7. VEE-0040- In the Matter of Western Star Propane, Inc.

    Broader source: Energy.gov [DOE]

    On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

  8. VEE-0060- In the Matter of Blakeman Propane, Inc.

    Broader source: Energy.gov [DOE]

    On May 11, 1999, Blakeman Propane, Inc. (Blakeman) of Moorcroft, Wyoming, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

  9. Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department...

    Energy Savers [EERE]

    saving on fuel costs," he said. "If these law enforcement vehicles were running great on propane autogas in such a demanding environment, then this was the fuel for my fleet."...

  10. Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Columbus, Ohio Yellow Cab Converts Taxis to Propane in Columbus, Ohio to someone by E-mail Share Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Facebook Tweet about Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Twitter Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Google Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in

  11. Solubilities of ethane in aqueous solutions of sodium dodecyl sulfate at elevated pressures

    SciTech Connect (OSTI)

    Li, P.; Han, B.; Yan, H.; Liu, R.

    1995-10-01

    The solubilities of ethane in aqueous solutions of sodium dodecyl sulfate (SDS) were measured at 313.15 K and at pressures up to 3 MPa. The molalities of SDS (m{sub SDS}) in the aqueous solution were 0.0000, 0.0020, 0.0040, 0.0060, 0.0070, 0.0080, 0.0090, 0.0100, 0.0126, 0.0150, 0.0200, and 0.0300. The effect of SDS on the gas solubility in both concentration regions below and above the critical micelle concentration (cmc) was studied. The existence of the micelles of SDS in the solution is favorable to the dissolution of ethane due to the hydrocarbon-like interior of the micelles. The solubilities of ethane in each micelle at different pressures were evaluated based on some assumptions. It was found that the intramicellar solubility of ethane is less than that of the gas in n-dodecane. It was also found that the solubility of ethane in the micelles increases linearly with the partial pressure of ethane. The cmc of SDS was evaluated based on the solubility vs m{sub SDS} curves and the effect of dissolved ethane on the cmc was studied. It was observed that the cmc shifts toward a higher value with the increase in dissolved ethane.

  12. Asphalt Roofing Shingles Into Energy Project Summary Report

    SciTech Connect (OSTI)

    Jameson, Rex, PE

    2008-04-28

    Based on a widely cited September, 1999 report by the Vermont Agency of Natural Resources, nearly 11 million tons of asphalt roofing shingle wastes are produced in the United States each year. Recent data suggests that the total is made up of about 9.4 million tons from roofing tear-offs and about 1.6 million tons from manufacturing scrap. Developing beneficial uses for these materials would conserve natural resources, promote protection of the environment and strengthen the economy. This project explored the feasibility of using chipped asphalt shingle materials in cement manufacturing kilns and circulating fluidized bed (CFB) boilers. A method of enhancing the value of chipped shingle materials for use as fuel by removing certain fractions for use as substitute raw materials for the manufacture of new shingles was also explored. Procedures were developed to prevent asbestos containing materials from being processed at the chipping facilities, and the frequency of the occurrence of asbestos in residential roofing tear-off materials was evaluated. The economic feasibility of each potential use was evaluated based on experience gained during the project and on a review of the well established use of shingle materials in hot mix asphalt. This project demonstrated that chipped asphalt shingle materials can be suitable for use as fuel in circulating fluidized boilers and cement kilns. More experience would be necessary to determine the full benefits that could be derived and to discover long term effects, but no technical barriers to full scale commercial use of chipped asphalt shingle materials in these applications were discovered. While the technical feasibility of various options was demonstrated, only the use of asphalt shingle materials in hot mix asphalt applications is currently viable economically.

  13. Recovery and reuse of asphalt roofing waste. Final report

    SciTech Connect (OSTI)

    Desai, S.; Graziano, G.; Shepherd, P.

    1984-02-02

    Burning of asphalt roofing waste as a fuel and incorporating asphalt roofing waste in bituminous paving were identified as the two outstanding resource recovery concepts out of ten studied. Four additional concepts might be worth considering under different market or technical circumstances. Another four concepts were rated as worth no further consideration at this time. This study of the recovery of the resource represented in asphalt roofing waste has identified the sources and quantities of roofing waste. About six million cubic yards of scrap roofing are generated annually in the United States, about 94% from removal of old roofing at the job site and the remainder from roofing material production at factories. Waste disposal is a growing problem for manufacturers and contractors. Nearly all roofing waste is hauled to landfills at a considerable expense to roofing contractors and manufacturers. Recovery of the roofing waste resource should require only a modest economic incentive. The asphalt contained in roofing waste represents an energy resource of more than 7 x 10/sup 13/ Btu/year. Another 1 x 10/sup 13/ Btu/year may be contained in field-applied asphalt on commercial building roofs. The two concepts recommended by this study appear to offer the broadest applicability, the most favorable economics, and the highest potential for near-term implementation to reuse this resource.

  14. Ionization of ethane, butane, and octane in strong laser fields

    SciTech Connect (OSTI)

    Palaniyappan, Sasi; Mitchell, Rob; Ekanayake, N.; Watts, A. M.; White, S. L.; Sauer, Rob; Howard, L. E.; Videtto, M.; Mancuso, C.; Wells, S. J.; Stanev, T.; Wen, B. L.; Decamp, M. F.; Walker, B. C.

    2010-10-15

    Strong-field photoionization of ethane, butane, and octane are reported at intensities from 10{sup 14} to 10{sup 17} W/cm{sup 2}. The molecular fragment ions, C{sup +} and C{sup 2+}, are created in an intensity window from 10{sup 14} to 10{sup 15} W/cm{sup 2} and have intensity-dependent yields similar to the molecular fragments C{sub m}H{sub n}{sup +} and C{sub m}H{sub n}{sup 2+}. In the case of C{sup +}, the yield is independent of the molecular parent chain length. The ionization of more tightly bound valence electrons in carbon (C{sup 3+} and C{sup 4+}) has at least two contributing mechanisms, one influenced by the parent molecule size and one resulting from the tunneling ionization of the carbon ion.

  15. Asphalt emulsion sealing of uranium mill tailings. 1979 annual report

    SciTech Connect (OSTI)

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-06-01

    Uranium mill tailings are a source of low-level radiation and radioactive materials that may be released into the environment. Stabilization or disposal of these tailings in a safe and environmentally sound way is necessary to minimize radon exhalation and other radioactive releases. One of the most promising concepts for stabilizing uranium tailings is being investigated at the Pacific Northwest Laboratory: the use of asphalt emulsion to contain radon and other potentially hazardous materials in uranium tailings. Results of these studies indicate that radon flux from uranium tailings can be reduced by greater than 99% by covering the tailings with an asphalt emulsion that is poured on or sprayed on (3.0 to 7.0 mm thick), or mixed with some of the tailings and compacted to form an admixture seal (2.5 to 15.2 cm) containing 18 wt % residual asphalt.

  16. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    SciTech Connect (OSTI)

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-02-15

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127x12.7x6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation.

  17. Evaluation of products recovered from scrap tires for use as asphalt modifiers

    SciTech Connect (OSTI)

    McKay, J.

    1992-05-01

    Western Research Institute performed rheological tests and water sensitivity tests on asphalt cements that had been modified with carbonous residues obtained from the pyrolysis of scrap tires and waste motor oil. These tests are part of an ongoing program at the University of Wyoming Chemical Engineering Department to evaluate, as asphalt additives, solid carbonous products recovered from the scrap tire and waste motor oil pyrolysis experiments conducted at the University. The tests showed that carbonous residues increased the viscosity and decreased the elasticity of AC-10 and AC-20 asphalts. The tests also indicatedthat asphalt cements modified with carbonous residues were less sensitive to water damage and age embrittlement than unmodified asphalt cements.

  18. Automated titration method for use on blended asphalts

    DOE Patents [OSTI]

    Pauli, Adam T.; Robertson, Raymond E.; Branthaver, Jan F.; Schabron, John F.

    2012-08-07

    A system for determining parameters and compatibility of a substance such as an asphalt or other petroleum substance uses titration to highly accurately determine one or more flocculation occurrences and is especially applicable to the determination or use of Heithaus parameters and optimal mixing of various asphalt stocks. In a preferred embodiment, automated titration in an oxygen gas exclusive system and further using spectrophotometric analysis (2-8) of solution turbidity is presented. A reversible titration technique enabling in-situ titration measurement of various solution concentrations is also presented.

  19. Heating oil and propane households bills to be lower this winter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating oil and propane households bills to be lower this winter despite recent cold spell Despite the recent cold weather, households that use heating oil or propane as their main ...

  20. U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Propane Air (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  1. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane.

  2. Large-Scale Computational Screening of Zeolites for Ethane/Ethene Separation

    SciTech Connect (OSTI)

    Kim, J; Lin, LC; Martin, RL; Swisher, JA; Haranczyk, M; Smit, B

    2012-08-14

    Large-scale computational screening of thirty thousand zeolite structures was conducted to find optimal structures for seperation of ethane/ethene mixtures. Efficient grand canonical Monte Carlo (GCMC) simulations were performed with graphics processing units (GPUs) to obtain pure component adsorption isotherms for both ethane and ethene. We have utilized the ideal adsorbed solution theory (LAST) to obtain the mixture isotherms, which were used to evaluate the performance of each zeolite structure based on its working capacity and selectivity. In our analysis, we have determined that specific arrangements of zeolite framework atoms create sites for the preferential adsorption of ethane over ethene. The majority of optimum separation materials can be identified by utilizing this knowledge and screening structures for the presence of this feature will enable the efficient selection of promising candidate materials for ethane/ethene separation prior to performing molecular simulations.

  3. Zeolitic imidazolate frameworks for kinetic separation of propane and propene

    SciTech Connect (OSTI)

    Li, Jing; Li, Kunhao; Olson, David H.

    2014-08-05

    Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

  4. Vitiated ethane oxidation in a high-pressure flow reactor

    SciTech Connect (OSTI)

    Walters, K.M.; Bowman, C.T.

    2009-10-15

    Vitiated combustion processes offer the potential to improve the thermodynamic efficiency in hydrocarbon-fueled combustion systems, providing a subsequent decrease in energy-specific CO{sub 2} emissions along with a decrease in the emission levels of nitrogen oxides (NO{sub x}) and particulate matter. The present work comprises an experimental and modeling study of vitiated ethane oxidation in a high-pressure flow reactor, with pressures of 1-6 bar, O{sub 2} mole fractions of 3.5-7.0%, temperatures of 1075-1100 K and 15-18 mole.% H{sub 2}O. Time-history measurements of species are used to characterize the overall rate of reaction and track the fuel-carbon through intermediate and product species. A one-dimensional mixing-reacting model that accounts for partial oxidation during reactant mixing is used in conjunction with a detailed kinetic mechanism. Changes in competing pathways due to variations in pressure and O{sub 2} mole fraction give rise to the complex pressure dependence seen in the experiments. (author)

  5. CASSINI VIMS OBSERVATIONS SHOW ETHANE IS PRESENT IN TITAN'S RAINFALL

    SciTech Connect (OSTI)

    Dalba, Paul A.; Buratti, Bonnie J.; Baines, Kevin H.; Sotin, Christophe; Lawrence, Kenneth J.; Brown, Robert H.; Barnes, Jason W.; Clark, Roger N.; Nicholson, Philip D.

    2012-12-20

    Observations obtained over two years by the Cassini Imaging Science Subsystem suggest that rain showers fall on the surface. Using measurements obtained by the Visual Infrared Mapping Spectrometer, we identify the main component of the rain to be ethane, with methane as an additional component. We observe five or six probable rainfall events, at least one of which follows a brief equatorial cloud appearance, suggesting that frequent rainstorms occur on Titan. The rainfall evaporates, sublimates, or infiltrates on timescales of months, and in some cases it is associated with fluvial features but not with their creation or alteration. Thus, Titan exhibits frequent 'gentle rainfall' instead of, or in addition to, more catastrophic events that cut rivers and lay down large fluvial deposits. Freezing rain may also be present, and the standing liquid may exist as puddles interspersed with patches of frost. The extensive dune deposits found in the equatorial regions of Titan imply multi-season arid conditions there, which are consistent with small, but possibly frequent, amounts of rain, in analogy to terrestrial deserts.

  6. Propane Market Outlook Key Market Trends, Opportunities, and Threats Facing the Consumer

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Market Outlook Key Market Trends, Opportunities, and Threats Facing the Consumer Propane Industry Through 2025 Prepared for the Propane Education & Research Council (PERC) by: ICF International, Inc. 9300 Lee Highway Fairfax, VA 22031 Tel (703) 218-2758 www.icfi.com Principal Author: Mr. Michael Sloan msloan@icfi.com P R E S E N T E D B Y : Propane Market Outlook at a Glance ¡ ICF projects consumer propane sales to grow by about 800 million gallons (9 percent) between 2014 and

  7. Ethane enrichment and propane depletion in subsurface gases indicate gas hydrate occurrence in marine sediments at southern Hydrate Ridge offshore Oregon

    SciTech Connect (OSTI)

    Milkov, Alexei V.; Claypool, G E.; Lee, Young-Joo; Torres, Marta E.; Borowski, W S.; Tomaru, H; Sassen, Roger; Long, Philip E.

    2004-07-02

    The recognition of finely disseminated gas hydrate in deep marine sediments heavily depends on various indirect techniques because this mineral quickly decomposes upon recovery from in situ pressure and temperature conditions. Here, we discuss molecular properties of closely spaced gas voids (formed as a result of core recovery) and gas hydrates from an area of relatively low gas flux at the flanks of the southern Hydrate Ridge Offshore Oregon (ODP Sites 1244, 1245 and 1247).

  8. EIA-800

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Liquids (NGPL) and Liquefied Refinery Gases (LRG):" "EthaneEthylene, TOTAL",108,,,... "Ethane - LRG",641 "Ethylene",631 "PropanePropylene, TOTAL",246,,,... "Propane - ...

  9. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    DOE Patents [OSTI]

    Plancher, Henry; Petersen, Joseph C.

    1982-01-01

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  10. Integrated coke, asphalt and jet fuel production process and apparatus

    DOE Patents [OSTI]

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  11. Cuprous-chloride-modified nanoporous alumina membranes for ethylene-ethane separation

    SciTech Connect (OSTI)

    Lin, Y.S.; Wang, Y.; Ji, W.; Higgins, R.J.

    1999-06-01

    This paper reports an attempt to synthesize a CuCl-modified {gamma}-alumina membrane for separation of ethylene from ethane. CuCl was effectively coated in the 4 nm pore {gamma}-alumina top layers of disk-shaped and tubular alumina membranes by the reservoir method. Permeation of a single gas and binary mixture of ethylene and ethane was measured to characterize separation properties of the modified membranes. Pure ethylene permeance of the CuCl-modified membrane is 10--40% lower than that predicted from the pure ethane permeance by the Knudsen theory. This result is explained by a model based on the adsorbed layer of ethylene via {pi}-complexation. Such an adsorbed layer hinders the diffusion of ethylene in the nanopores of CuCl-modified {gamma}-alumina. Multiple gas permeation measurements on the CuCl-modified membranes show a separation factor for ethylene over ethane larger than the Knudsen value. This confirms a positive contribution of the surface flow of ethylene to the permeance of ethylene in the multiple gas permeation system. A maximum separation factor for ethylene over ethane of 1.4 is obtained for the CuCl-modified membrane at 60 C.

  12. Gold(I) chloride adducts of 1,3-bis(di-2-pyridylphosphino)propane: synthesis, structural studies and antitumour activity

    SciTech Connect (OSTI)

    Humphreys, Anthony S.; Filipovska, Aleksandra; Berners-Price, Susan J.; Koutsantonis, George A.; Skelton, Brian W.; White, Allan H.

    2008-06-30

    The novel water soluble bidentate phosphine ligand 1,3-bis(di-2-pyridylphosphino)propane (d2pypp) has been synthesized by a convenient route involving treatment of 2-pyridyllithium with Cl{sub 2}P(CH{sub 2}){sub 3}PCl{sub 2} and isolation in crystalline form as the hydrochloride salt. The synthesis of the precursor Cl{sub 2}P(CH{sub 2}){sub 3}PCl{sub 2} has been optimized by the use of triphosgene as the chlorinating agent. The 2:1 and 1:2 AuCl:d2pypp adducts have been synthesized and characterized by NMR spectroscopy and single crystal X-ray studies, and shown to be of the form (AuCl){sub 2}({mu}-d2pypp-P,P{prime}) and Au(d2pypp-P,P{prime}){sub 2}Cl(-3.75H{sub 2}O), respectively. The latter is more lipophilic than analogous 1:2 adducts of gold(I) chloride with the diphosphine ligands 1,2-bis(di-n-pyridylphosphino)ethane (dnpype) for n = 2, 3 and 4, based on measurement of the n-octanol-water partition coefficient (log P = -0.46). A single crystal structure determination of the 1:2 Au(I) complex of the 3-pyridyl ethane ligand shows it to be of the form [Au(d3pype-P,P{prime}){sub 2}]Cl {center_dot} 5H{sub 2}O. The in vitro cytotoxic activity of [Au(d2pypp){sub 2}]Cl was assessed in human normal and cancer breast cells and selective toxicity to the cancer cells found. The significance of these results to the antitumour properties of chelated 1:2 Au(I) diphosphine complexes is discussed.

  13. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air

    SciTech Connect (OSTI)

    Li, J.; Lai, W.H.; Chung, K.; Lu, F.K.

    2008-08-15

    Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

  14. Propane-air peakshaving impact on natural gas vehicles. Topical report, August 1993-January 1997

    SciTech Connect (OSTI)

    Richards, M.E.; Shikari, Y.; Blazek, C.F.

    1997-01-01

    Propane-air peakshaving activities can lead to higher-than-normal propane levels in natural gas. Natural gas vehicle (NGV) fueling station operation and NGV performance can be affected by the presence of excess propane in natural gas. To assess the impact on NGV markets due to propane-air peakshaving, a comprehensive survey of gas utilities nationwide was undertaken to compile statistics on current practices. The survey revealed that about half of the responders continue to propane-air peakshave and that nearly two-thirds of these companies serve markets that include NGV fueling stations. Based on the survey results, it is estimated that nearly 13,000 NGVs could be affected by propane-air peakshaving activities by the year 2000.

  15. Measurement of the soot concentration and soot particle sizes in propane oxygen flames

    SciTech Connect (OSTI)

    Bockhorn, H.; Fetting, F.; Meyer, U.; Reck, R.; Wannemacher, G.

    1981-01-01

    Soot concentrations and particle sizes were measured by light scattering and probe measurements in the burnt gas region of atmospheric pressure propane-oxygen flames and propane-oxygen flames to which hydrogen or ammonia were added. The results show that the soot concentrations in propane-oxygen flames, to which hydrogen is added are lower compared to propane-oxygen flames. The decrease of soot concentration is much stronger when ammonia is added. Associated with the reduction of soot concentration is a reduction of mean particle size of the soot particles and a lower breadth of the particle size distributions. Electron micrographs of soot particles from the probe measurements showed that soot particles from flames with high soot concentrations (propane oxygen flames) are aggregates with chain or cluster structure while the structure of the particles from flames with lower soot concentration (propane oxygen flames with hydrogen or ammonia added) is more compact. 24 refs.

  16. Shock-tube and modeling study of ethane pyrolysis and oxidation

    SciTech Connect (OSTI)

    Hidaka, Yoshiaki; Sato, Kazutaka; Hoshikawa, Hiroki; Nishimori, Toshihide; Takahashi, Rie; Tanaka, Hiroya; Inami, Koji; Ito, Nobuhiro

    2000-02-01

    Pyrolysis and oxidation of ethane were studied behind reflected shock waves in the temperature range 950--1,900 K at pressures of 1.2--4.0 atm. Ethane decay rates in both pyrolysis and oxidation were measured using time-resolved infrared (IR) laser absorption at 3.39 {micro}m, and CO{sub 2} production rates in oxidation were measured by time-resolved thermal IR emission at 4.24 {micro}m. The product yields were also determined using a single-pulse method. The pyrolysis and oxidation of ethane were modeled using a reaction mechanism with 157 reaction steps and 48 species including the most recent submechanisms for formaldehyde, ketene, methane, acetylene, and ethylene oxidation. The present and previously reported shock tube data were reproduced using this mechanism. The rate constants of the reactions C{sub 2}H{sub 6} {yields} CH{sub 3} + CH{sub 3}, C{sub 2}H{sub 5} + H {yields} H{sub 2} and C{sub 2}H{sub 5} + O{sub 2} {yields} C{sub 2}H{sub 4} + HO{sub 2} were evaluated. These reactions were important in predicting the previously reported and the present data, which were for mixture compositions ranging from ethane-rich (including ethane pyrolysis) to ethane-lean. The evaluated rate constants of the reactions C{sub 2}H{sub 5} + H {yields} C{sub 2}H{sub 4} + H{sub 2} and C{sub 2}H{sub 5} + O{sub 2} {yields} C{sub 2}H{sub 4} + HO{sub 2} were found to be significantly different from currently accepted values.

  17. State heating oil and propane program. Final report, 1990--1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

  18. Visible absorption spectra of crystal violet in supercritical ethane - methanol solution.

    SciTech Connect (OSTI)

    Dimitrijevic, N. M.; Takahashi, K.; Jonah, C. D.; Chemistry

    2002-11-01

    The effects of concentration and mole fraction of methanol in supercritical ethane on the absorption spectra of crystal violet (CV) were examined. Keeping the concentration of CV in the cell constant at 50 {mu}mol l{sup -1}, both the methanol concentration (from 0.4 to 1.2 mol l{sup -1}) and pressure of ethane (from 60 to 150 bar) were varied. The degree of solvation of CV depends both on the mole fraction and concentration of cosolvent. The dimerization of CV was found to decrease with pressure, and with the ratio between methanol and CV concentrations.

  19. Remedial investigation/feasibility study analysis asphalt storage area, Elmendorf AFB, Alaska. Master's thesis

    SciTech Connect (OSTI)

    Miller, N.S.

    1993-01-01

    This report is focused on an abandoned material storage area located on Elmendorf Air Force Base (EAFB), Alaska. The site is located approximately 2000 feet from the east end of the east/west runway and includes approximately 25 acres. The site was used for asphalt storage and preparation activities during the 1940s and 1950s. Approximately 4,500 drums of asphalt and 29 drums of unknown materials have been abandoned at the site. The drums are located in 32 areas throughout the 25-acre site. Following several decades of exposure to the elements, many of the drums have corroded and leaked to the ground surface. Several acres of soil are inundated with liquid asphalt that has leaked from the drums. Depths of the asphalt range from 6 to 10 inches in areas where surface anomalies have created depressions, and thus a collection point for the asphalt. A 14-x 18-x 4 foot wood frame pit used to support previous asphalt operations is located at the north end of the site. The pit contains approximately 2300 gallons of asphalt. There are also locations where the soil appears to be contaminated by petroleum products other than asphalt.

  20. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

  1. Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 14. U.S. Propane (Consumer Grade) Prices by Sales Type 28 Energy Information Administration ...

  2. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

  3. Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. |

  4. Propane-Diesel Dual Fuel for CO2 and Nox Reduction

    Broader source: Energy.gov [DOE]

    Test results show significant CO2 and NOx emission reductions, fuel economy gains, and overall energy savings with propane injection in a diesel engine.

  5. Activation of ethane in the presence of solid acids: Sulfated zirconia, iron- and manganese-promoted sulfated zirconia, and zeolites

    SciTech Connect (OSTI)

    Cheung, Tsz-Keung; Gates, B.

    1997-06-01

    Ethane was activated in the presence of solid acids [sulfated zirconia (SZ), iron- and manganese-promoted sulfated zirconia (FMSZ), HZSM-5, and USY zeolite] at 1 atm, 200-450{degrees}C, and ethane partial pressures in the range 0.014.2 atm. The data were measured with a flow reactor at low conversions (<0.005) such that reaction of ethane took place in the near absence of alkenes. Catalysis was demonstrated for ethane conversion in the presence of FMSZ at 450{degrees}C and 0.2 atm ethane partial pressure, but the reactions were not shown to be catalytic for the other solid acids and other conditions. FMSZ was active for converting ethane into methane, ethene, and butane at an ethane partial pressure of 0.2 atm and at temperatures of 200-300{degrees}C; the other solid acids had no detectable activities under these conditions. At higher temperatures, each of the solid acids was active for conversion of ethane into ethene; butane and methane were also formed in the presence of FMSZ, HZSM-5, and USY zeolite, whereas methane was the only other hydrocarbon observed in the presence of SZ. The initial (5 min on stream) selectivities to ethene at approximately 0.1 % conversion, ethane partial pressure of 0.2 atm, and 450{degrees}C were approximately 98, 94, 97, and 99%, for SZ, FMSZ, HZSM-5, and USY zeolite, respectively. Under the same reaction conditions, the initial rates of ethane conversion were 0. 1 5 x 10{sup -8}, 3.5 x 10{sup -8} 3.9 x 10{sup -8}, and 0.56 x 10{sup -8} mol/(s {circ} g) for SZ, FMSZ, HZSM-5, and USY zeolite, respectively. The reactivities are consistent with chemistry analogous to that occurring in superacidic solutions and with the suggestion that FMSZ is a stronger acid than the others investigated here. 25 refs., 13 figs., 1 tab.

  6. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    SciTech Connect (OSTI)

    Freeman, H.D.; Romine, R.A.; Zacher, A.H.

    1994-09-01

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 {times} 10{sup -7} cm/s. In-place measurements using a new field falling head technique show an average of 3.66 {times} 10{sup -8} cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 {times} 10{sup -9} cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 {times} 10{sup -11} cm/s.

  7. Introduction of ?-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane

    SciTech Connect (OSTI)

    Li, Baiyan; Zhang, Yiming; Krishna, Rajamani; Yao, Kexin; Han, Yu; Wu, Zili; Ma, Dingxuan; Shi, Zhan; Pham, Tony; Space, Brian; Liu, Jian; Thallapally, Praveen K.; Liu, Jun; Matthew, Chrzanowski; Ma, Shengqian

    2014-06-05

    We report herein a strategy of incorporating air stable Ag(I) ions into water stable, high surface area porous organic polymer (POP) affording significant increase in ethylene uptake capacity and extremely high Qst for ethylene (over 100 kJ/mol at low ethylene load-ing) as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and equimolar ethylene/ethane ratio at 296 K reveal PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivi-ty (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. This alongside excellent water/air stability, high ethylene uptake capacity, and mild regeneration requirements make PAF-1-SO3Ag hold promise for adsorption-based eth-ylene/ethane separations, paving a way to develop Ag(I) ion function-alized POPs as a new platform for highly selective adsorption of eth-ylene over ethane.

  8. Oxidative dehydrogenation of ethane at millisecond contact times: Effect of H{sub 2} addition

    SciTech Connect (OSTI)

    Bodke, A.S.; Henning, D.; Schmidt, L.D.; Bharadwaj, S.S.; Maj, J.J.; Siddall, J.

    2000-04-01

    The oxidative dehydrogenation of ethane using Pt/{alpha}-Al{sub 2}O{sub 3} and various bimetallic catalysts operating at {approximately}1,000 C and very short contact times is examined with H{sub 2} addition to the feed. When H{sub 2} is added with a Pt catalyst, the ethylene selectivity rises from 65 to 72% but ethane conversion drops from 70 to 52%. However, using a Pt-Sn/{alpha}-Al{sub 2}O{sub 3} catalyst, the C{sub 2}H{sub 4} selectivity increases from 70 to greater than 85%, while the conversion remains {approximately}70%. The process also produces approximately as much H{sub 2} as is added to the feed. Effects of other metal promoters, sphere bed and fibermat supports, preheat, pressure, nitrogen dilution, and flow rate are examined in an effort to further elucidate the mechanism. Deactivation of the Pt-Sn catalyst is examined, and a simple method of regenerating the activity on-line is demonstrated. Possible mechanisms to explain high selectivities to ethylene are discussed. Although the process can be regarded as a simple two-step reaction sequence with the exothermic oxidation of hydrogen or ethane driving the endothermic dehydrogenation of ethane to ethylene, the exact contributions of heterogeneous or gas-phase reactions and their spatial variations within the catalyst are yet to be determined.

  9. Activation of small alkanes in Ga-exchanged zeolites: A quantum chemical study of ethane dehydrogenation

    SciTech Connect (OSTI)

    Frash, M.V.; Santen, R.A. van

    2000-03-23

    Quantum chemical calculations on the mechanism of ethane dehydrogenation catalyzed by Ga-exchanged zeolites have been undertaken. Two forms of gallium, adsorbed dihydride gallium ion GaH{sub 2}+Z{sup {minus}} and adsorbed gallyl ion [Ga=O]{sup +}Z{sup {minus}}, were considered. It was found that GaH{sub 2}{sup +}Z{sup {minus}} is the likely active catalyst. On the contrary, [Ga=O]{sup +}Z{sup {minus}} cannot be a working catalyst in nonoxidative conditions, because regeneration of this form is very difficult. Activation of ethane by GaH{sub 2}{sup +}Z{sup {minus}} occurs via an alkyl mechanism and the gallium atom acts as an acceptor of the ethyl group. The carbenium activation of ethane, with gallium abstracting a hydride ion, is much (ca. 51 kcal/mol) more difficult. The catalytic cycle for the alkyl activation consists of three elementary steps: (1) rupture of the ethane C-H bond; (2) formation of dihydrogen from the Bronsted proton and hydrogen bound to Ga; and (3) formation of ethene from the ethyl group bound to Ga. The best estimates (MP2/6--311++G(2df,p)//B3LYP/6--31G*) for the activation energies of these three steps are 36.9, ca. 0, and 57.9 kcal/mol, respectively.

  10. LABORATORY STUDIES ON THE IRRADIATION OF SOLID ETHANE ANALOG ICES AND IMPLICATIONS TO TITAN'S CHEMISTRY

    SciTech Connect (OSTI)

    Kim, Y. S.; Bennett, C. J.; Chen, L-H; Kaiser, R. I.; O'Brien, K.

    2010-03-10

    Pure ethane ices (C{sub 2}H{sub 6}) were irradiated at 10, 30, and 50 K under contamination-free, ultrahigh vacuum conditions with energetic electrons generated in the track of galactic cosmic-ray (GCR) particles to simulate the interaction of GCRs with ethane ices in the outer solar system. The chemical processing of the samples was monitored by a Fourier transform infrared spectrometer and a quadrupole mass spectrometer during the irradiation phase and subsequent warm-up phases on line and in situ in order to extract qualitative (products) and quantitative (rate constants and yields) information on the newly synthesized molecules. Six hydrocarbons, methane (CH{sub 4}), acetylene (C{sub 2}H{sub 2}), ethylene (C{sub 2}H{sub 4}), and the ethyl radical (C{sub 2}H{sub 5}), together with n-butane (C{sub 4}H{sub 10}) and butene (C{sub 4}H{sub 8}), were found to form at the radiation dose reaching 1.4 eV per molecule. The column densities of these species were quantified in the irradiated ices at each temperature, permitting us to elucidate the temperature and phase-dependent production rates of individual molecules. A kinetic reaction scheme was developed to fit column densities of those species produced during irradiation of amorphous/crystalline ethane held at 10, 30, or 50 K. In general, the yield of the newly formed molecules dropped consistently for all species as the temperature was raised from 10 K to 50 K. Second, the yield in the amorphous samples was found to be systematically higher than in the crystalline samples at constant temperature. A closer look at the branching ratios indicates that ethane decomposes predominantly to ethylene and molecular hydrogen, which may compete with the formation of n-butane inside the ethane matrix. Among the higher molecular products, n-butane dominates. Of particular relevance to the atmosphere of Saturn's moon Titan is the radiation-induced methane production from ethane-an alternative source of replenishing methane into the

  11. Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP

    SciTech Connect (OSTI)

    McClanahan, Janice

    2001-04-01

    Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

  12. Role of Confinement on Adsorption and Dynamics of Ethane and an Ethane–CO 2 Mixture in Mesoporous CPG Silica

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Patankar, Sumant; Gautam, Siddharth; Rother, Gernot; Podlesnyak, Andrey; Ehlers, Georg; Liu, Tingting; Cole, David R.; Tomasko, David L.

    2016-02-10

    It was found that ethane is confined to mineral and organic pores in certain shale formations. Effects of confinement on structural and dynamic properties of ethane in mesoporous controlled pore glass (CPG) were studied by gravimetric adsorption and quasi-elastic neutron scattering (QENS) measurements. The obtained isotherms and scattering data complement each other by quantifying the relative strength of the solid–fluid interactions and the transport properties of the fluid under confinement, respectively. We used a magnetic suspension balance to measure the adsorption isotherms at two temperatures and over a range of pressures corresponding to a bulk density range of 0.01–0.35 g/cm3.more » Key confinement effects were highlighted through differences between isotherms for the two pore sizes. A comparison was made with previously published isotherms for CO2 on the same CPG materials. Behavior of ethane in the smaller pore size was probed further using quasi-elastic neutron scattering. By extracting the self-diffusivity and residence time, we were able to study the effect of pressure and transition from gaseous to supercritical densities on the dynamics of confined ethane. Moreover, a temperature variation QENS study was also completed with pure ethane and a CO2–ethane mixture. Activation energies extracted from the Arrhenius plots show the effects of CO2 addition on ethane mobility.« less

  13. Y-12's rough roads smoothed over with 23,000 tons of recycled asphalt |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) 's rough roads smoothed over with 23,000 tons of recycled asphalt Tuesday, December 29, 2015 - 12:00am NNSA Blog Some 23,000 tons of asphalt removed during this summer's UPF site work have been put to use throughout the site. Potholes and gravel roads are now "paved" with the recycled asphalt that has been ground into a material called base course. Unlike gravel, the material tends to rebind into a solid form as it is packed down,

  14. An analysis of US propane markets, winter 1996-1997

    SciTech Connect (OSTI)

    1997-06-01

    In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

  15. Development of superior asphalt recycling agency: Phase 1, Technical feasibility. Technical progress report

    SciTech Connect (OSTI)

    Bullin, J.A.; Glover, C.J.; Davison, R.R.; Lin, Moon-Sun; Chaffin, J.; Liu, Meng; Eckhardt, C.

    1996-04-01

    About every 12 years, asphalt roads must be reworked, and this is usually done by placing thick layers (hot-mix overlays) of new material on top of failed material, resulting in considerable waste of material and use of new asphalt binder. A good recycling agent is needed, not only to reduce the viscosity of the aged material but also to restore compatibility. Objective is to establish the technical feasibility (Phase I) of determining the specifications and operating parameters for producing high quality recycling agents which will allow most/all the old asphalt-based road material to be recycled. It is expected that supercritical fractionation can be used. The advanced road aging simulation procedure will be used to study aging of blends of old asphalt and recycling agents.

  16. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    SciTech Connect (OSTI)

    Seshadri, Vikram; Kaisare, Niket S.

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  17. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  18. Highly Selective Adsorption of Ethylene over Ethane in a MOF Featuring the Combination of Open Metal Site and -Complexation

    SciTech Connect (OSTI)

    Zhang, Yiming; LI, Baiyan; Wu, Zili; Ma, Shengqian

    2015-01-01

    The introduction of the combination of open metal site (OMS) and -complexation into MOF has led to very high ethylene/ethane adsorption selectivity at 318K, as illustrated in the context of MIL-101-Cr-SO3Ag. The interactions with ethylene from both OMS and -complexation in MIL-101-Cr-SO3Ag have been investigated by in situ IR spectroscopic studies and computational calculations, which suggest -complexation contributes dominantly to the high ethylene/ethane adsorption selectivity.

  19. Highly Selective Adsorption of Ethylene over Ethane in a MOF Featuring the Combination of Open Metal Site and -Complexation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yiming; Li, Baiyan; Wu, Zili; Ma, Shengqian

    2015-01-09

    The introduction of the combination of open metal site (OMS) and -complexation into MOF has led to very high ethylene/ethane adsorption selectivity at 318K, as illustrated in the context of MIL-101-Cr-SO3Ag. The interactions with ethylene from both OMS and -complexation in MIL-101-Cr-SO3Ag have been investigated by in situ IR spectroscopic studies and computational calculations, which suggest -complexation contributes dominantly to the high ethylene/ethane adsorption selectivity.

  20. New Cool Roof Coatings and Affordable Cool Color Asphalt | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy New Cool Roof Coatings and Affordable Cool Color Asphalt New Cool Roof Coatings and Affordable Cool Color Asphalt Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech25_cheng_040413.pdf (1.35 MB) More Documents & Publications Accelerated Aging of Roofing Materials - 2013 BTO Peer Review Berkeley Lab Heat Island Group research assistant Sharon Chen prepares a prototype of high-performance cool shingle roofing. Credit: Heat Island

  1. Sandia's Katrina Groth and Ethan Hecht win inaugural Robert Schefer Best

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper award Katrina Groth and Ethan Hecht win inaugural Robert Schefer Best Paper award - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  2. Effect of temperature and pressure on the dynamics of nanoconfined propane

    SciTech Connect (OSTI)

    Gautam, Siddharth Liu, Tingting Welch, Susan; Cole, David; Rother, Gernot; Jalarvo, Niina; Mamontov, Eugene

    2014-04-24

    We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

  3. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    - W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

  4. School Districts Move to the Head of the Class with Propane

    SciTech Connect (OSTI)

    2016-01-01

    Propane has been a proven fuel for buses for decades. For the first time in 2007, Blue Bird rolled out a propane school bus using direct liquid injection, which was later followed by Thomas Built Buses and Navistar. Because this new technology is much more reliable than previous designs, it is essentially reintroducing propane buses to many school districts. During this same time period, vehicle emissions standards have tightened. To meet them, diesel engine manufacturers have added diesel particulate filters (DPF) and, more recently, selective catalytic reduction (SCR) systems. As an alternative to diesel buses with these systems, many school districts have looked to other affordable, clean alternatives, and they've found that propane fits the bill.

  5. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting ...

  6. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

  7. Short-Term Energy Outlook Model Documentation: Regional Residential Propane Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential propane price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 Census regions: Northeast, South, Midwest, and West.

  8. School Districts Move to the Head of the Class with Propane (Brochure), Clean Cities, U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane's School Bus History While propane has been used in buses for decades, recent technologi- cal advancements have made it more reliable than ever. Prior to 2007, all propane vehicles used vapor injection technology. In 2007, Blue Bird rolled out a propane school bus using direct liquid injection for the first time, and this was followed by Thomas Built Buses and Navistar. Liquid injection technology makes propane buses a more reliable option. Since 2007, vehicle emissions standards have

  9. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage

  10. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Propane Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the