Powered by Deep Web Technologies
Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

A fixed-field alternating gradient accelerator for simultaneous acceleration of two particle beams in opposite directions is described. (T.R.H.)

Ohkawa, T.

1959-06-01T23:59:59.000Z

2

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

Teng, L.C.

1960-01-19T23:59:59.000Z

3

The Particle Adventure | Accelerators and Particle Detectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Waves and particles The world's meterstick Mass and energy Energy-mass conversion Accelerators How to obtain particles to accelerate Accelerating particles Accelerating...

4

Physics Out Loud - Particle Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

Nucleus Previous Video (Nucleus) Physics Out Loud Main Index Next Video (Particle Resonance) Particle Resonance Particle Accelerator Andrew Hutton, Director of Accelerators at...

5

Charged particle accelerator grating  

DOE Patents (OSTI)

A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

Palmer, R.B.

1985-09-09T23:59:59.000Z

6

HIGH ENERGY PARTICLE ACCELERATOR  

DOE Patents (OSTI)

An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

Courant, E.D.; Livingston, M.S.; Snyder, H.S.

1959-04-14T23:59:59.000Z

7

Laser Wakefield Particle Accelerators Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Acceleration Laser Wakefield Particle Acceleration Vorpal.jpg Key Challenges: Design of multiple-staged, 10-GeV laser-wakefield plasma accelerated next-generation hardware...

8

Slow Waveguide Structures for Particle Accelerators  

A waveguide design that can save time and money in the construction and tuning ofa particle accelerator was developed by ORNL researchers. Particle ...

9

Particle Acceleration by Electromagnetic-Dominated Outflows  

E-Print Network (OSTI)

We review recent developments in particle acceleration by Poynting flux using plasma kinetic simulations, and discuss their potential applications to gamma-ray burst phenomenology

Edison Liang; Koichi Noguchi

2006-04-19T23:59:59.000Z

10

Particle Acceleration by Electromagnetic-Dominated Outflows  

E-Print Network (OSTI)

We review recent developments in particle acceleration by Poynting flux using plasma kinetic simulations, and discuss their potential applications to gamma-ray burst phenomenology

Liang, E; Liang, Edison; Noguchi, Koichi

2006-01-01T23:59:59.000Z

11

Slow Waveguide Structures for Particle Accelerators  

ORNL 2010-G00971/jcn UT-B ID 200802074 Slow Waveguide Structures for Particle Accelerators Technology Summary A waveguide design that can save time and money in the ...

12

Twisted waveguides for particle accelerator applications  

E-Print Network (OSTI)

A novel microwave device for accelerating charged particles based on twisted waveguide is presented. Twisted guides support slow-wave TM modes whose phase velocity could reach the speed of light c. The axial electric field ...

Wilson, Joshua L.

13

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network (OSTI)

of high- gradient, laser plasma particle accelerators.particle accelerators, plasmas can sustain acceleratingthat use laser-driven plasma waves. These plasma- based

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

14

SLAC National Accelerator Laboratory - SLAC Public Lecture: Particle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Division will present a free public lecture, "Particle Accelerator on a Chip." Accelerators are huge and expensive, miles-long tubes that produce high-energy particles to...

15

Non-accelerator particle physics  

SciTech Connect

The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos: the {nu}IMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiment using a kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments. 21 refs., 19 figs., 6 tabs.

Steinberg, R.I.; Lane, C.E.

1991-09-01T23:59:59.000Z

16

Gerig to Chair Particle Accelerator School Board  

NLE Websites -- All DOE Office Websites (Extended Search)

A Record Run for the APS X-ray Source A Record Run for the APS X-ray Source Alp of XSD Elected to FIP Executive Committee George Srajer Appointed APS Upgrade Project Director Toby of XSD to Chair U.S. National Committee for Crystallography Controlling the Inner Electron Dance APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Gerig to Chair Particle Accelerator School Board FEBRUARY 23, 2012 Bookmark and Share Rod Gerig (PSC), Deputy Associate Laboratory Director for Photon Sciences Rod Gerig was selected chair of the Board of Governors of the U.S. Particle Accelerator School (USPAS) at the board's annual meeting. Gerig is Deputy Associate Laboratory Director for Photon Sciences at Argonne National Laboratory, and is also the director of the Argonne Accelerator

17

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network (OSTI)

of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

18

BNL | Accelerating Particles Accelerates Science - With Big Benefits...  

NLE Websites -- All DOE Office Websites (Extended Search)

program focused on developing the next crop of bold accelerator scientists and engineers. Photo of CASE participants The Center for Accelerator Science and Education (CASE)...

19

Radiative Effects on Particle Acceleration via Relativistic Electromagnetic Expansion  

E-Print Network (OSTI)

We study the radiation effect on the diamagnetic relativistic pulse accelerator (DPRA) in two-and-half-dimensional particle-in-cell (PIC) plasma simulation with magnetized electron-positron plasmas. Radiation damping force is self-consistently calculated for each particle, which reduces the acceleration force and converts particle energy to radiation. The emitted radiation is strongly linearly polarized and peaked within few degrees from the direction of Poynting flux due to the relativistic acceleration by the DPRA.

Noguchi, K; Nishimura, K; Noguchi, Koichi; Liang, Edison; Nishimura, Kazumi

2004-01-01T23:59:59.000Z

20

Characterisation of electron beams from laser-driven particle accelerators  

Science Conference Proceedings (OSTI)

The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

2012-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam  

DOE Patents (OSTI)

A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

Maschke, A.W.

1984-04-16T23:59:59.000Z

22

A particle accelerator employing transient space charge potentials  

DOE Patents (OSTI)

The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.

Post, R.F.

1988-02-25T23:59:59.000Z

23

Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators Elementary Particles Detectors Accelerators Visit World Labs For Children - for younger people For Children The Electric Force For Children Electric Force Fields For...

24

Solar Particle Acceleration at Reconnecting 3D Null Points  

E-Print Network (OSTI)

Context: The strong electric fields associated with magnetic reconnection in solar flares are a plausible mechanism to accelerate populations of high energy, non-thermal particles. One such reconnection scenario occurs at a 3D magnetic null point, where global plasma flows give rise to strong currents in the spine axis or fan plane. Aims: To understand the mechanism of charged particle energy gain in both the external drift region and the diffusion region associated with 3D magnetic reconnection. In doing so we evaluate the efficiency of resistive spine and fan models for particle acceleration, and find possible observables for each. Method: We use a full orbit test particle approach to study proton trajectories within electromagnetic fields that are exact solutions to the steady and incompressible magnetohydrodynamic equations. We study single particle trajectories and find energy spectra from many particle simulations. The scaling properties of the accelerated particles with respect to field and plasma para...

Stanier, Adam J; Dalla, Silvia

2012-01-01T23:59:59.000Z

25

Analysis of Laser Wakefield Particle Acceleration Data at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Laser Wakefield Particle Acceleration Data LWFAIllustrationSmall.png In collaboration with researchers of the LOASIS program (LBNL) and the SciDAC SDM center (LBNL) we...

26

Iron Speciation and Mixing in Single Aerosol Particles from the Asian Continental Outflow  

Science Conference Proceedings (OSTI)

Bioavailable iron from atmospheric aerosol is an essential nutrient that can control oceanic productivity, thereby impacting the global carbon budget and climate. Particles collected on Okinawa Island during an atmospheric pollution transport event from China were analyzed using complementary single particle techniques to determine the iron source and speciation. Comparing the spatial distribution of iron within ambient particles and standard Asian mineral dust, it was determined that field-collected atmospheric Fe-containing particles have numerous sources, including anthropogenic sources such as coal combustion. Fe-containing particles were found to be internally mixed with secondary species such as sulfate, soot, and organic carbon. The mass weighted average Fe(II) fraction (defined as Fe(II)/[Fe(II)+Fe(III)]) was determined to be 0.33 {+-} 0.08. Within the experimental uncertainty, this value lies close to the range of 0.26-0.30 determined for representative Asian mineral dust. Previous studies have indicated that the solubility of iron from combustion is much higher than that from mineral dust. Therefore, chemical and/or physical differences other than oxidation state may help explain the higher solubility of iron in atmospheric particles.

Moffet, Ryan C.; Furutani, Hiroshi; Rodel, Tobias; Henn, Tobias R.; Sprau, Peter; Laskin, Alexander; Uematsu, Mitsuo; Gilles, Marry K.

2012-04-04T23:59:59.000Z

27

Slow Waveguide Structures for Particle Accelerators  

The beam line is used for basic science investigations as well as for applications ... waveguide structure to support transmission of particles at ...

28

Particle trajectories and acceleration during 3D fan reconnection  

E-Print Network (OSTI)

Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible. The establishment of a steady-state spectrum requires approximately double the time in fan reconnection. The steady-state energy spectrum at intermediate energies (protons 1 keV to 0.1 MeV) is comparable in the fan and spine regimes. While in spine reconnection particle escape takes place in two symmetric jets along the spine, in fan reconnection no jets are produced and particles escape in the fan plane, in a ribbon-like structure.

S. Dalla; P. K. Browning

2008-11-07T23:59:59.000Z

29

Characterizing flows with an instrumented particle measuring Lagrangian accelerations  

E-Print Network (OSTI)

We present in this article a novel Lagrangian measurement technique: an instrumented particle which continuously transmits the force/acceleration acting on it as it is advected in a flow. We develop signal processing methods to extract information on the flow from the acceleration signal transmitted by the particle. Notably, we are able to characterize the force acting on the particle and to identify the presence of a permanent large-scale vortex structure. Our technique provides a fast, robust and efficient tool to characterize flows, and it is particularly suited to obtain Lagrangian statistics along long trajectories or in cases where optical measurement techniques are not or hardly applicable.

Zimmermann, Robert; Gasteuil, Yoann; Volk, Romain; Pinton, Jean-François

2012-01-01T23:59:59.000Z

30

Radiative Effects on Particle Acceleration in Electromagnetic Dominated Outflows  

E-Print Network (OSTI)

Plasma outflows from gamma-ray bursts (GRB), pulsar winds, relativistic jets, and ultra-intense laser targets radiate high energy photons. However, radiation damping is ignored in conventional PIC simulations. In this letter, we study the radiation damping effect on particle acceleration via Poynting fluxes in two-and-half-dimensional particle-in-cell (PIC) plasma simulation of electron-positron plasmas. Radiation damping force is self-consistently calculated for each particle and reduces the net acceleration force. The emitted radiation is peaked within a few degrees from the direction of Poynting flux and strongly linear-polarized.

Koichi Noguchi; Edison Liang; Kazumi Nishimura

2004-12-14T23:59:59.000Z

31

Dynamics of Particles in Non Scaling FFAG Accelerators  

E-Print Network (OSTI)

Non scaling Fixed-Field Alternating Gradient (FFAG) accelerators have an unprecedented potential for muon acceleration, as well as for medical purposes based on carbon and proton hadron therapy. They also represent a possible active element for an Accelerator Driven Subcritical Reactor (ADSR). Starting from first principle the Hamiltonian formalism for the description of the dynamics of particles in non scaling FFAG machines has been developed. The stationary reference (closed) orbit has been found within the Hamiltonian framework. The dependence of the path length on the energy deviation has been described in terms of higher order dispersion functions. The latter have been used subsequently to specify the longitudinal part of the Hamiltonian. It has been shown that higher order phase slip coefficients should be taken into account to adequately describe the acceleration in non scaling FFAG accelerators. A complete theory of the fast (serpentine) acceleration in non scaling FFAGs has been developed. An example...

Jones, James K; Smith, Susan L; Tzenov, Stephan I

2009-01-01T23:59:59.000Z

32

Stochastic wake field particle acceleration in Gamma-Ray Bursts  

E-Print Network (OSTI)

Gamma-Ray Burst (GRB) prompt emission can, for specific conditions, be so powerful and short-pulsed to strongly influence any surrounding plasma. In this paper, we briefly discuss the possibility that a very intense initial burst of radiation produced by GRBs satisfy the intensity and temporal conditions to cause stochastic wake-field particle acceleration in a surrounding plasma of moderate density. Recent laboratory experiments clearly indicate that powerful laser beam pulses of tens of femtosecond duration hitting on target plasmas cause efficient particle acceleration and betatron radiation up to tens of MeV. We consider a simple but realistic GRB model for which particle wake-field acceleration can first be excited by a very strong low-energy precursor, and then be effective in producing the observed prompt X-ray and gamma-ray GRB emission. We also briefly discuss some of the consequences of this novel GRB emission mechanism.

G. Barbiellini; F. Longo; N. Omodei; A. Celotti; M. Tavani

2006-04-11T23:59:59.000Z

33

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-Print Network (OSTI)

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre and documentation. For further questions please do not hesitate to contact Prof. Dr. Chris Meier (chris.meier@chemie-Mail to: Deutsches Elektronen-Synchrotron DESY Human Resources Department | Code: EM085/2013 NotkestraÃ?e

34

Resonance, particle dynamics, and particle transmission in the micro-accelerator platform  

Science Conference Proceedings (OSTI)

We describe particle dynamics in the Micro-Accelerator Platform (MAP), a slab-symmetric dielectric laser accelerator (DLA), and model the expected performance of recently fabricated MAP structures. The quality of the structure resonances has been characterized optically, and results are compared with simulation. 3D trajectory analysis is used to model acceleration in those same structures 'as built.' Results are applied to ongoing beam transmission and acceleration tests at NLCTA/E-163, in which transmission of 60 MeV injected electrons through the beam channel of the MAP was clearly observed, despite the overfilling of the structure by the beam.

McNeur, J.; Hazra, K. S.; Liu, G.; Sozer, E. B.; Travish, G.; Yoder, R. B. [UCLA Dept. of Physics and Astronomy, Los Angeles, CA 90095 (United States); Manhattanville College, Physics Dept., 2900 Purchase St., Purchase, NY 10577 (United States)

2012-12-21T23:59:59.000Z

35

Particle Acceleration in Geospace and Its Association With Solar Events  

E-Print Network (OSTI)

Particle acceleration is a prominent feature of the geomagnetic storm, which is the prime dynamic process in Geospace - the near-Earth space environment. Magnetic storms have their origin in solar events, which are transient disturbances of the solar atmosphere and radiation that propagate as variations of the solar wind fields and particles through interplanetary space to the Earth's orbit. During magnetic storms, ions of both solar wind origin and terrestrial origin are accelerated and form an energetic ring current in the inner magnetosphere. This current has global geomagnetic effects, which have both physical and technical implications. Recently it has been shown that large magnetic storms, which exhibit an unusually energized ionospheric plasma component, are closely associated with coronal mass ejections (CMEs). This implies a cause-effect chain connecting solar events through CMEs and the solar wind with the acceleration of terrestrial ion populations whicheventually constitute the main source of global geomagnetic disturbances. Here we present spacecraft observations related to storm-time particle acceleration and assess the observations in the framework of causes and effects of solar-terrestrial relationships.

I. A. Daglis; W. I. Axford; E. T. Sarris; S. Livi; B. Wilken

1997-01-01T23:59:59.000Z

36

Applications of large-scale computation to particle accelerators  

SciTech Connect

The rapid growth in the power of large-scale computers has had a revolutionary effect on the study of charged-particle accelerators that is similar to the impact of smaller computers on everyday life. Before an accelerator is built, it is now the absolute rule to simulate every component and subsystem by computer to establish modes of operation and tolerances. We will bypass the important and fruitful areas of control and operation, and consider only application to design and diagnostic interpretation. Applications of computers can be divided into separate categories including: component design, system design, stability studies, cost optimization, and operating condition simulation. For the purposes of this report, we will choose a few examples from the above categories to illustrate the methods used, and discuss the significance of the work to the project. We also briefly discuss the accelerator project itself. The examples that will be discussed are: The design of accelerator structures for electron-positron linear colliders and circular colliding beam systems, simulation of the wake fields from multibunch electron beams for linear colliders. Particle-in-cell simulation of space-charge dominated beams for an experimental linear induction accelerator for Heavy Ion Fusion.

Herrmannsfeldt, W.B.

1991-05-01T23:59:59.000Z

37

Application to Particle Accelerator Beam Stabilization Glenn Decker  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Measurement of Noise with Application to Particle Accelerator Beam Stabilization Glenn Decker Advanced Photon Source Accelerator Systems Division December 1998 LS-273 1 1.0 Introduction One of the most important figures of merit for a synchrotron radiation source, once speci- fied beam intensity and energy have been achieved, is charged particle beam stability. While a sig- nificant effort has been expended at the Advanced Photon Source (APS) to reduce or eliminate undesirable sources of beam motion, it will be necessary to employ active feedback to stabilize the user photon beams to the very stringent levels required. This becomes especially important when one considers that transverse beam stability is generally quoted as a fraction of beam dimensions. Since source brightness tends to be inversely proportional to these transverse dimen-

38

Effects of diesel particle filter retrofits and accelerated fleet turnover  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of diesel particle filter retrofits and accelerated fleet turnover Effects of diesel particle filter retrofits and accelerated fleet turnover on drayage truck emissions at the port of Oakland Title Effects of diesel particle filter retrofits and accelerated fleet turnover on drayage truck emissions at the port of Oakland Publication Type Journal Article Year of Publication 2011 Authors Dallmann, Timothy R., Robert A. Harley, and Thomas W. Kirchstetter Journal Environmental Science & Technology Volume 45 Issue 24 Pagination 10773-10779 Abstract Heavy-duty diesel drayage trucks have a disproportionate impact on the air quality of communities surrounding major freight-handling facilities. In an attempt to mitigate this impact, the state of California has mandated new emission control requirements for drayage trucks accessing ports and rail yards in the state beginning in 2010. This control rule prompted an accelerated diesel particle filter (DPF) retrofit and truck replacement program at the Port of Oakland. The impact of this program was evaluated by measuring emission factor distributions for diesel trucks operating at the Port of Oakland prior to and following the implementation of the emission control rule. Emission factors for black carbon (BC) and oxides of nitrogen (NOx) were quantified in terms of grams of pollutant emitted per kilogram of fuel burned using a carbon balance method. Concentrations of these species along with carbon dioxide were measured in the exhaust plumes of individual diesel trucks as they drove by en route to the Port. A comparison of emissions measured before and after the implementation of the truck retrofit/replacement rule shows a 54 ± 11% reduction in the fleet-average BC emission factor, accompanied by a shift to a more highly skewed emission factor distribution. Although only particulate matter mass reductions were required in the first year of the program, a significant reduction in the fleet-average NOx emission factor (41 ± 5%) was observed, most likely due to the replacement of older trucks with new ones.

39

Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications  

SciTech Connect

Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

Brown, Michael R.

2006-11-16T23:59:59.000Z

40

USING THE ONLINE SINGLE PARTICLE MODEL FOR SNS ACCELERATOR TUNING  

Science Conference Proceedings (OSTI)

This paper describes the usage of the XAL online model for transverse and longitudinal tuning of the SNS linac. Most of the SNS control room physics applications are based on the XAL online model, which can be synchronized with an accelerator live state and used to tune the machine. Advantages of a simple and fast single particle model for orbit correction and longitudinal dynamics control in the SNS control room are discussed.

Shishlo, Andrei P [ORNL; Aleksandrov, Alexander V [ORNL

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DIFFUSIVE SHOCK ACCELERATION IN TEST-PARTICLE REGIME  

Science Conference Proceedings (OSTI)

We examine the test-particle solution for diffusive shock acceleration, based on simple models for thermal leakage injection and Alfvenic drift. The critical injection rate, {xi}{sub c}, above which the cosmic-ray (CR) pressure becomes dynamically significant depends mainly on the sonic shock Mach number, M, and preshock gas temperature, T{sub 1}. In the hot-phase interstellar medium (ISM) and intracluster medium, {xi}{sub c} {approx} 10. For T{sub 1} = 10{sup 6} K, for example, the test-particle solution would be valid if the injection momentum p{sub inj} >3.8p{sub th} (where p{sub th} is thermal momentum). This leads to a postshock CR pressure less than 10% of the shock ram pressure. If the Alfven speed is comparable to the sound speed in the preshock flow, as in the hot-phase ISM, the power-law slope of CR spectrum can be significantly softer than the canonical test-particle slope. Then, the CR spectrum at the shock can be approximated by the revised test-particle power law with an exponential cutoff at the highest accelerated momentum, p{sub max}(t). An analytic form of the exponential cutoff is also suggested.

Kang, Hyesung [Department of Earth Sciences, Pusan National University, Pusan 609-735 (Korea, Republic of); Ryu, Dongsu, E-mail: kang@uju.es.pusan.ac.k, E-mail: ryu@canopus.cnu.ac.k [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

2010-09-20T23:59:59.000Z

42

Proceedings of the 22nd Particle Accelerator Conference (PAC'07)  

SciTech Connect

The twenty-second Particle Accelerator Conference, PAC'07, took place at the Albuquerque Convention Centre in Albuquerque, the largest city in New Mexico, from Monday to Friday, 2007 June 25 to 29. It was attended by over 1350 delegates from 25 different countries (63% North America, 24% Europe, 11% Asia and 2% Other), and was held under the auspices of the two professional societies that oversee and make holding this series of conferences possible, the Division of Physics of Beams within APS, and the Nuclear and Plasma Sciences Society within IEEE. As host of the conference, Los Alamos National Laboratory (LANL) is especially thanked for their many contributions and assistance both prior to and during the conference. The Convention Center was an ideal location for information sharing and discussions between the interdisciplinary aspects of the accelerator community, as well as for related meetings and ad-hoc 'rump' sessions.

N /A

2007-08-01T23:59:59.000Z

43

Photo of the Week: What Does a Particle Accelerator Have in Common with  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What Does a Particle Accelerator Have in Common What Does a Particle Accelerator Have in Common with Your Thanksgiving Turkey? Photo of the Week: What Does a Particle Accelerator Have in Common with Your Thanksgiving Turkey? November 16, 2012 - 4:02pm Addthis At the SLAC National Accelerator Laboratory, scientists are using the Facility for Advanced Accelerator Experimental Tests, also known as FACET, to research accelerator science and high-energy density physics. SLAC's particle accelerator may be two miles long, but researchers at FACET are working to develop more compact versions that could be widely used in medicine and industry -- particle accelerators are used for cancer research, processing computer chips, and even producing the shrink wrap used to keep your Thanksgiving turkey fresh. In this photo, Stanford graduate student Spencer Gessner assembles a camera that will monitor an X-ray spectrometer designed to measure FACET's beam energy. Learn more about how FACET works. | Photo courtesy of SLAC National Accelerator Laboratory.

44

New modes of particle accelerations techniques and sources. Formal report  

SciTech Connect

This Report includes copies of transparencies and notes from the presentations made at the Symposium on New Modes of Particle Accelerations - Techniques and Sources, August 19-23, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

Parsa, Z. [ed.

1996-12-31T23:59:59.000Z

45

Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks  

E-Print Network (OSTI)

We have calculated the evolution of cosmic ray (CR) modified astrophysical shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of diffusive shock acceleration (DSA) in 1D quasi- parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We model shocks similar to those expected around cosmic structure pancakes as well as other accretion shocks driven by flows with upstream gas temperatures in the range $T_0=10^4-10^{7.6}$K and shock Mach numbers spanning $M_s=2.4-133$. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies ($p/mc \\gsim 1$), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. For these models the time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number. The modeled high Mach number shocks all evolve towards efficiencies $\\sim 50$%, regardless of the upstream CR pressure. On the other hand, the upstream CR pressure increases the overall CR energy in moderate strength shocks ($M_s \\sim {\\rm a few}$). (abridged)

H. Kang; T. W. Jones

2004-10-29T23:59:59.000Z

46

Analytical description of nonlinear particle transport in slab turbulence: High particle energies and stochastic acceleration  

Science Conference Proceedings (OSTI)

Pitch-angle scattering, parallel spatial diffusion, and stochastic acceleration of cosmic rays are investigated analytically. Based on a second-order quasilinear theory, we derive analytical expressions for the aforementioned transport parameters for all possible magnetic field strengths and particle energies. This work complements previous work where only parallel diffusion for low energetic particles was considered. Furthermore, we compute the first time the momentum diffusion coefficient. It is also shown that the relation between the momentum diffusion coefficient and the parallel spatial diffusion coefficient is more complicated than assumed in previous work.

Shalchi, A. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

2012-10-15T23:59:59.000Z

47

Preformed transient gas channels for laser wakefield particle acceleration  

SciTech Connect

Acceleration of electrons by laser-driven plasma wake fields is limited by the range over which a laser pulse can maintain its intensity. This distance is typically given by the Rayleigh range for the focused laser beam, usually on the order of 0.1 mm to 1 mm. For practical particle acceleration, interaction distances on the order of centimeters are required. Therefore, some means of guiding high intensity laser pulses is necessary. Light intensities on the order of a few times 10{sup 17} W/cm{sup 2} are required for laser wakefield acceleration schemes using near IR radiation. Gas densities on the order of or greater than 10{sup 17} cm{sup {minus}3} are also needed. Laser-atom interaction studies in this density and intensity regime are generally limited by the concomitant problems in beam propagation introduced by the creation of a plasma. In addition to the interaction distance limit imposed by the Rayleigh range, defocusing of the high intensity laser pulse further limits the peak intensity which can be achieved. To solve the problem of beam propagation limitations in laser-plasma wakefield experiments, two potential methods for creating transient propagation channels in gaseous targets are investigated. The first involves creation of a charge-neutral channel in a gas by an initial laser pulse, which then is ionized by a second, ultrashort, high-intensity pulse to create a waveguide. The second method involves the ionization of a gas column by an ultrashort pulse; a transient waveguide is formed by the subsequent expansion of the heated plasma into the neutral gas.

Wood, W.M.

1994-11-01T23:59:59.000Z

48

Diagnostic resonant cavity for a charged particle accelerator  

DOE Patents (OSTI)

Disclosed is a diagnostic resonant cavity for determining characteristics of a charged particle beam, such as an electron beam, produced in a charged particle accelerator. The cavity is based on resonant quadrupole-mode and higher order cavities. Enhanced shunt impedance in such cavities is obtained by the incorporation of a set of four or more electrically conductive rods extending inwardly from either one or both of the end walls of the cavity, so as to form capacitive gaps near the outer radius of the beam tube. For typical diagnostic cavity applications, a five-fold increase in shunt impedance can be obtained. In alternative embodiments the cavity may include either four or more opposing pairs of rods which extend coaxially toward one another from the opposite end walls of the cavity and are spaced from one another to form capacitative gaps; or the cavity may include a single set of individual rods that extend from one end wall to a point adjacent the opposing end wall.

Barov, Nikolai (San Diego, CA)

2007-10-02T23:59:59.000Z

49

Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers  

DOE Patents (OSTI)

A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

Danby, Gordon T. (Wading River, NY); Jackson, John W. (Shoreham, NY)

1991-01-01T23:59:59.000Z

50

Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers  

DOE Patents (OSTI)

A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

Danby, G.T.; Jackson, J.W.

1990-03-19T23:59:59.000Z

51

DC-like Phase Space Manipulation and Particle Acceleration Using Chirped AC Fields  

SciTech Connect

Waves in plasmas can accelerate particles that are resonant with the wave. A DC electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. We investigate the effect on a Hamiltonian distribution of an accelerating potential waveform, which could, for example, represent the average ponderomotive effect of two counterpropagating electromagnetic waves. In particular, we examine the apparent DC-like time-asymptotic response of the distribution in regimes where the potential structure is accelerated adiabatically. A highly resonant population within the distribution is always present, and we characterize its nonadiabatic response during wave-particle resonance using an integral method in the noninertial reference frame moving with the wave. Finally, we show that in the limit of infinitely slow acceleration of the wave, these highly resonant particles disappear and the response

P.F. Schmit and N.J. Fisch

2009-06-17T23:59:59.000Z

52

Advance in Vertical Buffered Electropolishing on Niobium for Particle Accelerators*  

Science Conference Proceedings (OSTI)

Niobium (Nb) is the most popular material that has been employed for making superconducting radio frequency (SRF) cavities to be used in various particle accelerators over the last couple of decades. One of the most important steps in fabricating Nb SRF cavities is the final chemical removal of 150 {mu}m of Nb from the inner surfaces of the SRF cavities. This is usually done by either buffered chemical polishing (BCP) or electropolishing (EP). Recently a new Nb surface treatment technique called buffered electropolishing (BEP) has been developed at Jefferson Lab. It has been demonstrated that BEP can produce the smoothest surface finish on Nb ever reported in the literature while realizing a Nb removal rate as high as 10 {mu}m/min that is more than 25 and 5 times quicker than those of EP and BCP(112) respectively. In this contribution, recent advance in optimizing and understanding BEP treatment technique is reviewed. Latest results from RF measurements on BEP treated Nb single cell cavities by our unique vertical polishing system will be reported.

A.T. Wu, S. Jin, J.D. Mammosser, C.E. Reece, R.A. Rimmer,L. Lin, X.Y. Lu, K. Zhao

2011-09-01T23:59:59.000Z

53

Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams  

SciTech Connect

Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

2010-06-01T23:59:59.000Z

54

PARTICLE ACCELERATION AT QUASI-PARALLEL SHOCK WAVES: THEORY AND OBSERVATIONS AT 1 AU  

Science Conference Proceedings (OSTI)

In this paper, we describe a theoretical model for accelerating an arbitrary upstream particle distribution. Only those particles that exceed a prescribed injection energy, E{sub inj}, are accelerated via the diffusive shock acceleration (DSA) mechanism, also known as first-order Fermi acceleration. We identify a set of quasi-parallel shocks at 1 AU and use the observed solar wind particle distribution information to construct our upstream distribution, which is then accelerated diffusively at the shock, assuming the observed shock parameters. The injection energy for particles to be accelerated diffusively at a quasi-parallel shock is discussed theoretically. By using the observed upstream solar wind distribution function and the observed shock parameters, we can compute the injection energy that matches the observed downstream accelerated particle spectrum. Like the previous studies of van Nes et al., Lario et al., and Ho et al., this analysis focuses on the acceleration of protons only via the first-order Fermi acceleration mechanism. However, our primary focus is on quasi-parallel shocks and the injection mechanism in the context of DSA with a background thermal solar wind modeled as a Maxwellian or kappa distribution. Our approach allows for a direct test of injection at interplanetary shocks. It has been proposed that an additional seed population of energetic particles is needed to explain the accelerated particle distribution downstream of quasi-parallel shocks. This conclusion is based typically on studies that address the acceleration of heavy ions primarily and do not characterize the injection of protons alone using the DSA mechanism. Through comparisons of Maxwellian and kappa upstream distributions, we find that DSA with injection directly from a thermal Maxwellian distribution, or weak departures therefrom, for protons is responsible for energetic solar particle events associated with quasi-parallel shocks.

Neergaard Parker, L.; Zank, G. P., E-mail: lnp0012@uah.edu [Physics Department, Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

2012-09-20T23:59:59.000Z

55

LONGITUDINAL RESISTIVE INSTABILITIES OF INTENSE COASTING BEAMS IN PARTICLE ACCELERATORS  

E-Print Network (OSTI)

Conference on High Energy Accelerators, Brookhaven NationalLaboratory \\' 1.961 (Brookhaven National LaboratorYi Upton~of the International Brookhaven National i Conference on

Neil, V. Kelvin

2008-01-01T23:59:59.000Z

56

LONGITUDINAL RESISTIVE INSTABILITIES OF INTENSE COASTING BEAMS IN PARTICLE ACCELERATORS  

E-Print Network (OSTI)

Proceedings of the Brookhaven 1961 International ConferenceEnergy Accelerators, Brookhaven National Laboratory, 1961,Proceedings of the Brookhaven 1961 International Conference

Neil, V. Kelvin

2008-01-01T23:59:59.000Z

57

Advanced Modeling for Particle Accelerators Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

making fundamental scientific discoveries and DOE has clearly identified them as critical facilities for advancing research. Development and optimization of accelerators is...

58

Particle acceleration by electrostatic waves traveling perpendicular to nonuniform magnetic fields  

SciTech Connect

A novel method has been proposed for indefinite nonstochastic acceleration of particles by electrostatic waves propagating normal to a magnetic field. Use is made of a magnetic field inhomogeneity to prevent the particle from detrapping from the electrostatic wave. Numerical plots of particle trajectories are presented.

Rath, S.; Kaw, P.K.

1988-05-01T23:59:59.000Z

59

Papers presented by the SL division at the 15th Particle Accelerator Conference, Washington, DC, USA, 17 - 20 May 1993  

E-Print Network (OSTI)

Papers presented by the SL division at the 15th Particle Accelerator Conference, Washington, DC, USA, 17 - 20 May 1993

CERN. Geneva

1993-01-01T23:59:59.000Z

60

Particle physicist's dreams about PetaelectronVolt laser plasma accelerators  

Science Conference Proceedings (OSTI)

Present day accelerators are working well in the multi TeV energy scale and one is expecting exciting results in the coming years. Conventional technologies, however, can offer only incremental (factor 2 or 3) increase in beam energies which does not follow the usual speed of progress in the frontiers of high energy physics. Laser plasma accelerators theoretically provide unique possibilities to achieve orders of magnitude increases entering the PetaelectronVolt (PeV) energy range. It will be discussed what kind of new perspectives could be opened for the physics at this new energy scale. What type of accelerators would be required?.

Vesztergombi, G. [KFKI-RMKI. 1525-H Budapest P.O.B. 49. (Hungary)

2012-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Future Prospects of Accelerator Science for Particle Physics  

Science Conference Proceedings (OSTI)

Future advances in understanding fundamental questions of nature require revolutionary developments in accelerator science to allow several orders of magnitude enhancements in terms of energy, intensity, faster timing, and higher resolution. The challenges of the 21st century (energy, power, environment, resources, cost, and space) also play a significant role in the development of accelerator tools. In this overview article, we consider several recent developments and ideas that may become steps in addressing the challenges and which may find their way into designs of accelerator tools of the future.

Seryi, Andrei; /SLAC

2012-06-15T23:59:59.000Z

62

#LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Particle Accelerators, Lasers and Discovery Science, May Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST #LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST May 15, 2012 - 2:03pm Addthis SLAC’s linac accelerates very short pulses of electrons to 99.9999999 percent the speed of light through a slalom that causes the electrons to emit X-rays, which become synchronized as they interact with the electron pulses and create the world’s brightest X-ray laser pulse. | Photo by Brad Plummer, SLAC. SLAC's linac accelerates very short pulses of electrons to 99.9999999 percent the speed of light through a slalom that causes the electrons to emit X-rays, which become synchronized as they interact with the electron pulses and create the world's brightest X-ray laser pulse. | Photo by

63

Visualizing electromagnetic field and particle simulations in accelerators with ParaView  

Science Conference Proceedings (OSTI)

SLAC performs large-scale simulations of Electromagnetic fields and particles for accelerator applications. These simulations run on intricate high order finite element meshes and produce field strengths spanning tens of orders of magnitudes. Such simulations ...

Greg L. Schussman

2009-11-01T23:59:59.000Z

64

Energy extraction and particle acceleration around a rotating black hole in Horava-Lifshitz gravity  

E-Print Network (OSTI)

Energy extraction and particle acceleration around a rotating black hole in Horava-Lifshitz gravity-Lifshitz gravity is studied. The strong dependence of the extracted energy from the special range of parameters that the fundamental parameter of the Horava-Lifshitz gravity can impose a limitation on the energy of the accelerating

65

U.S. Completes Contribution to World's Most Powerful Particle Accelerator |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Contribution to World's Most Powerful Particle Completes Contribution to World's Most Powerful Particle Accelerator U.S. Completes Contribution to World's Most Powerful Particle Accelerator June 30, 2008 - 2:15pm Addthis WASHINGTON, DC - The U.S. contribution to the Large Hadron Collider (LHC) has been completed on budget and ahead of schedule, the U.S. Department of Energy (DOE) and the National Science Foundation (NSF) said today. The LHC, located near Geneva, Switzerland at the CERN laboratory, is the largest international scientific facility ever built. The U.S. contribution, a $531 million investment, consists of several key components of the particle accelerator and the ATLAS and CMS particle detectors. "The success of the U.S. LHC project is based on the quality of the U.S. teams, and national and international collaboration," DOE Under Secretary

66

Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations  

E-Print Network (OSTI)

We compare experimental data and numerical simulations for the dynamics of inertial particles with finite density in turbulence. In the experiment, bubbles and solid particles are optically tracked in a turbulent flow of water using an Extended Laser Doppler Velocimetry technique. The probability density functions (PDF) of particle accelerations and their auto-correlation in time are computed. Numerical results are obtained from a direct numerical simulation in which a suspension of passive pointwise particles is tracked, with the same finite density and the same response time as in the experiment. We observe a good agreement for both the variance of acceleration and the autocorrelation timescale of the dynamics; small discrepancies on the shape of the acceleration PDF are observed. We discuss the effects induced by the finite size of the particles, not taken into account in the present numerical simulations.

R. Volk; E. Calzavarini; G. Verhille; D. Lohse; N. Mordant; J. -F. Pinton; F. Toschi

2007-10-17T23:59:59.000Z

67

In-Situ Monitoring of Particle Growth at PEMFC Cathode under Accelerated Cycling Conditions  

SciTech Connect

An in-situ method to measure changes in catalyst particle size at the cathode of a proton exchange membrane fuel cell is demonstrated. Synchrotron X-rays, 58 keV, were used to measure the pair distribution function on an operating fuel cell and observe the growth of catalyst particles under accelerated degradation conditions. The stability of Pt/C and PtCo/C with different initial particle sizes was monitored over 3000 potential cycles. The increase in particle size was fit to a linear trend as a function of cycles. The most stable electrocatalyst was found to be the alloyed PtCo with the larger initial particle size.

Redmond, Erin L.; Setzler, Brian P.; Juhas, Pavol; Billinge, Simon J.L.; Fuller, Thomas F. (GIT); (Columbia)

2012-10-25T23:59:59.000Z

68

In-Situ Monitoring of Particle Growth at PEMFC Cathode under Accelerated Cycling Conditions  

SciTech Connect

An in-situ method to measure changes in catalyst particle size at the cathode of a proton exchange membrane fuel cell is demonstrated. Synchrotron X-rays, 58 keV, were used to measure the pair distribution function on an operating fuel cell and observe the growth of catalyst particles under accelerated degradation conditions. The stability of Pt/C and PtCo/C with different initial particle sizes was monitored over 3000 potential cycles. The increase in particle size was fit to a linear trend as a function of cycles. The most stable electrocatalyst was found to be the alloyed PtCo with the larger initial particle size.

Billinge S. J.; Redmond, E.L.; Setzler, B.P.; Juhas, P.; Fullera, T.F.

2012-05-01T23:59:59.000Z

69

NON-STANDARD ENERGY SPECTRA OF SHOCK-ACCELERATED SOLAR PARTICLES  

SciTech Connect

We consider a numerical model for the shock acceleration of energetic ions in the magnetic environment of the solar corona. The model is motivated by observations of the deka-to-hecto-MeV proton energy spectra, ion and electron timing, and abundances in the beginning of major solar energetic particle (SEP) events, prior to the event's main phase associated with coronal mass ejection (CME) driven shock in the solar wind. Inasmuch as the obliquity of the CME-liftoff-associated shocks in solar corona and hence the seed-particle supply for the shock acceleration are essentially time dependent, a steady state energy spectrum of accelerated protons near the shock could not be attained. Energy spectrum of the SEP emission depends on the spatial and energy distribution of seed particles for the coronal shock acceleration, on the shock wave history, and on the location and scenario of the energetic particle escape into the interplanetary medium. We use a numerical model of the shock acceleration on a semicircular magnetic field line to learn a significance of different effects. If the shock geometry in a particular magnetic tube changes from nearly parallel to perpendicular, the resulting SEP spectrum in most distant sections of the tube, e.g., at the top of a transequatorial loop, resembles a wide beam, which is very different from the standard power-law spectrum that would be expected in a steady state. Possible escape of the shock-accelerated particles from more than one coronal location, stochastic re-acceleration, and the magnetic tube expansion can make the SEP spectra even more complicated.

Kocharov, Leon; Vainio, Rami; Pomoell, Jens [Department of Physics, P.O. Box 64, University of Helsinki, FI-00014 (Finland); Valtonen, Eino [Space Research Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 (Finland); Klassen, Andreas [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet Kiel, D-24118 (Germany); Young, C. Alex [ADNET Systems Inc., NASA Goddard Space Flight Center, Greenbelt, MD 20850 (United States)

2012-07-01T23:59:59.000Z

70

The acceleration of electrons at perpendicular shocks and its implication for solar energetic particle events  

Science Conference Proceedings (OSTI)

We present a study of the acceleration of electrons at a perpendicular shock that propagates through a turbulent magnetic field. The energization process of electrons is investigated by utilizing a combination of hybrid (kinetic ions and fluid electron) simulations and test-particle electron simulations. In this method, the motions of the test-particle electrons are numerically integrated in the time-dependent electric and magnetic fields generated by two-dimensional hybrid simulations. We show that large-scale magnetic fluctuations effect electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to interact with the shock front and get accelerated multiple times. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The acceleration efficiency is critically dependent on the turbulence amplitude and coherence length. We also discuss the implication of this study for solar energetic particles (SEPs) by comparing the acceleration of electrons with that of protons. Their correlation indicates that perpendicular shocks play an important role in SEP events.

Guo Fan; Giacalone, Joe [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States)

2012-11-20T23:59:59.000Z

71

On a theory of two-beam mechanisms of charged particle acceleration in electrodynamic structures  

Science Conference Proceedings (OSTI)

This work is devoted to the theoretical studies of two-beam mechanisms of charged particle acceleration in electronic structures. The first section continues the outline of results of theoretical studies commenced in the intermediate report and considers the two-beam scheme of acceleration in the plasma waveguide. According to this scheme the strong current relativistic electron beam (REB) excites the intensive plasma waves accelerating the electrons of the second beam. The driving beam is assumed to be density-modulated. The preliminary modulation of the driving REB is shown to enhance substantially the acceleration efficiency of relativistic electrons of the driven beam. The second section deals with the two-beam acceleration in the vacuum corrugated waveguide. According to this scheme the excitation of electromagnetic waves and acceleration of driven beam electrons by them is accomplished under different Cherenkov resonances between the particles of beams and the corrugated waveguide field. The electromagnetic field in the periodic structure is known to be the superposition of spatial harmonics. With the small depth of the periodic nonuniformity the amplitudes of these harmonics decrease fast with their number increasing. Therefore, if the driving beam is in the Cherenkov resonance with the first spatial harmonic and the driven beam is in resonance with the zero space harmonic then the force accelerating the driven beam would be considerably bigger than the force decelerating the driving beam electrons.

Ostrovsky, A.O. [Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)

1993-09-01T23:59:59.000Z

72

A MODEL FOR THE ESCAPE OF SOLAR-FLARE-ACCELERATED PARTICLES  

Science Conference Proceedings (OSTI)

We address the problem of how particles are accelerated by solar flares can escape into the heliosphere on timescales of an hour or less. Impulsive solar energetic particle (SEP) bursts are generally observed in association with so-called eruptive flares consisting of a coronal mass ejection (CME) and a flare. These fast SEPs are believed to be accelerated directly by the flare, rather than by the CME shock. However, the precise mechanism by which the particles are accelerated remains controversial. Regardless of the origin of the acceleration, the particles should remain trapped in the closed magnetic fields of the coronal flare loops and the ejected flux rope, given the magnetic geometry of the standard eruptive-flare model. In this case, the particles would reach the Earth only after a delay of many hours to a few days (coincident with the bulk ejecta arriving at Earth). We propose that the external magnetic reconnection intrinsic to the breakout model for CME initiation can naturally account for the prompt escape of flare-accelerated energetic particles onto open interplanetary magnetic flux tubes. We present detailed 2.5-dimensional magnetohydrodynamic simulations of a breakout CME/flare event with a background isothermal solar wind. Our calculations demonstrate that if the event occurs sufficiently near a coronal-hole boundary, interchange reconnection between open and closed fields can occur. This process allows particles from deep inside the ejected flux rope to access solar wind field lines soon after eruption. We compare these results to standard observations of impulsive SEPs and discuss the implications of the model on further observations and calculations.

Masson, S.; Antiochos, S. K. [Space Weather Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); DeVore, C. R., E-mail: sophie.masson@nasa.gov [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

2013-07-10T23:59:59.000Z

73

Particle acceleration by fluctuating electric fields at a magnetic field null point  

E-Print Network (OSTI)

Particle acceleration consequences from fluctuating electric fields superposed on an X-type magnetic field in collisionless solar plasma are studied. Such a system is chosen to mimic generic features of dynamic reconnection, or the reconnective dissipation of a linear disturbance. We explore numerically the consequences for charged particle distributions of fluctuating electric fields superposed on an X-type magnetic field. Particle distributions are obtained by numerically integrating individual charged particle orbits when a time varying electric field is superimposed on a static X-type neutral point. This configuration represents the effects of the passage of a generic MHD disturbance through such a system. Different frequencies of the electric field are used, representing different possible types of wave. The electric field reduces with increasing distance from the X-type neutral point as in linear dynamic magnetic reconnection. The resulting particle distributions have properties that depend on the amplitude and frequency of the electric field. In many cases a bimodal form is found. Depending on the timescale for variation of the electric field, electrons and ions may be accelerated to different degrees and often have energy distributions of different forms. Protons are accelerated to $\\gamma$-ray producing energies and electrons to and above hard X-ray producing energies in timescales of 1 second. The acceleration mechanism is possibly important for solar flares and solar noise storms but is also applicable to all collisionless plasmas.

P. Petkaki; A. L. MacKinnon

2007-07-09T23:59:59.000Z

74

Fossil AGN jets as ultra high energy particle accelerators  

E-Print Network (OSTI)

Remnants of AGN jets and their surrounding cocoons leave colossal magnetohydrodynamic (MHD) fossil structures storing total energies ~10^{60} erg. The original active galacic nucleus (AGN) may be dead but the fossil will retain its stable configuration resembling the reversed-field pinch (RFP) encountered in laboratory MHD experiments. In an RFP the longitudinal magnetic field changes direction at a critical distance from the axis, leading to magnetic re-connection there, and to slow decay of the large-scale RFP field. We show that this field decay induces large-scale electric fields which can accelerate cosmic rays with an E^{-2} power-law up to ultra-high energies with a cut-off depending on the fossil parameters. The cut-off is expected to be rigidity dependent, implying the observed composition would change from light to heavy close to the cut-off if one or two nearby AGN fossils dominate. Given that several percent of the universe's volume may house such slowly decaying structures, these fossils may even...

Benford, Gregory

2007-01-01T23:59:59.000Z

75

Fastest Electropolishing Technique on Niobium for Particle Accelerators  

SciTech Connect

Field emission on the inner surfaces of niobium (Nb) superconducting radio frequency (SRF) cavities is still one of the major obstacles for reaching high accelerating gradients for SRF community. Our previous experimental results [1] seemed to imply that the threshold of field emission was related to the thickness of Nb surface oxide layers. In this contribution, a more detailed study on the influences of the surface oxide layers on the field emission on Nb surfaces will be reported. By anodization technique, the thickness of the surface pentoxide layer was artificially fabricated from 3nm up to 460nm. A home-made scanning field emission microscope (SFEM) was employed to perform the scans on the surfaces. Emitters were characterized using a scanning electron microscope together with an energy dispersive x-ray analyzer. The experimental results could be understood by a simple model calculation based on classic electromagnetic theory as shown in Ref.1. Possibly implications for Nb SRF cavity applications from this study will be discussed.

A.T. Wu, S. Jin, R.A. Rimmer, X.Y. Lu, K. Zhao

2011-09-01T23:59:59.000Z

76

Particle Acceleration and Gamma-Ray Production in Shell Remnants  

E-Print Network (OSTI)

A number of nearby Northern Hemisphere shell-type Supernova Remnants (SNRs) has been observed in TeV gamma rays, but none of them could be detected so far. This failure calls for a critical reevaluation of the theoretical arguments for gamma-ray emission of SNRs. The present paper discusses diffusive shock acceleration in shell-type SNRs in full kinetic theory. Emphasis is also given to the possible problems for VHE gamma-ray production due to the environmental conditions a SN progenitor finds itself in. Observational upper limits are compared with theoretical predictions for the gamma-ray flux. Empirical arguments from the observation of X-ray power law continua for electron-induced Inverse Compton gamma-ray emission at TeV energies are discussed in their relation to the nucleonic Pi-zero decay emission from the same objects. Finally, a point is made for the simplest case of SNe Ia, expected to explode in a uniform circumstellar medium. Here in particular the very recently detected Southern Hemisphere remnant of SN 1006 is compared with Tycho's SNR. On the basis of the assumed parameters for the two remnants SN 1006 is tentatively identified with a remnant whose TeV gamma-ray emission is dominated by Inverse Compton radiation. Tycho might be dominantly a Pi-zero decay gamma-ray source.

H. J. Volk

1997-11-18T23:59:59.000Z

77

Stochastic particle acceleration and synchrotron self--Compton radiation in TeV blazars  

E-Print Network (OSTI)

We analyse the influence of the stochastic particle acceleration for the evolution of the electron spectrum. We assume that all investigated spectra are generated inside a spherical, homogeneous source and also analyse the synchrotron and inverse Compton emission generated by such an object. The stochastic acceleration is treated as the diffusion of the particle momentum and is described by the momentum-diffusion equation. We investigate the stationary and time dependent solutions of the equation for several different evolutionary scenarios. The scenarios are divided into two general classes. First, we analyse a few cases without injection or escape of the particles during the evolution. Then we investigate the scenarios where we assume continuous injection and simultaneous escape of the particles. In the case of no injection and escape the acceleration process, competing with the radiative cooling, only modifies the initial particle spectrum. The competition leads to a thermal or quasi-thermal distribution of the particle energy. In the case of the injection and simultaneous escape the resulting spectra depend mostly on the energy distribution of the injected particles. In the simplest case, where the particles are injected at the lowest possible energies, the competition between the acceleration and the escape forms a power-law energy distribution. We apply our modeling to the high energy activity of the blazar Mrk 501 observed in April 1997. Calculating the evolution of the electron spectrum self-consistently we can reproduce the observed spectra well with a number of free parameters that is comparable to or less than in the "classic stationary" one--zone synchrotron self-Compton scenario.

K. Katarzynski; G. Ghisellini; A. Mastichiadis; F. Tavecchio; L. Maraschi

2006-03-14T23:59:59.000Z

78

Rotating charged hairy black hole in (2+1) dimensions and particle acceleration  

E-Print Network (OSTI)

In this paper we construct rotating charged hairy black hole in (2+1) dimensions for infinitesimal black hole charge and rotation parameters. Then we consider this black hole as particle accelerator and calculate the center-of-mass energy of two colliding test particles near the rotating charged hairy black hole in (2+1) dimensions. As we expected, the center-of-mass energy has infinite value.

Sadeghi, J; Farahani, H

2013-01-01T23:59:59.000Z

79

Rotating charged hairy black hole in (2+1) dimensions and particle acceleration  

E-Print Network (OSTI)

In this paper we construct rotating charged hairy black hole in (2+1) dimensions for infinitesimal black hole charge and rotation parameters. Then we consider this black hole as particle accelerator and calculate the center-of-mass energy of two colliding test particles near the rotating charged hairy black hole in (2+1) dimensions. As we expected, the center-of-mass energy has infinite value.

J. Sadeghi; B. Pourhassan; H. Farahani

2013-10-26T23:59:59.000Z

80

Fossil AGN jets as ultra high energy particle accelerators  

E-Print Network (OSTI)

Remnants of AGN jets and their surrounding cocoons leave colossal magnetohydrodynamic (MHD) fossil structures storing total energies ~10^{60} erg. The original active galacic nucleus (AGN) may be dead but the fossil will retain its stable configuration resembling the reversed-field pinch (RFP) encountered in laboratory MHD experiments. In an RFP the longitudinal magnetic field changes direction at a critical distance from the axis, leading to magnetic re-connection there, and to slow decay of the large-scale RFP field. We show that this field decay induces large-scale electric fields which can accelerate cosmic rays with an E^{-2} power-law up to ultra-high energies with a cut-off depending on the fossil parameters. The cut-off is expected to be rigidity dependent, implying the observed composition would change from light to heavy close to the cut-off if one or two nearby AGN fossils dominate. Given that several percent of the universe's volume may house such slowly decaying structures, these fossils may even re-energize ultra-high energy cosmic rays from distant/old sources, offsetting the ``GZK-losses'' due to interactions with photons of the cosmic microwave background radiation and giving evidence of otherwise undetectable fossils. In this case the composition would remain light to the highest energies if distant sources or fossils dominated, but otherwise would be mixed. It is hoped the new generation of cosmic ray experiments such as the Pierre Auger Observatory and ultra-high energy neutrino telescopes such as ANITA and lunar Cherenkov experiments will clarify this.

Gregory Benford; R. J. Protheroe

2007-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A compendium of computer codes used in particle accelerator design and analysis  

Science Conference Proceedings (OSTI)

We present a compilation of computer codes used in the design and analysis of particle accelerators. This document describes each code on a one? or two?page data sheet. All codes included in this compilation are filed at Los Alamos. (AIP)

Los Alamos Accelerator Code Group

1989-01-01T23:59:59.000Z

82

Role of radiation reaction forces in the dynamics of centrifugally accelerated particles  

Science Conference Proceedings (OSTI)

In this paper we study the influence of radiation reaction (RR) forces on the dynamics of centrifugally accelerated particles. It is assumed that the particles move along magnetic field lines anchored in the rotating central object. The common 'bead-on-the-wire' approximation is used. The solutions are found and analyzed for cases when the form of the prescribed trajectory (rigidly rotating field line) is approximated by: (a) straight line, and (b) Archimedes spiral. Dynamics of neutral and charged particles are compared with the emphasis on the role of RR forces in the latter case. It is shown that for charged particles there exist locations of stable equilibrium. It is demonstrated that for particular initial conditions RR forces cause centripetal motion of the particles: their 'falling' on the central rotating object. It is found that in the case of Archimedes spiral both neutral and charged particles can reach infinity where their motion has asymptotically force-free character. The possible importance of these processes for the acceleration of relativistic, charged particles by rotating magnetospheres in the context of the generation of nonthermal, high-energy emission of AGN and pulsars is discussed.

Dalakishvili, G. T.; Rogava, A. D.; Berezhiani, V. I. [Eugene Kharadze Georgian National Astrophysical Observatory, 2a Kazbegi Avenue, Tbilisi-0160(Georgia); Ivane Javakhishvili Tbilisi State University, Faculty of Natural and Exact Sciences, Physics Department, 3, Chavchavadze Avenue, 0128 Tbilisi (Georgia); Centre for Plasma Astrophysics, K.U. Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium) and Abdus Salam International Centre for Theoretical Physics, Trieste I-34014 (Italy); Graduate School of Frontier Sciences, University of Tokyo, 5-1-5-Kashiwanoha, Kashiwa-shi, Chiba 277-8561 (Japan); Institute of Physics, 6 Tamarashvili Street., 0177 Tbilisi (Georgia)

2007-08-15T23:59:59.000Z

83

ACCELERATION OF PARTICLES AT THE TERMINATION SHOCK OF A RELATIVISTIC STRIPED WIND  

SciTech Connect

The relativistic wind of obliquely rotating pulsars consists of toroidal stripes of opposite magnetic field polarity, separated by current sheets of hot plasma. By means of two- and three-dimensional particle-in-cell simulations, we investigate particle acceleration and magnetic field dissipation at the termination shock of a relativistic striped wind. At the shock, the flow compresses and the alternating fields annihilate by driven magnetic reconnection. Irrespective of the stripe wavelength {lambda} or the wind magnetization {sigma} (in the regime {sigma} >> 1 of magnetically dominated flows), shock-driven reconnection transfers all the magnetic energy of alternating fields to the particles, whose average Lorentz factor increases by a factor of {sigma} with respect to the pre-shock value. The shape of the post-shock spectrum depends primarily on the ratio {lambda}/(r{sub L} {sigma}), where r{sub L} is the relativistic Larmor radius in the wind. The spectrum becomes broader as the value of {lambda}/(r{sub L} {sigma}) increases, passing from a relativistic Maxwellian to a flat power-law tail with slope around -1.5, populated by particles accelerated by the reconnection electric field. Close to the equatorial plane of the wind, where the stripes are symmetric, the highest energy particles resulting from magnetic reconnection can escape ahead of the shock, and be injected into a Fermi-like acceleration process. In the post-shock spectrum, they populate a power-law tail with slope around -2.5, which extends beyond the flat component produced by reconnection. Our study suggests that the spectral break between the radio and the optical band in Pulsar Wind Nebulae can be a natural consequence of particle acceleration at the termination shock of striped pulsar winds.

Sironi, Lorenzo; Spitkovsky, Anatoly, E-mail: lsironi@astro.princeton.edu, E-mail: anatoly@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States)

2011-11-01T23:59:59.000Z

84

On scaling properties of crossing the third-order resonance in particle accelerator  

SciTech Connect

We study effects of charged particle beams crossing a third-order resonance in an accelerator. The distortion of invariant torus during the resonance crossing is used to set 20% emittance growth or 2.5% of trap fraction as the critical resonance strength. We find a simple scaling law for the critical resonance strength vs the tune ramp rate and the initial emittance. The scaling law can be derived by solving Hamilton's equation of motion with stationary phase condition. Such scaling law can be used to evaluate the performance in high power accelerators, such as the FFAG and cyclotron.

Lee, S.Y.; Pang, X.; Jing, Y.; Luo, T.; /Indiana U.; Ng, K.Y.; /Fermilab

2011-12-01T23:59:59.000Z

85

EFFECTS OF PERPENDICULAR DIFFUSION ON ENERGETIC PARTICLES ACCELERATED BY THE INTERPLANETARY CORONAL MASS EJECTION SHOCK  

Science Conference Proceedings (OSTI)

In this work, based on a numerical solution of the focused transport equation, we obtained the intensity and anisotropy time profiles of solar energetic particles (SEPs) accelerated by an interplanetary shock in the three-dimensional Parker magnetic field. The shock is treated as a moving source of energetic particles with an assumed particle distribution function. We computed the time profiles of particle flux and anisotropy as measured by an observer at 1 AU, equatorial plane, and various longitudes with respect to the shock propagation direction. With perpendicular diffusion, energetic particles can cross magnetic field lines. Particles may be detected before the observer's field line is connected to the shock. After the observer's field line breaks from the shock front, the observer still can see more particles are injected into its field line. Our simulations show that the particle onset time, peak time, peak intensity, decay rate, and duration of SEP event could be significantly influenced by the effect of perpendicular diffusion. The anisotropy with perpendicular diffusion is almost the same as that without perpendicular diffusion, but there is an obvious difference at the moment when the observer's field line begins to be connected to the shock.

Wang, Y.; Qin, G. [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, M., E-mail: ywang@spaceweather.ac.cn, E-mail: gqin@spaceweather.ac.cn, E-mail: mzhang@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States)

2012-06-10T23:59:59.000Z

86

Electric fields in solar magnetic structures due to gradient driven instabilities: heating and acceleration of particles  

E-Print Network (OSTI)

The electrostatic instabilities driven by the gradients of the density, temperature and magnetic field, are discussed in their application to solar magnetic structures. Strongly growing modes are found for some typical plasma parameters. These instabilities i) imply the presence of electric fields that can accelerate the plasma particles in both perpendicular and parallel directions with respect to the magnetic field vector, and ii) can stochastically heat ions. The perpendicular acceleration is to the leading order determined by the $\\bmath{E}\\times \\bmath{B}$-drift acting equally on both ions and electrons, while the parallel acceleration is most effective on electrons. The experimentally confirmed stochastic heating is shown to act mainly in the direction perpendicular to the magnetic field vector and acts stronger on heavier ions. The energy release rate and heating may exceed for several orders of magnitude the value accepted as necessary for a self-sustained heating in the solar corona. The energy sourc...

Vranjes, J

2009-01-01T23:59:59.000Z

87

Status of materials handbooks for particle accelerator and nuclear reactor applications  

SciTech Connect

In support of research and development for accelerator applications, a materials handbook was developed in August of 1998 funded by the Accelerator Production of Tritium Project. This handbook, presently called Advanced Fuel Cycle Initiative (AFCI) Materials Handbook, Materials Data for Particle Accelerator Applications, has just issued Revision 5 and contains detailed information showing the effects of irradiation on many properties for a wide variety of materials. Development of a web-accessible materials database for Generation IV Reactor Programs has been ongoing for about three years. This handbook provides a single authoritative source for qualified materials data applicable to all Generation IV reactor concepts. A beta version of this Gen IV Materials Handbook has been completed and is presently under evaluation.

Maloy, Stuart [Los Alamos National Laboratory (LANL); Rogers, Berylene [Los Alamos National Laboratory (LANL); Ren, Weiju [ORNL; Philip, Rittenhouse [Consultant

2008-01-01T23:59:59.000Z

88

Particle-in-cell simulations of plasma accelerators and electron-neutral collisions  

Science Conference Proceedings (OSTI)

We present 2-D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approx}10{sup 16} W/cm{sup 2}) and high ({approx}10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications of XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

Bruhwiler, David L.; Giacone, Rodolfo E.; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, W.P.; Shadwick, B.A.

2001-10-01T23:59:59.000Z

89

PARTICLE ACCELERATION AT A FLARE TERMINATION SHOCK: EFFECT OF LARGE-SCALE MAGNETIC TURBULENCE  

Science Conference Proceedings (OSTI)

We investigate the acceleration of charged particles (both electrons and protons) at collisionless shocks predicted to exist in the vicinity of solar flares. The existence of standing termination shocks has been examined by flare models and numerical simulations. We study electron energization by numerically integrating the equations of motion of a large number of test-particle electrons in the time-dependent two-dimensional electric and magnetic fields generated from hybrid simulations (kinetic ions and fluid electron) using parameters typical of the solar flare plasma environment. The shock is produced by injecting plasma flow toward a rigid piston. Large-scale magnetic fluctuations-known to exist in plasmas and known to have important effects on the nonthermal electron acceleration at shocks-are also included in our simulations. For the parameters characteristic of the flaring region, our calculations suggest that the termination shock formed in the reconnection outflow region (above post-flare loops) could accelerate electrons to a kinetic energy of a few MeV within 100 ion cyclotron periods, which is of the order of a millisecond. Given a sufficient turbulence amplitude level ({delta}B{sup 2}/B 2{sub 0} {approx} 0.3), about 10% of thermal test-particle electrons are accelerated to more than 15 keV. We find that protons are also accelerated, but not to as high energy in the available time and the energy spectra are considerably steeper than that of the electrons for the parameters used in our simulations. Our results are qualitatively consistent with the observed hard X-ray emissions in solar flares.

Guo Fan; Giacalone, Joe, E-mail: guofan@lpl.arizona.edu [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States)

2012-07-01T23:59:59.000Z

90

EVIDENCE FOR PARTICLE ACCELERATION TO THE KNEE OF THE COSMIC RAY SPECTRUM IN TYCHO'S SUPERNOVA REMNANT  

Science Conference Proceedings (OSTI)

Supernova remnants (SNRs) have long been assumed to be the source of cosmic rays (CRs) up to the 'knee' of the CR spectrum at 10{sup 15} eV, accelerating particles to relativistic energies in their blast waves by the process of diffusive shock acceleration (DSA). Since CR nuclei do not radiate efficiently, their presence must be inferred indirectly. Previous theoretical calculations and X-ray observations show that CR acceleration significantly modifies the structure of the SNR and greatly amplifies the interstellar magnetic field. We present new, deep X-ray observations of the remnant of Tycho's supernova (SN 1572, henceforth Tycho), which reveal a previously unknown, strikingly ordered pattern of non-thermal high-emissivity stripes in the projected interior of the remnant, with spacing that corresponds to the gyroradii of 10{sup 14}-10{sup 15} eV protons. Spectroscopy of the stripes shows the plasma to be highly turbulent on the (smaller) scale of the Larmor radii of TeV energy electrons. Models of the shock amplification of magnetic fields produce structure on the scale of the gyroradius of the highest energy CRs present, but they do not predict the highly ordered pattern we observe. We interpret the stripes as evidence for acceleration of particles to near the knee of the CR spectrum in regions of enhanced magnetic turbulence, while the observed highly ordered pattern of these features provides a new challenge to models of DSA.

Eriksen, Kristoffer A.; Hughes, John P. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Badenes, Carles [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Fesen, Robert [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Ghavamian, Parviz [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Moffett, David [Department of Physics, Furman University, Greenville, SC 29613 (United States); Plucinksy, Paul P.; Slane, Patrick [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Rakowski, Cara E. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Reynoso, Estela M. [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

2011-02-20T23:59:59.000Z

91

Novel Methods in the Particle-In-Cell Accelerator Code-Framework Warp  

SciTech Connect

The Particle-In-Cell (PIC) Code-Framework Warp is being developed by the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) to guide the development of accelerators that can deliver beams suitable for high energy density experiments and implosion of inertial fusion capsules. It is also applied in various areas outside the Heavy Ion Fusion program to the study and design of existing and next-generation high-energy accelerators, including the study of electron cloud effects and laser wakefield acceleration for example. This paper presents an overview of Warp’s capabilities, summarizing recent original numerical methods that were developed by the HIFS-VNL (including Particle-In-Cell with Adaptive Mesh Refinement, a large-timestep “drift-Lorentz” mover for arbitrarily magnetized species, a relativistic Lorentz invariant leapfrog particle pusher, simulations in Lorentz boosted frames, an electromagnetic solver with tunable numerical dispersion and efficient stride20 based digital filtering), with great emphasis on the description of the mesh refinement capability. Selected examples of applications of the methods to the abovementioned fields are given.

Vay, J. -L.; Grote, D. P.; Cohen, R. H.; Friedman, A.; Grote, D. P.; Cohen, R. H.; Friedman, A.

2011-09-01T23:59:59.000Z

92

acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

middle name. The head of Fermilab's Accelerator Division explains a basic idea of high-energy physics in everyday language. Painless Physics Articles BEAM COOLING August 2, 1996...

93

Settlement in an Amereican landscape : a place of work amidst a particle accelerator's transformation of the Texas prarie  

E-Print Network (OSTI)

This thesis considers the design of the research facility accompanying the Superconducting Super Collider, a large particle accelerator planned for central Texas. It will focus on this Pl'Qject as a form of human settlement ...

Falliers, Christopher B. (Christopher Basil)

1991-01-01T23:59:59.000Z

94

THE INFLUENCE OF THE MASS RATIO ON THE ACCELERATION OF PARTICLES BY FILAMENTATION INSTABILITIES  

SciTech Connect

Almost all sources of high-energy particles and photons are associated with jet phenomena. Prominent sources of such highly relativistic outflows are pulsar winds, active galactic nuclei (AGNs), and gamma-ray bursts. The current understanding of these jets assumes diluted plasmas which are best described as kinetic phenomena. In this kinetic description, particle acceleration to ultrarelativistic speeds can occur in completely unmagnetized and neutral plasmas through insetting effects of instabilities. Even though the morphology and nature of particle spectra are understood to a certain extent, the composition of the jets is not known yet. While Poynting-flux-dominated jets (e.g., occurring in pulsar winds) are certainly composed of electron-positron plasmas, the understanding of the governing physics in AGN jets is mostly unclear. In this paper, we investigate how the constituting elements of an electron-positron-proton plasma behave differently under the variation of the fundamental mass ratio m{sub p} /m{sub e}. We initially studied unmagnetized counterstreaming plasmas using fully relativistic three-dimensional particle-in-cell simulations to investigate the influence of the mass ratio on particle acceleration and magnetic field generation in electron-positron-proton plasmas. We covered a range of mass ratios m{sub p}/m{sub e} between 1 and 100 with a particle number composition of n{sub p}{sup +}/ n{sub e}{sup +} of 1 in one stream, therefore called the pair-proton stream. Protons are injected in the other one, therefore from now on called the proton stream, whereas electrons are present in both to guarantee charge neutrality in the simulation box. We find that with increasing proton mass the instability takes longer to develop and for mass ratios >20 the particles seem to be accelerated in two phases which can be accounted for by the individual instabilities of the different species. This means that for high mass ratios the coupling between electrons/positrons and the heavier protons, which occurs in low mass ratios, disappears.

Burkart, Thomas; Elbracht, Oliver; Ganse, Urs; Spanier, Felix, E-mail: fspanier@astro.uni-wuerzburg.d [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)

2010-09-10T23:59:59.000Z

95

Production and supply of radioisotopes with high-energy particle accelerators current status and future directions  

Science Conference Proceedings (OSTI)

Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose.

Srivastava, S.C.; Mausner, L.F.

1994-03-01T23:59:59.000Z

96

Improving the design and analysis of superconducting magnets for particle accelerators  

Science Conference Proceedings (OSTI)

High energy particle accelerators are now the primary means of discovering the basic building blocks of matter and understanding the forces between them. In order to minimize the cost of building these machines, superconducting magnets are used in essentially all present day high energy proton and heavy ion colliders. The cost of superconducting magnets is typically in the range of 20--30% of the total cost of building such machines. The circulating particle beam goes through these magnets a large number of times (over hundreds of millions). The luminosity performance and life time of the beam in these machines depends significantly on the field quality in these magnets. Therefore, even a small error in the magnetic field shape may create a large cumulative effect in the beam trajectory to throw the particles of the magnet aperture. The superconducting accelerator magnets must, therefore, be designed and constructed so that these errors are small. In this thesis the research and development work will be described 3which has resulted in significant improvements in the field quality of the superconducting magnets for the Relativistic Heavy Ion Collider (RHIC). The design and the field quality improvements in the prototype of the main collider dipole magnet for the Superconducting Super Collider (SSC) will also be presented. RHIC will accelerate and collide two counter rotating beams of heavy ions up to 100 GeV/u and protons up to 250 GeV. It is expected that RHIC will create a hot, dense quark-gluon plasma and the conditions which, according to the Big Bang theory, existed in the early universe.

Gupta, R.C. [Univ. of Rajasthan, Jaipur (India). Dept. of Physics]|[Brookhaven National Lab., Upton, NY (United States). Magnet Div.

1996-11-01T23:59:59.000Z

97

Second order particle motion equations and linear chromaticity calculation in accelerator rings  

SciTech Connect

The first part of this note presents a thorough study on the second order particle motion equations, both in continuous field and in hard edges, with emphasis put on the latter. Having quite general conditions and strict mathematical treatments, it provides a sound ground from which many problems can be solved without fear of being misled. Then the linear CHR calculation is inspected, the first step being a general analytical expression of the transverse oscillation phase increment due to a small disturbance. The expression for the CHR is then readily obtained since tune is the transverse oscillation number per turn and the CHR is the linear dependence of the tune on particle energy/momentum deviation. The last part gives the formulae for practical CHR calculation, which are general enough to include almost all the magnet types commonly used in various accelerator rings and are simpler than can be found elsewhere.

Liu, R.Z.

1984-01-01T23:59:59.000Z

98

Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

1. ACCELERATOR PHYSICS OF COLLIDERS Revised July 2011 by D. A. Edwards (DESY) and M. J. Syphers (MSU) 1.1. Luminosity This article provides background for the High-Energy Collider...

99

A FLUX ROPE NETWORK AND PARTICLE ACCELERATION IN THREE-DIMENSIONAL RELATIVISTIC MAGNETIC RECONNECTION  

SciTech Connect

We investigate magnetic reconnection and particle acceleration in relativistic pair plasmas with three-dimensional particle-in-cell simulations of a kinetic-scale current sheet in a periodic geometry. We include a guide field that introduces an inclination between the reconnecting field lines and explore outside-of-the-current sheet magnetizations that are significantly below those considered by other authors carrying out similar calculations. Thus, our simulations probe the transitional regime in which the magnetic and plasma pressures are of the same order of magnitude. The tearing instability is the dominant mode in the current sheet for all guide field strengths, while the linear kink mode is less important even without the guide field, except in the lower magnetization case. Oblique modes seem to be suppressed entirely. In its nonlinear evolution, the reconnection layer develops a network of interconnected and interacting magnetic flux ropes. As smaller flux ropes merge into larger ones, the reconnection layer evolves toward a three-dimensional, disordered state in which the resulting flux rope segments contain magnetic substructure on plasma skin depth scales. Embedded in the flux ropes, we detect spatially and temporally intermittent sites of dissipation reflected in peaks in the parallel electric field. Magnetic dissipation and particle acceleration persist until the end of the simulations, with simulations with higher magnetization and lower guide field strength exhibiting greater and faster energy conversion and particle energization. At the end of our largest simulation, the particle energy spectrum attains a tail extending to high Lorentz factors that is best modeled with a combination of two additional thermal components. We confirm that the primary energization mechanism is acceleration by the electric field in the X-line region. The highest-energy positrons (electrons) are moderately beamed with median angles {approx}30 Degree-Sign -40 Degree-Sign relative to (the opposite of) the direction of the initial current density, but we speculate that reconnection in more highly magnetized plasmas would give rise to stronger beaming. Finally, we discuss the implications of our results for macroscopic reconnection sites, and which of our results may be expected to hold in systems with higher magnetizations.

Kagan, Daniel; Milosavljevic, Milos [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Spitkovsky, Anatoly [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

2013-09-01T23:59:59.000Z

100

Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration  

Science Conference Proceedings (OSTI)

The review is devoted to plasma structures with an extremely small transverse size, namely, thin current sheets that have been discovered and investigated by spacecraft observations in the Earth's magnetotail in the last few decades. The formation of current sheets is attributed to complicated dynamic processes occurring in a collisionless space plasma during geomagnetic perturbations and near the magnetic reconnection regions. The models that describe thin current structures in the Earth's magnetotail are reviewed. They are based on the assumption of the quasi-adiabatic ion dynamics in a relatively weak magnetic field of the magnetotail neutral sheet, where the ions can become unmagnetized. It is shown that the ion distribution can be represented as a function of the integrals of particle motion-the total energy and quasi-adiabatic invariant. Various modifications of the initial equilibrium are considered that are obtained with allowance for the currents of magnetized electrons, the contribution of oxygen ions, the asymmetry of plasma sources, and the effects related to the non-Maxwellian particle distributions. The theoretical results are compared with the observational data from the Cluster spacecraft mission. Various plasma instabilities developing in thin current sheets are investigated. The evolution of the tearing mode is analyzed, and the parameter range in which the mode can grow are determined. The paradox of complete stabilization of the tearing mode in current sheets with a nonzero normal magnetic field component is thereby resolved based on the quasi-adiabatic model. It is shown that, over a wide range of current sheet parameters and the propagation directions of large-scale unstable waves, various modified drift instabilities-kink and sausage modes-can develop in the system. Based on the concept of a turbulent electromagnetic field excited as a result of the development and saturation of unstable waves, a mechanism for charged particle acceleration in turbulent current sheets is proposed and the energy spectra of the accelerated particles are obtained.

Zelenyi, L. M.; Malova, H. V.; Artemyev, A. V.; Popov, V. Yu.; Petrukovich, A. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

2011-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Laser Particle Accelerator Development at LANL: From Fast Ignition to Radiation Oncology  

Science Conference Proceedings (OSTI)

Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, Special Nuclear Material (SNM) detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high-current and high-energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology. Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent efficiencies of >5% from flat foils, on Trident using only a 5th of the intensity and energy of the Nova Petawatt laser. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world [3]. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

Flippo, K. A.; Offermann, D. T.; Cobble, J. A.; Schmitt, M. J.; Gautier, D. C.; Kwan, T. J.; Montgomery, D. S. [Los Alamos National Laboratory, PO BOX 1663, Los Alamos, NM 87545 (United States); Gaillard, S. A.; Kluge, T.; Bussmann, M.; Cowan, T. E. [ForschungsZentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Bartal, T.; Beg, F. N. [University of California, San Diego, Mechanical and Aerospace Engineering Dept., La Jolla, CA 92038 (United States); Gall, B.; Kovaleski, S. [University of Missouri, Electrical and Computer Engineering, Columbia MO 65211 (United States); Geissel, M.; Schollmeier, M. [Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185 (United States); Korgan, G.; Malekos, S. [Nanolabz, 661 Sierra Rose Dr., Reno, NV 89511 (United States); Lockard, T. [University of Nevada, Physics, Reno, NV 89557 (United States)

2010-11-04T23:59:59.000Z

102

The relevance of particle flux monitors in accelerator-based activation analysis  

SciTech Connect

One of the most critical parameters in activation analysis is the flux density of the activating radiation, its spatial distribution in particular. The validity of the basic equation for calculating the activity induced to the exposed item depends upon the fulfilment of several conditions, the most relevant of them being equal doses of incident activating radiation received by the unknown sample, the calibration material and the reference material, respectively. This requirement is most problematic if accelerator-produced radiation is used for activation. Whilst nuclear research reactors usually are equipped with exposure positions that provide fairly homogenous activation fields for thermal neutron activation analysis accelerator-generated particle beams (neutrons, photons, charged particles) usually exhibit axial and, in particular, sharp radial flux gradients. Different experimental procedures have been developed to fulfil the condition mentioned above. In this paper, three variants of the application of flux monitors in photon activation analysis are discussed (external monitor, additive and inherent internal monitor). Experiments have indicated that the latter technique yields highest quality of the analytical results.

Segebade, Chr.; Maimaitimin, M.; Sun Zaijing [Idaho Accelerator Centre, Idaho State University, 1500 Alvin Ricken Drive, Pocatello, ID 83201 (United States)

2013-04-19T23:59:59.000Z

103

Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications  

Science Conference Proceedings (OSTI)

A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more effcient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modifed finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed employing the three basic shapes discussed previously. Bench measurements are performed on the prototype cavities to evaluate dispersion by measuring the field distribution along these cavities. The measurement results are compared to the simulations and theoretical results, and good agreement is shown. Once validated, the developed models are used to design twisted accelerating structures with specific phase velocities and good accelerating performance.

Wilson, Joshua L [ORNL

2008-09-01T23:59:59.000Z

104

Accelerator Need  

NLE Websites -- All DOE Office Websites (Extended Search)

Need for Large Accelerators An Article Written Originally for Midlevel Teachers Back In order to study small particles, a high energy beam of particles must be generated. The...

105

SLAC National Accelerator Laboratory - Accelerators and Society  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and Society PHOTO: An accelerator at SLAC. SLAC has been developing, running and studying the basic physics of particle accelerators for half a century. Thousands of...

106

Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration Acceleration of porous media simulations on the Cray XE6 platform Kirsten M. Fagnan, Michael Lijewski, George Pau, Nicholas J. Wright Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 May 18, 2011 1 Introduction In this paper we investigate the performance of the Porous Media with Adaptive Mesh Refinment (PMAMR) code which was developed in the Center for Computational Science and Engineering at Lawrence Berkeley National Laboratory. This code is being used to model carbon sequestration and contaminant transport as part of the Advanced Simulation Capability for Environmental Management (ASCEM) project. The goal of the ASCEM project is to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in

107

Shock creation and particle acceleration driven by plasma expansion into a rarefied medium  

Science Conference Proceedings (OSTI)

The expansion of a dense plasma through a more rarefied ionized medium is a phenomenon of interest in various physics environments ranging from astrophysics to high energy density laser-matter laboratory experiments. Here this situation is modeled via a one-dimensional particle-in-cell simulation; a jump in the plasma density of a factor of 100 is introduced in the middle of an otherwise equally dense electron-proton plasma with an uniform proton and electron temperature of 10 eV and 1 keV, respectively. The diffusion of the dense plasma, through the rarefied one, triggers the onset of different nonlinear phenomena such as a strong ion-acoustic shock wave and a rarefaction wave. Secondary structures are detected, some of which are driven by a drift instability of the rarefaction wave. Efficient proton acceleration occurs ahead of the shock, bringing the maximum proton velocity up to 60 times the initial ion thermal speed.

Sarri, G.; Kourakis, I.; Borghesi, M. [Centre for Plasma Physics, The Queen's University of Belfast, Belfast BT7 1NN (United Kingdom); Dieckmann, M. E. [VITA ITN, Linkoping University, 60174 Norrkoping (Sweden)

2010-08-15T23:59:59.000Z

108

Production of {sup 64}Cu and other radionuclides using a charged-particle accelerator  

SciTech Connect

Radionuclides are produced according to the present invention at commercially significant yields and at specific activities which are suitable for use in radiodiagnostic agents such as PET imaging agents and radiotherapeutic agents and/or compositions. In the method and system of the present invention, a solid target having an isotopically enriched target layer electroplated on an inert substrate is positioned in a specially designed target holder and irradiated with a charged-particle beam. The beam is preferably generated using an accelerator such as a biomedical cyclotron at energies ranging from about 5 MeV to about 25 MeV. The target is preferably directly irradiated, without an intervening attenuating foil, and with the charged particle beam impinging an area which substantially matches the target area. The irradiated target is remotely and automatically transferred from the target holder, preferably without transferring any target holder subassemblies, to a conveyance system which is preferably a pneumatic or hydraulic conveyance system, and then further transferred to an automated separation system. The system is effective for processing a single target or a plurality of targets. After separation, the unreacted target material can be recycled for preparation of other targets. In a preferred application of the invention, a biomedical cyclotron has been used to produce over 500 mCi of {sup 64}Cu having a specific activity of over 300 mCi/{mu}g Cu according to the reaction {sup 64}Ni(p,n){sup 64}Cu. These results indicate that accelerator-produced {sup 64}Cu is suitable for radiopharmaceutical diagnostic and therapeutic applications.

Welch, M.J.; McCarthy, D.W.; Shefer, R.E.; Klinkowstein, R.E.

2000-01-04T23:59:59.000Z

109

Asian Section  

Science Conference Proceedings (OSTI)

Taiwan, Japan, and Korea geographical regions. Asian Section Sections achievement application award awards canadian distinguished division fats member membership memorial network nomination oils poster program recognizing research section service

110

DEVELOPMENTS IN ACCELERATORS AND INSTRUMENTATION RELEVANT TO IMAGING WITH CHARGED PARTICLES AND POSITRON EMITTERS  

E-Print Network (OSTI)

IN ACCELERATORS AND INSTRUMENTATION RELEVANT TO IMAGING WITHin Accelerators and Instrumentation Relevant to Imaging withto develop necessary instrumentation and techniques for the

Alonso, J.R.

2010-01-01T23:59:59.000Z

111

GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method  

Science Conference Proceedings (OSTI)

Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S{sub n}) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

Gong Chunye, E-mail: gongchunye@gmail.com [School of Computer Science, National University of Defense Technology, Changsha 410073 (China); Liu Jie, E-mail: liujie@nudt.edu.cn [School of Computer Science, National University of Defense Technology, Changsha 410073 (China); Chi Lihua [School of Computer Science, National University of Defense Technology, Changsha 410073 (China); Huang Haowei [Institut fuer Informatik, Technische Universitaet Muenchen, D-85748 Garching, Munich (Germany); Fang Jingyue [School of Physics and Mathematics, National University of Defense Technology, Changsha 410073 (China); Gong Zhenghu [School of Computer Science, National University of Defense Technology, Changsha 410073 (China)

2011-07-01T23:59:59.000Z

112

New results on particle acceleration in the Centaurus A jet and counterjet from a deep Chandra observation  

E-Print Network (OSTI)

We present new deep Chandra observations of the Centaurus A jet, with a combined on-source exposure time of 719 ks. These data allow detailed X-ray spectral measurements to be made along the jet out to its disappearance at 4.5 kpc from the nucleus. We distinguish several regimes of high-energy particle acceleration: while the inner part of the jet is dominated by knots and has properties consistent with local particle acceleration at shocks, the particle acceleration in the outer 3.4 kpc of the jet is likely to be dominated by an unknown distributed acceleration mechanism. In addition to several compact counterjet features we detect probable extended emission from a counterjet out to 2.0 kpc from the nucleus, and argue that this implies that the diffuse acceleration process operates in the counterjet as well. A preliminary search for X-ray variability finds no jet knots with dramatic flux density variations, unlike the situation seen in M87.

M. J. Hardcastle; R. P. Kraft; G. R. Sivakoff; J. L. Goodger; J. H. Croston; A. Jordan; D. A. Evans; D. M. Worrall; M. Birkinshaw; S. Raychaudhury; N. J. Brassington; W. R. Forman; W. E. Harris; C. Jones; A. M. Juett; S. S. Murray; P. E. J. Nulsen; C. L. Sarazin; K. A. Woodley

2007-10-05T23:59:59.000Z

113

Construction of symplectic maps for nonlinear motion of particles in accelerators  

Science Conference Proceedings (OSTI)

We explore an algorithm for the construction of symplectic maps to describe nonlinear particle motion in circular accelerators. We emphasize maps for motion over one or a few full turns, which may provide an economical way of studying long-term stability in large machines such as the Superconducting Super Collider (SSC). The map is defined implicitly by a mixed-variable generating function, represented as a Fourier series in betatron angle variables, with coefficients given as [ital B]-spline functions of action variables and the total energy. Despite the implicit definition, iteration of the map proves to be a fast process. The method is illustrated with a realistic model of the SSC. We report extensive tests of accuracy and iteration time in various regions of phase space, and demonstrate the results by using single-turn maps to follow trajectories symplectically for 10[sup 7] turns on a workstation computer. The same method may be used to construct the Poincare map of Hamiltonian systems in other fields of physics.

Berg, J.S.; Warnock, R.L.; Ruth, R.D. (Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States)); Forest, E. (Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States))

1994-01-01T23:59:59.000Z

114

Recent results and future challenges for large scale Particle-In-Cell simulations of plasma-based accelerator concepts  

Science Conference Proceedings (OSTI)

The concept and designs of plasma-based advanced accelerators for high energy physics and photon science are modeled in the SciDAC COMPASS project with a suite of Particle-In-Cell codes and simulation techniques including the full electromagnetic model, the envelope model, the boosted frame approach and the quasi-static model. In this paper, we report the progress of the development of these models and techniques and present recent results achieved with large-scale parallel PIC simulations. The simulation needs for modeling the plasma-based advanced accelerator at the energy frontier is discussed and a path towards this goal is outlined.

Huang, C.; An, W.; Decyk, V.K.; Lu, W.; Mori, W.B.; Tsung, F.S.; Tzoufras, M.; Morshed, S.; Antomsen, T.; Feng, B.; Katsouleas, T; Fonseca, R.A.; Martins, S.F.; Vieira, J.; Silva, L.O.; Geddes, C.G.R.; Cormier-Michel, E; Vay, J.-L.; Esarey, E.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Cary, J.R.; Paul, K.

2009-05-01T23:59:59.000Z

115

Three dimensional particle-in-cell simulation of particle acceleration by circularly polarised inertial Alfven waves in a transversely inhomogeneous plasma  

SciTech Connect

The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency 0.3{omega}{sub ci} are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the 'knee' often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.

Tsiklauri, D. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

2012-08-15T23:59:59.000Z

116

Comment on Particle acceleration by stimulated emission of radiation near a solid-state active medium  

Science Conference Proceedings (OSTI)

In a recent Letter, V. Berezovsky, H. Alam, and L. Schaechter have reported 'acceleration of electrons moving in free space near an active Nd:YAG slab'. The reported mechanism is particle acceleration by stimulated emission of radiation (PASER). The energy of electrons was not measured directly, but instead inferred from measurements of the electron beam current, after it 'interacted' with the Nd:YAG slab. In this Comment I suggest that the authors proposition that the increase in beam current being due to the increase in beam energy is incorrect. Let us examine the simplified model of the experiment. The cathode emits about 5 mA of a dc electron beam. The beam is collimated by several apertures to about 100 nA before it reaches the collector, where the absorbed beam current is measured. Between the cathode and the collector this beam is 'continuously illuminated' by photons from the actively pumped optical medium. After the electrons 'absorb' the photons the beam current increases by 30%, to about 130 nA. Firstly, if it were true and if there were no beam collimation, this would have been the violation of charge conservation. Ignoring that fact, the authors suggest that: 'Since the charge density is not expected to vary, the change in the current is due to the increase in the velocity of the electrons.' This statement in itself is incorrect, as it violates the continuity of electron flux: when the beam velocity increases, its density decreases such that the beam current remains constant and the charge is conserved. Indeed, in a dc case (as described in the Letter) the continuity equation reads: d(nv)/dz = 0, where v is the beam velocity, n is the linear charge density and z is the coordinate along the beam axis. Since the dc beam current, I = nv and nv = const from Eq. (1), the dc beam current is not expected to vary with the change in velocity. Since the beam current in the experiment did change, it is obvious that the portion of the beam current, removed by the apertures, cannot be ignored in the analysis as it is the most likely source of the beam current increase. Moreover, there is no evidence whatsoever of the proposed PASER effect in this Letter.

Nagaitsev, Sergei; /Fermilab

2011-05-01T23:59:59.000Z

117

Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road,  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostics with an X-ray Laser? Lessons from the First Diagnostics with an X-ray Laser? Lessons from the First Nanoscale Imaging of Airborne Particles Mike Bogan Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA What does airborne particulate matter look like? How do we develop quantitative descriptors for particles of complex morphology? These challenges were highlighted in the NIST workshop report "Aerosol Metrology Needs for Climate Science" (Dec, 2011). Sure, we can capture aerosol particles on surfaces - removing them from their airborne state - and probe them with high resolution optical and chemical imaging tools, but what information do we lose about the airborne particles? How can we follow dynamics? In this talk we will explore these very basic questions and their importance to combustion

118

Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration in Plasma Channels  

E-Print Network (OSTI)

pulsed, THz radiation from laser accelerated relativisticGuiding of Relativistic Laser Pulses by Plasma Channels,"Wake Fields by Colliding Laser Pulses,"Phys. Rev. Lett.

2005-01-01T23:59:59.000Z

119

Borland Awarded ACFA-IPAC'13 Prize for Accelerator Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne physicist Michael Borland has been awarded the Asian Committee for Future Accelerators ACFA-IPAC'13 Prize for recent, significant contribution to the field of accelerator...

120

Dense Plasma Focus Z-pinches for High Gradient Particle Acceleration  

SciTech Connect

The final Z-pinch stage of a Dense Plasma Focus (DPF) could be used as a simple, compact, and potentially rugged plasma-based high-gradient accelerator with fields at the 100 MV/m level. In this paper we review previously published experimental beam data that indicate the feasibility of such an DPF-based accelerator, qualitatively discuss the physical acceleration processes in terms of the induced voltages, and as a starting point examine the DPF acceleration potential by numerically applying a self-consistent DPF system model that includes the induced voltage from both macroscopic and instability driven plasma dynamics. Applications to the remote detection of high explosives and a multi-staged acceleration concept are briefly discussed.

Tang, V; Adams, M L; Rusnak, B

2009-07-24T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Modeling laser wakefield accelerator experiments with ultrafast particle-in-cell simulations in boosted frames  

Science Conference Proceedings (OSTI)

The development of new laser systems at the 10 Petawatt range will push laser wakefield accelerators to novel regimes, for which theoretical scalings predict the possibility to accelerate electron bunches up to tens of GeVs in meter-scale plasmas. Numerical simulations will play a crucial role in testing, probing, and optimizing the physical parameters and the setup of future experiments. Fully kinetic simulations are computationally very demanding, pushing the limits of today's supercomputers. In this paper, the recent developments in the OSIRIS framework [R. A. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342 (2002)] are described, in particular the boosted frame scheme, which leads to a dramatic change in the computational resources required to model laser wakefield accelerators. Results from one-to-one modeling of the next generation of laser systems are discussed, including the confirmation of electron bunch acceleration to the energy frontier.

Martins, S. F.; Fonseca, R. A.; Vieira, J.; Silva, L. O. [GoLP/Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, Lisbon (Portugal); Lu, W.; Mori, W. B. [University of California Los Angeles, Los Angeles, California 90095 (United States)

2010-05-15T23:59:59.000Z

122

Performances Analysis of Main Components Used in 60 MW Pulsed Supply for Particle Accelerator  

E-Print Network (OSTI)

The Proton-Synchrotron (PS) accelerator at CERN will be supplied by a new power system. The pulsed operation of the PS accelerator requires a specific design of the main components of the power system. This paper presents some key elements of the design of DC/DC power converters in terms of aging of power semiconductors, the strategy of harmonics voltage suppression and the design of the output filters. Finally, the performance of this new power system is presented.

Peron, R; Pouliquen, JL; Gollentz, B; Bordry, F; Burnet, JP

2010-01-01T23:59:59.000Z

123

THREE-DIMENSIONAL SIMULATIONS OF THE THERMAL X-RAY EMISSION FROM YOUNG SUPERNOVA REMNANTS INCLUDING EFFICIENT PARTICLE ACCELERATION  

Science Conference Proceedings (OSTI)

Supernova remnants (SNRs) are believed to be the major contributors to Galactic cosmic rays. The detection of non-thermal emission from SNRs demonstrates the presence of energetic particles, but direct signatures of protons and other ions remain elusive. If these particles receive a sizeable fraction of the explosion energy, the morphological and spectral evolution of the SNR must be modified. To assess this, we run three-dimensional hydrodynamic simulations of a remnant coupled with a nonlinear acceleration model. We obtain the time-dependent evolution of the shocked structure, impacted by the Rayleigh-Taylor hydrodynamic instabilities at the contact discontinuity and by the back-reaction of particles at the forward shock. We then compute the progressive temperature equilibration and non-equilibrium ionization state of the plasma, and its thermal emission in each cell. This allows us to produce the first realistic synthetic maps of the projected X-ray emission from the SNR. Plasma conditions (temperature and ionization age) can vary widely over the projected surface of the SNR, especially between the ejecta and the ambient medium owing to their different composition. This demonstrates the need for spatially resolved spectroscopy. We find that the integrated emission is reduced with particle back-reaction, with the effect being more significant for the highest photon energies. Therefore, different energy bands, corresponding to different emitting elements, probe different levels of the impact of particle acceleration. Our work provides a framework for the interpretation of SNR observations with current X-ray missions (Chandra, XMM-Newton, and Suzaku) and with upcoming X-ray missions (such as Astro-H).

Ferrand, Gilles; Safi-Harb, Samar [Department of Physics and Astronomy, University of Manitoba, Winnipeg MB R3T 2N2 (Canada); Decourchelle, Anne, E-mail: gferrand@physics.umanitoba.ca, E-mail: samar@physics.umanitoba.ca, E-mail: anne.decourchelle@cea.fr [Laboratoire AIM (CEA/Irfu, CNRS/INSU, Universite Paris VII), CEA Saclay, bat. 709, F-91191 Gif sur Yvette (France)

2012-11-20T23:59:59.000Z

124

Physics Out Loud - Particle Resonance  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Accelerator Previous Video (Particle Accelerator) Physics Out Loud Main Index Next Video (Photomultiplier Tube) Photomultiplier Tube Particle Resonance How is a particle...

125

Transmutation of high-level radioactive waste by a charged particle accelerator  

SciTech Connect

Transmutation of minor actinides and fission products using proton accelerators has many advantages over a transmutor operated in a critical condition. The energy required for this transmutation can be reduced by multiplying the spallation neutrons in a subcritical assembly surrounding the spallation target. The authors have studied the relation between the energy requirements and the multiplication factor, k, of the subcritical assembly, while varying the range of several parameters in the spallation target. A slightly subcritical reactor is superior to a reactor with large subcriticality in the context of the energy requirement of a small proton accelerator, the extent of radiation damage, and other safety problems. To transmute the fission products, the transmutor reactor must have a good neutron economy, which can be provided by a transmutor operated by a proton accelerator. The paper discusses the use of minor actinides to improve neutronics characteristics, such as a long fuel burn-up rather than simply transmuting this valuable material.

Takahashi, Hiroshi

1993-12-31T23:59:59.000Z

126

GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method  

Science Conference Proceedings (OSTI)

Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, ... Keywords: CUDA, Discrete ordinates (Sn) method, GPU, Particle transport, Sweep3D

Chunye Gong; Jie Liu; Lihua Chi; Haowei Huang; Jingyue Fang; Zhenghu Gong

2011-07-01T23:59:59.000Z

127

Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters  

Science Conference Proceedings (OSTI)

Starting from the single graphics processing unit (GPU) version of the Smoothed Particle Hydrodynamics (SPH) code DualSPHysics, a multi-GPU SPH program is developed for free-surface flows. The approach is based on a spatial decomposition technique, whereby ... Keywords: CUDA, Computational fluid dynamics, GPU, Graphics processing unit, Molecular dynamics, Multi-GPU, SPH, Smoothed particle hydrodynamics

Daniel Valdez-Balderas, José M. Domínguez, Benedict D. Rogers, Alejandro J. C. Crespo

2013-11-01T23:59:59.000Z

128

Study of applied magnetic field magnetoplasmadynamic thrusters with particle-in-cell and Monte Carlo collision. II. Investigation of acceleration mechanisms  

Science Conference Proceedings (OSTI)

The particle-in-cell method previously described in paper (I) has been applied to the investigation of acceleration mechanisms in applied-field magnetoplasmadynamic thrusters. This new approach is an alternative to magnetohydrodynamics models and allows nonlocal dynamic effects of particles and improved transport properties. It was used to model a 100 kW, steady-state, applied-field, argon magnetoplasmadynamic thruster to study the physical acceleration processes with discharge currents of 1000-1500 A, mass flow rates of 0.025-0.1 g/s and applied magnetic field strengths of 0.034-0.102 T. The total thrust calculations were used to verify the theoretical approach by comparison with experimental data. Investigations of the acceleration model offer an underlying understanding of applied-field magnetoplasmadynamic thrusters, including the following conclusions: (1) swirl acceleration mechanism is the dominant contributor to the plasma acceleration, and self-magnetic, Hall, gas-dynamic, and swirl acceleration mechanisms are in an approximate ratio of 1:10:10:100; (2) the Hall acceleration produced mainly by electron swirl is insensitive to the change of externally applied magnetic field and shows only slight increases when the current is raised; (3) self-magnetic acceleration is normally negligible for all cases, while the gas-dynamic acceleration contribution increases with increasing applied magnetic field strength, discharge current, and mass flow rate.

Tang Haibin; Cheng Jiao; Liu Chang [School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); York, Thomas M. [Aeronautical and Astronautical Engineering Department, Ohio State University, Columbus, Ohio 43235 (United States)

2012-07-15T23:59:59.000Z

129

User's manual for ONEDANT: a code package for one-dimensional, diffusion-accelerated, neutral-particle transport  

Science Conference Proceedings (OSTI)

ONEDANT is designed for the CDC-7600, but the program has been implemented and run on the IBM-370/190 and CRAY-I computers. ONEDANT solves the one-dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue search) problems subject to vacuum, reflective, periodic, white, albedo, or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. ONEDANT numerically solves the one-dimensional, multigroup form of the neutral-particle, steady-state form of the Boltzmann transport equation. The discrete-ordinates approximation is used for treating the angular variation of the particle distribution and the diamond-difference scheme is used for phase space discretization. Negative fluxes are eliminated by a local set-to-zero-and-correct algorithm. A standard inner (within-group) iteration, outer (energy-group-dependent source) iteration technique is used. Both inner and outer iterations are accelerated using the diffusion synthetic acceleration method. (WHK)

O'Dell, R.D.; Brinkley, F.W. Jr.; Marr, D.R.

1982-02-01T23:59:59.000Z

130

8th ICFA Mini-Workshop on Two-Stream Instabilities in Particle Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Loretto Santa Fe, New Mexico, USA February 16 -18, 2000 ORGANIZING COMMITTEE WORKSHOP PROCEEDINGS HOW TO SUBMIT ELECTRONIC MANUSCRIPTS Page maintained by: cee Last updated: March 3, 2000 Disclaimer Workshop Chairs: Katherine Harkay, Argonne National Laboratory Robert Macek, Los Alamos National Laboratory Two-stream instabilities such as e-p in proton rings, ion-beam instabilities at electron accelerators, or electron cloud-induced effects observed at various accelerators can be serious limitations to the performance of high-intensity rings. This international workshop, organized by LANL and ANL, was aimed at bringing together the separate communities working on various aspects of two-stream instabilites for the purpose of sharing observations, experiences, and insights.

131

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - Major accelerators We invite you to explore the basic plans of the world's major accelerators so...

132

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators Accelerators solve two problems for physicists. First, since all particles behave like waves, physicists use accelerators to increase a particle's momentum, thus...

133

Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma  

E-Print Network (OSTI)

The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

C. Labaune; C. Baccou; S. Depierreux; C. Goyon; G. Loisel; V. Yahia; J. Rafelski

2013-10-08T23:59:59.000Z

134

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - How to obtain particles to accelerate Electrons: Heating a metal causes electrons to be ejected. A...

135

ION ACCELERATOR  

DOE Patents (OSTI)

An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

Bell, J.S.

1959-09-15T23:59:59.000Z

136

Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators  

Science Conference Proceedings (OSTI)

Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N. [Institute of Physics, University of Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil)

2012-09-15T23:59:59.000Z

137

LINEAR ACCELERATOR  

DOE Patents (OSTI)

Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

Christofilos, N.C.; Polk, I.J.

1959-02-17T23:59:59.000Z

138

Acceleration Modules in Linear Induction Accelerators  

E-Print Network (OSTI)

Linear Induction Accelerator (LIA) is a unique type of accelerator, which is capable to accelerate kiloAmpere charged particle current to tens of MeV energy. The present development of LIA in MHz busting mode and successful application into synchrotron broaden LIAs usage scope. Although transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. Authors examined the transition of the magnetic cores functions during LIA acceleration modules evolution, distinguished transformer type and transmission line type LIA acceleration modules, and reconsidered several related issues based on transmission line type LIA acceleration module. The clarified understanding should be helpful in the further development and design of the LIA acceleration modules.

Wang, Shaoheng

2013-01-01T23:59:59.000Z

139

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

experiment with tiny particles? - A linear or circular accelerator? All accelerators are either linear or circular, the difference being whether the particle is shot like a bullet...

140

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Argonne Accelerator Institute In 2006, Argonne Laboratory Director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. More Information for: Members * Students Industrial Collaborators - Working with Argonne Link to: Accelerators for America's Future Upcoming Events and News 4th International Particle Accelerator Conference (IPAC'13)

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Asian Defense Spending Trends  

E-Print Network (OSTI)

1, APRIL 2013 Asian Defense Spending Trends David J. BERTEAUT his brief summarizes key trends and findings of two recentin gen- eral permits better trend analysis and cross-country

BERTEAU, David; HOFBAUER, Joachim

2013-01-01T23:59:59.000Z

142

Research | SLAC National Accelerator Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and Society Astrophysics & Cosmology Biology Elementary Particle Physics Environmental Science Materials, Chemistry & Energy Sciences Scientific Computing X-ray...

143

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator A machine used to accelerate particles to high speeds, and thus high energy compared to their rest-mass energy...

144

10. China's Emergence, Real Exchange Rates, and Implications for East Asian Regional Trade and  

E-Print Network (OSTI)

10. China's Emergence, Real Exchange Rates, and Implications for East Asian Regional Trade arena is China, whose economic reforms have led it to record growth rates, dramatically accelerating export expansion and sharply improving material living standards. China's global economic emergence

Kammen, Daniel M.

145

Thailand-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Thailand-Low Emissions Asian Development (LEAD) Program Thailand-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Thailand-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Thailand South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

146

Nepal-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Nepal-Low Emissions Asian Development (LEAD) Program Nepal-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Nepal-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Nepal Southern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

147

Vietnam-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Vietnam-Low Emissions Asian Development (LEAD) Program Vietnam-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Vietnam-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Vietnam South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

148

Malaysia-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Malaysia-Low Emissions Asian Development (LEAD) Program Malaysia-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Malaysia-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Malaysia South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

149

Philippines-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Philippines-Low Emissions Asian Development (LEAD) Program Philippines-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Philippines-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Philippines South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

150

Laos-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Laos-Low Emissions Asian Development (LEAD) Program Laos-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Laos-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Laos South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

151

Bangladesh-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Bangladesh-Low Emissions Asian Development (LEAD) Program Bangladesh-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Bangladesh-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh Southern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

152

Proposed few-optical cycle laser-driven particle accelerator structure T. Plettner, P. P. Lu, and R. L. Byer  

E-Print Network (OSTI)

. The shorter pulses enable the structure to sustain higher peak electric fields and also improve the overlap an accelerator structure geometry that is natu- rally matched for usage with such few-cycle laser pulses of the pulse envelope is seriously compromised and is considerably lower than c. Typical group-velocity values

Byer, Robert L.

153

Proposal for the Award of Two Contracts for the Technical Services for Work on Components of CERN Particle Accelerators and High Energy Physics Experiments  

E-Print Network (OSTI)

This document concerns the award of two contracts for the technical services for work on components of CERN particle accelerators and high energy physics experiments. Following a market survey carried out among 73 firms in fourteen Member States, a call for tenders (IT-3156/SPL) was sent on 4 November 2002 to three consortia in four Member States. By the closing date, CERN had received tenders from the three consortia. The Finance Committee is invited to agree to the negotiation of two contracts with: 1) the consortium SERCO FACILITIES MANAGEMENT (NL) - GERARD PERRIER INDUSTRIE (FR) - INEO ALPES (FR), the lowest bidder, for approximately 55% of the technical services for work on components of CERN particle accelerators and high energy physics experiments, for an initial period of five years and for a total amount not exceeding 37 435 270 euros (54 902 500 Swiss francs), subject to revision for inflation from 1 January 2005. The contract will include options for two one-year extensions beyond the initial five-...

2003-01-01T23:59:59.000Z

154

Far field acceleration  

SciTech Connect

Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

Fernow, R.C.

1995-07-01T23:59:59.000Z

155

A Study of the Activated GaAs Surface for Application as an Electron Source in Particle Accelerators  

Science Conference Proceedings (OSTI)

The use of type III-V semiconductor materials as photocathodes has in recent years become a focus for the High Energy Physics community. Once activated to a negative electron affinity (NEA) state and illuminated by a laser, these materials can be used as a high-brightness source of both polarised and un-polarised electrons in some modern accelerators, for example, ALICE (Accelerators and Lasers in Combined Experiments) at Daresbury Laboratory. This paper will focus on the use of gallium arsenide (GaAs) as a photocathode, and detail the reconfiguration and re-commissioning of two vacuum systems that support standard surface science techniques such as ultraviolet/X-ray photoelectron spectroscopy (UPS/XPS), low energy electron diffraction (LEED) and auger electron spectroscopy (AES). The paper will present details of cleaning GaAs in order to maximise quantum efficiency and will provide evidence from XPS and LEED to demonstrate what is happening at the atomic level.

Chanlek, N. [University of Manchester, Manchester, M13 9PL (United Kingdom); STFC Daresbury Laboratory, Warrington, WA4 4AD (United Kingdom); Herbert, J. D.; Jones, L. B.; Middleman, K. J. [STFC Daresbury Laboratory, Warrington, WA4 4AD (United Kingdom); Jones, R. M. [University of Manchester, Manchester, M13 9PL (United Kingdom)

2009-08-04T23:59:59.000Z

156

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - Detector shapes Physicists are curious about the events that occur during and after a particle's...

157

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Particle Physics Directorate Nuclear and Particle Physics (NPP) at BNL comprises the Collider-Accelerator Department (including the NASA Space Radiation Laboratory,...

158

Particle Physics Booklet 2008  

E-Print Network (OSTI)

212 25. Accelerator physics of colliders ? 26. High-energythe full Review. PARTICLE PHYSICS BOOKLET TABLE OF CONTENTSrev. ) Summary Tables of Particle Physics Gauge and Higgs

et al., C. Amsler

2008-01-01T23:59:59.000Z

159

Fermilab | Plan for the Future | Fermilab accelerator complex...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Fermilab accelerator complex Fermilab's accelerator complex comprises ten particle accelerators and storage rings. It produces the world's most powerful, high-energy neutrino...

160

Asian Section List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryAsian Section2013 Members122 Members as of July 1, 2013Abideen, Syed Noor UlUniversity of Agriculture PeshawarPeshawar, PakistanAdachi, ShujiKyoto UniversityKyoto, JapanAhmed, Muhammad SaadInternational Islamic Universit

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron A type of circular accelerator in which the particles travel in synchronized bunches at fixed radius...

162

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Fermi National Accelerator Laboratory in Batavia, Illinois (near Chicago). Named for particle physics pioneer Enrico Fermi...

163

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

CERN CERN (European Laboratory for Particle Physics) is the major European international accelerator laboratory located near Geneva, Switzerland...

164

A Tunable Dielectric Wakefield Accelerating Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

a (11-13) GHz dielectric accelerating structure. INTRODUCTION The field of advanced accelerators is in search of novel revolutionary technologies to allow progress in particle...

165

SLAC National Accelerator Laboratory - Scientific Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Advanced Accelerator Research Particle accelerators are complicated machines, with hundreds of thousands of components that all need to be designed, engineered and...

166

accelerators for ATI  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Accelerator Analogs Building Accelerator Analogs Some QuarkNet centers have built "accelerators." No, they are not real but can be used as analogs to real particle accelerators. The real learning comes, of course, when you plan and experiment on your own, but this may give you some starting points. Things to Think About What are your objectives? To make an analogy for particle accelerators? To use classical physics qualitatively? To use classical physics quantitatively? To measure forces, speed, etc.? _______________ Who is your target audience— in an Associate Teacher Institute or their students or both? What do the participants need to know before beginning? Jawbreaker Accelerator Pressurized gas shoots jawbreakers through PVC pipe into a fixed target (brick) or into each other. The original speeds and masses are measured as are those of the resulting particles.

167

Bounds for Asian basket options  

Science Conference Proceedings (OSTI)

In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper ... Keywords: 60E15, 60J65, 91B28, Asian basket option, Non-comonotonic sum, Sum of non-independent random variables

Griselda Deelstra; Ibrahima Diallo; Michèle Vanmaele

2008-08-01T23:59:59.000Z

168

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

AAI Homepage Lee Teng Scholarship Program USPAS Argonne Department of Education Fermilab Education Office For Students Many scientific advances are made using accelerators. The world of High Energy Particle Physics has driven this field and continues to depend largely on accelerators. Increasingly advances in materials science, chemistry, biology and environmental science are being made at accelerators using x-ray and neutrons to probe matter. Accelerators have a number of commercial applications including isotope production for use in medicine, cancer treatment, processing semiconductor chips, and so on. Presently there are around 15,000 accelerators worldwide. Approximately 97% of these are used for commercial applications. However several hundred are in use

169

RHIC | Accelerator Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Accelerators RHIC Accelerators The Relativistic Heavy Ion Collider complex is actually composed of a long "chain" of particle accelerators Heavy ions begin their travels in the Electron Beam Ion Source accelerator (1). The ions then travel to the small, circular Booster (3) where, with each pass, they are accelerated to higher energy. From the Booster, ions travel to the Alternating Gradient Synchrotron (4), which then injects the beams via a beamline (5) into the two rings of RHIC (6). In RHIC, the beams get a final accelerator "kick up" in energy from radio waves. Once accelerated, the ions can "orbit" inside the rings for hours. RHIC can also conduct colliding-beam experiments with polarized protons. These are first accelerated in the Linac (2), and further in the Booster (3), AGS (4), and

170

SLAC National Accelerator Laboratory - Roger Blandford Receives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute for Particle Astrophysics and Cosmology, which is jointly run by Stanford and SLAC National Accelerator Laboratory, and is a professor of particle physics and...

171

Tersus Asian Renewables | Open Energy Information  

Open Energy Info (EERE)

Product Tersus Asian Renewables is focusing on investments in wind, biomass and clean coal, principally in China and India. References Tersus Asian Renewables1 LinkedIn...

172

Challenges in Accelerator Beam Instrumentation  

E-Print Network (OSTI)

The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

Wendt, M

2009-01-01T23:59:59.000Z

173

Challenges in Accelerator Beam Instrumentation  

Science Conference Proceedings (OSTI)

The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

Wendt, M.

2009-12-01T23:59:59.000Z

174

Science at SLAC National Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

matter and dark energy, and develop smaller, more efficient versions of particle accelerators widely used in research, medicine and industry. As our second half-century unfolds,...

175

Acceleration in astrophysics  

SciTech Connect

The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

Colgate, S.A.

1993-12-31T23:59:59.000Z

176

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating particles: Animation The above is an animation of the following concept: This is a test search string for google...

177

Acceleration of polarized protons in circular accelerators  

SciTech Connect

The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

Courant, E.D.; Ruth, R.D.

1980-09-12T23:59:59.000Z

178

Imaginaries of the Asian modern  

E-Print Network (OSTI)

In an age of globalization, texts increasingly migrate not only out of their native medium, but their native countries as well. Within the East Asian region, a booming television program trade circulates television texts, ...

Lé, Lan Xuân

2009-01-01T23:59:59.000Z

179

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission The mission of the Argonne Accelerator Institute is centered upon the following related goals: Locate next generation accelerator facilities in Northern Illinois Advance accelerator technology Oversee a selected, strategic, lab-wide, and acclaimed accelerator R&D portfolio In order to accomplish the above goals, the institute has established five objectives. These are coupled to programmatic objectives, and are dependent on each other, but they serve to identify important areas for the institute to focus its activities. Educate the "next generation" of accelerator physicists and engineers Work with area Universities to establish Joint Appointments and Adjunct Professorships Identify students Provide research opportunities at Argonne Work with the US Particle Accelerator School

180

U.S. Department of Energy and India Partner to Advance Accelerator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

India Partner to Advance Accelerator and Particle Detector Research and Development U.S. Department of Energy and India Partner to Advance Accelerator and Particle Detector...

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Can Accelerators Accelerate Learning?  

Science Conference Proceedings (OSTI)

The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, Caixa Postal 68528, 21941-972 (Brazil)

2009-03-10T23:59:59.000Z

182

The Particle Adventure | How do we experiment with tiny particles? |  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating particles Accelerating particles Accelerating particles It is fairly easy to obtain particles. Physicists get electrons by heating metals; they get protons by robbing hydrogen of its electron; etc. Accelerators speed up charged particles by creating large electric fields which attract or repel the particles. This field is then moved down the accelerator, "pushing" the particles along. In a linear accelerator the field is due to traveling electromagnetic (E-M) waves. When an E-M wave hits a bunch of particles, those in the back get the biggest boost, while those in the front get less of a boost. In this fashion, the particles "ride" the front of the E-M wave like a bunch of surfers. The next page shows this process in an easier to understand animation

183

NERSC and CRD Help Decipher Science from Compact Accelerator...  

NLE Websites -- All DOE Office Websites (Extended Search)

and CRD Help Decipher Science from Compact Accelerator Simulations NERSC and CRD Help Decipher Science from Compact Accelerator Simulations May 26, 2009 3D Particle Surfing :...

184

Airborne Asian Dust: Case Study of Long-Range Transport and Implications for the Detection of Volcanic Ash  

Science Conference Proceedings (OSTI)

The transport of fine-grained Asian dust from its source (e.g., the Gobi Desert, Mongolia) to North America is a common springtime phenomenon. Because of its chemical composition (silicon, iron, aluminum, and calcium) and its particle size ...

J. J. Simpson; G. L. Hufford; R. Servranckx; J. Berg; D. Pieri

2003-04-01T23:59:59.000Z

185

Energy Measurement in a Plasma Wakefield Accelerator  

SciTech Connect

In the E-167 plasma wakefield acceleration experiment, electrons with an initial energy of 42GeV are accelerated in a meter-scale lithium plasma. Particles are leaving plasma with a large energy spread. To determine the spectrum of the accelerated particles, a two-plane spectrometer has been set up.

Ischebeck, R

2007-07-06T23:59:59.000Z

186

Papua New Guinea-Low Emissions Asian Development (LEAD) Program | Open  

Open Energy Info (EERE)

Papua New Guinea-Low Emissions Asian Development (LEAD) Program Papua New Guinea-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Papua New Guinea-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Papua New Guinea Melanesia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the

187

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - Fixed target experiments In a fixed-target experiment, a charged particle such as an electron or a...

188

1 IODP Expedition 346: Asian Monsoon  

E-Print Network (OSTI)

1 IODP Expedition 346: Asian Monsoon Site U1423 Summary Background and Objectives Site U winter cooling by the East Asian winter monsoon (EAWM) wind, we expect the intensity of the IRD events

189

Acceleration Mechanisms  

E-Print Network (OSTI)

Glossary I. Background and context of the subject II. Stochastic acceleration III. Resonant scattering IV. Diffusive shock acceleration V. DSA at multiple shocks VI. Applications of DSA VII. Acceleration by parallel electric fields VIII. Other acceleration mechanisms IX. Future directions X. Appendix: Quasilinear equations XI. Bibliography

Melrose, D B

2009-01-01T23:59:59.000Z

190

Collider-Accelerator Department  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Tunnel and Magnets RHIC Tunnel and Magnets RHIC Tunnel and Magnets AGS Tunnel and Magnets NSRL Beamline RF Kicker Snake 200-MeV LINAC AGS Cold Snake Magnet About the Collider-Accelerator Department The mission of the Collider-Accelerator Department is to develop, improve and operate the suite of particle / heavy ion accelerators used to carry out the program of accelerator-based experiments at BNL; to support the experimental program including design, construction and operation of the beam transports to the experiments plus support of detector and research needs of the experiments; to design and construct new accelerator facilities in support of the BNL and national missions. The C-A Department supports an international user community of over 1500 scientists. The department performs all these functions in an environmentally responsible and safe manner under a rigorous conduct of operations approach.

191

Asian Energy Security  

Science Conference Proceedings (OSTI)

OAK-B135 In the Asian Energy Security (AES) Project, Nautilus Institute works together with a network of collaborating groups from the countries of Northeast Asia to evaluate the energy security implications of different national and regional energy ''paths''. The goal of the Asia Energy Security project is to illuminate energy paths--and the energy policy choices that might help to bring them about--that result in a higher degree of energy security for the region and for the world as a whole, that is, to identify energy paths that are ''robust'' in meeting many different energy security and development objectives, while also offering flexibility in the face of uncertainty. In work to date, Nautilus has carefully assembled a network of colleagues from the countries of the region, trained them together as a group in the use of a common, flexible, and transparent energy and environmental analysis planning software tool (LEAP, the Long-range Energy Alternatives Planning system), and worked with them to prepare base-year energy sector models for each country. To date, complete data sets and models for ''Business as Usual'' (BAU) energy paths have been compiled for China, Japan, the Republic of Korea, and the Democratic Peoples' Republic of Korea. A partial data set and BAU path has been compiled for the Russian Far East, and a data set is being started in Mongolia, where a team of researchers has just joined the AES project. In several countries, ''Alternative'' energy paths have been developed as well, or partially elaborated. National energy sector developments, progress on national LEAP modeling, additional LEAP training, and planning for the next phase of the AES project were the topics of a recent (early November) workshop held in Vancouver, British Columbia. With funding from the Department of Energy, Nautilus is poised to build upon the successes of the project to date with a coordinated international effort to research the energy security ramifications of regional coordination on energy issues in Northeast Asia. The paragraphs below summarize Nautilus' plans for the AES project in the coming months.

Peter Hayes, PhD

2003-12-01T23:59:59.000Z

192

Pricing and hedging Asian basket spread options  

Science Conference Proceedings (OSTI)

Asian options, basket options and spread options have been extensively studied in the literature. However, few papers deal with the problem of pricing general Asian basket spread options. This paper aims to fill this gap. In order to obtain prices and ... Keywords: 91G20, Asian basket spread option, Moment matching, Non-comonotonic sum, Shifted log-extended skew normal law

Griselda Deelstra; Alexandre Petkovic; Michèle Vanmaele

2010-04-01T23:59:59.000Z

193

4, 213231, 2008 East Asian monsoon  

E-Print Network (OSTI)

CPD 4, 213­231, 2008 East Asian monsoon and paleovegetation J. Guiot et al. Title Page Abstract East Asian Monsoon and paleoclimatic data analysis: a vegetation point of view J. Guiot 1 , W. Haibin 2 Publications on behalf of the European Geosciences Union. 213 #12;CPD 4, 213­231, 2008 East Asian monsoon

Paris-Sud XI, Université de

194

Asian residential segregation in Houston, Texas  

E-Print Network (OSTI)

This thesis investigates the residential segregation of the Asian population in Houston considering segregation among Asian groups as well as segregation of Asians from broader non-Asian groups, namely whites, blacks, and Hispanics. Methods applied in this thesis draw on previous works on residential segregation and measure segregation using indices of exposure and isolation and indices of uneven distribution. The demographic and historical backgrounds of Asian populations are reviewed to identify potential reasons for Asian residential segregation. New major findings from my analysis are that Asians have socioeconomic status similar to whites and, thus, have higher socioeconomic status than blacks and Hispanics who have low socioeconomic status. Other major findings are that Asians have moderate segregation from whites, high segregation from Hispanics and even higher segregation from blacks. Detailed Asian groups are mostly moderately segregated from whites and are more highly segregated from Hispanics and blacks. Also, Asian groups are sometimes highly segregated from each other. In conclusion, residential segregation of both broad racial and ethnic groups and Asians are affected by education and income in Houston area including other factors. Based on my analysis, I predict that the pattern of Asian residential segregation will still follow the previous patterns based on education and income.

Yoon, Bo Hee

2007-08-01T23:59:59.000Z

195

SLAC National Accelerator Laboratory - Fermi-LAT Designer Awarded...  

NLE Websites -- All DOE Office Websites (Extended Search)

said. Now with the Santa Cruz Institute for Particle Physics, Atwood was a long-time SLAC National Accelerator Laboratory particle physicist who maintains his lab ties through...

196

Accelerations in Steep Gravity Waves. II: Subsurface Accelerations  

Science Conference Proceedings (OSTI)

It is shown that the vertical acceleration of a particle beneath the crest of a step gravity wave does not always decrease monotonically with depth in the fluid. When the wave steepness ak exceeds 0.4, the acceleration at first increases with ...

M. S. Longuet-Higgins

1986-07-01T23:59:59.000Z

197

SLAC National Accelerator Laboratory - Facility for Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 as a test bed for technologies that will power the next generation of particle accelerators. It also hosts experiments that require extreme electric and magnetic fields. Visit...

198

IMPACT-T: Accelerator Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPACTT General Description IMPACT-T (Integrated Map and Particle Accelerator Tracking-Time) is a parallel, three-dimensional, quasi-static beam dynamics code used to study...

199

BNL | Our History: Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

> See also: Reactors > See also: Reactors A History of Leadership in Particle Accelerator Design Cosmotron Cosmotron (1952-1966) Early in Brookhaven Lab history, the consortium of universities responsible for founding the new research center, decided that Brookhaven should provide leading facilities for high energy physics research. In April 1948, the Atomic Energy Commission approved a plan for a proton synchrotron to be built at Brookhaven. The new machine would accelerate protons to previously unheard of energies-comparable to the cosmic rays showering the earth's outer atmosphere. It would be called the Cosmotron. The Cosmotron was the first accelerator in the world to send particles to energies in the billion electron volt, or GeV, region. The machine reached its full design energy of 3.3 GeV in 1953.

200

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

at those places where particle beams are made to cross. On the other hand, linear accelerators are much easier to build than circular accelerators because they don't need the...

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Accelerator and Beam Science, ABS, Accelerator Operations and Technology,  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Concepts Accelerator Concepts Injectors Operations Physics CONTACTS Group Leader Robert Garnett Deputy Group Leader Kenneth Johnson Office Administrator Monica Sanchez Phone: (505) 667-2846 Put a short description of the graphic or its primary message here Accelerator and Beam Science The Accelerator and Beam Science (AOT-ABS) Group at Los Alamos addresses physics aspects of the driver accelerator for the LANSCE spallation neutron source and related topics. These activities are wide ranging and include generating negative and positive ions in plasma ion sources, creating ion beams from these particles, accelerating the ion beams in linear accelerator structures up to an energy of 800 MeV, compressing the negative hydrogen beam to packets of sub-microsecond duration and accumulating beam current in the Proton Storage Ring, and

202

HEAVY ION LINEAR ACCELERATOR  

DOE Patents (OSTI)

A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

Van Atta, C.M.; Beringer, R.; Smith, L.

1959-01-01T23:59:59.000Z

203

Acceleration of colliding shells around a black hole: Validity of the test particle approximation in the Banados-Silk-West process  

SciTech Connect

Recently, Banados, Silk and West (BSW) showed that the total energy of two colliding test particles has no upper limit in their center of mass frame in the neighborhood of an extreme Kerr black hole, even if these particles were at rest at infinity in the infinite past. We call this mechanism the BSW mechanism or BSW process. The large energy of such particles would generate strong gravity, although this has not been taken into account in the BSW analysis. A similar mechanism is seen in the collision of two spherical test shells in the neighborhood of an extreme Reissner-Nordstroem black hole. In this paper, in order to draw some implications concerning the effects of gravity generated by colliding particles in the BSW process, we study a collision of two spherical dust shells, since their gravity can be exactly treated. We show that the energy of two colliding shells in the center of mass frame observable from infinity has an upper limit due to their own gravity. Our result suggests that an upper limit also exists for the total energy of colliding particles in the center of mass frame in the observable domain in the BSW process due the gravity of the particles.

Kimura, Masashi; Nakao, Ken-ichi [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Tagoshi, Hideyuki [Department of Earth and Space Science, Graduate School of Science, Osaka University, Osaka 560-0043 (Japan)

2011-02-15T23:59:59.000Z

204

Visualizing Particle-in-Cell Simulation of Laser Wakefield Particle...  

NLE Websites -- All DOE Office Websites (Extended Search)

and assist in the planning of the next generation of particle accelerators and ultrafast applications in chemistry and biology. This image shows a horizontal slice through...

205

Pulse - Accelerator Science in Medicine  

NLE Websites -- All DOE Office Websites (Extended Search)

t he future of accelerator physics isn’t just for physicists. As in the past, tomorrow’s discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing and the understanding of human biology. t he future of accelerator physics isn’t just for physicists. As in the past, tomorrow’s discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing and the understanding of human biology. Breakthroughs in the technology of superconducting magnets, nanometer beams, laser instrumentation and information technology will give high-energy physicists new accelerators to explore the deepest secrets of the universe: the ultimate structure of matter and the nature of space and time. But breakthroughs in accelerator science may do more than advance the exploration of particles and forces. No field of science is an island. Physics, astronomy, chemistry, biology, medicine— all interact in the continuing human endeavor to explore and understand our world and ourselves. Research at high-energy physics laboratories will lead to the next generation of particle accelerators—and perhaps to new tools for medical science.

206

Particle Physics Education Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

쭺-¶ 쭺-¶ Particle Physics Education Sites ¡]¥H¤U¬°¥~¤åºô¯¸¡^ quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites - Physics Alliance - Accelerators at National Laboratories icon Particle Physics Education and Information sites: top Introduction: The Particle Adventure - an interactive tour of particle physics for everyone: the basics of theory and experiment. Virtual Visitor Center of the Stanford Linear Accelerator Center. Guided Tour of Fermilab, - overviews of several aspects of Particle Physics. Also check out Particle Physics concepts. Probing Particles - a comprehensive and straight-forward introduction to particle physics. Big Bang Science - approaches particle physics starting from the theoretical origin of the universe.

207

Asian Development Outlook 2010 | Open Energy Information  

Open Energy Info (EERE)

Asian Development Outlook 2010 Asian Development Outlook 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Asian Development Outlook 2010: Macroeconomic Management Beyond the Crisis Agency/Company /Organization: Asian Development Bank Sector: Energy Topics: Market analysis, Resource assessment Resource Type: Publications Website: www.adb.org/Documents/Books/ADO/2010/ado2010.pdf Country: Armenia, Azerbaijan, Georgia (country), Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, China, South Korea, Mongolia, Afghanistan, Bangladesh, Bhutan, India, Maldives, Pakistan, Sri Lanka, Nepal, Cambodia, Indonesia, Malaysia, Laos, Vietnam, Singapore, Thailand, Philippines, Myanmar, Fiji, Papua New Guinea, Timor-Leste UN Region: Central Asia, Eastern Asia, South-Eastern Asia

208

High intensity hadron accelerators  

SciTech Connect

This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

Teng, L.C.

1989-05-01T23:59:59.000Z

209

Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California  

SciTech Connect

During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29 Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models.

Ewing, Stephanie A.; Christensen, John N.; Brown, Shaun T.; Vancuren, Richard A.; Cliff, Steven S.; DePaolo, Donald J.

2010-10-25T23:59:59.000Z

210

State of Asian Elephant Conservation in 2003 i Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv  

E-Print Network (OSTI)

#12;State of Asian Elephant Conservation in 2003 i Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv Conservation Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv Executive Summary: The state of wild Asian elephant conservation in 2003

New, Mark

211

2013 Asian American & Pacific Islander Heritage Month Resources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Asian American & Pacific Islander Heritage Month Resources and Theme 2013 Asian American & Pacific Islander Heritage Month Resources and Theme April 3, 2013 - 1:43pm Addthis...

212

Federal Asian Pacific American Council - New Mexico Chapter Albuquerqu...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Council - New Mexico Chapter Albuquerque, NM Home > About Us > Our Locations > Albuquerque Complex > Federal Asian Pacific American Council - New ... Federal Asian...

213

Log-parabolic spectra and particle acceleration in blazars. III: SSC emission in the TeV band from Mkn 501  

E-Print Network (OSTI)

Curved broad-band spectral distributions of non-thermal sources like blazars are described well by a log-parabolic (LP) law where the second degree term measures the curvature. LP energy spectra can be obtained for relativistic electrons by means of a statistical acceleration mechanism whose probability of acceleration depends on energy. In this paper we compute the spectra radiated by an electron population via synchrotron (S) and Synchro-Self Compton(SSC) processes to derive the relations between the LP parameters. These spectra were obtained by means of an accurate numerical code. We found that the ratio between the curvature parameters of the S spectrum to that of the electrons is equal to about 0.2 instead of 0.25, the value foreseen in the delta approximation. Inverse Compton spectra are also intrinsically curved and can be approximated by a log-parabola only in limited ranges. The curvature parameter, estimated around the SED peak, may vary from a lower value than that of the S spectrum up to that of emitting electrons depending on whether the scattering is in the Thomson or in the Klein-Nishina regime. We applied this analysis to computing the SSC emission from the BL Lac object Mkn 501 during the large flare of April 1997. We fit simultaneous BeppoSAX and CAT data and reproduced intensities and spectral curvatures of both components with good accuracy. The large curvature observed in the TeV range was found to be mainly intrinsic, and therefore did not require a large pair production absorption against the extragalactic background. We regard this finding as an indication that the Universe is more transparent at these energies than previously assumed by several models found in the literature. This conclusion is supported by recent detection of two relatively high redshift blazars with H.E.S.S.

E. Massaro; A. Tramacere; M. Perri; P. Giommi; G. Tosti

2005-11-23T23:59:59.000Z

214

The 9th Asian Symposium on Visualization  

Science Conference Proceedings (OSTI)

The 9th Asian Symposium on Visualization (9ASV) was successfully held in Hong Kong from 4th to 8th June 2007. The total number of 191 participants from 14 countries/regions attended the Symposium, of which 174 were foreign participants worldwide outside ... Keywords: Asian Symposium, HKUST, Hong Kong, Visualization

C. T. Hsu; H. H. Qiu

2007-12-01T23:59:59.000Z

215

1 IODP Expedition 346: Asian Monsoon  

E-Print Network (OSTI)

1 IODP Expedition 346: Asian Monsoon Site U1422 Summary Background and Objectives Site U expect the intensity of the IRD events to reflect the strength of the East Asian winter monsoon (EAWM and distribution along the northern latitudinal transect in the JS/ES. At present, stronger winter monsoon wind

216

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Collider A collider is an accelerator in which two beams traveling in opposite directions are steered together to provide high-energy collisions between the particles in one beam...

217

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Fixed-target Experiment An experiment in which the beam of particles from an accelerator is directed at a stationary (or nearly stationary) target. The target may be a solid, a...

218

SLAC National Accelerator Laboratory - Accelerator Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

physics. Today, the Accelerator Directorate operates and maintains SLAC's existing accelerators to provide the highest possible level of performance. Accelerator employees improve...

219

Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate  

SciTech Connect

The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating extensively at a speed faster than any other part of the world. In this study a series of experiments with a global climate model are designed to simulate black carbon (BC) and dust in snow and their radiative forcing and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow, respectively, on the snowpack over the TP, as well as their subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 µk/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. The aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0oC averaged over the TP and reduces snowpack over the TP more than that induced by pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere during spring. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. During boreal spring, aerosols are transported by the southwesterly and reach the higher altitude and/or deposited in the snowpack over the TP. While BC and OM in the atmosphere directly absorb sunlight and warm the air, the darkened snow surface polluted by BC absorbs more solar radiation and increases the skin temperature, which warms the air above by the increased sensible heat flux over the TP. Both effects enhance the upward motion of air and spur deep convection along the TP during pre-monsoon season, resulting in earlier onset of the SAM and increase of moisture, cloudiness and convective precipitation over northern India. BC-in-snow has a more significant impact on the EAM in July than CO2 increase and carbonaceous particles in the atmosphere. Contributed by the significant increase of both sensible heat flux associated with the warm skin temperature and latent heat flux associated with increased soil moisture with long memory, the role of the TP as a heat pump is elevated from spring through summer as the land-sea thermal contrast increases to strengthen the EAM. As a result, both southern China and northern China become wetter, but central China (i.e. Yangtze River Basin) becomes drier - a near zonal anomaly pattern that is consistent with the dominant mode of precipitation variability in East Asia. ?

Qian, Yun; Flanner, M. G.; Leung, Lai-Yung R.; Wang, Weiguo

2011-03-02T23:59:59.000Z

220

Elementary Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Elementary Particles Elementary Particles Elementary Particles Detectors Accelerators Visit World Labs For Children - for younger people Electric Forces & Fields For Children The Electric Force For Children Electric Force Fields For Children Charges and Fields For Children Vibrating Charges and Electromagnetic Waves Electrons For Older People The Discovery of the Electron Traveling Waves For Older People Waves and Wave-Like Motion For Children Catch the Wave For Children Vibrating Charges and Electromagnetic Waves For Children Electromagnetic Waves Standing Waves For Older People Physics 128 Lecture Standing Waves For Older People Resonance in Strings and Springs For Older People Standing Wave - 1st Harmonic For Older People Standing Wave - 2nd Harmonic Atom For Older People Bohr Atom

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Pulse - Accelerator Science in Medicine  

NLE Websites -- All DOE Office Websites (Extended Search)

t the forefront of biomedical research, medical scientists use particle accelerators to explore the structure of biological molecules. They use the energy that charged particles emit when accelerated to nearly the speed of light to create one of the brightest lights on earth, 30 times more powerful than the sun and focused on a pinpoint. t the forefront of biomedical research, medical scientists use particle accelerators to explore the structure of biological molecules. They use the energy that charged particles emit when accelerated to nearly the speed of light to create one of the brightest lights on earth, 30 times more powerful than the sun and focused on a pinpoint. Deciphering the structure of proteins is key to understanding biological processes and healing disease. To determine a proteinÂ’s structure, researchers direct the beam from an accelerator called a synchrotron through a protein crystal. The crystal scatters the beam onto a detector. From the pattern of scattering, computers calculate the position of every atom in the protein molecule and create a 3-D image of the molecule.

222

High-Energy Laser Ponderomotive Acceleration  

SciTech Connect

A new concept of TeV-range laser ponderomotive acceleration in a plasma is proposed. Particles are accelerated in the point-like scattering by the leading front of the laser pulse, propagating at the group velocity less than the vacuum speed of light. In this scheme, the gain in particle energy is determined by the group velocity and does not depend on laser intensity, which determines the quantum probability of acceleration. The quantum and classical analysis of the scheme proposed is presented. Estimates show that the concept proposed is a promising technique for compact laser acceleration of TeV energy range.

Smetanin, I.V.; /Lebedev Inst.; Barnes, C.; /SLAC; Nakajima, K.; /KEK, Tsukuba

2006-03-10T23:59:59.000Z

223

Log-parabolic spectra and particle acceleration in blazars - II: The BeppoSAX wide band X-ray spectra of Mkn 501  

E-Print Network (OSTI)

We present the results of a spectral and temporal study of the complete set of BeppoSAX NFI (11) and WFC (71) observations of the BL Lac object Mkn 501. The WFC 2-28 keV data, reported here for the first time, were collected over a period of about five years, from September 1996 to October 2001. These observations, although not evenly distributed, show that Mkn 501, after going through a very active phase from spring 1997 to early 1999, remained in a low brightness state until late 2001. The data from the LECS, MECS and PDS instruments, covering the wide energy interval 0.1-150 keV, have been used to study in detail the spectral variability of the source. We show that the X-ray energy distribution of Mkn 501 is well described by a log-parabolic law in all luminosity states. This model allowed us to obtain good estimates of the SED synchrotron peak energy and of its associated power. The strong spectral variability observed, consisting of strictly correlated changes between the synchrotron peak energy and bolometric flux, suggests that the main physical changes are not only due to variations of the maximum Lorentz factor of the emitting particles but that other quantities must be varying as well. During the 1997 flare the high energy part of the spectrum of Mkn 501 shows evidence of an excess above the best fit log-parabolic law suggesting the existence of a second emission component that may be responsible for most of the observed variability.

E. Massaro; M. Perri; P. Giommi; R. Nesci; F. Verrecchia

2004-05-07T23:59:59.000Z

224

Application Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest architectures. We describe current bottlenecks and performance improvement areas for applications including plasma physics, chemistry related to carbon capture and sequestration, and material science. We include a variety of methods including advanced hybrid parallelization using multi-threaded MPI, GPU acceleration, libraries and auto- parallelization compilers. KEYWORDS: hybrid

225

Searching for Cosmic Accelerators via IceCube  

NLE Websites -- All DOE Office Websites (Extended Search)

universe there are particle accelerators 40 million times more powerful than the Large Hadron Collider (LHC) at CERN. Scientists don't know what these cosmic accelerators are or...

226

Asian Development Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

Asian Development Bank - Transport Asian Development Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Asian Development Bank - Transport Agency/Company /Organization: Asian Development Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: www.adb.org/sectors/transport/main This website provides relevant information about transport, focusing on the Sustainable Transport Initiative-Operational Plan (STI-OP). The website includes publications, current approved projects in Asia and toolkits classified by type of transport and/or country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

227

Models of the Southeast Asian Seas  

Science Conference Proceedings (OSTI)

The mean and seasonal variations in transport through and within the Southeast Asian seas are investigated using a series of simple models. The results are compared with results from a fine-resolution, 3D, numerical simulation of the global ...

Roxana C. Wajsowicz

1999-05-01T23:59:59.000Z

228

A Study of South Asian Monsoon Energetics  

Science Conference Proceedings (OSTI)

Monsoon forecasting is one of the most difficult components of the global weather prediction problem. The operational forecasts over the Asian monsoon region are known to have useful skill only for roughly 2–3 days. The rapid deterioration of ...

T. N. Krishnamurti; M. C. Sinha; Bhaskar Jha; U. C. Mohanty

1998-08-01T23:59:59.000Z

229

The Particle Adventure | How do we interpret our data? | Measuring...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we interpret our data? - Measuring charge and momentum One important function of the detector is to measure a particle's charge and...

230

Accelerator Technology Division progress report, FY 1992  

SciTech Connect

This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-07-01T23:59:59.000Z

231

Accelerator target  

DOE Patents (OSTI)

A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

Schlyer, David J. (Bellport, NY); Ferrieri, Richard A. (Patchogue, NY); Koehler, Conrad (Miller Place, NY)

1999-01-01T23:59:59.000Z

232

Accelerator target  

DOE Patents (OSTI)

A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.

Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.

1999-06-29T23:59:59.000Z

233

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

CWDD - Continuous Wave Deuterium Demonstrator CWDD - Continuous Wave Deuterium Demonstrator The Continuous Wave Deuterium Demonstrator (CWDD) accelerator, a cryogenically-cooled (26K) linac, was designed to accelerate 80 mA cw of D to 7.5 MeV. CWDD was being built to demonstrate the lauching of a beam with characteristics suitable for a space-based neutral particle-beam (NPB). A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding ended in October 1993. References - Document Access Guide Continuous Wave Deuterium Demonstrator Final Design Review, Grumman Space Systems, Grumman-Culham Laboratory, Los Alamos (1989). (Located in the Argonne Research Library) Recommissioning and first operation of the CWDD injector at Argonne

234

Variations of the East Asian Jet Stream and Asian–Pacific–American Winter Climate Anomalies  

Science Conference Proceedings (OSTI)

In this study, the authors apply the NCEP–NCAR reanalysis and other observations to depict the association of the Asian–Pacific–American climate with the East Asian jet stream (EAJS). With an emphasis on boreal winter seasons and on interannual ...

Song Yang; K-M. Lau; K-M. Kim

2002-02-01T23:59:59.000Z

235

Genesis of the South Asian High and Its Impact on the Asian Summer Monsoon Onset  

Science Conference Proceedings (OSTI)

The formation of the South Asian high (SAH) in spring and its impacts on the Asian summer monsoon onset are studied using daily 40-yr ECMWF Re-Analysis (ERA-40) data together with a climate-mean composite technique and potential vorticity–diabatic ...

Boqi Liu; Guoxiong Wu; Jiangyu Mao; Jinhai He

2013-05-01T23:59:59.000Z

236

SLAC National Accelerator Laboratory - LCLS-II Project Director...  

NLE Websites -- All DOE Office Websites (Extended Search)

winner of the Robert R. Wilson Prize for Achievement in the Physics of Particle Accelerators, awarded by the American Physical Society. The prize, which honors and encourages...

237

SLAC National Accelerator Laboratory - Turning Data Into Wild...  

NLE Websites -- All DOE Office Websites (Extended Search)

researchers at KIPAC, the Kavli Institute for Particle Astrophysics andCosmology, at SLAC National Accelerator Laboratory and StanfordUniversity. Rather than relying purely...

238

The evolution of high energy accelerators  

SciTech Connect

In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

Courant, E.D.

1989-10-01T23:59:59.000Z

239

Accelerators for Intensity Frontier Research  

SciTech Connect

In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

Derwent, Paul; /Fermilab

2012-05-11T23:59:59.000Z

240

Compact accelerator  

DOE Patents (OSTI)

A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Kirbie, Hugh C. (Los Alamos, NM)

2007-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

MUON ACCELERATION  

Science Conference Proceedings (OSTI)

One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

BERG,S.J.

2003-11-18T23:59:59.000Z

242

Electron acceleration in solar noise storms  

E-Print Network (OSTI)

We present an up-to-date review of the physics of electron acceleration in solar noi se storms. We describe the observed characteristics of noise storm emission, emphasi zing recent advances in imaging observations. We briefly describe the general method ology of treating particle acceleration problems and apply it to the specific proble m of electron acceleration in noise storms. We dwell on the issue of the efficiency of the overall noise storm emission process and outline open problems in this area.

Subramanian, P

2007-01-01T23:59:59.000Z

243

Electron acceleration in solar noise storms  

E-Print Network (OSTI)

We present an up-to-date review of the physics of electron acceleration in solar noi se storms. We describe the observed characteristics of noise storm emission, emphasi zing recent advances in imaging observations. We briefly describe the general method ology of treating particle acceleration problems and apply it to the specific proble m of electron acceleration in noise storms. We dwell on the issue of the efficiency of the overall noise storm emission process and outline open problems in this area.

Prasad Subramanian

2007-01-23T23:59:59.000Z

244

The Hamiltonian Mechanics of Stochastic Acceleration  

SciTech Connect

We show how to nd the physical Langevin equation describing the trajectories of particles un- dergoing collisionless stochastic acceleration. These stochastic di erential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.

Burby, J. W.

2013-07-17T23:59:59.000Z

245

What is an accelerator?  

NLE Websites -- All DOE Office Websites (Extended Search)

world of physics though, 'accelerator' means something a little more specific. Our accelerators are a whole class of machines that accelerate atoms, or more often, pieces of...

246

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Accelerator Institute: Mission The mission of the Argonne Accelerator Institute is centered upon the following related goals: Locate next generation accelerator facilities...

247

SLAC National Accelerator Laboratory - Accelerator Research  

NLE Websites -- All DOE Office Websites (Extended Search)

An image of the FACET equipment and a man examining it. ACCELERATOR PHYSICS Accelerators form the backbone of SLAC's on-site experimental program. They are complicated...

248

Slow Wave Structures for Charged Particle Applications  

of light in free space. This slower wave speed is important for acceleration of charged particles. The special shape of the cross-

249

Does an accelerated electron radiate Unruh radiation?  

E-Print Network (OSTI)

An accelerated particle sees the Minkowski vacuum as thermally excited, and the particle moves stochastically due to an interaction with the thermal bath. This interaction fluctuates the particle's transverse momenta like the Brownian motion in a heat bath. Because of this fluctuating motion, it has been discussed that the accelerated charged particle emits extra radiation (the Unruh radiation) in addition to the classical Larmor radiation, and experiments are under planning to detect such radiation by using ultrahigh intensity lasers constructed in near future. There are, however, counterarguments that the radiation is canceled by an interference effect between the vacuum fluctuation and the fluctuating motion. In fact, in the case of an internal detector where the Heisenberg equation of motion can be solved exactly, there is no additional radiation after the thermalization is completed. In this paper, we revisit the issue in the case of an accelerated charged particle in the scalar QED. We first prove the e...

Iso, Satoshi; Zhang, Sen

2010-01-01T23:59:59.000Z

250

Accelerators and the Accelerator Community  

Science Conference Proceedings (OSTI)

In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

Malamud, Ernest; Sessler, Andrew

2008-06-01T23:59:59.000Z

251

Asian American and African American masculinities : race, citizenship, and culture in post-civil rights  

E-Print Network (OSTI)

Eroticized Asian in Gay Male Porn,” in Q&A: Queer in AsianEroticized Asian in Gay Male Porn. ” In Q&A: Queer in AsianEroticized Asian in Gay Male Porn,” in Q&A: Queer in Asian

Chon-Smith, Chong

2006-01-01T23:59:59.000Z

252

Asian Development Bank Institute | Open Energy Information  

Open Energy Info (EERE)

Asian Development Bank Institute Asian Development Bank Institute Name Asian Development Bank Institute Address Kasumigaseki Building 8F 3-2-5, Kasumigaseki, Chiyoda-ku, Place Tokyo, Japan Phone number + 81-3-3593-5500 Website http://www.adbi.org/ Coordinates 35.6894875°, 139.6917064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6894875,"lon":139.6917064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

SLAC National Accelerator Laboratory - Elementary Particle Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

experiment and is contributing to the ATLAS science program. SLAC is also involved in R&D for future upgrades to components of the ATLAS detector. ATLAS and the LHC are...

254

The Particle Adventure | How do we detect what's happening? | The  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors > How do we detect what's happening? > Accelerators and particle detectors > How do we detect what's happening? > The physicists tool: The accelerator The physicists tool: The accelerator Physicists can't use light to explore atomic and sub-atomic structures because light's wavelength is too long. However, since ALL particles have wave properties, physicists can use particles as their probes. In order to see the smallest particles, physicists need a particle with the shortest possible wavelength. However, most of the particles around us in the natural world have fairly long wavelengths. How do physicists decrease a particle's wavelength so that it can be used as a probe? A particle's momentum and its wavelength are inversely related High-energy physicists apply this principle when they use particle accelerators to increase the momentum of a probing particle, thus decreasing its wavelength.

255

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Links Useful Links Argonne National Laboratory Accelerator Sites Conferences Advanced Photon Source (APS) Argonne Wakefield Accelerator (AWA) Argonne Tandem Linear Accelerator System (ATLAS) High Energy Physics Division RIA (????) Link to JACoW (Joint Accelerator Conferences Website) Fermi National Accelerator Laboratory Fermilab-Argonne Collaboration Accelerator Physics Center Workshops Other Accelerator Institutes Energy Recovering Linacs Center for Advance Studies of Accelerators (Jefferson Labs) Center for Beam Physics (LBNL) Accelerator Test Facility (BNL) The Cockcroft Institute (Daresbury, UK) John Adams Institute (Rutherford, UK) ERL2009 to be held at Cornell ERL2007 ERL2005 DOE Laboratory with Accelerators Fermilab Stanford Linear Accelerator Center Brookhaven National Laboratory

256

Berkeley Proton Linear Accelerator  

DOE R&D Accomplishments (OSTI)

A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

1953-10-13T23:59:59.000Z

257

Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

2011-11-14T23:59:59.000Z

258

Kwok Ko SLAC National Accelerator Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Kwok Ko Kwok Ko SLAC National Accelerator Laboratory Work supported by US DOE Offices of HEP, ASCR and BES under contract AC02-76SF00515. Large Scale Computing and Storage Requirements for High Energy Physics Rockville, MD, November 27-28, 2012 Present and Future Computing Requirements for Advanced Modeling for Particle Accelerator 1. Advanced Modeling for Particle Accelerators (AMPA) NERSC Repositories: m349 Principal Investigator: K. Ko Senior Investigators: SLAC - L. Ge, Z. Li, C. Ng, L. Xiao, FNAL - A. Lunin, Jlab - H. Wang, BNL - S. Belomestnykh, ANL - A. Nassiri

259

A-STAR: Toward translating Asian spoken languages  

Science Conference Proceedings (OSTI)

This paper outlines the first Asian network-based speech-to-speech translation system developed by the Asian Speech Translation Advanced Research (A-STAR) consortium. Eight research groups comprising the A-STAR members participated in the experiments, ... Keywords: Asian languages, Machine translation, Speech recognition, Speech-to-speech translation, Text-to-speech

Sakriani Sakti; Michael Paul; Andrew Finch; Shinsuke Sakai; Thang Tat Vu; Noriyuki Kimura; Chiori Hori; Eiichiro Sumita; Satoshi Nakamura; Jun Park; Chai Wutiwiwatchai; Bo Xu; Hammam Riza; Karunesh Arora; Chi Mai Luong; Haizhou Li

2013-02-01T23:59:59.000Z

260

Moment matching approximation of Asian basket option prices  

Science Conference Proceedings (OSTI)

In this paper we propose some moment matching pricing methods for European-style discrete arithmetic Asian basket options in a Black & Scholes framework. We generalize the approach of [M. Curran, Valuing Asian and portfolio by conditioning on the geometric ... Keywords: 60J65, 91B28, Asian basket option, Log-extended-skew-normal, Moment matching, Sum of non-independent random variables

Griselda Deelstra; Ibrahima Diallo; Michèle Vanmaele

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Proposed research on advanced accelerator concepts  

Science Conference Proceedings (OSTI)

This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

Davidson, R.C.; Wurtele, J.S.

1991-09-01T23:59:59.000Z

262

Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

2008-07-01T23:59:59.000Z

263

Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

2011-10-21T23:59:59.000Z

264

Surfatron laser-plasma accelerator: prospects and limitations  

SciTech Connect

The surfatron laser-plasma accelerator is an extension of the plasma beat wave accelerator scheme. It utilizes very intense electric fields, 10/sup 9/ to 10/sup 10/ V/cm, associated with focussed laser beams to accelerate particles. (GHT)

Joshi, C.

1983-01-01T23:59:59.000Z

265

Accelerating Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Solutions From vehicles on the road to the energy that powers them, Oak Ridge National Laboratory innovations are advancing American transportation. Oak Ridge National Laboratory is making an impact on everyday America by enhancing transportation choices and quality of life. Through strong collaborative partnerships with industry, ORNL research and development efforts are helping accelerate the deployment of a new generation of energy efficient vehicles powered by domestic, renewable, clean energy. EPA ultra-low sulfur diesel fuel rule ORNL and the National Renewable Energy Laboratory co-led a comprehensive research and test program to determine the effects of diesel fuel sulfur on emissions and emission control (catalyst) technology. In the course of this program, involving

266

Aviation Sustainable Biofuels: An Asian Airline Perspective  

E-Print Network (OSTI)

Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

267

Asian Co-benefits Partnership (ACP) Toolkit | Open Energy Information  

Open Energy Info (EERE)

Asian Co-benefits Partnership (ACP) Toolkit Asian Co-benefits Partnership (ACP) Toolkit Jump to: navigation, search Tool Summary Name: Asian Co-benefits Partnership (ACP) Toolkit Agency/Company /Organization: Asian Co-benefits Partnership (ACP) Topics: Low emission development planning, -LEDS Resource Type: Publications References: Asian Co-benefits Partnership (ACP)[1] ACP Rio+20[2] Logo: Asian Co-benefits Partnership (ACP) Toolkit Overview "The Asian Co-benefits Partnership (ACP) provides publications and information to help mainstream climate and developmental co-benefits into decision-making processes in Asia." The Tookit "offers recent publication from ACP member organizations on themes related to co-benefits and green growth." The most recent Toolkit, from ACP's participation in Rio+20, is available

268

Fermilab's Accelerator and Research Divisions  

NLE Websites -- All DOE Office Websites (Extended Search)

July 19, 1996 July 19, 1996 Number 14 Fixed-target experimenters not only expect Fermilab's Accelerator and Research Divisions to turn water into wine-they need 10 different vintages. Providing beam to fixed-target experiments presents the challenge of converting high-inten- sity protons into 10 separate beams of varying intensities and particles, from kaons to neu- trinos. The Accelerator Division generates and splits the beam, and then hands the protons off to the Research Division, which converts them into beams of different particles. The process begins with a breath of hydrogen gas. Eventually the hydrogen atoms lose their outer electrons and become a stream of protons-the formation of the beam. Physicists measure two characteristics of the beam: its energy (eV) and its intensity. Intensity

269

Muon Collider Progress: Accelerators  

SciTech Connect

A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

Zisman, Michael S.

2011-09-10T23:59:59.000Z

270

Asian Development Bank | Open Energy Information  

Open Energy Info (EERE)

Bank Bank Jump to: navigation, search Logo: Asian Development Bank Name Asian Development Bank Address 6 ADB Avenue, Place Mandaluyong City, Philippines Year founded 1966 Phone number + 632 632 4444 Website http://www.adb.org/default.asp Coordinates 14.5871066°, 121.0597685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":14.5871066,"lon":121.0597685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Science Accelerator Widget  

Office of Scientific and Technical Information (OSTI)

Science Accelerator Widget You can now explore multiple Science Accelerator features through the new tabbed widget. Download this tool via the 'Get Widget Options' link or by...

272

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators at Argonne Argonne has a long and continuing history of participation in accelerator based, and user oriented facilities. The Zero-Gradient Synchrotron, which began...

273

Focusing in Linear Accelerators  

DOE R&D Accomplishments (OSTI)

Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

McMillan, E. M.

1950-08-24T23:59:59.000Z

274

Review of Particle Physics  

SciTech Connect

This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V{sub ud} and V{sub us}, V{sub cb} and V{sub ub}, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

Particle Data Group; Nakamura, Kenzo; al., et

2010-06-30T23:59:59.000Z

275

Steady-State Solutions in Nonlinear Diffusive Shock Acceleration  

E-Print Network (OSTI)

Stationary solutions to the equations of non-linear diffusive shock acceleration play a fundamental role in the theory of cosmic-ray acceleration. Their existence usually requires that a fraction of the accelerated particles be allowed to escape from the system. Because the scattering mean-free-path is thought to be an increasing function of energy, this condition is conventionally implemented as an upper cut-off in energy space -- particles are then permitted to escape from any part of the system, once their energy exceeds this limit. However, because accelerated particles are responsible for substantial amplification of the ambient magnetic field in a region upstream of the shock front, we examine an alternative approach in which particles escape over a spatial boundary. We use a simple iterative scheme that constructs stationary numerical solutions to the coupled kinetic and hydrodynamic equations. For parameters appropriate for supernova remnants, we find stationary solutions with efficient acceleration w...

Reville, B; Duffy, P

2008-01-01T23:59:59.000Z

276

Asian American Pacific Islander Heritage Month | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Asian American Pacific Islander Heritage Month Asian American Pacific Islander Heritage Month Asian American Pacific Islander Heritage Month May 1, 2013 11:45AM EDT to May 31, 2013 5:45PM EDT nationwide Generations of Asian Americans and Pacific Islanders (AAPIs) have helped make America what it is today. Their histories recall bitter hardships and proud accomplishments -- from the laborers who connected our coasts one-and-a-half centuries ago, to the patriots who fought overseas while their families were interned at home, from those who endured the harsh conditions of Angel Island, to the innovators and entrepreneurs who are driving our Nation's economic growth in Silicon Valley and beyond. Asian American and Pacific Islander Heritage Month offers us an opportunity to celebrate the vast contributions Asian Americans and Pacific Islanders have

277

A Presidential Proclamation - Asian American and Pacific Islander Heritage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Presidential Proclamation - Asian American and Pacific Islander A Presidential Proclamation - Asian American and Pacific Islander Heritage Month A Presidential Proclamation - Asian American and Pacific Islander Heritage Month May 1, 2013 - 9:25am Addthis A Presidential Proclamation - Asian American and Pacific Islander Heritage Month BY THE PRESIDENT OF THE UNITED STATES OF AMERICA A PROCLAMATION Each May, our Nation comes together to recount the ways Asian Americans and Pacific Islanders (AAPIs) helped forge our country. We remember a time 170 years ago, when Japanese immigrants first set foot on American shores and opened a path for millions more. We remember 1869, when Chinese workers laid the final ties of the transcontinental railroad after years of backbreaking labor. And we remember Asian Americans and Pacific Islanders

278

The Particle Adventure | How do we know any of this? | How physicists...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we know any of this? - How physicists experiment Rutherford's experiment set the tone for the realm of experimentation in particle...

279

Some Particle Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Properties Particle Properties An Article Written Originally for Midlevel Teachers Back A particle, increasing its speed because of some force acting on it, gains energy of motion. An electron (negatively charged) gains one electron volt (eV) of energy in accelerating through a vacuum from the negative end to the positive end of a one-volt battery. The one eV of energy is given up to other particles as the electron crashes into the positive end. A proton (positively charged) traveling from positive to negative pole through the vacuum would also gain one eV of energy and give it up in its collision with particles in the negative end. This proton collision is similar to the proton beam collision with a target at Fermilab, but at Fermilab the proton energy is much greater.

280

Lab Breakthrough: Fermilab Accelerator Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fermilab Accelerator Technology Fermilab Accelerator Technology Lab Breakthrough: Fermilab Accelerator Technology May 14, 2012 - 10:51am Addthis At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs Where are these 30,000 particle accelerators? Most of them in medicine and manufacturing fields. They treat cancer, cure inks on cereal boxes, sterilize medical supplies, create better shrink wrap, spot suspicious cargo, clean up dirty drinking water, and help design drugs. Fermi National Accelerator Laboratory scientist Stuart Henderson took some time discuss the role of particle accelerators in basic science,

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Particle Adventure | How do we experiment with tiny particles? | What  

NLE Websites -- All DOE Office Websites (Extended Search)

What makes particles go in a circle? What makes particles go in a circle? What makes particles go in a circle? To keep any object going in a circle, there needs to be a constant force on that object towards the center of the circle. In a circular accelerator, an electric field makes the charged particle accelerate, while large magnets provide the necessary inward force to bend the particle's path in a circle. (In the image to the left, the particle's velocity is represented by the white arrow, while the inward force supplied by the magnet is the yellow arrow.) The presence of a magnetic field does not add or subtract energy from the particles. The magnetic field only bends the particles' paths along the arc of the accelerator. Magnets are also used to direct charged particle beams toward targets and to "focus" the beams, just as optical lenses focus light.

282

IEA Renewables in Southeast Asian Countries: Trends and Potentials | Open  

Open Energy Info (EERE)

Southeast Asian Countries: Trends and Potentials Southeast Asian Countries: Trends and Potentials Jump to: navigation, search Name IEA Renewables in Southeast Asian Countries: Trends and Potentials Agency/Company /Organization International Energy Agency Sector Energy Focus Area Renewable Energy, Biomass, Transportation Topics Market analysis, Policies/deployment programs Resource Type Publications Website http://www.iea.org/papers/2010 Country Indonesia, Thailand, Philippines, Vietnam, Singapore, Malaysia, Brunei, Cambodia, Laos, Myanmar UN Region South-Eastern Asia References IEA Renewables in Southeast Asian Countries: Trends and Potentials[1] "A main focus of the report investigates the potentials and barriers for scaling up market penetration of renewable energy technologies (RETs) in

283

Closing Event - Asian American and Pacific Islander Heritage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invited speakers from Congress, the federal government, and DOE will speak about Asian American and Pacific Islander programs and policy at the Department, and their...

284

After the Fall: East Asian Exchange Rates Since the Crisis  

E-Print Network (OSTI)

Case for Floating Exchange Rates in Asia. ” In Monetary and2005. “Classifying Exchange Rate Regimes: Deeds vs. Words. ”Ronald I. 2005. Exchange Rates under the East Asian Dollar

Cohen, Benjamin J

2007-01-01T23:59:59.000Z

285

Rising Asian demand drives global coal consumption growth ...  

U.S. Energy Information Administration (EIA)

Global coal demand has almost doubled since 1980, driven by increases in Asia, where demand is up over 400% from 1980-2010. In turn, Asian demand is ...

286

Asian Development Bank Technical Assistance Report on Building...  

Open Energy Info (EERE)

Technical Assistance Report on Building the Capacity of the Sustainable Energy Authority in Sri Lanka Jump to: navigation, search Name Asian Development Bank Technical Assistance...

287

Emerging from the Shadows: The Visual Arts and Asian American History  

E-Print Network (OSTI)

The Visual Arts and Asian American History Gordon H.Chang Asian American art history, not to speak of work byobvious, which is that the history of Asian Americans, like

Chang, Gordon H

2009-01-01T23:59:59.000Z

288

NIST MIRF - Accelerator Radiation Physics  

Science Conference Proceedings (OSTI)

Accelerator Radiation Physics. Medium-energy accelerators are under investigation for production of channeling radiation ...

289

Fermilab | Illinois Accelerator Research Center | Illinois Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

photo: IARC photo: IARC As envisioned, the Illinois Accelerator Research Center will provide approximately 83,000 square feet of technical, office and classroom space for scientists and industrial partners. The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. At the Illinois Accelerator Research Center, scientists and engineers from Fermilab, Argonne and Illinois universities will work side by side with industrial partners to research and develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security. Located on the Fermilab campus this 83,000 square foot, state-of-the-art facility will house offices, technical and educational space to study

290

SLAC National Accelerator Laboratory - SLAC National Accelerator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Notice and Terms of Use Updated January 3, 2005 PRIVACY NOTICE Welcome to the SLAC National Accelerator Laboratory website. We collect no personal information about you...

291

The evolution of high energy accelerators  

SciTech Connect

Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

Courant, E.D.

1994-08-01T23:59:59.000Z

292

Thomas Jefferson National Accelerator Facility  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

293

Energy conservation in typical Asian countries  

SciTech Connect

Various policies and programs have been created to promote energy conservation in Asia. Energy conservation centers, energy conservation standards and labeling, commercial building codes, industrial energy use regulations, and utility demand-side management (DSM) are but a few of them. This article attempts to analyze the roles of these different policies and programs in seven typical Asian countries: China, Indonesia, Japan, Pakistan, South Korea, the Philippines, and Thailand. The conclusions show that the two most important features behind the success policies and programs are (1) government policy support and (2) long-run self-sustainability of financial support to the programs.

Yang, M. [International Inst. for Energy Conservation, Bangkok (Thailand); Rumsey, P. [Supersymmetry USA, Berkeley, CA (United States)

1997-06-01T23:59:59.000Z

294

Bounds for the price of discrete arithmetic Asian options  

Science Conference Proceedings (OSTI)

In this paper the pricing of European-style discrete arithmetic Asian options with fixed and floating strike is studied by deriving analytical lower and upper bounds. In our approach we use a general technique for deriving upper (and lower) bounds for ... Keywords: Asian option, Black and Scholes setting, analytical bounds, comonotonicity

M. Vanmaele; G. Deelstra; J. Liinev; J. Dhaene; M. J. Goovaerts

2006-01-01T23:59:59.000Z

295

Bounds for the price of discrete arithmetic Asian options  

Science Conference Proceedings (OSTI)

In this paper the pricing of European-style discrete arithmetic Asian options with fixed and floating strike is studied by deriving analytical lower and upper bounds. In our approach we use a general technique for deriving upper (and lower) bounds for ... Keywords: Analytical bounds, Asian option, Black and Scholes setting, Comonotonicity

M. Vanmaele; G. Deelstra; J. Liinev; J. Dhaene; M. J. Goovaerts

2006-01-01T23:59:59.000Z

296

Drivers of Variability in the South Asian Monsoon  

E-Print Network (OSTI)

Drivers of Variability in the South Asian Monsoon Announcement of Opportunity Outline Bids Deadline) jointly invite outline bid proposals for research on drivers of variability in the South Asian Monsoon. For ESSO-MoES, this activity forms part of their Monsoon Mission programme (http

Edinburgh, University of

297

Last Glacial Maximum East Asian Monsoon: Results of PMIP Simulations  

Science Conference Proceedings (OSTI)

During glacial periods, the East Asian monsoon is typically thought to have been stronger in boreal winters and weaker in boreal summers. It is unclear, however, whether this view is true at larger scales and to what extent the East Asian monsoon ...

Dabang Jiang; Xianmei Lang

2010-09-01T23:59:59.000Z

298

Pricing Discretely Monitored Asian Options by Maturity Randomization  

Science Conference Proceedings (OSTI)

We present a new methodology based on maturity randomization to price discretely monitored arithmetic Asian options when the underlying asset evolves according to a generic Lévy process. Our randomization technique considers the option expiry ... Keywords: Asian option, Lévy process, discrete monitoring, fast Fourier transform, integral equation, option pricing, quadrature formula

Gianluca Fusai; Daniele Marazzina; Marina Marena

2011-01-01T23:59:59.000Z

299

Accelerator and Fusion Research Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Historical photo of Laboratory founder and cyclotron inventor Ernest Orlando Lawrence at his desk OUR SCIENTIFIC PROGRAMS Accelerator Physics for the ALS Center for Beam Physics LOASIS Laboratory Fusion Science and Ion Beam Technology Superconducting Magnets Free Electron Laser R&D News: AFRD's Jean-Luc Vay and former AFRD scientist Kwang-Je Kim share the US Particle Accelerator School Prize. Andre Anders places two articles among the year's top 30 in the Journal of Applied Physics. AFRD personnel win an R&D 100 in a joint project with industry; the laser at the heart of BELLA sets a world record for laser power. Employees: Safety tips regarding the mountain lion are available. The results from our two most recent Self-Assessment Focus Groups are up, covering emergency preparedness and ergonomics while working offsite.

300

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development Click to download a PDF version of this document. PDF Focus Research Areas Fundamental Accelerator Physics: Theory Importance Accelerator physics research is normally associated with specific accelerator projects. As a scientific discipline, however, it is useful to study fundamental accelerator phenomena decoupled, as much as possible, from specific project aspects. Pursuit of fundamental accelerator physics in this sense has contributed significantly to the advance of the accelerator physics knowledgebase during the last several decades, clarifying the limitations and suggesting ways to overcome those limitations. Such basic research tends to be discouraged in a project-driven environment. For sustained and significant progress in

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Particle Adventure | How do we interpret our data? | The...  

NLE Websites -- All DOE Office Websites (Extended Search)

evidence which supports the Standard Model. To summarize, physicists use accelerators to "peek" into the structure of particles. Detectors collect data which is then...

302

The Particle Adventure | How do we detect what's happening? ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we detect what's happening? - The world's meterstick This image represents a meter stick measuring powers of ten. As you can see, there...

303

The Particle Adventure | How do we interpret our data? | Modern...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we interpret our data? - Modern detectors Modern detectors consist of many different pieces of equipment which test for different...

304

Asian American Engineer of the Year honors three Sandia Employees |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Asian American Engineer of the Year honors three Sandia Employees Asian American Engineer of the Year honors three Sandia Employees Asian American Engineer of the Year honors three Sandia Employees February 27, 2012 - 12:05pm Addthis Hongyou Fan, Ming Lau and Rekha Rao, scientists at Sandia National Laboratories, have received the Asian American Engineer of the Year Award (AAEOY), Sandia reported today. They are among 19 people across the United States to receive this award. The program recognizes outstanding Asian American professionals in science and engineering for their technical achievement and public service. It was launched in 2002 and is organized by the Chinese Institute of Engineers-USA (CIE-USA), founded in 1917. AAEOY honored Fan for his technical work, his mentoring of the next generation of U.S. engineers and for his community service to K-12

305

Asian American and Pacific Islander Heritage Month 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Asian American and Pacific Islander Heritage Month 2013 Asian American and Pacific Islander Heritage Month 2013 Asian American and Pacific Islander Heritage Month 2013 May 21, 2013 11:00AM EDT Forrestal Main Auditorium, Washington DC Building Leadership: Embracing Cultural Values and Inclusion FORS Large Auditorium/Simulcast to Germantown RM A-410 All employees are invited to honor the remarkable contributions Asian Americans and Pacific Islanders have made to this Nation and DOE. President Obama stated, "Each May, our Nation comes together to recount the ways Asian Americans and Pacific Islanders (AAPIs) helped forge our country. We remember a time 170 years ago, when Japanese immigrants first set foot on American shores and opened a path for millions more. We remember 1869, when Chinese workers laid the final ties of the

306

Use of dielectric material in muon accelerator RF cavities  

E-Print Network (OSTI)

The building of a muon collider is motivated by the desire to collide point-like particles while reducing the limitations imposed by synchrotron radiation. The many challenges unique to muon accelerators are derived from ...

French, Katheryn Decker

2011-01-01T23:59:59.000Z

307

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

GEM - GeV Electron Microtron (design report 1982) The GEM design report describes a novel six-sided CW microtron for accelerating electrons to 4 GeV. This accelerator design was...

308

Radiation from Kinetic Poynting Flux Acceleration  

E-Print Network (OSTI)

We derive analytic formulas for the power output and critical frequency of radiation by electrons accelerated by relativistic kinetic Poynting flux, and validate these results with Particle-In-Cell plasma simulations. We find that the in-situ radiation power output and critical frequency are much below those predicted by the classical synchrotron formulae. We discuss potential astrophysical applications of these results.

Edison Liang; Koichi Noguchi

2007-04-13T23:59:59.000Z

309

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

310

Accelerators for heavy ion fusion  

SciTech Connect

Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

Bangerter, R.O.

1985-10-01T23:59:59.000Z

311

The beam business: Accelerators in industry  

SciTech Connect

Most physicists know that particle accelerators are widely used for treating cancer. But few are acquainted with the depth and breadth of their use in a myriad of applications outside of pure science and medicine. Society benefits from the use of particle beams in the areas of communications, transportation, the environment, security, health, and safety - in terms both of the global economy and quality of life. On the manufacturing level, the use of industrial accelerators has resulted in the faster and cheaper production of better parts for medical devices, automobiles, aircraft, and virtually all modern electronics. Consumers also benefit from the use of accelerators to explore for oil, gas, and minerals; sterilize food, wastewater, and medical supplies; and aid in the development of drugs and biomaterials.

Hamm, Robert W.; Hamm, Marianne E. [Pleasanton, California (United States)

2011-06-15T23:59:59.000Z

312

White Paper on DOE-HEP Accelerator Modeling Science Activities  

E-Print Network (OSTI)

Toward the goal of maximizing the impact of computer modeling on the design of future particle accelerators and the development of new accelerator techniques & technologies, this white paper presents the rationale for: (a) strengthening and expanding programmatic activities in accelerator modeling science within the Department of Energy (DOE) Office of High Energy Physics (HEP) and (b) increasing the community-wide coordination and integration of code development.

Vay, Jean-Luc; Koniges, Alice; Friedman, Alex; Grote, David P; Bruhwiler, David L

2013-01-01T23:59:59.000Z

313

The Particle Adventure | How do we detect what's happening? ...  

NLE Websites -- All DOE Office Websites (Extended Search)

she has to do is put the low-mass particles into an accelerator, give them a lot of kinetic energy (speed), and then collide them together. During this collision, the particle's...

314

The Particle Adventure | How do we interpret our data? | Quiz...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we interpret our data? - Quiz - Particle tracks These next 6 event pictures are from a modern detector and show some of the possible...

315

What is an accelerator operator?  

NLE Websites -- All DOE Office Websites (Extended Search)

is an accelerator operator? First I'll explain the education one must have in order to be considered for an Accelerator Operator position. Jefferson Lab's typical Accelerator...

316

Compton Spectrum from Poynting Flux Accelerated e+e- Plasma  

E-Print Network (OSTI)

We report the Compton scattering emission from the Poynting flux acceleration of electron- positron plasma simulated by the 2-1/2 dimensional particle-in-cell(PIC) code. We show these and other remarkable properties of Poynting flux acceleration and Compton spectral output, and discuss the agreement with the observed spectra of GRBs and XRFs.

Sugiyama, S; Noguchi, K; Takabe, H; Sugiyama, Shinya; Liang, Edison; Noguchi, Koichi; Takabe, Hideaki

2006-01-01T23:59:59.000Z

317

Compton Spectrum from Poynting Flux Accelerated e+e- Plasma  

E-Print Network (OSTI)

We report the Compton scattering emission from the Poynting flux acceleration of electron- positron plasma simulated by the 2-1/2 dimensional particle-in-cell(PIC) code. We show these and other remarkable properties of Poynting flux acceleration and Compton spectral output, and discuss the agreement with the observed spectra of GRBs and XRFs.

Shinya Sugiyama; Edison Liang; Koichi Noguchi; Hideaki Takabe

2006-04-18T23:59:59.000Z

318

From Autos to Accelerators | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From Autos to Accelerators From Autos to Accelerators From Autos to Accelerators September 7, 2010 - 6:36pm Addthis Kathryn Grim Physicist Terry Grimm has a vision for Lansing, Michigan. In a town haunted by the remains of fallen automobile plants, his company and others like it are hiring workers to put their car-manufacturing skills toward building particle accelerators. "People question whether manufacturing is going to go away in this country," Grimm said. "That's not the case. There's enough high-tech industry that needs it. We need the same expertise that the auto industry required." Fermilab used funds from the American Recovery and Reinvestment Act to hire Grimm's company, Niowave Inc., to build superconducting radio-frequency cavities in cooperation with Indiana-based Roark Welding & Engineering Co.

319

Electron acceleration in solar noise storms  

E-Print Network (OSTI)

We present an up-to-date review of the physics of electron acceleration in solar noise storms. We describe the observed characteristics of noise storm emission, emphasizing recent advances in imaging observations. We briefly describe the general methodology of treating particle acceleration problems and apply it to the specific problem of electron acceleration in noise storms. We dwell on the issue of the efficiency of the overall noise storm emission process and outline open problems in this area. 1.1 Motivation: Noise storms are the most common form of meter wavelength radio emission from the solar corona. The nomenclature arises from hissing sounds produced in short-wave radio receivers, and was coined around the 1930s. Noise storms are sites of long-lasting quasi-continuous electron acceleration in the

Prasad Subramanian

2007-01-01T23:59:59.000Z

320

Relativistic Fermi acceleration with shock compressed turbulence  

E-Print Network (OSTI)

This paper presents numerical simulations of test particle Fermi acceleration at relativistic shocks of Lorentz factor Gamma_sh = 2-60, using a realistic downstream magnetic structure obtained from the shock jump conditions. The upstream magnetic field is described as pure Kolmogorov turbulence; the corresponding downstream magnetic field lies predominantly in the plane tangential to the shock surface and the coherence length is smaller along the shock normal than in the tangential plane. Acceleration is nonetheless efficient and leads to powerlaw spectra with index s = 2.6-2.7 at large shock Lorentz factor Gamma_sh >> 1, markedly steeper than for isotropic scattering downstream. The acceleration timescale t_acc in the upstream rest frame becomes a fraction of Larmor time t_L in the ultra-relativistic limit, t_acc ~ 10 t_L/Gamma_sh. Astrophysical applications are discussed, in particular the acceleration in gamma-ray bursts internal and external shocks.

Martin Lemoine; Benoit Revenu

2005-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

IODP Expedition 346: Asian Monsoon Week 1 Report (29 July3 August 2013)  

E-Print Network (OSTI)

IODP Expedition 346: Asian Monsoon Week 1 Report (29 July­3 August 2013) Operations Asian Monsoon the amplification of millennial-scale variability of the East Asian monsoon and provided teleconnection mechanism the timing of onset of orbital- and millennial-scale variability of the East Asian Summer Monsoon (EASM

322

SLAC National Accelerator Laboratory - Director of Accelerator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Committee on Appropriations asked the US Department of Energy (DOE) to submit a strategic plan for accelerator R&D by June 2012. The DOE asked me to lead a task force to...

323

High-power accelerator technology and requirements  

SciTech Connect

Designs of high-power proton linear accelerators (linacs) for accelerator transmutation of waste (ATW) are being actively studied at Los Alamos National Laboratory and at several other laboratories worldwide. Beam parameters cover the 100- to 300-mA range in average current and 800 to 1600 MeV in energy. While ideas for such accelerators have been discussed for decades, the technology base has recently advanced to the point that the feasibility of machines in the ATW power class is now generally conceded. Factors contributing to this advance have been the following: experience gained with medium-power research accelerators, especially the LAMPF linac at Los Alamos; major improvements in the theory and technology of high-intensity high-brightness accelerators fostered by the SDIO Neutral Particle Beam program; and development of high-power continuous-wave (cw) radio-frequency (rf) generators for high-energy colliding-beam rings. The reference ATW accelerator concept described in this paper is based on room-temperature copper accelerating cavities. Advances in superconducting niobium cavity technology have opened the possibility of application to ATW-type linacs. Useful efficiency gains could be realized, especially for lower current systems, and there may be technical advantages as well. Technology issues that need to be addressed for superconducting rf linac designs include the development of high-power rf couplers, appropriate cavity designs, and superconducting focusing elements, as well as concerns about beam damage of niobium structures and dynamic rf control with high beam currents.

Lawrence, G.P. (Los Alamos National Lab., NM (United States))

1993-01-01T23:59:59.000Z

324

High brightness electron accelerator  

DOE Patents (OSTI)

A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity.

Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

1992-12-31T23:59:59.000Z

325

USAID-Central Asian Republics Climate Activities | Open Energy Information  

Open Energy Info (EERE)

USAID-Central Asian Republics Climate Activities USAID-Central Asian Republics Climate Activities Jump to: navigation, search Name USAID-Central Asian Republics Climate Activities Agency/Company /Organization U.S. Agency for International Development Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy Topics Background analysis Website http://www.usaid.gov/our_work/ Country Kazakhstan, Uzbekistan, Turkmenistan, Kyrgyzstan, Tajikistan Central Asia, Central Asia, Central Asia, Central Asia, Central Asia References USAID Climate Activities [1] "USAID activities in the Central Asian Republics have assisted countries in developing extensive greenhouse gas mitigation and energy efficiency projects. Primarily through training and technical assistance, USAID continues to support the region in these endeavors and is helping them move

326

Clean Air Initiative for Asian Cities | Open Energy Information  

Open Energy Info (EERE)

Asian Cities Asian Cities Jump to: navigation, search Name Clean Air Initiative for Asian Cities Agency/Company /Organization Asian Development Bank, World Bank, United States Agency for International Development Sector Energy Topics Implementation, Policies/deployment programs, Co-benefits assessment, - Environmental and Biodiversity, - Health Website http://www.cleanairnet.org/cai Program Start 2001 Country Bangladesh, Cambodia, China, India, Indonesia, Mongolia, Nepal, Pakistan, Philippines, Sri Lanka, Thailand, Vietnam UN Region Central Asia, Eastern Asia, South-Eastern Asia, "Pacific" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

327

Federal Asian Pacific American Council - New Mexico Chapter Albuquerque, NM  

National Nuclear Security Administration (NNSA)

Asian Pacific American Council - New Mexico Chapter Albuquerque, NM Asian Pacific American Council - New Mexico Chapter Albuquerque, NM | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Federal Asian Pacific American Council - New Mexico Chapter Albuquerque, NM Home > About Us > Our Locations > Albuquerque Complex > Federal Asian Pacific American Council - New ...

328

Oscillating relationship between the East Asian winter monsoon and ENSO  

Science Conference Proceedings (OSTI)

This work investigates the interdecadal variations of the relationship between the El Niño-Southern Oscillation (ENSO) and the East Asian winter monsoon (EAWM); further explores possible mechanisms and finally considers a recent switch in the ENSO-...

Shengping He; Huijun Wang

329

A Linear Markov Model for East Asian Monsoon Seasonal Forecast  

Science Conference Proceedings (OSTI)

A linear Markov model has been developed to predict the short-term climate variability of the East Asian monsoon system, with emphasis on precipitation variability. Precipitation, sea level pressure, zonal and meridional winds at 850 mb, along ...

Qiaoyan Wu; Ying Yan; Dake Chen

2013-07-01T23:59:59.000Z

330

On the Nature of the 1994 East Asian Summer Drought  

Science Conference Proceedings (OSTI)

East Asian countries experienced record-breaking heat waves and drought conditions during the summer monsoon season of 1994. This study documents the large-scale circulation associated with the drought and suggests a forcing mechanism responsible ...

Chung-Kyu Park; Siegfried D. Schubert

1997-05-01T23:59:59.000Z

331

Distinct Modes of the East Asian Winter Monsoon  

Science Conference Proceedings (OSTI)

Two distinct modes of the East Asian winter monsoon (EAWM) have been identified, and they correspond to real and imaginary parts of the leading mode of the EAWM, respectively. Analyses of these modes used the National Centers for Environment ...

Bingyi Wu; Renhe Zhang; Rosanne D’Arrigo

2006-08-01T23:59:59.000Z

332

Symmetry and Asymmetry of the Asian and Australian Summer Monsoons  

Science Conference Proceedings (OSTI)

The rainfalls associated with the Asian summer monsoon have significant correlation with succeeding Australian summer monsoon rainfalls. This is partly due to the typical life cycle of the El Niño–Southern Oscillation (ENSO) phase locked with the ...

Chih-wen Hung; Xiaodong Liu; Michio Yanai

2004-06-01T23:59:59.000Z

333

BNL | Accelerator Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

334

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome In 2006, Argonne laboratory director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. I invite you to look around the content of this web site. Accelerators at Argonne describes our rich heritage in this field, particularly with respect to the development and support of user facilities. Initiatives describes the things we are hoping to do, and Research & Development discusses our research portfolio. If you are a graduate or undergraduate student wishing to pursue a career in accelerator science or technology, please see Educational

335

North Linear Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

North Linear Accelerator North Linear Accelerator Building Exterior Beam Enclosure Level Walk to the North Spreader North Recombiner Extras! North Linear Accelerator The North Linear Accelerator is one of the two long, straight sections of Jefferson Lab's accelerator. Electrons gain energy in this section by passing through acceleration cavities. There are 160 cavities in this straightaway, all lined up end to end. That's enough cavities to increase an electron's energy by 400 million volts each time it passes through this section. Electrons can pass though this section as many as five times! The cavities are powered by microwaves that travel down the skinny rectangular pipes from the service buildings above ground. Since the cavities won't work right unless they are kept very cold, they

336

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

The Argonne Accelerator History Document Collection The Argonne Accelerator History Document Collection The Argonne Accelerator Institute (AAI) has established a special collection of archived documents which describe notable Argonne accelerator work of the past 50 years. A list of such Argonne Accelerator Projects is given below. Each project is described briefly, with links to archived documents in this collection. This collection includes important Argonne accelerator documents which may have become difficult to locate, as well as ones which have broad scope. In keeping with its historical purpose, this collection only covers work done 10 or more years ago. Many of the listed documents are available online. We hope to make more of them available online in the future. [For several of the projects, interesting additional online documents can be found by

337

A CLASSIFICATION SCHEME FOR TURBULENT ACCELERATION PROCESSES IN SOLAR FLARES  

SciTech Connect

We establish a classification scheme for stochastic acceleration models involving low-frequency plasma turbulence in a strongly magnetized plasma. This classification takes into account both the properties of the accelerating electromagnetic field, and the nature of the transport of charged particles in the acceleration region. We group the acceleration processes as either resonant, non-resonant, or resonant-broadened, depending on whether the particle motion is free-streaming along the magnetic field, diffusive, or a combination of the two. Stochastic acceleration by moving magnetic mirrors and adiabatic compressions are addressed as illustrative examples. We obtain expressions for the momentum-dependent diffusion coefficient D(p), both for general forms of the accelerating force and for the situation when the electromagnetic force is wave-like, with a specified dispersion relation {omega} = {omega}(k). Finally, for models considered, we calculate the energy-dependent acceleration time, a quantity that can be directly compared with observations of the time profile of the radiation field produced by the accelerated particles, such as those occuring during solar flares.

Bian, Nicolas; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Emslie, A. Gordon, E-mail: n.bian@physics.gla.ac.uk, E-mail: eduard@astro.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

2012-08-01T23:59:59.000Z

338

Optically pulsed electron accelerator  

DOE Patents (OSTI)

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, J.S.; Sheffield, R.L.

1985-05-20T23:59:59.000Z

339

Optically pulsed electron accelerator  

DOE Patents (OSTI)

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

340

ACCELERATION RESPONSIVE SWITCH  

DOE Patents (OSTI)

An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

Chabrek, A.F.; Maxwell, R.L.

1963-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cosmic Accelerators: Engines of the Extreme Universe  

Science Conference Proceedings (OSTI)

The universe is home to numerous exotic and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. While the night sky appears calm, it is populated by colossal explosions, jets from supermassive black holes, rapidly rotating neutron stars, and shock waves of gas moving at supersonic speeds. These accelerators in the sky boost particles to energies far beyond those we can produce on earth. New types of telescopes, including the Fermi Gamma-ray Space Telescope orbiting in space, are now discovering a host of new and more powerful accelerators. Please come and see how these observations are revising our picture of the most energetic phenomena in the universe.

Funk, Stefan

2009-06-23T23:59:59.000Z

342

Particle separation  

DOE Patents (OSTI)

Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

Moosmuller, Hans (Reno, NV); Chakrabarty, Rajan K. (Reno, NV); Arnott, W. Patrick (Reno, NV)

2011-04-26T23:59:59.000Z

343

Science Accelerator : User Account  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Office of Science Office of Scientific and Technical Information Website PoliciesImportant Links Science Accelerator science.gov WorldWideScience.org Deep Web Technologies...

344

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

ICFA Beam Dynamics Mini-Workshop on DeflectingCrabbing Cavity Applications in Accelerators April 21-23, 2010, Cockcroft Institute, Daresbury Laboratory, Warrington, UK Sixth...

345

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng...

346

Human Accelerator - Teacher Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

electrons. The cavities are arranged in two long, straight sections called Linear Accelerators. In this activity, students pass tennis balls down a line like Jefferson Lab's...

347

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

(1971). (Located in the Argonne Research Library) Lee Teng Autobiography: Accelerators and I, Beam Dynamics Newsletter, No. 35, p 8-19, December (2004). (Located in Beam...

348

Market Acceleration (Fact Sheet)  

DOE Green Energy (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

Not Available

2010-09-01T23:59:59.000Z

349

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

- Document Access Guide ATLAS: A Proposal for a Precision Heavy Ion Accelerator, Argonne National Laboratory, February (1978). (Located in the DOE Information Bridge) The...

350

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Collaboration Lee Teng Scholarship Program Useful Links Argonne Accelerator Institute: For Industrial Collaborators -- Working with Argonne This link is addressed to...

351

The Accelerator Chain  

NLE Websites -- All DOE Office Websites (Extended Search)

Watch video of Fermilab's Accelerators to learn more. Project Contact: Thomas Jordan - jordant@fnal.gov Web Maintainer: qnet-webmaster@fnal.gov Last Update: April 22, 2001...

352

WIPP - CBFO Accelerating Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

more information, access DOE Environmental Management site at: http:www.em.doe.govclosure For more information regarding the Accelerating Cleanup: Paths to Closure, contact...

353

Poster: performance modeling and computational quality of service (CQoS) in synergia2 accelerator simulations  

Science Conference Proceedings (OSTI)

High-precision accelerator modeling is essential for particle accelerator design and optimization. However, this modeling presents a significant computational challenge. We discuss performance modeling of and computational quality of service (CQoS) results ... Keywords: accelerator simulation, computational quality of service, performance modeling, synergia

Steve Goldhaber; Stefan Muszala; Nanbor Wang; James F. Amundson; Eric G. Stern; Boyana Norris; Daihee Kim

2011-11-01T23:59:59.000Z

354

Effect of Direct Radiative Forcing of Asian Dust on the Meteorological Fields in East Asia during an Asian Dust Event Period  

Science Conference Proceedings (OSTI)

Coupled and noncoupled models in a grid of 60 × 60 km2 in the eastern Asian domain have been employed to examine the effect of the direct radiative forcing of the Asian dust aerosol on meteorological fields for an intense Asian dust event ...

Hyun-Ju Ahn; Soon-Ung Park; Lim-Seok Chang

2007-10-01T23:59:59.000Z

355

NERSC and CRD Help Decipher Science from Compact Accelerator Simulations -  

NLE Websites -- All DOE Office Websites (Extended Search)

and CRD Help and CRD Help Decipher Science from Compact Accelerator Simulations NERSC and CRD Help Decipher Science from Compact Accelerator Simulations May 26, 2009 3D Particle Surfing : Electrons are moving from left to right in this LOASIS experiment. The blue shells show the plasma wake, while bunches of surfing electrons are shown as green and yellow. Green reveals low-energy particles, and yellow shows high-energy. The simulation was conducted in the VORPAL framework, and visualized with VisIt and VizSchema. Scientists use many different tools to understand the universe. While telescopes offer valuable insights about interactions between stars, planets and galaxies; particle accelerators give researchers a better understanding of the basic particles that make up these structures, as well

356

Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams  

SciTech Connect

Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

Siemann, R.H.; /SLAC

2011-10-24T23:59:59.000Z

357

Final Report to the Department of Energy on the 1994 International Accelerator School: Frontiers of Accelerator Technology  

SciTech Connect

The international accelerator school on Frontiers of Accelerator Technology was organized jointly by the US Particle Accelerator School (Dr. Mel Month and Ms. Marilyn Paul), the CERN Accelerator School, and the KEK Accelerator School, and was hosted by the University of Hawaii. The course was held on Maui, Hawaii, November 3-9, 1994 and was made possible in part by a grant from the Department of Energy under award number DE-FG03-94ER40875, AMDT M006. The 1994 program was preceded by similar joint efforts held at Santa Margherita di Pula, Sardinia in February 1985, South Padre Island, Texas in October 1986, Anacapri, Italy in October 1988, Hilton Head Island, South Carolina in October 1990, and Benalmedena, Spain in October/November 1992. The most recent program was held in Montreux, Switzerland in May 1998. The purpose of the program is to disseminate knowledge on the latest ideas and developments in the technology of particle accelerators by bringing together known world experts and younger scientists in the field. It is intended for individuals with professional interest in accelerator physics and technology, for graduate students, for post-docs, for those interested in accelerator based sciences, and for scientific and engineering staff at industrial firms, especially those companies specializing in accelerator components.

Harris, F.A.

1998-09-17T23:59:59.000Z

358

Microscale acceleration history discriminators  

DOE Patents (OSTI)

A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

359

Particle beam and crabbing and deflecting structure  

DOE Patents (OSTI)

A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

Delayen, Jean (Yorktown, VA)

2011-02-08T23:59:59.000Z

360

Accelerator R and D task force presentation - m white  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE DOE Accelerator R&D Task Force Charge Presented at the AAI Meeting, 11/29/11 Marion White mwhite@aps.anl.gov Rod Gerig - Context (1)  "The Committee understands that powerful new accelerator technologies created for basic science and developed by industry will produce particle accelerators with the potential to address key economic and societal issues confronting our Nation. However, the Committee is concerned with the divide that exists in translating breakthroughs in accelerator science and technology into applications that benefit the marketplace and American competitiveness. The Committee directs the Department to submit a 10-year strategic plan by June 1, 2012 for accelerator technology research and development to advance accelerator applications in energy and the

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Lee Teng Undergraduate Internship in Accelerator Science and Engineering |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lee Teng Undergraduate Internship in Accelerator Science and Lee Teng Undergraduate Internship in Accelerator Science and Engineering Lee Teng Undergraduate Internship in Accelerator Science and Engineering October 9, 2012 12:45PM EDT to February 10, 2013 3:45PM EST Fermilab. Offered by the Illinois Accelerator Institute, the Lee Teng Undergraduate Internship in Accelerator Science and Engineering offers ten-week summer internships at Fermilab and Argonne for undergraduate students enrolled in four-year U.S. institutions. This program has been developed to attract undergraduate students into the exciting and challenging world of particle accelerator physics and technology. tudents must be juniors at the time they apply. The program will also consider outstanding candidates who are sophomores when they apply. The program is open to students who are currently legally enrolled

362

Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures  

SciTech Connect

Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

Cowan, Benjamin; /Tech-X, Boulder; Lin, M.C.; /Tech-X, Boulder; Schwartz, Brian; /Tech-X, Boulder; Byer, Robert; /Stanford U., Phys. Dept.; McGuinness, Christopher; /Stanford U., Phys. Dept.; Colby, Eric; /SLAC; England, Robert; /SLAC; Noble, Robert; /SLAC; Spencer, James; /SLAC

2012-07-02T23:59:59.000Z

363

Simulating acceleration and radiation processes in X-ray binaries  

E-Print Network (OSTI)

The high energy emission of microquasars is thought to originate from high energy particles. Depending on the spectral state, the distribution of these particles can be thermal with a high temperature (typically 100 keV) or non-thermal and extending to even higher energy. The properties of high energy plasmas are governed by a rich microphysics involving particle-particle collisions and particles-photons interactions. We present a new code developed to address the evolution of relativistic plasmas. This one-zone code focuses on the microphysics and solves the coupled kinetic equations for particles and photons, including Compton scattering, synchrotron emission and absorption, pair production and annihilation, bremsstrahlung emission and absorption, Coulomb interactions, and prescriptions for additional particle acceleration and heating. It can in particular describe mechanisms such a thermalisation by synchrotron self-absorption and Coulomb collisions. Using the code, we investigate whether various acceleration processes, namely thermal heating, non-thermal acceleration and stochastic acceleration, can reproduce the different spectral states of microquasars. Premilinary results are presented.

R. Belmont; J. Malzac; A. Marcowith

2008-10-31T23:59:59.000Z

364

RESONATOR PARTICLE SEPARATOR  

DOE Patents (OSTI)

A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)

Blewett, J.P.

1962-01-01T23:59:59.000Z

365

21H.153J / SP.421J / WGS.421J Race and Gender in Asian America, Fall 2002  

E-Print Network (OSTI)

An interdisciplinary examination of the Asian-American experience with particular emphasis on gender and race from mid-nineteenth century to present. Topics include: Asian American women's history, Asian American feminisms, ...

Anonymous

366

RADIATION FROM COMOVING POYNTING FLUX ACCELERATION  

Science Conference Proceedings (OSTI)

We derive analytic formulas for the radiation power output when electrons are accelerated by a relativistic comoving kinetic Poynting flux, and validate these analytic results with particle-in-cell simulations. We also derive analytically the critical frequency of the radiation spectrum. Potential astrophysical applications of these results are discussed. A quantitative model of gamma-ray bursts based on the breakout of kinetic Poynting flux is presented.

Liang, Edison; Noguchi, Koichi [Rice University, Houston TX 77005-1892 (United States)

2009-11-10T23:59:59.000Z

367

Radiation from Comoving Poynting Flux Acceleration  

E-Print Network (OSTI)

We derive analytic formulas for the radiation power output when electrons are accelerated by a relativistic comoving kinetic Poynting flux, and validate these analytic results with Particle-In-Cell simulations. We also derive analytically the critical frequency of the radiation spectrum. Potential astrophysical applications of these results are discussed. A quantitative model of gamma-ray bursts based on the breakout of kinetic Poynting flux is presented.

Liang, Edison

2009-01-01T23:59:59.000Z

368

Jar mechanism accelerator  

SciTech Connect

This patent describes an accelerator for use with a jar mechanism in a well pipe string to enhance the jarring impact delivered to a stuck object wherein the jar mechanism includes inner and outer members for connection, respectively, between the well pipe string the stuck object. The jar mechanism members are constructed to (1) restrict relative longitudinal movement therebetween to build up energy in the well pipe string and accelerator and then (2) to release the jar mechanism members for unrestrained, free relative longitudinal movement therebetween to engage jarring surfaces on the jar mechanism members for delivering a jarring impact to the stuck object. The accelerator includes: inner and outer telescopically connected members relatively movable longitudinally to accumulate energy in the accelerator; the inner and outer accelerator members each having means for connecting the accelerator in the well pipe string; means associated with the inner and outer members for initially accomodating a predetermined minimum length of unrestrained, free relative longitudinal movement between the inner and outer accelerator members.

Anderson, E.A.; Webb, D.D.

1989-07-11T23:59:59.000Z

369

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Organization The Argonne Accelerator Institute is a matrixed organization. Its members and fellows reside in programmatic Argonne divisions. The Institute reports to the Associate Laboratory Director for Photon Science), and the administrative functions of the Institute are within the PSC directorate. Director: Rodney Gerig Associate Director: Hendrik Weerts ( Director of High Energy Physics Division) Associate Director: Sasha Zholents (Director of Accelerator Systems Division) Associate Director: Robert Janssens ( Director of Argonne Physics Division)

370

Superfund accelerated cleanup model  

SciTech Connect

In an effort to speed and maximize cleanup of the worst sites first, the Environmental Protection Agency (EPA) developed the Superfund Accelerated Cleanup Model (SACM). SACM streamlines the Superfund process so hazardous waste sites can be addressed quicker and in a more cost effective manner. EPA Regional offices developed a number of pilot projects to test the principles of SACM. Although many pilots are underway in the Regions, the pilots described here involve four areas: accelerating cleanup through early actions; integrating site assessments; using Regional Decision Teams to establish priorities; and accelerating cleanup through the use of new technology.

Not Available

1994-08-01T23:59:59.000Z

371

The Fast Lane: Fermilab's Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

Lane: Accelerators at Fermilab Introduction Introduction to Accelerators Accelerator Chain Cockcroft-Walton How it works How it looks Linac How it works How it looks Booster How it...

372

IODP Expedition 346: Asian Monsoon Week 4 Report (1824 August 2013)  

E-Print Network (OSTI)

IODP Expedition 346: Asian Monsoon Week 4 Report (18­24 August 2013) Operations This week of IODP Asian Monsoon Expedition 346 we completed coring and logging operations at Sites U1422 and U1423. Site U

373

IODP Expedition 346: Asian Monsoon Week 5 Report (25 August1 September 2013)  

E-Print Network (OSTI)

IODP Expedition 346: Asian Monsoon Week 5 Report (25 August­1 September 2013) Operations The fifth week of IODP Asian Monsoon Expedition 346 began while transiting from Site U1423 to Site U1424

374

Is the Interannual Variability of the Summer Asian–Pacific Oscillation Predictable?  

Science Conference Proceedings (OSTI)

The summer (June–August) Asian–Pacific Oscillation (APO) measures the interannual variability of large-scale atmospheric circulation over the Asian–North Pacific Ocean sector. In this study, the authors assess the predictability of the summer APO ...

Yanyan Huang; Huijun Wang; Ping Zhao

2013-06-01T23:59:59.000Z

375

Hemispheric Insolation Forcing of the Indian Ocean and Asian Monsoon: Local versus Remote Impacts  

Science Conference Proceedings (OSTI)

Insolation forcing related to the earth’s orbital parameters is known to play an important role in regulating variations of the South Asian monsoon on geological time scales. The influence of insolation forcing on the Indian Ocean and Asian ...

Xiaodong Liu; Zhengyu Liu; John E. Kutzbach; Steven C. Clemens; Warren L. Prell

2006-12-01T23:59:59.000Z

376

C-AD Accelerator Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Division Accelerator Division The Accelerator Division operates and continually upgrades a complex of eight accelerators: 2 Tandem Van de Graaff electrostatic accelerators, an Electron Beam Ion Source (EBIS), a 200 MeV proton Linac, the AGS Booster, the Alternating Gradient Synchrotron (AGS), and the 2 rings of the Relativistic Heavy Ion Collider (RHIC). These machines serve user programs at the Tandems, the Brookhaven Linac Isotope Producer (BLIP), the NASA Space Radiation Laboratory (NSRL), and the 2 RHIC experiments STAR, and PHENIX. The Division also supports the development of new accelerators and accelerator components. Contact Personnel Division Head: Wolfram Fischer Deputy Head: Joe Tuozzolo Division Secretary: Anna Petway Accelerator Physics: Michael Blaskiewicz

377

Accelerated Aging of Roofing Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio CRRC, Arizona CRRC, Florida CRRC, Ohio 6 | Building Technologies Office eere.energy.gov Approach: develop accelerated aging method Accelerated soiling (atmospheric...

378

Linear Accelerator | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

electrons emitted from a cathode heated to 1100 C. The electrons are accelerated by high-voltage alternating electric fields in a linear accelerator (linac; photo below)....

379

Production, Characterization, and Acceleration of Optical Microbunches  

SciTech Connect

Optical microbunches with a spacing of 800 nm have been produced for laser acceleration research. The microbunches are produced using a inverse Free-Electron-Laser (IFEL) followed by a dispersive chicane. The microbunched electron beam is characterized by coherent optical transition radiation (COTR) with good agreement to the analytic theory for bunch formation. In a second experiment the bunches are accelerated in a second stage to achieve for the first time direct net acceleration of electrons traveling in a vacuum with visible light. This dissertation presents the theory of microbunch formation and characterization of the microbunches. It also presents the design of the experimental hardware from magnetostatic and particle tracking simulations, to fabrication and measurement of the undulator and chicane magnets. Finally, the dissertation discusses three experiments aimed at demonstrating the IFEL interaction, microbunch production, and the net acceleration of the microbunched beam. At the close of the dissertation, a separate but related research effort on the tight focusing of electrons for coupling into optical scale, Photonic Bandgap, structures is presented. This includes the design and fabrication of a strong focusing permanent magnet quadrupole triplet and an outline of an initial experiment using the triplet to observe wakefields generated by an electron beam passing through an optical scale accelerator.

Sears, Christopher M.S.; /Stanford U. /SLAC

2008-06-20T23:59:59.000Z

380

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Quarterly Meetings Quarterly Meetings November 29, 2011 Held at the Advanced Photon Source, Argonne, IL DOE Accelerator R&D Task Force - M. White February 17, 2010 Held at the Advanced Photon Source, Argonne, IL June 16, 2009 General Updates - R. Gerig Accelerator Developments in Physics Division - R. Janssens Proposal for Argonne SRF Facility - M. Kelly Accelerator Developments in HEP Division - W. Gai Beam Activities of the DOD Project Office-Focus on the Navy FEL - S. Biedron AAI Historical Collection - T. Fields November 24, 2008 Strategic Theme Forum Meeting - This meeting was held to gather information on the Accelerator Science and Technology Theme to establish the Argonne's Strategic Plan January 9, 2008 Opening Remarks - R. Gerig ILC Planning - J. Carwardine Argonne Participation in Project X - P. Ostroumov

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Particle Lifetimes  

NLE Websites -- All DOE Office Websites (Extended Search)

Reviewing Particle Lifetimes Reviewing Particle Lifetimes The lifetimes of elementary particles are statistical in nature. In a given sample, one particle might decay immediately, another in 1 nanosecond, yet another after 10 milliseconds, and still another in 50 years. What we call the lifetime is the time it takes for a sample to decay so 1/e (~30%) of the sample is left; after 2 lifetimes, 1/e2 of the sample is left, and so on. Take, for example, a sample of cosmic ray muons produced in the upper atmosphere. These muons, when observed at (relative) rest in the laboratory, have a mean lifetime T. Now, since particle decay is statistical in nature, the number of undecayed particles after a given time is a negative exponential function: N(t) = No e-t/T where N(t) is the number of muons at time t, No is the initial number of

382

Women @ Energy: Asian American and Pacific Islander Heritage Month 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Women @ Energy: Asian American and Pacific Islander Heritage Month Women @ Energy: Asian American and Pacific Islander Heritage Month 2013 Women @ Energy: Asian American and Pacific Islander Heritage Month 2013 Addthis Xin Sun 1 of 12 Xin Sun Creativity, insight, and application are the hallmarks of Dr. Xin Sun's applied mechanics and computational materials research at Pacific Northwest National Laboratory. Her advances in lightweight and high-strength materials (including steels) and modeling are vital to energy efficiency and renewable energy and have led to notable weight savings in the U.S. automotive industry. Xin is developing simulation and modeling capabilities for solid oxide fuel cells. Her modeling of physics properties are included as part of the solid oxide fuel cell multiphysics modeling code, or SOFC-MP, a commercial software tool, developed at PNNL, used by fuel cell

383

Asian American and Pacific Islander Heritage Women @ Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Asian American and Pacific Islander Heritage Women @ Energy Asian American and Pacific Islander Heritage Women @ Energy Asian American and Pacific Islander Heritage Women @ Energy May 3, 2013 - 11:49am Addthis Xin Sun 1 of 12 Xin Sun Creativity, insight, and application are the hallmarks of Dr. Xin Sun's applied mechanics and computational materials research at Pacific Northwest National Laboratory. Her advances in lightweight and high-strength materials (including steels) and modeling are vital to energy efficiency and renewable energy and have led to notable weight savings in the U.S. automotive industry. Xin is developing simulation and modeling capabilities for solid oxide fuel cells. Her modeling of physics properties are included as part of the solid oxide fuel cell multiphysics modeling code, or SOFC-MP, a commercial software tool, developed at PNNL, used by fuel cell

384

Indonesia-Low Emissions Asian Development (LEAD) Program | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Indonesia-Low Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Indonesia-Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Indonesia South-Eastern Asia References USAID LEAD Program[1] The Low Emissions Asian Development (LEAD) program is a regional US Agency for International Development (USAID) activity that supports developing countries in Asia to achieve long-term, transformative development and

385

Low Emissions Asian Development (LEAD) Program | Open Energy Information  

Open Energy Info (EERE)

Emissions Asian Development (LEAD) Program Emissions Asian Development (LEAD) Program Jump to: navigation, search Name Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh, Cambodia, India, Indonesia, Laos, Malaysia, Nepal, Papua New Guinea, Philippines, Thailand, Vietnam Southern Asia, South-Eastern Asia, Southern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, Southern Asia, Melanesia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia References LEAD Program[1]

386

CEBAF accelerator achievements  

Science Conference Proceedings (OSTI)

In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

Y.C. Chao, M. Drury, C. Hovater, A. Hutton, G.A. Krafft, M. Poelker, C. Reece, M. Tiefenback

2011-06-01T23:59:59.000Z

387

Accelerating Turing Machines  

Science Conference Proceedings (OSTI)

Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of ? contains n consecutive 7s, ... Keywords: ?-machine, Chinese room argument, Church–Turing thesis, accelerating Turing machine, decision problem, effective procedure, halting problem, hypercomputation, hypercomputer, infinity machine, oracle machine, super-task

B. Jack Copeland

2002-05-01T23:59:59.000Z

388

Implementing Molecular Dynamics on Hybrid High Performance Computers - Particle-Particle Particle-Mesh  

Science Conference Proceedings (OSTI)

The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with an approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.

Brown, W Michael [ORNL; Kohlmeyer, Axel [Temple University; Plimpton, Steven J [ORNL; Tharrington, Arnold N [ORNL

2012-01-01T23:59:59.000Z

389

IODP Expedition 346: Asian Monsoon Week 3 Report (1117 August 2013)  

E-Print Network (OSTI)

IODP Expedition 346: Asian Monsoon Week 3 Report (11­17 August 2013) Operations The transit to Site

390

Ground Broken for New Job-Creating Accelerator Research Facility at DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Broken for New Job-Creating Accelerator Research Facility at Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois December 16, 2011 - 11:49am Addthis WASHINGTON, D.C. - Today, ground was broken for a new accelerator research facility being built at the Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. Supported jointly by the state of Illinois and DOE, the construction of the Illinois Accelerator Research Center (IARC) will provide a state-of-the-art facility for research, development and industrialization of particle accelerator technology, and create about 200 high-tech jobs. DOE's Office

391

RESONATOR PARTICLE SEPARATOR  

DOE Patents (OSTI)

A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)

Blewett, J.P.; Kiesling, J.D.

1963-06-11T23:59:59.000Z

392

February 1992 R. H. Johnson 353 Heat and Moisture Sources and Sinks of Asian Monsoon  

E-Print Network (OSTI)

February 1992 R. H. Johnson 353 Heat and Moisture Sources and Sinks of Asian Monsoon Precipitating The structure and properties of ,heat and moisture sources and sinks of the Asian monsoon are reviewed. Results by the Asian monsoon, with the detailed structure of this distribution determined in large part by a wide

Johnson, Richard H.

393

Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon?  

E-Print Network (OSTI)

Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon content over SECN is regulated primarily by both the Indian and East Asian monsoons. Further analysis indicated that the variability of the East Asian summer monsoon is substantially regulated by the western

394

Influence of volcanic eruptions on the climate of the Asian monsoon region  

E-Print Network (OSTI)

Influence of volcanic eruptions on the climate of the Asian monsoon region K. J. Anchukaitis,1 B. M throughout much of monsoon Asia. Here, we use long and wellvalidated proxy reconstructions of Asian droughts on the climate of the Asian monsoon region, Geophys. Res. Lett., 37, L22703, doi:10.1029/ 2010GL044843. 1

Smith, Frederick

395

Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data  

E-Print Network (OSTI)

Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data variability of the Asian monsoon sys- tem and the relationship amongst its sub-systems, the Indian and East Asian Summer Monsoon, are not suffi- ciently understood to predict its responses to a future warming

Gilli, Adrian

396

Radio-frequency quadrupole resonator for linear accelerator  

DOE Patents (OSTI)

An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

Moretti, A.

1982-10-19T23:59:59.000Z

397

Steady-State Solutions in Nonlinear Diffusive Shock Acceleration  

E-Print Network (OSTI)

Stationary solutions to the equations of non-linear diffusive shock acceleration play a fundamental role in the theory of cosmic-ray acceleration. Their existence usually requires that a fraction of the accelerated particles be allowed to escape from the system. Because the scattering mean-free-path is thought to be an increasing function of energy, this condition is conventionally implemented as an upper cut-off in energy space -- particles are then permitted to escape from any part of the system, once their energy exceeds this limit. However, because accelerated particles are responsible for substantial amplification of the ambient magnetic field in a region upstream of the shock front, we examine an alternative approach in which particles escape over a spatial boundary. We use a simple iterative scheme that constructs stationary numerical solutions to the coupled kinetic and hydrodynamic equations. For parameters appropriate for supernova remnants, we find stationary solutions with efficient acceleration when the escape boundary is placed at the point where growth and advection of strongly driven non-resonant waves are in balance. We also present the energy dependence of the distribution function close to the energy where it cuts off - a diagnostic that is in principle accessible to observation.

B. Reville; J. G. Kirk; P. Duffy

2008-12-20T23:59:59.000Z

398

Plasma-based accelerator structures  

SciTech Connect

Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

Schroeder, Carl B.

1999-12-01T23:59:59.000Z

399

Collective Acceleration in Solar Flares  

E-Print Network (OSTI)

Laboratory UNIVERSITY OF CALIFORNIA Accelerator & FusionLaboratory, University of California, Berkeley, CA 94720 (2)

Barletta, W.

2008-01-01T23:59:59.000Z

400

Advanced test accelerator: a high-current induction linac  

SciTech Connect

The Advanced Test Accelerator (ATA) is a linear induction accelerator being built at Lawrence Livermore National Laboratory. The aim of the ATA, together with its associated physics program is the research and development necessary to resolve whether particle-beam propagation is possible. Since the accelerator is the tool needed to do the basic propagation experiment, many of its design parameters are specified by the physics. The accelerator parameters are: 50 MeV, 10 kA, 70 ns pulse width (FWHM), and a 1 kHz rep-rate during a ten-pulse burst. In addition, beam quality and pulse-to-pulse repeatability must be excellent. The unique features of the accelerator are the 10 kA beam and the 1 kHz burst frequency.

Cook, E.G.; Birx, D.L.; Reginato, L.L.

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Simulation in Particle Physics Rob Roser and Tom LeCompte  

NLE Websites -- All DOE Office Websites (Extended Search)

parallel architectures Projecting our Needs The Energy Frontier 112712 3 The Large Hadron Collider is the world's largest particle accelerator. * It collides beams of protons...

402

About Us: Accelerator Operations and Technology, AOT: LANL  

NLE Websites -- All DOE Office Websites (Extended Search)

About AOT Accelerator and Operations Technology AOT Division provides operations and related support for the Los Alamos Neutron Science Center (LANSCE), conducting fundamental and applied research and development needed to improve its operations support efforts. AOT's R&D efforts include plasma physics, ion beam generation; accelerator physics; linear-accelerator-structure engineering, design; high-space-charge proton-accumulator/compressor-ring physics; beam-transport-lattice physics, engineering; particle-beam-diagnostics physics, engineering; high- and low-power-radio-frequency-system engineering; high-voltage and -current, pulsed-power engineering; magnet-power-system engineering; mechanical engineering, design (e.g., precision alignment technology);

403

Synergia: an accelerator modeling tool with 3-D space charge  

SciTech Connect

High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab booster accelerator.

Amundson, James F.; Spentzouris, P.; /Fermilab; Qiang, J.; Ryne, R.; /LBL, Berkeley

2004-07-01T23:59:59.000Z

404

Two Types of Strong Northeast Asian Summer Monsoon  

Science Conference Proceedings (OSTI)

The characteristics of a strong northeast Asian summer monsoon (NEASM) with and without (A and B type, respectively) a basinwide warming in the Indian Ocean during the preceding winter are examined for the period of 1979–2006. In the case of the ...

Jung-Eun Kim; Sang-Wook Yeh; Song-You Hong

2009-08-01T23:59:59.000Z

405

A Dynamical Index for the East Asian Winter Monsoon  

Science Conference Proceedings (OSTI)

A new index measuring the East Asian winter monsoon is defined using the mean wind shears of upper-tropospheric zonal wind based on the belief that the physical processes of both higher and lower latitudes, and at both lower and upper troposphere,...

Yueqing Li; Song Yang

2010-08-01T23:59:59.000Z

406

Accelerator Update | Archive | 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Accelerator Update Archive 2 Accelerator Update Archive April 27, 2012 - April 30, 2012 NuMI reported receiving 7.67E18 protons on target for the period from 4/23/12 to 4/30/12. The Booster developed an aperture restriction that required lower beam intensity Main Injector personnel completed their last study The shutdown begins Linac, MTA, and Booster will continue using beam for one or two more weeks Linac will supply the Neutron Therapy Facility beam for most of the shutdown April 25, 2012 - April 27, 2012 Booster beam stop problem repaired Beam to all experiments will shut off at midnight on Monday morning, 4/30/12. Main Injector will continue to take beam until 6 AM on Monday morning. Linac, the Neutron Therapy Facility, MTA, and Booster will continue using beam for one or two more weeks. The Fermi Accelerator Complex will be in shutdown for approximately one year

407

ORELA accelerator facility  

NLE Websites -- All DOE Office Websites (Extended Search)

The Oak Ridge Electron Linear Accelerator The Oak Ridge Electron Linear Accelerator Pulsed Neutron Source The ORELA is a powerful electron accelerator-based neutron source located in the Physics Division of Oak Ridge National Laboratory. It produces intense, nanosecond bursts of neutrons, each burst containing neutrons with energies from 10e-03 to 10e08 eV. ORELA is operated about 1200 hours per year and is an ORNL User Facility open to university, national laboratory and industrial scientists. The mission of ORELA has changed from a recent focus on applied research to nuclear astrophysics. This is an area in which ORELA has historically been very productive: most of the measurements of neutron capture cross sections necessary for understanding heavy element nucleosynthesis through the slow neutron capture process (s-process) have

408

Interfacing to accelerator instrumentation  

SciTech Connect

As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

Shea, T.J.

1995-12-31T23:59:59.000Z

409

An accelerator technology legacy  

Science Conference Proceedings (OSTI)

Accelerator technology has been a major beneficiary of the investment made over the last decade. It is the intention of this paper to provide the reader with a glimpse of the broad nature of those advances. Development has been on a broad front and this paper can highlight only a few of those. Two spin-off applications will be outlined -- a concept for a compact, active, beam probe for solar body exploration and the concept for an accelerator-driven transmutation system for energy production.

Heighway, E.A.

1994-11-01T23:59:59.000Z

410

Pulsed electromagnetic acceleration of exploded wire plasmas  

Science Conference Proceedings (OSTI)

A simple analysis of the dynamic state of a current-conducting high-density plasma column, resulting from an exploded wire between the conductors of a rail-gun accelerator or one or more wires strung between the anode and cathode conductors in a pulsed-power generator diode, is given on the basis of a one-dimensional magnetohydrodynamics model. Spatial distributions of the current density, magnetic field, temperature, and particle density are calculated as well as the temporal current, voltage, and impedance histories. The model self-consistently treats the accelerator load transition through its solid, melt, vapor, and plasma states in the presence of its supply source and feed network. Once formed and accelerated, the plasma state calculations show expansion cooling across the self-induced magnetic field if the Bennett condition is not satisfied. The model predictions are compared to two experimental situations. The first involves the delivery of some hundreds of Joules of stored energy to the wire load. For this case, good agreement between the calculated and observed plasma state is obtained. The second situation involves the delivery of many thousands of Joules to the wire load. For this case and dependent upon the wire mass, diameter, number of wires exploded, their separation, and the pulsed energy electrical wave shapes, the magnetohydrodynamic results can be qualitatively incorrect. The necessity of an electromagnetic particle simulation approach is indicated in order to resolve the magnetic rope-like structure and filamentation observed in the very energetic plasmas.

Peratt, A.L.; Koert, P.

1983-11-01T23:59:59.000Z

411

2013 Asian American & Pacific Islander Heritage Month Resources and Theme |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Asian American & Pacific Islander Heritage Month Resources and 2013 Asian American & Pacific Islander Heritage Month Resources and Theme 2013 Asian American & Pacific Islander Heritage Month Resources and Theme April 3, 2013 - 1:43pm Addthis Save the date for the Asian Pacific American Heritage Month Family Day at the Smithsonian! This year it will be at the National Museum of American History on Saturday, May 4, 2013. More details to come. Save the date for the Asian Pacific American Heritage Month Family Day at the Smithsonian! This year it will be at the National Museum of American History on Saturday, May 4, 2013. More details to come. Editor's Note: This information is provided by the White House Initiative on Asian Americans and Pacific Islanders. For the 2013 Asian American and Pacific Islander (AAPI) Heritage Month, the

412

High Energy Density Physics and Exotic Acceleration Schemes  

Science Conference Proceedings (OSTI)

The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.

Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

2005-09-27T23:59:59.000Z

413

Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density  

Science Conference Proceedings (OSTI)

The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

Bake, Muhammad Ali; Xie Baisong [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shan Zhang [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Hong Xueren [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Hongyu [Department of Physics, Anshan Normal University, Anshan 114005 (China); Shanghai Bright-Tech Information Technology Co. Ltd, Shanghai 200136 (China)

2012-08-15T23:59:59.000Z

414

Accelerating News Issue 5  

E-Print Network (OSTI)

In this spring issue, we look at developments towards higher luminosity and higher energy colliders. We report on the technology developed for the remote powering of the LHC magnets and studies of diagnostics based on higher order mode port signals. We also inform you about the main outcome of the TIARA survey on market needs for accelerator scientists.

Szeberenyi, A

2013-01-01T23:59:59.000Z

415

Portable Linear Accelerator Development  

Science Conference Proceedings (OSTI)

This report describes Minac-3, a miniaturized linear accelerator system. It covers the current equipment capabilities and achievable modifications, applications information for prospective users, and technical information on high-energy radiography that is useful for familiarization and planning. The design basis, development, and applications history of Minac are also summarized.

1982-12-01T23:59:59.000Z

416

Formation of electrostatic structures by wakefield acceleration in ultrarelativistic plasma flows: Electron acceleration to cosmic ray energies  

SciTech Connect

The ever increasing performance of supercomputers is now enabling kinetic simulations of extreme astrophysical and laser produced plasmas. Three-dimensional particle-in-cell (PIC) simulations of relativistic shocks have revealed highly filamented spatial structures and their ability to accelerate particles to ultrarelativistic speeds. However, these PIC simulations have not yet revealed mechanisms that could produce particles with tera-electron volt energies and beyond. In this work, PIC simulations in one dimension (1D) of the foreshock region of an internal shock in a gamma ray burst are performed to address this issue. The large spatiotemporal range accessible to a 1D simulation enables the self-consistent evolution of proton phase space structures that can accelerate particles to giga-electron volt energies in the jet frame of reference, and to tens of tera-electron volt in the Earth's frame of reference. One potential source of ultrahigh energy cosmic rays may thus be the thermalization of relativistically moving plasma.

Dieckmann, M.E.; Shukla, P.K.; Eliasson, B. [Institute of Theoretical Physics IV, Ruhr-University Bochum, D-44780 Bochum (Germany)

2006-06-15T23:59:59.000Z

417

Online Particle Physics Information - Particles & Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

Particles & Properties Data Review of Particle Physics (RPP) A biennial comprehensive review summarizing much of the known data about the field of particle physics produced by the...

418

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

virtual particles. Virtual particles do not violate the conservation of energy. The kinetic energy plus mass of the initial decaying particle and the final decay products is...

419

Particle injector for fluid systems  

DOE Patents (OSTI)

A particle injector device provides injection of particles into a liquid stream. The device includes a funnel portion comprising a conical member having side walls tapering from a top opening (which receives the particles) down to a relatively smaller exit opening. A funnel inlet receives a portion of the liquid stream and the latter is directed onto the side walls of the conical member so as to create a cushion of liquid against which the particles impact. A main section of the device includes an inlet port in communication with the exit opening of the funnel portion. A main liquid inlet receives the main portion of the liquid stream at high pressure and low velocity and a throat region located downstream of the main liquid inlet accelerates liquid received by this inlet from the low velocity to a higher velocity so as to create a low pressure area at the exit opening of the funnel portion. An outlet opening of the main section enables the particles and liquid stream to exit from the injector device. This invention is particularly concerned with particle injection in connection with the calibration of inline optical particle counters.

Ruch, J.F.

1996-12-31T23:59:59.000Z

420

Review of Particle Physics  

E-Print Network (OSTI)

11. Particle Physics Education Sites . . . . . . . . .ONLINE PARTICLE PHYSICS INFORMATION 1.11. Particle Physics Education Sites . . . . . . . . . . 12.

Nakamura, Kenzo

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Particle Adventure | How do we detect what's happening? ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we detect what's happening? - Wavelength - The moral The morals of the preceding story are: Don't throw things at hungry bears To...

422

PLASMA WAKE EXCITATION BY LASERS OR PARTICLE BEAMS  

SciTech Connect

Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. Plasma wake excitation driven by lasers or particle beams is examined, and the implications of the different physical excitation mechanisms for accelerator design are discussed. Plasma-based accelerators have attracted considerable attention owing to the ultrahigh field gradients sustainable in a plasma wave, enabling compact accelerators. These relativistic plasma waves are excited by displacing electrons in a neutral plasma. Two basic mechanisms for excitation of plasma waves are actively being researched: (i) excitation by the nonlinear ponderomotive force (radiation pressure) of an intense laser or (ii) excitation by the space-charge force of a dense charged particle beam. There has been significant recent experimental success using lasers and particle beam drivers for plasma acceleration. In particular, for laser-plasma accelerators (LPAs), the demonstration at LBNL in 2006 of high-quality, 1 GeV electron beams produced in approximately 3 cm plasma using a 40 TW laser. In 2007, for beam-driven plasma accelerators, or plasma-wakefield accelerators (PWFAs), the energy doubling over a meter to 42 GeV of a fraction of beam electrons on the tail of an electron beam by the plasma wave excited by the head was demonstrated at SLAC. These experimental successes have resulted in further interest in the development of plasma-based acceleration as a basis for a linear collider, and preliminary collider designs using laser drivers and beam drivers are being developed. The different physical mechanisms of plasma wave excitation, as well as the typical characteristics of the drivers, have implications for accelerator design. In the following, we identify the similarities and differences between wave excitation by lasers and particle beams. The field structure of the plasma wave driven by lasers or particle beams is discussed, as well as the regimes of operation (linear and nonlinear wave). Limitations owing to driver emittance are also discussed.

Schroeder, Carl B.; Esarey, Eric; Benedetti, Carlo; Toth, Csaba; Geddes, Cameron; Leemans, Wim

2011-04-01T23:59:59.000Z

423

Hard particle spectra from parallel shocks due to turbulence transmission  

E-Print Network (OSTI)

If taken into account, the transmission of the particle-scattering turbulence --in addition to just the particles-- through the shock front can change the effective compression ratio felt by the accelerating particles significantly from the compression of the underlying plasma. This can lead to significantly harder energy spectra than what are traditionally predicted assuming frozen-in turbulence. I consider the applicability and limitations of turbulence transmission scenario in parallel shock waves of different thickness, its consequences in AGN and microquasar environments, and discuss the possible effects to the spectrum of the accelerated particles.

Joni Tammi

2007-12-11T23:59:59.000Z

424

ACCELERATION OF LOW-ENERGY IONS AT PARALLEL SHOCKS WITH A FOCUSED TRANSPORT MODEL  

SciTech Connect

We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of accelerated particles is a power law with the same spectral index as the solution of standard DSA theory, although the particles are highly anisotropic in the upstream region. The intensity, however, is different from that predicted by DSA theory, indicating a different level of injection efficiency. It is found that the shock strength, the injection speed, and the intensity of an electric cross-shock potential (CSP) jump can affect the injection efficiency of the low-energy particles. A stronger shock has a higher injection efficiency. In addition, if the speed of injected particles is above a few times the shock speed, the produced power-law spectrum is consistent with the prediction of standard DSA theory in both its intensity and spectrum index with an injection efficiency of 1. CSP can increase the injection efficiency through direct particle reflection back upstream, but it has little effect on the energetic particle acceleration once the speed of injected particles is beyond a few times the shock speed. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection.

Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K. [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States)] [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States)

2013-04-10T23:59:59.000Z

425

Tightly Coupled Accelerators Architecture for Minimizing Communication Latency among Accelerators  

Science Conference Proceedings (OSTI)

In recent years, heterogeneous clusters using accelerators have been widely used in high performance computing systems. In such clusters, inter-node communication among accelerators requires several memory copies via CPU memory, and the communication ... Keywords: GPGPU, Accelerator Computing, Interconnection Network, PCI Express, Remote DMA, CUDA, GPU Direct

Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato

2013-05-01T23:59:59.000Z

426

PARTICLE ACCELERATOR DIVISION SUMMARY REPORT FOR APRIL THROUGH SEPTEMBER 1957  

SciTech Connect

>Abstracts of published reports and a list of the internal memos of general interest are included. The radial vari:dtion of magnetic field as a function of thc magnitude of the central field was measured and investigated with model magnets. Measurements on end-effects were made on the 1/7-scale model magnet. The calculated and measured fields at the ramp and are shown for a low field value where there is no saturation and such calculations are expected to be valid. The variation in the effective magnetic end position as function of the central field value and also thc radial shape of the cffective end as a function of central field value are shown. Flow measurements were made for the various sizes of Cu tubing that could be used for model magnet coils. A block diagram of could new generator regulator for the G. E. generator is given. A schematic diagram of the pulse circuit for the 1/4-scale model magnet and an idealized voltage waveform on an inductivc load are shown. A plan view of the ring magnet is given showing the basic dimensions and a proposed arrangement of the various basic components which will occupy the straight sections. A plan view of a nviently driven to form a pile bent. The pile bent spacing demension and bent lo adings are when deflections at the overhanging ends and at all the midpoints of the spans are equal. The results of the calculations of thc m:ignctization of thc magnet of the l2.5 Bev proton deflections at the overhanging ends and at all the midpoints of the spiins are equal. The results of the calculations of the magnetization of the magnet of the l2.5 Rev proton synchrotron are t:ibulated tind grnphed. The schcmatic circuit of the master oscillator r-f control systcm is given The bias program which must be dcveloped and the various contributions which are added together to get it are plotted. Results are given on Evaportion pump speed using nitrogen and air. Pump-down data for air in a 23-ft stanless stcel chamber with an Evaportion pump are tabulated. (For preceding period see ANL-57l3.) (M.H.R.)

1957-10-01T23:59:59.000Z

427

On Non-Primordial Deuterium Production by Accelerated Particles  

E-Print Network (OSTI)

Deuterium plays a crucial role in cosmology because the primordial D/H abundance, in the context of big bang nucleosynthesis (BBN) theory, yields a precise measure of the cosmic baryon content. Observations of D/H can limit or measure the true primordial abundance because D is thought to be destroyed by stars and thus D/H monotonically decreases after BBN. Recently, however, Mullan & Linsky have pointed out that D arises as a secondary product of neutrons in stellar flares which then capture on protons via n+p \\to d + gamma, and that this could dominate over direct D production in flares. Mullan & Linsky note that if this process is sufficiently vigorous in flaring dwarf stars, it could lead to significant non-BBN D production. We have considered the production of D in stellar flares, both directly and by n capture. We find that for reasonable flare spectra, n/d < 10 and (n+d)/6Li < 400, both of which indicate that the n-capture channel does not allow for Galactic D production at a level which will reverse the monotonic decline of D. We also calculate the 2.22 MeV gamma-ray line production associated with n capture, and find that existing COMPTEL limits also rule out significant D production in the Galaxy today. Thus, we find flares in particular, and neutron captures in general, are not an important Galactic source of D. On the other hand, we cannot exclude that flare production might contribute to recent FUSE observations of large variations in the local interstellar D/H abundance; we do, however, offer important constraints on this possibility. Finally, since flare stars should inevitably produce some n-capture events, a search for diffuse 2.22 MeV gamma-rays by INTEGRAL can further constrain (or measure!) Galactic deuterium production via n-capture.

Tijana Prodanovic; Brian D. Fields

2003-07-09T23:59:59.000Z

428

#LabChat: Particle Accelerators, Lasers and Discovery Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

a concentrated photovoltaic unit that when commercialized will revolutionize the way solar energy is collected. | Photo courtesy of Sandia National Lab LabChat: Science of...

429

Applications of pyroelectric particle accelerators Jeffrey A. Geuther, Yaron Danon *  

E-Print Network (OSTI)

of interest in the use of the pyroelectric effect as a means of producing useful radiation. By heating, such as the use of the electron beam for materials testing, will also be discussed. � 2007 Elsevier B.V. All of neutrons via D­D fusion [3,4]. This report shows that the surface charge on the crystals can be predicted

Danon, Yaron

430

US Particle Accelerator School Cyclotrons: Old but Still New  

E-Print Network (OSTI)

! Ldrift = 1 2 v frf = 1 2 "c frf = 1 2 "#rf Etot = Ngap·Vrf ==> High energy implies large size Vrf Vrf #12

Dai, Pengcheng

431

Particle Accelerator & X-Ray Optics | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hard X-Ray Quad Collimator Facilitates Microcrystallography Experiments Isotopic Abundance in Atom Trap Trace Analysis Nanomaterials Analysis using a Scanning Electron Microscope...

432

DANTSYS: A diffusion accelerated neutral particle transport code system  

SciTech Connect

The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZ{Theta} symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing.

Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O`Dell, R.D.; Walters, W.F.

1995-06-01T23:59:59.000Z

433

SLAC National Accelerator Laboratory - Particle Physics and Astrophysi...  

NLE Websites -- All DOE Office Websites (Extended Search)

to produce exotic forms of matter that haven't existed since the start of the universe. SLAC is involved in the highest-energy experiments ever undertaken, at Europe's Large Hadron...

434

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network (OSTI)

Scientific Comput- ing (NERSC) Center Analytics Team, usingsimulations on Seaborg at NERSC, made possible by an INCITEand ongoing work on Franklin at NERSC and Atlas at Lawrence

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

435

Interannual Variations of East Asian Trough Axis at 500 hPa and its Association with the East Asian Winter Monsoon Pathway  

Science Conference Proceedings (OSTI)

Interannual variations of the East Asian trough (EAT) axis at 500 hPa are studied with the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis data. The associated circulation pattern and pathway of the East Asian winter monsoon (...

Lin Wang; Wen Chen; Wen Zhou; Ronghui Huang

2009-02-01T23:59:59.000Z

436

Carbon particles  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, Arlon J. (Oakland, CA)

1984-01-01T23:59:59.000Z

437

Trillion Particles,  

NLE Websites -- All DOE Office Websites (Extended Search)

Trillion Trillion Particles, 120,000 cores, and 350 TBs: Lessons Learned from a Hero I/O Run on Hopper Surendra Byna ∗ , Andrew Uselton ∗ , Prabhat ∗ , David Knaak † , and Yun (Helen) He ∗ ∗ Lawrence Berkeley National Laboratory, USA. Email: {sbyna, acuselton, prabhat, yhe}@lbl.gov † Cray Inc., USA. Email: knaak@cray.com Abstract-Modern petascale applications can present a variety of configuration, runtime, and data management challenges when run at scale. In this paper, we describe our experiences in running VPIC, a large-scale plasma physics simulation, on the NERSC production Cray XE6 system Hopper. The simulation ran on 120,000 cores using ∼80% of computing resources, 90% of the available memory on each node and 50% of the Lustre scratch file system. Over two trillion particles were simulated for 23,000 timesteps, and 10 one-trillion particle dumps, each ranging between

438

Calculation of wakefields in a 17 GHz beam-driven photonic band-gap accelerator structure  

E-Print Network (OSTI)

We present the theoretical analysis and computer simulation of the wakefields in a 17 GHz photonic band-gap (PBG) structure for accelerator applications. Using the commercial code CST Particle Studio, the fundamental ...

Hu, Min

439

Accelerations in Steep Gravity Waves  

Science Conference Proceedings (OSTI)

Surface accelerations can be measured in at least two ways: 1) by a fixed vertical wave guage, 2) by a free-floating buoy. This gives rise to two different vertical accelerations, called respectively “apparent” and “real”, or Langrangian. This ...

M. S. Longuet-Higgins

1985-11-01T23:59:59.000Z

440

BNL | Accelerators for Scientific Research  

NLE Websites -- All DOE Office Websites (Extended Search)

the development of the next crop of accelerator scientists and engineers, promises to train even more. With its history of building world-class accelerators and its proximity to...

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SSRL Accelerator Phycics Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

(29047 bytes) ICFA2000t.gif (31362 bytes) Home Page LCLS Accelerator Physics at SSRL The field tha t can be covered by the Accelerator Physics activities at SSRL is limited...

442

Acceleration and energy loss in N = 4 SYM  

Science Conference Proceedings (OSTI)

This contribution is based on two talks given at the XIII Mexican School of Particles and Fields. We revisit some of the results presented in [19], concerning the rate of energy loss of an accelerating quark in strongly-coupled N = 4 super-Yang-Mills.

Chernicoff, Mariano; Gueijosa, Alberto [Departamento de Fisica de Altas Energias, Instituto de Ciencias Nucleares Universidad Nacional Autonoma de Mexico (Mexico)

2009-04-20T23:59:59.000Z

443

Carbon Fiber Damage in Accelerator Beam  

E-Print Network (OSTI)

Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

Sapinski, M; Guerrero, A; Koopman, J; Métral, E

2009-01-01T23:59:59.000Z

444

Radiation-hardened microelectronics for accelerators  

Science Conference Proceedings (OSTI)

Ionization and displacement phenomena in semiconducting materials are reviewed. The different classes of radiation discussed include fast neutron, x-rays and gamma rays and heavy charged particles. Both transient and steady state phenomena will be discussed. How these basic effects lead to change in the electrical characteristics of transistors and diodes and the functionality of intergrated circuits are summarized. The fundamental radiation limits for various semiconductor technologies are summarized. Recommendations and precautions are given regarding the applicability of various microelectronic technologies to different accelerator environments. 14 refs., 7 tabs.

Gover, J.E.; Fischer, T.A.

1988-01-01T23:59:59.000Z

445

Enhancement of accelerating field of microwave cavities by magnetic insulation  

Science Conference Proceedings (OSTI)

Limitations on the maximum achievable accelerating gradient of microwave cavities can strongly influence the performance, length, and cost of particle accelerators. Gradient limitations are widely believed to be initiated by electron emission from the cavity surfaces. Here, we show that the deleterious effects of field emission are effectively suppressed by applying a tangential magnetic field to the cavity walls. With the aid of numerical simulations we compute the field strength required to insulate an 805 MHz cavity and estimate the cavity's tolerances to typical experimental errors such as magnet misalignments and positioning errors. Then, we review an experimental program, currently under progress, to further study the concept. Finally, we report on two specific examples that illustrate the feasibility of magnetic insulation into prospective particle accelerator applications.

Stratakis, D.; Gallardo, J.; Palmer, R.B.

2011-04-15T23:59:59.000Z

446

Localizing Micro-grids Research for the SE Asian Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Localizing Micro-grids Research for the SE Asian Region Localizing Micro-grids Research for the SE Asian Region Speaker(s): Cheng-Guan (Michael) Quah Valerie Choy Date: December 3, 2010 - 12:00pm Location: 90-3122 This presentation discusses developments (and test-beds) of micro-grids and distributed generation systems that are on-going in Singapore and poses the question as to whether simpler versions of such systems would be applicable to meet the challenges of rural electrification and energy poverty particularly those of its closest neighbors. Southeast Asia is an ethnically and culturally diverse region comprising more than 10 nations where 160 million people still live without electricity. Off-grid electrification for rural village communities and eco-resorts using DG and micro-grid systems are conceivable but many technical, political, cultural

447

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian  

NLE Websites -- All DOE Office Websites (Extended Search)

Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Forests: A Database (NDP-068) DOI: 10.3334/CDIAC/lue.ndp068 data Data PDF PDF Appendix A is reprint of Brown et al. paper in Geocarto International, Vol. 8; copyright 1993 Geocarto International Centre and reprinted with kind permission from the publisher) image Contributors Sandra Brown1 Louis R. Iverson2 Anantha Prasad2 Department of Natural Resources and Environmental Sciences University of Illinois Urbana, Illinois 1Present address: Winrock International, Arlington, Virginia 2Present address: United States Forest Service, Northeast Research Station, Delaware, Ohio Prepared by Tammy W. Beaty, Lisa M. Olsen, Robert M. Cushman, and Antoinette L. Brenkert Carbon Dioxide Information Analysis Center

448

Low Emissions Asian Development (LEAD) Program | Open Energy Information  

Open Energy Info (EERE)

Development (LEAD) Program Development (LEAD) Program (Redirected from Low Emission Asian Development (LEAD) Program) Jump to: navigation, search Name Low Emissions Asian Development (LEAD) Program Agency/Company /Organization ICF International, United States Agency for International Development (USAID) Partner USFS, EPA, United States Department of State Sector Climate, Energy, Land Topics Background analysis, Low emission development planning, -LEDS Website http://www.LowEmissionsAsia.or Country Bangladesh, Cambodia, India, Indonesia, Laos, Malaysia, Nepal, Papua New Guinea, Philippines, Thailand, Vietnam Southern Asia, South-Eastern Asia, Southern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, Southern Asia, Melanesia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia

449

Accelerator Update | Archive | 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Accelerator Update Archive 10 Accelerator Update Archive December 20, 2010 - December 22, 2010 - Three stores provided !32 hours of luminosity - Problems with two Linac quadrupole power supplies - Cryo system technicians work on TEV sector D1 wet engine - TEV quench during checkout - JASMIN's run at MTest ends December 17, 2010 - December 20, 2010 The Integrated Luminosity for the period from 12/13/10 to 12/20/10 was 66.31 inverse picobarns. NuMI reported receiving 7.62E18 protons on target during this same period. - Five Stores provided ~62 hours of luminosity - Operations had trouble with a Linac RF station (LRF3) - Operators tuned the Linac backup source (I- Source) December 15, 2010 - December 17, 2010 - Three stores provided ~36.1 hours of luminosity - MI-52 Septa repaired - NuMI recovered its target LCW system

450

ACCELERATOR SAFETY ENVELOPE  

NLE Websites -- All DOE Office Websites (Extended Search)

LCASE-001, Ver. 3 LCASE-001, Ver. 3 Linac Commissioning Accelerator Safety Envelope For the National Synchrotron Light Source II Photon Sciences Directorate Version 3 December 8, 2011 Prepared by Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 managed by Brookhaven Science Associates for the U.S. Department of Energy Office of Science Basic Energy Science under contract DE-AC02-98CD10886 Linac Commissioning Accelerator Safety Envelope (LCASE) ii Photon Sciences Directorate ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,

451

Accelerator Update | Archive | 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Accelerator Update Archive 9 Accelerator Update Archive December 18, 2009 - December 21, 2009 The integrated luminosity for the period from 12/14/09 to 12/21/09 was 51.27 inverse picobarns. NuMI reported receiving 6.38E18 protons on target during this same period. - Four stores provided ~62.25 hours of luminosity - Store 7444 had an AIL of 306E30 - BRF19 cavity suffered a vacuum failure and was removed - The Booster West Anode Power Supply suffered some problems December 16, 2009 - December 18, 2009 - Three stores provided ~45 hours of luminosity - PBar kicker problem - MI RF problems December 14, 2009 - December 16, 2009 - Four stores provided ~42 hours of luminosity - Recycler kicker repaired - Booster East Anode Power Supply trips due to BRF1, 2, & 8 December 11, 2009 - December 14, 2009

452

WIPP Accelerating Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

ACCELERATING CLEANUP: ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. NTP Program Management

453

Plasma Wakefield Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

rpwa rpwa Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content Department of Energy Page Content Plasma Wakefield Acceleration

454

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

ZGS -- Zero Gradient Synchrotron (operation: 1963 - 1979) ZGS -- Zero Gradient Synchrotron (operation: 1963 - 1979) The ZGS was a 12 GeV weak-focusing proton synchrotron. It was the first high energy physics accelerator located between the U.S. coasts. The ZGS was also the first synchrotron to accelerate spin polarized protons and the first to use H-minus injection. Other noteworthy features of the ZGS program were the large number of university-based users and the pioneering development of large superconducting magnets for bubble chambers and beam transport. References - Document Access Guide History of the ZGS, Argonne, 1979, American Institute of Physics, AIP Conference Proceedings No. 60 (1980). (Located in the Argonne Research Library) High Energy Physics at Argonne National Laboratory, A. Crewe, R.

455

ACCELERATOR SAFETY ENVELOPE  

NLE Websites -- All DOE Office Websites (Extended Search)

BCASE-001, Ver. 2 BCASE-001, Ver. 2 Booster Commissioning Accelerator Safety Envelope For the National Synchrotron Light Source II Photon Sciences Directorate Version 2 December 8, 2011 Prepared by Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 managed by Brookhaven Science Associates for the U.S. Department of Energy Office of Science Basic Energy Science under contract DE-AC02-98CD10886 Booster Commissioning Accelerator Safety Envelope (BCASE) ii Photon Sciences Directorate ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,

456

Review of ion accelerators  

Science Conference Proceedings (OSTI)

The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

Alonso, J.

1990-06-01T23:59:59.000Z

457

Accelerators for Cancer Therapy  

DOE R&D Accomplishments (OSTI)

The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

Lennox, Arlene J.

2000-05-30T23:59:59.000Z

458

History of Proton Linear Accelerators  

DOE R&D Accomplishments (OSTI)

Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

Alvarez, L. W.

1987-01-00T23:59:59.000Z

459

Linear induction accelerator  

DOE Patents (OSTI)

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

Buttram, M.T.; Ginn, J.W.

1988-06-21T23:59:59.000Z

460

ION ACCELERATION SYSTEM  

DOE Patents (OSTI)

Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

Luce, J.S.; Martin, J.A.

1960-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "asian particle accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Asian Summer Monsoon Intraseasonal Variability in General Circulation Models  

SciTech Connect

The goals of this report are: (1) Analyze boreal summer Asian monsoon intraseasonal variability general circulation models--How well do the models represent the eastward and northward propagating components of the convection and how well do the models represent the interactive control that the western tropical Pacific rainfall exerts on the rainfall over India and vice-versa? (2) Role of air-sea interactions--prescribed vs. interactive ocean; and (3) Mean monsoon vs. variability.

Sperber, K R; Annamalai, H

2004-02-24T23:59:59.000Z

462

ACCELERATION INTEGRATING MEANS  

DOE Patents (OSTI)

An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

Wilkes, D.F.

1961-08-29T23:59:59.000Z

463

TRACKING ACCELERATOR SETTINGS.  

Science Conference Proceedings (OSTI)

Recording setting changes within an accelerator facility provides information that can be used to answer questions about when, why, and how changes were made to some accelerator system. This can be very useful during normal operations, but can also aid with security concerns and in detecting unusual software behavior. The Set History System (SHS) is a new client-server system developed at the Collider-Accelerator Department of Brookhaven National Laboratory to provide these capabilities. The SHS has been operational for over two years and currently stores about IOOK settings per day into a commercial database management system. The SHS system consists of a server written in Java, client tools written in both Java and C++, and a web interface for querying the database of setting changes. The design of the SHS focuses on performance, portability, and a minimal impact on database resources. In this paper, we present an overview of the system design along with benchmark results showing the performance and reliability of the SHS over the last year.

D OTTAVIO,T.; FU, W.; OTTAVIO, D.P.

2007-10-15T23:59:59.000Z

464

Particle beam fusion  

SciTech Connect

Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

1980-12-31T23:59:59.000Z

465

SOME ASPECTS OF THE PROSPECTIVE EXPERIMENTAL USE OF THE STANFORD TWO-MILE ACCELERATOR  

DOE Green Energy (OSTI)

Eleven papers dealing with photon beams from the accelerator, use of hydrogen bubble chambers and spark chambers, a storage ring for 10-Bev muons, muon beams and -p scattering experiments, mass analysis of highenergy accelerator beams, the search for intermediate bosons and heavy leptons, particle yields arising from decay of short-lived intermediate particles, and conjectures on the effects of Regge poles on Drell processes are included. Separate abstracts were prepared for the eleven papers. (D.C.W.)

Chinowsky, W.; DeWire, J.W.; Lichtenberg, D.B.; Masek, G.; Murray, J.J.; Perl, M.; Schwartz, M.; Tinlot, J.; Trilling, G.

1962-01-01T23:59:59.000Z

466

Accelerator Operations and Physics - Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Operations & Physics Accelerator Systems Division---Argonne National Laboratory Mission Statement Safe, reliable, attentive, and responsive operation of APS accelerator...

467

Method and apparatus for generating low energy nuclear particles  

DOE Patents (OSTI)

A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

Powell, James R. (Shoreham, NY); Reich, Morris (Flushing, NY); Ludewig, Hans (Brookhaven, NY); Todosow, Michael (Miller Place, NY)

1999-02-09T23:59:59.000Z

468

Method and apparatus for generating low energy nuclear particles  

DOE Patents (OSTI)

A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

1999-02-09T23:59:59.000Z

469

DOE Announces $60 Million in Projects to Accelerate Scientific Discovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million in Projects to Accelerate Scientific 0 Million in Projects to Accelerate Scientific Discovery through Advanced Computing DOE Announces $60 Million in Projects to Accelerate Scientific Discovery through Advanced Computing September 7, 2006 - 8:53am Addthis WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) Office of Science today announced approximately $60 million in new awards annually for 30 computational science projects over the next three to five years. The projects are aimed at accelerating research in designing new materials, developing future energy sources, studying global climate change, improving environmental cleanup methods and understanding physics from the tiniest particles to the massive explosions of supernovae. "Advanced computing is a critical element of President Bush's American

470

Searching for Cosmic Accelerators via IceCube  

NLE Websites -- All DOE Office Websites (Extended Search)

Searching for Cosmic Searching for Cosmic Accelerators via IceCube Searching for Cosmic Accelerators via IceCube Berkeley Lab Researchers Part of an International Hunt November 21, 2013 Lynn Yarris, lcyarris@lbl.gov, 510.486.5375 Bert.jpg This event display shows "Bert," one of two neutrino events discovered at IceCube whose energies exceeded one petaelectronvolt (PeV). The colors show when the light arrived, with reds being the earliest, succeeded by yellows, greens and blues. The size of the circle indicates the number of photons observed. (Courtesy of IceCube Lab) In our universe there are particle accelerators 40 million times more powerful than the Large Hadron Collider (LHC) at CERN. Scientists don't know what these cosmic accelerators are or where they are located, but new

471

RFQ (radio-frequency quadrupole) acceleration section and its optimization  

SciTech Connect

The acceleration section is a crucial component of any radio- frequency quadrupole (RFQ). It is common a practice to design this section with a constant modulation factor equal to its value at the end of the gentle buncher. A new method of design is proposed in this paper. The algorithm is based on the fact that the transverse space-charge current limit (TCL) is approximately proportional to the instantaneous velocity of the accelerated particle and the longitudinal space-charge current limit (LCL) is nearly independent of the velocity in the acceleration section. The modulation factor is increased such that the TCL is slightly larger than the double of the design current. Simulation using this method shows that transmission efficiency and emittances are the same as the conventional design. The advantage gained is a 50-75% increase in accelerating rate. The optimization of the length of this section is also discussed. 3 refs., 4 figs., 1 tab.

Raparia, D.

1988-01-01T23:59:59.000Z

472

Observation of Enhanced Transformer Ratio in Collinear Wakefield Acceleration  

Science Conference Proceedings (OSTI)

One approach to future high energy particle accelerators is based on the wakefield principle: a leading high-charge drive bunch is used to excite fields in an accelerating structure or plasma that in turn accelerates a trailing low-charge witness bunch. The transformer ratio R is defined as the ratio of the maximum energy gain of the witness bunch to the maximum energy loss of the drive bunch. In general, Rtransformer ratio limitation. We report here the first experimental study of the ramped bunch train (RBT) technique in a dielectric based accelerating structure. A single drive bunch was replaced by two bunches with charge ratio of 1 ratio 2.5 and a separation of 10.5 wavelengths of the fundamental mode. An average measured transformer ratio enhancement by a factor of 1.31 over the single drive bunch case was obtained.

Jing, C.; Kanareykin, A.; Schoessow, P. [Euclid Techlabs LLC, Solon, Ohio 44139 (United States); Power, J. G.; Conde, M.; Yusof, Z.; Gai, W. [High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois-60439 (United States)

2007-04-06T23:59:59.000Z

473

Proceedings of a workshop on Applications of Accelerators  

SciTech Connect

This document is a compilation of material collected as the results of a workshop, Applications of Accelerators, held at the Stanford Linear Accelerator Center, 1--2 December 1993. The material collected here has been edited for style and to minimize duplication. Footnotes will identify the original source of the material. We believe that the reader will find that this document has something for every interest. There are applications in the fields of health, food preservation, energy, environmental monitoring and protection, and industrial processing. Man y of the examples discussed have already passed the demonstration stage. Most of the others are the subject of active accelerator research. Taken as a whole, the particle accelerator field contains a wealth of application opportunities, some already in use, and many more ready to be exploited.

Herrmannsfeldt, W.B. [ed.] [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A.M.; Alonso, J.R. [eds.] [Lawrence Berkeley Lab., CA (United States)

1994-01-31T23:59:59.000Z

474

Muon Acceleration - RLA and FFAG  

SciTech Connect

Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

Alex Bogacz

2011-10-01T23:59:59.000Z

475

Boosting the Next Wave of Accelerators: New Technique Speeds Simulations by  

NLE Websites -- All DOE Office Websites (Extended Search)

Boosting Accelerator Boosting Accelerator Design Boosting the Next Wave of Accelerators New Technique Speeds Simulations by up to a Million-fold March 29, 2011 | Tags: Franklin, Nuclear Physics (NP) Berkeley Lab Contact: Paul Preuss, paul_preuss@lbl.gov, +1 510 486 6249 NERSC Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 Albert Einstein's most famous thought experiment is proving its worth once again as researchers use it to help speed up the modeling (and thus design) of so-called "tabletop" accelerators. Particle accelerators, such as CERN's Large Hadron Collider (LHC), help physicists unlock the fundamental secrets of matter and the beginnings of our universe. But conventional accelerators are large and expensive. An emerging new class of compact accelerators is being designed to cost less

476

The Impact of the Central Asian Mountains on Downstream Storminess and Monsoon Onset.  

E-Print Network (OSTI)

??In the first part of the thesis, the role of the Central Asian mountains on North Pacific storminess is examined using an atmospheric general circulation… (more)

Park, Hyo Seok

2010-01-01T23:59:59.000Z

477

East Asian Summer monsoon precipitation systems: rainfall characteristics, storm morphologies and convective properties.  

E-Print Network (OSTI)

??This study attempts to characterize the particular convection type, namely storm morphologies, convective properties, and microphysics, of different weather regimes within the East Asian Summer… (more)

Xu, Weixin

2011-01-01T23:59:59.000Z

478

The influence of Asian monsoon variability on precipitation patterns over the Maldives.  

E-Print Network (OSTI)

??Asian climate varies on various spatial and temporal scales and has a wide spectrum of climatic characteristics. Climate variability, especially decadal to inter-annual scale rainfall… (more)

Zahid

2011-01-01T23:59:59.000Z

479

Influence of Decadal Variability of Global Oceans on South Asian Monsoon and ENSO-Monsoon Relation .  

E-Print Network (OSTI)

??This study has investigated the influence of the decadal variability associated with global oceans on South Asian monsoon and El Niño-Southern Oscillation (ENSO)- monsoon relation.… (more)

Krishnamurthy, Lakshmi

2012-01-01T23:59:59.000Z