National Library of Energy BETA

Sample records for aspen populus tremuloides

  1. Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust

    E-Print Network [OSTI]

    Noormets, Asko

    with either O3 alone or CO2 O3 depending on aspen clone. Examination of leaf surface properties (wax ap- pearance, wax amount, wax chemical composition, leaf surface and wettability) sug- gested significant that it is likely predisposing the plants to increased infection by aspen leaf rust. Keywords: epicuticular wax

  2. Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after 3 years of

    E-Print Network [OSTI]

    years of treatments to elevated carbon dioxide and ozone S E I J A K A A K I N E N *1 , K AT R I K O the Earth's surface (IPCC, 2001). Carbon dioxide (CO2) is the dominant human-influenced greenhouse gasStem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after 3

  3. Elevated growth temperatures alter hydraulic characteristics in trembling aspen (Populus tremuloides)

    E-Print Network [OSTI]

    Jackson, Robert B.

    -words: cavitation vulnerability; climate change; embo- lism; poplar; transpiration; water; xylem. INTRODUCTION) and increased evaporative demand and transpiration rates. However, while many studies have examined the impact was allowed to vary, had similar changes in xylem anatomy and function com- pared to cool-grown seedlings

  4. Variation of xylem vessel diameters in trembling aspen (Populus tremuloides Michx.) across a boreal climate gradient: answers from a reciprocal transplant experiment

    E-Print Network [OSTI]

    Hamann, Andreas

    . Gaussian kernel density estimates support plastic as well as genetic contributions in vessel diameter with vessel diameter and tree height in central Alberta was also found at two other boreal test sites but reversed at a wetter and milder sub-boreal test site. 5. In summary, vessel diameters were highly plastic

  5. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration

    E-Print Network [OSTI]

    carbon dioxide and elevated ozone concentration Justin M. McGrath a , David F. Karnosky b , Elizabeth A. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide growth and produc- tivity are increasing atmospheric carbon dioxide concentration ([CO2]) and increasing

  6. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    SciTech Connect (OSTI)

    Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL

    2008-10-01

    Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

  7. Chemical changes to leaf litter from trees grown under elevated CO2 and the implications for

    E-Print Network [OSTI]

    Kelly, John J.

    species. Quaking aspen (Populus tremuloides), white willow (Salix alba), and sugar maple (Acer saccharum-trembles (Populus tremuloides), des saules blancs (Salix alba) et des érables ŕ sucre (Acer saccharum) dans des

  8. Short communication Tree biomass and net increment in an old aspen forest in

    E-Print Network [OSTI]

    Anderson, Charles W.

    Stewardship, Natural Resource Ecology Laboratory, and Graduate Degree Program in Ecology, Colorado State (Populus tremuloides Michx.) forest in the Tesuque watershed of northern New Mexico. The loss of nitrogen ). Despite apparently negative rates of NEP, the watershed showed remarkably low rates of nitrogen (N) loss

  9. Dynamics of regeneration gaps following harvest of aspen stands

    E-Print Network [OSTI]

    Macdonald, Ellen

    tremuloides Michx.). The pattern of gap development over time was determined from analysis of air photographs

  10. United States Department of

    E-Print Network [OSTI]

    to moisture availability and solar radiation. We describe research results pertaining to global climate change Technical Report PSW-GTR-235 June 2011 A Review of the Potential Effects of Climate Change on Quaking Aspen of the potential effects of climate change on quaking aspen (Populus tremuloides) in the Western United States

  11. Aspen, Colorado: Community Energy Strategic Planning Process

    Broader source: Energy.gov [DOE]

    This presentation features Lee Ledesma, utilities operations manager with the City of Aspen, Colorado. Ledesma provides an overview of the City of Aspen's experience in putting together a financing...

  12. Reaching 100% Renewable Energy, City of Aspen

    SciTech Connect (OSTI)

    2015-08-01

    This brochure describes the analysis and process used by NREL to assist the City of Aspen in attaining its 100% renewable energy goal.

  13. Implementing ASPEN on the CRAY computer

    SciTech Connect (OSTI)

    Duerre, K.H.; Bumb, A.C.

    1981-01-01

    This paper describes our experience in converting the ASPEN program for use on our CRAY computers at the Los Alamos National Laboratory. The CRAY computer is two-to-five times faster than a CDC-7600 for scalar operations, is equipped with up to two million words of high-speed storage, and has vector processing capability. Thus, the CRAY is a natural candidate for programs that are the size and complexity of ASPEN. Our approach to converting ASPEN and the conversion problems are discussed, including our plans for optimizing the program. Comparisons of run times for test problems between the CRAY and IBM 370 computer versions are presented.

  14. City of Aspen- Renewable Energy Goal

    Office of Energy Efficiency and Renewable Energy (EERE)

    Approximately 27% of the electricity used by the City of Aspen comes from wind turbines located in Kimball, Nebraska. An additional 45% of the City's electricity comes from hydroelectric plants.  

  15. Aspen: Noncompliance Determination (2010-SE-0305)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Aspen Manufacturing finding that a variety of basic models of split-system air conditioning heat pumps do not comport with the energy conservation standards.

  16. University of Nevada, Reno Relationships among hydrogeomorphic processes and the distribution, age and stand

    E-Print Network [OSTI]

    Weisberg, Peter J.

    occidentalis, Salix exigua, Salix lutea, and Populus tremuloides) with different ecological amplitudes and life

  17. Aspen: Noncompliance Determination (2011-SE-1602)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Aspen Manufacturing finding that indoor unit model AEW244 and outdoor unit model NCPC-424-3010 of residential split system central air conditioning system do not comport with the energy conservation standards.

  18. Epigenomics of Development in Populus

    SciTech Connect (OSTI)

    Strauss, Steve; Freitag, Michael; Mockler, Todd

    2013-01-10

    We conducted research to determine the role of epigenetic modifications during tree development using poplar (Populus trichocarpa), a model woody feedstock species. Using methylated DNA immunoprecipitation (MeDIP) or chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing, we are analyzed DNA and histone methylation patterns in the P. trichocarpa genome in relation to four biological processes: bud dormancy and release, mature organ maintenance, in vitro organogenesis, and methylation suppression. Our project is now completed. We have 1) produced 22 transgenic events for a gene involved in DNA methylation suppression and studied its phenotypic consequences; 2) completed sequencing of methylated DNA from eleven target tissues in wildtype P. trichocarpa; 3) updated our customized poplar genome browser using the open-source software tools (2.13) and (V2.2) of the P. trichocarpa genome; 4) produced summary data for genome methylation in P. trichocarpa, including distribution of methylation across chromosomes and in and around genes; 5) employed bioinformatic and statistical methods to analyze differences in methylation patterns among tissue types; and 6) used bisulfite sequencing of selected target genes to confirm bioinformatics and sequencing results, and gain a higher-resolution view of methylation at selected genes 7) compared methylation patterns to expression using available microarray data. Our main findings of biological significance are the identification of extensive regions of the genome that display developmental variation in DNA methylation; highly distinctive gene-associated methylation profiles in reproductive tissues, particularly male catkins; a strong whole genome/all tissue inverse association of methylation at gene bodies and promoters with gene expression; a lack of evidence that tissue specificity of gene expression is associated with gene methylation; and evidence that genome methylation is a significant impediment to tissue dedifferentiation and redifferentiation in vitro.

  19. The genome of black cottonwood, Populus trichocarpa (Torr.&Gray)

    SciTech Connect (OSTI)

    Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev,I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R.R.; Bhalerao, R.P.; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Carlson, J.; Chalot, M.; Chapman, J.; Chen, G.-L.; Cooper, D.; Coutinho,P.M.; Couturier, J.; Covert, S.; Cronk, Q.; Cunningham, R.; Davis, J.; Degroeve, S.; Dejardin, A.; dePamphillis, C.; Detter, J.; Dirks, B.; Dubchak, I.; Duplessis, S.; Ehiting, J.; Ellis, B.; Gendler, K.; Goodstein, D.; Gribskov, M.; Grimwood, J.; Groover, A.; Gunter, L.; Hamberger, B.; Heinze, B.; Helariutta, Y.; Henrissat, B.; Holligan, D.; Holt, R.; Huang, W.; Islam-Faridi, N.; Jones, S.; Jones-Rhoades, M.; Jorgensen, R.; Joshi, C.; Kangasjarvi, J.; Karlsson, J.; Kelleher, C.; Kirkpatrick, R.; Kirst, M.; Kohler, A.; Kalluri, U.; Larimer, F.; Leebens-Mack, J.; Leple, J.-C.; Locascio, P.; Lou, Y.; Lucas, S.; Martin,F.; Montanini, B.; Napoli, C.; Nelson, D.R.; Nelson, D.; Nieminen, K.; Nilsson, O.; Peter, G.; Philippe, R.; Pilate, G.; Poliakov, A.; Razumovskaya, J.; Richardson, P.; Rinaldi, C.; Ritland, K.; Rouze, P.; Ryaboy, D.; Schmutz, J.; Schrader, J.; Segerman, B.; Shin, H.; Siddiqui,A.; Sterky, F.; Terry, A.; Tsai, C.; Uberbacher, E.; Unneberg, P.; Vahala, J.; Wall, K.; Wessler, S.; Yang, G.; Yin, T.; Douglas, C.; Marra,M.; Sandberg, G.; Van der Peer, Y.; Rokhsar, D.

    2006-09-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. Over 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event, with approximately 8,000 pairs of duplicated genes from that event surviving in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication and gross chromosomal rearrangement appear to proceed substantially slower in Populus relative to Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average between 1.4-1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with disease resistance, meristem development, metabolite transport and lignocellulosic wall biosynthesis.

  20. Automated Design Space Exploration with Aspen

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spafford, Kyle L.; Vetter, Jeffrey S.

    2015-01-01

    Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore »costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less

  1. Reaching 100% Renewable Energy, City of Aspen (Fact Sheet), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REACHING 100% RENEWABLE ENERGY City of Aspen and the National Renewable Energy Laboratory develop and implement a strategy to cost-effectively reach a ground- breaking goal In...

  2. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)

    E-Print Network [OSTI]

    2006-01-01

    habit, woody plant, poplar, Salix, Arabidopsis, angiosperm3A). Comparison of 1,825 Populus and Salix orthologous genesderived from Salix EST suggests that both genera share this

  3. Aspen Global Change Institute Summer Science Sessions

    SciTech Connect (OSTI)

    Katzenberger, John; Kaye, Jack A

    2006-10-01

    The Aspen Global Change Institute (AGCI) successfully organized and convened six interdisciplinary meetings over the course of award NNG04GA21G. The topics of the meetings were consistent with a range of issues, goals and objectives as described within the NASA Earth Science Enterprise Strategic Plan and more broadly by the US Global Change Research Program/Our Changing Planet, the more recent Climate Change Program Strategic Plan and the NSF Pathways report. The meetings were chaired by two or more leaders from within the disciplinary focus of each session. 222 scholars for a total of 1097 participants-days were convened under the auspices of this award. The overall goal of each AGCI session is to further the understanding of Earth system science and global environmental change through interdisciplinary dialog. The format and structure of the meetings allows for presentation by each participant, in-depth discussion by the whole group, and smaller working group and synthesis activities. The size of the group is important in terms of the group dynamics and interaction, and the ability for each participant's work to be adequately presented and discussed within the duration of the meeting, while still allowing time for synthesis

  4. PHYTOREMEDIATION OF CHLORPYRIFOS BY POPULUS AND Keum Young Lee, Stuart E. Strand, and Sharon L. Doty

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    PHYTOREMEDIATION OF CHLORPYRIFOS BY POPULUS AND SALIX Keum Young Lee, Stuart E. Strand, and Sharon of chlorpyrifos, several plant species of poplar (Populus sp.) and willow (Salix sp.) were investigated

  5. Genome structure and primitive sex chromosome revealed in Populus

    SciTech Connect (OSTI)

    Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL; Gunter, Lee E [ORNL; Blaudez, D [UMR, France

    2008-01-01

    We constructed a comprehensive genetic map for Populus and ordered 332 Mb of sequence scaffolds along the 19 haploid chromosomes in order to compare chromosomal regions among diverse members of the genus. These efforts lead us to conclude that chromosome XIX in Populus is evolving into a sex chromosome. Consistent segregation distortion in favor of the sub-genera Tacamahaca alleles provided evidence of divergent selection among species, particularly at the proximal end of chromosome XIX. A large microsatellite marker (SSR) cluster was detected in the distorted region even though the genome-wide distribute SSR sites was uniform across the physical map. The differences between the genetic map and physical sequence data suggested recombination suppression was occurring in the distorted region. A gender-determination locus and an overabundance of NBS-LRR genes were also co-located to the distorted region and were put forth as the cause for divergent selection and recombination suppression. This hypothesis was verified by using fine-scale mapping of an integrated scaffold in the vicinity of the gender-determination locus. As such it appears that chromosome XIX in Populus is in the process of evolving from an autosome into a sex chromosome and that NBS-LRR genes may play important role in the chromosomal diversification process in Populus.

  6. 2012 Aspen Winter Conferences on High Energy and Astrophysics

    SciTech Connect (OSTI)

    Campbell, John; Olivier, Dore; Fox, Patrick; Furic, Ivan; Halkiadakis, Eva; Schmidt, Fabian; Senatore, Leonardo; Smith, Kendrick M; Whiteson, Daniel

    2012-05-01

    Aspen Center for Physics Project Summary DE-SC0007313 Budget Period: 1/1/2012 to 12/31/2012 The Hunt for New Particles, from the Alps to the Plains to the Rockies The 2012 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 11 to February 17, 2012. Sixty-seven participants from nine countries, and several universities and national labs attended the workshop titled, The Hunt for New Particles, from the Alps to the Plains to the Rockies. There were 53 formal talks, and a considerable number of informal discussions held during the week. The weeks events included a public lecture-Hunting the Dark Universe given by Neal Weiner from New York University) and attended by 237 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists conducted by Spencer Chang (University of Oregon), Matthew Reece (Harvard University) and Julia Shelton (Yale University) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by John Campbell (Fermilab), Patrick Fox (Fermilab), Ivan Furic (University of Florida), Eva Halkiadakis (Rutgers University) and Daniel Whiteson (University of California Irvine). Additional information is available at http://indico.cern.ch/conferenceDisplay.py?confId=143360. Inflationary Theory and its Confrontation with Data in the Planck Era The 2012 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was Inflationary Theory and its Confrontation with Data in the Planck Era.Ă?Âť It was held from January 30 to February 4, 2012. The 62 participants came from 7 countries and attended 43 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Shamit Kachru of Stanford University gave a public lecture titled The Small (and Large) Scale Structure of Space-Time.There were 237 members of the general public in attendance. Before the lecture, 65 people attended the physics cafe to discuss the current topic with Matthew Kleban (New York University) and Chao-Lin Kuo (Stanford University). This workshop was organized by Olivier Dore (Jet Propulsion Lab), Fabian Schmidt (Caltech), Leonardo Senatore (Stanford University), and Kendrick Smith (Princeton University).

  7. NATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER-IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS

    E-Print Network [OSTI]

    Cripps, Cathy

    (ID), and downwind of the Trail, B. C. smelter (Canada). Aspen is able to colonize these areas due to establish various trees on coal spoils and mine sites in eastern U.S., Ohio, and Utah, but use of aspen has the Columbia River downwind of the operating smelter in Trail, B.C., Canada (Cripps, 2001) (Fig. 1

  8. Simple Dynamic Gasifier Model That Runs in Aspen Dynamics

    SciTech Connect (OSTI)

    Robinson, P.J.; Luyben, W.L. [Lehigh University, Bethlehem, PA (United States). Dept. of Chemical Engineering

    2008-10-15

    Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.

  9. Great Plains ASPEN model development: Phosam section. Final topical report

    SciTech Connect (OSTI)

    Stern, S.S.; Kirman, J.J.

    1985-02-01

    An ASPEN model has been developed of the PHOSAM Section, Section 4600, of the Great Plains Gasification Plant. The bases for this model are the process description given in Section 6.18 of the Great Plains Project Management Plan and the Lummus Phosam Schematic Process Flow Diagram, Dwg. No. SKD-7102-IM-O. The ASPEN model that has been developed contains the complete set of components that are assumed to be in the gasifier effluent. The model is primarily a flowsheet simulation that will give the material and energy balance and equipment duties for a given set of process conditions. The model is unable to predict fully changes in process conditions that would result from load changes on equipment of fixed sizes, such as a rating model would predict. The model can be used to simulate the steady-state operation of the plant at or near design conditions or to design other PHOSAM units. Because of the limited amount of process information that was available, several major process assumptions had to be made in the development of the flowsheet model. Patent literature was consulted to establish the ammonia concentration in the circulating fluid. Case studies were made with the ammonia content of the feed 25% higher and 25% lower than the base feed. Results of these runs show slightly lower recoveries of ammonia with less ammonia in the feed. As expected, the duties of the Stripper and Fractionator reboilers were higher with more ammonia in the feed. 63 references.

  10. Free Air CO2 Enrichment (FACE) Research Data from the Aspen FACE Experiment (FACTS II)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ring maps, lists of publications, data from the experiments, newsletters, protocol and performance information, and links to other FACTS and FACE information are provided at the ASPEN FACE website.

  11. City of Aspen and Pitkin County- Renewable Energy Mitigation Program Grants

    Broader source: Energy.gov [DOE]

    With final approval coming from the Pitkin County Board of County Commissioners and the Aspen City Council, the Community Office for Resource Efficiency (CORE) periodically awards funding to wort...

  12. Best Practices Case Study: Shaw Construction Burlingame Ranch Ph.1, Aspen, CO

    SciTech Connect (OSTI)

    Pacific Northwest National Laboratory & Oak Ridge National Laboratory

    2010-12-01

    Shaw Construction built 84 energy efficient, affordable condominiums forthe City of Aspen that achieved HERS scores of less than 62 with help from Building America’s research team lead Building Science Corporation.

  13. Genome Analyses and Supplement Data from the International Populus Genome Consortium (IPGC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    International Populus Genome Consortium (IPGC)

    The sequencing of the first tree genome, that of Populus, was a project initiated by the Office of Biological and Environmental Research in DOE’s Office of Science. The International Populus Genome Consortium (IPGC) was formed to help develop and guide post-sequence activities. The IPGC website, hosted at the Oak Ridge National Laboratory, provides draft sequence data as it is made available from DOE Joint Genome Institute, genome analyses for Populus, lists of related publications and resources, and the science plan. The data are available at http://www.ornl.gov/sci/ipgc/ssr_resource.htm.

  14. Association Genetics of Populus trichocarpa or Resequencing in Populus: Towards Genome Wide Association Genetics (2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Tuskan, Gerry

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on "Resequencing in Populus: Towards Genome Wide Association Genetics" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  15. Association Genetics of Populus trichocarpa or Resequencing in Populus: Towards Genome Wide Association Genetics (2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Tuskan, Gerry

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on "Resequencing in Populus: Towards Genome Wide Association Genetics" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  16. Great Plains ASPEN model development: executive summary. Final topical report for Phase 1

    SciTech Connect (OSTI)

    Rinard, I.H.; Stern, S.S.; Millman, M.C.; Schwint, K.J.; Benjamin, B.W.; Kirman, J.J.; Dweck, J.S.; Mendelson, M.A.

    1986-07-25

    The Scientific Design Company contracted with the United States Department of Energy through its Morgantown Energy Technology Center to develop a steady-state simulation model of the Great Plains Coal Gasification plant. This plant produces substitute natural gas from North Dakota lignite. The model was to be developed using the ASPEN (Advanced System for Process Engineering) simulation program. The project was divided into the following tasks: (1) Development of a simplified overall model of the process to be used for a sensitivity analysis to guide the development of more rigorous section models. (2) Review and evaluation of existing rigorous moving-bed gasifier models leading to a recommendation of one to be used to model the Great Plains gasifiers. Adaption and incorporation of this model into ASPEN. (3) Review of the accuracy and completeness of the physical properties data and models provided by ASPEN that are required to characterize the Great Plains plant. Rectification of inaccurate or incomplete data. (4) Development of rigorous ASPEN models for critical unit operations and sections of the plant. (5) Evaluation of the accuracy of the ASPEN Cost Estimation and Evaluation System and upgrading where feasible. Development of a preliminary cost estimate for the Great Plains plant. (6) Validation of the simulation models developed in the course of this project. Determination of model sensitivity to variations of technical and economic parameters. (7) Documentation of all work performed in the course of this project. Essentially all of these tasks were completed successfully. 34 figs.

  17. Effect of acetate and other cell wall components on enzymatic hydrolysis of aspen wood 

    E-Print Network [OSTI]

    Kong, Fanran

    1990-01-01

    OH are much cheaper and safer. Furthermore, the procedure with dilute alkali is simpler and time of treatment is much shorter. Finally, the Klason lignin loss of aspen wood with 0. 1N KOH and with ratio of 12. 5 ml solution to I g wood is undetected...EFFECT OF ACETATE AND OTHER CELL WALL COMPONENTS ON ENZYMATIC HYDROLYSIS OF ASPEN WOOD A Thesis by FANRAN KONG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  18. Changing sources of soil respiration with time since fire in a boreal forest

    E-Print Network [OSTI]

    Czimczik, CI; Trumbore, SE; Carbone, MS; Winston, GC

    2006-01-01

    L AMB . Populus tremuloides M ICHX . Salix sp. 1964 w P.mariana P. banksiana Salix sp. Betula papyrifera M ARSH L.The deciduous species (Salix sp. , Populus tremu- loides

  19. FACTS II (Aspen FACE) Facility and Harshaw Forest Experimental Farm Facility

    E-Print Network [OSTI]

    ;Project Name: Forest Atmosphere Carbon Transfer and Storage (FACTS-II) The Aspen Free-air CO2 and O3 Enrichment (FACE) Project. Project Number: Site: Harshaw Forest Experimental Farm (HFEF) USDA Forest ServiceUniversity Brookhaven National Laboratory Proposed Dates Beginning Date: May 1998 of Project: Ending Date: October 15

  20. New exposure-based metric approach for evaluating O3 risk to North American aspen forests

    E-Print Network [OSTI]

    aspen; Growth 1. Introduction It is widely perceived that climate change such as global warming may lead to increased growth and range distribution of some forests (Cox et al., 2000). This warming is largely be- ing important green- house gas contributing to global average radiative forcing is tropospheric ozone (O3

  1. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    SciTech Connect (OSTI)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  2. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    E-Print Network [OSTI]

    Pennycook, Steve

    , its natural and living resources, natural hazards, and the environment: World Wide Web: httpAspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk distribution, genetics, and the effects of elk herbivory: U.S. Geological Survey Open-File Report 2008­1337, 52

  3. Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence

    E-Print Network [OSTI]

    Liu, Heping; Randerson, James T

    2008-01-01

    Populus trem- uloides and Salix spp. ). The aspen had a meanvegetation included shrubs (Salix spp. , Ledum paustre, Rosa

  4. The obscure events contributing to the evolution of an incipient sex chromosome in Populus A retrospective working hypothesis.

    SciTech Connect (OSTI)

    Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Chen, Jay [ORNL; Labbe, Jessy L [ORNL; Ranjan, Priya [ORNL; DiFazio, Steven P [West Virginia University; Slavov, Goncho T. [West Virginia University; Yin, Tongming [ORNL

    2012-01-01

    Genetic determination of gender is a fundamental developmental and evolutionary process in plants. Although it appears that dioecy in Populus is partially genetically controlled, the precise gender-determining systems remain unclear. The recently-released second draft assembly and annotated gene set of the Populus genome provided an opportunity to re-visit this topic. We hypothesized that over evolutionary time, selective pressure has reformed the genome structure and gene composition in the peritelomeric region of the chromosome XIX which has resulted in a distinctive genome structure and cluster of genes contributing to gender determination in Populus. Multiple lines of evidence support this working hypothesis. First, the peritelomeric region of the chromosome XIX contains significantly fewer single nucleotide polymorphisms than the rest of Populus genome and has a distinct evolutionary history. Second, the peritelomeric end of chromosome XIX contains the largest cluster of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of disease resistances genes in the entire Populus genome. Third, there is a high occurrence of small microRNAs on chromosome XIX coincident to the region containing the putative gender-determining locus and the major cluster of NBS-LRR genes. Further, by analyzing the metabolomic profiles of floral bud in male and female Populus trees using a gas chromatography-mass spectrometry, we found there are gender-specific accumulations of phenolic glycosides. Taken together, these findings provide new insights into the genetic control of gender determination in Populus.

  5. Global identification of miRNAs and targets in Populus euphratica under salt stress

    E-Print Network [OSTI]

    Deng, Xing-Wang

    Global identification of miRNAs and targets in Populus euphratica under salt stress Bosheng Li, a typical hydro-halophyte, is ideal for studying salt stress responses in woody plants. MicroRNAs (miRNA may regulate tolerance to salt stress but this has not been widely studied in P. euphratica

  6. Genome structure and emerging evidence of an incipient sex chromosome in Populus

    SciTech Connect (OSTI)

    Yin, Tongming [ORNL; DiFazio, Stephen P [West Virginia University; Gunter, Lee E [ORNL; Zhang, Xinye [ORNL; Sewell, Mitchell [ORNL; Woolbright, Dr. Scott [North Arizona University; Allan, Dr. Gery [North Arizona University; Kelleher, Colin [University of British Columbia, Vancouver; Douglas, Carl [University of British Columbia, Vancouver; Wang, Prof. Mingxiu [Nanjing Forestry University, China; Tuskan, Gerald A [ORNL

    2008-01-01

    The genus Populus consists of dioecious woody species with largely unknown genetic mechanisms for gender determination. We have discovered genetic and genomic features in the peritelomeric region of chromosome XIX that suggest this region of the Populus genome is in the process of developing characteristics of a sex chromosome. We have identified a gender-associated locus that consistently maps to this region. Furthermore, comparison of genetic maps across multiple Populus families reveals consistently distorted segregation within this region. We have intensively characterized this region using an F1 interspecific cross involving the female genotype that was used for genome sequencing. This region shows suppressed recombination and high divergence between the alternate haplotypes, as revealed by dense map-based genome assembly using microsatellite markers. The suppressed recombination, distorted segregation, and haplotype divergence were observed only for the maternal parent in this cross. Furthermore, the progeny of this cross showed a strongly male-biased sex ratio, in agreement with Haldane's rule that postulates that the heterogametic sex is more likely to be absent, rare, or sterile in interspecific crosses. Together, these results support the role of chromosome XIX in sex determination and suggest that sex determination in Populus occurs through a ZW system in which the female is the heterogametic gender.

  7. Intercontinental divergence in the Populus-associated ectomycorrhizal fungus, Tricholoma populinum

    E-Print Network [OSTI]

    Taylor, Lee

    Biology, 902 N. Koyukuk Drive, 311 Irving 1 Building, University of Alaska Fairbanks, Fairbanks, AK 99775 · The ectomycorrhizal fungus Tricholoma populinum is host-specific with Populus species. T. populinum has wind of long-distance dispersal owing to their small size and the large number of propagules (Finlay, 2002

  8. RepPop: A Database for Repetitive Elements in Populus Trichocarpa

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zhou, Fengfeng; Xu, Ying

    The populus was selected as the first tree with the genome to be sequenced, mainly due to its small genome size, the wide deployment worldwide (30+ species), and its short juvenile period. Its rich content of cellulose, which is one of the most important source for biofuel. A female clone of P. trichocarpa was chosen to be sequenced. The current assembly of Populus genome is release 1.0, whose small insert end-sequence coverage is 7.5X, and it was released in June 2004. It consists of 22,012 sequences (including the 19 chromosomes) and the total length is 485,510,911 bps. The data was downloaded from the offical site of the Populus trichocarpa genome sequencing project. The latest version of the genome can be found at the Poplar Genome Project at JGI Eukaryotic Genomics. Duplication regions introduce significant difficulties into the correct assemblying of sequence contigs. We identified all the repetitive elements in the populus genome. We further assign each of them as different classes of repetitive elements, including DNA transposons, RNA retrotransposons, Miniature Inverted-repeat Transposable Elements (MITE), Simple Sequence Repeats (SSR), and Segmental Duplications (SD), etc. We organized the annotations into this easily browsable, searchable, and blastable database, RepPop, for the whole community.[From website for RepPop at http://csbl.bmb.uga.edu/~ffzhou/RepPop/

  9. Impacts of elevated CO2 and O3 on aspen leaf litter chemistry and earthworm and springtail productivity

    E-Print Network [OSTI]

    Impacts of elevated CO2 and O3 on aspen leaf litter chemistry and earthworm and springtail few studies have considered how CO2- and O3-induced changes in litter quality will affect decomposition. Although the fraction of litter carbon respired by soil invertebrates is fairly small

  10. Chemical/Bio Engineering Computer Engineering Computer Science/IT Mechanical Engineering Aspen Technology abi HUB abi HUB Adecco

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    Chemical/Bio Engineering Computer Engineering Computer Science/IT Mechanical Engineering Aspen Insurance Teledyne D. G. O'Brien U.S. Army Corps of Engineers Systems Engineering Measured Progress The Timken Company Taxware MEDITECH The Whiting-Turner Contracting Company Civil Engineering Tyler

  11. Fermentation of dilute acid pretreated Populus by Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yee, Kelsey L.; Rodriguez, Jr., Miguel; Hamilton, Choo Yieng; Hamilton-Brehm, Scott D.; Thompson, Olivia A.; Elkins, James G.; Davison, Brian H.; Mielenz, Jonathan R.

    2015-07-25

    Consolidated bioprocessing (CBP), which merges enzyme production, biomass hydrolysis, and fermentation into a single step, has the potential to become an efficient and economic strategy for the bioconversion of lignocellulosic feedstocks to transportation fuels or chemicals. In this study, we evaluated Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis, three , thermophilic,cellulolytic, mixed-acid fermenting candidate CBP microorganisms, for their fermentation capabilities using dilute acid pretreated Populus as a model biomass feedstock. Under pH controlled, anaerobic fermentation conditions, each candidate successfully digested a minimum of 75% of the cellulose from dilute acid pretreated Populus, as indicated by an increase in planktonic cellsmore »and end-product metabolites and a concurrent decrease in glucan content. C. thermocellum, which employs a cellulosomal approach to biomass degradation, required 120 hours to achieve 75% cellulose utilization. In contrast, the non-cellulosomal, secreted hydrolytic enzyme system of the Caldicellulosiruptor sp. required 300 hours to achieve similar results. End-point fermentation conversions for C. thermocellum, C. bescii, and C. obsidiansis were determined to be 0.29, 0.34, and 0.38 grams of total metabolites per gram of loaded glucan, respectively. This data provide a starting point for future strain engineering efforts that can serve to improve the biomass fermentation capabilities of these three promising candidate CBP platforms.« less

  12. Genome-Scale Discovery of Cell Wall Biosynthesis Genes in Populus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Muchero, Wellington [Oak Ridge National Laboratory] [Oak Ridge National Laboratory

    2012-03-22

    Wellington Muchero from Oak Ridge National Laboratory gives a talk titled "Discovery of Cell Wall Biosynthesis Genes in Populus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  13. Genome-Scale Discovery of Cell Wall Biosynthesis Genes in Populus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Muchero, Wellington [Oak Ridge National Laboratory

    2013-01-22

    Wellington Muchero from Oak Ridge National Laboratory gives a talk titled "Discovery of Cell Wall Biosynthesis Genes in Populus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  14. Full employment and competition in the Aspen economic model: implications for modeling acts of terrorism.

    SciTech Connect (OSTI)

    Sprigg, James A.; Ehlen, Mark Andrew

    2004-11-01

    Acts of terrorism could have a range of broad impacts on an economy, including changes in consumer (or demand) confidence and the ability of productive sectors to respond to changes. As a first step toward a model of terrorism-based impacts, we develop here a model of production and employment that characterizes dynamics in ways useful toward understanding how terrorism-based shocks could propagate through the economy; subsequent models will introduce the role of savings and investment into the economy. We use Aspen, a powerful economic modeling tool developed at Sandia, to demonstrate for validation purposes that a single-firm economy converges to the known monopoly equilibrium price, output, and employment levels, while multiple-firm economies converge toward the competitive equilibria typified by lower prices and higher output and employment. However, we find that competition also leads to churn by consumers seeking lower prices, making it difficult for firms to optimize with respect to wages, prices, and employment levels. Thus, competitive firms generate market ''noise'' in the steady state as they search for prices and employment levels that will maximize profits. In the context of this model, not only could terrorism depress overall consumer confidence and economic activity but terrorist acts could also cause normal short-run dynamics to be misinterpreted by consumers as a faltering economy.

  15. A genomics investigation of partitioning into and among flavonoid-derived condensed tannins for carbon sequestration in Populus

    SciTech Connect (OSTI)

    Harding, Scott, A; Tsai, Chung-jui; Lindroth, Richard, L

    2013-03-24

    The project set out to use comparative (genotype and treatment) and transgenic approaches to investigate the determinants of condensed tannin (CT) accrual and chemical variability in Populus. CT type and amount are thought to effect the decomposition of plant detritus in the soil, and thereby the sequestering of carbon in the soil. The stated objectives were: 1. Genome-wide transcriptome profiling (microarrays) to analyze structural gene, transcription factor and metabolite control of CT partitioning; 2. Transcriptomic (microarray) and chemical analysis of ontogenetic effects on CT and PG partitioning; and 3. Transgenic manipulation of flavonoid biosynthetic pathway genes to modify the control of CT composition. Objective 1: A number of approaches for perturbing CT content and chemistry were tested in Objective 1, and those included nitrogen deficit, leaf wounding, drought, and salicylic acid spraying. Drought had little effect on CTs in the genotypes we used. Plants exhibited unpredictability in their response to salicylic acid spraying, leading us to abandon its use. Reduced plant nitrogen status and leaf wounding caused reproducible and magnitudinally striking increases in leaf CT content. Microarray submissions to NCBI from those experiments are the following: GSE ID 14515: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 1979. Public on Jan 04, 2010; Contributor(s) Harding SA, Tsai C GSE ID 14893: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 3200. Public on Feb 19, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16783 Wound-induced gene expression changes in Populus: 1 week; clone RM5. Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16785 Wound-induced gene expression changes in Populus: 90 hours; clone RM5 Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C Although CT amount changed in response to treatments, CT composition was essentially conserved. Overall phenylpropanoid composition exhibited changes due to large effects on phenolic glycosides containing a salicin moiety. There were no effects on lignin content. Efforts to publish this work continue, and depend on additional data which we are still collecting. This ongoing work is expected to strengthen our most provocative metabolic profiling data which suggests as yet unreported links controlling the balance between the two major leaf phenylpropanoid sinks, the CTs and the salicin-PGs. Objective 2: Ontogenic effects on leaf CT accrual and phenylpropanoid complexity (Objective 2) have been reported in the past and we contributed two manuscripts on how phenylpropanoid sinks in roots and stems could have an increasing effect on leaf CT as plants grow larger and plant proportions of stem, root and leaf change. Tsai C.-J., El Kayal W., Harding S.A. (2006) Populus, the new model system for investigating phenylpropanoid complexity. International Journal of Applied Science and Engineering 4: 221-233. We presented evidence that flavonoid precursors of CT rapidly decline in roots under conditions that favor CT accrual in leaves. Harding SA, Jarvie MM, Lindroth RL, Tsai C-J (2009) A comparative analysis of phenylpropanoid metabolism, N utilization and carbon partitioning in fast- and slow-growing Populus hybrid clones. Journal of Experimental Botany. 60:3443-3452. We presented evidence that nitrogen delivery to leaves as a fraction of nitrogen taken up by the roots is lower in high leaf CT genotypes. We presented a hypothesis from our data that N was sequestered in proportion to lignin content in stem tissues. Low leaf N content and high leaf CT in genotypes with high stem lignin was posited to be a systemic outcome of N demand in lignifiying stem tissues. Thereby, stem lignin and leaf CT accrual might be systemically linked, placing control of leaf phenylpropanoids under systemic rather than solely organ specific determinants. Analyses of total structural and non-structural carbohydrates contributed to the model presented. Harding SA, Xue L, Du L, Nyamd

  16. Simulation of integrated pollutant removal (IPR) water-treatment system using ASPEN Plus

    SciTech Connect (OSTI)

    Harendra, Sivaram; Oryshcyhn, Danylo [U.S. DOE Ochs, Thomas [U.S. DOE Gerdemann, Stephen; Clark, John

    2013-01-01

    Capturing CO2 from fossil fuel combustion provides an opportunity for tapping a significant water source which can be used as service water for a capture-ready power plant and its peripherals. Researchers at the National Energy Technology Laboratory (NETL) have patented a process—Integrated Pollutant Removal (IPR®)—that uses off-the-shelf technology to produce a sequestration ready CO2 stream from an oxy-combustion power plant. Water condensed from oxy-combustion flue gas via the IPR system has been analyzed for composition and an approach for its treatment—for in-process reuse and for release—has been outlined. A computer simulation model in ASPEN Plus has been developed to simulate water treatment of flue gas derived wastewater from IPR systems. At the field installation, water condensed in the IPR process contains fly ash particles, sodium (largely from spray-tower buffering) and sulfur species as well as heavy metals, cations, and anions. An IPR wastewater treatment system was modeled using unit operations such as equalization, coagulation and flocculation, reverse osmosis, lime softening, crystallization, and pH correction. According to the model results, 70% (by mass) of the inlet stream can be treated as pure water, the other 20% yields as saleable products such as gypsum (CaSO4) and salt (NaCl) and the remaining portion is the waste. More than 99% of fly ash particles are removed in the coagulation and flocculation unit and these solids can be used as filler materials in various applications with further treatment. Results discussed relate to a slipstream IPR installation and are verified experimentally in the coagulation/flocculation step.

  17. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus

    SciTech Connect (OSTI)

    Muchero, Wellington [ORNL; Guo, Jianjun [ORNL; Difazio, Stephen P. [West Virginia University, Morgantown; Chen, Jay [ORNL; Ranjan, Priya [ORNL; Slavov, Gancho [West Virginia University, Morgantown; Gunter, Lee E [ORNL; Jawdy, Sara [ORNL; Bryan, Anthony C [ORNL; Sykes, Robert [National Renewable Energy Laboratory (NREL); Ziebell, Angela L [ORNL; Porth, Ilga [University of British Columbia, Vancouver; Skyba, Oleksandr [University of British Columbia, Vancouver; Unda, Faride [University of British Columbia, Vancouver; El-Kassaby, Yousry [University of British Columbia, Vancouver; Douglas, Carl [University of British Columbia, Vancouver; Mansfield, Shawn [University of British Columbia, Vancouver; Martin, Joel [U.S. Department of Energy, Joint Genome Institute; Schackwitz, Wendy [U.S. Department of Energy, Joint Genome Institute; Evans, Luke M [West Virginia University, Morgantown; Tuskan, Gerald A [ORNL

    2015-01-01

    We report the identification of six genetic loci and the allelic-variants associated with Populus cell wall phenotypes determined independently using pyrolysis Molecular Beam Mass Spectrometry (pyMBMS), saccharification assay and wet chemistry in two partially overlapping populations of P. trichocarpa genotypes sampled from multiple environments in the Pacific Northwest of North America. All 6 variants co-located with a quantitative trait locus (QTL) hotspot on chromosome XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6- carbon sugars identified in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree. Genomic intervals containing an amino acid transporter, a MYB transcription factor, an angustifolia CtBP transcription factor, a copper transport protein ATOX1-related, a Ca2+ transporting ATPase and a protein kinase were identified within 5 QTL regions. Each interval contained single nucleotide polymorphisms (SNPs) that were significantly associated to cell-wall phenotypes, with associations exceeding the chromosome-wise Bonferroni-adjusted p-values in at least one environment. cDNA sequencing for allelic variants of 3 of the 6 genes identified polymorphisms leading to premature stop codons in the MYB transcription factor and protein kinase. On the other hand, variants of the Angustifolia CtBP transcription factor exhibited a polyglutamine (PolyQ) length polymorphism. Results from transient protoplast assays suggested that each of the polymorphisms conferred allelic differences in activation of cellulose, hemicelluloses and lignin pathway marker genes, with truncated and short PolyQ alleles exhibiting significantly reduced marker gene activation. Genes identified in this study represent novel targets for reducing cell wall recalcitrance for lignocellulosic biofuels production using plant biomass.

  18. Simulating the growth response of aspen to elevated ozone: a mechanistic approach to scaling a leaf-level model of ozone effects

    E-Print Network [OSTI]

    Simulating the growth response of aspen to elevated ozone: a mechanistic approach to scaling a leaf-level model of ozone effects on photosynthesis to a complex canopy architecture§ M.J. Martina, *, G.E. Hosta; accepted 17 July 2001 ``Capsule'': A process model is described that predicts the relative effects of ozone

  19. Genetic Analysis in Populus Reveals Potential to Enhance Soil Carbon Sequestration In a paper published in the August, 2005 issue of Canadian Journal of Forest Research, scientists

    E-Print Network [OSTI]

    Genetic Analysis in Populus Reveals Potential to Enhance Soil Carbon Sequestration In a paper carbon sequestration by an estimated 0.35Gt carbon/year. This represents ca. 4% of global carbon in terrestrial ecosystems. This work is supported by research funded through the Carbon Sequestration Program

  20. Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass

    SciTech Connect (OSTI)

    Wilson, Charlotte M; Rodriguez Jr, Miguel; Johnson, Courtney M; Martin, S L.; Chu, Tzu Ming; Wolfinger, Russ; Hauser, Loren John; Land, Miriam L; Klingeman, Dawn Marie; Tschaplinski, Timothy J; Mielenz, Jonathan R; Brown, Steven D

    2013-01-01

    Background The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP) biocatalyst for cellulosic ethanol production. The aim of this study was to investigate C. thermocellum genes required to ferment biomass substrates and to conduct a robust comparison of DNA microarray and RNA sequencing (RNA-seq) analytical platforms. Results C. thermocellum ATCC 27405 fermentations were conducted with a 5 g/L solid substrate loading of either pretreated switchgrass or Populus. Quantitative saccharification and inductively coupled plasma emission spectroscopy (ICP-ES) for elemental analysis revealed composition differences between biomass substrates, which may have influenced growth and transcriptomic profiles. High quality RNA was prepared for C. thermocellum grown on solid substrates and transcriptome profiles were obtained for two time points during active growth (12 hours and 37 hours postinoculation). A comparison of two transcriptomic analytical techniques, microarray and RNA-seq, was performed and the data analyzed for statistical significance. Large expression differences for cellulosomal genes were not observed. We updated gene predictions for the strain and a small novel gene, Cthe_3383, with a putative AgrD peptide quorum sensing function was among the most highly expressed genes. RNAseq data also supported different small regulatory RNA predictions over others. The DNA microarray gave a greater number (2,351) of significant genes relative to RNA-seq (280 genes when normalized by the kernel density mean of M component (KDMM) method) in an analysis of variance (ANOVA) testing method with a 5 % false discovery rate (FDR). When a 2-fold difference in expression threshold was applied, 73 genes were significantly differentially expressed in common between the two techniques. Sulfate and phosphate uptake/utilization genes, along with genes for a putative efflux pump system were some of the most differentially regulated transcripts when profiles for C. thermocellum grown on either pretreated switchgrass or Populus were compared. Conclusions Our results suggest that a high degree of agreement in differential gene expression measurements between transcriptomic platforms is possible, but choosing an appropriate normalization regime is essential.

  1. IMPACTS OF INTERACTING ELEVATED ATMOSPHERIC CO2 AND O3 ON THE STRUCTURE AND FUNCTIONING OF A NORTHERN FOREST ECOSYSTEM: OPERATING AND DECOMMISSIONING THE ASPEN FACE PROJECT

    SciTech Connect (OSTI)

    Burton, Andrew J.; Zak, Donald R.; Kubiske, Mark E.; Pregitzer, Kurt S.

    2014-06-30

    Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are atmospheric CO2 and tropospheric O3. As the only free air, large-scale manipulative experiment studying the interaction of elevated CO2 and O3 on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region. The project was established in 1997 to address the overarching scientific question: “What are the effects of elevated [CO2] and [O3], alone and in combination, on the structure and functioning of northern hardwood forest ecosystems?” From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem to compare the responses of early-successional, rapid-growing shade intolerant trembling aspen and paper birch to those of a late successional, slower growing shade tolerant sugar maple. Fumigations with elevated CO2 (560 ppm during daylight hours) and O3 (approximately 1.5 x ambient) were conducted during the growing season from 1998 to 2008, and in 2009 through harvest date. Response variables quantified during the experiment included growth, competitive interactions and stand dynamics, physiological processes, plant nutrient status and uptake, tissue biochemistry, litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. In 2009, we conducted a detailed harvest of the site. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. Throughout the experiment, aspen and birch photosynthesis increased with elevated CO2 and tended to decrease with elevated O3, compared to the control. In contrast to aspen and birch, maple photosynthesis was not enhanced by elevated CO2. Elevated O3 did not cause significant reductions in maximum photosynthesis in birch or maple. In addition, photosynthesis in ozone sensitive clones was affected to a much greater degree than that in ozone tolerant aspen clones. Treatment effects on photosynthesis contributed to CO2 stimulation of aboveground and belowground growth that was species and genotype dependent, with birch and aspen being most responsive and maple being least responsive. The positive effects of elevated CO2 on net primary productivity NPP were sustained through the end of the experiment, but negative effects of elevated O3 on NPP had dissipated during the final three years of treatments. The declining response to O3 over time resulted from the compensatory growth of O3-tolerant genotypes and species as the growth of O3-sensitive individuals declined over time. Cumulative NPP over the entire experiment was 39% greater under elevated CO2 and 10% lower under elevated O3. Enhanced NPP under elevated CO2 was sustained by greater root exploration of soil for growth-limiting N, as well as more rapid rates of litter decomposition and microbial N release during decay. Results from Aspen FACE clearly indicate that plants growing under elevated carbon dioxide, regardless of community type or ozone level, obtained significantly greater amounts of soil N. These results indicate that greater plant growth under elevated carbon dioxide has not led to “progressive N limitation”. If similar forests growing throughout northeastern North America respond in the same manner, then enhanced forest NPP under elevated CO2 may be sustained for a longer duration than previously thought, and the negative effect of elevated O3 may be diminished by compensatory growth of O3-tolerant plants as they begin to dominate forest communities. By the end of the experiment, elevated CO2 increased ecosystem C content by 11%, whereas

  2. A multifactor analysis of fungal and bacterial community structure of the root microbiome of mature Populus deltoides trees

    SciTech Connect (OSTI)

    Shakya, Migun; Gottel, Neil R; Castro Gonzalez, Hector F; Yang, Zamin; Gunter, Lee E; Labbe, Jessy L; Muchero, Wellington; Bonito, Gregory; Vilgalys, Rytas; Tuskan, Gerald A; Podar, Mircea; Schadt, Christopher Warren

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host- health, survival and growth. However, a robust understanding of root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to it s associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall genotypic distances did not have a significant effect on corresponding communities that could be separated from other measured effects.

  3. Aspen Code Development Collaboration

    SciTech Connect (OSTI)

    none,; Cherry, Robert S. INL; Richard, Boardman D. INL

    2013-10-03

    Wyoming has a wealth of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming?s coal and gas resources are exported from the state in unprocessed form rather than as refined higher value products. Wyoming?s leadership recognizes the opportunity to broaden the state?s economic base energy resources to make value-added products such as synthetic vehicle fuels and commodity chemicals. Producing these higher value products in an environmentally responsible manner can benefit from the use of clean energy technologies including Wyoming?s abundant wind energy and nuclear energy such as new generation small modular reactors including the high temperature gas-cooled reactors.

  4. Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant

    SciTech Connect (OSTI)

    None

    1998-10-30

    This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

  5. Enhancing a Pathway-Genome Database (PGDB) to Capture Subcellular Localization of Metabolites and Enzymes: The Nucleotide-Sugar Biosynthetic Pathways of Populus trichocarpa

    SciTech Connect (OSTI)

    Nag, A.; Karpinets, T. V.; Chang, C. H.; Bar-Peled, M.

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s).

  6. Aspen Aerogels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy- Transport JumpAsola

  7. Aspen Pipeline | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy- Transport JumpAsolaCleanPipeline

  8. Aspen Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy- Transport

  9. THE SOUTHWESTERN NATURALIST 51(1):6470 MARCH 2006 CHARACTERISTICS OF ABERT'S SQUIRREL (SCIURUS ABERTI)

    E-Print Network [OSTI]

    Koprowski, John L.

    - mente en el a´lamo temblo´n (Populus tremuloides) vivo o muerto. Los a´lamos temblones con cavi- dades fueron ma´s grandes que los a´lamos al azar. Sitios con cavidades en a´lamos tuvieron ma´s a´rboles muertos grandes y menos pinos ponderosa y fueron menos empinados que sitios con a´lamos al azar. Las

  10. Microsoft Word - AspenMEAReport.doc

    Office of Scientific and Technical Information (OSTI)

    it will pass through the system. The blower (B-101) is modeled using the isentropic efficiency method. An isentropic efficiency of 0.61 was used. This was determined iteratively...

  11. Aspen Aerogels Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation,SummariesAshmanla Industria Fotovoltaica

  12. Aspen Environmental Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation,SummariesAshmanla Industria FotovoltaicaGroup

  13. Aspen, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation,SummariesAshmanla Industria

  14. Microsoft Word - AspenMEAReport.doc

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: AchievementsTemperatures Year 6 - ActivityArticle)

  15. Aqueous Electrolyte Modeling in Aspen Plus G. E

    Office of Scientific and Technical Information (OSTI)

    discussion of their uses and our motivation for improving their electrolyte m ode1 i ng ca pabi I it ies Discussion of some of the challenges in modeling electrolyte systems...

  16. Aspen Clean Fuels Ltd ACF Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy- Transport JumpAsolaClean Fuels Ltd

  17. Aspen Hill, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy- Transport JumpAsolaClean Fuels

  18. Aspen Park, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy- Transport JumpAsolaClean

  19. City of Aspen Climate Action Plan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point, Louisiana:Alpha, MinnesotaUtilities) JumpCity

  20. City of Aspen, Colorado (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point, Louisiana:Alpha, MinnesotaUtilities)

  1. Aqueous Electrolyte Modeling in Aspen Plus G. E

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: Achievements of structural genomicsOffice of Scientific andAqueous

  2. City of Aspen - Energy Assessment Rebate Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying2-2002Joshua DeLungCommercial

  3. City of Aspen and Pitkin County - Renewable Energy Mitigation Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV) charging station inWin"near

  4. Aspen Global Change Institute (AGCI) Interdisciplinary Science Workshop: Decadal Climate Prediction; Aspen, CO; June 22-28, 2008

    SciTech Connect (OSTI)

    Katzenberger, John

    2010-03-12

    Decadal prediction lies between seasonal/interannual forecasting and longer-term climate change projections, and focuses on time-evolving regional climate conditions over the next 10?30 yr. Numerous assessments of climate information user needs have identified this time scale as being important to infrastructure planners, water resource managers, and many others. It is central to the information portfolio required to adapt effectively to and through climatic changes.

  5. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray)

    E-Print Network [OSTI]

    Gent, Universiteit

    development, disease resistance, and metabolite transport. F orests cover 30% (about 3.8 billion ha) of Earth continents, and they have evolved under selective pressures unlike those of annual herbaceous plants. Their growth and development involves extensive secondary growth, coordinated signaling and dis- tribution

  6. Lignin content in natural Populus variants affects sugar release

    E-Print Network [OSTI]

    California at Riverside, University of

    's transportation needs (1, 2) and to decrease the emissions of fossil CO2 that damage the world's climate (3 be converted into liquid fuels to reduce the prevailing role of petroleum in providing en- ergy for the world

  7. Fungal diversity within the Populus rhizosphere and endosphere | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathyEnergydetailsof Energy Fungal

  8. BEAVER DISTRIBUTION 233 CM. Fish ,md Cime 75(4): 233-238 1 989

    E-Print Network [OSTI]

    Beier, Paul

    . tremuloides, willow, Salix spp, and alder, Ainus incana, were the most heavily used woody forage species tremuloides, cottonwood, P. trichocarpa, willow, Salix spp., mountain alder, AInus incana, gray dogwood

  9. Response of quaking aspen genotypes to enriched CO2: foliar chemistry and tussock moth performance

    E-Print Network [OSTI]

    , secondary metabolites. Introduction The fitness of insect herbivores is strongly determined by the chemical and Forest Entomology (2002) 4, 315±323 # 2002 The Royal Entomological Society #12;secondary metabolites (e in the phytochemical responses of plants to CO2 enrichment is likely to alter trophic dynamics, and to shift

  10. Lina Galtieri: Top Mass Measurements. Aspen2010, January 17-23 1 Precision Top Mass Measurement

    E-Print Network [OSTI]

    Galtieri, Lina

    for each mt value Maximize the likelihood for the entire sample. Examples of variables used: mt after measured quantities Incoming partons parton level quantities normalization acceptance Transfer functions

  11. Computer-aided industrial process design; the ASPEN Project. First annual report for the period.

    E-Print Network [OSTI]

    Massachusetts Institute of Technology. Energy Laboratory.

    1977-06-15

    Work during the first year of this contract concentrated on acquiring the project staff, development of a prototype simulator, the simulation of three coal conversion processes, a survey of software for acquisition, the ...

  12. New Whole-House Solutions Case Study: Shaw Construction, Aspen, Colorado

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This builder worked with Building Science Corporation to design affordable HERS-54 townhouses with central solar radiator space heating, PV, R-28 closed-cell spray foam under slab and R-26 in advanced framed walls, and rigid polyiso on inside of basement walls

  13. Ecology & Management Effect of Simulated Browsing on Aspen Regeneration: Implications for Restoration

    E-Print Network [OSTI]

    Tate, Kenneth

    y temporada de ramoneo sobre el aumento anual de la altura de reton~os de los a´lamos durante la e sobre los reton~os de los a´lamos en tres poblaciones de a´lamos en Eagle Lake Range District, Lassen

  14. USFS Administrative Tour The Aspen FACE site hosted a visit of some 36 senior

    E-Print Network [OSTI]

    of the document, which is due out later this year. Percy Heads IUFRO Task Force on Carbon Sequestration Kevin Research Organizations (IUFRO) Task Force on "The Role of Forests in Carbon Cycles, Sequestration of foresters about carbon sequestration in the world's forests. The Task Force web site is: http

  15. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen

    E-Print Network [OSTI]

    , Coral Gables, FL 33124-4245, USA. 5 School of Natural Resources and Environment, and Department carbon sink and their potential to mitigate the effects of this greenhouse gas. Although no widely- ing availability of mineral nitrogen (N), a concept referred to as progressive nitrogen limitation

  16. USDA Forest Service Proceedings RMRS-P-18. 2001. 441 Summary: Aspen Decline in the West?

    E-Print Network [OSTI]

    suppression, or too many elk. At our conference in Grand Junction, managers were urged to "take action now in some parts of the Rocky Mountains. (a) The Black Hills of South Dakota, where browsing by deer can

  17. Small isolated aspen stands enrich bird communities in southwestern ponderosa pine forests

    E-Print Network [OSTI]

    Beier, Paul

    ­ 1910), continuing seasonal use by cattle, browsing by larger than historically present elk populations associated with hills. The theory of island biogeography is often applied by conservation biologists

  18. New Whole-House Solutions Case Study: Shaw Construction, Aspen CO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon Pollution |ofNewInsight HomesS&A Homes,07, the

  19. 2012 Aspen Winter Conference New Paradigms for Low-Dimensional Electronic

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scale Friction(Technical Report) | SciTech

  20. 2012 Aspen Winter Conference New Paradigms for Low-Dimensional Electronic

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scale Friction(Technical Report) | SciTechMaterials,

  1. OFermilab OFF-SITE SHORT-TERM HOUSING-2013--2014 Housing Office/Aspen East

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclear andTwo-Phase FlowMealsOFermilab

  2. Uptake, Translocation, and Transformation of Quantum Dots with Cationic versus Anionic Coatings by Populus deltoides nigra

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Uptake, Translocation, and Transformation of Quantum Dots with Cationic versus Anionic Coatings Supporting Information ABSTRACT: Manipulation of the organic coatings of nano- particles such as quantum dotsSe/CdZnS QDs coated with cationic polyethylenimine (PEI) (35.3 ± 6.6 nm) or poly(ethylene glycol) of anionic

  3. Key gene regulating cell wall biosynthesis and recalcitrance in Populus, gene Y

    DOE Patents [OSTI]

    Chen, Jay; Engle, Nancy; Gunter, Lee E.; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.

    2015-12-08

    This disclosure provides methods and transgenic plants for improved production of renewable biofuels and other plant-derived biomaterials by altering the expression and/or activity of Gene Y, an O-acetyltransferase. This disclosure also provides expression vectors containing a nucleic acid (Gene Y) which encodes the polypeptide of SEQ ID NO: 1 and is operably linked to a heterologous promoter.

  4. Encroachment of upland Mediterranean plant species in riparian ecosystems of southern Portugal

    E-Print Network [OSTI]

    Santos, Maria J.

    2010-01-01

    angustifolia), grey willow (Salix atrocinerea), AfricanSalicaceae Citrus sinensis Populus alba Populus nigra Salixalba Salix babilonica (*) Salix spp. Tamaricaceae

  5. Improved Swing-Cut Modeling for Planning and Scheduling of Oil-Refinery Distillation Units

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    processes can be found in commercial simulators such as Aspen-Plus and Hysys (Aspen Techology), Petro

  6. Propagation of trembling aspen and hybrid poplar for agroforestry: potential benefits of elevated CO2 in the greenhouse

    E-Print Network [OSTI]

    Macdonald, Ellen

    CO2 in the greenhouse Kendall A. Tupker, Barb R. Thomas* and S. Ellen Macdonald Department the usefulness of elevated CO2 in the greenhouse to aid in early selection of genotypes and in the propagation and reclamation across Canada. Introduction Understanding the effects of greenhouse propagation methods

  7. Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa

    E-Print Network [OSTI]

    2009-01-01

    J. Schuck (&) Molecular Foundry, Lawrence Berkeley NationalVLC. Work at the Molecular Foundry was supported by the OYce

  8. Abstract A positional cloning strategy is being imple-mented in Populus for the isolation of the dominant

    E-Print Network [OSTI]

    Bradshaw, Toby

    its role in both natural and plantation forests, and to genetically engineer susceptible Communicated by M.A. Saghai Maroof B. Stirling · H.D. Bradshaw Jr. () Center for Urban Horticulture, Box 354115. Stirling · G. Newcombe · J. Vrebalov · I. Bosdet H.D. Bradshaw, Jr. Suppressed recombination around the MXC

  9. Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa

    E-Print Network [OSTI]

    2009-01-01

    Dixon and Reddy 2003; Fukushima 2001; Ralph et al. 2007).Atalla and Agarwal 1985, 1986; Fukushima 2001). Ana- lyticalBoerjan et al. 2003; Fukushima 2001; Ralph et al. 2007).

  10. Integrated Thermal and Hydraulic Analysis of Distillation Columns 

    E-Print Network [OSTI]

    Samant, K.; Sinclair, I.; Keady, G.

    2002-01-01

    and Hydraulic Analysis of Distillation Columns Ketan Samant, Aspen Technology Ian Sinclair, Aspen Technology Ginger Keady, Aspen Technology This paper outlines the implementation of column thermal and hydraulic analysis in a simulation environment...

  11. Building America Whole-House Solutions for New Homes: Shaw Constructio...

    Energy Savers [EERE]

    Shaw Construction, Aspen, Colorado Building America Whole-House Solutions for New Homes: Shaw Construction, Aspen, Colorado Case study of Shaw Construction who worked with Building...

  12. Organic Matter Decomposition: Interactions of Temperature, Moisture and Substrate Type Major Paper by

    E-Print Network [OSTI]

    Ma, Lena

    . Pine and hardwood litters, popsicle sticks, aspen and pine wood stakes were subjected to 4 temperature

  13. \\talks and writings\\Aspen Forum REVISED FOR PARTICIPANTS 9-01 Discussion draft for Forum participants. Do not quote or copy.

    E-Print Network [OSTI]

    participants. Do not quote or copy. The Century-Long Challenge of Fossil-Carbon Sequestration Robert Socolow (can be "sequestered" from) the atmosphere. Fossil-carbon sequestration is conceptually entirely different from biological-carbon sequestration, yet, unfortunately, both kinds of sequestration are usually

  14. Co-hydrolysis of hydrothermal and dilute acid pretreated Populus slurries to support development of a high-throughput pretreatment system

    E-Print Network [OSTI]

    Studer, Michael H; Brethauer, Simone; DeMartini, Jaclyn D; McKenzie, Heather L; Wyman, Charles E

    2011-01-01

    process samples. National Renewable Energy Laboratory, NREL/at the National Renewable Energy Laboratory for approxi-the standard National Renewable Energy Laboratory method [

  15. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession

    E-Print Network [OSTI]

    2011-01-01

    mariana [Mill. ]), and willow (Salix spp. )] were calculatedAlnus crispa), willow (Salix spp. ), poplar, and aspen (

  16. Comparative sequence analysis between orthologous regions of the Arabidopsis and

    E-Print Network [OSTI]

    Bradshaw, Toby

    'aide de chromosomes bactériens artifi- ciels (CBA). Approximativement 27 % des séquences d'ADN de Populus'un clone unique de CBA de Populus possčde des orthologues sur le męme chromosome d'Arabidopsis est de 46 ŕ'importe quelle paire de gčnes d'un clone unique de CBA de Populus ait des orthologues sur un clone unique de CBA

  17. Establishment phase greenhouse gas emissions in short rotation woody biomass plantations

    E-Print Network [OSTI]

    Mladenoff, David

    February 2014 Keywords: SRWC Populus Salix Greenhouse gas balance Bioenergy Land use change a b s t r a c plantations with willow (Salix spp.), hybrid-poplar (Populus spp.), and control plots in spring 2010 at two-rotation woody bio- energy crops (SRWC), specifically hybrid-poplar (Populus spp.) and willow (Salix spp.), being

  18. AGE, HABITAT, AND YEARLY VARIATION IN THE DIET OF A GENERALIST INSECTIVORE, THE SOUTHWESTERN WILLOW FLYCATCHER

    E-Print Network [OSTI]

    Theimer, Tad

    , fi . W bw , b , w H D . U b , w fl b b w (Populus fremontii) ww (Salix , ó H á D . U b , E. t. extimus áb bó Populus . Salix ., ó Tamarix w b fl. I , bb Sw Ww F . T w U S, w b w (Populus .) ww (Salix .) b b

  19. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    associated with Populus cell wall phenotypes determined independently using pyrolysis Molecular Beam Mass Spectrometry (pyMBMS), saccharification assay and wet chemistry...

  20. High-resolution genetic mapping of allelic variants associated...

    Office of Scientific and Technical Information (OSTI)

    associated with Populus cell wall phenotypes determined independently using pyrolysis Molecular Beam Mass Spectrometry (pyMBMS), saccharification assay and wet chemistry...

  1. NREL Support for a Functional Genomics Approach to Investigate Regulation of Phenolic Glycoside: Cooperative Research and Development Final Report, CRADA number CRD-07-00218

    SciTech Connect (OSTI)

    Davis, M.

    2010-07-01

    NREL and MTU collaborated on a proposal 'A Functional Genomics Approach to Investigate Regulation of Phenolic Glycoside Metabolism in Populus' funded by the National Science Foundation.

  2. CHARACTERISTICS OF LEAST BELL'S VIREO NEST SITES ALONG THE SANTA YNEZ RIVER1

    E-Print Network [OSTI]

    . Most next (59.4%) were located in willows (Salix spp.) or mugwort (Artemisia douglasiana) at heights (Populus fremontii), arroyo willow (Salix lasio

  3. TECHNIQUES FOR MINIMIZING AND MONITORING THE IMPACT OF PIPELINE CONSTRUCTION ON COASTAL STREAMS1

    E-Print Network [OSTI]

    are vegetated by riparian forests or woodlands. These are dominated exclusively by arroyo willow (Salix red wil- low (Salix laevigata), black cottonwood (Populus tri- chocarpa), western sycamore (Platanus

  4. Ecology, 93(8) Supplement, 2012, pp. S138S150 2012 by the Ecological Society of America

    E-Print Network [OSTI]

    Thomas, David D.

    specialization and the role of trait lability in structuring diverse willow (genus Salix) communities JESSICA A diversity; phylogenetic signal; Populus; Salix; waterlogging. INTRODUCTION It is frequently hypothesized

  5. Direct Confirmation of Commercial Geothermal Resources in Colorado...

    Open Energy Info (EERE)

    of Colorado, Boulder Partner 2 Geothermal Development Associates Partner 3 Aspen Drilling, LLC Funding Opportunity Announcement DE-FOA-0000109 DOE Funding Level (total...

  6. Probabilistic Modeling and Evaluation of the Performance, Emissions, and Cost of Texaco Gasifier-

    E-Print Network [OSTI]

    Frey, H. Christopher

    - Based Integrated Gasification Combined Cycle Systems Using ASPEN Prepared by: H. Christopher Frey Naveen................................................................................................. 1 1.1 Overview of Gasification Systems.............................................................. 2 1.1.1 Gasification

  7. Burlingame Ranch Phase I

    SciTech Connect (OSTI)

    2009-02-17

    This case study describes the construction of energy efficient community-scale, affordable housing for Aspen, Colorado, residents meeting a 40% energy-savings target.

  8. Texas's 2nd congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Agribiofuels LLC Air and Liquid Advisors ALA American Electric Technologies Inc American Photovoltaics American Photovoltaics LP Arctas Capital Group Aspen Pipeline BP Wind...

  9. Better Buildings Residential Network Multifamily & Low-Income...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County of San Francisco, CA Community Office for Resource Efficiency (Aspen, CO) Davis Energy Group Efficiency Nova Scotia Elevate Energy (Energy Impact Illinois)...

  10. Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass

    E-Print Network [OSTI]

    McKenzie, Heather Lorelei

    2012-01-01

    editors. Handbook on bioethanol: production and utilization.editor. Handbook on bioethanol: production and utilization.of aspen chips for bioethanol production: optimization of

  11. Small Business Demand Response with Communicating Thermostats: SMUD's Summer Solutions Research Pilot

    E-Print Network [OSTI]

    Herter, Karen

    2010-01-01

    Martin Aspen. 2006. Demand Response Enabling TechnologiesDon. 2007. “Pricing for Demand Response from Residential andthe Level of Demand Response,” Power Point Presentation, 24

  12. WETLAND FUNCTIONS AND VALUES: THE STATE OF OUR UNDERSTANDING NOVEMBER AMERICAN WATER RESOURCES ASSOCIATION 1978

    E-Print Network [OSTI]

    Animals must have adequate energy and nutrients to survive and reproduce. However, it is not necessary Dakota, deer feed on willow (Salix sp.), aspen (Po

  13. DEVELOPMENT OF A POLITICAL SCIENCE THESAURUS

    E-Print Network [OSTI]

    Cerny, Barbara A.

    2013-01-01

    17. General Accounting Office Thesaurus. Prepared by AspenPolitical Science Thesaurus Version 1 This classificationOF A POLITICAL SCIENCE THESAURUS Barbara A. Cerny June 1980

  14. Abstract Scalable Performance Engineering Notation | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract Scalable Performance Engineering Notation May 01, 2013 Aspen (Abstract Scalable Performance Engineering Notation) is a domain specific language for performance modeling...

  15. Perspectives on Next Steps in Residential Energy Efficiency ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy efficiency," began Linda L. LaCroix, Partner at Aspen Construction Services and Vermont State Representative to the National Association of Home Builders (NAHB). "One way...

  16. Exploration of the meteorological characteristics leading to the rapid cessation of cloud-to-ground lightning in winter cyclones along the East Coast of the United States 

    E-Print Network [OSTI]

    Demetriades, Nicholas William Snow

    1999-01-01

    . This study shed light on some of the aspens of winter CG lightning during intense East Coast cyclones. However, many more studies are needed within this field....

  17. Age-dependent variation in the biophysical properties of boreal forests

    E-Print Network [OSTI]

    McMillan, Andrew M. S.; Goulden, M. L.

    2008-01-01

    2000) Increased carbon sequestration by a boreal deciduouson the annual carbon sequestration by a boreal aspen forest.1996) Measurements of carbon sequestration by long-term eddy

  18. Fermilab Physics Advisory Committee Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 29, 2012 Fermilab Physics Advisory Committee Meeting June 19-23, 2012 - Aspen, CO Comments and Recommendations Introduction The Fermilab Physics Advisory Committee (PAC) met...

  19. Work in Horticulture. 

    E-Print Network [OSTI]

    Beach, S. A. (Spencer Ambrose)

    1891-01-01

    .rc-ieh retl when ripe, flavor pure allti sprightlp; Fea- son late. \\Vill he valuable for de~sert and culinarsr use. fist of Tiees and Sl~rzcbx. -a% Populus fastigiata. Eleagnus angustifolia. Populus bereoleusi~. Tamarix Alnnrensis. Salix rosmarinifolia...

  20. Synchrony of Seed Dispersal, Hydrology and Local Climate in a

    E-Print Network [OSTI]

    Battles, John

    as a model system, we quantified and modeled propa- gule availability for Populus fremontii (POFR), Salix gooddingii (SAGO), and Salix exigua (SAEX), the tree and shrub species that dominate near-channel riparian: phenology; seed dispersal; degree- day model; seed longevity; germination; Populus; Salix; seedling

  1. Ecological Monographs, 72(4), 2002, pp. 465485 2002 by the Ecological Society of America

    E-Print Network [OSTI]

    Turner, Monica G.

    (Acer saccharinum, Betula nigra, Populus deltoides, and Salix spp.) on 30 sandbars along a 16-km reach and Salix), and models for old seedlings and saplings were stronger than those for new seedlings. Both local; multiple spatial scales; plant demography; Populus deltoides; riparian vegetation; Salix exigua; Salix

  2. A thermodynamic analysis of the SO2/H2SO4 system in SO2-depolarized electrolysis

    E-Print Network [OSTI]

    Weidner, John W.

    Available online 28 June 2009 Keywords: Hybrid sulfur Hydrogen SO2-depolarized Electrolyzer Aspen Plus Aspen on proton exchange membrane (PEM) electrolyzers to take advantage of their relatively compact size and short current path. The critical component of such an SO2-depolarized electrolyzer (SDE) is the membrane

  3. Research Object and Plan Center for Renewable Carbon

    E-Print Network [OSTI]

    Gray, Matthew

    properties of sweetgum, birch, and aspen wood harvested from control and elevated carbon dioxide treatments the effects of high CO2 level on plants What is FACE? 1. FreeAir Carbon dioxide Enrichment (FACE) method of elevated carbon dioxide on various tree species such as sweetgum, aspen, paper birch. 1. Compare chemical

  4. CX-006441: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Colorado State Energy Program, American Recovery and Reinvestment Act - City of Aspen, Geothermal Power Feasibility StudyCX(s) Applied: A9, A11, B3.1Date: 08/03/2011Location(s): Aspen, ColoradoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  5. THE INFLUENCE OF ENVIRONMENTAL FACTORS ON SPATIAL AND TEMPORAL VARIATION OF FISH ASSEMBLAGES IN THE LOWER BRAZOS RIVER, TEXAS 

    E-Print Network [OSTI]

    LI, RAYMOND Y.

    2003-01-01

    of willow Salix sp., eastern cottonwood Populus deltoides, and sycamore Platanus occidentalis extended along both banks for most of the reach. This river segment was selected because it contained representative habitats of the lower Brazos River...

  6. Sugar Stability of Sweet Sorghum Exposed to Climate Controlled and Ambient Storage Conditions 

    E-Print Network [OSTI]

    Herb, Dustin Walker

    2014-08-22

    (Salix ssp.), and hybrid poplar (Populus ssp.) used for lignocellulosic conversion (Lewandowski et al., 2000; McLaughlin and Adams, 2005), and sugarcane and sorghum (Sorghum bicolor L. Moench) as a sugar-based bioenergy crop adaptable to both...

  7. Spatial and Temporal Survey of Feral Pig Ectoparasites in Three Texas Wildlife Districts 

    E-Print Network [OSTI]

    Schuster, Anthony

    2012-02-14

    by juniper-oak forests and forest belts of pecan, walnut (Juglans microcarpa Berl.), American sycamore (Platanus occidentals L.), eastern cottonwood (Populus deltoids Bartr. Ex Marsh), bur oak (Quercus macrocarpa Michx.), black willow (Salix nigra Marsh...

  8. Kumeyaay Cultural Landscapes of Baja California's Tijuana River Watershed

    E-Print Network [OSTI]

    Gamble, Lynn H.; Wilken-Robertson, Michael

    2008-01-01

    who at times hved at El Alamo or Ha 'a, a remote canyon ofby non-Indians as El Alamo (the Cottonwood). In addition,Populus fremontii), or el alamo in Spanish, a large number

  9. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research

    E-Print Network [OSTI]

    Theimer, Tad

    Available online 22 May 2008 Keywords: Arizona Arthropod diversity Exotic Malaise traps Native Salix a b dominated by native cottonwoods (Populus spp.) and willows (Salix spp.) have transitioned to habitats

  10. NOTEWORTHY COLLECTION PUNICA GRANATUM L. (LYTHRACEAE).--Graham

    E-Print Network [OSTI]

    , ,350 meters from river channel under large Salix, 32.926611uN, 2110.733278uW, elev. 649 me- ters, mixed Populus fremontii, Salix gooddingii, Ta- marix, Prosopis velutina river terrace community, other

  11. J. N. Am. Benthol. Soc., 2007, 26(3):426438 2007 by The North American Benthological Society

    E-Print Network [OSTI]

    Marks, Jane

    and energy to stream systems. These contributions vary based on species-specific differences in litter species diversity, consisting mostly of several species of Populus and Salix, is relatively low. A recent

  12. SHORT ROTATION WOODY CROPS FACTSHEET SERIES # 5

    E-Print Network [OSTI]

    Minnesota, University of

    SHORT ROTATION WOODY CROPS FACTSHEET SERIES # 5 Sustainability of SRWC for Energy1 WHAT of the SRWC systems and the relatively narrow genetic base in Salix, Populus or Eucalyptus SRWC may promote

  13. NOTE / NOTE Canopy and emergent white spruce in ``pure''

    E-Print Network [OSTI]

    Macdonald, Ellen

    'Alberta, 19,6 % contenaient au moins une telle e´pinette de´tectable a` partir de photographies ae of Ontario. Following fire, the typical sce- nario is that Populus species regenerate vegetatively and grow

  14. Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests

    E-Print Network [OSTI]

    Wall, Diana

    : This research was funded by an Early Career Project Grant from the British Ecological Society awarded to EA of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among

  15. Reducing Safety Flaring through Advanced Control 

    E-Print Network [OSTI]

    Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

    2010-01-01

    An advanced process control application, using DMCplus® (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system...

  16. Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass

    E-Print Network [OSTI]

    McKenzie, Heather Lorelei

    2012-01-01

    parameter. Appl. Biochem. Biotech. 1990; 24/25: 1-14. WymanASPEN-Plus®. Appl. Biochem. Biotech. 2004; 115: 1087-1102. (hydrolysis. Appl. Biochem. Biotech. 2001; 92: 377-386.

  17. Utility Systems Management and Operational Optimization 

    E-Print Network [OSTI]

    Dhole, V.; Seillier, D.; Garza, K.

    2002-01-01

    simultaneously within the context of an integrated utilities management objective. Aspen Utilities™ provides a single environment to optimize business processes relating to utilities management and substantially improves financial performance typically equivalent...

  18. A reverse osmosis treatment process for produced water: optimization, process control, and renewable energy application 

    E-Print Network [OSTI]

    Mareth, Brett

    2009-06-02

    resources (wind and solar) are analyzed as potential power sources for the process, and an overview of reverse osmosis membrane fouling is presented. A computer model of the process was created using a dynamic simulator, Aspen Dynamics, to determine energy...

  19. Climate Model Intercomparisons: Preparing for the Next Phase

    SciTech Connect (OSTI)

    Meehl, J.; Moss, Richard H.; Taylor, K. E.; Eyring, Veronika; Stouffer, R. J.; Bony, Sandrine; Stevens, B.

    2014-03-04

    The article reports on the Aspen Global Change Institute workshopthat provided an input on scenarios. Our group is continuing to work on a number of aspects of scenarios for the next research cycle.

  20. Large interannual CO 2 and energy exchange variability in a freshwater marsh under consistent environmental conditions

    E-Print Network [OSTI]

    Rocha, Adrian V.; Goulden, Michael L.

    2008-01-01

    on the annual carbon sequestration by a boreal aspen forest,tions into wetland carbon sequestration as remediation forin order to assess its carbon sequestration potential. 5.2.

  1. A techno-economic and environmental assessment of hydroprocessed renewable distillate fuels

    E-Print Network [OSTI]

    Pearlson, Matthew Noah

    2011-01-01

    This thesis presents a model to quantify the economic costs and environmental impacts of producing fuels from hydroprocessed renewable oils (HRO) process. Aspen Plus was used to model bio-refinery operations and supporting ...

  2. Evaluation of Alternatives for Safer and More Efficient Reactions: A study of the N-oxidation of Alkylpyridines 

    E-Print Network [OSTI]

    Saenz Noval, Lina Rocio

    2012-02-14

    and the estimated LLE for 26DMP-water using ASPEN? ................................................................... 100 Figure 50. Comparison of experimental data with the prediction of the ternary diagram for 26DMP-3MP-Water at 79 oC using UNIFAC, UNIF...

  3. Morris Plant Energy Efficiency Program 

    E-Print Network [OSTI]

    Betczynski, M. T.

    2004-01-01

    to existing operating practices. Plant management also takes an active role in recognizing accomplishments and holding personnel accountable for continued improvement in energy efficiency. The control systems group at Equistar has integrated an Aspen...

  4. Most Viewed Documents for Power Generation and Distribution:...

    Office of Scientific and Technical Information (OSTI)

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 133 Seventh Edition Fuel Cell Handbook NETL (2004) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W....

  5. April 2013 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles...

  6. The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and

    E-Print Network [OSTI]

    Liu, Y. A.

    Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter

  7. References 170 RREEFFEERREENNCCEESS

    E-Print Network [OSTI]

    Skogestad, Sigurd

    .N., J.A. Wilson, and W.E. Jones, 1998b, Coal Gasifier Control : A Process Engineering Approach, MEC Benchmark Challenge on Gasifier Control, A One Day Seminar, 24 June 1998, Coventry University Aspen

  8. Integration of Structured Data with Natural Language: Three Test Collections Douglas W. Oard, oard@umd.edu

    E-Print Network [OSTI]

    Oard, Doug

    collection. The raw collection is available from Aspen systems for media and processing charges (about $15 is an answer key for an appropriately stratified sample of mentions. Of course, many mentioned people

  9. PAC-2013Jun-final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 June 4-8 Comments and Recommendations Introduction The Fermilab Physics Advisory Committee (PAC) met near the Aspen Room of the Lisle, IL, Hilton, at a time of important...

  10. Rangitikei District Visitor Study

    E-Print Network [OSTI]

    to the Rangitikei region so that they can improve planning and management of the industry. The New Zealand Tourism Motel, Marton; Bridge Motor Lodge & Caravan Park, Bulls; Aspen Court Motel, Taihape. 127 surveys

  11. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  12. Amanda Ensminger Materials for studying

    E-Print Network [OSTI]

    Sargent, Robert Craig

    Resources" · "Populus " · "Old Exam 2" · "Review for Exam 2" #12;Subjects to study · Tradeoffs · Life cycles's experiments...? ­ Balshine-Earn's experiments...? #12;Life cycle & Tradeoffs C zygote x = 0 Adult x = 1 A B D E Adult x = 2 Adult x = 3 Dead x = 4 F G Where would you indicate.... · Lack's tradeoff? · Williams

  13. Establishing a Eucalyptus Energy Plantation on the Central Coast of

    E-Print Network [OSTI]

    Establishing a Eucalyptus Energy Plantation on the Central Coast of California1 Norman H. Pillsbury examined in trial plantings in the United States include Alnus, Eucalyptus, Platanus, and Populus. 1 Presented at the Workshop on Eucalyptus in California, June 14-16, 1983, Sacramento, California 2

  14. ORIGINAL ARTICLE Mary E. Christopher Manoela Miranda Ian T. Major

    E-Print Network [OSTI]

    Constabel, Peter

    a library constructed from systemically wounded leaves of hybrid poplar (Populus trichocarpa · P. deltoides showed similarity to previously described sequences in public databases. Of these, the distribution of gene functions within the EST set indicated that approxi- mately 11% of the ESTs encode proteins

  15. Conversion of open lands to short-rotation woody biomass crops: site variability affects nitrogen cycling

    E-Print Network [OSTI]

    Mladenoff, David

    incomplete. In this study, we investigated the effects of converting pasture and hayfields to willow (Salix: bioenergy, GHG, land use conversion, leaching, nitrogen, plantation establishment, Populus spp., Salix spp spp.) and willow (Salix spp.) have emerged as possible sources of biomass energy in the Northern Lake

  16. Effects of cross host species inoculation of nitrogen-fixing endophytes on growth and leaf physiology of

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    . Many energy crops including corn may still benefit from diazotrophic endo- phyte inoculations allowing of diazotrophic endophytes isolated from willow (Salix sitchensis, Sitka willow) and poplar (Populus trichocarpa There is a growing emphasis on sustainable food and energy crop production that maintains high productiv- ity while

  17. Fig 1. Two-year old hybrid poplar trees planted in a loam soil in central Minnesota, US (Photo: Bernie McMahon, University

    E-Print Network [OSTI]

    Minnesota, University of

    . and their hybrids (i.e., poplars) are a significant component of the total biofuels and bioenergy feedstock resource repeated coppice production of woody biomass for energy applications may be planted at higher densities are harvested every 7-15 years (Zalensy et al., 2011). Populus bioenergy plantations require shorter rotation

  18. Rigorous Separation Design. 2. Network Design Solutions for Mixtures with Various Volatility Differences and Feed Compositions

    E-Print Network [OSTI]

    Linninger, Andreas A.

    for industry-wide energy and emission reduction efforts.2 We have discovered new algorith- mic approaches satisfying stringent product quality requirements, but with different energy demands and capital costs that their use to initialize AspenPlus flow sheet simulations leads to convergence in a few iterations

  19. Novel Solid Base Catalysts for the Production of Biodiesel from Lipids

    E-Print Network [OSTI]

    Zhao, Lina

    2010-12-17

    the transesterification reaction efficiently. A shorter reaction time and a less amount of methanol were needed compared to the conventional batch reactor. The process simulation of the RD system was performed using ASPEN Plus 11.1 software based on the reaction...

  20. Steady-State and Dynamic Modeling of Commercial Slurry High-Density Polyethylene (HDPE) Processes

    E-Print Network [OSTI]

    Liu, Y. A.

    , solvent, and oligomeric species from the polymer. Sol- vent is separated from the oligomer and recycled, Polymers Plus and Aspen Dynamics. The discussion includes thermodynamic properties, phase equilibrium, reaction kinetics, polymer properties, and other modeling issues. We characterize a Ziegler- Natta catalyst

  1. Integration of Industrial Scale Processes using Biomass Feedstock in the Petrochemical Complex ofBiomass Feedstock in the Petrochemical Complex of

    E-Print Network [OSTI]

    Pike, Ralph W.

    Integration of Industrial Scale Processes using Biomass Feedstock in the Petrochemical Complex ofBiomass Feedstock in the Petrochemical Complex of the Lower Mississippi River Corridor Debalina Sengupta1, Ralph W;Introduction · Introduction to Sustainable Development · Research Vision · Biomass conversion processes, Aspen

  2. Marco Mazzotti and Mischa Werner Institute of Process Engineering, D-MAVT, ETHZ

    E-Print Network [OSTI]

    Fischlin, Andreas

    Unconventional gas (and oil): «Fracking» Energy, emissions, fossils Source: www.propublica.org, 2012 § Fresh water use ŕ up to 24 Mio l per well § Chemicals added to fracking fluids ŕ viscosity modifiers, acids Unconventional gas (and oil): «Fracking» Energy, emissions, fossils www.ecoflight.com, Aspen § Fresh water use ŕ

  3. ESSENTIAL FACILITIES December 10, 2012

    E-Print Network [OSTI]

    Handy, Todd C.

    . v. US, 410 US 366 (1973): Must let competitors use transmission lines §2 · MCI v AT&T Co., 708 F.2d claim. §2 · Aspen Skiing § 2 liability: predation · Verizon v. Trinko, 540 U.S. 398 (2004). Sup Ct-Finding is Hard The cost of false positives counsels against an undue expansion of § 2 liability #12;10 Reason

  4. www.newphytologist.org 623 Blackwell Publishing, Ltd.

    E-Print Network [OSTI]

    words: Aspen FACE (free-air CO2 enrichment), elevated carbon dioxide, global change, net primary: 8 July 2005 Introduction Land-based and remotely sensed data show a carbon sink in Northern production (NPP) and implications for terrestrial carbon sequestration. · Using free-air CO2 enrichment (FACE

  5. ORNL/Sub/84-05907/1 ^_~C ~Preliminary Design of Linear

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Stirling Engines Final Report E FILE COpy I DO NOT | REMOVE Report Prepared by ASPEN SYSTEMS, INC. 275 for Free Piston Stirling Engines Final Report Date Published - June 1985 Report Prepared by K. P. Lee W. M dynamometer for Free Piston Stirling Engines. The work was performed under the following three separate

  6. Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants

    E-Print Network [OSTI]

    with back pressure steam turbine. The capital cost of the MEA unit is estimated using the Aspen Icarus Process Evaluator, and the capital cost of the external GT plants are estimated using the Thermoflow Plant of integration. Using a GT with a HRSG only has a lower capital cost but generates less excess electricity than

  7. Evacuated Panels Utilizing Clay-Polymer Aerogel Composites for Improved Housing Insulation

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Evacuated Panels Utilizing Clay-Polymer Aerogel Composites for Improved Housing Insulation March 17 encompasses a newly developed clay-polymer aerogel composite material (developed and patented by Dr. David Aerogel ~22 > 2,500 Silica Aerogel Blanket 10 1,800 (Aspen Aerogel) Silica Aerogel / PP Evacuated Panel 50

  8. Appears in the Proceedings of the AIPS 2002 Workshop on Planning and Scheduling with Multiple Criteria An Optimization Framework for Interdependent Planning Goals

    E-Print Network [OSTI]

    Schaffer, Steven

    and utilizing information about interdependent goals and their related utilities using the ASPEN planning plan quality versus a standard approach that treats goal utilities independently. IntroductionAppears in the Proceedings of the AIPS 2002 Workshop on Planning and Scheduling with Multiple

  9. Long-term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada

    E-Print Network [OSTI]

    Lee, Xuhui

    in southern Ontario, Canada Xuhui Lee School of Forestry and Environmental Studies, Yale University, New Haven M. Staebler and Harold H. Neumann Atmospheric Environment Service, Toronto, Ontario, Canada Abstract of maple and aspen at Camp Borden in southern Ontario, Canada, between July 1995 and December 1997. Main

  10. Ania Bleszynski Jayich, Curriculum Vitae Ania Claire Bleszynski Jayich

    E-Print Network [OSTI]

    Bigelow, Stephen

    Condensed Matter Physics: Quantum mechanical effects in mesoscopic systems. Electron transport in Science postdoctoral fellowship 2008 · Aspen Center for Physics Frontiers in Condensed Matter Systems Sophomore Female Athlete), 1996 · Ranked #1 junior tennis player in the US, 1994 · Languages (Polish, Latin

  11. RAYMOND O MILLER 6005 J ROAD

    E-Print Network [OSTI]

    AND NATURAL RESOSURCES AGRICULTURAL EXPERIMENT STATION UPPER PENINSULA TREE IMPROVEMENT CENTER ON-LINE LIBRARY University's Upper Peninsula Tree Improvement Center in Escanaba, Michigan. It has been extracted aspen is used for sawn products (about 8 million dollars per year5 ), but most is used as fiber

  12. Relation of soil-, surface-, and ground-water distributions of inorganic nitrogen with

    E-Print Network [OSTI]

    Macdonald, Ellen

    Relation of soil-, surface-, and ground-water distributions of inorganic nitrogen with topographic position in harvested and unharvested portions of an aspen-dominated catchment in the Boreal Plain M.L. Macrae, K.J. Devito, I.F. Creed, and S.E. Macdonald Abstract: Spatial distributions of soil extractable

  13. Remembering Curtis Besinger

    E-Print Network [OSTI]

    Kingsbury, Pamela D.

    2000-04-29

    for House Beautiful. In addition to his teaching and wr i t ing, for 31 years he had an architectural practice, part of the t ime in association wi th Fritz and Fabi Benedict in Aspen, Colorado. Curtis gave generously of himself to his students...

  14. Merging Hypermedia GIS with Spatial On-Line Analytical Processing: Towards Hypermedia SOLAP

    E-Print Network [OSTI]

    to select any point in the city of Aspen to start a virtual visit by viewing on-demand a film(s)), Geographic Hypermedia: Concepts and Systems . accepté #12;information adheres to the way human brains think, charts or photographs), videos, sounds (music and oral narration) and animations (changing maps, objects a

  15. The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation

    E-Print Network [OSTI]

    Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

    2009-01-01

    waste, such as food and kitchen waste, green waste, paper;waste in view of their transformation into ethanol. Belgian Journal of Foodwastes, ADC final, ADC green, acid pretreatment, ethanol, lignin blocking, bovine serum albumin, Aspen model Introduction Overcoming challenges of food

  16. GREET Pretreatment Module

    SciTech Connect (OSTI)

    Adom, Felix K.; Dunn, Jennifer B.; Han, Jeongwoo

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from biomass via different pretreatment technologies that yield sugars. This report documents the material and energy flows that occur when fermentable sugars from four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar) are produced via dilute acid pretreatment and ammonia fiber expansion. These flows are documented for inclusion in the pretreatment module of the Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. Process simulations of each pretreatment technology were developed in Aspen Plus. Material and energy consumption data from Aspen Plus were then compiled in the GREET pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  17. Ecohydrological Controls and Effects of Rhizome Integration on the Performance of Arundo donax in a Rio Grande Riparian Zone 

    E-Print Network [OSTI]

    Kui, Li

    2012-10-19

    fremontii, Salix gooddingii (Snyder et al. 1998), Tamarix ramosissima (Busch et al. 1992, Smith et al. 1998), and Prosopis glandulosa (Weltz and Blackburn 1995) are the major riparian woody species. Loss or reduction in cover of these species can... sources in most riparian zones: groundwater, river water, and precipitation. Phreatophytes such as Populus fremontii (Dawson and Ehleringer 1991) and Salix gooddingii (Horton et al. 2001) rely heavily on groundwater supplied by the alluvial aquifer...

  18. The establishment, biological success and host impact of Diorhabda elongata, imported biological control agents of invasive Tamarix in the United States 

    E-Print Network [OSTI]

    Hudgeons, Jeremy L.

    2009-05-15

    and high water usage. The ability of Tamarix to function as facultative phreatophytes in an arid floodplain has resulted in a shift in species composition from native cottonwoods (Populus spp.) and willows (Salix spp.), obligate phreatophytes which... (Neill 1985). Insect diversity at the family and species level are greatly reduced in 5 Tamarix stands when compared to native willow (Salix interior Rowlee) and seep- willow (Baccharis salicina Torr. & Gray) stands (Knutson et al. 2003). Measure...

  19. The impacts of mining on the habitat ecology of raccoons in east-central Texas 

    E-Print Network [OSTI]

    Beucler, Michele

    1995-01-01

    and Movements Results Home Ranges Habitat Use Diel Activity and Movements Discussion. Management Implications. 10 13 13 15 18 . . 19 . . 20 20 . . 26 . . 32 37 . . 42 III RESTING SITE USE BY RACCOONS IN UNMINED AND RECLAIMED AREAS . 45.... (aimed Shrubland Ulrims stare Populus defrordes Borrhoos frofunlfoflo Panicum vrrgorum Elaeagrtris umbelloro Ulmus ufare Paulrorn I'Inorunt Herbaceous plams Rubus spp 35 34 06 202 Grove Improved Pasture Developed'. Poult rocdo Plntoms...

  20. Vail, Colorado, as a Voluntary Culture Region

    E-Print Network [OSTI]

    Fertig, Christopher Jost

    2008-01-01

    , and was returning to finish the remainder of my current seasonal employment. Our small aircraft from Denver was providing a breathtaking view of the snow- covered Rocky Mountains below. The flight was pregnant with spring vacationers, and as we made our way west... industry ?redefined the social, physical, economic and imaginary landscape of the Colorado Rockies at the same time it made them the focus of a national leisure industry, ethic, and style. Places like Vail and Aspen have become powerful cultural icons...

  1. Aerogel Derived Nanostructured Thermoelectric Materials

    SciTech Connect (OSTI)

    Wendell E Rhine, PI; Dong, Wenting; Greg Caggiano, PM

    2010-10-08

    America’s dependence on foreign sources for fuel represents a economic and security threat for the country. These non renewable resources are depleting, and the effects of pollutants from fuels such as oil are reaching a problematic that affects the global community. Solar concentration power (SCP) production systems offer the opportunity to harness one of the United States’ most under utilized natural resources; sunlight. While commercialization of this technology is increasing, in order to become a significant source of electricity production in the United States the costs of deploying and operating SCP plants must be further reduced. Parabolic Trough SCP technologies are close to meeting energy production cost levels that would raise interest in the technology and help accelerate its adoption as a method to produce a significant portion of the Country’s electric power needs. During this program, Aspen Aerogels will develop a transparent aerogel insulation that can replace the costly vacuum insulation systems that are currently used in parabolic trough designs. During the Phase I program, Aspen Aerogels will optimize the optical and thermal properties of aerogel to meet the needs of this application. These properties will be tested, and the results will be used to model the performance of a parabolic trough HCE system which uses this novel material in place of vacuum. During the Phase II program, Aspen Aerogels will scale up this technology. Together with industry partners, Aspen Aerogels will build and test a prototype Heat Collection Element that is insulated with the novel transparent aerogel material. This new device will find use in parabolic trough SCP applications.

  2. Age-related breeding biology of the redhead duck in southwestern Manitoba 

    E-Print Network [OSTI]

    Johnson, David John

    1978-01-01

    Research Station, and T. Tacha (of Texas A&M University) who assisted with some phases of field work. The assistance of Dr. F. Guthery (of Texas A&M University) with the statistical analysis of the data is greatly appreciated. This study represented... 33 35 LIST OF FIGURES Figure The aspen parkland of Manitoba (Rowe 1959) Page The Ninnedosa Study Area showing Study Blocks A and B and the roadside transects . . . , . . . . . . . . . . . . . . . . . 5 Female redhead with nasal saddle attached...

  3. GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR

    SciTech Connect (OSTI)

    DAVIS J M

    2007-10-11

    Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, the ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.

  4. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    SciTech Connect (OSTI)

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping; Strauss, Steve

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Complete descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral meristem identity gene (APETALA1 or AP1), auxin response factor gene (ETTIN), the gene encoding transcriptional factor of WD40 family (TRANSPARENTTESTAGLABRA1 or TTG1), and the auxin efflux carrier (PIN-FORMED2 or PIN2) gene. More than 220 transgenic lines of the 1st, 2nd and 3rd generations were analyzed for RNAi suppression phenotypes (Filichkin et. al., manuscript submitted). A total of 108 constructs were supplied by ORNL, UF and OSU and used to generate over 1,881 PCR verified transgenic Populus and over 300 PCR verified transgenic Arabidopsis events. The Populus transgenics alone required Agrobacterium co-cultivations of 124.406 explants.

  5. GENOME ENABLED MODIFICATION OF POPLAR ROOT DEVELOPMENT FOR INCREASED CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Busov, Victor

    2013-03-05

    DR5 as a reporter system to study auxin response in Populus Plant Cell Reports 32:453-463 Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar. The Populus AINTEGUMENTA LIKE 1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia. Plant Physiol. 160: 1996-2006 Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were able to grow an increased number of adventitious roots, whereas RNA interference mediated the down-expression of PtAIL1 expression, which led to a delay in adventitious root formation. Microarray analysis showed that the expression of 15 genes, including the transcription factors AGAMOUS-Like6 and MYB36, was overexpressed in the stem tissues that generated root primordia in PtAIL1-overexpressing plants, whereas their expression was reduced in the RNA interference lines. These results demonstrate that PtAIL1 is a positive regulator of poplar rooting that acts early in the development of adventitious roots. Genomes. 7: 91-101 Knowledge of the functional relationship between genes and organismal phenotypes in perennial plants is extremely limited. Using a population of 627 independent events, we assessed the feasibility of activation tagging as a forward genetics tool for Populus. Mutant identification after 2 years of field testing was nearly sevenfold (6.5%) higher than in greenhouse studies that employed Arabidopsis and identical transformation vectors. Approximately two thirds of all mutant phenotypes were not seen in vitro and in the greenhouse; they were discovered only after the second year of field assessment. The trees? large size (5-10 m in height), perennial growth, and interactions with the natural environment are factors that are thought to have contributed to the high rate of observable phenotypes in the field. The mutant phenotypes affected a variety of morphological and physiological traits, including leaf size and morphology, crown architecture, stature, vegetative dormancy, and tropic responses. Characterization of the insertion in more than 100 events with and without mutant phenotypes showed that tags predominantly (70%) inserted in a 13-Kbp region up- and downstream of the genes? coding regions with approximately even distribution among the 19 chromosomes. Transcriptional activation was observed in many proximal genes studied. Successful phenotype recapitulation was observed in 10 of 12 retransformed genes tested, indicating true tagging and a functiona

  6. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  7. High performance APCS conceptual design and evaluation scoping study

    SciTech Connect (OSTI)

    Soelberg, N.; Liekhus, K.; Chambers, A.; Anderson, G.

    1998-02-01

    This Air Pollution Control System (APCS) Conceptual Design and Evaluation study was conducted to evaluate a high-performance (APC) system for minimizing air emissions from mixed waste thermal treatment systems. Seven variations of high-performance APCS designs were conceptualized using several design objectives. One of the system designs was selected for detailed process simulation using ASPEN PLUS to determine material and energy balances and evaluate performance. Installed system capital costs were also estimated. Sensitivity studies were conducted to evaluate the incremental cost and benefit of added carbon adsorber beds for mercury control, specific catalytic reduction for NO{sub x} control, and offgas retention tanks for holding the offgas until sample analysis is conducted to verify that the offgas meets emission limits. Results show that the high-performance dry-wet APCS can easily meet all expected emission limits except for possibly mercury. The capability to achieve high levels of mercury control (potentially necessary for thermally treating some DOE mixed streams) could not be validated using current performance data for mercury control technologies. The engineering approach and ASPEN PLUS modeling tool developed and used in this study identified APC equipment and system performance, size, cost, and other issues that are not yet resolved. These issues need to be addressed in feasibility studies and conceptual designs for new facilities or for determining how to modify existing facilities to meet expected emission limits. The ASPEN PLUS process simulation with current and refined input assumptions and calculations can be used to provide system performance information for decision-making, identifying best options, estimating costs, reducing the potential for emission violations, providing information needed for waste flow analysis, incorporating new APCS technologies in existing designs, or performing facility design and permitting activities.

  8. What matters for predicting spatial distributions of trees: Techniques, data, or species’ characteristics?

    E-Print Network [OSTI]

    Guisan, A.; Zimmermann, N. E.; Elith, J.; Graham, C. H.; Phillips, S.; Peterson, A. Townsend

    2007-10-01

    used for fitting the models. We reduced the data set so that only one record was allowed per 100-m grid cell, the highest resolution of the environmental maps. Absolute number of occurrences for modeling ranged from 36 (e.g., Populus nigra, Salix alba... quepet Quercus petraea 1452 477 0.834 useful quepub Quercus pubescens 382 26 0.889 useful querob Quercus robur 734 395 0.829 useful salalb Salix alba 37 20 0.6340 poor sorari Sorbus aria x 1245 298 0.7182 useful sorauc Sorbus aucuparia 426 224 0...

  9. Catalytic pyrolysis of plastic wastes - Towards an economically viable process

    SciTech Connect (OSTI)

    McIntosh, M.J.; Arzoumanidis, G.G.; Brockmeier, F.E.

    1996-07-01

    The ultimate goal of our project is an economically viable pyrolysis process to recover useful fuels and/or chemicals from plastics- containing wastes. This paper reports the effects of various promoted and unpromoted binary oxide catalysts on yields and compositions of liquid organic products, as measured in a small laboratory pyrolysis reactor. On the basis of these results, a commercial scale catalytic pyrolysis reactor was simulated by the Aspen software and rough costs were estimated. The results suggest that such a process has potential economic viability.

  10. Grazing Impact on Brood Parasitism 

    E-Print Network [OSTI]

    Locatelli, Anthony

    2014-04-16

    and duration of grazing. Areas with high grazing intensity would be grazed relatively often and for a relatively long period of time compared to areas with low grazing intensity. Coker and Aspen (1995) found that cowbirds were most abundant in areas where... the concentration of livestock grazing areas was highest. Kostecke et al. (2003) found that a reduction in stocking rate from 752 to 103 animal units (0.08 to 0.01 animal units/ha) was associated with reduced parasitism rates in black-capped vireos. Though...

  11. REBUILD AMERICA PROGRAM SCOPE OF WORK

    SciTech Connect (OSTI)

    Jeffrey Brown; Bruce Exstrum

    2004-12-01

    This report summarizes the activities carried out by Aspen Systems Corporation in support of the Department of Energy's Rebuild America program during the period from October 9, 1999 to October 31, 2004. These activities were in accordance with the Scope of Work contained in a GSA MOBIS schedule task order issued by the National Energy Technology Laboratory. This report includes descriptions of activities and results in the following areas: deployment/delivery model; program and project results; program representative support activities; technical assistance; web site development and operation; business/strategic partners; and training/workshop activities. The report includes conclusions and recommendations. Five source documents are also provided as appendices.

  12. EE/RE Impacts on Emission Reductions 

    E-Print Network [OSTI]

    Haberl, J. S.

    2013-01-01

    Are Wind farms operating to the design capacity? Full Capacity (13 Sites) (100%) Very Close to Design Capacity (19 Sites) (99.5-95%) Close to Design Capacity (5 Sites)(Less than 95%) 2008 C lculat d from 2012 Measured Annual Power Production OSD Power... Aspen Power Biomass Plant, Lufkin, TX Geothermal Texas Geothermal Map Wind Green Mountain Energy Wind Farm, Fluvanna, Texas ESL-KT-13-12-02 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Substantial increases...

  13. Fischer-Tropsch indirect coal liquefaction design/economics-mild hydrocracking vs. fluid catalytic cracking

    SciTech Connect (OSTI)

    Choi, G.N.; Kramer, S.J.; Tam, S.S. [Bechtel Corp., San Francisco, CA (United States); Reagan, W.J. [Amoco Oil Co., Naperville, IL (United States)] [and others

    1996-12-31

    In order to evaluate the economics of Fischer-Tropsch (F-T) indirect coal liquefaction, conceptual plant designs and detailed cost estimates were developed for plants producing environmentally acceptable, high-quality, liquid transportation fuels meeting the Clean Air Act requirements. The designs incorporate the latest developments in coal gasification technology and advanced (F-T) slurry reactor design. In addition, an ASPEN Plus process simulation model was developed to predict plant material and energy balances, utility requirements, operating and capital costs at varying design conditions. This paper compares mild hydrocracking and fluid catalytic cracking as alternative methods for upgrading the F-T wax.

  14. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    SciTech Connect (OSTI)

    Lee, Andrew; Miller, David C.

    2012-01-01

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  15. Review of an internship with Ouray District United States Forest Service 

    E-Print Network [OSTI]

    Caddy, Mark W

    1985-01-01

    of them in the internship. I appreciate the help from Rich Gobber who allowed himself to be a listening post for bouncing ideas off of. Finally, I wish to thank my family not only for the financial help, but more over for the spiritual support... for the Uncompahgre National Forest Z. Record of Vegetative Development 3. Record of Utilization by Height-Weight Method Percent of Height Grazed Computation Table Height-Weight Table APPENDIX H. Aspen Management Guidelines. APPENDIX C. Results of CDOW Survey...

  16. An experiment in recreation management training 

    E-Print Network [OSTI]

    Butts, Kenneth Mitchell

    1968-01-01

    , So?athvestern Bell Telephone Comp?wy H. B. Van Cor~der, Harvard University Muriel Froom, Aspen lnsti+ute for Humanistic Studies Allen &all, The Boeing Company Above all~ tho author is indebted to his wife, Joyce, without whose a 'sistsuce, s... Order of Topics in Business-Oriented Training Progrszs Percentage Distribution of Course Staff 32 S~y of Participants' Evaluation of Tonics Rank Order of Topics Most Helpful in the Participants' Present Position 56 Rank Order of Topics Bali. eved...

  17. Microsoft Word - R10008 Final_Report 10-13-11

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom StructuralAutonomousAspen

  18. Microsoft Word - REPORT.13.final

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom StructuralAutonomousAspenGrantee

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke EnergyRenewable Energy andPugetPacific Power-SystemEnergy EfficiencyMountain Association forCity of Aspen-

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke EnergyRenewable Energy andPugetPacific Power-SystemEnergySustainable Energy UtilityMountainGoalCity of Aspen and

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke EnergyRenewable Energy andPugetPacific Power-SystemEnergySustainable Energy UtilityMountainGoalCity of Aspen

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke EnergyRenewable Energy andPugetPacific Power-SystemEnergySustainable Energy UtilityMountainGoalCity of AspenHVAC

  3. Building America Whole-House Solutions for New Homes: Shaw Construction,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at the Edge of a SlabCommunities of DelBurien,Aspen,

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke EnergyRenewable Energy andPugetPacific Power- FinAnswerSustainable Energy Trust Fund The SETFCity of Aspen-

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke EnergyRenewable Energy andPugetPacific Power- FinAnswerSustainable Energy Trust Fund The SETFCity of Aspen-Home

  6. Biotechnology and genetic optimization of fast-growing hardwoods

    SciTech Connect (OSTI)

    Garton, S.; Syrkin-Wurtele, E.; Griffiths, H.; Schell, J.; Van Camp, L.; Bulka, K. (NPI, Salt Lake City, UT (United States))

    1991-02-01

    A biotechnology research program was initiated to develop new clones of fast-growing Populus clones resistant to the herbicide glyphosate and resistant to the leaf-spot and canker disease caused by the fungus Septoria musiva. Glyphosate-resistant callus was selected from stem segments cultured in vitro on media supplemented with the herbicide. Plants were regenerated from the glyphosate-resistant callus tissue. A portion of plants reverted to a glyphosate susceptible phenotype during organogenesis. A biologically active filtrate was prepared from S. musiva and influenced fresh weight of Populus callus tissue. Disease-resistant plants were produced through somaclonal variation when shoots developed on stem internodes cultured in vitro. Plantlets were screened for disease symptoms after spraying with a suspension of fungal spores. A frequency of 0.83 percent variant production was observed. Genetically engineered plants were produced after treatment of plant tissue with Agrobacterium tumefasciens strains carrying plasmid genes for antibiotic resistance. Transformers were selected on media enriched with the antibiotic, kanamycin. Presence of foreign DNA was confirmed by Southern blot analysis. Protoplasts of popular were produced but did not regenerate into plant organs. 145 refs., 12 figs., 36 tabs.

  7. Technical Analysis of Hydrogen Production

    SciTech Connect (OSTI)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  8. Next Generation Climate Change Experiments Needed to Advance Knowledge and for Assessment of CMIP6

    SciTech Connect (OSTI)

    Katzenberger, John; Arnott, James; Wright, Alyson

    2014-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Next generation climate change experiments needed to advance knowledge and for assessment of CMIP6,” on August 4-9, 2013 in Aspen, CO. Jerry Meehl (NCAR), Richard Moss (PNNL), and Karl Taylor (LLNL) served as co-chairs for the workshop which included the participation of 32 scientists representing most of the major climate modeling centers for a total of 160 participant days. In August 2013, AGCI gathered a high level meeting of representatives from major climate modeling centers around the world to assess achievements and lessons learned from the most recent generation of coordinated modeling experiments known as the Coupled Model Intercomparison Project – 5 (CMIP5) as well as to scope out the science questions and coordination structure desired for the next anticipated phase of modeling experiments called CMIP6. The workshop allowed for reflection on the coordination of the CMIP5 process as well as intercomparison of model results, such as were assessed in the most recent IPCC 5th Assessment Report, Working Group 1. For example, this slide from Masahiro Watanabe examines performance on a range of models capturing Atlantic Meridional Overturning Circulation (AMOC).

  9. PRELIMINARY ENVIRONMENTAL, HEALTH AND SAFETY RISK ASSESSMENT ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND VACUUM REGENERATION WITH A SUBCRITICAL PC POWER PLANT

    SciTech Connect (OSTI)

    Fitzgerald, David; Vidal, Rafael; Russell, Tania; Babcock, Doosan; Freeman, Charles; Bearden, Mark; Whyatt, Greg; Liu, Kun; Frimpong, Reynolds; Lu, Kunlei; Salmon, Sonja; House, Alan; Yarborough, Erin

    2014-12-31

    The results of the preliminary environmental, health and safety (EH&S) risk assessment for an enzyme-activated potassium carbonate (K2CO3) solution post-combustion CO2 capture (PCC) plant, integrated with a subcritical pulverized coal (PC) power plant, are presented. The expected emissions during normal steady-state operation have been estimated utilizing models of the PCC plant developed in AspenTech’s AspenPlus® software, bench scale test results from the University of Kentucky, and industrial experience of emission results from a slipstream PCC plant utilizing amine based solvents. A review of all potential emission species and their sources was undertaken that identified two credible emission sources, the absorber off-gas that is vented to atmosphere via a stack and the waste removed from the PCC plant in the centrifuge used to reclaim enzyme and solvent. The conditions and compositions of the emissions were calculated and the potential EH&S effects were considered as well as legislative compliance requirements. Potential mitigation methods for emissions during normal operation have been proposed and solutions to mitigate uncontrolled releases of species have been considered. The potential emissions were found to pose no significant EH&S concerns and were compliant with the Federal legislation reviewed. The limitations in predicting full scale plant performance from bench scale tests have been noted and further work on a larger scale test unit is recommended to reduce the level of uncertainty.

  10. ISPE: A knowledge-based system for fluidization studies

    SciTech Connect (OSTI)

    Reddy, S.

    1991-01-01

    Chemical engineers use mathematical simulators to design, model, optimize and refine various engineering plants/processes. This procedure requires the following steps: (1) preparation of an input data file according to the format required by the target simulator; (2) excecuting the simulation; and (3) analyzing the results of the simulation to determine if all specified goals'' are satisfied. If the goals are not met, the input data file must be modified and the simulation repeated. This multistep process is continued until satisfactory results are obtained. This research was undertaken to develop a knowledge based system, IPSE (Intelligent Process Simulation Environment), that can enhance the productivity of chemical engineers/modelers by serving as an intelligent assistant to perform a variety tasks related to process simulation. ASPEN, a widely used simulator by the US Department of Energy (DOE) at Morgantown Energy Technology Center (METC) was selected as the target process simulator in the project. IPSE, written in the C language, was developed using a number of knowledge-based programming paradigms: object-oriented knowledge representation that uses inheritance and methods, rulebased inferencing (includes processing and propagation of probabilistic information) and data-driven programming using demons. It was implemented using the knowledge based environment LASER. The relationship of IPSE with the user, ASPEN, LASER and the C language is shown in Figure 1.

  11. ISPE: A knowledge-based system for fluidization studies. 1990 Annual report

    SciTech Connect (OSTI)

    Reddy, S.

    1991-01-01

    Chemical engineers use mathematical simulators to design, model, optimize and refine various engineering plants/processes. This procedure requires the following steps: (1) preparation of an input data file according to the format required by the target simulator; (2) excecuting the simulation; and (3) analyzing the results of the simulation to determine if all ``specified goals`` are satisfied. If the goals are not met, the input data file must be modified and the simulation repeated. This multistep process is continued until satisfactory results are obtained. This research was undertaken to develop a knowledge based system, IPSE (Intelligent Process Simulation Environment), that can enhance the productivity of chemical engineers/modelers by serving as an intelligent assistant to perform a variety tasks related to process simulation. ASPEN, a widely used simulator by the US Department of Energy (DOE) at Morgantown Energy Technology Center (METC) was selected as the target process simulator in the project. IPSE, written in the C language, was developed using a number of knowledge-based programming paradigms: object-oriented knowledge representation that uses inheritance and methods, rulebased inferencing (includes processing and propagation of probabilistic information) and data-driven programming using demons. It was implemented using the knowledge based environment LASER. The relationship of IPSE with the user, ASPEN, LASER and the C language is shown in Figure 1.

  12. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect (OSTI)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  13. Carbonic Acid Pretreatment of Biomass

    SciTech Connect (OSTI)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  14. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  15. Nitrogen expander cycles for large capacity liquefaction of natural gas

    SciTech Connect (OSTI)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  16. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  17. Gas permeation carbon capture --- Process modeling and optimization

    SciTech Connect (OSTI)

    Morinelly, Juan; Miller, David

    2011-01-01

    A multi-staged gas permeation carbon capture process model was developed in Aspen Custom Modeler{reg_sign} (ACM) and optimized in the context of the retrofit of a 550 MW subcritical pulverized coal (PC) power plant. The gas permeation stages in the process are described by a custom multi-component, hollowfiber membrane model. Gas transport across the asymmetric membrane was modeled according to the solution-diffusion model for the selective skin layer and the assumption of negligible flux resistance by the porous support. Counter-current, one-dimensional plug flow was assumed with permeate pressure drop in the fiber lumen side due to capillary constrained flow. A modular optimization framework was used to minimize the levelized cost of electricity (LCOE) by optimizing a set of key process variables. The framework allows the external control of multiple simulation modules from different software packages from a common interface.

  18. Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO{sub 2} Capture

    SciTech Connect (OSTI)

    Liu, Kunlei; Chen, Liangyong; Zhang, Yi; Richburg, Lisa; Simpson, James; White, Jay; Rossi, Gianalfredo

    2013-12-31

    The purpose of this document is to report the final result of techno-economic analysis for the proposed 550MWe integrated pressurized chemical looping combustion combined cycle process. An Aspen Plus based model is delivered in this report along with the results from three sensitivity scenarios including the operating pressure, excess air ratio and oxygen carrier performance. A process flow diagram and detailed stream table for the base case are also provided with the overall plant energy balance, carbon balance, sulfur balance and water balance. The approach to the process and key component simulation are explained. The economic analysis (OPEX and CAPX) on four study cases via DOE NETL Reference Case 12 are presented and explained.

  19. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  20. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  1. ESCOE fossil energy program, November 15, 1976-August 15, 1980. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-08-15

    The Engineering Societies Commission on Energy, Inc. has carried out engineering tasks for DOE as follows: recruited and developed a professional staff for engineering studies; evaluated some 17 processes for converting coal to gaseous or liquid fuels (in the process identifying and perfecting basic cost estimate data and methods for consistency and in conformance to cost guidelines); developed a simple, yet effective, ESCOE/DOE information system; evaluated applicable non-fossil research studies; assessed the adequacy of available materials for coal conversion processes; compared five coal liquefaction processes; examined problems in retrofitting oil- and gas-burning plants to burn coal; prepared a R and D plan and development schedule for fuel cells; supported the ASPEN computerized design work; developed consistent cost estimating methods; reviewed coal mining research programs; assisted in planning basic engineering research programs; examined oil recovery by mining; and reviewed alternative technologies. (LTN)

  2. Refining and end use study of coal liquids

    SciTech Connect (OSTI)

    Choi, G.

    1998-05-01

    A conceptual design and ASPEN Plus process flowsheet simulation model was developed for a Battelle biomass-based gasification, Fischer-Tropsch (F-T) liquefaction and combined-cycle power plant. This model was developed in a similar manner to those coal liquefaction models that were developed under DOE contract DE-AC22-91PC90027. As such, this process flowsheet simulation model was designed to be a research guidance tool and not a detailed process design tool. However, it does contain some process design features, such as sizing the F-T synthesis reactors. This model was designed only to predict the effects of various process and operating changes on the overall plant heat and material balances, utilities, capital and operating costs.

  3. CO2 Binding Organic Liquids Gas Capture with Polarity Swing Assisted Regeneration

    SciTech Connect (OSTI)

    Heldebrant, David

    2014-05-31

    This report outlines the comprehensive bench-scale testing of the CO2-binding organic liquids (CO2BOLs) solvent platform and its unique Polarity Swing Assisted Regeneration (PSAR). This study outlines all efforts on a candidate CO2BOL solvent molecule, including solvent synthesis, material characterization, preliminary toxicology studies, and measurement of all physical, thermodynamic and kinetic data, including bench-scale testing. Equilibrium and kinetic models and analysis were made using Aspen Plus™. Preliminary process configurations, a technoeconomic assessment and solvent performance projections for separating CO2 from a subcritical coal-fired power plant are compared to the U.S. Department of Energy's Case 10 monoethanolamine baseline.

  4. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  5. EFFECT OF ELECTROLYZER CONFIGURATION AND PERFORMANCE ON HYBRID SULFUR PROCESS NET THERMAL EFFICIENCY

    SciTech Connect (OSTI)

    Gorensek, M

    2007-03-16

    Hybrid Sulfur cycle is gaining popularity as a possible means for massive production of hydrogen from nuclear energy. Several different ways of carrying out the SO{sub 2}-depolarized electrolysis step are being pursued by a number of researchers. These alternatives are evaluated with complete flowsheet simulations and on a common design basis using Aspen Plus{trademark}. Sensitivity analyses are performed to assess the performance potential of each configuration, and the flowsheets are optimized for energy recovery. Net thermal efficiencies are calculated for the best set of operating conditions for each flowsheet and the results compared. This will help focus attention on the most promising electrolysis alternatives. The sensitivity analyses should also help identify those features that offer the greatest potential for improvement.

  6. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  7. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  8. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  9. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  10. HFC-134A and HCFC-22 supermarket refrigeration demonstration and laboratory testing. Phase I. Final report

    SciTech Connect (OSTI)

    1996-04-01

    Aspen Systems and a team of nineteen agencies and industry participants conducted a series of tests to determine the performance of HFC-134a, HCFC-22, and CFC-502 for supermarket application. This effort constitutes the first phase of a larger project aimed at carrying out both laboratory and demonstration tests of the most viable HFC refrigerants and the refrigerants they replace. The results of the Phase I effort are presented in the present report. The second phase of the project has also been completed. It centered on testing all viable HFC replacement refrigerants for CFC-502. These were HFC-507, HFC-404A, and HFC-407A. The latter results are published in the Phase II report for this project. As part of Phase I, a refrigeration rack utilizing a horizontal open drive screw compressor was constructed in our laboratory. This refrigeration rack is a duplicate of one we have installed in a supermarket in Clifton Park, NY.

  11. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  12. Achieving the Security, Environmental, and Economic Potential of Bioenergy. Final Technical Report

    SciTech Connect (OSTI)

    Riggs, John A

    2006-06-07

    A group of business, government, environmental and academic leaders convened in a dialogue by the Aspen Institute proposed a series of actions to promote the widespread commercialization of both corn and cellulosic ethanol to improve energy security, the environment, and the economy. Co-chaired by Booz Allen Hamilton Vice President and former CIA Director R. James Woolsey and former Congressman Tom Ewing (R. IL), they developed a series of recommendations involving improved crop yields, processing of biomass into ethanol, manufacture of more cars that can burn either ethanol or gasoline, and the provision of ethanol pumps at more filling stations. Their report, "A High Growth Strategy for Ethanol, includes a discussion of the potential of ethanol, the group's recommendations, and a series of discussion papers commissioned for the dialogue.

  13. Coal liquefaction: investigation of reactor performance, role of catalysts, and PCT properties. Technical progress report

    SciTech Connect (OSTI)

    Brainard, A.; Shah, Y.; Tierney, J.; Wender, I.; Joseph, S.; Kerkar, A.; Ozturk, S.; Sayari, A.

    1985-11-01

    This report is divided into two sections plus an appendix. The first section reports on computer simulations which were developed for three important coal liquefaction processes - the Mobil Methanol to Gasoline (MTG) process, the Fischer-Tropsch (F-T) process, and the synthesis of methanol. The models are designed to be general and information such as new kinetic equations or new physical property information can be readily added. Each of the models also provides for alternate reactor configurations. A comparison of results obtained using the models and results reported in the literature is included to verify the model. Comparisons of alternate processing methods are also included to provide guidance in the selection of a reactor configuration for a specific process. Complete program listings are given in the Appendix, and sample problems with inputs and outputs are provided for the user. The programs are written in the FORTRAN language. It is ultimately desirable to make these models available in a form which can be used in ASPEN, the process simulator developed for DOE. As a first step, the use of ASPEN PLUS to predict thermodynamic and transport properties of systems of interest to coal liquefaction was studied. In the second section, five areas of potential importance to indirect and direct coal liquefaction are reviewed. They are the synthesis of methanol via methyl formate, the role of carbon dioxide in methanol synthesis, the synthesis of methanol using noble metal catalysts, the catalytic synthesis of higher alcohols from a new, high-yield sulfur-tolerant catalyst, and the direct liquefaction of coal mixed with heavy oils - so-called coprocessing. Seven papers in the two sections have been processed for inclusion in the Energy Data Base.

  14. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect (OSTI)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  15. Package Equivalent Reactor Networks as Reduced Order Models for Use with CAPE-OPEN Compliant Simulation

    SciTech Connect (OSTI)

    Meeks, E.; Chou, C. -P.; Garratt, T.

    2013-03-31

    Engineering simulations of coal gasifiers are typically performed using computational fluid dynamics (CFD) software, where a 3-D representation of the gasifier equipment is used to model the fluid flow in the gasifier and source terms from the coal gasification process are captured using discrete-phase model source terms. Simulations using this approach can be very time consuming, making it difficult to imbed such models into overall system simulations for plant design and optimization. For such system-level designs, process flowsheet software is typically used, such as Aspen Plus® [1], where each component where each component is modeled using a reduced-order model. For advanced power-generation systems, such as integrated gasifier/gas-turbine combined-cycle systems (IGCC), the critical components determining overall process efficiency and emissions are usually the gasifier and combustor. Providing more accurate and more computationally efficient reduced-order models for these components, then, enables much more effective plant-level design optimization and design for control. Based on the CHEMKIN-PRO and ENERGICO software, we have developed an automated methodology for generating an advanced form of reduced-order model for gasifiers and combustors. The reducedorder model offers representation of key unit operations in flowsheet simulations, while allowing simulation that is fast enough to be used in iterative flowsheet calculations. Using high-fidelity fluiddynamics models as input, Reaction Design’s ENERGICO® [2] software can automatically extract equivalent reactor networks (ERNs) from a CFD solution. For the advanced reduced-order concept, we introduce into the ERN a much more detailed kinetics model than can be included practically in the CFD simulation. The state-of-the-art chemistry solver technology within CHEMKIN-PRO allows that to be accomplished while still maintaining a very fast model turn-around time. In this way, the ERN becomes the basis for high-fidelity kinetics simulation, while maintaining the spatial information derived from the geometrically faithful CFD model. The reduced-order models are generated in such a way that they can be easily imported into a process flowsheet simulator, using the CAPE-OPEN architecture for unit operations. The ENERGICO/CHEMKIN-PRO software produces an ERN-definition file that is read by a dynamically linked library (DLL) that can be easily linked to any CAPE-OPEN compliant software. The plug-in unitoperation module has been successfully demonstrated for complex ERNs of coal gasifiers, using both Aspen Plus and COFE process flowsheet simulators through this published CAPE-OPEN interface.

  16. Development of a Conceptual Process for Selective CO{sub 2} Capture from Fuel Gas Streams Using [hmim][Tf2N] Ionic Liquid as a Physical Solvent

    SciTech Connect (OSTI)

    Basha, Omar M.; Keller, Murphy J.; Luebke, David R.; Resnik, Kevin; P Morsi, Badie I.

    2013-07-01

    The Ionic Liquid (IL) [hmim][Tf2N] was used as a physical solvent in an Aspen Plus simulation, employing the Peng-Robinson Equation of State (P-R EOS) with Boston-Mathias (BM) alpha function and standard mixing rules, to develop a conceptual process for CO{sub 2} capture from a shifted warm fuel gas stream produced from Pittsburgh # 8 coal for a 400 MWe power plant. The physical properties of the IL, including density, viscosity, surface tension, vapor pressure and heat capacity were obtained from literature and modeled as a function of temperature. Also, available experimental solubility values for CO{sub 2}, H{sub 2}, H{sub 2}S, CO, and CH{sub 4} in this IL were compiled and their binary interaction parameters ({delta}{sub ij} and l{sub ij}) were optimized and correlated as functions of temperature. The Span-Wager Equation-of-State EOS was also employed to generate CO{sub 2} solubilities in [hmim][Tf2N] at high pressures (up to 10 MPa) and temperatures (up to 510 K). The conceptual process developed consisted of 4 adiabatic absorbers (2.4 m ID, 30 m high) arranged in parallel and packed with Plastic Pall Rings of 0.025 m for CO{sub 2} capture; 3 flash drums arranged in series for solvent (IL) regeneration with the pressure-swing option; and a pressure-intercooling system for separating and pumping CO{sub 2} up to 153 bar to the sequestration sites. The compositions of all process streams, CO{sub 2} capture efficiency, and net power were calculated using Aspen Plus simulator. The results showed that, based on the composition of the inlet gas stream to the absorbers, 95.67 mol% of CO{sub 2} was captured and sent to sequestration sites; 99.5 mol% of H{sub 2} was separated and sent to turbines; the solvent exhibited a minimum loss of 0.31 mol%; and the net power balance of the entire system was 30.81 MW. These results indicated that [hmim][Tf2N] IL could be used as a physical solvent for CO{sub 2} capture from warm shifted fuel gas streams with high efficiency.

  17. Cellulolytic Microorganisms from Thermal Environments

    SciTech Connect (OSTI)

    Vishnivetskaya, Tatiana A [ORNL; Raman, Babu [ORNL; Phelps, Tommy Joe [ORNL; Podar, Mircea [ORNL; Elkins, James G [ORNL

    2012-01-01

    Thermal, anaerobic environments rich in decaying plant material are a potential source of novel cellulolytic bacteria. Samples collected from geothermal aquifers in the Yellowstone National Park (YNP) were used to select for cellulolytic thermophiles. Laboratory enrichments on dilute-acid pretreated plant biomass (switchgrass, Populus), and crystalline cellulose (Avicel) resulted in the isolation of 247 environmental clones. The majority of individual clones were affiliated with the cellulolytic bacteria of phylum Firmicutes, followed by xylanolytic and saccharolytic members of the phylum Dictyoglomi. Among the Firmicutes, the clones were affiliated with the genera Caldicellulosiruptor (54.4%), Caloramator (11.5%), Thermoanaerobacter (8.8%), Thermovenabulum (4.1%), and Clostridium (2.0%). From established anaerobic thermophilic enrichments a total of 81 single strains of the genera Caldicellulosiruptor (57%) and Thermoanaerobacter (43%) were isolated. With continuous flow enrichment on Avicel, increases in the relative abundance of Caloramator sp. was observed over clones detected from the Caldicellulosiruptor. Complex communities of interacting microorganisms bring about cellulose decomposition in nature, therefore using up-to-date approaches may yield novel cellulolytic microorganisms with high activity and a rapid rate of biomass conversion to biofuels.

  18. Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites

    SciTech Connect (OSTI)

    Battipaglia, Giovanna [Second University of Naples; Saurer, Matthias [Paul Scherrer Institut, Villigen, Switzerland; Cherubini, Paulo [WSL Swiss Federal Institute for Forest, Snow and Landscape Research; Califapietra, Carlo [University of Tuscia; McCarthy, Heather R [Duke University; Norby, Richard J [ORNL; Cotrufo, M. Francesca [Colorado State University, Fort Collins

    2013-01-01

    Elevated CO2 increases intrinsic water use efficiency (WUEi) of forests, but the magnitude of this effect and its interaction with climate is still poorly understood. We combined tree ring analysis with isotope measurements at three Free Air CO2 Enrichment (FACE, POP-EUROFACE, in Italy; Duke FACE in North Carolina and ORNL in Tennessee, USA) sites, to cover the entire life of the trees. We used 13C to assess carbon isotope discrimination ( 13C ci/ca) and changes in WUEi, while direct CO2 effects on stomatal conductance were explored using 18O as a proxy. Across all the sites, elevated CO2 increased 13C-derived WUEi on average by 73% for Liquidambar styraciflua, 77% for Pinus taeda and 75% for Populus sp., but through different ecophysiological mechanisms. Our findings provide a robust means of predicting WUEi responses from a variety of tree species exposed to variable environmental conditions over time, and species-specific relationships that can help modeling elevated CO2 and climate impacts on forest productivity, carbon and water balances.

  19. Anaerobic High-Throughput Cultivation Method for Isolation of Thermophiles Using Biomass-Derived Substrates

    SciTech Connect (OSTI)

    Hamilton-Brehm, Scott; Vishnivetskaya, Tatiana A; Allman, Steve L; Mielenz, Jonathan R; Elkins, James G

    2012-01-01

    Flow cytometry (FCM) techniques have been developed for sorting mesophilic organisms, but the difficulty increases if the target microbes are thermophilic anaerobes. We demonstrate a reliable, high-throughput method of screening thermophilic anaerobic organisms using FCM and 96-well plates for growth on biomass-relevant substrates. The method was tested using the cellulolytic thermophiles Clostridium ther- mocellum (Topt = 55 C), Caldicellulosiruptor obsidiansis (Topt = 78 C) and the fermentative hyperthermo- philes, Pyrococcus furiosus (Topt = 100 C) and Thermotoga maritima (Topt = 80 C). Multi-well plates were incubated at various temperatures for approximately 72 120 h and then tested for growth. Positive growth resulting from single cells sorted into individual wells containing an anaerobic medium was verified by OD600. Depending on the growth substrate, up to 80 % of the wells contained viable cultures, which could be transferred to fresh media. This method was used to isolate thermophilic microbes from Rabbit Creek, Yellowstone National Park (YNP), Wyoming. Substrates for enrichment cultures including crystalline cellulose (Avicel), xylan (from Birchwood), pretreated switchgrass and Populus were used to cultivate organisms that may be of interest to lignocellulosic biofuel production.

  20. Genomics Mechanisms of Carbon Allocation and Partitioning in Poplar

    SciTech Connect (OSTI)

    Kirst, Matias; Peter, Gary; Martin, Timothy

    2009-07-30

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration. It is also unclear how environmental cues such as nitrogen availability impact the genes that regulate growth, and biomass allocation and wood composition in trees. To address these questions we phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above and below ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Fifty-seven quantitative trait loci (QTL) were identified for twenty traits analyzed. The majority of QTL are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and QTL co-localization identified the genomic position of potential pleiotropic regulators. Gene expression analysis of all poplar genes was also characterized in differentiating xylem, whole-roots and developing leaves of 192 of the segregating population. By integrating the QTL and gene expression information we identified genes that regulate carbon partitioning and several biomass growth related properties. The work developed in this project resulted in the publication of three book chapters, four scientific articles (three others currently in preparation), 17 presentations in international conferences and two provisional patent applications.

  1. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    SciTech Connect (OSTI)

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.; Mattson, W., J.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifua and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.

  2. Thermal Plasticity of Photosynthesis: the Role of Acclimation in Forest Responses to a Warming Climate

    SciTech Connect (OSTI)

    Gunderson, Carla A [ORNL; O'Hara, Keiran H [ORNL; Campion, Christina M [ORNL; Walker, Ashley V [ORNL; Edwards, Nelson T [ORNL

    2010-01-01

    The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open-top chambers supplied three levels of warming (+0, +2, and +4 C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17 to 34 were observed. Across species, acclimation potentials varied from 0.55 C to 1.07 C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.

  3. Ambrosia Beetle (Coleoptera: Scolytidae) Species, Flight, and Attack on Living Eastern Cottonwood Trees.

    SciTech Connect (OSTI)

    D.R. Coyle; D.C. Booth: M.S. Wallace

    2005-12-01

    ABSTRACT In spring 2002, ambrosia beetles (Coleoptera: Scolytidae) infested an intensively managed 22-ha tree plantation on the upper coastal plain of South Carolina. Nearly 3,500 scolytids representing 28 species were captured in ethanol-baited traps from 18 June 2002 to 18 April 2004. More than 88% of total captures were exotic species. Five species [Dryoxylon onoharaensum (Murayama), Euwallacea validus (Eichhoff), Pseudopityophthorus minutissimus (Zimmermann), Xyleborus atratus Eichhoff, and Xyleborus impressus Eichhoff]) were collected in South Carolina for the Ă?Â?Ă?Â?rst time. Of four tree species in the plantation, eastern cottonwood, Populus deltoides Bartram, was the only one attacked, with nearly 40% of the trees sustaining ambrosia beetle damage. Clone ST66 sustained more damage than clone S7C15. ST66 trees receiving fertilization were attacked more frequently than trees receiving irrigation, irrigation_fertilization, or controls, although the number of S7C15 trees attacked did not differ among treatments. The study location is near major shipping ports; our results demonstrate the necessity for intensive monitoring programs to determine the arrival, spread, ecology, and impact of exotic scolytids.

  4. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  5. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  6. Synthesis of optimal adsorptive carbon capture processes.

    SciTech Connect (OSTI)

    chang, Y.; Cozad, A.; Kim, H.; Lee, A.; Vouzis, P.; Konda, M.; Simon, A.; Sahinidis, N.; Miller, D.

    2011-01-01

    Solid sorbent carbon capture systems have the potential to require significantly lower regeneration energy compared to aqueous monoethanol amine (MEA) systems. To date, the majority of work on solid sorbents has focused on developing the sorbent materials themselves. In order to advance these technologies, it is necessary to design systems that can exploit the full potential and unique characteristics of these materials. The Department of Energy (DOE) recently initiated the Carbon Capture Simulation Initiative (CCSI) to develop computational tools to accelerate the commercialization of carbon capture technology. Solid sorbents is the first Industry Challenge Problem considered under this initiative. An early goal of the initiative is to demonstrate a superstructure-based framework to synthesize an optimal solid sorbent carbon capture process. For a given solid sorbent, there are a number of potential reactors and reactor configurations consisting of various fluidized bed reactors, moving bed reactors, and fixed bed reactors. Detailed process models for these reactors have been modeled using Aspen Custom Modeler; however, such models are computationally intractable for large optimization-based process synthesis. Thus, in order to facilitate the use of these models for process synthesis, we have developed an approach for generating simple algebraic surrogate models that can be used in an optimization formulation. This presentation will describe the superstructure formulation which uses these surrogate models to choose among various process alternatives and will describe the resulting optimal process configuration.

  7. Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture

    SciTech Connect (OSTI)

    Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

    2013-07-31

    A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom of the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.

  8. Development of an entrained flow gasifier model for process optimization study

    SciTech Connect (OSTI)

    Biagini, E.; Bardi, A.; Pannocchia, G.; Tognotti, L. [Consorzio Pisa Ric, Pisa (Italy). Div Energia Ambiente

    2009-10-15

    Coal gasification is a versatile process to convert a solid fuel in syngas, which can be further converted and separated in hydrogen, which is a valuable and environmentally acceptable energy carrier. Different technologies (fixed beds, fluidized beds, entrained flow reactors) are used, operating under different conditions of temperature, pressure, and residence time. Process studies should be performed for defining the best plant configurations and operating conditions. Although 'gasification models' can be found in the literature simulating equilibrium reactors, a more detailed approach is required for process analysis and optimization procedures. In this work, a gasifier model is developed by using AspenPlus as a tool to be implemented in a comprehensive process model for the production of hydrogen via coal gasification. It is developed as a multizonal model by interconnecting each step of gasification (preheating, devolatilization, combustion, gasification, quench) according to the reactor configuration, that is in entrained flow reactor. The model removes the hypothesis of equilibrium by introducing the kinetics of all steps and solves the heat balance by relating the gasification temperature to the operating conditions. The model allows to predict the syngas composition as well as quantity the heat recovery (for calculating the plant efficiency), 'byproducts', and residual char. Finally, in view of future works, the development of a 'gasifier model' instead of a 'gasification model' will allow different reactor configurations to be compared.

  9. A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms

    SciTech Connect (OSTI)

    Khan, NE; Myers, JA; Tuerk, AL; Curtis, WR

    2014-11-01

    Economic analysis of an ARPA-e Electrofuels (http://arpa-e.energy.gov/?q=arpa-e-programs/electrofuels) process is presented, utilizing metabolically engineered Rhodobacter capsulatus or Ralstonia eutropha to produce the C30+ hydrocarbon fuel, botryococcene, from hydrogen, carbon dioxide, and oxygen. The analysis is based on an Aspen plus (R) bioreactor model taking into account experimentally determined Rba. capsulatus and Rls. eutropha growth and maintenance requirements, reactor residence time, correlations for gas-liquid mass-transfer coefficient, gas composition, and specific cellular fuel productivity. Based on reactor simulation results encompassing technically relevant parameter ranges, the capital and operating costs of the process were estimated for 5000 bbl-fuel/day plant and used to predict fuel cost. Under the assumptions used in this analysis and crude oil prices, the Levelized Cost of Electricity (LCOE) required for economic feasibility must be less than 2(sic)/kWh. While not feasible under current market prices and costs, this work identifies key variables impacting process cost and discusses potential alternative paths toward economic feasibility. (C) 2014 Elsevier Ltd. All rights reserved.

  10. Techno-Economics for Conversion of Lignocellulosic Biomass to Ethanol by Indirect Gasification and Mixed Alcohol Synthesis

    SciTech Connect (OSTI)

    Abhijit Dutta; Michael Talmadge; Jesse Hensley; Matt Worley; Doug Dudgeon; David Barton; Peter Groenendijk; Daniela Ferrari; Brien Stears; Erin Searcy; Christopher Wright; J. Richard Hess

    2012-07-01

    This techno-economic study investigates the production of ethanol and a higher alcohols coproduct by conversion of lignocelluosic biomass to syngas via indirect gasification followed by gas-to-liquids synthesis over a precommercial heterogeneous catalyst. The design specifies a processing capacity of 2,205 dry U.S. tons (2,000 dry metric tonnes) of woody biomass per day and incorporates 2012 research targets from NREL and other sources for technologies that will facilitate the future commercial production of cost-competitive ethanol. Major processes include indirect steam gasification, syngas cleanup, and catalytic synthesis of mixed alcohols, and ancillary processes include feed handling and drying, alcohol separation, steam and power generation, cooling water, and other operations support utilities. The design and analysis is based on research at NREL, other national laboratories, and The Dow Chemical Company, and it incorporates commercial technologies, process modeling using Aspen Plus software, equipment cost estimation, and discounted cash flow analysis. The design considers the economics of ethanol production assuming successful achievement of internal research targets and nth-plant costs and financing. The design yields 83.8 gallons of ethanol and 10.1 gallons of higher-molecular-weight alcohols per U.S. ton of biomass feedstock. A rigorous sensitivity analysis captures uncertainties in costs and plant performance.

  11. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect (OSTI)

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  12. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect (OSTI)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  13. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  14. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect (OSTI)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  15. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    SciTech Connect (OSTI)

    Thorsness, C. B., LLNL

    1997-01-21

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  16. Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier

    SciTech Connect (OSTI)

    Mann, M.K. [National Renewable Energy Lab., Golden, CO (United States). Industrial Technologies Div.

    1995-08-01

    The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus{trademark} to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product.

  17. HYBRID SULFUR FLOWSHEETS USING PEM ELECTROLYSIS AND A BAYONET DECOMPOSITION REACTOR

    SciTech Connect (OSTI)

    Gorensek, M; William Summers, W

    2008-05-30

    A conceptual design is presented for a Hybrid Sulfur process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process combines proton exchange membrane-based SO{sub 2}-depolarized electrolyzer technology being developed at Savannah River National Laboratory with silicon carbide bayonet decomposition reactor technology being developed at Sandia National Laboratories. Both are part of the US DOE Nuclear Hydrogen Initiative. The flowsheet otherwise uses only proven chemical process components. Electrolyzer product is concentrated from 50 wt% sulfuric acid to 75 wt% via recuperative vacuum distillation. Pinch analysis is used to predict the high-temperature heat requirement for sulfuric acid decomposition. An Aspen Plus{trademark} model of the flowsheet indicates 340.3 kJ high-temperature heat, 75.5 kJ low-temperature heat, 1.31 kJ low-pressure steam, and 120.9 kJ electric power are consumed per mole of H{sub 2} product, giving an LHV efficiency of 35.3% (41.7% HHV efficiency) if electric power is available at a conversion efficiency of 45%.

  18. Comparisons of amine solvents for post-combustion CO{sub 2} capture: A multi-objective analysis approach

    SciTech Connect (OSTI)

    Lee, Anita S.; Eslick, John C.; Miller, David C.; Kitchin, John R.

    2013-10-01

    Amine solvents are of great interest for post-combustion CO{sub 2} capture applications. Although the development of new solvents is predominantly conducted at the laboratory scale, the ability to assess the performance of newly developed solvents at the process scale is crucial to identifying the best solvents for CO{sub 2} capture. In this work we present a methodology to evaluate and objectively compare the process performance of different solvents. We use Aspen Plus, with the electrolyte-NRTL thermodynamic model for the solvent CO{sub 2} interactions, coupled with a multi-objective genetic algorithm optimization to determine the best process design and operating conditions for each solvent. This ensures that the processes utilized for the comparison are those which are best suited for the specific solvent. We evaluate and compare the process performance of monoethanolamine (MEA), diethanolamine (DEA), and 2-amino-2-methyl-1-propanol (AMP) in a 90% CO{sub 2} capture process from a 550 MW coal fired power plant. From our analysis the best process specifications are amine specific and with those specific, optimized specifications DEA has the potential to be a better performing solvent than MEA, with a lower energy penalty and lower capital cost investment.

  19. Recognizing genes and other components of genomic structure

    SciTech Connect (OSTI)

    Burks, C. ); Myers, E. . Dept. of Computer Science); Stormo, G.D. . Dept. of Molecular, Cellular and Developmental Biology)

    1991-01-01

    The Aspen Center for Physics (ACP) sponsored a three-week workshop, with 26 scientists participating, from 28 May to 15 June, 1990. The workshop, entitled Recognizing Genes and Other Components of Genomic Structure, focussed on discussion of current needs and future strategies for developing the ability to identify and predict the presence of complex functional units on sequenced, but otherwise uncharacterized, genomic DNA. We addressed the need for computationally-based, automatic tools for synthesizing available data about individual consensus sequences and local compositional patterns into the composite objects (e.g., genes) that are -- as composite entities -- the true object of interest when scanning DNA sequences. The workshop was structured to promote sustained informal contact and exchange of expertise between molecular biologists, computer scientists, and mathematicians. No participant stayed for less than one week, and most attended for two or three weeks. Computers, software, and databases were available for use as electronic blackboards'' and as the basis for collaborative exploration of ideas being discussed and developed at the workshop. 23 refs., 2 tabs.

  20. SEPARATION OF FISCHER-TROPSCH WAX FROM CATALYST BY SUPERCRITICAL EXTRACTION

    SciTech Connect (OSTI)

    Patrick C. Joyce; Mark C. Thies

    1999-03-31

    The objective of this research project was to evaluate the potential of supercritical fluid (SCF) extraction for the recovery and fractionation of the wax product from the slurry bubble column (SBC) reactor of the Fischer-Tropsch (F-T) process. The wax, comprised mostly of branched and linear alkanes with a broad molecular weight distribution up to C{sub 100}, is to be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300 C. Aspen Plus{trademark} was used to perform process simulation studies on the proposed extraction process, with Redlich-Kwong-Soave (RKS) being used for the thermodynamic property model. In summary, we have made comprehensive VLE measurements for short alkane + long alkane systems over a wide range of pressures and temperatures, dramatically increasing the amount of high-quality data available for these simple, yet highly relevant systems. In addition, our work has demonstrated that, surprisingly, no current thermodynamic model can adequately predict VLE behavior for these systems. Thus, process simulations (such as those for our proposed SCF extraction process) that incorporate these systems can currently only give results that are qualitative at best. Although significant progress has been made in the past decade, more experimental and theoretical work remain to be done before the phase equilibria of asymmetric alkane mixtures can be predicted with confidence.

  1. Effect of product upgrading on Fischer-Tropsch indirect coal liquefaction economics

    SciTech Connect (OSTI)

    Choi, G.N.; Kramer, S.J.; Tam, S.S.; Fox, J.M. III

    1995-12-31

    Conceptual plant designs with cost estimates for indirect coal liquefaction technology to produce environmentally acceptable transportation liquid fuels meeting the Clear Air Act requirements were developed for the US Department of Energy (DOE). The designs incorporate the latest development in coal gasification technology and advanced Fischer-Tropsch (F-T) slurry reactor design. ASPEN process simulation models were developed to provide detailed plant material and energy balances, utility requirements, operating and capital costs. A linear programming model based on a typical PADD II refinery was developed to assess the values of the produced F-T products. The results then were used in a discounted cash flow spreadsheet model to examine the effect of key process variables on the overall F-T economics. Different models were developed to investigate the various routes of upgrading the F-T products. The effects of incorporating a close-coupled ZSM-5 reactor to upgrade the vapor stream leaving the Fischer-Tropsch reactor have been reported previously. This paper compares two different schemes of F-T was upgrading, namely fluidized bed catalytic cracking verse mild hydrocracking.

  2. "Flexible aerogel as a superior thermal insulation for high temperature superconductor cable applications"

    SciTech Connect (OSTI)

    White, Shannon O. [Aspen Aerogel, Inc.; Demko, Jonathan A [ORNL; Tomich, A. [Aspen Aerogel, Inc.

    2010-01-01

    High temperature superconducting (HTS) cables are an advanced technology that can both strengthen and improve the national electrical distribution infrastructure. HTS cables require sufficient cooling to overcome inherent low temperature heat loading. Heat loads are minimized by the use of cryogenic envelopes or cryostats. Cryostats require improvement in efficiency, reliability, and cost reduction to meet the demanding needs of HTS conductors (1G and 2G wires). Aspen Aerogels has developed a compression resistant aerogel thermal insulation package to replace compression sensitive multi-layer insulation (MLI), the incumbent thermal insulation, in flexible cryostats for HTS cables. Oak Ridge National Laboratory tested a prototype aerogel package in a lab-scale pipe apparatus to measure the rate of heat invasion. The lab-scale pipe test results of the aerogel solution will be presented and directly compared to MLI. A compatibility assessment of the aerogel material with HTS system components will also be presented. The aerogel thermal insulation solution presented will meet the demanding needs of HTS cables.

  3. Affordable Window Insulation with R-10/inch Rating

    SciTech Connect (OSTI)

    Jenifer Marchesi Redouane Begag; Je Kyun Lee; Danny Ou; Jong Ho Sonn; George Gould; Wendell Rhine

    2004-10-15

    During the performance of contract DE-FC26-00-NT40998, entitled ''Affordable Window Insulation with R-10/inch Value'', research was conducted at Aspen Aerogels, Inc. to develop new transparent aerogel materials suitable for window insulation applications. The project requirements were to develop a formulation or multiple formulations that have high transparency (85-90%) in the visible region, are hydrophobic (will not opacify with exposure to water vapor or liquid), and have at least 2% resiliency (interpreted as recoverable 2% strain and better than 5% strain to failure in compression). Results from an unrelated project showed that silica aerogels covalently bonded to organic polymers exhibit excellent mechanical properties. At the outset of this project, we believed that such a route is the best to improve mechanical properties. We have applied Design of Experiment (DOE) techniques to optimize formulations including both silica aerogels and organically modified silica aerogels (''Ormosils''). We used these DOE results to optimize formulations around the local/global optimization points. This report documents that we succeeded in developing a number of formulations that meet all of the stated criteria. We successfully developed formulations utilizing a two-step approach where the first step involves acid catalyzed hydrolysis and the second step involves base catalyzed condensation to make the gels. The gels were dried using supercritical CO{sub 2} and we were able to make 1 foot x 1 foot x 0.5 inch panels that met the criteria established.

  4. Market disruption, cascading effects, and economic recovery:a life-cycle hypothesis model.

    SciTech Connect (OSTI)

    Sprigg, James A.

    2004-11-01

    This paper builds upon previous work [Sprigg and Ehlen, 2004] by introducing a bond market into a model of production and employment. The previous paper described an economy in which households choose whether to enter the labor and product markets based on wages and prices. Firms experiment with prices and employment levels to maximize their profits. We developed agent-based simulations using Aspen, a powerful economic modeling tool developed at Sandia, to demonstrate that multiple-firm economies converge toward the competitive equilibria typified by lower prices and higher output and employment, but also suffer from market noise stemming from consumer churn. In this paper we introduce a bond market as a mechanism for household savings. We simulate an economy of continuous overlapping generations in which each household grows older in the course of the simulation and continually revises its target level of savings according to a life-cycle hypothesis. Households can seek employment, earn income, purchase goods, and contribute to savings until they reach the mandatory retirement age; upon retirement households must draw from savings in order to purchase goods. This paper demonstrates the simultaneous convergence of product, labor, and savings markets to their calculated equilibria, and simulates how a disruption to a productive sector will create cascading effects in all markets. Subsequent work will use similar models to simulate how disruptions, such as terrorist attacks, would interplay with consumer confidence to affect financial markets and the broader economy.

  5. Optimization Under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  6. Optimization under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazar; Stephen E. Zitney; Urmila Diwekar

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  7. Techno-Economic Analysis of Biofuels Production Based on Gasification

    SciTech Connect (OSTI)

    Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

    2010-11-01

    This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

  8. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  9. GENETIC MODIFICATION OF GIBBERELLIC ACID SIGNALING TO PROMOTE CARBON SEQUESTRATION IN TREE ROOTS AND STEMS

    SciTech Connect (OSTI)

    Busov, Victor

    2013-03-05

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula ? Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations. We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses. We studied the poplar C(19) gibberellin 2-oxidase (GA2ox) gene subfamily. We show that a set of paralogous gene pairs differentially regulate shoot and root development. ? PtGA2ox4 and its paralogous gene PtGA2ox5 are primarily expressed in aerial organs, and overexpression of PtGA2ox5 produced a strong dwarfing phenotype characteristic of GA deficiency. Suppression of PtGA2ox4 and PtGA2ox5 led to increased biomass growth, but had no effect on root development. By contrast, the PtGA2ox2 and PtGA2ox7 paralogous pair was predominantly expressed in roots, and when these two genes were RNAi-suppressed it led to a decrease of root biomass. ? The morphological changes in the transgenic plants were underpinned by tissue-specific increases in bioactive GAs that corresponded to the predominant native expression of the targeted paralogous gene pair. Although RNAi suppression of both paralogous pairs led to changes in wood developmen

  10. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    SciTech Connect (OSTI)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66% using electrolysis and nuclear power as the hydrogen source. In addition, nuclear integration decreases CO2 emissions by 84% if sequestration is assumed and 96% without sequestration, when compared to conventional CTL. • The preliminary economic assessment indicates that the incorporation of 11 HTGRs and the associated HTSEs impacts the expected return on investment, when compared to conventional CTL with or without sequestration. However, in a carbon constrained scenario, where CO2 emissions are taxed and sequestration is not an option, a reasonable CO2 tax would equate the economics of the nuclear assisted CTL case with the conventional CTL case. The economic results are preliminary, as they do not include economies of scale for multiple HTGRs and are based on an uncertain reactor cost estimate. Refinement of the HTGR cost estimate is currently underway. • To reduce well to wheel (WTW) GHG emissions below baseline (U.S. crude mix) or imported crude derived diesel, integration of an HTGR is necessary. WTW GHG emissions decrease 8% below baseline crude with nuclear assisted CTL. Even with CO2 sequestration, conventional CTL WTW GHG emissions are 24% higher than baseline crude emissions. • Current efforts are underway to investigate the incorporation of nuclear integrated steam methane reforming for the production of hydrogen, in place of HTSE. This will likely reduce the number of HTGRs required for the process.

  11. Chemical Looping Combustion Reactions and Systems

    SciTech Connect (OSTI)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  12. Low-Energy Solvents For Carbon Dioxide Capture Enabled By A Combination Of Enzymes And Vacuum Regeneration

    SciTech Connect (OSTI)

    Salmon, Sonja; House, Alan; Liu, Kun; Frimpong, Reynolds; Liu, Kunlei; Freeman, Charles; Whyatt, Greg; Slater, Jonathan; Fitzgerald, David

    2015-08-31

    An integrated bench-scale system combining the attributes of the bio-renewable enzyme carbonic anhydrase (CA) with low-enthalpy CO2 absorption solvents and vacuum regeneration was designed, built and operated for 500 hours using simulated flue gas. The objective was to develop a CO2 capture process with improved efficiency and sustainability when compared to NETL Case 10 monoethanolamine (MEA) scrubbing technology. The use of CA accelerates inter-conversion between dissolved CO2 and bicarbonate ion to enhance CO2 absorption, and the use of low enthalpy CO2 absorption solvents makes it possible to regenerate the solvent at lower temperatures relative to the reference MEA-based solvent. The vacuum regeneration-based integrated bench-scale system operated successfully for an accumulated 500 hours using aqueous 23.5 wt% K2CO3-based solvent containing 2.5 g/L enzyme to deliver an average 84% CO2 capture when operated with a 20% enzyme replenishment rate per ~7 hour steady-state run period. The total inlet gas flow was 30 standard liters per minute with 15% CO2 and 85% N2. The absorber temperature was 40°C and the stripper operated under 35 kPa pressure with an approximate 77°C stripper bottom temperature. Tests with a 30°C absorber temperature delivered >90% capture. On- and off-line operational measurements provided a full process data set, with recirculating enzyme, that allowed for enzyme replenishment and absorption/desorption kinetic parameter calculations. Dissolved enzyme replenishment and conventional process controls were demonstrated as straightforward approaches to maintain system performance. Preliminary evaluation of a novel flow-through ultrasonically enhanced regeneration system was also conducted, yet resulted in CO2 release within the range of temperature-dependent release, and further work would be needed to validate the benefits of ultrasonic enhanced stripping. A full technology assessment was completed in which four techno-economic cases for enzyme-enhanced aqueous K2CO3 solvent with vacuum stripping were considered and a corresponding set of sensitivity studies were developed. The cases were evaluated using bench-scale and laboratory-based observations, AspenPlus® process simulation and modeling, AspenTech’s CCE® Parametric Software, current vendor quotations, and project partners’ know-how of unit operations. Overall, the DOE target of 90% CO2 capture could be met using the benign enzyme-enhanced aqueous K2CO3-based alternative to NETL Case 10. The model-predicted plant COE performance, scaled to 550 MWe net output, was 9% higher than NETL Case 10 for an enzyme-activated case with minimized technical risk and highest confidence in physical system performance utilizing commercially available equipment. A COE improvement of 2.8% versus NETL Case 10 was predicted when favorable features of improved enzyme longevity and additional power output from a very low pressure (VLP) turbine were combined, wherein corresponding high capital and operational costs limited the level of COE benefit. The environmental, health and safety (EH&S) profile of the system was found to be favorable and was compliant with the Federal EH&S legislation reviewed. Further work on a larger scale test unit is recommended to reduce the level of uncertainty inherent in extrapolating findings from a bench-scale unit to a full scale PCC plant, and to further investigate several identified opportunities for improvement. Production feasibility and suitability of carbonic anhydrases for scale-up testing was confirmed both through the current project and through parallel efforts.

  13. FY-09 Summary Report to the Office of Petroleum Reserves on the Western Energy Corridor Initiative Activities and Accomplishments

    SciTech Connect (OSTI)

    Thomas R. Wood

    2010-01-01

    To meet its programmatic obligations under the Energy Policy Act of 2005, the Office of Naval Petroleum and Shale Oil Reserves (NPSOR) has initiated the Western Energy Corridor Initiative (WECI). The WECI will implement the Unconventional Strategic Fuels Task Force recommendations for accelerating and promoting the development of domestic unconventional fuels to help meet the nations’ energy needs. The mission of the WECI is to bolster America’s future fuel security by facilitating socially and environmentally responsible development of unconventional fuels resources in the Western Energy Corridor, using sound engineering principles and science-based methods to define and assess benefits, impacts, uncertainties, and mitigation options and to resolve impediments. The Task Force proposed a three-year program in its commercialization plan. The work described herein represents work performed by Idaho National Laboratory (INL) in support of the DOE’s WECI. This effort represents an interim phase of work, designed to initiate only select portions of the initiative, limited by available funding resources within NPOSR. Specifically, the work presented here addresses what was accomplished in FY-09 with the remaining carryover (~$420K) from NPOSR FY-08 funds. It was the intent of the NPOSR program to seek additional funding for full implementation of the full scope of work; however, the original tasks were reduced in scope, terminated, or eliminated (as noted below). An effort is ongoing to obtain funding to continue the tasks initiated under this project. This study will focus on the integrated development of multiple energy resources in a carbon-neutral and environmentally acceptable manner. Emphasis will be placed on analyses of the interrelationships of various energy-resource development plans and the infrastructure, employment, training, fiscal, and economic demands placed on the region as a result of various development scenarios. The interactions at build-out during the design, permitting, and construction of individual and multiple energy developments are not fully considered at the local, state, regional, or national levels. The net impacts to the Western Energy Corridor cannot be understood and the design optimized under the current approach. A regional development plan is needed to model cumulative impacts, determine the carrying capacity of the basin, and provide valuable technically based information to both skeptics and advocates. The INL scope of work for FY-09 involved six tasks: 1. Evaluation of the ASPEN Code as a dynamic systems model for application and use under the WECI and communications with Alberta Oil Sands Research Institutions as an “analog” resource development in the Western Energy Corridor 2. Application of the Aspen Plus computer model to several oil shale processes to consider energy balances and inputs and outputs (e.g. water consumption, CO2 production, etc.) 3. Development of a regulatory roadmap for oil shale developments 4. Defining of the physiographic extent of the natural resource reserves that comprise the Western Energy Corridor 5. A review of the Unconventional Fuels Task Force Report to Congress for ideas, concepts and recommendations that crosscutting plans 6. Program development with stakeholders, including industry, academics, state and federal agencies, and non government organizations. This task also includes project management, strategic development and reporting.

  14. Process/Engineering Co-Simulation of Oxy-Combustion and Chemical Looping Combustion

    SciTech Connect (OSTI)

    Sloan, David

    2012-12-31

    Over the past several years, the DOE has sponsored various funded programs, collectively referred to as Advanced Process Engineering Co-Simulator (APECS) programs, which have targeted the development of a steady-state simulator for advanced power plants. The simulator allows the DOE and its contractors to systematically evaluate various power plant concepts, either for preliminary conceptual design or detailed final design. One of the novel and powerful characteristics of the simulator is that it is designed to couple a hierarchy of plant-level and equipment-level models that have varying levels of fidelity and computational speed suitable. For example, the simulator may be used to couple the cycle analysis software Aspen Plus? (marketed by Aspen Technology, Inc.) with an equipment item on the process flowsheet modeled with the FLUENT? computational fluid dynamics (CFD) code (marketed by ANSYS Inc.). An important enhancement to the APECS toolkit has been the creation of computationally efficient reduced-order models (ROMs) based on information generated from high-fidelity CFD models. The overarching goal of the present DOE program has been to advance and apply APECS to an overlapping advanced carbon capture technology applications area and a dense-phase, chemical looping (CL) applications area. The specific objectives of the project are to (1) develop ROMs for dense-phase computations using the ROM Builder (based on the regression ROM methodology plus principal component analysis (PCA) for contour plots), and (2) demonstrate commercial-scale, oxyfired (OF), circulating fluidized bed (CFB) co-simulations, as well as CL combustion cosimulations, using the ROM and APECS tool kit. The overall intent of the program is to enhance the APECS toolkit so that it is capable of providing dense-phase riser co-simulations using a CAPEOPEN (CO)-compliant ROM, constructed using the ROM Builder, for CL and oxy-fired CFB systems. As the prime contractor, Alstom Power has the responsibility to demonstrate the capabilities of the enhanced APECS tool to simulate commercial-scale OF CFB and CL combustion co-simulations, both of which involve the time-dependent, dense-phase submodels in the FLUENT? code. ANSYS Inc., as a subcontractor, bears the responsibility to enhance the APECS tool kit for the dense-phase submodel applications, and to assist in the development of specific User-Defined Functions (UDFs) necessary for the particle-phase reactions. In April of 2012, Alstom was notified that the workscope would be curtailed after the end of the budget period. Alstom and the DOE agreed to a revised workscope. The technical work was originally encompassed by Tasks 3 and 4. Task 3, associated with the OF CFB applications area, was curtailed, and Task 4, associated with the CL applications area, was eliminated. Only a portion of Task 3 has been completed. Consequently, this report constitutes a final report for that body of work that was accomplished through May of 2012, in accordance with the workscope revisions.

  15. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-02-01

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GA down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.

  16. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-01-06

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GAmore »down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.« less

  17. Forest phenology and a warmer climate - Growing season extension in relation to climatic provenance

    SciTech Connect (OSTI)

    Gunderson, Carla A [ORNL; Edwards, Nelson T [ORNL; Walker, Ashley V [ORNL; O'Hara, Keiran H [ORNL; Campion, Christina M [ORNL; Hanson, Paul J [ORNL

    2012-01-01

    Predicting forest responses to warming climates relies on assumptions about niche and temperature sensitivity that remain largely untested. Observational studies have related current and historical temperatures to phenological shifts, but experimental evidence is sparse, particularly for autumn responses. A five-year field experiment exposed four deciduous forest species from contrasting climates (Liquidambar styraciflua, Quercus rubra, Populus grandidentata, and Betula alleghaniensis) to air temperatures 2 and 4 C above ambient controls. Impacts of year-round warming on bud burst (BB), senescence and abscission were evaluated in relation to thermal provenance. Leaves emerged earlier in all species, by an average of 6-9 days at +2 and +4 C. Magnitude of advance varied with species and year, but was larger for the first 2 C increment than the second. The effect of warming increased with early BB, favoring Liquidambar, from the warmest climate, but even BB in northern species advanced, despite temperatures well beyond those of the realized niche. Treatment differences in BB were poorly explained by temperature sums, which increased with treatment. In autumn, chlorophyll was retained an average of 4 and 7 days longer in +2 and +4 C treatments, and abscission delayed by 8 and 13 days. Species differences in autumn responses were marginally significant. Growing seasons in the warmer atmospheres were 6 - 28 days longer, with the least impact in Quercus. Results are compared with a 16-year record of canopy onset and offset in a nearby upland deciduous forest, where BB showed similar responsiveness to spring temperatures (2 - 4 days C-1). Offset dates in the stand tracked August-September temperatures, except when late summer drought caused premature senescence. The common garden-like experimental approach provides evidence that warming alone extends the growing season, at both ends, even if stand-level impacts are complicated by other environmental factors.

  18. Improving process performances in coal gasification for power and synfuel production

    SciTech Connect (OSTI)

    M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana [University of Padova, Milan (Italy). Italy and Foster Wheeler Italiana Spa

    2008-11-15

    This paper is aimed at developing process alternatives of conventional coal gasification. A number of possibilities are presented, simulated, and discussed in order to improve the process performances, to avoid the use of pure oxygen, and to reduce the overall CO{sub 2} emissions. The different process configurations considered include both power production, by means of an integrated gasification combined cycle (IGCC) plant, and synfuel production, by means of Fischer-Tropsch (FT) synthesis. The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. As a result, no or little nitrogen is present in the syngas produced by the gasifier; the required heat is transferred by using an inert solid as the carrier, which is circulated between the two modules. First, a thermodynamic study of the dual-bed gasification is carried out. Then a dual-bed gasification process is simulated by Aspen Plus, and the efficiency and overall CO{sub 2} emissions of the process are calculated and compared with a conventional gasification with oxygen. Eventually, the scheme with two reactors (gasifier-combustor) is coupled with an IGCC process. The simulation of this plant is compared with that of a conventional IGCC, where the gasifier is fed by high purity oxygen. According to the newly proposed configuration, the global plant efficiency increases by 27.9% and the CO{sub 2} emissions decrease by 21.8%, with respect to the performances of a conventional IGCC process. 29 refs., 7 figs., 5 tabs.

  19. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    SciTech Connect (OSTI)

    Howard Meyer

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energyâ??s Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process â?? High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  20. Predicting the performance of system for the co-production of Fischer-Tropsch synthetic liquid and power from coal

    SciTech Connect (OSTI)

    Wang, X.; Xiao, Y.; Xu, S.; Guo, Z.

    2008-01-15

    A co-production system based on Fischer-Tropsch (FT) synthesis reactor and gas turbine was simulated and analyzed. Syngas from entrained bed coal gasification was used as feedstock of the low-temperature slurry phase Fischer-Tropsch reactor. Raw synthetic liquid produced was fractioned and upgraded to diesel, gasoline, and liquid petrol gas (LPG). Tail gas composed of unconverted syngas and FT light components was fed to the gas turbine. Supplemental fuel (NG, or refinery mine gas) might be necessary, which was dependent on gas turbine capacity expander through flow capacity, etc. FT yield information was important to the simulation of this co-production system. A correlation model based on Mobil's two step pilot plant was applied. User models that can predict product yields and cooperate with other units were embedded into Aspen plus simulation. Performance prediction of syngas fired gas turbine was the other key of this system. The increase in mass flow through the turbine affects the match between compressor and turbine operating conditions. The calculation was carried out by GS software developed by Politecnico Di Milano and Princeton University. Various cases were investigated to match the FT synthesis island, power island, and gasification island in co-production systems. Effects of CO{sub 2} removal/LPG recovery, co-firing, and CH{sub 4} content variation were studied. Simulation results indicated that more than 50% of input energy was converted to electricity and FT products. Total yield of gasoline, diesel, and LPG was 136-155 g/N m{sup 3} (CO+H{sub 2}). At coal feed of 21.9 kg/s, net electricity exported to the grid was higher than 100 MW. Total production of diesel and gasoline (and LPG) was 118,000 t (134,000 t)/year. Under the economic analysis conditions assumed in this paper the co-production system was economically feasible.

  1. Utilization of municipal wastewater for cooling in thermoelectric power plants

    SciTech Connect (OSTI)

    Safari, Iman; Walker, Michael E.; Hsieh, Ming-Kai; Dzombak, David A.; Liu, Wenshi; Vidic, Radisav D.; Miller, David C.; Abbasian, Javad

    2013-09-01

    A process simulation model has been developed using Aspen Plus® with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH3 and CO2 evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loop pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH3 mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e.g., kNH3 < 4×10-3 m/s) when the makeup water alkalinity is low (e.g., <90 mg/L as CaCO3). The effect of the CO2 mass transfer coefficient was found to be significant only at lower alkalinity values (e.g., kCO2<4×10-6 m/s).

  2. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  3. Hot-gas cleanup system model development. Volume I. Final report

    SciTech Connect (OSTI)

    Ushimaru, K.; Bennett, A.; Bekowies, P.J.

    1982-11-01

    This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.

  4. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  5. RESEARCH & DEVELOPMENT TO PREPARE AND CHARACTERIZE ROBUST COAL/BIOMASS MIXTURES FOR DIRECT CO-FEEDING INTO GASIFICATION SYSTEMS

    SciTech Connect (OSTI)

    Felix, Larry; Farthing, William; Hoekman, S. Kent

    2014-12-31

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formed into robust, weather-resistant pellets and briquettes. The specific objectives of the project include: • Demonstration of the continuous production of a uniform densified and formed feedstock from loblolly pine (a lignocellulosic, short rotation woody crop) in a hydrothermal carbonization (HTC) process development unit (PDU). • Demonstration that finely divided bituminous coal and HTC loblolly pine can be blended to form 90/10 and 70/30 weight-percent mixtures of coal and HTC biomass for further processing by pelletization and briquetting equipment to form robust weather resistant pellets and/or briquettes suitable for transportation and long term storage. • Characterization of the coal-biomass pellets and briquettes to quantify their physical properties (e.g. flow properties, homogeneity, moisture content, particle size and shape), bulk physical properties (e.g. compressibility, heat transfer and friability) and assess their suitability for use as fuels for commercially-available coal gasifiers. • Perform economic analyses using Aspen-based process simulations to determine the costs for deploying and operating HTC processing facilities for the production of robust coal/biomass fuels suitable for fueling commercially-available coal-fired gasifiers. This Final Project Scientific/Technical Report discusses and documents the project work required to meet each of these objectives.

  6. Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants

    SciTech Connect (OSTI)

    A. D. Rao; J. Francuz; H. Liao; A. Verma; G. S. Samuelsen

    2006-11-01

    Table 1 shows that the systems efficiency, coal (HHV) to power, is 35%. Table 2 summarizes the auxiliary power consumption within the plant. Thermoflex was used to simulate the power block and Aspen Plus the balance of plant. The overall block flow diagram is presented in Figure A1.3-1 and the key unit process flow diagrams are shown in subsequent figures. Stream data are given in Table A1.3-1. Equipment function specifications are provided in Tables A1.3-2 through 17. The overall plant scheme consists of a cryogenic air separation unit supplying 95% purity O{sub 2} to GE type high pressure (HP) total quench gasifiers. The raw gas after scrubbing is treated in a sour shift unit to react the CO with H{sub 2}O to form H{sub 2} and CO{sub 2}. The gas is further treated to remove Hg in a sulfided activated carbon bed. The syngas is desulfurized and decarbonized in a Selexol acid gas removal unit and the decarbonized syngas after humidification and preheat is fired in GE 7H type steam cooled gas turbines. Intermediate pressure (IP) N{sub 2} from the ASU is also supplied to the combustors of the gas turbines as additional diluent for NOx control. A portion of the air required by the ASU is extracted from the gas turbines. The plant consists of the following major process units: (1) Air Separation Unit (ASU); (2) Gasification Unit; (3) CO Shift/Low Temperature Gas Cooling (LTGC) Unit; (4) Acid Gas Removal Unit (AGR) Unit; (5) Fuel Gas Humidification Unit; (6) Carbon Dioxide Compression/Dehydration Unit; (7) Claus Sulfur Recovery/Tail Gas Treating Unit (SRU/TGTU); and (8) Power Block.

  7. Pittsburgh Energy Technology Center quarterly technical progress report for the period ending September 30, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-06-01

    Encouraging progress was made toward the development of acid rain control technology. PETC competitively selected and awarded contracts totaling over $8 million over the next three years to firms proposing new concepts for reducing the costs of cleaning the flue gas emissions of older, coal-burning power plants. PETC and ANL have undertaken a joint venture in dry flue-gas scrubbing that will ultimately lead to testing of a sorbent for combined SO/sub x/ and NO/sub x/ removal in Argonne's 20-megawatt spray dryer. The overall objective of a high-sulfur coal research program is to conduct a broad spectrum of coal-related research in order to increase and expand the use of coal in an environmentally acceptable manner. In the liquefaction program area, operations with Wyodak subbituminous coal are proceeding smoothly (Run 249) at the Wilsonville Process Development Unit. Understanding the processes involved in catalyst deactivation is important to the development of longer lived catalysts. In the area of process analysis, PETC has acquired a new version of ASPEN (Advanced System for Process Engineeering) software. The new version was recently installed on PETC's VAX/VMS operating system and is the most up-to-date version currently available. Work at PETC has resulted in the development and testing of a highly automated capillary tube viscometer for use with heavy coal-derived liquids. Results of PETC research in Fischer-Tropsch product characterization were also shared with the technical community. A particularly difficult analytical problem in the characterization of Fischer-Tropsch products is quantitative determination of carbon number distributions by compound class. PETC scientists developed a method that uses capillary gas chromatographic techniques to make these determinations. A paper describing the method was the lead article in the July 1985 issue of the Journal of Chromatographic Science and was featured on the cover.

  8. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  9. ENGINEERING EVALUATION OF HOT-GAS DESULFURIZATION WITH SULFUR RECOVERY

    SciTech Connect (OSTI)

    G.W. ROBERTS; J.W. PORTZER; S.C. KOZUP; S.K. GANGWAL

    1998-05-31

    Engineering evaluations and economic comparisons of two hot-gas desulfurization (HGD) processes with elemental sulfur recovery, being developed by Research Triangle Institute, are presented. In the first process, known as the Direct Sulfur Recovery Process (DSRP), the SO{sub 2} tail gas from air regeneration of zinc-based HGD sorbent is catalytically reduced to elemental sulfur with high selectivity using a small slipstream of coal gas. DSRP is a highly efficient first-generation process, promising sulfur recoveries as high as 99% in a single reaction stage. In the second process, known as the Advanced Hot Gas Process (AHGP), the zinc-based HGD sorbent is modified with iron so that the iron portion of the sorbent can be regenerated using SO{sub 2} . This is followed by air regeneration to fully regenerate the sorbent and provide the required SO{sub 2} for iron regeneration. This second-generation process uses less coal gas than DSRP. Commercial embodiments of both processes were developed. Process simulations with mass and energy balances were conducted using ASPEN Plus. Results show that AHGP is a more complex process to operate and may require more labor cost than the DSRP. Also capital costs for the AHGP are higher than those for the DSRP. However, annual operating costs for the AHGP appear to be considerably less than those for the DSRP with a potential break-even point between the two processes after just 2 years of operation for an integrated gasification combined cycle (IGCC) power plant using 3 to 5 wt% sulfur coal. Thus, despite its complexity, the potential savings with the AHGP encourage further development and scaleup of this advanced process.

  10. Rewetting of a low superheated rod with saturated water

    SciTech Connect (OSTI)

    Portillo, O.; Reyes, R.; Wayner, P.C. Jr.

    1999-07-01

    The study of the rewetting of a superheated surface has application in several technological fields. It is related to the control mechanism for loss of coolant accident (LOCA) in nuclear reactors. An adsorption model as the precursory mechanism for rewetting of a superheated surface is extended from its application to non-polar liquids to a polar fluid, and modeling calculations are compared with experimental data found in the literature. The adsorption model is based on interfacial forces acting at the tip of the rewetting front, the three-phase region. In this region, solid, liquid and vapor interfaces generate a contact angle that depends on the degree of superheat and describes the velocity of rewetting. The contact angle is a function of interfacial forces calculated through the disjoining pressure of the adsorbed film precursory of the rewetting. The influences of van der Waals and electrostatic intermolecular forces in the film thickness are analyzed. The authors find that the order of magnitude of the film thickness in the controlling region is of a few angstroms: thus, only van der Waals intermolecular forces define the interactions. For the prediction of the velocity of rewetting the temperature profile along the rod's surface is required and a one-dimensional and a two-dimensional heat conduction balances are solved. The thermophysical properties in the adsorption model are predicted by ASPEN PLUS data bank and from ASME steam tables. Variations of the predicted values have a strong influence on the results. The surface boundary condition on the rod contains an evaporative heat transfer coefficient that is calculated from the fitted experimental rewetting velocities and the two-dimensional temperature field in the rod. Using this calculation scheme the values of the evaporative heat transfer coefficient are obtained in the normal range of values. Therefore the adsorption model gives results that are consistent with experimental observations.

  11. Impacts of Elevated Atmospheric CO2and O3on Paper Birch (Betula papyrifera): Reproductive Fitness

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Darbah, Joseph N. T.; Kubiske, Mark E.; Nelson, Neil; Oksanen, Elina; Vaapavuori, Elina; Karnosky, David F.

    2007-01-01

    Atmospheric CO2and tropospheric O3are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO3and O3for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment) site in Rhinelander, WI. Elevated CO2increased both male and female flower production, while elevated O3increased female flower production compared to trees in control rings. Interestingly, very little flowering has yet occurred in combined treatment. Elevated CO2had significant positive effect on birchmore »catkin size, weight, and germination success rate (elevated CO2increased germination rate of birch by 110% compared to ambient CO2concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination), while the opposite was true of elevated O3(elevated O3decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%). Under elevated CO2, plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO2, while the reverse was true for seedlings from seeds produced under the elevated O3. Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO2and O3can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.« less

  12. Improving the Regeneration of CO?-Binding Organic Liquids with a Polarity Change

    SciTech Connect (OSTI)

    Mathias, Paul M.; Afshar, Kash; Zheng, Feng; Bearden, Mark D.; Freeman, Charles J.; Andrea, Tamer; Koech, Phillip K.; Kutnyakov, Igor V.; Zwoster, Andy; Smith, Arnold R.; Jessop, Philip G.; Nik, Omid Ghafari; Heldebrant, David J.

    2013-01-01

    This paper describes an unusual solvent regeneration method unique to CO?BOLs and other switchable ionic liquids; utilizing changes in polarity to shift the free energy of the system. The degree of CO? loading in CO?BOLs is known to control the polarity of the solvent; conversely, polarity could be exploited as a means to control CO? loading. In this process, a chemically inert non-polar “antisolvent” is added to aid in de-complexing CO? from a CO?-rich CO?BOL. The addition of this polarity assist reduces temperatures required for regeneration of CO?BOLs by as much as 76 °C. The lower regeneration temperatures realized with this polarity change allow for reduced solvent attrition and thermal degradation. Furthermore, the polarity assist shows considerable promise for reducing regeneration energy of CO?BOL solvents, and separation of the CO?BOL from the antisolvent is as simple as cooling the mixture below the upper critical solution temperature. Vapour-liquid equilibrium and liquid-liquid equilibrium measurements of a candidate CO?BOL with CO? with and without an antisolvent were completed. From this data, we present the evidence and impacts of a polarity change on a CO?BOL. Thermodynamic models and analysis of the system were constructed using ASPEN Plus, and forecasts preliminary process configurations and feasibility are also presented. Lastly, projections of solvent performance for removing CO? from a sub-critical coal fired power plant (total net power and parasitic load) are presented with and without this polarity assist and compared to DOE’s Case 10 MEA baseline.

  13. Systems Studies

    SciTech Connect (OSTI)

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.

  14. Interactive Effects of Climate Change and Decomposer Communities on the Stabilization of Wood-Derived Carbon Pools: Catalyst for a New Study

    SciTech Connect (OSTI)

    Resh, Sigrid C. [Michigan Technological University

    2014-11-17

    Globally, forest soils store ~two-thirds as much carbon (C) as the atmosphere. Although wood makes up the majority of forest biomass, the importance of wood contributions to soil C pools is unknown. Even with recent advances in the mechanistic understanding of soil processes, integrative studies tracing C input pathways and biological fluxes within and from soils are lacking. Therefore, our research objectives were to assess the impact of different fungal decay pathways (i.e., white-rot versus brown-rot)—in interaction with wood quality, soil temperature, wood location (i.e., soil surface and buried in mineral soil), and soil texture—on the transformation of woody material into soil CO2 efflux, dissolved organic carbon (DOC), and soil C pools. The use of 13C-depleted woody biomass harvested from the Rhinelander, WI free-air carbon dioxide enrichment (Aspen-FACE) experiment affords the unique opportunity to distinguish the wood-derived C from other soil C fluxes and pools. We established 168 treatment plots across six field sites (three sand and three loam textured soil). Treatment plots consisted of full-factorial design with the following treatments: 1. Wood chips from elevated CO2, elevated CO2 + O3, or ambient atmosphere AspenFACE treatments; 2. Inoculated with white rot (Bjerkandera adusta) or brown rot (Gloeophyllum sepiarium) pure fungal cultures, or the original suite of endemic microbial community on the logs; and 3. Buried (15cm in soil as a proxy for coarse roots) or surface applied wood chips. We also created a warming treatment using open-topped, passive warming chambers on a subset of the above treatments. Control plots with no added wood (“no chip control”) were incorporated into the research design. Soils were sampled for initial ?13C values, CN concentrations, and bulk density. A subset of plots were instrumented with lysimeters for sampling soil water and temperature data loggers for measuring soil temperatures. To determine the early pathways of decomposition, we measured soil surface CO2 efflux, dissolved organic C (DOC), and DO13C approximately monthly over two growing seasons from a subsample of the research plots. To determine the portion of soil surface CO2 efflux attributable to wood-derived C, we used Keeling plot techniques to estimate the associated ?13C values of the soil CO2 efflux. We measured the ?13CO2 once during the peak of each growing season. Initial values for soil ?13C values and CN concentrations averaged across the six sites were -26.8‰ (standard error = 0.04), 2.46% (se = 0.11), and 0.15% (se = 0.01), respectively. The labeled wood chips from the Aspen FACE treatments had an average ?13C value of -39.5‰ (se 0.10). The >12 ‰ isotopic difference between the soil and wood chip ?13C values provides the basis for tracking the wood-derived C through the early stages of decomposition and subsequent storage in the soil. Across our six research sites, average soil surface CO2 efflux ranged from 1.04 to 2.00 g CO2 m-2 h-1 for the first two growing seasons. No wood chip controls had an average soil surface CO2 efflux of 0.67 g CO2 m-2 h-1 or about half of that of the wood chip treatment plots. Wood-derived CO2 efflux was higher for loam textured soils relative to sands (0.70 and 0.54 g CO2 m-2 h-1, respectively; p = 0.045)), for surface relative to buried wood chip treatments (0.92 and 0.39 g CO2 m-2 h-1, respectively; p < 0.001), for warmed relative to ambient temperature treatments (0.99 and 0.78 g CO2 m-2 h-1, respectively; 0.004), and for natural rot relative to brown and white rots (0.93, 0.82, and 0.78 g CO2 m-2 h-1, respectively; p = 0.068). Our first two growing seasons of soil surface CO2 efflux data show that wood chip location (i.e., surface vs. buried chip application) is very important, with surface chips loosing twice the wood-derived CO2. The DOC data support this trend for greater loss of ecosystem C from surface chips. This has strong implications for the importance of root and buried wood for ecosystem C retention. This strong chip location effect

  15. FINAL REPORT

    SciTech Connect (OSTI)

    PETER, GARY F. [UNIVERSITY OF FLORIDA] [UNIVERSITY OF FLORIDA

    2014-07-16

    Excellent progress was made in standardizing three complementary methods: Magnetic resonance imaging, x-ray micro CT, and MALDI imaging linear ion trap mass spectroscopy to image biomass and chemical, anatomical and functional changes that occur during pretreatment and hydrolysis. Magnetic resonance microscopy provides excellent images with as low as 5 uM resolution with hydrated biomass samples. We visualized dramatic changes in signal associated with the hydrolysis of the carbohydrates by strong acids. Quantitative diffusion approaches were used to probe more subtle structural changes in biomass. Diffusion tensor calculations reflect diffusion anisotropy and fractional anisotropy maps clearly show the longer range diffusion within the vessels compared to within the fiber cells. The diffusion is increased along the cell walls of the vessels. Suggesting that further research with NMR imaging should be pursued. X-ray CT provides excellent images at as low as 3.5 uM resolution from dried biomass. Small increases in surface area, and decreases in local density have been quantified in with wood after mild pretreatments; these changes are expected to be underestimates of the hydrated wood, due to the ~12% shrinkage that occurs upon drying untreated wood. MALDI-MS spectra show high ion intensities at most mass to charge ratios in untreated and pretreated woody material. MALDI-MSn is required to improve specificity and reduce background for imaging. MALDI-TOF is not specific enough for carbohydrate identification. Using MALDI-LIT/MSn we can readily identify oligomeric glucans and xylans and their fragmentation patterns as well as those of the glucuronic acid side chains of birch 4-O-methyl glucuronxylan. Imaging of glucan and xylan oligomers show that many contain isobaric ions with different distributions, indicating again that MSn is needed for accurate imaging of lignocellulosic materials. We are now starting to integrate the three imaging methods by using the same set of biomass samples imaged with all three methods, and using common analytical software to quantify parameters from the three dimensional images. In addition to the proposed experiments, we conducted imaging studies with a novel TOF-SIMS instrument available through collaborations with the AMOLF goup led by Ron Heeren at the FOM Institute in Amersterdam, Netherlands. ToF-SIMS was used to image intact cross sections of Populus stems with high spatial resolution, chemically selectivity. ToF-SIMS images were correlated with fluorescence microscopy which allowed for more positive ion identification.

  16. Durable Zinc Oxide-Based Regenerable Sorbents for Desulfurization of Syngas in a Fixed-Bed Reactor

    SciTech Connect (OSTI)

    Siriwardane, Ranjani V.; Cicero, Daniel C. (U.S. Department of Energy, National Energy Technology Laboratory, Morgantown); Stiegel, Gary J.; Gupta, Raghubir P. (U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh); Turk, Brian S. (Research Triangle Institute)

    2001-11-06

    A fixed-bed regenerable desulfurization sorbent, identified as RVS-land developed by researchers at the U.S. Department of Energy's National Energy Technology Laboratory, was awarded the R&D 100 award in 2000 and is currently offered as a commercial product by Sued-Chemie Inc. An extensive testing program for this sorbent was undertaken which included tests at a wide range of temperatures, pressures and gas compositions both simulated and generated in an actual gasifier for sulfidation and regeneration. This testing has demonstrated that during these desulfurization tests, the RVS-1 sorbent maintained an effluent H2S concentration of <5 ppmv at temperatures from 260 to 600 C (500-1100 F) and pressures of 203-2026 kPa(2 to 20 atm) with a feed containing 1.2 vol% H{sub 2}S. The types of syngas tested ranged from an oxygen-blown Texaco gasifier to biomass-generated syngas. The RVS-1 sorbent has high crush strength and attrition resistance, which, unlike past sorbent formulations, does not decrease with extended testing at actual at operating conditions. The sulfur capacity of the sorbent is roughly 17 to 20 wt.% and also remains constant during extended testing (>25 cycles). In addition to H{sub 2}S, the RVS-1 sorbent has also demonstrated the ability to remove dimethyl sulfide and carbonyl sulfide from syngas. During regeneration, the RVS-1 sorbent has been regenerated with dilute oxygen streams (1 to 7 vol% O{sub 2}) at temperatures as low as 370 C (700 F) and pressures of 304-709 kPa(3 to 7 atm). Although regeneration can be initiated at 370 C (700 F), regeneration temperatures in excess of 538 C (1000 F) were found to be optimal. The presence of steam, carbon dioxide or sulfur dioxide (up to 6 vol%) did not have any visible effect on regeneration or sorbent performance during either sulfidation or regeneration. A number of commercial tests involving RVS-1 have been either conducted or are planned in the near future. The RVS-1 sorbent has been tested by Epyx, Aspen Systems and McDermott Technology (MTI), Inc for desulfurization of syngas produced by reforming of hydrocarbon liquid feedstocks for fuel cell applications. The RVS-1 sorbent was selected by MTI over other candidate sorbents for demonstration testing in their 500-kW ship service fuel cell program. It was also possible to obtain sulfur levels in the ppbv range with the modified RVS-1 sorbent.

  17. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

  18. Analysis of the Production Cost for Various Grades of Biomass Thermal Treatment

    SciTech Connect (OSTI)

    Robert S Cherry; Rick A. Wood; Tyler L Westover

    2013-12-01

    Process flow sheets were developed for the thermal treatment of southern pine wood chips at four temperatures (150, 180, 230, and 270 degrees C) and two different scales (20 and 100 ton/hour). The larger capacity processes had as their primary heat source hot gas assumed to be available in quantity from an adjacent biorefinery. Mass and energy balances for these flow sheets were developed using Aspen Plus process simulation software. The hot gas demands in the larger processes, up to 1.9 million lb/hour, were of questionable feasibility because of the volume to be moved. This heat was of low utility because the torrefaction process, especially at higher temperatures, is a net heat producer if the organic byproduct gases are burned. A thermal treatment flow sheet using wood chips dried in the biorefinery to 10% moisture content (rather than 30% for green chips) with transfer of high temperature steam from the thermal treatment depot to the biorefinery was also examined. The equipment size information from all of these cases was used in several different equipment cost estimating methods to estimate the major equipment costs for each process. From these, factored estimates of other plant costs were determined, leading to estimates (+ / - 30% accuracy) of total plant capital cost. The 20 ton/hour processes were close to 25 million dollars except for the 230 degrees C case using dried wood chips which was only 15 million dollars because of its small furnace. The larger processes ranged from 64-120 million dollars. From these capital costs and projections of several categories of operating costs, the processing cost of thermally treated pine chips was found to be $28-33 per ton depending on the degree of treatment and without any credits for steam generation. If the excess energy output of the two 20 ton/hr depot cases at 270 degrees C can be sold for $10 per million BTU, the net processing cost dropped to $13/ton product starting with green wood chips or only $3 per ton if using dried chips from the biorefinery. Including a 12% return on invested capital raised all of the operating cost results by about $20/ton.

  19. A one-dimensional transient model of a single-stage, downward-firing entrained-flow gasifier

    SciTech Connect (OSTI)

    Kasule, J.; Turton, R.; Bhattacharyya, D.; Zitney, S.

    2012-01-01

    The integrated gasification combined cycle (IGCC) technology has emerged as an attractive alternative to conventional coal-fired power plant technology due to its higher efficiency and cleaner environmental performance especially with the option of CO{sub 2} capture and sequestration. The core unit of this technology is the gasifier whose optimal performance must be understood for efficient operation of IGCC power plants. This need has led a number of researchers to develop gasifier models of varying complexities. Whereas high-fidelity CFD models can accurately predict most key aspects of gasifier performance, they are computationally expensive and typically take hours to days to execute on high-performance computers. Therefore, faster one-dimensional (1D) partial differential equation (PDE)-based models are required for use in dynamic simulation studies, control system analysis, and training applications. A number of 1D gasifier models can be found in the literature, but most are steady-state and have limited application in the practical operation of the gasifier. As a result, 1D PDE-based dynamic models are needed to further study and predict gasifier performance under a wide variety of process conditions and disturbances. In the present study, a 1D transient model of a single-stage downward flow GE/Texaco-type gasifier has been developed. The model comprises mass, momentum and energy balances for the gas and solid phases. The model considers the initial gasification processes of water evaporation and coal devolatilization. In addition, the key heterogeneous and homogeneous chemical reactions have been modeled. The resulting time-dependent PDE model is solved using the well-known method of lines approach in Aspen Custom Modeler®, whereby the PDEs are discretized in the spatial domain and the resulting differential algebraic equations (DAEs) are then solved to obtain the transient response. The transient response of various gasifier performance parameters to certain disturbances commonly encountered in the real world operation of commercial IGCC plants will be presented. These disturbances include ramp and step changes in input variables such as coal flow rate, oxygen-to-coal ratio and water-to-coal ratio, among others. Comparison of gasifier model predictions to available dynamic data will also be discussed.

  20. Transient studies of an Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture

    SciTech Connect (OSTI)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2010-01-01

    Next-generation coal-fired power plants need to consider the option for CO2 capture as stringent governmental mandates are expected to be issued in near future. Integrated gasification combined cycle (IGCC) plants are more efficient than the conventional coal combustion processes when the option for CO2 capture is considered. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. To facilitate this objective, a detailed plant-wide dynamic simulation of an IGCC plant with 90% CO2 capture has been developed in Aspen Plus Dynamics{reg_sign}. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. Compression of the captured CO2 for sequestration, an oxy-Claus process for removal of H2S and NH3, black water treatment, and the sour water treatment are also modeled. The tail gas from the Claus unit is recycled to the SELEXOL unit. The clean syngas from the AGR process is sent to a gas turbine followed by a heat recovery steam generator. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady state results are validated with data from a commercial gasifier. In the future grid-connected system, the plant should satisfy the environmental targets and quality of the feed to other sections, wherever applicable, without violating the operating constraints, and without sacrificing the efficiency. However, it was found that the emission of acid gases may far exceed the environmental targets and the overshoot of some of the key variables may be unacceptable under transient operation while following the load. A number of operational strategies and control configurations is explored for achieving these stringent requirements. The transient response of the plant is also studied by perturbing a number of key inputs.

  1. Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture

    SciTech Connect (OSTI)

    Zeng, Liang; Li, Fanxing; Kim, Ray; Bayham, Samuel; McGiveron, Omar; Tong, Andrew; Connell, Daniel; Luo, Siwei; Sridhar, Deepak; Wang, Fei; Sun, Zhenchao; Fan, Liang-Shih

    2013-09-30

    A novel Coal Direct Chemical Looping (CDCL) system is proposed to effectively capture CO2 from existing PC power plants. The work during the past three years has led to an oxygen carrier particle with satisfactory performance. Moreover, successful laboratory, bench scale, and integrated demonstrations have been performed. The proposed project further advanced the novel CDCL technology to sub-pilot scale (25 kWth). To be more specific, the following objectives attained in the proposed project are: 1. to further improve the oxygen carrying capacity as well as the sulfur/ash tolerance of the current (working) particle; 2. to demonstrate continuous CDCL operations in an integrated mode with > 99% coal (bituminous, subbituminous, and lignite) conversion as well as the production of high temperature exhaust gas stream that is suitable for steam generation in existing PC boilers; 3. to identify, via demonstrations, the fate of sulfur and NOx; 4. to conduct thorough techno-economic analysis that validates the technical and economical attractiveness of the CDCL system. The objectives outlined above were achieved through collaborative efforts among all the participants. CONSOL Energy Inc. performed the techno-economic analysis of the CDCL process. Shell/CRI was able to perform feasibility and economic studies on the large scale particle synthesis and provide composite particles for the sub-pilot scale testing. The experience of B&W (with boilers) and Air Products (with handling gases) assisted the retrofit system design as well as the demonstration unit operations. The experience gained from the sub-pilot scale demonstration of the Syngas Chemical Looping (SCL) process at OSU was able to ensure the successful handling of the solids. Phase 1 focused on studies to improve the current particle to better suit the CDCL operations. The optimum operating conditions for the reducer reactor such as the temperature, char gasification enhancer type, and flow rate were identified. The modifications of the existing bench scale reactor were completed in order to use it in the next phase of the project. In Phase II, the optimum looping medium was selected, and bench scale demonstrations were completed using them. Different types of coal char such as those obtained from bituminous, subbituminous, and lignite were tested. Modifications were made on the existing sub-pilot scale unit for coal injection. Phase III focused on integrated CDCL demonstration in the sub-pilot scale unit. A comprehensive ASPEN® simulations and economic analysis was completed by CONSOL t is expected that the CDCL process will be ready for further demonstrations in a scale up unit upon completion of the proposed project.

  2. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    SciTech Connect (OSTI)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for optimization. The results reveal that for the SPOC design, absorption and emission due to particles is the dominant factor for determining the wall heat flux. The mechanism of “radiative trapping” of energy within the high-temperature flame region and the approach to utilizing this mechanism to control wall heat flux are described. This control arises, by design, from the highly non-uniform (non-premixed) combustion characteristics within the SPOC boiler, and the resulting gradients in temperature and particle concentration. Finally, a simple method for estimating the wall heat flux in pressurized combustion systems is presented.

  3. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems

    SciTech Connect (OSTI)

    Heldebrant, David J

    2014-08-31

    PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600 cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was demonstrated on the bench cart • No measurable solvent degradation was observed over 4 months of testing – even with 5 wt% water present

  4. Dynamic modeling of a single-stage downward firing, entrained flow gasifier

    SciTech Connect (OSTI)

    Kasule, J., Turton, R., Bhattacharyya, D., Zitney, S.

    2012-01-01

    The gasifier is the heart of the integrated gasification combined cycle (IGCC), a technology that has emerged as an attractive alternative to conventional coal-fired power plant technology due to its higher efficiency and cleaner environmental performance especially with the option of CO{sub 2} capture and sequestration. Understanding the optimal performance of the gasifier is therefore paramount for the efficient operation of IGCC power plants. Numerous gasifier models of varying complexity have been developed to study the various aspects of gasifier performance. These range from simple one-dimensional (1D) process-type models to rigorous higher order 2-3D models based on computational fluid dynamics (CFD). Whereas high-fidelity CFD models can accurately predict most key aspects of gasifier performance, they are computationally expensive and typically take hours to days to execute on high-performance computers. Therefore, faster 1D partial differential equation (PDE)-based models are required for use in dynamic simulation studies, control system analysis, and training applications. A number of 1D gasifier models can be found in the literature, but most are steady-state models that have limited application in the practical operation of the gasifier. As a result, 1D PDE-based dynamic models are needed to further study and predict gasifier performance under a wide variety of process conditions and disturbances. In the current study, a 1D transient model of a single-stage downward-fired GE/Texaco-type entrained-flow gasifier has been developed. The model comprises mass, momentum and energy balances for the gas and solid phases. The model considers the initial gasification processes of water evaporation and coal devolatilization. In addition, the key heterogeneous and homogeneous chemical reactions have been modeled. The resulting time-dependent PDE model is solved using the well-known method of lines approach in Aspen Custom Modeler®, whereby the PDEs in the spatial domain are discretized and the resulting differential algebraic equations (DAEs) are then integrated over time using a dynamic integrator. The dynamic response results of the gasifier performance parameters to certain disturbances commonly encountered during practical operation are presented. These disturbances include ramp and step changes to input variables such as coal flow rate, oxygen-to-coal ratio and water-to-coal ratio among others. Comparison of model predictions to available dynamic data will also be discussed.

  5. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    SciTech Connect (OSTI)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

  6. Highly Insulating Windows with a U-value less than 0.6 W/m2K

    SciTech Connect (OSTI)

    Wendell Rhine; Ying Tang; Wenting Dong; Roxana Trifu; Reduane Begag

    2008-11-30

    U.S. households rely primarily on three sources of energy: natural gas, electricity, and fuel oil. In the past several decades, electricity consumption by households has grown dramatically, and a significant portion of electricity used in homes is for lighting. Lighting includes both indoor and outdoor lighting and is found in virtually every household in the United States. In 2001, according to the US Energy Information Administration, lighting accounted for 101 billion kWh (8.8 percent) of U.S. household electricity use. Incandescent lamps, which are commonly found in households, are highly inefficient sources of light because about 90 percent of the energy used is lost as heat. For that reason, lighting has been one focus area to increase the efficiency of household electricity consumption. Windows have several functions, and one of the main functions is to provide a view to the outside. Daylighting is another one of windows main functions and determines the distribution of daylight to a space. Daylighting windows do not need to be transparent, and a translucent daylighting window is sufficient, and often desired, to diffuse the light and make the space more environmentally pleasing. In homes, skylights are one source of daylighting, but skylights are not very energy efficient and are inseparably linked to solar heat gain. In some climates, added solar heat gains from daylighting may be welcome; but in other climates, heat gain must be controlled. More energy efficient skylights and daylighting solutions, in general, are desired and can be designed by insulating them with aerogels. Aerogels are a highly insulating and transparent material in its pure form. The overall objective for this project was to prepare an economical, translucent, fiber-reinforced aerogel insulation material for daylighting applications that is durable for manufacturing purposes. This advanced insulation material will increase the thermal performance of daylighting windows, while satisfying constraints such as durability, cost, user acceptance, size limits, and environmental safety concerns. The energy efficient daylighting window will consist of a translucent and resilient aerogel panel sandwiched between glass panes in double glazed windows. Compared to the best windows available today, the double glazed translucent windows with 1/2-inch aerogel inserts will have a U-value of 1.2 W/m{sup 2} K (0.211 BTU/ft{sup 2} h F) without any coating or low conductivity fill gases. These windows will be more effective than the windows with an Energy Star rating of U-2 W/m{sup 2} K and could be made even more efficient by using low-e coated glass glazings and inert gas fills. This report summarizes the work accomplished on Cooperative Agreement DE-FC26-03NT41950. During this project, Aspen Aerogels made transparent and translucent aerogels from TMOS and TEOS. We characterized the transparency of the aerogels, reinforced the transparent aerogels with fibers and prepared large translucent aerogel panels and blankets. We also conducted an initial market study for energy efficient translucent windows. A lab-scale process was developed that could be scaled-up to manufacture blankets of these translucent aerogels. The large blankets prepared were used to fabricate prototype translucent windows and skylights. The primary goal of this project was to develop transparent, resilient, hydrophobic silica aerogels that have low thermal conductivities (R-10/inch) to be used to produce aerogel insulated double-glazing windows with a U value of 0.6 W/m{sup 2}K. To meet this objective we developed a process and equipment to produce blankets of translucent, hydrophobic aerogel. We focused on silica, organically-modified silica aerogels (Ormosils), and fiber reinforced silica aerogels due to the appreciable expertise in silica sol-gel processing available with the personnel at Aspen Aerogels, and also due to the quantity of knowledge available in the scientific literature. The project was conducted in three budget periods, herein called BP1, BP2 and BP3.

  7. Dynamic modeling and transient studies of a solid-sorbent adsorber for CO{sub 2} capture

    SciTech Connect (OSTI)

    Modekurti, Srinivasarao [WVU; Bhattacharyya, Debangsu [WVU; Zitney, Stephen E. [U.S. DOE

    2012-01-01

    The U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI) is dedicated to accelerating the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. In this multi-lab initiative in partnership with academic and industrial institutions, the National Energy Technology Laboratory (NETL) leads the development of a multi-scale modeling and simulation toolset for rapid evaluation and deployment of carbon capture systems. One element of the CCSI is focused on optimizing the operation and control of carbon capture systems since this can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come. Capture processes must be capable of operating over a wide range of transient events, malfunctions, and disturbances, as well as under uncertainties. As part of this work, dynamic simulation and control models, methods, and tools are being developed for CO{sub 2} capture and compression processes and their integration with a baseline commercial-scale supercritical pulverized coal (SCPC) power plant. Solid-sorbent-based post-combustion capture technology was chosen as the first industry challenge problem for CCSI because significant work remains to define and optimize the reactors and processes needed for successful sorbent capture systems. Sorbents offer an advantage because they can reduce the regeneration energy associated with CO{sub 2} capture, thus reducing the parasitic load. In view of this, the current paper focuses on development of a dynamic model of a solid-sorbent CO{sub 2} adsorber-reactor and an analysis of its transient performance with respect to several typical process disturbances. A one-dimensional, non-isothermal, pressure-driven dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor is developed in Aspen Custom Modeler (ACM). The BFB stages are of overflow-type configuration where the solids leave the stage by flowing over the overflow-weir. Each bed is divided into three regions, namely emulsion, bubble, and cloud-wake regions. In all three regions, the model considers mass and energy balances. Along with the models of the BFB stages, models of other associated hardware are developed and integrated in a single flowsheet. A valid pressure-flow network is developed and a lower-level control system is designed so that the overall CO{sub 2} capture can be maintained at a desired level in face of the typical disturbances. The dynamic model is used for studying the transient responses of a number of important process variables as a result of the disturbances that are typical of post-combustion CO{sub 2} capture processes.

  8. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    SciTech Connect (OSTI)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and reactions going to completion without side reactions, and lower demands on materials of construction. Three university research groups from PSU, USC, and TU as well as a group from ANL have been collaborating on the development of enabling technologies for the Cu-Cl cycle, including experimental work on the Cu-Cl cycle reactions, modeling and simulation, and particularly electrochemical reaction for hydrogen production using a CuCl electrolyzer. The Consortium research was distributed over the participants and organized in the following tasks: (1) Development of CuCl electrolyzer (PSU), (2) Thermodynamic modeling of anolyte solution (PSU), (3) Proton conductive membranes for CuCl electrolysis (PSU), (4) Development of an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions (USC), (5) Electrodialysis as a means for separation and purification of the streams exiting the electrolyzer in the Cu-Cl cycle (USC), (6) Development of nanostructured electrocatalysts for the Cu-Cl electrolysis (USC), (7) Cu-Cl electrolyzer modeling (USC), (8) Aspen Plus modeling of the Cu-Cl thermochemical cycle (TU), (9) International coordination of research on the development of the Cu-Cl thermochemical cycle (ANL). The results obtained in the project clearly demonstrate that the Cu-Cl alternative thermochemical cycle is a promising and viable technology to produce hydrogen efficiently.

  9. Improving the Estimates of Waste from the Recycling of Used Nuclear Fuel - 13410

    SciTech Connect (OSTI)

    Phillips, Chris; Willis, William; Carter, Robert [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States)] [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States); Baker, Stephen [UK National Nuclear Laboratory, Warrington, Cheshire (United Kingdom)] [UK National Nuclear Laboratory, Warrington, Cheshire (United Kingdom)

    2013-07-01

    Estimates are presented of wastes arising from the reprocessing of 50 GWD/tonne, 5 year and 50 year cooled used nuclear fuel (UNF) from Light Water Reactors (LWRs), using the 'NUEX' solvent extraction process. NUEX is a fourth generation aqueous based reprocessing system, comprising shearing and dissolution in nitric acid of the UNF, separation of uranium and mixed uranium-plutonium using solvent extraction in a development of the PUREX process using tri-n-butyl phosphate in a kerosene diluent, purification of the plutonium and uranium-plutonium products, and conversion of them to uranium trioxide and mixed uranium-plutonium dioxides respectively. These products are suitable for use as new LWR uranium oxide and mixed oxide fuel, respectively. Each unit process is described and the wastes that it produces are identified and quantified. Quantification of the process wastes was achieved by use of a detailed process model developed using the Aspen Custom Modeler suite of software and based on both first principles equilibrium and rate data, plus practical experience and data from the industrial scale Thermal Oxide Reprocessing Plant (THORP) at the Sellafield nuclear site in the United Kingdom. By feeding this model with the known concentrations of all species in the incoming UNF, the species and their concentrations in all product and waste streams were produced as the output. By using these data, along with a defined set of assumptions, including regulatory requirements, it was possible to calculate the waste forms, their radioactivities, volumes and quantities. Quantification of secondary wastes, such as plant maintenance, housekeeping and clean-up wastes, was achieved by reviewing actual operating experience from THORP during its hot operation from 1994 to the present time. This work was carried out under a contract from the United States Department of Energy (DOE) and, so as to enable DOE to make valid comparisons with other similar work, a number of assumptions were agreed. These include an assumed reprocessing capacity of 800 tonnes per year, the requirement to remove as waste forms the volatile fission products carbon-14, iodine-129, krypton-85, tritium and ruthenium-106, the restriction of discharge of any water from the facility unless it meets US Environmental Protection Agency drinking water standards, no intentional blending of wastes to lower their classification, and the requirement for the recovered uranium to be sufficiently free from fission products and neutron-absorbing species to allow it to be re-enriched and recycled as nuclear fuel. The results from this work showed that over 99.9% of the radioactivity in the UNF can be concentrated via reprocessing into a fission-product-containing vitrified product, bottles of compressed krypton storage and a cement grout containing the tritium, that together have a volume of only about one eighth the volume of the original UNF. The other waste forms have larger volumes than the original UNF but contain only the remaining 0.1% of the radioactivity. (authors)

  10. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

    2004-12-22

    In this report is described the work effort to develop and demonstrate a software framework to support advanced process simulations to evaluate the performance of advanced power systems. Integrated into the framework are a broad range of models, analysis tools, and visualization methods that can be used for the plant evaluation. The framework provides a tightly integrated problem-solving environment, with plug-and-play functionality, and includes a hierarchy of models, ranging from fast running process models to detailed reacting CFD models. The framework places no inherent limitations on the type of physics that can be modeled, numerical techniques, or programming languages used to implement the equipment models, or the type or amount of data that can be exchanged between models. Tools are provided to analyze simulation results at multiple levels of detail, ranging from simple tabular outputs to advanced solution visualization methods. All models and tools communicate in a seamless manner. The framework can be coupled to other software frameworks that provide different modeling capabilities. Three software frameworks were developed during the course of the project. The first framework focused on simulating the performance of the DOE Low Emissions Boiler System Proof of Concept facility, an advanced pulverized-coal combustion-based power plant. The second framework targeted simulating the performance of an Integrated coal Gasification Combined Cycle - Fuel Cell Turbine (IGCC-FCT) plant configuration. The coal gasifier models included both CFD and process models for the commercially dominant systems. Interfacing models to the framework was performed using VES-Open, and tests were performed to demonstrate interfacing CAPE-Open compliant models to the framework. The IGCC-FCT framework was subsequently extended to support Virtual Engineering concepts in which plant configurations can be constructed and interrogated in a three-dimensional, user-centered, interactive, immersive environment. The Virtual Engineering Framework (VEF), in effect a prototype framework, was developed through close collaboration with NETL supported research teams from Iowa State University Virtual Reality Applications Center (ISU-VRAC) and Carnegie Mellon University (CMU). The VEF is open source, compatible across systems ranging from inexpensive desktop PCs to large-scale, immersive facilities and provides support for heterogeneous distributed computing of plant simulations. The ability to compute plant economics through an interface that coupled the CMU IECM tool to the VEF was demonstrated, and the ability to couple the VEF to Aspen Plus, a commercial flowsheet modeling tool, was demonstrated. Models were interfaced to the framework using VES-Open. Tests were performed for interfacing CAPE-Open-compliant models to the framework. Where available, the developed models and plant simulations have been benchmarked against data from the open literature. The VEF has been installed at NETL. The VEF provides simulation capabilities not available in commercial simulation tools. It provides DOE engineers, scientists, and decision makers with a flexible and extensible simulation system that can be used to reduce the time, technical risk, and cost to develop the next generation of advanced, coal-fired power systems that will have low emissions and high efficiency. Furthermore, the VEF provides a common simulation system that NETL can use to help manage Advanced Power Systems Research projects, including both combustion- and gasification-based technologies.

  11. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect (OSTI)

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2014-09-30

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 oC and 600 oC) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants in terms of performance and economic aspects of the plants. Specifically, simulation and design optimization studies were performed using the developed stand-alone membrane reactor models to identify the membrane selectivity and permeance characteristics necessary to achieve desired targets of CO2 capture and H2 recovery, as well as guide the selection of the optimal reactor design that minimizes the membrane cost as a function of its surface area required. The isothermal membrane reactor model was also integrated into IGCC system models using both the MATLAB and Aspen software platforms and techno-economic analyses of the integrated plants have been carried out to evaluate the feasibility of replacing current technologies for pre-combustion capture by the proposed novel approach in terms of satisfying stream constraints and achieving the DOE target goal of 90% CO2 capture. The results of the performed analyses based on present value of annuity calculations showed break even costs for the membrane reactor within the feasible range for membrane fabrication. However, the predicted membrane performance used in these simulations exceeded the performance achieved experimentally. Therefore, further work is required to improve membrane performance.

  12. Low-Cost Precursors to Novel Hydrogen Storage Materials

    SciTech Connect (OSTI)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering-guided R&D approach, which involved the rapid down-selection of a large number of options (chemical pathways to NaBH{sub 4}) to a smaller, more manageable number. The research began by conducting an extensive review of the technical and patent literature to identify all possible options. The down-selection was based on evaluation of the options against a set of metrics, and to a large extent occurred before experimentation was initiated. Given the vast amount of literature and patents that has evolved over the years, this approach helped to focus efforts and resources on the options with the highest technical and commercial probability of success. Additionally, a detailed engineering analysis methodology was developed for conducting the cost and energy-efficiency calculations. The methodology utilized a number of inputs and tools (Aspen PEA{trademark}, FCHTool, and H2A). The down-selection of chemical pathways to NaBH{sub 4} identified three options that were subsequently pursued experimentally. Metal reduction of borate was investigated in Dow's laboratories, research on electrochemical routes to NaBH{sub 4} was conducted at Pennsylvania State University, and Idaho National Laboratory researchers examined various carbothermal routes for producing NaBH{sub 4} from borate. The electrochemical and carbothermal studies did not yield sufficiently positive results. However, NaBH{sub 4} was produced in high yields and purities by an aluminum-based metal reduction pathway. Solid-solid reactive milling, slurry milling, and solution-phase approaches to metal reduction were investigated, and while both reactive milling and solution-phase routes point to fully recyclable processes, the scale-up of reactive milling processes to produce NaBH{sub 4} is expected to be difficult. Alternatively, a low-cost solution-phase approach to NaBH{sub 4} has been identified that is based on conventional process unit operations and should be amenable to scale-up. Numerous advances in AB synthesis have been made in recent years to improve AB yields and purities

  13. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect (OSTI)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluat

  14. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect (OSTI)

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su