National Library of Energy BETA

Sample records for asian particle accelerator

  1. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  2. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  3. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  4. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  5. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  6. Particle Acceleration in Astrophysical Sources

    E-Print Network [OSTI]

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  7. Cosmic Particle Acceleration: Basic Issues

    E-Print Network [OSTI]

    T. W. Jones

    2000-12-22

    Cosmic-rays are ubiquitous, but their origins are surprisingly difficult to understand. A review is presented of some of the basic issues common to cosmic particle accelerators and arguments leading to the likely importance of diffusive shock acceleration as a general explanation. The basic theory of diffusive shock acceleration is outlined, followed by a discussion of some of the key issues that still prevent us from a full understanding of its outcomes. Some recent insights are mentioned at the end that may help direct ultimate resolution of our uncertainties.

  8. Cooled particle accelerator target

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  9. Naked singularities as particle accelerators

    E-Print Network [OSTI]

    Mandar Patil; Pankaj S. Joshi

    2010-11-25

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  10. Naked singularities as particle accelerators

    SciTech Connect (OSTI)

    Patil, Mandar; Joshi, Pankaj S.

    2010-11-15

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  11. Relativistic Shocks: Particle Acceleration and Magnetization

    E-Print Network [OSTI]

    Sironi, Lorenzo; Lemoine, Martin

    2015-01-01

    We review the physics of relativistic shocks, which are often invoked as the sources of non-thermal particles in pulsar wind nebulae (PWNe), gamma-ray bursts (GRBs), and active galactic nuclei (AGN) jets, and as possible sources of ultra-high energy cosmic-rays. We focus on particle acceleration and magnetic field generation, and describe the recent progress in the field driven by theory advances and by the rapid development of particle-in-cell (PIC) simulations. In weakly magnetized or quasi parallel-shocks (where the magnetic field is nearly aligned with the flow), particle acceleration is efficient. The accelerated particles stream ahead of the shock, where they generate strong magnetic waves which in turn scatter the particles back and forth across the shock, mediating their acceleration. In contrast, in strongly magnetized quasi-perpendicular shocks, the efficiencies of both particle acceleration and magnetic field generation are suppressed. Particle acceleration, when efficient, modifies the turbulence ...

  12. Symplectic Maps and Chromatic Optics in Particle Accelerators...

    Office of Scientific and Technical Information (OSTI)

    Symplectic Maps and Chromatic Optics in Particle Accelerators Citation Details In-Document Search Title: Symplectic Maps and Chromatic Optics in Particle Accelerators You are...

  13. Symplectic Maps and Chromatic Optics in Particle Accelerators...

    Office of Scientific and Technical Information (OSTI)

    Symplectic Maps and Chromatic Optics in Particle Accelerators Citation Details In-Document Search Title: Symplectic Maps and Chromatic Optics in Particle Accelerators Authors: Cai,...

  14. Stochastic Particle Acceleration in Parallel Relativistic Shocks

    E-Print Network [OSTI]

    Joni J. P. Virtanen; Rami Vainio

    2005-03-03

    We present results of test-particle simulations on both the first- and the second-order Fermi acceleration for relativistic parallel shock waves. Our studies suggest that the role of the second-order mechanism in the turbulent downstream of a relativistic shock may have been underestimated in the past, and that the stochastic mechanism may have significant effects on the form of the particle spectra and its time evolution.

  15. Non-accelerator particle physics

    SciTech Connect (OSTI)

    Steinberg, R.I.; Lane, C.E.

    1991-09-01

    The goals of this research are the experimental testing of fundamental theories of physics such as grand unification and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large area underground detector to search for grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low and high energy neutrinos: the {nu}IMB project, which seeks to refurbish and upgrade the IMB water Cerenkov detector to perform an improved proton decay search together with a long baseline reactor neutrino oscillation experiment using a kiloton liquid scintillator (the Perry experiment); and development of technology for improved liquid scintillators and for very low background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments. 21 refs., 19 figs., 6 tabs.

  16. Automation of particle accelerator control

    SciTech Connect (OSTI)

    Silbar, R.R.; Schultz, D.E.

    1988-01-01

    We have begun a program aiming toward automatic control of charged-particle beam optics using artificial intelligence programming techniques. In developing our prototype, we are working with LISP machines and the KEE expert system shell. Our first goal was to develop a 'mouseable' representation of a typical beamline. This responds actively to changes input from the mouse or keyboard, giving an updated display of the beamline itself, its optical properties, and the instrumentation and control devices as seen by the operator. We have incorporated the Fortran beam optics code TRANSPORT for simulation of the beam. The paper describes the experience gained in this process and discusses plans to extend the work so that it is usable, in real-time, on an operating beamline. 11 refs., 2 figs.

  17. RFQ device for accelerating particles

    DOE Patents [OSTI]

    Shepard, K.W.; Delayen, J.R.

    1995-06-06

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium. 5 figs.

  18. Test particle acceleration by rotating jet magnetospheres

    E-Print Network [OSTI]

    F. M. Rieger; K. Mannheim

    2000-11-01

    Centrifugal acceleration of charged test particles at the base of a rotating jet magnetosphere is considered. Based on an analysis of forces we derive the equation for the radial accelerated motion and present an analytical solution. It is shown that for particles moving outwards along rotating magnetic field lines, the energy gain is in particular limited by the breakdown of the bead-on-the-wire approximation which occurs in the vicinity of the light cylinder $r_{L}$. The corresponding upper limit for the maximum Lorentz factor $\\gamma_{max}$ for electrons scales $\\propto B^{2/3} r_{L}^{2/3}$, with $B$ the magnetic field strength at $r_{L}$, and is at most of the order of a $10^2-10^3$ for the conditions regarded to be typical for BL Lac objects. Such values suggest that this mechanism may provide pre-accelerated seed particles which are required for efficient Fermi-type particle acceleration at larger scales in radio jets.

  19. Seventy Five Years of Particle Accelerators

    ScienceCinema (OSTI)

    Andy Sessler

    2013-06-11

    Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe. His talk was presented July 26, 2006.

  20. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    E-Print Network [OSTI]

    Geddes, Cameron G.R.

    2010-01-01

    of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

  1. Kerr Naked Singularities as Particle Accelerators

    E-Print Network [OSTI]

    Mandar Patil; Pankaj S. Joshi

    2011-11-16

    We investigate here the particle acceleration by Kerr naked singularities. We consider a collision between particles dropped in from infinity at rest, which follow geodesic motion in the equatorial plane, with their angular momenta in an appropriate finite range of values. When an event horizon is absent, an initially infalling particle turns back as an outgoing particle, when it has the angular momentum in an appropriate range of values, which then collides with infalling particles. When the collision takes place close to what would have been the event horizon in the extremal case, the center of mass energy of collision is arbitrarily large, depending on how close is the overspinning Kerr geometry to the extremal case. Thus the fast rotating Kerr configurations if they exist in nature could provide an excellent cosmic laboratory to probe ultra-high-energy physics.

  2. On particle acceleration around shocks. I

    E-Print Network [OSTI]

    Mario Vietri

    2003-03-28

    We derive a relativistically covariant (although not manifestly so) equation for the distribution function of particles accelerated at shocks, which applies also to extremely relativistic shocks, and arbitrarily anisotropic particle distributions. The theory is formulated for arbitrary pitch angle scattering, and reduces to the well--known case for small angle scatterings via a Fokker--Planck approximation. The boundary conditions for the problem are completely reformulated introducing a physically motivated Green's function; the new formulation allows derivation of the particle spectrum both close and far away from the injection energy in an exact way, while it can be shown to reduce to a power--law at large particle energies. The particle spectral index is also recovered in a novel way. Contact is made with the Newtonian treatment.

  3. Naked singularities as particle accelerators. II

    SciTech Connect (OSTI)

    Patil, Mandar; Joshi, Pankaj S.; Malafarina, Daniele

    2011-03-15

    We generalize here our earlier results on particle acceleration by naked singularities. We showed recently [M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).] that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies. However, we focused there only on the spherically symmetric gravitational collapse models, which were also assumed to be self-similar. In this paper, we broaden and generalize the result to all gravitational collapse models leading to the formation of a naked singularity as the final state of collapse, evolving from a regular initial data, without making any prior restrictive assumptions about the spacetime symmetries such as above. We show that, when the particles interact and collide near the Cauchy horizon, the energy of collision in the center-of-mass frame will be arbitrarily high, thus offering a window to the Planck scale physics. We also consider the issue of various possible physical mechanisms of generation of such very high-energy particles from the vicinity of naked singularity. We then construct a model of gravitational collapse to a timelike naked singularity to demonstrate the working of these ideas, where the pressure is allowed to be negative, but the energy conditions are respected. We show that a finite amount of mass-energy density has to be necessarily radiated away from the vicinity of the naked singularity as the collapse evolves. Therefore, the nature of naked singularities, both at the classical and quantum level, could play an important role in the process of particle acceleration, explaining the occurrence of highly energetic outgoing particles in the vicinity of the Cauchy horizon that participate in extreme high-energy collisions.

  4. Automatic beam path analysis of laser wakefield particle acceleration data

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Automatic beam path analysis of laser wakefield particle acceleration data Oliver Rübel1 in a pipeline fashion to automatically locate and analyze high-energy particle bunches undergoing acceleration

  5. Neutron Sciences Staff Give Back, Teach US Particle Accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Sciences Staff Give Back, Teach US Particle Accelerator School Courses Katie Bethea - March 13, 2014 Neutron Science Directorate staff hosted students from the US Particle...

  6. Canonical Particle Acceleration in FRI Radio Galaxies

    E-Print Network [OSTI]

    Andrew Young; Lawrence Rudnick; Debora Katz; Tracey DeLaney; Namir E. Kassim; Kazuo Makishima

    2005-02-26

    Matched resolution multi-frequency VLA observations of four radio galaxies are used to derive the asymptotic low energy slope of the relativistic electron distribution. Where available, low energy slopes are also determined for other sources in the literature. They provide information on the acceleration physics independent of radiative and other losses, which confuse measurements of the synchrotron spectra in most radio, optical and X-ray studies. We find a narrow range of inferred low energy electron energy slopes, n(E)=const*E^-2.1 for the currently small sample of lower luminosity sources classified as FRI (not classical doubles). This distribution is close to, but apparently inconsistent with, the test particle limit of n(E)=const*E^-2.0 expected from strong diffusive shock acceleration in the non-relativistic limit. Relativistic shocks or those modified by the back-pressure of efficiently accelerated cosmic rays are two alternatives to produce somewhat steeper spectra. We note for further study the possiblity of acceleration through shocks, turbulence or shear in the flaring/brightening regions in FRI jets as they move away from the nucleus. Jets on pc scales and the collimated jets and hot spots of FRII (classical double) sources would be governed by different acceleration sites and mechanisms; they appear to show a much wider range of spectra than for FRI sources.

  7. Microwaves and particle accelerators: a fundamental link

    SciTech Connect (OSTI)

    Chattopadhyay, Swapan [Universities of Lancaster, Liverpool and Manchester and Cockcroft Institute, Cheshire (United Kingdom)

    2011-07-01

    John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. The development of radar and high power vacuum electronics, especially microwave power tubes like the magnetrons and the klystrons in the pre-second world war era, was instrumental in the rapid development of circular and linear charged particle accelerators in the second half of the twentieth century. We had harnessed the powerful microwave radio-frequency sources from few tens of MHz to up to 90 GHz spanning L-band to W-band frequencies. Simultaneously in the second half of the twentieth century, lasers began to offer very first opportunities of controlling charged particles at smaller resolutions on the scale of wavelengths of visible light. We also witnessed in this period the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. These developments depend crucially on yet further advancements in the production and control of high power and high frequency microwaves and light sources, often intricately coupled in their operation to the high energy beams themselves. We give a glimpse of the recent developments and innovations in the electromagnetic production and control of charged particle beams in the service of science and society. (author)

  8. PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS

    SciTech Connect (OSTI)

    David L. Chichester

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  9. Model-independent particle accelerator tuning

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scheinker, Alexander; Pang, Xiaoying; Rybarcyk, Larry

    2013-10-21

    We present a new model-independent dynamic feedback technique, rotation rate tuning, for automatically and simultaneously tuning coupled components of uncertain, complex systems. The main advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2) It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence and its stability, and 4) It has a simple digital implementation through a control system such as the Experimental Physics and Industrial Control System (EPICS). Because this technique is model independent it may be useful as a real-time, in-hardware, feedback-based optimization scheme formore »uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los Alamos Neutron Science Center Linear Accelerator’s transport region, while the beam properties and RF phase shift are continuously varying. The tuning is based only on beam current readings, without knowledge of particle dynamics. We also present an outline of how to implement this general scheme in software for optimization, and in hardware for feedback-based control/tuning, for a wide range of systems.« less

  10. 43 PARTICLE ACCELERATORS; ELECTRON GUNS; BEAM EMITTANCE; CHARGE

    Office of Scientific and Technical Information (OSTI)

    SPACE 430200* -- Particle Accelerators-- Beam Dynamics, Field Calculations, & Ion Optics The evolution of the electron-beam phase space distribution in laser-driven rf guns is...

  11. How Particle Accelerators Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    cancer patients. The vast majority of these irradiations are now performed with microwave linear accelerators producing electron beams and x-rays. Accelerator technology,...

  12. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOE Patents [OSTI]

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  13. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOE Patents [OSTI]

    Maschke, Alfred W. (East Moriches, NY)

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  14. Acceleration of low energy charged particles by gravitational waves

    E-Print Network [OSTI]

    G. Voyatzis; L. Vlahos; S. Ichtiaroglou; D. Papadopoulos

    2005-12-07

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  15. A particle accelerator employing transient space charge potentials

    DOE Patents [OSTI]

    Post, R.F.

    1988-02-25

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.

  16. Exploring Particle Acceleration in Gamma-Ray Binaries

    E-Print Network [OSTI]

    Bosch-Ramon, V

    2011-01-01

    Binary systems can be powerful sources of non-thermal emission from radio to gamma rays. When the latter are detected, then these objects are known as gamma-ray binaries. In this work, we explore, in the context of gamma-ray binaries, different acceleration processes to estimate their efficiency: Fermi I, Fermi II, shear acceleration, the converter mechanism, and magnetic reconnection. We find that Fermi I acceleration in a mildly relativistic shock can provide, although marginally, the multi-10 TeV particles required to explain observations. Shear acceleration may be a complementary mechanism, giving particles the final boost to reach such a high energies. Fermi II acceleration may be too slow to account for the observed very high energy photons, but may be suitable to explain extended low-energy emission. The converter mechanism seems to require rather high Lorentz factors but cannot be discarded a priori. Standard relativistic shock acceleration requires a highly turbulent, weakly magnetized downstream med...

  17. Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Sessler, Andy

    2011-04-28

    Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.

  18. Relativistic Shocks: Particle Acceleration and Magnetic Field Generation, and Emission

    E-Print Network [OSTI]

    Nishikawa, K I; Richardson, G; Preece, R; Sol, H; Fishman, G J

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g.,Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma with and without initial magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock at the same simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. The simul...

  19. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    E-Print Network [OSTI]

    Nishikawa, K I; Hededal, C B; Richardson, G; Preece, R; Sol, H; Fishman, G J

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma with and without initial magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock at the same simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. While so...

  20. A GPU Accelerated Smoothed Particle Hydrodynamics Capability For Houdini 

    E-Print Network [OSTI]

    Sanford, Mathew

    2012-10-19

    on the desired result. One common fluid simulation technique is the Smoothed Particle Hydrodynamics (SPH) method. This method is highly parellelizable. I have implemented a method to integrate a Graphics Processor Unit (GPU) accelerated SPH capability into the 3D...

  1. Particle Acceleration in three dimensional Reconnection Regions: A New Test Particle Approach

    E-Print Network [OSTI]

    Rudiger Schopper; Guido T. Birk; Harald Lesch

    2001-06-29

    Magnetic Reconnection is an efficient and fast acceleration mechanism by means of direct electric field acceleration parallel to the magnetic field. Thus, acceleration of particles in reconnection regions is a very important topic in plasma astrophysics. This paper shows that the conventional analytical models and numerical test particle investigations can be misleading concerning the energy distribution of the accelerated particles, since they oversimplify the electric field structure by the assumption that the field is homogeneous. These investigations of the acceleration of charged test particles are extended by considering three-dimensional field configurations characterized by localized field-aligned electric fields. Moreover, effects of radiative losses are discussed. The comparison between homogeneous and inhomogeneous electric field acceleration in reconnection regions shows dramatic differences concerning both, the maximum particle energy and the form of the energy distribution.

  2. Accelerated lifetime testing of energy storage capacitors used in particle accelerators power converters

    E-Print Network [OSTI]

    Boattini, Fulvio

    2015-01-01

    Energy storage capacitors are used in large quantities in high power converters for particle accelerators. In this application capacitors see neither a DC nor an AC voltage but a combination of the two. The paper presents a new power converter explicitly designed to perform accelerated testing on these capacitors and the results of the tests.

  3. Magnetic reconnection configurations and particle acceleration in solar flares

    E-Print Network [OSTI]

    Chen, P. F.

    types of solar flares. Upper panel: two-ribbon flares; Lower panel: compact flares. The color showsMagnetic reconnection configurations and particle acceleration in solar flares P. F. Chen, W. J space under different magnetic configurations. Key words: solar flares, magnetic reconnection, particle

  4. Berkeley Lab Particle Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections AuditsBarbara2.0.1BenBerkeley Lab Particle

  5. Particle acceleration via reconnection processes in the supersonic solar wind

    SciTech Connect (OSTI)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-12-10

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index ? = –(3 + M{sub A} )/2, where M{sub A} is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + ? {sub c}/(8?{sub diff})), where ? {sub c}/?{sub diff} is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio ?{sub diff}/? {sub c}. Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c {sup –5} (c particle speed) spectra observed by Fisk and Gloeckler and Mewaldt et al.

  6. Acceleration of Energetic Particles Through Self-Generated Waves in a Decelerating Coronal Shock

    E-Print Network [OSTI]

    Sanahuja, Blai

    Acceleration of Energetic Particles Through Self-Generated Waves in a Decelerating Coronal Shock M the Alfvén waves responsible for the diffusive acceleration of particles are generated by the accelerated coupled SEP acceleration and Alfvén wave self- generation model [5], the particles are simulated

  7. Relativistic Shocks: Particle Acceleration and Magnetic Field Generation, and Emission

    E-Print Network [OSTI]

    K. -I. Nishikawa; P. Hardee; G. Richardson; R. Preece; H. Sol; G. J. Fishman

    2004-10-07

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g.,Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma with and without initial magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock at the same simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale (mainly transverse) magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of ``jitter'' radiation from deflected electrons (positrons) as opposed to synchrotron radiation.

  8. Particle acceleration at corotating interaction regions in the heliosphere

    SciTech Connect (OSTI)

    Tsubouchi, K., E-mail: kent1@mac.com [Department of Earth and Planetary Science, Tokyo Institute of Technology, Ookayama 2-21-1, Tokyo 152-8551 (Japan)

    2014-11-01

    Hybrid simulations are performed to investigate the dynamics of both solar wind protons and interplanetary pickup ions (PUIs) around the corotating interaction region (CIR). The one-dimensional system is applied in order to focus on processes in the direction of CIR propagation. The CIR is bounded by forward and reverse shocks, which are responsible for particle acceleration. The effective acceleration of solar wind protons takes place when the reverse shock (fast wind side) favors a quasi-parallel regime. The diffusive process accounts for this acceleration, and particles can gain energy in a suprathermal range (on the order of 10 keV). In contrast, the PUI acceleration around the shock differs from the conventional model in which the motional electric field along the shock surface accelerates particles. Owing to their large gyroradius, PUIs can gyrate between the upstream and downstream, several proton inertial lengths away from the shock. This 'cross-shock' gyration results in a net velocity increase in the field-aligned component, indicating that the magnetic mirror force is responsible for acceleration. The PUIs that remain in the vicinity of the shock for a long duration (tens of gyroperiods) gain much energy and are reflected back toward the upstream. These reflected energetic PUIs move back and forth along the magnetic field between a pair of CIRs that are magnetically connected. The PUIs are repeatedly accelerated in each reflection, leading to a maximum energy gain close to 100 keV. This mechanism can be evaluated in terms of 'preacceleration' for the generation of anomalous cosmic rays.

  9. Accurate and efficient spin integration for particle accelerators

    E-Print Network [OSTI]

    Abell, Dan T; Ranjbar, Vahid H; Barber, Desmond P

    2015-01-01

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

  10. On the novel mechanism of acceleration of cosmic particles

    E-Print Network [OSTI]

    Osmanov, Z

    2015-01-01

    A novel model of particle acceleration in the rotating magnetospheres of active galactic nuclei (AGN) and pulsars is constructed. The particle energies may be boosted up to enormous energies in a several step mechanism. In the first stage, the Langmuir waves are centrifugally excited and amplified by means of a parametric process that efficiently pumps rotational energy to excite electrostatic fields. By considering the pulsars it is shown that the Langmuir waves very soon Landau damp on the relativistic electrons already present in a magnetosphere. It has been found that the process is so efficient that no energy losses might affect the mechanism of particle acceleration. Applying typical parameters for young pulsars we have shown that by means of this process the electrons might achieve energies of the order of $10^{18}$ eV. The situation in AGN magnetospheres is slightly different. In the second stage, the process of "Langmuir collapse" develops, creating appropriate conditions for transferring electric en...

  11. Single particles accelerate final stages of capillary break up

    E-Print Network [OSTI]

    Lindner, Anke; Wagner, Christian

    2015-01-01

    Droplet formation of suspensions is present in many industrial and technological processes such as coating and food engineering. Whilst the finite time singularity of the minimum neck diameter in capillary break-up of simple liquids can be described by well known self-similarity solutions, the pinching of non-Brownian suspension depends in a complex way on the particle dynamics in the thinning thread. Here we focus on the very dilute regime where the filament contains only isolated beads to identify the physical mechanisms leading to the pronounced acceleration of the filament thinning observed. This accelerated regime is characterized by an asymmetric shape of the filament with an enhanced curvature that depends on the size and the spatial distribution of the particles within the capillary thread.

  12. Single particles accelerate final stages of capillary break up

    E-Print Network [OSTI]

    Anke Lindner; Jorge Eduardo Fiscina; Christian Wagner

    2015-06-12

    Droplet formation of suspensions is present in many industrial and technological processes such as coating and food engineering. Whilst the finite time singularity of the minimum neck diameter in capillary break-up of simple liquids can be described by well known self-similarity solutions, the pinching of non-Brownian suspension depends in a complex way on the particle dynamics in the thinning thread. Here we focus on the very dilute regime where the filament contains only isolated beads to identify the physical mechanisms leading to the pronounced acceleration of the filament thinning observed. This accelerated regime is characterized by an asymmetric shape of the filament with an enhanced curvature that depends on the size and the spatial distribution of the particles within the capillary thread.

  13. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    SciTech Connect (OSTI)

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  14. Charlton, L.A.; Difilippo, F.C. 43 PARTICLE ACCELERATORS; 99...

    Office of Scientific and Technical Information (OSTI)

    43 PARTICLE ACCELERATORS; 99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; Spallation; Spallation; Neutron Sources; Neutron Sources; Target...

  15. The Particle Accelerator Simulation Code PyORBIT

    SciTech Connect (OSTI)

    Gorlov, Timofey V [ORNL; Holmes, Jeffrey A [ORNL; Cousineau, Sarah M [ORNL; Shishlo, Andrei P [ORNL

    2015-01-01

    The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT is an open source code accessible to the public through the Google Open Source Projects Hosting service.

  16. Proceedings of the 22nd Particle Accelerator Conference (PAC'07)

    SciTech Connect (OSTI)

    N /A

    2007-08-01

    The twenty-second Particle Accelerator Conference, PAC'07, took place at the Albuquerque Convention Centre in Albuquerque, the largest city in New Mexico, from Monday to Friday, 2007 June 25 to 29. It was attended by over 1350 delegates from 25 different countries (63% North America, 24% Europe, 11% Asia and 2% Other), and was held under the auspices of the two professional societies that oversee and make holding this series of conferences possible, the Division of Physics of Beams within APS, and the Nuclear and Plasma Sciences Society within IEEE. As host of the conference, Los Alamos National Laboratory (LANL) is especially thanked for their many contributions and assistance both prior to and during the conference. The Convention Center was an ideal location for information sharing and discussions between the interdisciplinary aspects of the accelerator community, as well as for related meetings and ad-hoc 'rump' sessions.

  17. uge particle accelerators have been at the vanguard of research in particle

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    of such machines -- for the LHC, a 27-km circum- ference and several billion euros -- are fuelling a serious effort counterparts, positrons, can then `surf' the electric field of a wave's wake. Particles have been accelerated- ting, radio-frequency electric field through long metallic cavities (around a metre long for medical

  18. Query-driven Analysis of Plasma-based Particle Acceleration Data Oliver Rubel

    E-Print Network [OSTI]

    Query-driven Analysis of Plasma-based Particle Acceleration Data Oliver R¨ubel LBNL Cameron G. R Laboratory, e-mail: {oruebel, ewbethel}@lbl.gov Laser, Optical Accelerator System Integrated Studies (LOASIS INTRODUCTION Plasma-based particle accelerators utilize an electron plasma wave driven by a short ( 100 fs

  19. Estimation of direct laser acceleration in laser wakefield accelerators using particle-in-cell simulations

    E-Print Network [OSTI]

    Shaw, J L; Marsh, K A; Tsung, F S; Mori, W B; Joshi, C

    2015-01-01

    Many current laser wakefield acceleration (LWFA) experiments are carried out in a regime where the laser pulse length is on the order of or longer than the wake wavelength and where ionization injection is employed to inject electrons into the wake. In these experiments, the trapped electrons will co-propagate with the longitudinal wakefield and the transverse laser field. In this scenario, the electrons can gain a significant amount of energy from both the direct laser acceleration (DLA) mechanism as well as the usual LWFA mechanism. Particle-in-cell (PIC) codes are frequently used to discern the relative contribution of these two mechanisms. However, if the longitudinal resolution used in the PIC simulations is inadequate, it can produce numerical heating that can overestimate the transverse motion, which is important in determining the energy gain due to DLA. We have therefore carried out a systematic study of this LWFA regime by varying the longitudinal resolution of PIC simulations from the standard, bes...

  20. Feature-based Analysis of Plasma-based Particle Acceleration Data

    SciTech Connect (OSTI)

    Ruebel, Oliver; Geddes, Cameron G.R.; Chen, Min; Cormier-Michel, Estelle; Bethel, E. Wes

    2013-07-05

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  1. The Mysterious Universe - Exploring Our World with Particle Accelerators

    ScienceCinema (OSTI)

    Brau, James E [University of Oregon

    2014-06-25

    The universe is dark and mysterious, more so than even Einstein imagined. While modern science has established deep understanding of ordinary matter, unidentified elements ("Dark Matter" and "Dark Energy") dominate the structure of the universe, its behavior and its destiny. What are these curious elements? We are now working on answers to these and other challenging questions posed by the universe with experiments at particle accelerators on Earth. Results of this research may revolutionize our view of nature as dramatically as the advances of Einstein and other quantum pioneers one hundred years ago. Professor Brau will explain for the general audience the mysteries, introduce facilities which explore them experimentally and discuss our current understanding of the underlying science. The presentation is at an introductory level, appropriate for anyone interested in physics and astronomy.

  2. Black hole lightning due to particle acceleration at subhorizon scales

    E-Print Network [OSTI]

    Aleksi?, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Godinovi?, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzi?, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Zanin, R; Kadler, M; Schulz, R; Ros, E; Bach, U; Krauß, F; Wilms, J

    2014-01-01

    Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry, but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here, we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC telescopes revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20\\% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet.

  3. Particle injection and cosmic ray acceleration at collisionless parallel shocks

    SciTech Connect (OSTI)

    Quest, K.B.

    1987-01-01

    The structure of collisionless parallel shocks is studied using one-dimensional hybrid simulations, with emphasis on particle injection into the first-order Fermi acceleration process. It is argued that for sufficiently high Mach number shocks, and in the absence of wave turbulence, the fluid firehose marginal stability condition will be exceeded at the interface between the upstream, unshocked, plasma and the heated plasma downstream. As a consequence, nonlinear, low-frequency, electromagnetic waves are generated and act to slow the plasma and provide dissipation for the shock. It is shown that large amplitude waves at the shock ramp scatter a small fraction of the upstream ions back into the upstream medium. These ions, in turn, resonantly generate the electromagnetic waves that are swept back into the shock. As these waves propagate through the shock they are compressed and amplified, allowing them to non-resonantly scatter the bulk of the plasma. Moreover, the compressed waves back-scatter a small fraction of the upstream ions, maintaining the shock structure in a quasi-steady state. The back-scattered ions are accelerated during the wave generation process to 2 to 4 times the ram energy and provide a likely seed population for cosmic rays. 49 refs., 7 figs.

  4. Photo of the Week: What Does a Particle Accelerator Have in Common...

    Broader source: Energy.gov (indexed) [DOE]

    could be widely used in medicine and industry -- particle accelerators are used for cancer research, processing computer chips, and even producing the shrink wrap used to keep...

  5. Fundamentals of Non-relativistic Collisionless Shock Physics: V. Acceleration of Charged Particles

    E-Print Network [OSTI]

    R. A. Treumann; C. H. Jaroschek

    2008-06-25

    A comprehensive review is given of the various processes proposed for accelerating particles by shocks to high energies. These energies are limited by several bounds: the non-relativistic nature of the heliospheric collisionless shocks to which this review restricts, the finite size of these shocks, the finite width of the downstream region, and to the nature of turbulence. In general, collisionless shocks in the heliosphere cannot accelerate particles to very high energies. As a fundamental problem of the acceleration mechanism the injection of see particles is identified. Some mecchanisms for production of seed particles are invoked. Acceleration of electrons begins to uncover its nature. The following problems are covered in this chapter: 1. Introduction -- first and second order Fermi acceleration, 2. Accelerating ions when they are already fast, diffusive acceleration, convection diffusion equation, Lee's self-consistent quasilinear shock acceleration model, 3. Observations, 4. The injection problem, ion surfing, test particle simulations, self-consistent shock acceleration simulations, downstream leakage, trapped particle acceleration, 5. Accelerating electrons, Sonnerup-Wu mechanism, Hoshino's electron shock surfing on quasi-perpendicular shocks, quasiparallel shock surfing.

  6. Diagnostic resonant cavity for a charged particle accelerator

    DOE Patents [OSTI]

    Barov, Nikolai (San Diego, CA)

    2007-10-02

    Disclosed is a diagnostic resonant cavity for determining characteristics of a charged particle beam, such as an electron beam, produced in a charged particle accelerator. The cavity is based on resonant quadrupole-mode and higher order cavities. Enhanced shunt impedance in such cavities is obtained by the incorporation of a set of four or more electrically conductive rods extending inwardly from either one or both of the end walls of the cavity, so as to form capacitive gaps near the outer radius of the beam tube. For typical diagnostic cavity applications, a five-fold increase in shunt impedance can be obtained. In alternative embodiments the cavity may include either four or more opposing pairs of rods which extend coaxially toward one another from the opposite end walls of the cavity and are spaced from one another to form capacitative gaps; or the cavity may include a single set of individual rods that extend from one end wall to a point adjacent the opposing end wall.

  7. Technical Challenges and Scientific Payoffs of Muon Beam Accelerators for Particle Physics

    E-Print Network [OSTI]

    Zisman, Michael S.

    2008-01-01

    and O. Yasuda (eds. ), “Physics at a future neutrino factoryAccelerators for Particle Physics Michael S. Zisman trendP HYSICS Q UESTIONS Particle physics is a broad subject, and

  8. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOE Patents [OSTI]

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

  9. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOE Patents [OSTI]

    Danby, Gordon T. (Wading River, NY); Jackson, John W. (Shoreham, NY)

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  10. The design and performance of Static Var Compensators for particle accelerators

    E-Print Network [OSTI]

    Kahle, Karsten; Genton, Charles-Mathieu

    2015-01-01

    Particle accelerators, and in particular synchrotrons, represent large cycling non-linear loads connected to the electrical distribution network. This paper discusses the typical design and performance of Static Var Compensators (SVCs) to obtain the excellent power quality levels required for particle accelerator operation.

  11. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect (OSTI)

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ? 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ? 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  12. PARTICLE ACCELERATION AT QUASI-PARALLEL SHOCK WAVES: THEORY AND OBSERVATIONS AT 1 AU

    SciTech Connect (OSTI)

    Neergaard Parker, L.; Zank, G. P.

    2012-09-20

    In this paper, we describe a theoretical model for accelerating an arbitrary upstream particle distribution. Only those particles that exceed a prescribed injection energy, E{sub inj}, are accelerated via the diffusive shock acceleration (DSA) mechanism, also known as first-order Fermi acceleration. We identify a set of quasi-parallel shocks at 1 AU and use the observed solar wind particle distribution information to construct our upstream distribution, which is then accelerated diffusively at the shock, assuming the observed shock parameters. The injection energy for particles to be accelerated diffusively at a quasi-parallel shock is discussed theoretically. By using the observed upstream solar wind distribution function and the observed shock parameters, we can compute the injection energy that matches the observed downstream accelerated particle spectrum. Like the previous studies of van Nes et al., Lario et al., and Ho et al., this analysis focuses on the acceleration of protons only via the first-order Fermi acceleration mechanism. However, our primary focus is on quasi-parallel shocks and the injection mechanism in the context of DSA with a background thermal solar wind modeled as a Maxwellian or kappa distribution. Our approach allows for a direct test of injection at interplanetary shocks. It has been proposed that an additional seed population of energetic particles is needed to explain the accelerated particle distribution downstream of quasi-parallel shocks. This conclusion is based typically on studies that address the acceleration of heavy ions primarily and do not characterize the injection of protons alone using the DSA mechanism. Through comparisons of Maxwellian and kappa upstream distributions, we find that DSA with injection directly from a thermal Maxwellian distribution, or weak departures therefrom, for protons is responsible for energetic solar particle events associated with quasi-parallel shocks.

  13. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    SciTech Connect (OSTI)

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.

  14. Grad student aims to improve particle accelerators > EMC2 News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a negatively charged electrode, that when hit with a laser light source, causes electrons to become excited and emitted from the electrode. The electrons are then accelerated...

  15. New Science on the Horizon as Upgraded Particle Accelerator Meets...

    Office of Science (SC) Website

    a new experimental area, Hall D. The Impact Researchers need very big microscopes to study the very small building blocks of matter. CEBAF's electron accelerator and...

  16. Equilibrium Orbit And Linear Oscillations Of Charged particles In axisymmetric E X B Fields And Application To Electron Ring accelerator

    E-Print Network [OSTI]

    Reiser, M

    1973-01-01

    Equilibrium Orbit And Linear Oscillations Of Charged particles In axisymmetric E X B Fields And Application To Electron Ring accelerator

  17. Electromagnetic field-computation for particle accelerators, today and tomorrow

    SciTech Connect (OSTI)

    Turner, L.R.; Kettunen, L.

    1991-01-01

    In this paper, we first review the magnets needed in accelerators, then discuss computations for accelerator magnets performed with present codes, and finally describe a new volume integral code which shows promise, and should be suitable for parallel computation. 9 refs., 10 figs.

  18. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    E-Print Network [OSTI]

    Nishikawa, K I; Richardson, G; Preece, R; Sol, H; Fishman, G J

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and ...

  19. APT related papers presented at the 1997 particle accelerator conference, Vancouver, May 12--16, 1997

    SciTech Connect (OSTI)

    Lawrence, G. [comp.

    1997-07-01

    Tritium is essential for the US nuclear weapons to function, but because it is radioactive with a half-life of 12.3 years, the supply must be periodically replenished. Presently, only reactor or accelerator systems can be used to produce tritium. This report is a compilation of 31 papers given at the 1997 Particle Accelerator Conference which dealt with the accelerator production of tritium. The papers are grouped into two categories, invited and contributed.

  20. A Phenomenological Cost Model for High Energy Particle Accelerators

    E-Print Network [OSTI]

    Vladimir Shiltsev

    2014-04-15

    Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

  1. SINGLE CRYSTAL NIOBIUM TUBES FOR PARTICLE COLLIDERS ACCELERATOR CAVITIES

    SciTech Connect (OSTI)

    MURPHY, JAMES E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred ?C of the melting temperature of niobium, which is 2477 ?C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 ?C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was increased 0.18 mm and eventually to 0.21 mm. Again, with these larger tubes, single crystal tubes were usually produced by the crystallization process. The power supply was generally operated at full output during these tests, and the traverse rate was 5 cm per hour. In a few tests, the traverse rate was increased to 10 cm per hour, and at the faster traverse rate, single crystal growth was not achieved. In these tests with a faster traverse rate, it was thought that the tube was not heated to a high enough temperature to achieve single crystal growth. In the next series of tests, the tube OD was unchanged at 3.8 cm and the wall thickness was increased to 0.30 mm. The increased wall thickness made it difficult to reach an operating temperature above 2,000 ?C, and although the single crystal process caused a large increase in the crystal grains, no single crystal tubes were produced. It was assumed that the operating temperature in these tests was not high enough to achieve single crystal growth. In FY 2012, a larger power supply was purchased and installed. With the new power supply, temperatures above the melting point of Nb were easily obtained regardless of the tube thickness. A series of crystallization tests was initiated to determine if indeed the operating temperature of the previous tests was too low to achieve single crystal growth. For these tests, the Nb tube OD remained at 3.8 cm and the wall thickness was 0.30 mm. The first test had an operating temperature of 2,000 ?C. and the operating temperature was increased by 50 ?C increments for each successive test. The final test was very near the Nb melting temperature, and indeed, the Nb tube eventually melted in the center of the tube. These tests showed that higher temperatures did yield larger grain sizes if the traverse rate was held constant at 5 cm per hour, but no single crystal tubes were produced even at the highest operating temperature. In addition, slowing the traverse rate to as low as 1 cm per hour did not yield a single crystal tube regardless of operating temperature. At this time, it

  2. Accelerator and detector prospects of elementary particle A. N. Skrinskii

    E-Print Network [OSTI]

    McDonald, Kirk

    of methods of cooling charged-particle beams, preparation for serious application of super- conducting with colliding beams involving the development of methods of cooling charged-particle beams, designing) Electrons 1)Positrons m) Photons n) Muons o) Neutrinos Colliding 647 5. The "proton klystron" 650 6. The V I

  3. Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron

    E-Print Network [OSTI]

    of innovative concepts and techniques for the diagnostics of high-quality laser and electron beams · Perform program at PITZ is the: · ultimate optimization of high brightness electron beams by generating 3D ellipsoidal electron bunches, and · beam driven plasma acceleration experiments on the self

  4. Means and method for the focusing and acceleration of parallel beams of charged particles

    DOE Patents [OSTI]

    Maschke, Alfred W. (East Moriches, NY)

    1983-07-05

    A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.

  5. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    E-Print Network [OSTI]

    Rubel, Oliver

    2010-01-01

    A. Hakim, R¨ bel et al. Automatic Beam Path Analysis of399, 1976. R¨ bel et al. Automatic Beam Path Analysis ofAutomatic Beam Path Analysis of Laser Wake?eld Particle

  6. Constraints on particle acceleration sites in the Crab Nebula from relativistic MHD simulations

    E-Print Network [OSTI]

    Olmi, Barbara; Amato, Elena; Bucciantini, Niccolò

    2015-01-01

    The Crab Nebula is one of the most efficient accelerators in the Galaxy and the only galactic source showing direct evidence of PeV particles. In spite of this, the physical process behind such effective acceleration is still a deep mystery. While particle acceleration, at least at the highest energies, is commonly thought to occur at the pulsar wind termination shock, the properties of the upstream flow are thought to be non-uniform along the shock surface, and important constraints on the mechanism at work come from exact knowledge of where along this surface particles are being accelerated. Here we use axisymmetric relativistic MHD simulations to obtain constraints on the acceleration site(s) of particles of different energies in the Crab Nebula. Various scenarios are considered for the injection of particles responsible for synchrotron radiation in the different frequency bands, radio, optical and X-rays. The resulting emission properties are compared with available data on the multi wavelength time varia...

  7. Interactive visualization of particle beams for accelerator design

    SciTech Connect (OSTI)

    Wilson, Brett; Ma, Kwan-Liu; Qiang, Ji; Ryne, Robert

    2002-01-15

    We describe a hybrid data-representation and rendering technique for visualizing large-scale particle data generated from numerical modeling of beam dynamics. The basis of the technique is mixing volume rendering and point rendering according to particle density distribution, visibility, and the user's instruction. A hierarchical representation of the data is created on a parallel computer, allowing real-time partitioning into high-density areas for volume rendering, and low-density areas for point rendering. This allows the beam to be interactively visualized while preserving the fine structure usually visible only with slow point based rendering techniques.

  8. FOCUSED ACCELERATION OF COSMIC-RAY PARTICLES IN NON-UNIFORM MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P.B. 3105, Hamilton (New Zealand); Schlickeiser, R. [Instituet fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2011-05-10

    The Fokker-Planck equation for cosmic-ray particles in a spatially varying guide magnetic field in a turbulent plasma is analyzed. An expression is derived for the mean rate of change of particle momentum, caused by the effect of adiabatic focusing in a non-uniform guide field. Results of an earlier diffusion-limit analysis are confirmed, and the physical picture is clarified by working directly with the Fokker-Planck equation. A distributed first-order Fermi acceleration mechanism is identified, which can be termed focused acceleration. If the forward- and backward-propagating waves have equal polarizations, focused acceleration operates when the net cross helicity of an Alfvenic slab turbulence is either negative in a diverging guide field or positive in a converging guide field. It is suggested that focused acceleration can contribute to the formation of the anomalous cosmic-ray spectrum at the heliospheric termination shock.

  9. The Black Hole Particle Accelerator as a Machine to make Baby Universes

    E-Print Network [OSTI]

    Hamilton, A J S

    2013-01-01

    General relativity predicts that the inner horizon of an astronomically realistic rotating black hole is subject to the mass inflation instability. The inflationary instability acts like a gravity-powered particle accelerator of extraordinary power, accelerating accreted streams of particles along the principal outgoing and ingoing null directions at the inner horizon to collision energies that would, if nothing intervened, typically exceed exponentially the Planck energy. The inflationary instability is fueled by ongoing accretion, and is occurring inevitably in essentially every black hole in our Universe. This extravagant machine, the Black Hole Particle Accelerator, has the hallmarks of a device to make baby universes. Since collisions are most numerous inside supermassive black holes, reproductive efficiency requires our Universe to make supermassive black holes efficiently, as is observed.

  10. The Black Hole Particle Accelerator as a Machine to make Baby Universes

    E-Print Network [OSTI]

    A. J. S. Hamilton

    2013-05-20

    General relativity predicts that the inner horizon of an astronomically realistic rotating black hole is subject to the mass inflation instability. The inflationary instability acts like a gravity-powered particle accelerator of extraordinary power, accelerating accreted streams of particles along the principal outgoing and ingoing null directions at the inner horizon to collision energies that would, if nothing intervened, typically exceed exponentially the Planck energy. The inflationary instability is fueled by ongoing accretion, and is occurring inevitably in essentially every black hole in our Universe. This extravagant machine, the Black Hole Particle Accelerator, has the hallmarks of a device to make baby universes. Since collisions are most numerous inside supermassive black holes, reproductive efficiency requires our Universe to make supermassive black holes efficiently, as is observed.

  11. The acceleration of electrons at perpendicular shocks and its implication for solar energetic particle events

    SciTech Connect (OSTI)

    Guo Fan; Giacalone, Joe

    2012-11-20

    We present a study of the acceleration of electrons at a perpendicular shock that propagates through a turbulent magnetic field. The energization process of electrons is investigated by utilizing a combination of hybrid (kinetic ions and fluid electron) simulations and test-particle electron simulations. In this method, the motions of the test-particle electrons are numerically integrated in the time-dependent electric and magnetic fields generated by two-dimensional hybrid simulations. We show that large-scale magnetic fluctuations effect electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to interact with the shock front and get accelerated multiple times. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The acceleration efficiency is critically dependent on the turbulence amplitude and coherence length. We also discuss the implication of this study for solar energetic particles (SEPs) by comparing the acceleration of electrons with that of protons. Their correlation indicates that perpendicular shocks play an important role in SEP events.

  12. MONTE CARLO SIMULATIONS OF NONLINEAR PARTICLE ACCELERATION IN PARALLEL TRANS-RELATIVISTIC SHOCKS

    SciTech Connect (OSTI)

    Ellison, Donald C.; Warren, Donald C. [Physics Department, North Carolina State University, Box 8202, Raleigh, NC 27695 (United States); Bykov, Andrei M., E-mail: don_ellison@ncsu.edu, E-mail: ambykov@yahoo.com [Ioffe Institute for Physics and Technology, 194021 St. Petersburg (Russian Federation)

    2013-10-10

    We present results from a Monte Carlo simulation of a parallel collisionless shock undergoing particle acceleration. Our simulation, which contains parameterized scattering and a particular thermal leakage injection model, calculates the feedback between accelerated particles ahead of the shock, which influence the shock precursor and 'smooth' the shock, and thermal particle injection. We show that there is a transition between nonrelativistic shocks, where the acceleration efficiency can be extremely high and the nonlinear compression ratio can be substantially greater than the Rankine-Hugoniot value, and fully relativistic shocks, where diffusive shock acceleration is less efficient and the compression ratio remains at the Rankine-Hugoniot value. This transition occurs in the trans-relativistic regime and, for the particular parameters we use, occurs around a shock Lorentz factor ?{sub 0} = 1.5. We also find that nonlinear shock smoothing dramatically reduces the acceleration efficiency presumed to occur with large-angle scattering in ultra-relativistic shocks. Our ability to seamlessly treat the transition from ultra-relativistic to trans-relativistic to nonrelativistic shocks may be important for evolving relativistic systems, such as gamma-ray bursts and Type Ibc supernovae. We expect a substantial evolution of shock accelerated spectra during this transition from soft early on to much harder when the blast-wave shock becomes nonrelativistic.

  13. Test particle simulation of direct laser acceleration in a density-modulated plasma waveguide

    SciTech Connect (OSTI)

    Lin, M.-W.; Jovanovic, I.

    2012-11-15

    Direct laser acceleration (DLA) of electrons by the use of the intense axial electric field of an ultrafast radially polarized laser pulse is a promising technique for future compact accelerators. Density-modulated plasma waveguides can be implemented for guiding the propagation of the laser pulse to extend the acceleration distance and for the quasi-phase-matching between the accelerated electrons and the laser pulse. A test particle model is developed to study the optimal axial density modulation structure of plasma waveguides for laser pulses to efficiently accelerate co-propagating electrons. A simple analytical approach is also presented, which can be used to estimate the energy gain in DLA. The analytical model is validated by the test particle simulation. The effect of injection phase and acceleration of electrons injected at various radial positions are studied. The results indicate that a positively chirped density modulation of the waveguide structure is required to accelerate electron with low initial energies, and can be effectively optimized. A wider tolerance on the injection phase and radial distance from the waveguide axis exists for electrons injected with a higher initial energy.

  14. Particle acceleration by fluctuating electric fields at a magnetic field null point

    E-Print Network [OSTI]

    P. Petkaki; A. L. MacKinnon

    2007-07-09

    Particle acceleration consequences from fluctuating electric fields superposed on an X-type magnetic field in collisionless solar plasma are studied. Such a system is chosen to mimic generic features of dynamic reconnection, or the reconnective dissipation of a linear disturbance. We explore numerically the consequences for charged particle distributions of fluctuating electric fields superposed on an X-type magnetic field. Particle distributions are obtained by numerically integrating individual charged particle orbits when a time varying electric field is superimposed on a static X-type neutral point. This configuration represents the effects of the passage of a generic MHD disturbance through such a system. Different frequencies of the electric field are used, representing different possible types of wave. The electric field reduces with increasing distance from the X-type neutral point as in linear dynamic magnetic reconnection. The resulting particle distributions have properties that depend on the amplitude and frequency of the electric field. In many cases a bimodal form is found. Depending on the timescale for variation of the electric field, electrons and ions may be accelerated to different degrees and often have energy distributions of different forms. Protons are accelerated to $\\gamma$-ray producing energies and electrons to and above hard X-ray producing energies in timescales of 1 second. The acceleration mechanism is possibly important for solar flares and solar noise storms but is also applicable to all collisionless plasmas.

  15. A STEADY-STATE FEL: PARTICLE DYNAMICS IN THE FEL PORTION OF A TWO-BEAM ACCELERATOR

    E-Print Network [OSTI]

    Sternbach, E.

    2008-01-01

    September 8-13, 1985 A STEADY-STATE FEL: PARTICLE DYNAMICSIN THE FEL PORTION OF A TWO-BEAM ACCELERATOR E. SternbachLBL-19939 A STEADY-STATE FEL: PARTICLE DYNAMICS IN THE FEL

  16. Proceedings of the 2003 Particle Accelerator Conference CONCEPTDESIGN OF THE TARGETEIOFZN SYSTEM FOR THE BNL

    E-Print Network [OSTI]

    McDonald, Kirk

    Proceedings of the 2003 Particle Accelerator Conference CONCEPTDESIGN OF THE TARGETEIOFZN SYSTEM of 20ps duration will flow through the horn at 2.5 Hz repetition rate inducing high compressive forces are the low resistivity, the high strength and the resistance to corrosion and micro-cracking. The pulsed

  17. Developments in accelerators and instrumentation relevant to imaging with charged particles and positron emitters

    SciTech Connect (OSTI)

    Alonso, J.R.

    1980-11-01

    In past years particle accelerators have become increasingly important tools for the advancement of medical science. From the pace of advancing technology and current directions in medical research, it is clear that this relationship between accelerators and medicine will only grow stronger in future years. In view of this importance, this relationship is investigated in some detail, with an eye not so much towards the medical uses of the beams produced, but more towards the technology associated with these accelerators and the criteria which make for successful incorporation of these machines into the clinical environment. In order to lay the necessary groundwork, the different kinds of accelerators found in medical use today are reviewed briefly discussing salient points of each.

  18. Particle Acceleration in Solar Flares and Enrichment of 3He and Heavy Ions

    E-Print Network [OSTI]

    Vahe' Petrosian

    2008-08-13

    We discuss possible mechanisms of acceleration of particles in solar flares and show that turbulence plays an important role in all the mechanism. It is also argued that stochastic particle acceleration by turbulent plasma waves is the most likely mechanism for production of the high energy electrons and ions responsible for observed radiative signatures of solar flares and for solar energetic particle or SEPs, and that the predictions of this model agrees well with many past and recent high spectral and temporal observations of solar flares. It is shown that, in addition, the model explains many features of SEPs that accompany flares. In particular we show that it can successfully explain the observed extreme enhancement, relative to photospheric values, of $^3$He ions and the relative spectra of $^3$He and $^4$He. It has also the potential of explaining the relative abundances of most ions including the increasing enhancements of heavy ions with ion mass or mass-to-charge ratio.

  19. COMBINING PARTICLE ACCELERATION AND CORONAL HEATING VIA DATA-CONSTRAINED CALCULATIONS OF NANOFLARES IN CORONAL LOOPS

    SciTech Connect (OSTI)

    Gontikakis, C.; Efthymiopoulos, C.; Georgoulis, M. K.; Patsourakos, S.; Anastasiadis, A.

    2013-07-10

    We model nanoflare heating of extrapolated active-region coronal loops via the acceleration of electrons and protons in Harris-type current sheets. The kinetic energy of the accelerated particles is estimated using semi-analytical and test-particle-tracing approaches. Vector magnetograms and photospheric Doppler velocity maps of NOAA active region 09114, recorded by the Imaging Vector Magnetograph, were used for this analysis. A current-free field extrapolation of the active-region corona was first constructed. The corresponding Poynting fluxes at the footpoints of 5000 extrapolated coronal loops were then calculated. Assuming that reconnecting current sheets develop along these loops, we utilized previous results to estimate the kinetic energy gain of the accelerated particles. We related this energy to nanoflare heating and macroscopic loop characteristics. Kinetic energies of 0.1-8 keV (for electrons) and 0.3-470 keV (for protons) were found to cause heating rates ranging from 10{sup -6} to 1 erg s{sup -1} cm{sup -3}. Hydrodynamic simulations show that such heating rates can sustain plasma in coronal conditions inside the loops and generate plasma thermal distributions that are consistent with active-region observations. We concluded the analysis by computing the form of X-ray spectra generated by the accelerated electrons using the thick-target approach. These spectra were found to be in agreement with observed X-ray spectra, thus supporting the plausibility of our nanoflare-heating scenario.

  20. Is it possible to discover a dark matter particle with an accelerator?

    E-Print Network [OSTI]

    Vadim A. Bednyakov

    2015-06-28

    The paper contains description of the main properties of the galactic dark matter (DM) particles, available approaches for detection of DM, main features of direct DM detection, ways to estimate prospects for the DM detection, the first collider search for a DM candidate within an Effective Field Theory, complete review of ATLAS results of the DM candidate search with LHC RUN I, and less complete review of "exotic" dark particle searches with other accelerators and not only. From these considerations it follows that one is unable to prove, especially model-independently,a discovery of a DM particle with an accelerator, or collider. One can only obtain evidence on existence of a weakly interacting neutral particle, which could be, or could not be the DM candidate. The current LHC DM search program uses only the missing transverse energy signature. Non-observation of any excess above Standard Model expectations forces the LHC experiments to enter into the same fighting for the best exclusion curve, in which (almost) all direct and indirect DM search experiments permanently take place. But this fighting has very little (almost nothing) to do with a real possibility of discovering a DM particle. The true DM particles possess an exclusive galactic signature --- annual modulation of a signal, which is accessible today only for direct DM detection experiments. There is no way for it with a collider, or accelerator. Therefore to prove the DM nature of a collider-discovered candidate one must find the candidate in a direct DM experiment and demonstrate the galactic signature for the candidate. Furthermore, being observed, the DM particle must be implemented into a modern theoretical framework. The best candidate is the supersymmetry, which looks today inevitable for coherent interpretation of all available DM data.

  1. Acceleration of particles and shells by Reissner-Nordström naked singularities

    E-Print Network [OSTI]

    Mandar Patil; Pankaj S. Joshi; Masashi Kimura; Ken-ichi Nakao

    2012-09-20

    We explore the Reissner-Nordstr\\"{o}m naked singularities with a charge $Q$ larger than its mass $M$ from the perspective of the particle acceleration. We first consider a collision between two test particles following the radial geodesics in the Reissner-Nordstr\\"{o}m naked singular geometry. An initially radially ingoing particle turns back due to the repulsive effect of gravity in the vicinity of naked singularity. Such a particle then collides with an another radially ingoing particle. We show that the center of mass energy of collision taking place at $r \\approx M$ is unbound, in the limit where the charge transcends the mass by arbitrarily small amount $0naked singularity is around million years while it is many orders of magnitude larger than Hubble time in the black hole case. We then study the collision of the neutral spherically symmetric shells made up of dust particles. In this case, it is possible to treat the situation by exactly taking into account the gravity due to the shells using Israel`s thin shell formalism, and thus this treatment allows us to go beyond the test particle approximation. The center of mass energy of collision of the shells is then calculated in a situation analogous to the test particle case and is shown to be bounded above. However, we find thatthe energy of a collision between two of constituent particles of the shells at the center of mass frame can exceed the Planck energy.

  2. Status of materials handbooks for particle accelerator and nuclear reactor applications

    SciTech Connect (OSTI)

    Maloy, Stuart [Los Alamos National Laboratory (LANL); Rogers, Berylene [Los Alamos National Laboratory (LANL); Ren, Weiju [ORNL; Philip, Rittenhouse [Consultant

    2008-01-01

    In support of research and development for accelerator applications, a materials handbook was developed in August of 1998 funded by the Accelerator Production of Tritium Project. This handbook, presently called Advanced Fuel Cycle Initiative (AFCI) Materials Handbook, Materials Data for Particle Accelerator Applications, has just issued Revision 5 and contains detailed information showing the effects of irradiation on many properties for a wide variety of materials. Development of a web-accessible materials database for Generation IV Reactor Programs has been ongoing for about three years. This handbook provides a single authoritative source for qualified materials data applicable to all Generation IV reactor concepts. A beta version of this Gen IV Materials Handbook has been completed and is presently under evaluation.

  3. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    E-Print Network [OSTI]

    K. -I. Nishikawa; P. Hardee; G. Richardson; R. Preece; H. Sol; G. J. Fishman

    2004-12-10

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head.

  4. Gamma-ray novae as probes of relativistic particle acceleration at non-relativistic shocks

    E-Print Network [OSTI]

    Metzger, Brian D; Vurm, Indrek; Hascoet, Romain; Beloborodov, Andrei M; Chomiuk, Laura

    2015-01-01

    The Fermi LAT discovery that classical novae produce >100 MeV gamma-rays establishes that shocks and relativistic particle acceleration are key features of these events. These shocks are likely to be radiative due to the high densities of the nova ejecta at early times coincident with the gamma-ray emission. Thermal X-rays radiated behind the shock are absorbed by neutral gas and reprocessed into optical emission, similar to Type IIn (interacting) supernovae. The ratio of gamma-ray and optical luminosities, L_gam/L_opt, thus sets a lower limit on the fraction of the shock power used to accelerate relativistic particles, e_nth. The measured values of L_gam/L_opt for two classical novae, V1324 Sco and V339 Del, constrains e_nth > 1e-2 and > 1e-3, respectively. Inverse Compton models for the gamma-ray emission are disfavored given the low electron acceleration efficiency, e_nth ~ 1e-4-1e-3, inferred from observations of Galactic cosmic rays and particle-in-cell (PIC) numerical simulations. Recent hybrid PIC simu...

  5. Settlement in an Amereican landscape : a place of work amidst a particle accelerator's transformation of the Texas prarie

    E-Print Network [OSTI]

    Falliers, Christopher B. (Christopher Basil)

    1991-01-01

    This thesis considers the design of the research facility accompanying the Superconducting Super Collider, a large particle accelerator planned for central Texas. It will focus on this Pl'Qject as a form of human settlement ...

  6. THE INFLUENCE OF THE MASS RATIO ON THE ACCELERATION OF PARTICLES BY FILAMENTATION INSTABILITIES

    SciTech Connect (OSTI)

    Burkart, Thomas; Elbracht, Oliver; Ganse, Urs; Spanier, Felix, E-mail: fspanier@astro.uni-wuerzburg.d [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)

    2010-09-10

    Almost all sources of high-energy particles and photons are associated with jet phenomena. Prominent sources of such highly relativistic outflows are pulsar winds, active galactic nuclei (AGNs), and gamma-ray bursts. The current understanding of these jets assumes diluted plasmas which are best described as kinetic phenomena. In this kinetic description, particle acceleration to ultrarelativistic speeds can occur in completely unmagnetized and neutral plasmas through insetting effects of instabilities. Even though the morphology and nature of particle spectra are understood to a certain extent, the composition of the jets is not known yet. While Poynting-flux-dominated jets (e.g., occurring in pulsar winds) are certainly composed of electron-positron plasmas, the understanding of the governing physics in AGN jets is mostly unclear. In this paper, we investigate how the constituting elements of an electron-positron-proton plasma behave differently under the variation of the fundamental mass ratio m{sub p} /m{sub e}. We initially studied unmagnetized counterstreaming plasmas using fully relativistic three-dimensional particle-in-cell simulations to investigate the influence of the mass ratio on particle acceleration and magnetic field generation in electron-positron-proton plasmas. We covered a range of mass ratios m{sub p}/m{sub e} between 1 and 100 with a particle number composition of n{sub p}{sup +}/ n{sub e}{sup +} of 1 in one stream, therefore called the pair-proton stream. Protons are injected in the other one, therefore from now on called the proton stream, whereas electrons are present in both to guarantee charge neutrality in the simulation box. We find that with increasing proton mass the instability takes longer to develop and for mass ratios >20 the particles seem to be accelerated in two phases which can be accounted for by the individual instabilities of the different species. This means that for high mass ratios the coupling between electrons/positrons and the heavier protons, which occurs in low mass ratios, disappears.

  7. Time-Dependent Stochastic Particle Acceleration in Astrophysical Plasmas: Exact Solutions Including Momentum-Dependent Escape

    E-Print Network [OSTI]

    P. A. Becker; T. Le; C. D. Dermer

    2006-04-24

    Stochastic acceleration of charged particles due to interactions with magnetohydrodynamic (MHD) plasma waves is the dominant process leading to the formation of the high-energy electron and ion distributions in a variety of astrophysical systems. Collisions with the waves influence both the energization and the spatial transport of the particles, and therefore it is important to treat these two aspects of the problem in a self-consistent manner. We solve the representative Fokker-Planck equation to obtain a new, closed-form solution for the time-dependent Green's function describing the acceleration and escape of relativistic ions interacting with Alfven or fast-mode waves characterized by momentum diffusion coefficient $D(p)\\propto p^q$ and mean particle escape timescale $t_esc(p) \\propto p^{q-2}$, where $p$ is the particle momentum and $q$ is the power-law index of the MHD wave spectrum. In particular, we obtain solutions for the momentum distribution of the ions in the plasma and also for the momentum distribution of the escaping particles, which may form an energetic outflow. The general features of the solutions are illustrated via examples based on either a Kolmogorov or Kraichnan wave spectrum. The new expressions complement the results obtained by Park and Petrosian, who presented exact solutions for the hard-sphere scattering case ($q=2$) in addition to other scenarios in which the escape timescale has a power-law dependence on the momentum. Our results have direct relevance for models of high-energy radiation and cosmic-ray production in astrophysical environments such as $\\gamma$-ray bursts, active galaxies, and magnetized coronae around black holes.

  8. Device on basis of a bent crystal with variable curvature for particle beams steering in accelerators

    E-Print Network [OSTI]

    Afonin, A G; Bulgakov, M K; Chesnokov, Yu A; Chirkov, P N; Lobanova, E V; Lobanov, I S; Lunkov, A N; Maisheev, V A; Poluektov, I V; Sandomirskiy, Yu E; Yazynin, I A

    2012-01-01

    Recently it was proposed to apply a bent single crystal with decreasing curvature instead of uniform bending for improvement of extraction and collimation of a circulating beam in particle accelerators. In the given paper created crystal devices with a variable curvature, realizing this idea are described. Results of measurement of curvature along a crystal plate are informed. It is shown, that with the help of the developed devices it is possible to carry out also high energy beam focusing. The mathematical description of this process is proposed.

  9. Advanced laser particle accelerator development at LANL: from fast ignition to radiation oncology

    SciTech Connect (OSTI)

    Flippo, Kirk A [Los Alamos National Laboratory; Gaillard, Sandrine A [Los Alamos National Laboratory; Offermann, D T [Los Alamos National Laboratory; Cobble, J A [Los Alamos National Laboratory; Schmitt, M J [Los Alamos National Laboratory; Gautier, D C [Los Alamos National Laboratory; Kwan, T J T [Los Alamos National Laboratory; Montgomery, D S [Los Alamos National Laboratory; Kluge, Thomas [FZD-GERMANY; Bussmann, Micheal [FZD-GERMANY; Bartal, T [UCSD; Beg, F N [UCSD; Gall, B [UNIV OF MISSOURI; Geissel, M [SNL; Korgan, G [NANOLABZ; Kovaleski, S [UNIV OF MISSOURI; Lockard, T [UNIV OF NEVADA; Malekos, S [NANOLABZ; Schollmeier, M [SNL; Sentoku, Y [UNIV OF NEVADA; Cowan, T E [FZD-GERMANY

    2010-01-01

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, SN M detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high current and high energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology in conjunction with our partners at the ForschungsZentrum Dresden-Rossendorf (FZD). Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent etliciencies of >5% from flat foils, on Trident using only a 5th of the intensity and energy of the Nova Petawatt. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  10. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications

    SciTech Connect (OSTI)

    Wilson, Joshua L

    2008-09-01

    A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more effcient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modifed finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed employing the three basic shapes discussed previously. Bench measurements are performed on the prototype cavities to evaluate dispersion by measuring the field distribution along these cavities. The measurement results are compared to the simulations and theoretical results, and good agreement is shown. Once validated, the developed models are used to design twisted accelerating structures with specific phase velocities and good accelerating performance.

  11. Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications

    E-Print Network [OSTI]

    Yang, Xin-She; Fong, Simon

    2012-01-01

    Business optimization is becoming increasingly important because all business activities aim to maximize the profit and performance of products and services, under limited resources and appropriate constraints. Recent developments in support vector machine and metaheuristics show many advantages of these techniques. In particular, particle swarm optimization is now widely used in solving tough optimization problems. In this paper, we use a combination of a recently developed Accelerated PSO and a nonlinear support vector machine to form a framework for solving business optimization problems. We first apply the proposed APSO-SVM to production optimization, and then use it for income prediction and project scheduling. We also carry out some parametric studies and discuss the advantages of the proposed metaheuristic SVM.

  12. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Yun

    2015-08-29

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more »physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less

  13. Production of .sup.64 Cu and other radionuclides using a charged-particle accelerator

    DOE Patents [OSTI]

    Welch, Michael J. (Creve Couer, MO); McCarthy, Deborah W. (Maryland Heights, MO); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    2000-01-01

    Radionuclides are produced according to the present invention at commercially significant yields and at specific activities which are suitable for use in radiodiagnostic agents such as PET imaging agents and radiotherapeutic agents and/or compositions. In the method and system of the present invention, a solid target having an isotopically enriched target layer electroplated on an inert substrate is positioned in a specially designed target holder and irradiated with a charged-particle beam. The beam is preferably generated using an accelerator such as a biomedical cyclotron at energies ranging from about 5 MeV to about 25 MeV. The target is preferably directly irradiated, without an intervening attenuating foil, and with the charged particle beam impinging an area which substantially matches the target area. The irradiated target is remotely and automatically transferred from the target holder, preferably without transferring any target holder subassemblies, to a conveyance system which is preferably a pneumatic or hydraulic conveyance system, and then further transferred to an automated separation system. The system is effective for processing a single target or a plurality of targets. After separation, the unreacted target material can be recycled for preparation of other targets. In a preferred application of the invention, a biomedical cyclotron has been used to produce over 500 mCi of .sup.64 Cu having a specific activity of over 300 mCi/.mu.g Cu according to the reaction .sup.64 Ni(p,n).sup.64 Cu. These results indicate that accelerator-produced .sup.64 Cu is suitable for radiopharmaceutical diagnostic and therapeutic applications.

  14. Spectra of accelerated particles at supernova shocks in the presence of neutral hydrogen: the case of Tycho

    E-Print Network [OSTI]

    Morlino, G

    2015-01-01

    The presence of neutral hydrogen in the shock proximity changes the structure of the shock and affects the spectra of particles accelerated through the first order Fermi mechanism. This phenomenon has profound implications for the interpretation of the multifrequency spectra of radiation from supernova remnants. Neutrals that undergo charge exchange with hot ions downstream of the shock may result in fast neutrals moving towards the upstream gas, where they can suffer additional charge exchange or ionisation reactions, thereby depositing energy and momentum upstream. Here we discuss the implications of this neutral return flux, already predicted in our previous work on neutral mediated supernova shocks and show how the spectra of accelerated particles turn out to be appreciably steeper than $p^{-4}$, thereby affecting the gamma ray spectra from supernova remnants in general and from Tycho specifically. The theory that describes non-linear diffusive shock acceleration in the presence of neutral hydrogen has be...

  15. Electron Shock Surfing Acceleration in Multidimensions: Two-dimensional Particle-In-Cell Simulation of Collisionless Perpendicular Shock

    E-Print Network [OSTI]

    Takanobu Amano; Masahiro Hoshino

    2008-09-02

    Electron acceleration mechanism at high Mach number collisionless shocks propagating in a weakly magnetized medium is investigated by a self-consistent two-dimensional particle-in-cell simulation. Simulation results show that strong electrostatic waves are excited via the electron-ion electrostatic two-stream instability at the leading edge of the shock transition region as in the case of earlier one-dimensional simulations. We observe strong electron acceleration that is associated with the turbulent electrostatic waves in the shock transition region. The electron energy spectrum in the shock transition region exhibits a clear power-law distribution with spectral index of $2.0 {\\rm -} 2.5$. By analyzing the trajectories of accelerated electrons, we find that the acceleration mechanism is very similar to shock surfing acceleration of ions. In contrast to the ion shock surfing, however, the energetic electrons are reflected by electron-scale electrostatic fluctuations in the shock transition region, but not by the ion-scale cross-shock electrostatic potential. The reflected electrons are then accelerated by the convective electric field in front of the shock. We conclude that the multidimensional effects as well as the self-consistent shock structure are essential for the strong electron acceleration at high Mach number shocks.

  16. A complete cosmic scenario from inflation to late time acceleration: Non-equilibrium thermodynamics in the context of particle creation

    E-Print Network [OSTI]

    Subenoy Chakraborty; Subhajit Saha

    2015-07-06

    The paper deals with the mechanism of particle creation in the framework of irreversible thermodynamics. The second order non-equilibrium thermodynamical prescription of Israel and Stewart has been presented with particle creation rate, treated as the dissipative effect. In the background of a flat FRW model, we assume the non-equilibrium thermodynamical process to be isentropic so that the entropy per particle does not change and consequently the dissipative pressure can be expressed linearly in terms of the particle creation rate. Here the dissipative pressure behaves as a dynamical variable having a non-linear inhomogeneous evolution equation and the entropy flow vector satisfies the second law of thermodynamics. Further, using the Friedmann equations and by proper choice of the particle creation rate as a function of the Hubble parameter, it is possible to show (separately) a transition from the inflationary phase to the radiation era and also from matter dominated era to late time acceleration. Also, in analogy to analytic continuation, it is possible to show a continuous cosmic evolution from inflation to late time acceleration by adjusting the parameters. It is found that in the de Sitter phase, the comoving entropy increases exponentially with time, keeping entropy per particle unchanged. Subsequently, the above cosmological scenarios has been described from field theoretic point of view by introducing a scalar field having self interacting potential. Finally, we make an attempt to show the cosmological phenomenon of particle creation as Hawking radiation, particularly during the inflationary era.

  17. Vacuum effects of ultra-low mass particle account for Recent Acceleration of Universe

    E-Print Network [OSTI]

    Leonard Parker; Alpan Raval

    1999-08-04

    In recent work, we showed that non-perturbative vacuum effects of a very low mass particle could induce, at a redshift of order 1, a transition from a matter-dominated to an accelerating universe. In that work, we used the simplification of a sudden transition out of the matter-dominated stage and were able to fit the Type Ia supernovae (SNe-Ia) data points with a spatially-open universe. In the present work, we find a more accurate, smooth {\\it spatially-flat} analytic solution to the quantum-corrected Einstein equations. This solution gives a good fit to the SNe-Ia data with a particle mass parameter $m_h$ in the range $6.40 \\times 10^{-33}$ eV to $7.25 \\times 10^{-33}$ eV. It follows that the ratio of total matter density (including dark matter) to critical density, $\\O_0$, is in the range 0.58 to 0.15, and the age $t_0$ of the universe is in the range $8.10 h^{-1}$ Gyr to $12.2 h^{-1}$ Gyr, where $h$ is the present value of the Hubble constant, measured as a fraction of the value 100 km/(s Mpc). This spatially-flat model agrees with estimates of the position of the first acoustic peak in the small angular scale fluctuations of the cosmic background radiation, and with light-element abundances of standard big-bang nucleosynthesis. Our model has only a single free parameter, $m_h$, and does not require that we live at a special time in the evolution of the universe.

  18. From laser particle acceleration to the synthesis of extremely neutron rich isotopes via the novel fission-fusion mechanism

    SciTech Connect (OSTI)

    Thirolf, P. G.

    2015-02-24

    High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanisms for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional nuclear reaction schemes even at next-generation radioactive beam facilities, underlining the attractive perspectives offered, e.g., by ELI-NP.

  19. Tidal Charged Black Holes as Particle Accelerators to Arbitrarily High Energy

    E-Print Network [OSTI]

    Pradhan, Parthapratim

    2014-01-01

    We show that Randall Sundrum tidal charged spherically symmetric vacuum brane black holes could be act as a particle accelerator with ultrahigh center-of-mass energy in the limiting case of \\emph{ maximal black hole tidal charge}. For non-extremal Randall Sundrum tidal charged black hole, the center-of-mass energy is finite. While for maximally Randall Sundrum tidal charged black hole, the center-of-mass energy is \\emph{infinite}. We have also derived the center-of-mass energy at ISCO(Innermost Stable Circular Orbit) or LSCO(Last Stable Circular Orbit) or MSCO(Marginally Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for maximally Randall Sundrum tidal charged black hole. We show visually the differences between Reissner-Nordstr{\\o}m black hole and Randall Sundrum tidal charged BH. We have found that for maximally Randall Sundrum tidal charged black hole the center-of-mass energy is satisfied the following inequality: $E_{cm}\\mid_{r_{+}}>E_{cm}\\mid_{r_{mb}}>E_{cm}\\mid_{r_{ISCO}}$ i.e. $E_{c...

  20. Tidal Charged Black Holes as Particle Accelerators to Arbitrarily High Energy

    E-Print Network [OSTI]

    Parthapratim Pradhan

    2014-12-28

    We show that Randall Sundrum tidal charged spherically symmetric vacuum brane black holes could be act as a particle accelerator with ultrahigh center-of-mass energy in the limiting case of \\emph{ maximal black hole tidal charge}. For non-extremal Randall Sundrum tidal charged black hole, the center-of-mass energy is finite. While for maximally Randall Sundrum tidal charged black hole, the center-of-mass energy is \\emph{infinite}. We have also derived the center-of-mass energy at ISCO(Innermost Stable Circular Orbit) or LSCO(Last Stable Circular Orbit) or MSCO(Marginally Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for maximally Randall Sundrum tidal charged black hole. We show visually the differences between Reissner-Nordstr{\\o}m black hole and Randall Sundrum tidal charged BH. We have found that for maximally Randall Sundrum tidal charged black hole the center-of-mass energy is satisfied the following inequality: $E_{cm}\\mid_{r_{+}}>E_{cm}\\mid_{r_{mb}}>E_{cm}\\mid_{r_{ISCO}}$ i.e. $E_{cm}\\mid_{r_{+} = \\frac{M}{M_{p}^2}}: E_{cm}\\mid_{r_{mb} = \\left(\\frac{3+\\sqrt{5}}{2}\\right)\\frac{M}{M_{p}^2}}:E_{cm}\\mid_{r_{ISCO} = 4\\frac{M}{M_{p}^2}} = \\infty: 3.23 : 2.6$. Which is exactly \\emph{similar} to the spherically symmetric extreme Reissner-Nordstr\\"{o}m black hole.}

  1. Self-interaction in the Bopp–Podolsky electrodynamics: Can the observable mass of a charged particle depend on its acceleration?

    SciTech Connect (OSTI)

    Zayats, Alexei E., E-mail: Alexei.Zayats@kpfu.ru

    2014-03-15

    In this paper we obtain the expression for the self-force in the model with the Lagrangian containing additional terms, quadratic in Maxwell tensor derivatives (so-called Bopp–Podolsky electrodynamics). Features of this force are analyzed for various limiting cases. When a charged particle moves along straight line with a uniform acceleration, an explicit formula is found. In the framework of the considered model, an observable renormalized particle mass is shown to depend on its acceleration. This dependence allows, in principle, to extract experimentally a value of the particle bare mass. -- Highlights: •An expression for the self-force in the Bopp–Podolsky electrodynamics is given. •For a uniformly accelerated charged particle an explicit formula for the self-force is obtained. •Dependence between the observable mass of a charged particle and its acceleration is found.

  2. Laser-driven plasma-based accelerators: Wakefield excitation, channel guiding, and laser triggered particle injection*

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Laser-driven plasma-based accelerators: Wakefield excitation, channel guiding, and laser triggered; accepted 18 February 1998 Plasma-based accelerators are discussed in which high-power short pulse lasers are the power source, suitably tailored plasma structures provide guiding of the laser beam and support large

  3. Three-dimensional simulations of the non-thermal broadband emission from young supernova remnants including efficient particle acceleration

    SciTech Connect (OSTI)

    Ferrand, Gilles; Safi-Harb, Samar [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Decourchelle, Anne, E-mail: gferrand@physics.umanitoba.ca, E-mail: samar@physics.umanitoba.ca, E-mail: anne.decourchelle@cea.fr [Laboratoire AIM (CEA/Irfu, CNRS/INSU, Université Paris VII), CEA Saclay, bât. 709, F-91191 Gif sur Yvette (France)

    2014-07-01

    Supernova remnants are believed to be major contributors to Galactic cosmic rays. In this paper, we explore how the non-thermal emission from young remnants can be used to probe the production of energetic particles at the shock (both protons and electrons). Our model couples hydrodynamic simulations of a supernova remnant with a kinetic treatment of particle acceleration. We include two important back-reaction loops upstream of the shock: energetic particles can (1) modify the flow structure and (2) amplify the magnetic field. As the latter process is not fully understood, we use different limit cases that encompass a wide range of possibilities. We follow the history of the shock dynamics and of the particle transport downstream of the shock, which allows us to compute the non-thermal emission from the remnant at any given age. We do this in three dimensions, in order to generate projected maps that can be compared with observations. We observe that completely different recipes for the magnetic field can lead to similar modifications of the shock structure, although to very different configurations of the field and particles. We show how this affects the emission patterns in different energy bands, from radio to X-rays and ?-rays. High magnetic fields (>100 ?G) directly impact the synchrotron emission from electrons, by restricting their emission to thin rims, and indirectly impact the inverse Compton emission from electrons and also the pion decay emission from protons, mostly by shifting their cut-off energies to respectively lower and higher energies.

  4. Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 4

    SciTech Connect (OSTI)

    Parsa, Z.

    1995-10-01

    This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory. Editing and changes to the authors` contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on eight presentations: ``Application of Accelerator-Driven Spallation Targets - Including Tritium Production and Nuclear Waste Transmutation``, ``BNL 5 MW Pulsed Spallation Neutron Source Study``, ``Designing and Understanding of Magnets with the Help of Conformal Mapping``, ``Laser - Electron Beam Scattering Coherent Compton X-Ray Sources``, ``The LHC Project``, ``Optimization of the Photocathode-Linac Separation for the ATF [Accelerator Test Facility] Injection System``, ``On CEBAF Commissioning: First Results``, and ``The Proposed Booster Application Facility at BNL``. An Appendix lists dates, topics, and speakers from October 1989 to December 1994.

  5. Lagrangian Measurements of Inertial Particle Accelerations in Grid Generated Wind Tunnel Turbulence

    E-Print Network [OSTI]

    Gylfason, Ármann

    (where the particle-fluid density ratio is order 1000), or fuel drops in combustors, respond exponential tails that are narrower than those of a fluid particles (St 0) and there is a decrease selectively sample the fluid field and are less likely to experience regions of the fluid undergoing

  6. PARTICLE ACCELERATION IN A THREE-DIMENSIONAL MODEL OF RECONNECTING CORONAL MAGNETIC FIELDS

    E-Print Network [OSTI]

    Isliker, Heinz

    , Denmark (Author for correspondence: E-mail: p.cargill@imperial.ac.uk) (Received 11 July 2005; Accepted dimensional MHD models lead to the production of relativistic particles on sub-second timescales with power, particles gain energy by multiple interactions with many current sheets. Difficulties that need

  7. Correlation of pulsar radio emission spectrum with peculiarities of particle acceleration in a polar gap

    SciTech Connect (OSTI)

    Kontorovich, V. M. Flanchik, A. B.

    2013-01-15

    The analytical expression for the frequency of radio emission intensity maximum in pulsars with free electron emission from the stellar surface has been found. Peculiarities of the electron acceleration in a polar gap are considered. The correlation between the high-frequency cutoff and low-frequency turnover in the radio emission spectrum of pulsars known from observations has been explained.

  8. Small-scale magnetic islands in the solar wind and their role in particle acceleration. Part 1: Dynamics of magnetic islands near the heliospheric current sheet

    E-Print Network [OSTI]

    Khabarova, O; Li, G; Roux, J A le; Webb, G M; Dosch, A; Malandraki, O E

    2015-01-01

    Increases of ion fluxes in the keV-MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle (SEP) events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller current sheets in the solar wind (Zharkova & Khabarova 2012), of which a consequence is particle energization by the dynamically evolving secondary current sheets and magnetic islands (Zank et al. 2014; Drake et al. 2006a). The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples c...

  9. Particle Acceleration and Gamma-ray emission due to magnetic reconnection in the core region of radio galaxies

    E-Print Network [OSTI]

    Khiali, Behrouz; Sol, Hélène

    2015-01-01

    The current detectors of gamma-ray emission have too poor resolution to determine whether this emission is produced in the jet or in the core, specially of low luminous, non-blazar AGNs (as radio galaxies). In recent works it has been found that the power released by events of turbulent fast magnetic reconnection in the core region of these sources is more than sufficient to reproduce the observed gamma-ray luminosities. Besides, 3D MHD simulations with test particles have demonstrated that a first-order Fermi process within reconnection sites with embedded turbulence results very efficient particle acceleration rates. Employing this acceleration mechanism and the model above, and considering the relevant leptonic and hadronic loss processes in the core region, we computed the spectral energy distribution (SED) of radio galaxies for which very high energy (VHE) emission has been detected (namely, M87, Cen A, Per A, and IC 310). We found that these match very well specially with the VHE observations, therefore...

  10. User's manual for ONEDANT: a code package for one-dimensional, diffusion-accelerated, neutral-particle transport

    SciTech Connect (OSTI)

    O'Dell, R.D.; Brinkley, F.W. Jr.; Marr, D.R.

    1982-02-01

    ONEDANT is designed for the CDC-7600, but the program has been implemented and run on the IBM-370/190 and CRAY-I computers. ONEDANT solves the one-dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue search) problems subject to vacuum, reflective, periodic, white, albedo, or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. ONEDANT numerically solves the one-dimensional, multigroup form of the neutral-particle, steady-state form of the Boltzmann transport equation. The discrete-ordinates approximation is used for treating the angular variation of the particle distribution and the diamond-difference scheme is used for phase space discretization. Negative fluxes are eliminated by a local set-to-zero-and-correct algorithm. A standard inner (within-group) iteration, outer (energy-group-dependent source) iteration technique is used. Both inner and outer iterations are accelerated using the diffusion synthetic acceleration method. (WHK)

  11. Particle acceleration and radiation friction effects in the filamentation instability of pair plasmas

    E-Print Network [OSTI]

    D'Angelo, M; Sgattoni, A; Pegoraro, F; Macchi, A

    2015-01-01

    The evolution of the filamentation instability produced by two counter-streaming pair plasmas is studied with particle-in-cell (PIC) simulations in both one (1D) and two (2D) spatial dimensions. Radiation friction effects on particles are taken into account. After an exponential growth of both the magnetic field and the current density, a nonlinear quasi-stationary phase sets up characterized by filaments of opposite currents. During the nonlinear stage, a strong broadening of the particle energy spectrum occurs accompanied by the formation of a peak at twice their initial energy. A simple theory of the peak formation is presented. The presence of radiative losses does not change the dynamics of the instability but affects the structure of the particle spectra.

  12. Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 3

    SciTech Connect (OSTI)

    Parsa, Z. [ed.] [comp.

    1995-10-01

    This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory. Editing and changes to authors` contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on eight presentations: ``Inverse Cherenkov Laser Acceleration of Electron Beams``, ``High Brightness Field Emission Cathodes``, ``QCD/Teraflop Collaboration: The Future of Supercomputing``, ``Report on Dipole R&D``, ``Reaching Maximum Luminosity in Hadron Colliders at 10-100 TeV``, ``STAR Collaboration Project Status Report: Quarks and Gluons``, ``PHENIX Collaboration Project Status Report``, and ``Update on Status of BNL Relativistic Heavy Ion Collider (RHIC) Project: RHIC Design Issues.``

  13. Acceleration and Compression of Charged Particle Bunches Using Counter-Propagating Laser Beams

    SciTech Connect (OSTI)

    G. Shvets; N. J. Fisch; A. Pukhov

    2000-10-17

    The nonlinear interaction between counter-propagating laser beams in a plasma results in the generation of large (enhanced) plasma wakes. The two beams need to be slightly detuned in frequency, and one of them has to be ultra-short (shorter than a plasma period). Thus produced wakes have a phase velocity close to the speed of light and can be used for acceleration and compression of charged bunches. The physical mechanism responsible for the enhanced wake generation is qualitatively described and compared with the conventional laser wakefield mechanism. The authors also demonstrate that, depending on the sign of the frequency difference between the lasers, the enhanced wake can be used as a ``snow-plow'' to accelerate and compress either positively or negatively charged bunches. This ability can be utilized in an electron-positron injector.

  14. Particle-in-cell simulations of particle energization via shock drift acceleration from low Mach number quasi-perpendicular shocks in solar flares

    E-Print Network [OSTI]

    Park, Jaehong; Workman, Jared C; Blackman, Eric G

    2012-01-01

    Low Mach number, high beta fast mode shocks can occur in the magnetic reconnection outflows of solar flares. These shocks, which occur above flare loop tops, may provide the electron energization responsible for some of the observed hard X-rays and contemporaneous radio emission. Here we present new 2D particle-in-cell simulations of low Mach number/high beta quasi-perpendicular shocks. The simulations show that electrons above a certain energy threshold experience shock-drift-acceleration. The transition energy between the thermal and non-thermal spectrum and the spectral index from the simulations are consistent with some of the X-ray spectra from RHESSI in the energy regime, $E\\lesssim 40\\sim 100$ keV. Plasma instabilities associated with the shock structure such as the modified-two-stream and the electron whistler/mirror instabilities are examined and compared with the numerical solutions of the kinetic dispersion relations.

  15. Condensed Surfaces of Magnetic Neutron Stars, Thermal Surface Emission, and Particle Acceleration Above Pulsar Polar Caps

    E-Print Network [OSTI]

    Zach Medin; Dong Lai

    2008-01-18

    For sufficiently strong magnetic fields and/or low temperatures, the neutron star surface may be in a condensed state with little gas or plasma above it. Such surface condensation can significantly affect the thermal emission from isolated neutron stars, and may lead to the formation of a charge-depleted acceleration zone ("vacuum gap") in the magnetosphere above the stellar polar cap. Using the latest results on the cohesive property of magnetic condensed matter, we quantitatively determine the conditions for surface condensation and vacuum gap formation in magnetic neutron stars. We find that condensation can occur if the thermal energy kT of the neutron star surface is less than about 8% of its cohesive energy Q_s, and that a vacuum gap can form if the neutron star's rotation axis and magnetic moment point in opposite directions and kT is less than about 4% of Q_s. Thus, vacuum gap accelerators may exist for some neutron stars. Motivated by this result, we also study the physics of pair cascades in the vacuum gap model for photon emission by accelerating electrons and positrons due to both curvature radiation and resonant/nonresonant inverse Compton scattering. Our calculations of the condition of cascade-induced vacuum breakdown and the related pulsar death line/boundary generalize previous works to the superstrong field regime. We find that inverse Compton scatterings do not produce a sufficient number of high energy photons in the gap and thus do not lead to pair cascades for most neutron star parameters. We discuss the implications of our results for the recent observations of neutron star thermal radiation as well as for the detection/non-detection of radio emission from high-B pulsars and magnetars.

  16. Shock Acceleration of the Energetic Particle Background in the Solar Wind David T. Sodaitis

    E-Print Network [OSTI]

    on planet Earth, the solar wind is an important topic for study because it is strongly influenced by solar activity, and it transfers that solar influence "to planets, comets, dust particles, and cosmic rays of three components, a fluid model of the sun's corona which in it's equilibrium state creates a supersonic

  17. Radiation Heat Transfer in Particle-Laden Gaseous Flame: Flame Acceleration and Triggering Detonation

    E-Print Network [OSTI]

    Liberman, M A; Kiverin, A D

    2015-01-01

    In this study we examine influence of the radiation heat transfer on the combustion regimes in the mixture, formed by suspension of fine inert particles in hydrogen gas. The gaseous phase is assumed to be transparent for the thermal radiation, while the radiant heat absorbed by the particles is then lost by conduction to the surrounding gas. The particles and gas ahead of the flame is assumed to be heated by radiation from the original flame. It is shown that the maximum temperature increase due to the radiation preheating becomes larger for a flame with lower velocity. For a flame with small enough velocity temperature of the radiation preheating may exceed the crossover temperature, so that the radiation heat transfer may become a dominant mechanism of the flame propagation. In the case of non-uniform distribution of particles, the temperature gradient formed due to the radiation preheating can initiate either deflagration or detonation ahead of the original flame via the Zel'dovich's gradient mechanism. Th...

  18. Means for the focusing and acceleration of parallel beams of charged particles. [Patent application

    DOE Patents [OSTI]

    Maschke, A.W.

    1980-09-23

    Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

  19. Means for the focusing and acceleration of parallel beams of charged particles

    DOE Patents [OSTI]

    Maschke, Alfred W. (East Moriches, NY)

    1982-09-21

    Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

  20. Study of high-energy particle acceleration in Tycho with gamma-ray observations

    E-Print Network [OSTI]

    Park, Nahee

    2015-01-01

    Gamma-ray emission from supernova remnants (SNRs) can provide a unique window to observe the cosmic-ray acceleration believed to take place in these objects. Tycho is an especially good target for investigating hadronic cosmic-ray acceleration and interactions because it is a young type Ia SNR that is well studied in other wavelengths, and it is located in a relatively clean environment. Several different theoretical models have been advanced to explain the broadband spectral energy emission of Tycho from radio to the gamma-ray emission detected by the Fermi-LAT in the GeV and by VERITAS in the TeV. We will present an update on the high-energy gamma-ray studies of Tycho with $\\sim150$ hours of VERITAS and $\\sim77$ months of the Fermi-LAT observations, which represents about a factor of two increase in exposure over previously published data. VERITAS data also include exposure with an upgraded camera, which made it possible to extend the TeV measurements toward lower energy, thanks to its improved low energy s...

  1. The Real-Time Data Analysis and Decision System for Particle Flux Detection in the LHC Accelerator at CERN.

    E-Print Network [OSTI]

    Zamantzas, C; Dehning, B

    2006-01-01

    The superconducting Large Hadron Collider (LHC) under construction at the European Organisation for Nuclear Research (CERN) is an accelerator unprecedented in terms of beam energy, particle production rate and also in the potential of self-destruction. Its operation requires a large variety of instrumentation, not only for the control of the beams, but also for the protection of the complex hardware systems. The Beam Loss Monitoring (BLM) system has to prevent the superconducting magnets from becoming normal conducting and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. For its operation, the system requires 3600 detectors to be placed at various locations around the 27 km ring. The measurement system is sub-divided to the tunnel electronics, which are responsible for acquiring, digitising and transmitting the data, and the surface electronics, which receive the data via 2 km optical data links, process, analyze, store and issue warning...

  2. A Chandra view of non-thermal emission in the northwestern region of supernova remnant RCW 86: Particle acceleration and magnetic fields

    SciTech Connect (OSTI)

    Castro, Daniel; Lopez, Laura A.; Figueroa-Feliciano, Enectali [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Slane, Patrick O.; Yamaguchi, Hiroya [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 (United States)

    2013-12-10

    The shocks of supernova remnants are believed to accelerate particles to cosmic ray (CR) energies. The amplification of the magnetic field due to CRs propagating in the shock region is expected to have an impact on both the emission from the accelerated particle population as well as the acceleration process itself. Using a 95 ks observation with the Advanced CCD Imaging Spectrometer on board the Chandra X-Ray Observatory, we map and characterize the synchrotron emitting material in the northwest region of RCW 86. We model spectra from several different regions, both filamentary and diffuse, where emission appears to be dominated by synchrotron radiation. The fine spatial resolution of Chandra allows us to obtain accurate emission profiles across three different non-thermal rims in this region. The narrow width (l ? 10''-30'') of these filaments constrains the minimum magnetic field strength at the post-shock region to approximately 80 ?G.

  3. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators

    SciTech Connect (OSTI)

    Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N. [Institute of Physics, University of Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil)

    2012-09-15

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  4. Asian American women entrepreneurs

    E-Print Network [OSTI]

    Suh, Clara J

    2014-01-01

    There are an estimated 620,300 firms owned by Asian American women nationwide, and they contribute $105 billion to the U.S. economy. They are also active in Greater Boston's innovation and entrepreneurship communities. ...

  5. The Asian war bow

    E-Print Network [OSTI]

    Nieminen, Timo A

    2011-01-01

    The bow is one of the earliest complex machines, a prime example of the storage and transfer of energy. The physics of the bow illuminates compromises and design choices made in Asian military archery.

  6. European Particle Accelerator Conference -Rome, Italy -June 7-12, 1988 DEVELOPMENT OFA HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT

    E-Print Network [OSTI]

    McDonald, Kirk

    BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN NATIONAL LABORATORY* K. Batchelor, HDonald Princeton University At innBNL--41767 DE89 002179 Abstract An electron gun utilizing aradio frequency on the design of (he electron gun which will provide r.f. bunches of upto 101 electrons synchronized

  7. Fermilab | Science | Particle Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature photo feature photo feature

  8. Laser Wakefield Particle Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScienceLaboratoryandBryanoutreach LaserLaserLaser

  9. From Autos to Accelerators

    Office of Energy Efficiency and Renewable Energy (EERE)

    In a town haunted by the remains of fallen automobile plants, some companies are hiring workers to put their car-manufacturing skills toward building particle accelerators.

  10. The design and performance of a water cooling system for a prototype coupled cavity linear particle accelerator for the spallation neutron source

    SciTech Connect (OSTI)

    Bernardin, J. D. (John D.); Ammerman, C. N. (Curtt N.); Hopkins, S. M. (Steve M.)

    2002-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. The SNS will generate and employ neutrons as a research tool in a variety of disciplines including biology, material science, superconductivity, chemistry, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of, in part, a multi-cell copper structure termed a coupled cavity linac (CCL). The CCL is responsible for accelerating the protons from an energy of 87 MeV, to 185 MeV. Acceleration of the charged protons is achieved by the use of large electrical field gradients established within specially designed contoured cavities of the CCL. While a large amount of the electrical energy is used to accelerate the protons, approximately 60-80% of this electrical energy is dissipated in the CCL's copper structure. To maintain an acceptable operating temperature, as well as minimize thermal stresses and maintain desired contours of the accelerator cavities, the electrical waste heat must be removed from the CCL structure. This is done using specially designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by a complex water cooling and temperature control system. This paper discusses the design, analysis, and testing of a water cooling system for a prototype CCL. First, the design concept and method of water temperature control is discussed. Second, the layout of the prototype water cooling system, including the selection of plumbing components, instrumentation, as well as controller hardware and software is presented. Next, the development of a numerical network model used to size the pump, heat exchanger, and plumbing equipment, is discussed. Finally, empirical pressure, flow rate, and temperature data from the prototype CCL water cooling tests are used to assess water cooling system performance and numerical modeling accuracy.

  11. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect (OSTI)

    Noll, Daniel; Stancari, Giulio

    2015-11-17

    An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.

  12. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect (OSTI)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  13. Power Converters for Accelerators

    E-Print Network [OSTI]

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  14. Accelerated Quantum Dynamics

    E-Print Network [OSTI]

    Lynch, Morgan H

    2015-01-01

    In this paper we establish a formalism for the computation of observables due to acceleration-induced particle physics processes. General expressions for the transition rate, multiplicity, power, spectra, and displacement law of particles undergoing time-dependent acceleration and transitioning into a final state of arbitrary particle number are obtained. The transition rate, power, and spectra are characterised by unique polynomials of multiplicity and thermal distributions of both bosonic and fermionic statistics. The acceleration dependent multiplicity is computed in terms of the branching fractions of the associated inertial processes. The displacement law of the spectra predicts the energy of the emitted particles are directly proportional to the accelerated temperature. These results extend our understanding of particle physics into the high acceleration sector.

  15. Plasmoid Ejections and Loop Contractions in an Eruptive M7.7 Solar Flare: Evidence of Particle Acceleration and Heating in Magnetic Reconnection Outflows

    E-Print Network [OSTI]

    Liu, Wei; Petrosian, Vahe'

    2013-01-01

    Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km/s up to 1050 km/s. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source well below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descen...

  16. A magnetohydrodynamic model of the M87 jet. II. Self-consistent quad-shock jet model for optical relativistic motions and particle acceleration

    SciTech Connect (OSTI)

    Nakamura, Masanori

    2014-04-20

    We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the Hubble Space Telescope during 1994-1998. The model concept consists of ejection of a single relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the optical observations of HST-1 with the same model we used previously to describe similar features in radio very long baseline interferometry observations in 2005-2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge of the HST-1 complex as observed from radio to optical wavelengths, with forward/reverse fast-mode MHD shocks then responsible for observed moving features. Moreover, we identify such intrinsic properties as the shock compression ratio, degree of magnetization, and magnetic obliquity and show that they are suitable to mediate diffusive shock acceleration of relativistic particles via the first-order Fermi process. We suggest that relativistic MHD shocks in Poynting-flux-dominated helical jets may play a role in explaining observed emission and proper motions in many active galactic nuclei.

  17. East Asian Security in 2025 

    E-Print Network [OSTI]

    Heavin, Reagan; Hudson, Adam; Krueger, Brandon; O'Neil, Sean; Rozell, Griffin; Suma, Matt

    2008-01-01

    Are • Reagan Heavin – Energy • Adam Hudson – State Capacity • Brandon Krueger – Military • Sean O’Neil – Demographics • Griffin Rozell – Balance of Power • Matt Suma – Economy East Asian Security in 2025 China: Competition, Cooperation, Plateau? Reagan Heavin... Adam Hudson Brandon Krueger Sean O’Neil Griffin Rozell Matt Suma 24 April 2008 East Asian Security in 2025 Agenda • Conclusions • Projections • Drivers • Four Outcomes • Questions East Asian Security in 2025 Conclusions • China will rise to great power...

  18. Accelerators for high energy physics research

    SciTech Connect (OSTI)

    Chao, A.

    1995-12-01

    A brief survey of particle accelerators as research tools for high energy physics is given. The survey includes existing accelerators, as well as those envisioned for the future.

  19. Particle Physics Booklet 2008

    E-Print Network [OSTI]

    et al., C. Amsler

    2008-01-01

    212 25. Accelerator physics of colliders ? 26. High-energythe full Review. PARTICLE PHYSICS BOOKLET TABLE OF CONTENTSrev. ) Summary Tables of Particle Physics Gauge and Higgs

  20. Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers

    E-Print Network [OSTI]

    K. Belov; K. Mulrey; A. Romero-Wolf; S. A. Wissel; A. Zilles; K. Bechtol; K. Borch; P. Chen; J. Clem; P. W. Gorham; C. Hast; T. Huege; R. Hyneman; K. Jobe; K. Kuwatani; J. Lam; T. Liu; J. Nam; C. Naudet; R. Nichol; B. F. Rauch; B. Rotter; D. Saltzberg; H. Schoorlemmer; D. Seckel; B. Strutt; A. G. Vieregg; C. Williams

    2015-07-27

    An experiment at SLAC provides the first beam test of radio-frequency (RF) radiation from a charged particle cascade in the presence of a magnetic field (up to $\\sim$1~kG), a model system for RF emission from a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of RF emission, which are relied upon in ultra-high-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm recent predictions that the magnetically induced emission forms a beam that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  1. A novel adaptive time stepping variant of the Boris–Buneman integrator for the simulation of particle accelerators with space charge

    SciTech Connect (OSTI)

    Toggweiler, Matthias; Adelmann, Andreas; Arbenz, Peter; Yang, Jianjun

    2014-09-15

    We show that adaptive time stepping in particle accelerator simulation is an enhancement for certain problems. The new algorithm has been implemented in the OPAL (Object Oriented Parallel Accelerator Library) framework. The idea is to adjust the frequency of costly self-field calculations, which are needed to model Coulomb interaction (space charge) effects. In analogy to a Kepler orbit simulation that requires a higher time step resolution at the close encounter, we propose to choose the time step based on the magnitude of the space charge forces. Inspired by geometric integration techniques, our algorithm chooses the time step proportional to a function of the current phase space state instead of calculating a local error estimate like a conventional adaptive procedure. Building on recent work, a more profound argument is given on how exactly the time step should be chosen. An intermediate algorithm, initially built to allow a clearer analysis by introducing separate time steps for external field and self-field integration, turned out to be useful by its own, for a large class of problems.

  2. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    E-Print Network [OSTI]

    Cary, J.R.

    2008-01-01

    computational accelerator physics initiative † J R Carycomputational accelerator physics initiative J R Cary 1,9 ,colliders for particle physics and nuclear science and light

  3. Fermilab | Science | Particle Accelerators | Fermilab's Accelerator Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature photo feature photoFermilab's

  4. Fermilab | Science | Particle Accelerators | Leading Accelerator Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature photo feature photoFermilab'sLHC

  5. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  6. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Kushal Shah; Vassili Gelfreich; Vered Rom-Kedar; Dmitry Turaev

    2015-04-03

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  7. Mapping the particle acceleration in the cool core of the galaxy cluster RX J1720.1+2638

    SciTech Connect (OSTI)

    Giacintucci, S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Markevitch, M. [Joint Space-Science Institute, University of Maryland, College Park, MD, 20742-2421 (United States); Brunetti, G.; Venturi, T. [INAF—Istituto di Radioastronomia, Via Gobetti 101, I-40129 Bologna (Italy); ZuHone, J. A. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mazzotta, P.; Bourdin, H., E-mail: simona@astro.umd.edu [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome (Italy)

    2014-11-01

    We present new deep, high-resolution radio images of the diffuse minihalo in the cool core of the galaxy cluster RX J1720.1+2638. The images have been obtained with the Giant Metrewave Radio Telescope at 317, 617, and 1280 MHz and with the Very Large Array at 1.5, 4.9, and 8.4 GHz, with angular resolutions ranging from 1'' to 10''. This represents the best radio spectral and imaging data set for any minihalo. Most of the radio flux of the minihalo arises from a bright central component with a maximum radius of ?80 kpc. A fainter tail of emission extends out from the central component to form a spiral-shaped structure with a length of ?230 kpc, seen at frequencies 1.5 GHz and below. We find indication of a possible steepening of the total radio spectrum of the minihalo at high frequencies. Furthermore, a spectral index image shows that the spectrum of the diffuse emission steepens with increasing distance along the tail. A striking spatial correlation is observed between the minihalo emission and two cold fronts visible in the Chandra X-ray image of this cool core. These cold fronts confine the minihalo, as also seen in numerical simulations of minihalo formation by sloshing-induced turbulence. All these observations favor the hypothesis that the radio-emitting electrons in cluster cool cores are produced by turbulent re-acceleration.

  8. Compact accelerator for medical therapy

    DOE Patents [OSTI]

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  9. Challenges in Accelerator Beam Instrumentation

    SciTech Connect (OSTI)

    Wendt, M.

    2009-12-01

    The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

  10. Lab Breakthrough: Fermilab Accelerator Technology

    Broader source: Energy.gov [DOE]

    Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient and powerful.

  11. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  12. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  13. Imaginaries of the Asian modern

    E-Print Network [OSTI]

    Lé, Lan Xuân

    2009-01-01

    In an age of globalization, texts increasingly migrate not only out of their native medium, but their native countries as well. Within the East Asian region, a booming television program trade circulates television texts, ...

  14. Beyond “Asian Values”: Rethinking Rights

    E-Print Network [OSTI]

    Tew, Yvonne

    Kuan Yew viewed universal human rights as an alien imposition from the West, reflecting specific Western values, and argued for an approach based on “Asian values” instead. I am sceptical about cultural relativism for at least three reasons...

  15. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 43 PARTICLE ACCELERATORS; ACCELERATORS; ELECTRON BEAMS; ELECTRONS; FREE ELECTRON LASERS; LASERS; PERFORMANCE; PLASMA GUNS; RADIATIONS; WIGGLER MAGNETS...

  16. Real Estate and the Asian Crisis

    E-Print Network [OSTI]

    Quigley, John M.

    2002-01-01

    et al. (1998). How the Thai Real Estate Boom Undid Financialet al. , 1998, p. 32). REAL ESTATE AND THE ASIAN CRISIS FIG.various years 1994–1998. REAL ESTATE AND THE ASIAN CRISIS

  17. 7, 68436902, 2007 An Asian emission

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 6843­6902, 2007 An Asian emission inventory for the period 1980­2020 T. Ohara et al. Title Chemistry and Physics Discussions An Asian emission inventory of anthropogenic emission sources 7, 6843­6902, 2007 An Asian emission inventory for the period 1980­2020 T. Ohara et al. Title Page

  18. Carrigan, Jr., Richard A. [Fermi National Accelerator Lab. (FNAL...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Lab. (FNAL), Batavia, IL (United States) 43 PARTICLE ACCELERATORS; BEAM OPTICS; CHANNELING; ATTENUATION; BEAM EXTRACTION; BENDING; CRYSTALS; MESON BEAMS; BEAMS;...

  19. Solar Flares and particle acceleration

    E-Print Network [OSTI]

    energy ~2 1032 ergs #12;"Standard" model of a solar flare/CME Solar corona T ~ 106 K => 0.1 keV per MeV Proton energies >100 MeV Large solar flare releases about 1032 ergs (about half energy-free emission) #12;X-ray spectrum of solar flares Thermal X-rays Non-thermal X-rays Gamma-ray lines Ramaty High

  20. Advanced Modeling for Particle Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAboutHelp & Reference UsersAdvancedAdvanced

  1. Particle acceleration and jet dynamics in Centaurus A Martin J. Hardcastle a , Diana M. Worrall a , Ralph P. Kraft b , W.R. Forman b , C. Jones b and S.S. Murray b

    E-Print Network [OSTI]

    Hardcastle, Martin

    1 Particle acceleration and jet dynamics in Centaurus A Martin J. Hardcastle a , Diana M. Worrall-dynamic range VLA data, have allowed us to relate the radio and X-ray structure of the jet in Cen A to the jet dynamics. We present evidence that a signi#12;cant fraction of the structure in the Cen A X-ray jet is due

  2. The Asian Wood Pellet Markets

    E-Print Network [OSTI]

    The Asian Wood Pellet Markets Joseph A. Roos and Allen M. Brackley United States Department Wood Pellet plant in North Pole, Alaska. Clockwise from upper left: pelleting machine; pellets bagged for home use; a Superior Pellet Fuels bag; inventory of product ready for shipment to retailers. Upper

  3. The MESA accelerator

    SciTech Connect (OSTI)

    Aulenbacher, Kurt [Institut für Kernphysik, Johannnes-Gutenberg-Universität Mainz (Germany)

    2013-11-07

    The MESA accelerator will operate for particle and nuclear physics experiments in two different modes. A first option is conventional c.w. acceleration yielding 150-200MeV spin-polarized external beam. Second, MESA will be operated as a superconducting multi-turn energy recovery linac (ERL), opening the opportunity to perform experiments with a windowless target with beam current of up to 10 mA. The perspectives for innovative experiments with such a machine are discussed together with a sketch of the accelerator physics issues that have to be solved.

  4. Accelerator on a Chip: How It Works

    SciTech Connect (OSTI)

    2014-06-30

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

  5. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  6. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  7. ACCELERATORS: ENGINES FOR TRAVERSING A LARGE AND OFTEN DIFFICULT LANDSCAPE

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2014-01-01

    California. ACCELERATORS: ENGINES FOR TRAVERSING A LARGE ANDthat go with them, are from: “Engines of Discovery: Particle

  8. FOR IMMEDIATE RELEASE: USC Asian Pacific Alumni Association to Honor First Asian American Justice on the

    E-Print Network [OSTI]

    Zhou, Chongwu

    Asia and the Pacific Rim) with USC and one another lifelong and worldwide through programsFOR IMMEDIATE RELEASE: USC Asian Pacific Alumni Association to Honor First Asian American Justice USC Asian Pacific Alumni Association Scholarship and Awards Gala: "Foundations of Excellence" on April

  9. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;115 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY An NIH-Supported Resource Center WWW.RARAF.ORG Director: David J. Brenner, Ph.D., D.Sc. Manager delighted that NIH funding for continued development of our single-particle microbeam facility was renewed

  10. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  11. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  12. Asian Development Bank Technical Assistance Report on Building...

    Open Energy Info (EERE)

    Asian Development Bank Technical Assistance Report on Building the Capacity of the Sustainable Energy Authority in Sri Lanka Jump to: navigation, search Name Asian Development Bank...

  13. Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California

    SciTech Connect (OSTI)

    Ewing, Stephanie A.; Christensen, John N.; Brown, Shaun T.; Vancuren, Richard A.; Cliff, Steven S.; DePaolo, Donald J.

    2010-10-25

    During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29 Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models.

  14. 6, 1261112670, 2006 Asian pollution over

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 12611­12670, 2006 Asian pollution over Europe A. Stohl et al. Title Page Abstract Discussions Aircraft measurements over Europe of an air pollution plume from Southeast Asia ­ aerosol Asian pollution over Europe A. Stohl et al. Title Page Abstract Introduction Conclusions References

  15. Accelerators for research and applications

    SciTech Connect (OSTI)

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs.

  16. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  17. Future HEP Accelerators: The US Perspective

    E-Print Network [OSTI]

    Bhat, Pushpalatha

    2015-01-01

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed...

  18. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    SciTech Connect (OSTI)

    Qian, Yun; Flanner, M. G.; Leung, Lai-Yung R.; Wang, Weiguo

    2011-03-02

    The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating extensively at a speed faster than any other part of the world. In this study a series of experiments with a global climate model are designed to simulate black carbon (BC) and dust in snow and their radiative forcing and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow, respectively, on the snowpack over the TP, as well as their subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 µk/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. The aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0oC averaged over the TP and reduces snowpack over the TP more than that induced by pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere during spring. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. During boreal spring, aerosols are transported by the southwesterly and reach the higher altitude and/or deposited in the snowpack over the TP. While BC and OM in the atmosphere directly absorb sunlight and warm the air, the darkened snow surface polluted by BC absorbs more solar radiation and increases the skin temperature, which warms the air above by the increased sensible heat flux over the TP. Both effects enhance the upward motion of air and spur deep convection along the TP during pre-monsoon season, resulting in earlier onset of the SAM and increase of moisture, cloudiness and convective precipitation over northern India. BC-in-snow has a more significant impact on the EAM in July than CO2 increase and carbonaceous particles in the atmosphere. Contributed by the significant increase of both sensible heat flux associated with the warm skin temperature and latent heat flux associated with increased soil moisture with long memory, the role of the TP as a heat pump is elevated from spring through summer as the land-sea thermal contrast increases to strengthen the EAM. As a result, both southern China and northern China become wetter, but central China (i.e. Yangtze River Basin) becomes drier - a near zonal anomaly pattern that is consistent with the dominant mode of precipitation variability in East Asia. ?

  19. SDSU General Catalog 2012-2013 149 Asian Studies

    E-Print Network [OSTI]

    Gallo, Linda C.

    and the Pacific Rim are reflected in the rich culture and history of Asian people, Asian contributions to provide resources for understanding East Asia, South Asia, Southeast Asia, the Pacific Rim, the relation://asiapacific.sdsu.edu Faculty Asian and Pacific Studies is administered by the Asian and Pacific Studies Committee. Faculty

  20. SDSU General Catalog 2011-2012 149 Asian Studies

    E-Print Network [OSTI]

    Gallo, Linda C.

    and the Pacific Rim are reflected in the rich culture and history of Asian people, Asian contributions to provide resources for understanding East Asia, South Asia, Southeast Asia, the Pacific Rim, the relation://asiapacific.sdsu.edu Faculty Asian and Pacific Studies is administered by the Asian and Pacific Studies Committee. Faculty

  1. SDSU General Catalog 2010-2011 145 Asian Studies

    E-Print Network [OSTI]

    Gallo, Linda C.

    of the immense and varied regions of Asian and the Pacific Rim are reflected in the rich culture and history, Southeast Asia, the Pacific Rim, the relation of these peoples and cultures to North America, and Asian://asiapacific.sdsu.edu Faculty Asian and Pacific Studies is administered by the Asian and Pacific Studies Committee. Faculty

  2. EM Structure Based and Vacuum Acceleration

    SciTech Connect (OSTI)

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  3. particle physics 2009Highlights

    E-Print Network [OSTI]

    Report particle physics 2009ª #12;2 | Contents #12;Contents | 3 contentsª º introduction 4 º News;Introduction | 5 projects, (ii) coordination of national particle physics activities and (iii) reaching outparticle physics 2009ªHighlights and Annual Report Accelerators | Photon Science | Particle Physics

  4. Felix Moos--Center for East Asian Studies Interview: An Anthropologist's Asian Journeys

    E-Print Network [OSTI]

    Moos, Felix; Greene, Megan

    2013-11-01

    This video interview of Dr. Felix Moos by Dr. Megan Greene is a part of the University of Kansas East Asian Studies Faculty Interview Series....

  5. Accelerator simulation using computers

    SciTech Connect (OSTI)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ``multi-track`` simulation and analysis code can be used for these applications.

  6. Accelerator simulation using computers

    SciTech Connect (OSTI)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a multi-track'' simulation and analysis code can be used for these applications.

  7. Opportunities and Inaudibilities: Asian American Internet Musicians

    E-Print Network [OSTI]

    Regullano, Eileen

    2015-01-01

    60–73. Spooner, Tom. “Asian-Americans and the Internet. ”Pew Research Center’s Internet & American Life Project.americans-and-the-internet/. Timothy DeLaGhetto Dog Joke. ,

  8. A Novel Approach to Non linear Shock Acceleration

    E-Print Network [OSTI]

    Pasquale Blasi

    2001-11-28

    First order Fermi acceleration at astrophysical shocks is often invoked as a mechanism for the generation of non-thermal particles. This mechanism is especially simple in the approximation that the accelerated particles behave like test particles, not affecting the shocked fluid. Many complications enter the calculations when the accelerated particles have a backreaction on the fluid, in which case we may enter the non linear regime of shock acceleration. In this paper we summarize the main features of a semi-analytical approach to the study of the non linearity in shock acceleration, and compare some of the results with previous attempts and with the output of numerical simulations.

  9. CENTRIPETAL ACCELERATION AND CENTRIFUGAL FORCE IN GENERAL RELATIVITY

    E-Print Network [OSTI]

    Jantzen, Robert T.

    1 CENTRIPETAL ACCELERATION AND CENTRIFUGAL FORCE IN GENERAL RELATIVITY D. BINI Istituto per acceleration which, once interpreted as a centrifugal force acting on the particle, allows writing the particle and centrifugal acceleration generalizing the classical concepts must be properly (geometrically) defined

  10. High-energy X-ray imaging of the pulsar wind nebula MSH 15–52: constraints on particle acceleration and transport

    SciTech Connect (OSTI)

    An, Hongjun; Kaspi, Victoria M.; Madsen, Kristin K.; Harrison, Fiona A.; Grefenstette, Brian W.; Reynolds, Stephen P.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Fryer, Chris L.; Hailey, Charles J.; Mori, Kaya; Stern, Daniel; Zhang, William W.

    2014-10-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15–52 in the hard X-ray band (?8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron-emitting electron distribution at ?200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509–58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50'' of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N {sub H} map. We discuss possible origins of the shell-like structure and their implications.

  11. Accelerators and the Accelerator Community

    E-Print Network [OSTI]

    Malamud, Ernest

    2009-01-01

    became the APS Division of the Physics of Beams. If oneorganizes accelerator physics sessions at APS meetings, and,creating the APS topical group on beam physics, which later

  12. Cascaded target normal sheath acceleration

    SciTech Connect (OSTI)

    Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.

    2013-11-15

    A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

  13. Emissions of air pollutants and greenhouse gases over1 Asian regions during 20002008: Regional Emission2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    of Russia/West Siberia WSIB Asian part of Russia/Ural URAL Kazakhstan KAZ Kyrgyzstan KGZ Tajikistan TJK Maldives MDV Asian part of Russia/Far East RCA FARE Asian part of Russia/East Siberia ESIB Asian part

  14. Discovery of Optical Emission in the Hotspots of Three 3CR Quasars: High-Energy Particle Acceleration in Powerful Radio Hotspots

    E-Print Network [OSTI]

    C. C. Cheung; J. F. C. Wardle; T. Chen

    2005-03-29

    Archival Hubble Space Telescope WFPC2 images were used to search for optical emission associated with the radio jets of a number of luminous quasars. From this search, we report new optical hotspot detections in the well-known blazar 3C~454.3 and the lobe-dominated quasars 3C~275.1 and 3C~336. We also find optical emission in the vicinity of the hotspot in 3C~208, but believe this is a chance alignment. Optical emission from the arcsecond-scale jet in 3C~454.3 is also detected. Multi-frequency archival radio data from the VLA and MERLIN are analyzed, and the synchrotron spectra of these high-power hotspots are presented. We estimate that their break frequencies are in the range of $10^{10}-10^{11}$ Hz, with large uncertainties due to the wide gap in frequency coverage between the radio and optical bands. We also calculate their equipartition magnetic fields, and find that the anti-correlation between break frequency and magnetic field found by Brunetti et al. for lower power hotspots extends to these high power hotspots. This supports their model of hot-spots based on shock acceleration and synchrotron losses.

  15. High Performance Computing in Accelerator Science: Past Successes. Future Challenges

    E-Print Network [OSTI]

    Ryne, R.

    2013-01-01

    nuclear physics Particle accelerators have important applications in energy, environment,nuclear material, explosives in cargo • accelerator-driven energy production • studying materials and organisms relevent to energy and the environment —

  16. First Director Named for Center for Accelerator Science | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and is a regular teacher at the U.S. Particle Accelerator School. He is the inventor of several types of accelerating cavities that are being used worldwide. "Jean's...

  17. Accelerator dynamics and beam aperture

    SciTech Connect (OSTI)

    Parsa, Z.

    1986-10-01

    We present an analytical method for analyzing accelerator dynamics, including higher order effects of multipoles on the beam. This formalism provides a faster alternative to particle tracking. Simplectic expressions for the emittance and phase describing the dynamical behavior of a particle in a circular accelerator are derived using second order perturbation theory (in the presence of nonlinear elements, e.g., sextupoles, octupoles). These expressions are successfully used to calculate the emittance growth, smear and linear aperture. Our findings compare well with results obtained from tracking programs. In addition perturbation to betatron tune; resonance strengths; stop bandwidth; fixed points; island width; and Chirikov criteria are calculated.

  18. Future directions of accelerator-based NP and HEP facilities

    SciTech Connect (OSTI)

    Roser, T.

    2011-07-24

    Progress in particle and nuclear physics has been closely connected to the progress in accelerator technologies - a connection that is highly beneficial to both fields. This paper presents a review of the present and future facilities and accelerator technologies that will push the frontiers of high-energy particle interactions and high intensity secondary particle beams.

  19. Accelerator Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating theAccelerator

  20. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAbout UsAbout NewAccelerator Systems Accelerator

  1. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultät für Physik and Astronomie, Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  2. Accelerator Technology Division progress report, FY 1992

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  3. Asian American and African American masculinities : race, citizenship, and culture in post-civil rights

    E-Print Network [OSTI]

    Chon-Smith, Chong

    2006-01-01

    Eroticized Asian in Gay Male Porn,” in Q&A: Queer in AsianEroticized Asian in Gay Male Porn. ” In Q&A: Queer in AsianEroticized Asian in Gay Male Porn,” in Q&A: Queer in Asian

  4. For more information about the UCSF Asian Health Program,

    E-Print Network [OSTI]

    Martin, Gail

    ARcH Disparities in Asian infertility population Vic Fugimoto, MD Risk of renal failure among Asians Chi-yuan Hsu, MD Pharmacogenetics in Chinese Americans Kathy Giacomini, PhD Diagnosis and treatment

  5. Design and construction of a cyclotron capable of accelerating protons to 2 MeV

    E-Print Network [OSTI]

    Dewan, Leslie

    2007-01-01

    This thesis describes the design and construction of a cyclotron capable of accelerating protons to 2 MeV. A cyclotron is a charged particle accelerator that uses a magnetic field to confine particles to a spiral flight ...

  6. FALL QUARTER 2015 ASIAN STUDIES PROGRAM COURSE OPTIONS

    E-Print Network [OSTI]

    Ottino, Julio M.

    . Humanities ART_HIST 382-2-1 Chinese Painting MW 11:00am - 12:20pm Hu ASIAN_LC 290-0-20 Special Topics in Asian Languages and Cultures: Beyond Bollywood: Indian Pop (co-listed w/ Comp Lit 202-0-1) TuTh 3:30pm - 4:50pm Brueck ASIAN_LC 290-0-21 Special Topics in Asian Languages and Cultures: Modern Chinese Pop

  7. Advanced medical accelerator design

    SciTech Connect (OSTI)

    Alonso, J.R.; Elioff, T.; Garren, A.

    1982-11-01

    This report describes the design of an advanced medical facility dedicated to charged particle radiotherapy and other biomedical applications of relativistic heavy ions. Project status is reviewed and some technical aspects discussed. Clinical standards of reliability are regarded as essential features of this facility. Particular emphasis is therefore placed on the control system and on the use of technology which will maximize operational efficiency. The accelerator will produce a variety of heavy ion beams from helium to argon with intensities sufficient to provide delivered dose rates of several hundred rad/minute over large, uniform fields. The technical components consist of a linac injector with multiple PIG ion sources, a synchrotron and a versatile beam delivery system. An overview is given of both design philosophy and selected accelerator subsystems. Finally, a plan of the facility is described.

  8. FFAG ACCELERATOR PROTON DRIVER FOR NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2005-06-21

    This paper is the summary of a conceptual study of a Proton Driver for Neutrino Factory based on the use of a Fixed-Field Alternating-Gradient (FFAG) Accelerator. The required proton energy range for an optimum neutrino production is 5 to 12 GeV. This can be accomplished with a group of three concentric rings each with 807 m circumference [1]. FFAG Accelerators [2] have the capability to accelerate charged particles over a large momentum range ({+-}30-50%) and the feature of constant bending and focusing fields. Particles can be accelerated very fast at the rate given by the accelerating field of RF cavities placed in proper locations between magnets. The performance of FFAG accelerators is to be placed between that of Super-Conducting Linear Accelerators (SCL), with which they share the fast acceleration rate, and Rapid-Cycling Synchrotrons (RCS), as they allow the beam to re-circulate over fewer revolutions. Brookhaven National Laboratory is involved in the study of feasibility of FFAG Accelerators to accelerate intense beams of protons in the GeV energy range for a variety of applications the most important of which is the Upgrade of the Alternating Gradient Synchrotron (AGS) with a new FFAG injector [3] accelerating from 400 MeV to 1.5 GeV. The ring would be housed in the AGS tunnel and has henceforth a circumference of 807 m.

  9. Mathematics Classroom Activities of Selected East Asian and Non-Asian Countries From the Views of Teachers and Students 

    E-Print Network [OSTI]

    Lee, Jin Hee

    2012-10-19

    East Asian countries have achieved high levels of mathematics competency. This study investigated classroom activities of East Asian countries based on the idea that different learning experiences lead to gaps in academic outcomes. The main...

  10. SDSU General Catalog 2013-2014 149 Asian Studies

    E-Print Network [OSTI]

    Gallo, Linda C.

    The importance of the immense and varied regions of Asian and the Pacific Rim are reflected in the rich culture Asia, South Asia, Southeast Asia, the Pacific Rim, the relation of these peoples and cultures to North://asiapacific.sdsu.edu Faculty Asian and Pacific Studies is administered by the Asian and Pacific Studies Committee. Faculty

  11. Accelerator target

    DOE Patents [OSTI]

    Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.

    1999-06-29

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.

  12. Accelerator target

    DOE Patents [OSTI]

    Schlyer, David J. (Bellport, NY); Ferrieri, Richard A. (Patchogue, NY); Koehler, Conrad (Miller Place, NY)

    1999-01-01

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

  13. Influence of recent Asian SO? and Asian NOx? emissions change (2001 to 2010) on particulate matter : shifts in Asian sulfate enhancement over US surface, major production pathway, and lifetime

    E-Print Network [OSTI]

    Min, Flora

    2014-01-01

    A 3-D chemical transport model with coupled oxidant-aerosol chemistry (GEOSChem) is used to analyze the influence of recent (2001 to 2010) growth in Asian NOx and Asian SO 2 emission on transpacific transport of Asian ...

  14. Diffusive Shock Acceleration: the Fermi Mechanism

    E-Print Network [OSTI]

    Matthew G. Baring

    1997-11-16

    The mechanism of diffusive Fermi acceleration at collisionless plasma shock waves is widely invoked in astrophysics to explain the appearance of non-thermal particle populations in a variety of environments, including sites of cosmic ray production, and is observed to operate at several sites in the heliosphere. This review outlines the principal results from the theory of diffusive shock acceleration, focusing first on how it produces power-law distributions in test-particle regimes, where the shock dynamics are dominated by the thermal populations that provide the seed particles for the acceleration process. Then the importance of non-linear modifications to the shock hydrodynamics by the accelerated particles is addressed, emphasizing how these subsequently influence non-thermal spectral formation.

  15. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  16. Stochastic Acceleration in Relativistic Parallel Shocks

    E-Print Network [OSTI]

    Joni J. P. Virtanen; Rami Vainio

    2004-11-08

    (abridged) We present results of test-particle simulations on both the first and the second order Fermi acceleration at relativistic parallel shock waves. We consider two scenarios for particle injection: (i) particles injected at the shock front, then accelerated at the shock by the first order mechanism and subsequently by the stochastic process in the downstream region; and (ii) particles injected uniformly throughout the downstream region to the stochastic process. We show that regardless of the injection scenario, depending on the magnetic field strength, plasma composition, and the employed turbulence model, the stochastic mechanism can have considerable effects on the particle spectrum on temporal and spatial scales too short to be resolved in extragalactic jets. Stochastic acceleration is shown to be able to produce spectra that are significantly flatter than the limiting case of particle energy spectral index -1 of the first order mechanism. Our study also reveals a possibility of re-acceleration of the stochastically accelerated spectrum at the shock, as particles at high energies become more and more mobile as their mean free path increases with energy. Our findings suggest that the role of the second order mechanism in the turbulent downstream of a relativistic shock with respect to the first order mechanism at the shock front has been underestimated in the past, and that the second order mechanism may have significant effects on the form of the particle spectra and its evolution.

  17. Compact accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Kirbie, Hugh C. (Los Alamos, NM)

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  18. Fermilab | Science | Particle Accelerators | LHC and Future Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature photo feature photoFermilab'sLHC and

  19. Department of Entomology ASIAN LADY BEETLE

    E-Print Network [OSTI]

    Pittendrigh, Barry

    to be the last that come to mind. The particular species of lady beetle that has recently become a home invading. For example black shutters on a white house, dark windows on a light colored house, or light colored gutter of light-colored build- ings, close to wooded areas. Asian lady beetles are attracted to: - Abrupt

  20. Asian American and Pacific Islander Heritage Month

    Broader source: Energy.gov [DOE]

    A celebration of Asians and Pacific Islanders in the United States. The month of May was chosen to commemorate the immigration of the first Japanese to the United States on May 7, 1843, and to mark the anniversary of the completion of the transcontinental railroad on May 10, 1869. The majority of the workers who laid the tracks were Chinese immigrants.

  1. Aviation Sustainable Biofuels: An Asian Airline Perspective

    E-Print Network [OSTI]

    Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

  2. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  3. Accelerators and the Accelerator Community

    SciTech Connect (OSTI)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  4. Peculiar acceleration

    E-Print Network [OSTI]

    Luca Amendola; Claudia Quercellini; Amedeo Balbi

    2007-08-08

    It has been proposed recently to observe the change in cosmological redshift of distant galaxies or quasars with the next generation of large telescope and ultra-stable spectrographs (the so-called Sandage-Loeb test). Here we investigate the possibility of observing the change in peculiar velocity in nearby clusters and galaxies. This ``peculiar acceleration'' could help reconstructing the gravitational potential without assuming virialization. We show that the expected effect is of the same order of magnitude of the cosmological velocity shift. Finally, we discuss how to convert the theoretical predictions into quantities directly related to observations.

  5. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating the transfer

  6. Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2008-07-01

    The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  7. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2011-10-21

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  8. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  9. LASER ACCELERATION IN VACUUM J.L. Hsu, T. Katsouleas

    E-Print Network [OSTI]

    Wurtele, Jonathan

    LASER ACCELERATION IN VACUUM J.L. Hsu, T. Katsouleas University of Southern California, Los Angeles electric fields of high-brightness lasers (e.g., up to order TV/cm) to accelerate particles. Unfortunately, as is well known, it is difficult to couple the vacuum field of the laser to particles so as to achieve a net

  10. Simple Laser Accelerator - Optics and Particle Dynamics 

    E-Print Network [OSTI]

    Scully, Marlan O.; Zubairy, M. Suhail.

    1991-01-01

    fitting structure are being investigated. The model developed will be presented to various Natural Gas producing countries such as Iran, Iraq, Russia, and Saudi to name a few and will ultimately be set up the same way that OPEC was....

  11. International Particle Accelerator Community Prepares for May...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    worldwide that serve as essential tools in disease diagnosis and treatment, in biomedical and materials research and in manufacturing, energy and security. More than 1,200...

  12. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature photo feature photo

  13. How Particle Accelerators Work | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSofNewsletterGuidingUpdate Webinar Slidess g n i rFuel CellsHow

  14. Final Report: Particle Physics Research Program

    SciTech Connect (OSTI)

    Karchin, Paul E.

    2011-09-01

    We describe recent progress in accelerator-based experiments in high-energy particle physics and progress in theoretical investigations in particle physics. We also describe future plans in these areas.

  15. Summary Report of Working Group 1: Laser-Plasma Acceleration

    SciTech Connect (OSTI)

    Geddes, C.G.R.; Clayton, C.; Lu, W.; Thomas, A.G.R.

    2010-06-01

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  16. Diffusive Acceleration of Ions at Interplanetary Shocks

    E-Print Network [OSTI]

    Matthew G. Baring; Errol J. Summerlin

    2005-06-08

    Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-convection equation. In this theory/data comparison, it is demonstrated that diffusive acceleration theory can, to first order, successfully account for both the proton distribution data near the shock, and the observation of energetic protons farther upstream of this interplanetary shock than lower energy pick-up protons, using a single turbulence parameter. The principal conclusion is that diffusive acceleration of inflowing upstream ions can model this pick-up ion-rich event without the invoking any seed pre-acceleration mechanism, though this investigation does not rule out the action of such pre-acceleration.

  17. Chemical Accelerators The phrase "chemical accelerators"

    E-Print Network [OSTI]

    Meetings Chemical Accelerators The phrase "chemical accelerators" is scarcely older than for one or two dozen people grew to include nearly a hundred. Chemical accelerators is a name sug- gested by one of us for devices that produce beams of chemically interesting species at relative kinetic

  18. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  19. Radio frequency focused interdigital linear accelerator

    DOE Patents [OSTI]

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  20. Energy conservation in typical Asian countries

    SciTech Connect (OSTI)

    Yang, M.; Rumsey, P.

    1997-06-01

    Various policies and programs have been created to promote energy conservation in Asia. Energy conservation centers, energy conservation standards and labeling, commercial building codes, industrial energy use regulations, and utility demand-side management (DSM) are but a few of them. This article attempts to analyze the roles of these different policies and programs in seven typical Asian countries: China, Indonesia, Japan, Pakistan, South Korea, the Philippines, and Thailand. The conclusions show that the two most important features behind the success policies and programs are (1) government policy support and (2) long-run self-sustainability of financial support to the programs.

  1. Frontiers of particle beam physics

    SciTech Connect (OSTI)

    Sessler, A.M.

    1989-11-01

    First, a review is given of various highly-developed techniques for particle handling which are, nevertheless, being vigorously advanced at the present time. These include soft superconductor radio frequency cavities, hard superconductor magnets, cooling rings for ions and anti-protons, and damping rings for electrons. Second, attention is focused upon novel devices for particle generation, acceleration, and focusing. These include relativistic klystrons and free electron laser power sources, binary power multipliers, photocathodes, switched-power linacs, plasma beat-wave accelerators, plasma wake-field accelerators, plasma lenses, plasma adiabatic focusers and plasma compensators. 12 refs.

  2. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  3. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  4. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  5. Acceleration Mechanics in Relativistic Shocks by the Weibel Instability

    E-Print Network [OSTI]

    K. -I. Nishikawa; P. E. Hardee; C. B. Hededal; G. J. Fishman

    2006-01-11

    Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks may be responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated long-term particle acceleration associated with relativistic electron-ion or electron-positron jet fronts propagating into an unmagnetized ambient electron-ion or electron-positron plasma. These simulations have been performed with a longer simulation system than our previous simulations in order to investigate the nonlinear stage of the Weibel instability and its particle acceleration mechanism. The current channels generated by the Weibel instability are surrounded by toroidal magnetic fields and radial electric fields. This radial electric field is quasi stationary and accelerates particles which are then deflected by the magnetic field.

  6. Focusing particle concentrator with application to ultrafine particles

    DOE Patents [OSTI]

    Hering, Susanne; Lewis, Gregory; Spielman, Steven R.

    2013-06-11

    Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.

  7. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect (OSTI)

    Afanasiev, Alexandr; Vainio, Rami [Department of Physics, University of Helsinki, P.O. Box 64, Helsinki FI-00014 (Finland); Kocharov, Leon [Sodankylä Geophysical Observatory (Oulu Unit), University of Oulu, Oulu FI-90014 (Finland)

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  8. Acceleration Rates and Injection Efficiencies in Oblique Shocks

    E-Print Network [OSTI]

    D. C. Ellison; M. G. Baring; F. C. Jones

    1995-06-12

    The rate at which particles are accelerated by the first-order Fermi mechanism in shocks depends on the angle, \\teq{\\Tbone}, that the upstream magnetic field makes with the shock normal. The greater the obliquity the greater the rate, and in quasi-perpendicular shocks rates can be hundreds of times higher than those seen in parallel shocks. In many circumstances pertaining to evolving shocks (\\eg, supernova blast waves and interplanetary traveling shocks), high acceleration rates imply high maximum particle energies and obliquity effects may have important astrophysical consequences. However, as is demonstrated here, the efficiency for injecting thermal particles into the acceleration mechanism also depends strongly on obliquity and, in general, varies inversely with \\teq{\\Tbone}. The degree of turbulence and the resulting cross-field diffusion strongly influences both injection efficiency and acceleration rates. The test particle \\mc simulation of shock acceleration used here assumes large-angle scattering, computes particle orbits exactly in shocked, laminar, non-relativistic flows, and calculates the injection efficiency as a function of obliquity, Mach number, and degree of turbulence. We find that turbulence must be quite strong for high Mach number, highly oblique shocks to inject significant numbers of thermal particles and that only modest gains in acceleration rates can be expected for strong oblique shocks over parallel ones if the only source of seed particles is the thermal background.

  9. Direct laser acceleration of electrons in free-space

    E-Print Network [OSTI]

    Carbajo, Sergio; Wong, Liang Jie; Miller, R J Dwayne; Kärtner, Franz X

    2015-01-01

    Compact laser-driven accelerators are versatile and powerful tools of unarguable relevance on societal grounds for the diverse purposes of science, health, security, and technology because they bring enormous practicality to state-of-the-art achievements of conventional radio-frequency accelerators. Current benchmarking laser-based technologies rely on a medium to assist the light-matter interaction, which impose material limitations or strongly inhomogeneous fields. The advent of few cycle ultra-intense radially polarized lasers has materialized an extensively studied novel accelerator that adopts the simplest form of laser acceleration and is unique in requiring no medium to achieve strong longitudinal energy transfer directly from laser to particle. Here we present the first observation of direct longitudinal laser acceleration of non-relativistic electrons that undergo highly-directional multi-GeV/m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle accelerati...

  10. Fermi National Accelerator Laboratory August 2015 The NO?A Neutrino...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists determine the role that ghostly particles called neutrinos played in the evolution of the cosmos. The world's best neutrino beam Fermilab's accelerator complex...

  11. Core of First Section of New Accelerator Rolled Out | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and rolled out for further assembly. This "string" of components will become the heart of a cryomodule, which will be added to the lab's particle accelerator in 2012. Core...

  12. Use of dielectric material in muon accelerator RF cavities

    E-Print Network [OSTI]

    French, Katheryn Decker

    2011-01-01

    The building of a muon collider is motivated by the desire to collide point-like particles while reducing the limitations imposed by synchrotron radiation. The many challenges unique to muon accelerators are derived from ...

  13. Testing General Relativity With Laser Accelerated Electron Beams

    E-Print Network [OSTI]

    L. Á. Gergely; T. Harko

    2012-07-16

    Electron accelerations of the order of $10^{21} g$ obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a uniformly accelerated particle.

  14. Multifractal statistics of Lagrangian velocity and acceleration in turbulence

    E-Print Network [OSTI]

    L. Biferale; G. Boffetta; A. Celani; B. J. Devenish; A. Lanotte; F. Toschi

    2004-03-11

    The statistical properties of velocity and acceleration fields along the trajectories of fluid particles transported by a fully developed turbulent flow are investigated by means of high resolution direct numerical simulations. We present results for Lagrangian velocity structure functions, the acceleration probability density function and the acceleration variance conditioned on the instantaneous velocity. These are compared with predictions of the multifractal formalism and its merits and limitations are discussed.

  15. 2013 Asian American & Pacific Islander Heritage Month Resources...

    Energy Savers [EERE]

    of this event. The theme of this year's Heritage Month is "I Want the Wide American Earth," chosen by the Smithsonian Asian Pacific American Center to highlight the poem by...

  16. The earnings attainment patterns of Asian American women 

    E-Print Network [OSTI]

    Wang, Ping

    2001-01-01

    and glorification. They are especially esteemed for their high socioeconomic attainments. This thesis analyses the earnings attainment patterns of foreign born Asian American women. Using 1990 U.S. census data, this thesis compares the buying power of six groups...

  17. Experimental Particle Physics

    SciTech Connect (OSTI)

    Rosenfeld, Carl; Mishra, Sanjib R.; Petti, Roberto; Purohit, Milind V.

    2014-08-31

    The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the BaBar experiment, which collected data at SLAC until 2008. They continued to analyze the voluminous BaBar data with an emphasis on precision tests of Quantum Chromodynamics and on properties of the "eta_B," a bottom quark paired in a meson with a strange quark. The ATLAS experiment became the principal research focus for Purohit. One of the world's largest pieces of scientific equipment, ATLAS observes particle collisions at the highest-energy particle accelerator ever built, the Large Hadron Collider (LHC) at CERN. Our efforts on ATLAS included participation in the commissioning, calibration, and installation of components called "CSCs". The unprecedented energy of 14 TeV enabled the ATLAS and CMS collaborations to declare discovery of the famous Higgs particle in 2012.

  18. Photo of the Week: What Do Airborne Radioactive Particles Taste...

    Broader source: Energy.gov (indexed) [DOE]

    could be widely used in medicine and industry -- particle accelerators are used for cancer research, processing computer chips, and even producing the shrink wrap used to keep...

  19. Jefferson Lab Fall Lecture: Exploring Our World With Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nov. 23, with James E. Brau, University of Oregon, presenting "The Mysterious Universe: Exploring Our World with Particle Accelerators." The universe is dark and...

  20. Accelerator Development @ Daresbury Laboratory

    E-Print Network [OSTI]

    -injectors ­ Superconducting RF acceleration ­ Cryogenic systems ­ Advanced diagnostics ­ Free Electron Lasers ­ Photon beam radioisotopes. 2 Treatment & Diagnostics #12;Basic Accelerator Configuration 3 Beam Source Low Energy Capture electron beam technology development. 4 Booster Compressor IR-FEL Photoinjector Laser Linac Acceleration

  1. Relativistic electron acceleration by oblique whistler waves

    SciTech Connect (OSTI)

    Yoon, Peter H.; School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 ; Pandey, Vinay S.; Lee, Dong-Hun

    2013-11-15

    Test-particle simulations of electrons interacting with finite-amplitude, obliquely propagating whistler waves are carried out in order to investigate the acceleration of relativistic electrons by these waves. According to the present findings, an efficient acceleration of relativistic electrons requires a narrow range of oblique propagation angles, close to the whistler resonance cone angle, when the wave amplitude is held constant at relatively low value. For a constant wave propagation angle, it is found that a range of oblique whistler wave amplitudes permits the acceleration of relativistic electrons to O(MeV) energies. An initial distribution of test electrons is shown to form a power-law distribution when plotted in energy space. It is also found that the acceleration is largely uniform in electron pitch-angle space.

  2. PUBLISHED ONLINE: 6 OCTOBER 2013 | DOI: 10.1038/NPHYS2767 Quasiperiodic acceleration of electrons by a

    E-Print Network [OSTI]

    Loss, Daniel

    that plasmoid-driven quasiperpendicular shocks are capable of producing quasiperiodic acceleration of electrons System and are often associated with plasma shocks and the acceleration of particles to relativistic, and that the radio bursts, generated by accelerated particles, result from this same wave/shock system

  3. Cosmic-ray acceleration in supernova shocks

    E-Print Network [OSTI]

    Vincent Tatischeff

    2008-07-25

    Galactic cosmic rays are widely believed to be accelerated in expanding shock waves initiated by supernova explosions. The theory of diffusive shock acceleration of cosmic rays is now well established, but two fundamental questions remain partly unanswered: what is the acceleration efficiency, i.e. the fraction of the total supernova energy converted to cosmic-ray energy, and what is the maximum kinetic energy achieved by particles accelerated in supernova explosions? Recent observations of supernova remnants, in X-rays with the Chandra and XMM-Newton satellites and in very-high-energy gamma rays with several ground-based atmospheric Cerenkov telescopes, have provided new pieces of information concerning these two questions. After a review of these observations and their current interpretations, I show that complementary information on the diffusive shock acceleration process can be obtained by studying the radio emission from extragalactic supernovae. As an illustration, a nonlinear model of diffusive shock acceleration is applied to the radio light curves of the supernova SN 1993J, which exploded in the nearby galaxy M81. The results of the model suggest that most of the Galactic cosmic rays may be accelerated during the early phase of interaction between the supernova ejecta and the wind lost from the progenitor star.

  4. Analytical tools in accelerator physics

    SciTech Connect (OSTI)

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  5. Testing general relativity on accelerators

    E-Print Network [OSTI]

    Tigran Kalaydzhyan

    2015-09-09

    Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators to the effects of gravity. The main observable -- maximal energy of the scattered photons -- would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. We confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.

  6. 21H.153J / SP.421J / WGS.421J Race and Gender in Asian America, Fall 2002

    E-Print Network [OSTI]

    Anonymous

    An interdisciplinary examination of the Asian-American experience with particular emphasis on gender and race from mid-nineteenth century to present. Topics include: Asian American women's history, Asian American feminisms, ...

  7. Status report on the "Merging" of the Electron-Cloud Code POSINST withthe 3-D Accelerator PIC CODE WARP

    E-Print Network [OSTI]

    2004-01-01

    WARP3d, a Three-Dimensional PIC/Accelerator Code", Proc. ofWITH THE 3-D ACCELERATOR PIC CODE WARP * J. -L. Vay # , M.combine the particle-in-cell (PIC) technique commonly used

  8. Plasma Wakefield Acceleration for Ultrahigh Energy Cosmic Rays

    E-Print Network [OSTI]

    Pisin Chen; Toshiki Tajima; Yoshiyuki Takahashi

    2002-05-21

    A cosmic acceleration mechanism is introduced which is based on the wakefields excited by the Alfven shocks in a relativistically flowing plasma, where the energy gain per distance of a test particle is Lorentz invariant. We show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f(e) 1/e^2. The environment suitable for such plasma wakefield acceleration can be cosmically abundant. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) through this mechanism in the atmosphere of gamma ray bursts. We show that the acceleration gradient can be as high as G ~ 10^16 eV/cm. The estimated event rate in our model agrees with that from UHECR observations.

  9. Unruh versus Tolman: On the heat of acceleration

    E-Print Network [OSTI]

    Buchholz, Detlev

    2015-01-01

    It is shown that the Unruh effect, i.e. the increase in temperature indicated by a uniformly accelerated thermometer in an inertial vacuum state of a quantum field, cannot be interpreted as the result of an exchange of heat with a surrounding gas of particles. Since the vacuum is spatially homogeneous in any accelerated system its temperature must be zero everywhere as a consequence of Tolman's law. In fact, the increase of temperature of accelerated thermometers is due to systematic quantum effects induced by the local coupling between the thermometer and the vacuum. This coupling inevitably creates particles from the vacuum which transfer energy to the thermometer, gained by the acceleration, and thereby affect its readings. The temperature of the vacuum, however, remains to be zero for arbitrary accelerations.

  10. Unruh versus Tolman: On the heat of acceleration

    E-Print Network [OSTI]

    Detlev Buchholz; Rainer Verch

    2015-05-07

    It is shown that the Unruh effect, i.e. the increase in temperature indicated by a uniformly accelerated thermometer in an inertial vacuum state of a quantum field, cannot be interpreted as the result of an exchange of heat with a surrounding gas of particles. Since the vacuum is spatially homogeneous in any accelerated system its temperature must be zero everywhere as a consequence of Tolman's law. In fact, the increase of temperature of accelerated thermometers is due to systematic quantum effects induced by the local coupling between the thermometer and the vacuum. This coupling inevitably creates particles from the vacuum which transfer energy to the thermometer, gained by the acceleration, and thereby affect its readings. The temperature of the vacuum, however, remains to be zero for arbitrary accelerations.

  11. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  12. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  13. Ion Acceleration by Short Chirped Laser Pulses

    E-Print Network [OSTI]

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  14. Accelerating Majorization Algorithms

    E-Print Network [OSTI]

    Jan de Leeuw

    2011-01-01

    incomplete data via the em algorithm. Journal of the RoyalACCELERATING MAJORIZATION ALGORITHMS JAN DE LEEUW Abstract.construc- tion of majorization algorithms and their rate of

  15. Accelerating Majorization Algorithms

    E-Print Network [OSTI]

    Leeuw, Jan de

    2008-01-01

    incomplete data via the em algorithm. Journal of the RoyalACCELERATING MAJORIZATION ALGORITHMS JAN DE LEEUW Abstract.construc- tion of majorization algorithms and their rate of

  16. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  17. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a 3D virtualization company, enabling the use of 3D virtualization in art and cultural preservation markets. LAVA Chief Operations Officer Steve Smith said the "acceleration"...

  18. Charged fermions tunneling from accelerating and rotating black holes

    SciTech Connect (OSTI)

    Rehman, Mudassar; Saifullah, K., E-mail: mudassir051@yahoo.com, E-mail: saifullah@qau.edu.pk [Department of Mathematics, Quaid-i-Azam University, Islamabad (Pakistan)

    2011-03-01

    We study Hawking radiation of charged fermions from accelerating and rotating black holes with electric and magnetic charges. We calculate the tunneling probabilities of incoming and outgoing fermionic particles and find the Hawking temperature of these black holes. We also provide an explicit expression of the classical action for the massive and massless particles in the background of these black holes.

  19. Asian American Sexual Politics: The Construction of Race, Gender, and Sexuality 

    E-Print Network [OSTI]

    Chou, Rosalind Sue

    2011-08-08

    Why study Asian American sexual politics? There is a major lack of critical analysis of Asian Americans and their issues surrounding their place in the United States as racialized, gendered, and sexualized bodies. There ...

  20. A Decision-Making Model for the Asian Intelligent Building Index 

    E-Print Network [OSTI]

    Hong, J.; Chen, Z.; Li, H.; Xu, Q.

    2006-01-01

    The paper presents a multi-criteria decision-making model to evaluate the sustainable performances of intelligent buildings based on the Asian IB index, which is recommended by the Asian Institute of Intelligent Buildings. To undertake this task...

  1. Beyond 'Looking for My Penis': Reflections on Asian Gay Male Video Porn

    E-Print Network [OSTI]

    Tsang, Daniel C

    1999-01-01

    eroticized Asian in gay video porn, in· Bad Object-Choices,Island . Men of Tokyo PORN 101 Pacific Rim The Penetratoron Asian Gay Male Video Porn." In Porn 101: Eroticism, kee,

  2. A Merger of Two Theories: The Case of Multiracial Asian Identity 

    E-Print Network [OSTI]

    Le, Jennifer Linh

    2014-08-08

    This study takes the case of multiracial Asian Americans, as self-identified "part Asian" as well as another (or multiple) major racial group to determine what influences their racial, ethnic, and overarching group identities ...

  3. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  4. Beam-driven acceleration in ultra-dense plasma media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r)more »from 0.2 ?p to 0.6 ?p in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  5. Accelerators (5/5)

    SciTech Connect (OSTI)

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  6. Accelerators (4/5)

    SciTech Connect (OSTI)

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  7. Accelerators (3/5)

    SciTech Connect (OSTI)

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  8. Accelerators (3/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  9. Accelerators (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  10. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  11. Accelerators (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  12. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  13. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  14. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  15. Bounds for the price of discrete arithmetic Asian options M. Vanmaele

    E-Print Network [OSTI]

    Vanmaele, Michèle

    on discrete averaging which is the normal specification in real contracts. Discrete arithmetic Asian optionsBounds for the price of discrete arithmetic Asian options M. Vanmaele , G. Deelstra , J. Liinev , J.Goovaerts@econ.kuleuven.ac.be, Tel. +32 16 326750. #12;Bounds for the price of discrete arithmetic Asian options Abstract

  16. Acculturation and Its Effects on Help-Seeking Attitudes among Asian Indians 

    E-Print Network [OSTI]

    Mohan, Sarita

    2012-02-14

    There is a lack of research in the mental health field and on help-seeking regarding the Asian Indian population. Asian Indians are the third largest Asian subgroup in the United States; thus, it is important to understand their culture...

  17. The effect of increased convective entrainment on Asian monsoon biases in

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    The effect of increased convective entrainment on Asian monsoon biases in the MetUM General) The effect of increased convective entrainment on Asian monsoon biases in the MetUM General Circulation Model The effect of increased convective entrainment on Asian monsoon biases in the MetUM general circulation model

  18. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema (OSTI)

    Raja, Rajendran

    2010-01-08

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  19. Particle physics---Experimental

    SciTech Connect (OSTI)

    Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

    1991-08-21

    We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density {approximately} 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams.

  20. The Light Ion Biomedical Research Accelerator (LIBRA)

    SciTech Connect (OSTI)

    Gough, R.A.

    1987-03-01

    LIBRA is a concept to place a light-ion, charged-particle facility in a hospital environment, and to dedicate it to applications in biology and medicine. There are two aspects of the program envisaged for LIBRA: a basic research effort coupled with a program in clinical applications of accelerated charged particles. The operational environment to be provided for LIBRA is one in which both of these components can coexist and flourish, and one that will promote the transfer of technology and knowledge from one to the other. In order to further investigate the prospects for a Light Ion Biomedical Research Accelerator (LIBRA), discussions are underway with the Merritt Peralta Medical Center (MPMC) in Oakland, California, and the University of California at San Francisco (UCSF). In this paper, a brief discussion of the technical requirements for such a facility is given, together with an outline of the accelerator technology required. While still in a preliminary stage, it is possible nevertheless to develop an adequate working description of the type, size, performance and cost of the accelerator facilities required to meet the preliminary goals for LIBRA.

  1. On radiation due to homogeneously accelerating sources

    E-Print Network [OSTI]

    Kalinov, D

    2015-01-01

    The core of this work is an old and broadly discussed problem of the electromagnetic radiation in the case of the hyperbolic motion. We prove that the radiation is non-zero in the lab (Minkowski) frame. Further, we attempt to understand this subject better by using co-moving non-inertial frames of reference, investigating other types of uniformly accelerated motion and, finally, using scalar waves instead of point-like particles as sources of radiation.

  2. Multicolored Asian Ladybeetle Update Great Lakes Fruit Worker's Meeting

    E-Print Network [OSTI]

    Isaacs, Rufus

    7 spotted lady beetle #12;Asian ladybeetles are an efficient biocontrol agent, feeding on a variety 3. Nuisance, sometimes a health concern to homeowners Efficient biocontrol agent, feeding Importations into the U.S. (for biocontrol of aphids and scale) 1978-1982 Ladybeetle life cycle adult egg larva

  3. The Asian Tsunami: A Protective Role for Coastal Vegetation

    E-Print Network [OSTI]

    Gray, Matthew

    The Asian Tsunami: A Protective Role for Coastal Vegetation Finn Danielsen,1 * Mikael K. Sørensen,2 The scale of the 26 December 2004 Indian Ocean tsunami was almost unprecedented. In areas with the maximum tsunami intensity, little could have prevented catastrophic coast- al destruction. Further away, however

  4. Western Bushido: The American Invention of Asian Martial Arts 

    E-Print Network [OSTI]

    Miracle, Jared Tyler

    2014-12-03

    Prior to the Second World War, very few Americans were aware that martial arts existed outside of the Olympic institutions (e.g. boxing and wrestling) and it wasn’t until the 1960s and 1970s that Asian martial culture became mainstream...

  5. Particle beam and crabbing and deflecting structure

    DOE Patents [OSTI]

    Delayen, Jean (Yorktown, VA)

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  6. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect (OSTI)

    Arntz, Floyd; Kardo-Sysoev, A.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac applications; for instance, it could be employed to both accelerate the beam and to stabilize the superbunch mode of operation in circular track machines.

  7. About Accelerators | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser, though powered by a smaller SRF accelerator, holds power records in the production of infrared, ultraviolet and terahertz beams. The FEL has been used in a variety of...

  8. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-11-01

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation packagemore »capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).« less

  9. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect (OSTI)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-11-01

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

  10. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  11. LHCb GPU Acceleration Project

    E-Print Network [OSTI]

    Badalov, Alexey; Neufeld, Niko; Vilasis Cardona, Xavier

    2015-01-01

    The LHCb detector is due to be upgraded for processing high-luminosity collisions, which will increase the load on its computation infrastructure from 100 GB/s to 4 TB/s, encouraging us to look for new ways of accelerating the Online reconstruction. The Coprocessor Manager is our new framework for integrating LHCb’s existing computation pipelines with massively parallel algorithms running on GPUs and other accelerators. This paper describes the system and analyzes its performance.

  12. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema (OSTI)

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2009-09-01

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  13. Particle generator

    DOE Patents [OSTI]

    Hess, Wayne P.; Joly, Alan G.; Gerrity, Daniel P.; Beck, Kenneth M.; Sushko, Peter V.; Shlyuger, Alexander L.

    2005-06-28

    Energy tunable solid state sources of neutral particles are described. In a disclosed embodiment, a halogen particle source includes a solid halide sample, a photon source positioned to deliver photons to a surface of the halide, and a collimating means positioned to accept a spatially defined plume of hyperthermal halogen particles emitted from the sample surface.

  14. Electron Acceleration in Solar Flares: Theory of Spectral Evolution

    E-Print Network [OSTI]

    Paolo C. Grigis; Arnold O. Benz

    2006-08-14

    Context: Stochastic acceleration is thought to be a key mechanism in the energization of solar flare electrons. Aims: We study whether stochastic acceleration can reproduce the observed soft-hard-soft evolution of the spectral features of the hard X-ray emitted by suprathermal electron. We pay special attention to the effects of particle trapping and escape. Methods: The Fokker-Planck equation for the electron distribution is integrated numerically using the coefficients derived by Miller et al. for transit-time damping acceleration. The electron spectra are then converted to photon spectra for comparison with RHESSI observation of looptop sources. Results: The presence of particle escape softens the model spectra computed in the stochastic acceleration framework. The ratio between the efficiency of trapping and acceleration controls the spectral evolution which follows a soft-hard-soft pattern. Furthermore, a pivot point (that is, a common crossing point of the accelerated particle spectra at different times) is found at around 10 keV. It can be brought into agreement with the observed value of 20 keV by enhanced trapping through an electric potential. Conclusions: The model proposed here accounts for the key features observed in the spectral evolution of hard X-ray emission from looptop sources.

  15. Acceleration and stability of a high-current ion beam in induction fields

    SciTech Connect (OSTI)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-15

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  16. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  17. Synergia: An accelerator modeling tool with 3-D space charge

    SciTech Connect (OSTI)

    Amundson, J. [Fermi National Accelerator Laboratory, Computing Division, CEPA/PSM, P.O. Box 500, Batavia, IL 60510 (United States); Spentzouris, P. [Fermi National Accelerator Laboratory, Computing Division, CEPA/PSM, P.O. Box 500, Batavia, IL 60510 (United States)]. E-mail: spentz@fnal.gov; Qiang, J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ryne, R. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-01-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three-dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab Booster accelerator.

  18. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect (OSTI)

    Bake, Muhammad Ali; Xie Baisong [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shan Zhang [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Hong Xueren [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Hongyu [Department of Physics, Anshan Normal University, Anshan 114005 (China); Shanghai Bright-Tech Information Technology Co. Ltd, Shanghai 200136 (China)

    2012-08-15

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  19. Asian American Pacific Islander Heritage Month - HQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department ofMarketing,1 Articles01Asian American

  20. Medical heavy ion accelerator proposals

    SciTech Connect (OSTI)

    Gough, R.A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Certain special treatments of superficial melanoma, however, require that beam energies as low as 70 MeV/nucleon also be available. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. For most heavy ion treatments, this corresponds to 10/sup 7/-10/sup 9/ ions/second at the patient. Because this research is best conducted in a dedicated, hospital-based facility, and because of the clinical need for ultra-high reliability, the construction of new and dedicated facilities has been proposed. Heavy ion accelerators can provide a variety of ions and energies, permitting treatment plans that exploit the properties of the ion best suited to each individual treatment, and that employ radioactive beams (such as /sup 11/C and /sup 19/Ne) to precisely confirm the dose localization. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety. 3 refs., 8 figs.

  1. Radiation Damage: Accelerator Surprises

    E-Print Network [OSTI]

    McDonald, Kirk

    of this process. · Helium gas production adds, becoming increasingly important at high energies. · Graphite as material properties including its temperature. These dependencies ­ amplified by increased helium gas production for high-energy beams - are responsible for "surprises/unknowns" learned recently at accelerators

  2. Electron Surfing Acceleration in Magnetic Reconnection

    E-Print Network [OSTI]

    Masahiro Hoshino

    2005-07-22

    We discuss that energetic electrons are generated near the X-type magnetic reconnection region due to a surfing acceleration mechanism. In a thin plasma sheet, the polarization electric fields pointing towards the neutral sheet are induced around the boundary between the lobe and plasma sheet in association with the Hall electric current. By using a particle-in-cell simulation, we demonstrate that the polarization electric fields are strongly enhanced in an externally driven reconnection system, and some electrons can be trapped by the electrostatic potential well of the polarization field. During the trapping phase, the electrons can gain their energies from the convection/inductive reconnection electric fields. We discuss that relativistic electrons with MeV energies are quickly generated in and around the X-type neutral region by utilizing the surfing acceleration.

  3. The Hardboiled and the Haunted: Race, Masculinity, and the Asian American Detective

    E-Print Network [OSTI]

    McMillin, Calvin

    2012-01-01

    Ethnography, the Cinematic Apparatus, and Asian Americananalysis of literary and cinematic noir entitled The Streetin nearly any literary or cinematic detective regardless of

  4. Esther Jacobson-Tepfer Maude I. Kerns Professor Emeritus of Asian Art

    E-Print Network [OSTI]

    Oregon, University of

    . Indiana University; Research Institute for Inner Asian Studies, 1987. Website Portal: Archaeology, Festschrift in Honor of Jakov A. Sher (Kemerovo, Russia). "Rock Art Research in Mongolia, 2005

  5. Cross-ethnic Friendships and Intergroup Attitudes among Asian American Adolescents

    E-Print Network [OSTI]

    CHEN, XIAOCHEN

    2013-01-01

    63 ix LIST OF FIGURES Pie charts of ethnic composition of20 Pie chart of ethnic composition of20 Pie charts of ethnic composition of Asian-Latino

  6. Cosmic ray acceleration at perpendicular shocks in supernova remnants

    SciTech Connect (OSTI)

    Ferrand, Gilles; Danos, Rebecca J.; Shalchi, Andreas; Safi-Harb, Samar; Edmon, Paul; Mendygral, Peter

    2014-09-10

    Supernova remnants (SNRs) are believed to accelerate particles up to high energies through the mechanism of diffusive shock acceleration (DSA). Except for direct plasma simulations, all modeling efforts must rely on a given form of the diffusion coefficient, a key parameter that embodies the interactions of energetic charged particles with magnetic turbulence. The so-called Bohm limit is commonly employed. In this paper, we revisit the question of acceleration at perpendicular shocks, by employing a realistic model of perpendicular diffusion. Our coefficient reduces to a power law in momentum for low momenta (of index ?), but becomes independent of the particle momentum at high momenta (reaching a constant value ?{sub ?} above some characteristic momentum p {sub c}). We first provide simple analytical expressions of the maximum momentum that can be reached at a given time with this coefficient. Then we perform time-dependent numerical simulations to investigate the shape of the particle distribution that can be obtained when the particle pressure back-reacts on the flow. We observe that for a given index ? and injection level, the shock modifications are similar for different possible values of p {sub c}, whereas the particle spectra differ markedly. Of particular interest, low values of p {sub c} tend to remove the concavity once thought to be typical of non-linear DSA, and result in steep spectra, as required by recent high-energy observations of Galactic SNRs.

  7. ACCELERATION OF LOW-ENERGY IONS AT PARALLEL SHOCKS WITH A FOCUSED TRANSPORT MODEL

    SciTech Connect (OSTI)

    Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.

    2013-04-10

    We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of accelerated particles is a power law with the same spectral index as the solution of standard DSA theory, although the particles are highly anisotropic in the upstream region. The intensity, however, is different from that predicted by DSA theory, indicating a different level of injection efficiency. It is found that the shock strength, the injection speed, and the intensity of an electric cross-shock potential (CSP) jump can affect the injection efficiency of the low-energy particles. A stronger shock has a higher injection efficiency. In addition, if the speed of injected particles is above a few times the shock speed, the produced power-law spectrum is consistent with the prediction of standard DSA theory in both its intensity and spectrum index with an injection efficiency of 1. CSP can increase the injection efficiency through direct particle reflection back upstream, but it has little effect on the energetic particle acceleration once the speed of injected particles is beyond a few times the shock speed. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection.

  8. Particle preconcentrator

    DOE Patents [OSTI]

    Linker, Kevin L. (Albuquerque, NM); Conrad, Frank J. (Russellville, NM); Custer, Chad A. (Albuquerque, NM); Rhykerd, Jr., Charles L. (Albuquerque, NM)

    1998-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  9. Particle preconcentrator

    DOE Patents [OSTI]

    Linker, Kevin L. (Albuquerque, NM); Conrad, Frank J. (Russellville, SC); Custer, Chad A. (Albuquerque, NM); Rhykerd, Jr., Charles L. (Albuquerque, NM)

    2000-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  10. Particle preconcentrator

    SciTech Connect (OSTI)

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2005-09-20

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  11. Particle preconcentrator

    DOE Patents [OSTI]

    Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr.

    1998-12-29

    An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents. 3 figs.

  12. Collective Acceleration in Solar Flares

    E-Print Network [OSTI]

    Barletta, W.

    2008-01-01

    Collective Acceleration in Solar Flares w. Barletta, S.S.COLLECTIVE ACCELERATION IN SOLAR FLARES* W. Barletta (1), S.Park, MD 20742 Abstract Solar flare data are examined with

  13. Calculation of wakefields in a 17 GHz beam-driven photonic band-gap accelerator structure

    E-Print Network [OSTI]

    Hu, Min

    We present the theoretical analysis and computer simulation of the wakefields in a 17 GHz photonic band-gap (PBG) structure for accelerator applications. Using the commercial code CST Particle Studio, the fundamental ...

  14. 1424 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 36, NO. 4, AUGUST 2008 Single-Particle/Single-Cell Ion Microbeams as

    E-Print Network [OSTI]

    Brenner, David Jonathan

    Accelerator Facility, Center for Radiological Research, Columbia University, Irvington, NY 10533 USA (e technology at the Radiological Research Accelerator Facility (RARAF), Columbia University and subsequently- cell microbeam facilities for studying the biological effects of particle irradiation. In order

  15. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  16. Theory Challenges of the Accelerating Universe

    E-Print Network [OSTI]

    Linder, Eric V.

    2009-01-01

    of the accelerating universe. Acknowledgments I thankof the Accelerating Universe Eric V. Linder Berkeley Lab,of the Accelerating Universe Eric V. Linder Berkeley Lab,

  17. STANFORD LINEAR ACCELERATOR CENTER Winter 1999, Vol. 29, No. 3

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    STANFORD LINEAR ACCELERATOR CENTER Winter 1999, Vol. 29, No. 3 #12;The Beam Line is published GEORGE TRILLING, KARL VAN BIBBER HERMAN WINICK Illustrations TERRY ANDERSON Distribution CRYSTAL TILGHMAN A PERIODICAL OF PARTICLE PHYSICS WINTER 1999 VOL. 29, NUMBER 3 Printed on recycled paper FEATURES 2 GOLDEN

  18. Separation of accelerated electrons and positrons in the relativistic reconnection

    E-Print Network [OSTI]

    Marian Karlicky

    2007-09-05

    We study an acceleration of electrons and positrons in the relativistic magnetic field reconnection using a 2.5-D particle-in-cell electromagnetic relativistic code. We consider the model with two current sheets and periodic boundary conditions. The electrons and positrons are very effectively accelerated during the tearing and coalescence processes of the reconnection. We found that near the X-points of the reconnection the positions of electrons and positrons differ. This separation process is in agreement with those studied in the previous papers analytically or by test particle simulations. We expect that in dependence on the magnetic field connectivity this local separation can lead to global spatial separation of the accelerated electrons and positrons. A similar simulation in the electron-proton plasma with the proton-electron mass ratio m_i/m_e = 16 is made.

  19. Electron Firehose instability and acceleration of electrons in solar flares

    E-Print Network [OSTI]

    Gunnar Paesold; Arnold O. Benz

    2000-01-14

    An electron distribution with a temperature anisotropy T_par/T_perp > 1 can lead to the Electron Firehose instability (Here par and perp denote directions relative to the background magnetic field B_0). Since possible particle acceleration mechanisms in solar flares exhibit a preference of energizing particles in parallel direction, such an anisotropy is expected during the impulsive phase of a flare. The properties of the excited waves and the thresholds for instability are investigated by using linearized kinetic theory. These thresholds were connected to the pre-flare plasma parameters by assuming an acceleration model acting exclusively in parallel direction. For usually assumed pre-flare plasma conditions the electrons become unstable during the acceleration process and lefthand circularly polarized waves with frequencies of about the proton gyrofrequency are excited at parallel propagation. Indications have been found, that the largest growth rates occur at oblique propagation and the according frequencies lie well above the proton gyrofrequency.

  20. GeV electron beams from a centimetre-scale accelerator

    E-Print Network [OSTI]

    to synchrotron radiation facilities and free-electron lasers, and as modules for high-energy particle physics. Radiofrequency-based accelerators are limited to relatively low accelerating fields (10-50 MV m-1 ), requiring tens to hundreds of metres to reach the multi-GeV beam energies needed to drive radiation sources

  1. Issues and R&D Required for the Intensity Frontier Accelerators

    SciTech Connect (OSTI)

    Shiltsev, V.; Henderson, S.; Hurh, P.; Kourbanis, I.; Lebedev, V.

    2013-09-26

    Operation, upgrade and development of accelerators for Intensity Frontier face formidable challenges in order to satisfy both the near-term and long-term Particle Physics program. Here we discuss key issues and R&D required for the Intensity Frontier accelerators.

  2. General description of electromagnetic radiation processes based on instantaneous charge acceleration in ''endpoints''

    SciTech Connect (OSTI)

    James, Clancy W.; Falcke, Heino; Huege, Tim; Ludwig, Marianne

    2011-11-15

    We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation - the 'endpoint formulation' - combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or 'endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent 'bremsstrahlung' from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

  3. Universal statistics of density of inertial particles sedimenting in turbulence

    E-Print Network [OSTI]

    Itzhak Fouxon; Yongnam Park; Roei Harduf; Changhoon Lee

    2014-10-30

    We solve the problem of spatial distribution of inertial particles that sediment in Navier-Stokes turbulence with small ratio $Fr$ of acceleration of fluid particles to acceleration of gravity $g$. The particles are driven by linear drag and have arbitrary inertia. We demonstrate that independently of the particles' size or density the particles distribute over fractal set with log-normal statistics determined completely by the Kaplan-Yorke dimension $D_{KY}$. When inertia is not small $D_{KY}$ is proportional to the ratio of integral of spectrum of turbulence multiplied by wave-number and $g$. This ratio is independent of properties of particles so that the particles concentrate on fractal with universal, particles-independent statistics. We find Lyapunov exponents and confirm predictions numerically. The considered case includes typical situation of water droplets in clouds.

  4. Adaptive control for accelerators

    DOE Patents [OSTI]

    Eaton, Lawrie E. (Los Alamos, NM); Jachim, Stephen P. (Los Alamos, NM); Natter, Eckard F. (Santa Fe, NM)

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  5. Review of ion accelerators

    SciTech Connect (OSTI)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

  6. Particle transport and energization associated with disturbed magnetospheric events

    E-Print Network [OSTI]

    Particle transport and energization associated with disturbed magnetospheric events Sorin Zaharia field locations and are energized because of magnetic mo- ment conservation. The most energized propagating electromagnetic field pulse: par- ticles are energized via the betatron acceleration mechanism

  7. An accelerated closed universe

    E-Print Network [OSTI]

    Sergio del Campo; Mauricio Cataldo; Francisco Pena

    2004-08-03

    We study a model in which a closed universe with dust and quintessence matter components may look like an accelerated flat Friedmann-Robertson-Walker (FRW) universe at low redshifts. Several quantities relevant to the model are expressed in terms of observed density parameters, $\\Omega_M$ and $\\Omega_{\\Lambda}$, and of the associated density parameter $\\Omega_Q$ related to the quintessence scalar field $Q$.

  8. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  9. Heating and Acceleration of Intracluster Medium Electrons by Turbulence

    E-Print Network [OSTI]

    Vahé Petrosian; William E. East

    2008-02-06

    In this paper we investigate the feasibility of bremsstrahlung radiation from `nonthermal' electrons as a source of hard X-rays from the intracluster medium of clusters of galaxies. With an exact treatment of the Coulomb collisions in a Fokker-Planck analysis of the electron distribution we find that the severe difficulties with lifetimes of `nonthermal' particles found earlier by Petrosian (2001) using a cold target model remain problematic. We then address possible acceleration of background electrons into a nonthermal tail. We assume a simplified but generic acceleration rate and determine the expected evolution of an initially Maxwellian distribution of electrons. We find that strong nonthermal components arise only for rapid rate of acceleration which also heats up the entire plasma. These results confirm the conclusion that if the observed `nonthermal' excesses are due to some process accelerating the background thermal electrons this process must be short lived.

  10. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors

    E-Print Network [OSTI]

    Thévenet, M; Kahaly, S; Vincenti, H; Vernier, A; Quéré, F; Faure, J

    2015-01-01

    Accelerating particles to relativistic energies over very short distances using lasers has been a long standing goal in physics. Among the various schemes proposed for electrons, vacuum laser acceleration has attracted considerable interest and has been extensively studied theoretically because of its appealing simplicity: electrons interact with an intense laser field in vacuum and can be continuously accelerated, provided they remain at a given phase of the field until they escape the laser beam. But demonstrating this effect experimentally has proved extremely challenging, as it imposes stringent requirements on the conditions of injection of electrons in the laser field. Here, we solve this long-standing experimental problem for the first time by using a plasma mirror to inject electrons in an ultraintense laser field, and obtain clear evidence of vacuum laser acceleration. With the advent of PetaWatt class lasers, this scheme could provide a competitive source of very high charge (nC) and ultrashort rela...

  11. Workshop on acceleration of polarized protons: summary report

    SciTech Connect (OSTI)

    Lee, Y.Y.; Terwilliger, K.M.

    1982-01-01

    The workshop sessions concentrated on polarized protons in circular accelerators and storage rings. Topics such as polarized electrons were discussed only when the subject was relevant to proton phenomena. Of major interest was the possible applicability of the new idea of spin matching for crossing depolarizing resonances. On the experimental side, some remarkable new data were presented by the SATURNE II Group. They have successfully crossed both intrinsic and imperfection depolarizing resonances by the spin flip method with minimal depolarization-the first group to do so. They also obtained some results which apparently cannot be explained with our present understanding of spin phenomena. The workshop concluded that more experimental measurements are needed to understand the physics and that such studies would be very important for the future acceleration of polarized protons at KEK and the AGS. The workshop included status reports from the four laboratories which have programs of polarized particle acceleration--or approved projects to accelerate polarized protons.

  12. Proceedings of a workshop on Applications of Accelerators

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B. [ed.] [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A.M.; Alonso, J.R. [eds.] [Lawrence Berkeley Lab., CA (United States)

    1994-01-31

    This document is a compilation of material collected as the results of a workshop, Applications of Accelerators, held at the Stanford Linear Accelerator Center, 1--2 December 1993. The material collected here has been edited for style and to minimize duplication. Footnotes will identify the original source of the material. We believe that the reader will find that this document has something for every interest. There are applications in the fields of health, food preservation, energy, environmental monitoring and protection, and industrial processing. Man y of the examples discussed have already passed the demonstration stage. Most of the others are the subject of active accelerator research. Taken as a whole, the particle accelerator field contains a wealth of application opportunities, some already in use, and many more ready to be exploited.

  13. Observation of Enhanced Transformer Ratio in Collinear Wakefield Acceleration

    SciTech Connect (OSTI)

    Jing, C.; Kanareykin, A.; Schoessow, P. [Euclid Techlabs LLC, Solon, Ohio 44139 (United States); Power, J. G.; Conde, M.; Yusof, Z.; Gai, W. [High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois-60439 (United States)

    2007-04-06

    One approach to future high energy particle accelerators is based on the wakefield principle: a leading high-charge drive bunch is used to excite fields in an accelerating structure or plasma that in turn accelerates a trailing low-charge witness bunch. The transformer ratio R is defined as the ratio of the maximum energy gain of the witness bunch to the maximum energy loss of the drive bunch. In general, R<2 for this configuration. A number of techniques have been proposed to overcome the transformer ratio limitation. We report here the first experimental study of the ramped bunch train (RBT) technique in a dielectric based accelerating structure. A single drive bunch was replaced by two bunches with charge ratio of 1 ratio 2.5 and a separation of 10.5 wavelengths of the fundamental mode. An average measured transformer ratio enhancement by a factor of 1.31 over the single drive bunch case was obtained.

  14. Accelerating QDP++ using GPUs

    E-Print Network [OSTI]

    Frank Winter

    2011-05-11

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an application example a smearing routine was accelerated to execute on a GPU. A significant speed-up compared to normal CPU execution could be measured.

  15. Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources

    E-Print Network [OSTI]

    and industrial centers with different fuel usage. High sulfur coal burning in northeastern Europe impacts PMF. High co emissions of sulfate and organics from coal burning in northeastern Europe produce regions [Hole et al., 2009] or North America. Measurements of trace metals from combustion (Mn, V) have

  16. Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources

    E-Print Network [OSTI]

    Kroll, Jesse

    The composition of Arctic aerosol, especially during the springtime Arctic haze, may play an important role in the radiative balance of the Arctic. The contribution of organic components to Arctic haze has only recently ...

  17. Thermal radiation, radiation force and dynamics of a polarizable particle

    E-Print Network [OSTI]

    G. V. Dedkov; A. A. Kyasov

    2015-08-26

    We discuss basic expressions and interrelations between various physical quantities describing the fluctuation-electromagnetic interaction of a small polarizable particle during relativistic motion relative to the blackbody radiation, namely tangential radiation force, rate of heating, intensity of thermal radiation/absorption, the change of the rest mass of a particle, and acceleration. We obtain an explicit formula for the frictional force acting on the particle in its rest frame and discuss its connection with the particle acceleration and the tangential force given in the reference frame of background radiation. The criticism of our previous results in recent paper by A. I. Volokitin (Phys. Rev. A81, 2015, 032505) is refuted.

  18. Asian Journal of Geoinformatics, Vol. 5, No. 1, September 2004 The Role of Remote Sensing in Mapping Swelling Soils

    E-Print Network [OSTI]

    1 Asian Journal of Geoinformatics, Vol. 5, No. 1, September 2004 The Role of Remote Sensing in Mapping Swelling Soils (Received 28 March 2003; Accepted 23 January 2004) Asian Journal of Geoinformatics

  19. Polarization measurement of laser-accelerated protons

    SciTech Connect (OSTI)

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany)] [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany); Büscher, Markus, E-mail: m.buescher@fz-juelich.de [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany) [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany); Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald [Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany)] [Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Gibbon, Paul; Karmakar, Anupam [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich (Germany)] [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  20. A single-particle/single-cell microbeam based on an isotopic alpha source

    E-Print Network [OSTI]

    . Randers-Pehrson, D.J. Brenner Columbia University, Radiological Research Accelerator Facility, 136 S-alone; Accelerator 1. Introduction and overall design Columbia UniversityÕs Radiological Research Accelerator Facility (RARAF) is home to a sin- gle-cell/single-particle microbeam based on a 4.2 MV Van de Graaff

  1. Rapid transport of East Asian pollution to the deep tropics

    E-Print Network [OSTI]

    Ashfold, M. J.; Pyle, J. A.; Robinson, A. D.; Nadzir, M. S. M.; Phang, S. M.; Samah, A. A.; Ong, S.; Ung, H. E.; Peng, L. K.; Yong, S. E.; Harris, N. R. P.

    2014-12-05

    east Asian air masses are unusually likely to be lifted towards the stratosphere during NH winter (e.g. Levine et al., 2007; Aschmann et al., 2009). Strong uplift of polluted air masses, and an associated impact on stratospheric composition, has already... of modelled CO and O3 and measured C2Cl4, of approximately half the polluted values, are present in Borneo. 5 Uplift of polluted air masses Cold surges are known to affect the intensity of convection in Southeast Asia (e.g.25 Chang et al., 2005). A further...

  2. Council on East Asian Libraries Statistics 2004-2005

    E-Print Network [OSTI]

    Doll, Vickie; Hsu, Calvin; Simpson, Fung-yin Kuo

    2006-02-01

    ,7300 0 0 0 0 Washington-Law 207 442 0 1600 2,249 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,2490 0 0 0 0 Yale 0 0 0 0 73,991 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 73,9910 0 0 0 0 48 Total Records 778,812 90,924 13,886 30,707 1,061,300146,971 67 130683 915 Total East Asian...

  3. Low Emission Asian Development (LEAD) Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds,Asia-Pacific Developing Countries |Low Emission Asian

  4. Sandia Energy - First-Ever Asian MELCOR User Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy Policy Experts CallFirst-Ever Asian

  5. A Critical Examination and Revisioning of Minority Health Frameworks, Research Methodologies, and Intervention Models Addressing South Asian American Health Disparities

    E-Print Network [OSTI]

    Mukherjea, Arnab

    2010-01-01

    eradicating (or ending) all forms of violence, exploitation,to eradicate all forms of violence among South Asians in the

  6. Eastern Asian emissions of anthropogenic halocarbons deduced from aircraft concentration data

    E-Print Network [OSTI]

    Palmer, Paul

    Eastern Asian emissions of anthropogenic halocarbons deduced from aircraft concentration data Paul:CO enhancement ratios on regional to continental scales can be used to infer halocarbon emissions, providing of Asian outflow from the TRACE-P mission over the western Pacific (March­April 2001) and derive emissions

  7. The diploid genome sequence of an Asian Jun Wang1,2,3,4

    E-Print Network [OSTI]

    Nielsen, Rasmus

    ARTICLES The diploid genome sequence of an Asian individual Jun Wang1,2,3,4 *, Wei Wang1 present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped

  8. Export of Asian pollution during two cold front episodes of the TRACE-P experiment

    E-Print Network [OSTI]

    Palmer, Paul

    Export of Asian pollution during two cold front episodes of the TRACE-P experiment C. Mari how these cyclonic systems have impacted the export of pollution out of the Asian continent. We of pollution are met during flight 13 (i.e., the occurrences of the warm conveyor belt near the source regions

  9. Asian emissions of CO and NOx: Constraints from aircraft and Chinese station data

    E-Print Network [OSTI]

    Palmer, Paul

    Asian emissions of CO and NOx: Constraints from aircraft and Chinese station data Yuxuan X. Wang to constrain estimates of Asian emissions of CO and NOx. A priori emissions are based on a detailed bottom emissions of CO and NOx, respectively, distributed heterogeneously, with the largest adjustments required

  10. Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations

    E-Print Network [OSTI]

    Jacob, Daniel J.

    1 Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations contributing to tropospheric ozone over the Asian Pacific Rim in different seasons are quantified by analysis influence along the Pacific Rim occurs in summer, reflecting rapid convective transport of surface pollution

  11. Does Exchange Rate Risk Affect Exports Asymmetrically? Asian Evidence WenShwo Fang,a

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Does Exchange Rate Risk Affect Exports Asymmetrically? Asian Evidence by WenShwo Fang,a YiHao Lai exists, however, regarding its effect on exports. Previous studies implicitly assume symmetry. This paper bivariate GARCH(1,1)-M model. The data include bilateral exports from eight Asian countries to the US

  12. Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations

    E-Print Network [OSTI]

    Liu, Hongyu

    Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations ozone over the Asian Pacific Rim in different seasons are quantified by analysis of Hong Kong at midlatitudes from fall at low latitudes due to monsoonal influence. The UT ozone minimum and high variability

  13. A Semi-Lagrangian Approach For American Asian Options Under Jump Diffusion

    E-Print Network [OSTI]

    Forsyth, Peter A.

    to price continuously observed fixed strike Asian options. At each timestep a set of one dimensional on the average price of the underlying asset over a specified period of time. Asian-style derivatives have a wide variety of applications in equity, energy, interest rate, and insurance markets. To the best of our

  14. History of Asian eolian input to the West Philippine Sea over the last one million years

    E-Print Network [OSTI]

    Clift, Peter

    History of Asian eolian input to the West Philippine Sea over the last one million years Shiming East Asian monsoon Clay minerals Glacial­interglacial West Philippine Sea International Marine Past the International Marine Past Global Change (IMAGES) Core MD06-3050 from the West Philippine Sea in order to trace

  15. The Experiences for People of Asian Descent in Professional Positions in American College Sport 

    E-Print Network [OSTI]

    Shim, Kun Soo

    2014-12-16

    for the underrepresentation of people of Asian descent in professional positions, (b) the ways that race and racism play a role in the underrepresentation for people of Asian descent in professional positions, and (c) the strategies employed for obtaining and maintaining a...

  16. The effect of increased convective entrainment on Asian monsoon biases in

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    The effect of increased convective entrainment on Asian monsoon biases in the MetUM General entrainment on Asian monsoon biases in the MetUM General Circulation Model. Quarterly Journal of the Royal Reading's research outputs online #12;AcceptedArticle The effect of increased convective entrainment

  17. A multi beam proton accelerator

    E-Print Network [OSTI]

    Dolya, S N

    2015-01-01

    The article considers a proton accelerator containing seven independent beams arranged on the accelerator radius. The current in each beam is one hundred milliamps. The initial part of the accelerator consists of shielded spiral waveguides assembled in the common screen. The frequency of the acceleration: three hundred megahertz, high-frequency power twenty-five megawatts, the length of the accelerator six meters. After reaching the proton energy of six megaelektronvolts the protons using lenses with the azimuthal magnetic field are collected in one beam. Further beam acceleration is performed in the array of superconducting cavities tuned to the frequency one and three tenths gigahertz. The acceleration rate is equal to twenty megavolt per meter, the high-frequency power consumption fifteen megawatts per meter.

  18. Brokering strategic partnerships between Asian and western biopharmaceutical companies in the global biologics market : assessment of capabilities of Asian participants in the biologics contract manufacturing organization marketplace

    E-Print Network [OSTI]

    Chun, Soo Jin, S.M. Massachusetts Institute of Technology

    2009-01-01

    It has become increasingly important for companies in the biopharmaceutical industry to maximize the clinical, commercial and economic impact of their products on a global scale. In this context, both Western and Asian ...

  19. Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron

    E-Print Network [OSTI]

    and scientists · Implementation of libraries for hardware access · Documentation and maintenance of software service organi- sations in Germany. Classification is based upon qualifications and assigned duties. DESY

  20. PARTICLE ACCELERATORS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS...

    Office of Scientific and Technical Information (OSTI)

    74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; ELECTRONS; HELIUM; LIGHT SOURCES; RADIATIONS; STORAGE RINGS; SYNCHROTRONS SYNCHROTRON RADIATION SYNCHROTRONLIGHT SOURCES QUANTUM CHAOS...

  1. Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron

    E-Print Network [OSTI]

    physics or astrophysics · Experience with the radiation modeling of nonthermal sources and/or the propagation of cosmic radiation (cosmic rays, neutrinos, gamma- rays), or experience in neutrino physics be send to recruitment@desy.de Deutsches Elektronen-Synchrotron DESY Human Resources Department | Code: EP

  2. A model of eternal accelerated expansion without particle horizon

    E-Print Network [OSTI]

    Wang, Zi-Liang

    2016-01-01

    In our previous paper \\cite{8}, we proposed a cosmological model from the emergence of space, which possesses a significant character of evaluating the vacuum energy from the Hubble constant and the age of universe. And one problem of this model is that there is no inflation in the early universe. In this paper, we aim at resolving this problem which leads us to a rather surprising conclusion that our cosmological model can avoid the horizon and flatness problems.

  3. Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron

    E-Print Network [OSTI]

    For further questions please contact Prof.Dr. Rainer Sommer, rainer.sommer@desy.de. For details see http

  4. Applications of pyroelectric particle accelerators Jeffrey A. Geuther, Yaron Danon *

    E-Print Network [OSTI]

    Danon, Yaron

    as a target. Such a paired-crystal system was used to generate X-rays with energies of greater than 200 keV, and can be used to fluoresce the K shell of thorium (Z = 92). An alternative use of pyroelectric sources at high enough energy to cause D­D fusion. Results verifying the production of D­D fusion neutrons from

  5. Scientists from around the world use Fermilab's particle accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and time. Neutrinos might be the reason we exist, why the universe is filled with matter rather than light and radiation. Intense beams for groundbreaking experiments Fermilab...

  6. The United States Particle Accelerator School: Educating the...

    Office of Scientific and Technical Information (OSTI)

    extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics. Authors: Barletta, William A. 1 + Show Author Affiliations USPAS...

  7. Slow Waveguide Structures for Particle Accelerators - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *Impact Neutron diffractionSlideshow:

  8. Picture of the Week: A powerful cosmic particle accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp inrd IEEE(Journal13 A powerful

  9. Kinetic Simulations of Particle Acceleration at Shocks (Conference) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in(JournalTechnicalConnect KPiXSciTechPhase

  10. Kinetic Simulations of Particle Acceleration at Shocks (Conference) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in(JournalTechnicalConnect KPiXSciTechPhaseSciTech

  11. The United States Particle Accelerator School: Educating the Next

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference)FeedbackProperties ofThe MaximumReport)elastase-2; use in

  12. The United States Particle Accelerator School: Educating the next

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference)FeedbackProperties ofThe MaximumReport)elastase-2; use ingeneration of

  13. The United States Particle Accelerator School: Educating the next

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference)FeedbackProperties ofThe MaximumReport)elastase-2; use ingeneration

  14. Materials Classification & Accelerated Property Predictions using...

    Office of Scientific and Technical Information (OSTI)

    Materials Classification & Accelerated Property Predictions using Machine Learning Citation Details In-Document Search Title: Materials Classification & Accelerated Property...

  15. Numerical and laboratory simulations of auroral acceleration

    SciTech Connect (OSTI)

    Gunell, H.; De Keyser, J.; Mann, I.

    2013-10-15

    The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.

  16. APT accelerator. Topical report

    SciTech Connect (OSTI)

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  17. Review of Particle Physics

    E-Print Network [OSTI]

    Nakamura, Kenzo

    2010-01-01

    11. Particle Physics Education Sites . . . . . . . . .ONLINE PARTICLE PHYSICS INFORMATION 1.11. Particle Physics Education Sites . . . . . . . . . . 12.

  18. REVIEW OF PARTICLE PHYSICS

    E-Print Network [OSTI]

    Beringer, Juerg

    2013-01-01

    ONLINE PARTICLE PHYSICS INFORMATION 1.3. Particle Physics Information Platforms . . . . . . . . .14. Particle Physics Education and Outreach

  19. Laser plasma accelerators

    SciTech Connect (OSTI)

    Malka, V. [Laboratoire d'Optique Appliquee, ENSTA-ParisTech, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2012-05-15

    This review article highlights the tremendous evolution of the research on laser plasma accelerators which has, in record time, led to the production of high quality electron beams at the GeV level, using compact laser systems. I will describe the path we followed to explore different injection schemes and I will present the most significant breakthrough which allowed us to generate stable, high peak current and high quality electron beams, with control of the charge, of the relative energy spread and of the electron energy.

  20. Reframing Accelerator Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReferenceReframing Accelerator

  1. A unified cosmic evolution: Inflation to late time acceleration

    E-Print Network [OSTI]

    Subenoy Chakraborty; Supriya Pan; Subhajit Saha

    2015-04-30

    The present work deals with a cosmological model having particle creation mechanism in the framework of irreversible thermodynamics. In the second order non-equilibrium thermodynamical prescription, the particle creation rate is treated as the dissipative effect. The non-equilibrium thermodynamical process is assumed to be isentropic, and, as a consequence, the entropy per particle is constant, and, hence, the dissipative pressure can be expressed linearly in terms of the particle creation rate in the background of the homogeneous and isotropic flat FLRW model. By proper choice of the particle creation rate as a function of the Hubble parameter, the model shows the evolution of the universe starting from the inflationary scenario to the present accelerating phase, considering the cosmic matter as normal perfect fluid with barotropic equation of state.

  2. An effective theory of metrics with maximal acceleration

    E-Print Network [OSTI]

    Ricardo Gallego Torromé

    2015-10-15

    A geometric theory for spacetimes whose world lines associated with physical particles have an upper bound for the proper acceleration is developed. After some fundamental remarks on the requirements that the classical dynamics for point particles should hold, the notion of generalized metric and a theory of maximal proper acceleration are introduced. A perturbative approach to metrics of maximal proper acceleration is discussed and we show how it provides a consistent theory where the associated Lorentzian metric corresponds to the limit when the maximal proper acceleration goes to infinity. Then several of the physical and kinematical properties of the maximal acceleration metric are investigated, including a discussion of the rudiments of the causal theory and the introduction of the notions of radar distance and celerity function. We discuss the corresponding modification of the Einstein mass-energy relation when the associated Lorentzian geometry is flat. In such context it is also proved that the physical dispersion relation is relativistic. Two possible physical scenarios where the modified mass-energy relation could be confronted against experiment are briefly discussed.

  3. Method and apparatus for generating low energy nuclear particles

    DOE Patents [OSTI]

    Powell, James R. (Shoreham, NY); Reich, Morris (Flushing, NY); Ludewig, Hans (Brookhaven, NY); Todosow, Michael (Miller Place, NY)

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  4. Method and apparatus for generating low energy nuclear particles

    DOE Patents [OSTI]

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  5. Black Holes at Accelerators

    E-Print Network [OSTI]

    Bryan Webber

    2006-04-06

    In theories with large extra dimensions and TeV-scale gravity, black holes are copiously produced in particle collisions at energies well above the Planck scale. I briefly review some recent work on the phenomenology of this process, with emphasis on theoretical uncertainties and possible strategies for measuring the number of extra dimensions.

  6. Study on design of superconducting proton linac for accelerator driven subcritical nuclear power system

    E-Print Network [OSTI]

    Yu Qi; Xu Tao Guang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac (SCL) is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. It is constitute by a series of the superconducting accelerating cavities. The cavity geometry is determined by means of the electromagnetic field computation. The SCL main parameters are determined by the particle dynamics computation

  7. Carbon particles

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  8. The Sustainable Building-Accelerator 

    E-Print Network [OSTI]

    Maassen, W.H.

    2011-01-01

    , that it is necessary to accelerate innovations in the built environment, to achieve the high ambitions on sustainability in time. The ideas for the ??Sustainable Building - Accelerator?? originated from the assumptions that the required acceleration... of innovations within the built environment is not yet achieved due to: ? the small amount of innovative solutions which are generated by design teams, because (i) the design process is characterized by mono- disciplinary sequential steps and (ii) the design...

  9. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  10. Laser polishing for topography management of accelerator cavity surfaces

    SciTech Connect (OSTI)

    Zhao, Liang; Klopf, J. Mike; Reece, Charles E.; Kelley, Michael J.

    2015-07-20

    Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.

  11. SuperB Progress Report for Accelerator

    SciTech Connect (OSTI)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

  12. Neutrino oscillations in accelerated states

    E-Print Network [OSTI]

    Ahluwalia, Dharam Vir; Torrieri, Giorgio

    2015-01-01

    We discuss the inverse $\\beta$-decay of accelerated protons in the context of neutrino oscillations. The process $p\\rightarrow n \\ell^+ \

  13. Nuclear Physics: Archived Talks - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Accelerator Hall A Hall B Hall C 12 GeV Upgrade Experimental Techniques...

  14. 2012 Advanced Accelerator Concepts Workshop

    SciTech Connect (OSTI)

    Downer, Michael C.

    2015-03-23

    We report on the organization and outcome of the 2012 Advanced Accelerator Concepts Workshop, held in Austin, Texas in June 2012.

  15. Cosmic inflation, deceleration, acceleration, dark matter, and dark `energy' in one coherent package

    E-Print Network [OSTI]

    Ellis, Homer

    Cosmic inflation, deceleration, acceleration, dark matter, and dark `energy' in one coherent to (mis)represent a uniform negative net mass density of gravitationally attractive and gravitationally, baryonic particles of primordial matter and as the continuously created, invisible particles of the `dark

  16. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect (OSTI)

    Shin, Young-Min [Department of Physics, Northern Illinois University, Dekalb, Illinois 60115 (United States); Accelerator Physics Center (APC), Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510 (United States)

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10{sup 25?}m{sup ?3} and 1.6?×?10{sup 28?}m{sup ?3} plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers ?20% higher acceleration gradient by enlarging the channel radius (r) from 0.2 ?{sub p} to 0.6 ?{sub p} in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g., nanotubes) of high electron plasma density.

  17. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect (OSTI)

    Shin, Young-Min [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Accelerator Physics Center

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 ?p to 0.6 ?p in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  18. The Radiological Research Accelerator THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    The Radiological Research Accelerator Facility #12;84 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY Director: David J. Brenner, Ph.D., D.Sc., Manager: Stephen A. Marino, M.S. An NIH SupportedV/µm 4 He ions using the microbeam facility (Exp. 73) also continued. The transformation frequency

  19. Sub-femtosecond electron bunches created by direct laser acceleration in a laser wakefield accelerator with ionization injection

    E-Print Network [OSTI]

    Lemos, N; Marsh, K A; Joshi, C

    2015-01-01

    In this work, we will show through three-dimensional particle-in-cell simulations that direct laser acceleration in laser a wakefield accelerator can generate sub-femtosecond electron bunches. Two simulations were done with two laser pulse durations, such that the shortest laser pulse occupies only a fraction of the first bubble, whereas the longer pulse fills the entire first bubble. In the latter case, as the trapped electrons moved forward and interacted with the high intensity region of the laser pulse, micro-bunching occurred naturally, producing 0.5 fs electron bunches. This is not observed in the short pulse simulation.

  20. The Effect of Coherent Structures on Stochastic Acceleration in MHD Turbulence

    E-Print Network [OSTI]

    Arzner, K; Carati, D; Denewet, N; Vlahos, L; Arzner, Kaspar; Knaepen, Bernard; Carati, Daniele; Denewet, Nicolas; Vlahos, Loukas

    2006-01-01

    We investigate the influence of coherent structures on particle acceleration in the strongly turbulent solar corona. By randomizing the Fourier phases of a pseudo-spectral simulation of isotropic MHD turbulence (Re $\\sim 300$), and tracing collisionless test protons in both the exact-MHD and phase-randomized fields, it is found that the phase correlations enhance the acceleration efficiency during the first adiabatic stage of the acceleration process. The underlying physical mechanism is identified as the dynamical MHD alignment of the magnetic field with the electric current, which favours parallel (resistive) electric fields responsible for initial injection. Conversely, the alignment of the magnetic field with the bulk velocity weakens the acceleration by convective electric fields $- \\bfu \\times \\bfb$ at a non-adiabatic stage of the acceleration process. We point out that non-physical parallel electric fields in random-phase turbulence proxies lead to artificial acceleration, and that the dynamical MHD al...

  1. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  2. I Investigation of Pellet Acceleration

    E-Print Network [OSTI]

    I Investigation of Pellet Acceleration by an Arc heated Gas Gun An Interim Report INVESTIGATION OP PELLET ACCELERATION BY AN ARC HEATED GAS GUN* An Interim Report on the Investigations carried, and K.-V. Weisberg Abstract. Deep penetration of pellets into the JET plasma may prove to be a useful

  3. General purpose programmable accelerator board

    DOE Patents [OSTI]

    Robertson, Perry J. (Albuquerque, NM); Witzke, Edward L. (Edgewood, NM)

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  4. Particle identification

    E-Print Network [OSTI]

    Lippmann, Christian

    2011-01-01

    Particle IDentification (PID) is fundamental to particle physics experiments. This paper reviews PID strategies and methods used by the large LHC experiments, which provide outstanding examples of the state-of-the-art. The first part focuses on the general design of these experiments with respect to PID and the technologies used. Three PID techniques are discussed in more detail: ionization measurements, time-of-flight measurements and Cherenkov imaging. Four examples of the implementation of these techniques at the LHC are given, together with selections of relevant examples from other experiments and short overviews on new developments. Finally, the Alpha Magnetic Spectrometer (AMS 02) experiment is briefly described as an impressive example of a space-based experiment using a number of familiar PID techniques.

  5. Particle identification

    E-Print Network [OSTI]

    Christian Lippmann

    2011-06-12

    Particle IDentification (PID) is fundamental to particle physics experiments. This paper reviews PID strategies and methods used by the large LHC experiments, which provide outstanding examples of the state-of-the-art. The first part focuses on the general design of these experiments with respect to PID and the technologies used. Three PID techniques are discussed in more detail: ionization measurements, time-of-flight measurements and Cherenkov imaging. Four examples of the implementation of these techniques at the LHC are given, together with selections of relevant examples from other experiments and short overviews on new developments. Finally, the Alpha Magnetic Spectrometer (AMS 02) experiment is briefly described as an impressive example of a space-based experiment using a number of familiar PID techniques.

  6. Hadron particle theory

    SciTech Connect (OSTI)

    Alonso, J.R.

    1995-05-01

    Radiation therapy with ``hadrons`` (protons, neutrons, pions, ions) has accrued a 55-year track record, with by now over 30,000 patients having received treatments with one of these particles. Very good, and in some cases spectacular results are leading to growth in the field in specific well-defined directions. The most noted contributor to success has been the ability to better define and control the radiation field produced with these particles, to increase the dose delivered to the treatment volume while achieving a high degree of sparing of normal tissue. An additional benefit is the highly-ionizing, character of certain beams, leading to creater cell-killing potential for tumor lines that have historically been very resistant to radiation treatments. Until recently these treatments have been delivered in laboratories and research centers whose primary, or original mission was physics research. With maturity in the field has come both the desire to provide beam facilities more accessible to the clinical setting, of a hospital, as well as achieving, highly-efficient, reliable and economical accelerator and beam-delivery systems that can make maximum advantage of the physical characteristics of these particle beams. Considerable work in technology development is now leading, to the implementation of many of these ideas, and a new generation of clinically-oriented facilities is beginning to appear. We will discuss both the physical, clinical and technological considerations that are driving these designs, as well as highlighting, specific examples of new facilities that are either now treating, patients or that will be doing so in the near future.

  7. PAMELA's Measurements of Magnetospheric Effects on High Energy Solar Particles

    E-Print Network [OSTI]

    Adriani, O; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Bottai, S; Bravar, U; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Christian, E C; De Donato, C; de Nolfo, G A; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Lee, M; Leonov, A; Malakhov, V; Marcelli, L; Martucci, M; Mayorov, A G; Menn, W; Mergé, M; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Munini, R; Osteria, G; Palma, F; Panico, B; Papini, P; Pearce, M; Picozza, P; Ricci, M; Ricciarini, S B; Ryan, J M; Sarkar, R; Scotti, V; Simon, M; Sparvoli, R; Spillantini, P; Stochaj, S; Stozhkov, Y I; Thakur, N; Vacchi, A; Vannuccini, E; Vasilyev, G I; Voronov, S A; Yurkin, Y T; Zampa, G; Zampa, N

    2015-01-01

    The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections (CMEs), is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle to the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument, enables unique observations of SEPs including composition and the angular distribution of the particles about the magnetic field, i.e. pitch angle distribution, over a broad energy range (>80 MeV) -- bridging a critical gap between space-based measurements and ground-based. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two dist...

  8. Stable laser–plasma accelerators at low densities

    SciTech Connect (OSTI)

    Li, Song; Hafz, Nasr A. M. Mirzaie, Mohammad; Ge, Xulei; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-07-28

    We report stable laser wakefield acceleration using 17–50 TW laser pulses interacting with 4?mm-long helium gas jet. The initial laser spot size was relatively large (28??m) and the plasma densities were 0.48–2.0?×?10{sup 19?}cm{sup ?3}. High-quality 100–MeV electron beams were generated at the plasma density of 7.5?×?10{sup 18?}cm{sup ?3}, at which the beam parameters (pointing angle, energy spectrum, charge, and divergence angle) were measured and stabilized. At higher densities, filamentation instability of the laser-plasma interaction was observed and it has led to multiple wakefield accelerated electron beams. The experimental results are supported by 2D particle-in-cell simulations. The achievement presented here is an important step toward the use of laser-driven accelerators in real applications.

  9. Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration

    E-Print Network [OSTI]

    P. H. Diamond; M. A. Malkov

    2006-05-15

    We present a theory for the generation of mesoscale ($kr_{g}\\ll 1$, where $r_{g}$ is the cosmic ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfven waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by diffusion of Alfven wave packet in $k-$space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic field on $r_{g}$ scales.

  10. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  11. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  12. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  13. Asian real estate investment : data utilization for the decision making process

    E-Print Network [OSTI]

    Huh, Keun, S.M. Massachusetts Institute of Technology

    2007-01-01

    Many investors in developed countries believe the Asian emerging market to be highly risky due to numerous uncertainties including limited market information to make sound investment decisions. However, still successful ...

  14. Eddy shedding from non-axisymmetric, divergent anticyclones with application to the Asian Monsoon anticyclone

    E-Print Network [OSTI]

    Hsu, Chia-hui Juno, 1965-

    1999-01-01

    The Asian summer Monsoon circulation is driven by differential thermal heating, primarily associated with the localized latent heat release from enhanced precipitation over the India sub-continent. Although this heating ...

  15. Across a Different Table: Strange and Familiar Encounters in Asian American Cinema

    E-Print Network [OSTI]

    Kim, Ju Yon

    2012-01-01

    Film and Video, 1971–1982,” Cinema Journal 49.1 (Fall 2009):Tomorrow and the Mainstreaming of Asian American Cinema,”Cinema Journal 47.4 (2008): 53–54.

  16. A Comparison of Sport Consumption Motives Between American Students and Asian International Students 

    E-Print Network [OSTI]

    Kang, Chanho

    2011-02-22

    The purpose of this study was to explore the differences between American students and Asian international students' frequency of sport spectating, motivation, team identification, future behavior and perceived barriers ...

  17. AMERICAN ENTOMOLOGIST Volume 50 Number 3 153 he multicolored Asian ladybeetle, Harmo-

    E-Print Network [OSTI]

    Landis, Doug

    are highlighted. Here we discuss some recent studies exploring the role of H. axyridis in biocontrol of soybean of Multicolored Asian Lady Beetle as a Biological Control Agent Douglas A. Landis, Tyler B. Fox, and Alejandro C

  18. 21F.030 East Asian Cultures: From Zen to Pop, Fall 2002

    E-Print Network [OSTI]

    Anonymous

    Examines traditional forms of East Asian culture (including literature, art, performance, food, and religion) as well as contemporary forms of popular culture (film, pop music, karaoke, and manga). Covers China, Japan, ...

  19. Asian Greens Offer Tasty, Easy-to-Grow Source of Nutrition

    E-Print Network [OSTI]

    Martin, Orin

    2008-01-01

    leafy vegetables. They offer nutritious dark greens high inAnd at full maturity, they offer an amazing amount of high-UC Santa Cruz Asian Greens Offer Tasty, Easy-to-Grow Source

  20. Particle beam injector system and method

    DOE Patents [OSTI]

    Guethlein, Gary

    2013-06-18

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  1. Testing Doppler type shift for an accelerated source and determination of the universal maximal acceleration

    E-Print Network [OSTI]

    Yaakov Friedman

    2010-06-10

    An experiment for testing Doppler type shift for an accelerated source and determination of the universal maximal acceleration is proposed.

  2. Method of particle trajectory recognition in particle flows of high particle concentration using a candidate trajectory tree process with variable search areas

    DOE Patents [OSTI]

    Shaffer, Franklin D.

    2013-03-12

    The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.

  3. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  4. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, Victor W. (Albuquerque, NM)

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  5. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect (OSTI)

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

  6. GTA (ground test accelerator) Phase 1: Baseline design report

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The national Neutral Particle Beam (NPB) program has two objectives: to provide the necessary basis for a discriminator/weapon decision by 1992, and to develop the technology in stages that lead ultimately to a neutral particle beam weapon. The ground test accelerator (GTA) is the test bed that permits the advancement of the state-of-the-art under experimental conditions in an integrated automated system mode. An intermediate goal of the GTA program is to support the Integrated Space Experiments, while the ultimate goal is to support the 1992 decision. The GTA system and each of its major subsystems are described, and project schedules and resource requirements are provided. (LEW)

  7. Superstructure for high current applications in superconducting linear accelerators

    DOE Patents [OSTI]

    Sekutowicz, Jacek (Elbchaussee, DE); Kneisel, Peter (Williamsburg, VA)

    2008-03-18

    A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.

  8. Conceptual Designs for a Spallation Neutron Target Constructed of a Helium-Cooled, Packed Bed of Tungsten Particles

    E-Print Network [OSTI]

    McDonald, Kirk

    foundation a target and blanket system that is driven by a proton accelerator. The subcritical blanket-cooled, packed bed of tungsten particles. Two packed bed target designs for accelerator transmutation of waste/p and improved axial distribution of neutrons. * E-mail: ammerman@lanl.gov I. INTRODUCTION The Accelerator

  9. Freehand Sketch Recognition for Computer-Assisted Language Learning of Written East Asian Languages 

    E-Print Network [OSTI]

    Taele, Paul Piula

    2011-02-22

    of Written East Asian Languages. (December 2010) Paul Piula Taele, B.S., The University of Texas at Austin Chair of Advisory Committee: Dr. Tracy Hammond One of the challenges students face in studying an East Asian (EA) language (e.g., Chinese..., Japanese, and Korean) as a second language is mastering their selected language?s written component. This is especially true for students with native fluency of English and deficient written fluency of another EA language. In order to alleviate...

  10. Progress through Dispute: The Caspian Oil Power Struggle and Its Effects on Central Asian Cooperation

    E-Print Network [OSTI]

    Cristin Perry, Natalie

    2014-08-25

    oil. He also speculates that the opening of this Central Asian pipeline could lead to continued cooperation on the Nabucco Pipeline, which gives direct mobility from the Caspian to Europe More recently, the Nabucco Pipeline has since transformed... into the Nabucco- West Pipeline, along with a new route for Central Asian resources to Europe that compliment the Nabucco-West pipeline. It is labeled the Trans-Andalou Pipeline (TANAP) and involves countries such as Turkmenistan, Azerbaijan, Georgia...

  11. Probing Efficient Cosmic-Ray Acceleration in Young Supernovae

    E-Print Network [OSTI]

    Dwarkadas, Vikram V; Marcowith, A; Tatischeff, V

    2015-01-01

    The formation of a core collapse supernovae (SNe) results in a fast (but non- or mildly-relativistic) shock wave expanding outwards into the surrounding medium. The medium itself is likely modified due to the stellar mass-loss from the massive star progenitor, which may be Wolf-Rayet stars (for Type Ib/c SNe), red supergiant stars (for type IIP and perhaps IIb and IIL SNe), or some other stellar type. The wind mass-loss parameters determine the density structure of the surrounding medium. Combined with the velocity of the SN shock wave, this regulates the shock acceleration process. In this article we discuss the essential parameters that control the particle acceleration and gamma-ray emission in SNe, with particular reference to the Type IIb SN 1993J. The shock wave expanding into the high density medium leads to fast particle acceleration, giving rise to rapidly-growing plasma instabilities driven by the acceleration process itself. The instabilities grow over intraday timescales. This growth, combined wit...

  12. Radiological Research Accelerator Facility Service Request Form

    E-Print Network [OSTI]

    Radiological Research Accelerator Facility Service Request Form National Institute of Biomedical Imaging and Bioengineering Radiological Research Accelerator Facility Service request form Estimate when(s) to control for this experiment (if more than one, please prioritize): Radiological Research Accelerator

  13. Terahertz-driven linear electron acceleration

    E-Print Network [OSTI]

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  14. The Pulse Line Ion Accelerator Concept

    E-Print Network [OSTI]

    Briggs, Richard J.

    2006-01-01

    field model of the pulse- line accelerator; relationship to3, 2006 LBNL-59492 The pulse line ion accelerator conceptCalifornia, 94507 The Pulse Line Ion Accelerator concept was

  15. SNEAP 80: symposium of Northeastern Accelerator personnel

    SciTech Connect (OSTI)

    Billen, J.H. (ed.) ed.

    1980-01-01

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

  16. Synergia: a modern tool for accelerator physics simulation

    SciTech Connect (OSTI)

    Spentzouris, P.; Amundson, J.; /Fermilab

    2004-10-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. Synergia is a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles.

  17. Cosmic ray diffusive acceleration at shock waves with finite upstream and downstream escape boundaries

    E-Print Network [OSTI]

    M. Ostrowski; R. Schlickeiser

    1996-04-18

    In the present paper we discuss the modifications introduced into the first-order Fermi shock acceleration process due to a finite extent of diffusive regions near the shock or due to boundary conditions leading to an increased particle escape upstream and/or downstream the shock. In the considered simple example of the planar shock wave we idealize the escape phenomenon by imposing a particle escape boundary at some distance from the shock. Presence of such a boundary (or boundaries) leads to coupled steepening of the accelerated particle spectrum and decreasing of the acceleration time scale. It allows for a semi-quantitative evaluation and, in some specific cases, also for modelling of the observed steep particle spectra as a result of the first-order Fermi shock acceleration. We also note that the particles close to the upper energy cut-off are younger than the estimate based on the respective acceleration time scale. In Appendix A we present a new time-dependent solution for infinite diffusive regions near the shock allowing for different constant diffusion coefficients upstream and downstream the shock.

  18. Electromagnetic acceleration of permanent magnets

    E-Print Network [OSTI]

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  19. Black holes at accelerators.

    E-Print Network [OSTI]

    Webber, Bryan R

    be presented and the effects of some of the uncertainties can be investigated. 3.1. Hawking Spectrum With the above assumptions, the spectrum of particles emitted during black hole decay takes the form dN dE ? ?E2 (eE/TH ? 1) T n+6H (8) where as usual... the trapped surface area [6, 7]. T030 02 4 6 8 10 0 0.2 0.4 0.6 0.8 1 1.2 n=0 n=1 n=2 n=6 E rS ?ˆ (0 ) ab s/ pi r2 S Figure 4: Grey-body factors for scalar emission on the brane from a (4 + n)D black hole. 0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1 1.2 n=0 n=1 n=2 n=6 E...

  20. SPH Simulations with Reconfigurable Hardware Accelerator

    E-Print Network [OSTI]

    N. Nakasato; T. Hamada; T. Fukushige

    2006-04-13

    We present a novel approach to accelerate astrophysical hydrodynamical simulations. In astrophysical many-body simulations, GRAPE (GRAvity piPE) system has been widely used by many researchers. However, in the GRAPE systems, its function is completely fixed because specially developed LSI is used as a computing engine. Instead of using such LSI, we are developing a special purpose computing system using Field Programmable Gate Array (FPGA) chips as the computing engine. Together with our developed programming system, we have implemented computing pipelines for the Smoothed Particle Hydrodynamics (SPH) method on our PROGRAPE-3 system. The SPH pipelines running on PROGRAPE-3 system have the peak speed of 85 GFLOPS and in a realistic setup, the SPH calculation using one PROGRAPE-3 board is 5-10 times faster than the calculation on the host computer. Our results clearly shows for the first time that we can accelerate the speed of the SPH simulations of a simple astrophysical phenomena using considerable computing power offered by the hardware.

  1. Accelerating DSMC data extraction.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  2. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.

    SciTech Connect (OSTI)

    Shiltsev, V.; Piot, P.

    2013-09-01

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  3. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating...

  4. American Recovery and Reinvestment Act Accelerated Milestones

    Office of Environmental Management (EM)

    RECOVERY PROJECT OR ACTIVITY ACCELERATED MILESTONE TITLE MILESTONE DUE DATE EXPECTED ACCELERATED COMPLETION DATE WITH ARRA FUNDING STATUS INL - Cleanup of Surplus Nuclear...

  5. Advanced Accelerator Concepts Final Report

    SciTech Connect (OSTI)

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di#11;erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.

  6. Accelerated Aging of Roofing Surfaces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated aging of roofing surfaces Hugo Destaillats, Ph.D. Lawrence Berkeley National Laboratory HDestaillats@LBL.gov (510) 486-5897 http:HeatIsland.LBL.gov April 4, 2013...

  7. Accelerated Expansion: Theory and Observations

    E-Print Network [OSTI]

    David Polarski

    2001-09-20

    The present paradigm in cosmology is the usual Big-Bang Cosmology in which two stages of accelerated expansion are incorporated: the inflationary phase in the very early universe which produces the classical inhomogeneities observed in the universe, and a second stage of acceleration at the present time as the latest Supernovae observations seem to imply. Both stages could be produced by a scalar field and observations will strongly constrain the microscopic lagrangian of any proposed model.

  8. Generation of Mesoscale Magnetic Fields and the Dynamics of Cosmic Ray Acceleration

    E-Print Network [OSTI]

    P. H. Diamond; M. A. Malkov

    2005-06-09

    The problem of the cosmic ray origin is discussed in connection with their acceleration in supernova remnant shocks. The diffusive shock acceleration mechanism is reviewed and its potential to accelerate particles to the maximum energy of (presumably) galactic cosmic rays ($10^{18}eV $) is considered. It is argued that to reach such energies, a strong magnetic field at scales larger than the particle gyroradius must be created as a result of the acceleration process, itself. One specific mechanism suggested here is based on the generation of Alfven wave at the gyroradius scale with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven waves.

  9. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect (OSTI)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  10. High-Intensity Proton Accelerator

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  11. Bibliography of information sources on East Asian energy

    SciTech Connect (OSTI)

    Salosis, J.

    1982-11-01

    The first section of this bibliography is a subject index by title to sources of information on East Asian energy. The countries considered were: Brunei, the PRC, Taiwan, Hong Kong, Indonesia, Japan, the Koreas, Malaysia, the Philippines, Singapore, Thailand and Vietnam. If the geographic coverage by any source is restricted to a particular country and was not indicated by the title, a country abbreviation in parentheses was added. Titles that include the term data base are computerized. The second section contains the Title Index which lists each printed publication alphabetically with frequency of publication and the US$ price for a yearly air mail subscription. The publisher or distribution office is listed below the title. The Data Base Index lists computerized sources with the author and the vendor providing either online access or tapes. No prices have been quoted in this section because of the wide range of methods in use and the impossibility of running benchmarks for this study. The Address Index lists the publishers, data base authors and vendors alphabetically.

  12. Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B

    E-Print Network [OSTI]

    2009-01-01

    light scattering, due to competition between pollution andAsian pollution and mineral dust Table 8. Changes to lightpollution and mineral dust Table 6. Comparison of light

  13. Could mitochondrial efficiency explain the susceptibility to adiposity, metabolic syndrome, diabetes and cardiovascular diseases in South Asian populations? 

    E-Print Network [OSTI]

    Bhopal, Raj; Rafnsson, Snorri B

    2009-01-01

    Background South Asians are susceptible to cardiovascular disease (CVD), especially after migration to affluent countries. Contributing factors include high prevalence of diabetes, and possibly insulin resistance. Excess ...

  14. Proceedings of the 8th Workshop on Asian Language Resources, pages 3037, Beijing, China, 21-22 August 2010. c 2010 Asian Federation for Natural Language Processing

    E-Print Network [OSTI]

    when it is asso- ciated with "soldier," while it exhibits the "container for liquid or gas" sense when-22 August 2010. c 2010 Asian Federation for Natural Language Processing Augmenting a Bilingual Lexicon, or bilingual dictionary, is a fundamental linguistic resource for multi- lingual natural language processing

  15. EU, U.S., Russia, Asian States Sign Nuclear-Fusion Reactor May 24 (Bloomberg) --The European Union, the U.S., Russia and Asian nations

    E-Print Network [OSTI]

    -gas emissions from fossil fuels, rising oil prices and worries about the safety of existing nuclear plantsEurope EU, U.S., Russia, Asian States Sign Nuclear-Fusion Reactor Pact May 24 (Bloomberg nuclear-fusion reactor, forging ahead with a 4.6 billion- euro ($5.9 billion) project to cut oil demand

  16. Nonthermally dominated electron acceleration during magnetic reconnection in a low-? plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xiaocan; Guo, Fan; Li, Hui; Li, Gang

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-? regime but not in the high-? regime, where ? is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-? regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization.more »We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma ?, low-? reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-? plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.« less

  17. Elementary particle physics---Experimental

    SciTech Connect (OSTI)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1990-09-20

    We are continuing a research program in high energy experimental particle physics and particle astrophysics. Studies of high energy hadronic interactions were performed using several techniques, in addition, a high energy leptoproduction experiment was continued at the Fermi National Accelerator Laboratory. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators. The data are being collected with ballon-borne emulsion chambers. The properties of nuclear interactions at these high energies will reveal whether new production mechanisms come into play due to the high nuclear densities and temperatures obtained. We carried out closely related studies of hadronic interactions in emulsions exposed to high energy accelerator beams. We are members of a large international collaboration which has exposed emulsion chamber detectors to beams of {sup 32}S and {sup 16}O with energy 60 and 200 GeV/n at CERN and 15 GeV/n at Brookhaven National Laboratory. The primary objectives of this program are to determine the existence and properties of the hypothesized quark-gluon phase of matter, and its possible relation to a variety of anomalous observations. Studies of leptoproduction processes at high energies involve two separate experiments, one using the Tevatron 500 GeV muon beam and the other exploring the >TeV regime. We are participants in Fermilab experiment E665 employing a comprehensive counter/streamer chamber detector system. During the past year we joined the DUMAND Collaboration, and have been assigned responsibility for development and construction of critical components for the deep undersea neutrino detector facility, to be deployed in 1991. In addition, we are making significant contributions to the design of the triggering system to be used.

  18. GPU COMPUTING FOR PARTICLE TRACKING

    SciTech Connect (OSTI)

    Nishimura, Hiroshi; Song, Kai; Muriki, Krishna; Sun, Changchun; James, Susan; Qin, Yong

    2011-03-25

    This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculation of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ [2] is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.

  19. Numerically optimized structures for dielectric asymmetric dual-grating laser accelerators

    SciTech Connect (OSTI)

    Aimidula, A. [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China) [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom); Physics Department, University of Liverpool, Liverpool (United Kingdom); Bake, M. A.; Wan, F.; Xie, B. S., E-mail: bsxie@bnu.edu.cn [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Welsch, C. P. [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom) [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom); Physics Department, University of Liverpool, Liverpool (United Kingdom); Xia, G.; Mete, O. [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom) [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom); School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Uesaka, M.; Matsumura, Y. [Department of Nuclear Engineering and Management, The University of Tokyo, Tokai 319-1188 (Japan)] [Department of Nuclear Engineering and Management, The University of Tokyo, Tokai 319-1188 (Japan); Yoshida, M.; Koyama, K. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)] [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)

    2014-02-15

    Optical scale dielectric structures are promising candidates to realize future compact, low cost particle accelerators, since they can sustain high acceleration gradients in the range of GeV/m. Here, we present numerical simulation results for a dielectric asymmetric dual-grating accelerator. It was found that the asymmetric dual-grating structures can efficiently modify the laser field to synchronize it with relativistic electrons, therefore increasing the average acceleration gradient by ?10% in comparison to symmetric structures. The optimum pillar height which was determined by simulation agrees well with that estimated analytically. The effect of the initial kinetic energy of injected electrons on the acceleration gradient is also discussed. Finally, the required laser parameters were calculated analytically and a suitable laser is proposed as energy source.

  20. Laser ion acceleration by using the dynamic motion of a target

    SciTech Connect (OSTI)

    Morita, Toshimasa

    2013-09-15

    Proton acceleration by using a 620 TW, 18 J laser pulse of peak intensity of 5×10{sup 21} W/cm{sup 2} irradiating a disk target is examined using three-dimensional particle-in-cell simulations. It is shown that protons are accelerated efficiently to high energy for a “light” material in the first layer of a double-layer target, because a strongly inhomogeneous expansion of the first layer occurs by a Coulomb explosion within such a material. Moreover, a large movement of the first layer for the accelerated protons is produced by radiation-pressure-dominant acceleration. A time-varying electric potential produced by this expanding and moving ion cloud accelerates protons effectively. In addition, using the best material for the target, one can generate a proton beam with an energy of 200 MeV and an energy spread of 2%.