National Library of Energy BETA

Sample records for ashrae standard ashrae

  1. ASHRAE

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s sconveyance of9, 2013 ASER Web Addresses andASHRAE

  2. Status of Revisions to ASHRAE Standard 62 

    E-Print Network [OSTI]

    Gallo, F. M.

    1998-01-01

    The American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 62- 1989 "Ventilation for Acceptable Indoor air Quality", adopted in 1989, is widely used by HVAC engineers to determine ventilation rates for various...

  3. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Energy Savers [EERE]

    ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and...

  4. Infiltration in ASHRAE's Residential Ventilation Standards

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01

    of both indoor air quality and energy.   References  ASHRAE both indoor air quality and building energy consumption.  acceptable indoor air quality at minimum energy cost, it is

  5. National Cost-effectiveness of ANSI/ASHRAE/IES Standard 90.1-2013

    SciTech Connect (OSTI)

    Hart, Philip R.; Athalye, Rahul A.; Halverson, Mark A.; Loper, Susan A.; Rosenberg, Michael I.; Xie, YuLong; Richman, Eric E.

    2015-01-29

    The purpose of this analysis is to examine the cost-effectiveness of the 2013 edition of ANSI/ASHRAE/IES1 Standard 90.1 (ANSI/ASHRAE/IES 2013).

  6. ANSI/ASHRAE/IESNA Standard 90.1-2007 Preliminary Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2010-05-25

    A preliminary qualitative analysis of all addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007 was conducted. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were evaluated by DOE for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency.

  7. ANSI/ASHRAE/IESNA Standard 90.1-2010 Preliminary Determination Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Rosenberg, Michael I.

    2010-11-01

    The United States (U.S.) Department of Energy (DOE) conducted a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The preliminary analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s preliminary determination. However, out of the 109 addenda, 34 were preliminarily determined to have measureable and quantifiable impact.

  8. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Wang, Weimin; Zhang, Jian; Mendon, Vrushali V.; Athalye, Rahul A.; Xie, YuLong; Hart, Reid; Goel, Supriya

    2014-03-01

    This report provides a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IES Standard 90.1-2010.

  9. Analysis of Daylighting Requirements within ASHRAE Standard 90.1

    SciTech Connect (OSTI)

    Athalye, Rahul A.; Xie, YuLong; Liu, Bing; Rosenberg, Michael I.

    2013-08-01

    Pacific Northwest National Laboratory (PNNL), under the Building Energy Codes Program (BECP) funded by U.S. Department of Energy (DOE), provides support to the ASHRAE/IES/IESNA Standard 90.1(Standard 90.1) Standing Standards Project Committee (SSPC 90.1) and its subcommittees. In an effort to provide the ASHRAE SSPC 90.1 with data that will improve the daylighting and fenestration requirements in the Standard, PNNL collaborated with Heschong Mahone Group (HMG), now part of TRC Solutions. Combining EnergyPlus, a whole-building energy simulation software developed by DOE, with Radiance, a highly accurate illumination modeling software (Ward 1994), the daylighting requirements within Standard 90.1 were analyzed in greater detail. The initial scope of the study was to evaluate the impact of the fraction of window area compared to exterior wall area (window-to-wall ratio (WWR)) on energy consumption when daylighting controls are implemented. This scope was expanded to study the impact of fenestration visible transmittance (VT), electric lighting controls and daylighted area on building energy consumption.

  10. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    SciTech Connect (OSTI)

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  11. Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    SciTech Connect (OSTI)

    Thornton, Brian A.; Halverson, Mark A.; Myer, Michael; Cho, Hee Jin; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

    2013-06-18

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

  12. National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    SciTech Connect (OSTI)

    Thornton, Brian; Halverson, Mark A.; Myer, Michael; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

    2013-11-30

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

  13. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Utah

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Utah.

  14. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Montana

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Montana.

  15. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of New York

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of New York.

  16. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Virginia

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Virginia.

  17. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Oklahoma

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Oklahoma.

  18. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Texas

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Texas.

  19. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the District of Columbia

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the District of Columbia.

  20. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Arkansas

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-26

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Arkansas.

  1. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of New Jersey

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of New Jersey.

  2. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of South Carolina

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of South Carolina.

  3. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Massachusetts

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Massachusetts.

  4. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Wisconsin

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Wisconsin.

  5. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Georgia

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Georgia.

  6. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  7. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Colorado

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Colorado.

  8. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Nebraska

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-12-13

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Nebraska.

  9. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Iowa

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Iowa.

  10. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Kentucky

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Kentucky.

  11. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Rhode Island

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Rhode Island.

  12. Cost Effectiveness of ASHRAE Standard 90.1-2010 for the State of Connecticut

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in teh State of Connecticut.

  13. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Delaware

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Delaware.

  14. ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Determination Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2011-05-01

    The United States (U.S.) Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2004. The final analysis considered each of the 44 addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were reviewed by DOE, and their combined impact on a suite of 15 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s final determination. However, out of the 44 addenda, 9 were preliminarily determined to have measureable and quantifiable impact.

  15. Energy Codes and Standards - ASHRAE 90.1 2007 

    E-Print Network [OSTI]

    Reihl, K.

    2012-01-01

    at http://www.ashrae.org/pu blications/page/1604 Future Energy Codes The codes are driving towards ?Net Zero? buildings ? the building produces a much energy as it uses over the course of a year. Future Energy Codes Building envelope.....some Economizers Energy Recovery Decreased Lighting Power Densities Extensive controls for lighting & power How ?Green? can you go? Net Zero Energy used is generated on site, depends on defined ?Site? Carbon Neutral Use no fossil fuel Greenhouse Gas...

  16. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Qualitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Hart, Reid; Athalye, Rahul A.; Rosenberg, Michael I.; Richman, Eric E.; Winiarski, David W.

    2014-03-01

    Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. When the U.S. Department of Energy (DOE) issues an affirmative determination on Standard 90.1, states are statutorily required to certify within two years that they have reviewed and updated the commercial provisions of their building energy code, with respect to energy efficiency, to meet or exceed the revised standard. This report provides a preliminary qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition).

  17. ANSI/ASHRAE/IESNA Standard 90.1-2010 Preliminary Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Williamson, Jennifer L.; Liu, Bing; Rosenberg, Michael I.; Richman, Eric E.

    2010-11-01

    A preliminary qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (Standard 90.1-2007 or 2007 edition) that were included in ANSI/ASHRAE/IESNA Standard 90.1-2010 (Standard 90.1-2010 or 2010 edition) was conducted. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were evaluated by DOE for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency.

  18. ANSI/ASHRAE/IES Standard 90.1-2010 Final Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Williamson, Jennifer L.; Richman, Eric E.; Liu, Bing

    2011-10-31

    A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (Standard 90.1-2007 or 2007 edition) that were included in ANSI/ASHRAE/IESNA Standard 90.1-2010 (Standard 90.1-2010 or 2010 edition) was conducted. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were evaluated by DOE for their impact on energy efficiency. DOE determined whether each addendum would have a positive, neutral, or negative impact on overall building efficiency.

  19. ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2011-01-01

    A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007 was conducted. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were evaluated by the U.S. Department of Energy (DOE) for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency. Table S.1 shows the number of positive and negative changes for each section of Standard 90.1.

  20. ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Qualitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Hart, Philip R.; Richman, Eric E.; Athalye, Rahul A.; Winiarski, David W.

    2014-09-04

    This report provides a final qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition). All addenda in creating Standard 90.1-2013 were evaluated for their projected impact on energy efficiency. Each addendum was characterized as having a positive, neutral, or negative impact on overall building energy efficiency.

  1. ANSI/ASHRAE/IES Standard 90.1-2010 Final Determination Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Liu, Bing

    2011-10-31

    The U.S. Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The final analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE's final determination. However, out of the 109 addenda, 34 were preliminarily determined to have a measureable and quantifiable impact. A suite of 240 computer energy simulations for building prototypes complying with ASHRAE 90.1-2007 was developed. These prototypes were then modified in accordance with these 34 addenda to create a second suite of corresponding building simulations reflecting the same buildings compliant with Standard 90.1-2010. The building simulations were conducted using the DOE EnergyPlus building simulation software. The resulting energy use from the complete suite of 480 simulation runs was then converted to energy use intensity (EUI, or energy use per unit floor area) metrics (Site EUI, Primary EUI, and energy cost intensity [ECI]) results for each simulation. For each edition of the standard, these EUIs were then aggregated to a national basis for each prototype using weighting factors based on construction floor area developed for each of the 15 U.S. climate zones using commercial construction data. When compared, the resulting weighted EUIs indicated that each of the 16 building prototypes used less energy under Standard 90.1-2010 than under Standard 90.1-2007 on a national basis when considering site energy, primary energy, or energy cost. The EUIs were also aggregated across building types to a national commercial building basis using the same weighting data. On a national basis, the final quantitative analysis estimated a floor-space-weighted national average reduction in new building energy consumption of 18.2 percent for source energy and 18.5 percent when considering site energy. An 18.2 percent savings in energy cost, based on national average commercial energy costs for electricity and natural gas, was also estimated.

  2. ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Athalye, Rahul A.; Rosenberg, Michael I.; Xie, YuLong; Wang, Weimin; Hart, Philip R.; Zhang, Jian; Goel, Supriya; Mendon, Vrushali V.

    2014-09-04

    This report provides a final quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in improved energy efficiency in commercial buildings. The final analysis considered each of the 110 addenda to Standard 90.1-2010 that were included in Standard 90.1-2013. PNNL reviewed all addenda included by ASHRAE in creating Standard 90.1-2013 from Standard 90.1-2010, and considered their combined impact on a suite of prototype building models across all U.S. climate zones. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s final determination. However, out of the 110 total addenda, 30 were identified as having a measureable and quantifiable impact.

  3. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

  4. Ventilation Based on ASHRAE 62.2

    E-Print Network [OSTI]

    of ASHRAE 62.2 also apply to additions over 1,000 square feet (sf) of conditioned floor area (CFA of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) to enable dwellings to achieve

  5. Property:ASHRAE 169 Standard | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,Information Promoting Clean Cars:Standard Jump to:

  6. ASHRAE Installs New Officers, Directors DENVER ASHRAE has installed

    E-Print Network [OSTI]

    Maroncelli, Mark

    for 2013-14 at its Annual Meeting held here June 22-26. The ASHRAE Presidential Address is viewable on You more global in outlook, broader in scope, and more collaborative in approach. Bahnfleth is the son Certified Building Energy Assessment and Building Energy Modeling Professional, principal and vice president

  7. Economic Calculations for the ASHRAE Handbook 

    E-Print Network [OSTI]

    Haberl, J. S.

    1993-01-01

    ESL-TR-93/04-07 Economic Calculations for the ASHRAE Handbook Jeff S. Haberl Dept. of Mechanical Engineering Texas A&M University College Station, TX 77843-3123 For any proposed capital investment, the capital and interest costs, salvage costs... Office, Washington, D.C. BIBLIOGRAPHY ASTM. 1985. Definition of terms relating to building economics. ASTM Standard E933-S5. ASTM, Philadelphia. Kurtz, M. 1984. Handbook of engineering economics: A guide for engineers, technicians, scientists and managers...

  8. Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010

    SciTech Connect (OSTI)

    Thornton, Brian A.; Rosenberg, Michael I.; Richman, Eric E.; Wang, Weimin; Xie, YuLong; Zhang, Jian; Cho, Heejin; Mendon, Vrushali V.; Athalye, Rahul A.; Liu, Bing

    2011-05-24

    This Technical Support Document presents the energy and cost savings analysis that PNNL conducted to measure the potential energy savings of 90.1-2010 relative to 90.1-2004. PNNL conducted this analysis with inputs from many other contributors and source of information. In particular, guidance and direction was provided by the Simulation Working Group under the auspices of the SSPC90.1. This report documents the approach and methodologies that PNNL developed to evaluate the energy saving achieved from use of ASHRAE/IES Standard 90.1-2010. Specifically, this report provides PNNL’s Progress Indicator process and methodology, EnergyPlus simulation framework, prototype model descriptions. This report covers the combined upgrades from 90.1-2004 to 90.1-2010, resulting in a total of 153 addenda. PNNL has reviewed and considered all 153 addenda for quantitative analysis in the Progress Indicator process. 53 of those are included in the quantitative analysis. This report provides information on the categorization of all of the addenda, a summary of the content, and deeper explanation of the impact and modeling of 53 identified addenda with quantitative savings.

  9. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140: Preprint

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

  10. Trends in Data Center Design - ASHRAE Leads the Way to Large Energy Savings (Presentation)

    SciTech Connect (OSTI)

    Van Geet, O.

    2013-06-01

    Energy savings strategies for data centers are described, including best practices, ASHRAE standards, and examples of successful strategies for incorporating energy savings.

  11. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  12. ASHRAE 2000 Annual Meeting, June 24-28, 2000, Minneapolis, MN, and published in ASHRAE Transactions, 106(2) 2000.

    E-Print Network [OSTI]

    LBNL-44422 Mo-420 ASHRAE 2000 Annual Meeting, June 24-28, 2000, Minneapolis, MN, and published in ASHRAE Transactions, 106(2) 2000. This work was supported by the Assistant Secretary for Energy

  13. Comparison of ASHRAE Standard 90.1, 189.1 and IECC Codes for Large Office Buildings in Texas 

    E-Print Network [OSTI]

    Mukhopadhyay, J.; Baltazar, J.C.; Kim, H.; Haberl, J.

    2011-01-01

    ASHRAE 90.1 2007 IECC 2009 ASHRAE 90.1 2010 ASHRAE 189.1 2009 ELEC 14655.7 12743.3 11565.5 11246.4 11207.4 8454.0 8364.2 13.0 21.1 23.3 23.5 42.3 42.9 GAS 1389.1 973.4 1016.7 667.8 704.0 749.1 534.4 29.9 26.8 51.9 49.3 46.1 61.5 TOTAL 16044.... 2009. Infiltration Modeling Guidelines for Commercial Building Energy Analysis. PNNL Report PNNL- 18898, Pacific Northwest National Laboratory. Grondzik, W., Kwok, A., Stien, B., Reynolds, J. 2010. Mechanical and Electrical Equipment...

  14. Comparison of ASHRAE Standard- 90.1, 189.1 and IECC Codes for Large Office Buildings in Texas, ICEBO Presentation 

    E-Print Network [OSTI]

    Mukhopadhyay, Jaya; Baltazar, Juan Carlos; Kim, Hyojin; Haberl, Jeff; Lewis, Cyndi; Bahman, Yazdani

    2011-01-01

    2009 ASHRAE 90.1 2010 ASHRAE 189.1 2009 ASHRAE 90.1 1999 ASHRAE 90.1 2004 ASHRAE 90.1 2007 IECC 2009 ASHRAE 90.1 2010 ASHRAE 189.1 2009 Climate Zone 2A ELEC 14655.7 12743.3 11565.5 11246.4 11207.4 8454.0 8364.2 13.0 21... ASHRAE 90.1 2007 IECC 2009 ASHRAE 90.1 2010 ASHRAE 189.1 2009 Climate Zone 2A ELEC 14655.7 12743.3 11565.5 11246.4 11207.4 8454.0 8364.2 13.0 21.1 23.3 23.5 42.3 42.9 GAS 1389.1 973.4 1016.7 667.8 704.0 749.1 534.4 29.9 26.8 51.9 49.3 46...

  15. Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Small Office Buildings in the City of Arlington 

    E-Print Network [OSTI]

    2011-01-01

    Efficiency FEDERAL MINIMUM EFFICIENCY STANDARDS Heating System Efficiency (%) ASHRAE 90.1-2001 Table 6.2.1E and ASHRAE 90.1-2007 Table 6.8.1E Gas-fired furnace Capacity Capacity (Btu/hr) Heating Capacity (Btu/hr) Economizer ASHRAE... 40 kW Photovoltaic Array 0.5 PF Window Shading (None to 2.5 ft. Overhang for S/E/W) Tankless Gas Water Heater Decreased Glazing U-Value (ASHRAE 90.1-2001: from 1.22 to 0.35; and ASHRAE 90.1-2007: from 0.65 to 0.35) High Albedo Roof for ASHRAE 90...

  16. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and...

    Office of Environmental Management (EM)

    and Logistical Challenges The American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc. (ASHRAE), founded in 1894, is an international organization of...

  17. ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2 

    E-Print Network [OSTI]

    Sherman, M.

    2000-01-01

    . The standard is an attempt by the Society to address concerns over indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency measures to be evaluated. The standard has requirements for whole-house ventilation, local...

  18. Passive-Solar-Heating Analysis: a new ASHRAE manual

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    The forthcoming ASHRAE book, Passive Solar Heating Analysis, is described. ASHRAE approval procedures are discussed. An overview of the contents is given. The development of the solar load ratio correlations is described, and the applicability of the analysis method is discussed.

  19. 2014-05-08 Issuance: Energy Efficiency Improvements in ANSI/ASHRAE/IES Standard 90.1-2013; Preliminary Determination

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of preliminary determination regarding energy savings for ANSI/ASHRAE/IES 90.1-2013, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 8, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  20. Analysis of Energy Saving Impacts of ASHRAE 90.1-2004 for New York

    SciTech Connect (OSTI)

    Gowri, Krishnan; Halverson, Mark A.; Richman, Eric E.

    2007-08-03

    The New York State Energy Research and Development Authority (NYSERDA) and New York State Department of State (DOS) requested the help of DOE’s Building Energy Codes Program (BECP) in estimating the annual building energy savings and cost impacts of adopting ANSI/ASHRAE/IESNA Standard 90.1-2004 (ASHRAE 2004) requirements. This report summarizes the analysis methodology and results of energy simulation in response to that request.

  1. ASHRAE 169-2006 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgramInformationEnergy InformationASHRAE 169-2006

  2. New Peak Moisture Design Data in the 1997 ASHRAE Handbook of Fundamentals 

    E-Print Network [OSTI]

    Harriman, L.

    1998-01-01

    IN THE 1997 ASHRAE HANDBOOK OF FUNDAMENTALS Lew Harriman Director of Research Mason-Grant Consulting Portsmouth, NH ABSTRACT Chapter 26 of the 1997 edition of the Handbook of Fundamentals published by ASHRAE (American So- ciety of Heating... Loads From Ventilation Air", Harriman, Plager and Kosar, ASHRAE Journal. November 1997, pp:37-45 AUTHOR Lew Harriman is Director of Research at Mason- Grant, Portsmouth, NH. He serves as the Chair of the Handbook Subcommittee of ASHRAE TC 3...

  3. Nitrous oxide as a substitute for sulfur hexafluoride in the ANSI/ASHRAE 110 Method of hood performance evaluation

    E-Print Network [OSTI]

    Guffey, Eric J. (Eric Jemison)

    2011-01-01

    The ANSI/ASHRAE 110 Method is the standard test for laboratory hood containment performance. Sulfur hexafluoride is specified as the gas most suitable for this test and is most commonly used. Sulfur hexafluoride use has ...

  4. Energy Implications of Meeting ASHRAE 62.2

    E-Print Network [OSTI]

    Energy Implications of Meeting ASHRAE 62.2 Iain S. Walker and Max H. Sherman Environmental Energy Technologies Division November 2007 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department of Energy under contract No. DE-AC02

  5. Application of an ASHRAE 152-2004 Duct Model for Simulating Code-Compliant 2000/2001 IECC Residences 

    E-Print Network [OSTI]

    Haberl, J.S.; Kim, S.

    2010-01-01

    This paper presents the results of the application of the duct model based on ASHRAE 152-2004 - Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems (ASHRAE 2004) to the code compliant 2001...

  6. ASHRAE's Proposed Guideline 14P for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit 

    E-Print Network [OSTI]

    Haberl, J. S.; Reeves, G.; Gillespie, K.; Claridge, D. E.; Cowan, J.; Culp, C.; Frazell, W.; Heinemeier, K.; Kromer, S.; Kummer, J.; Mazzucchi, R.; Reddy, A.; Schiller, S.; Sud, I.; Wolpert, J.; Wutka, T.

    2001-01-01

    ASHRAE has recently completed the development of Guideline 14 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14 is intended to be a guideline that provides a minimum acceptable level of performance...

  7. Category:ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village,8199089Ā°, -86.3376761Ā°AnadromousASHRAE Climate Zones Jump

  8. Property:ASHRAE 169 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,Information Promoting Clean Cars: CaseNumberASHRAE

  9. Michigan State Code Adoption Analysis: Cost-Effectiveness of Lighting Requirements - ASHRAE/IESNA 90.1-2004

    SciTech Connect (OSTI)

    Richman, Eric E.

    2006-09-29

    This report documents PNNL's analysis of the potential energy effect and cost-effectiveness of the lighting requirements in ASHRAE/IESNA 90.1-2004 if this energy code is adopted in the state of Michigan, instead of the current standard.

  10. To be published in ASHRAE Transactions, Vol. 106, Part II 2000 LBNL-44479 SELECTING WHOLE-HOUSE

    E-Print Network [OSTI]

    is a central exhaust fan. The marginal energy costs to provide such ventilation are on the order of 50¢ per day Efficiency and Renewable Energy, Building Technology, State and Community Systems, of the U.S. Department-HOUSE VENTILATION STRATEGIES TO MEET PROPOSED ASHRAE STANDARD 62.2: ENERGY COST CONSIDERATIONS* Craig P. Wray Nance

  11. Analysis of IECC (2003, 2006, 2009) and ASHRAE 90.1-2007 Commercial Energy Code Requirements for Mesa, AZ.

    SciTech Connect (OSTI)

    Huang, Yunzhi; Gowri, Krishnan

    2011-02-28

    This report summarizes code requirements and energy savings of commercial buildings in Climate Zone 2B built to the 2009 IECC and ASHRAE Standard 90.1-2007 when compared to the 2003 IECC and the 2006 IECC. In general, the 2009 IECC and ASHRAE Standard 90.1-2007 have higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment. HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted. The energy analysis results show that commercial buildings meeting the 2009 IECC requirements save 4.4% to 9.5% site energy and 4.1% to 9.9% energy cost when compared to the 2006 IECC; and save 10.6% to 29.4% site energy and 10.3% to 29.3% energy cost when compared to the 2003 IECC. Similar analysis comparing ASHRAE Standard 90.1-2007 requirements to the 2006 IECC shows that the energy savings are in the 4.0% to 10.7% for multi-family and retail buildings, but less than 2% for office buildings. Further comparison of ASHRAE Standard 90.1-2007 requirements to the 2003 IECC show site energy savings in the range of 7.7% to 30.6% and energy cost savings range from 7.9% to 30.3%. Both the 2009 IECC and ASHRAE Standard 90.1-2007 have the potential to save energy by comparable levels for most building types.

  12. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California. Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    SciTech Connect (OSTI)

    Mendell, Mark J.; Apte, Mike G.

    2010-10-31

    This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptive ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These strategies, however, would make it more complex and more prescriptive, and would require substantial research. One practical intermediate strategy to save energy would be an alternate VRP, allowing VRs lower than currently prescribed, as long as indoor VOC concentrations were no higher than with VRs prescribed under the current VRP. This kind of hybrid, with source reduction and use of air cleaning optional but permitted, could eventually evolve, as data, materials, and air-cleaning technology allowed gradual lowering of allowable concentrations, into a fully developed IAQP. Ultimately, it seems that VR standards must evolve to resemble the IAQP, especially in California, where buildings must achieve zero net energy use within 20 years.

  13. May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION

    E-Print Network [OSTI]

    standard. 1 Max Sherman is a Senior Scientist at LBNL and the group leader of its Energy Performance Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology of the U.S. Department.2 M.H. Sherman1 Indoor Environment Department2 Environmental Energy Technologies Division Lawrence

  14. LBNL-54331 1 ASHRAE'S FIRST RESIDENTIAL

    E-Print Network [OSTI]

    .2-2003. This standard defines the roles of and minimum requirements for mechanical and natural ventilation systems. Introduction Because of the effects it has on health, comfort, and serviceability, indoor air quality in our environmentally conscious not only about the resources they were consuming but about the environment in which

  15. Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Small Retail Buildings in the City of Arlington (Presentation) (Revised) , Energy Systems Laboratory, Texas A&M University. 

    E-Print Network [OSTI]

    Kim, H.; Do, S; Kim, K.; Baltazar, J. C.; Haberl, J.; Lewis, C.

    2011-01-01

    .) CoA Aspect Ratio PNNL 20405:ASHRAE 90.1-2010 245 ft (L) X 61 ft (W) Number of Floors PNNL 20405:ASHRAE 90.1-2010 Floor-to-Floor Height (ft.) PNNL 20405:ASHRAE 90.1-2010 Floor-to-Ceiling Height = 17 ft Orientation PNNL 20405:ASHRAE 90.1-2010 Wall... Construction CoA Roof Configuration PNNL 20405:ASHRAE 90.1-2010 Foundation Construction PNNL 20405:ASHRAE 90.1-2010 Wall Absorptance DOE 2.1E BDL SUMMARY, Page 12 Assuming gray, light oil paint Wall Insulation (hr-sq.ft.-°F/Btu) ASHRAE 90.1-2001 Table B-8...

  16. 514 ASHRAE Transactions: Symposia Design cooling load calculation methods are, by the

    E-Print Network [OSTI]

    their energy consumption and life-cycle cost. Accordingly, engi- neers must be able to place a high degree on computer implementation than annual energy calculation codes. For this reason system- atic validation514 ASHRAE Transactions: Symposia ABSTRACT Design cooling load calculation methods are

  17. 30 ASHRAEJournal ashrae.org May2007 High-Performance Schools

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    30 ASHRAEJournal ashrae.org May2007 High-Performance Schools John Fischer is director of research is the executive director of facilities, Floyd County Board of Education, Rome, Ga. About the Authors School HVAC research investiga- tion conducted for school facilities. Spon- sored by the U.S. Department of Energy (DOE

  18. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

  19. ASHRAE Transactions: Research 3 A steady-state simulation model for a water-to-water

    E-Print Network [OSTI]

    ASHRAE Transactions: Research 3 ABSTRACT A steady-state simulation model for a water-to-water. The model includes several unspecified parameters that are esti- mated from catalog data using a multi available from manufacturers' catalogs. Compared to equation-fit models, by retaining the physically based

  20. ASHRAE Transactions: Symposia 1107 The interest in both modular simulation and alternative

    E-Print Network [OSTI]

    a limited Modular HVAC Simulation and the Future Integration of Alternative Cooling Systems in a NewASHRAE Transactions: Symposia 1107 ABSTRACT The interest in both modular simulation and alternative. At the same time, the U.S. Department of Energy has released its new building energy simulation program

  1. ASHRAE Minimum Efficiency Requirements Tables for Heating and Cooling Product Categories

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) created tables that mirror American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 tables, which include minimum efficiency requirements for FEMP-designated and ENERGY STAR-qualified heating and cooling product categories. Download the tables below to incorporate FEMP and ENERGY STAR purchasing requirements into federal product acquisition documents.

  2. A Method for Simulating Heat Recovery Systems Using AirModel in Implementations of the ASHRAE Simplified Energy Analysis Procedure 

    E-Print Network [OSTI]

    Liu, C.; Zeig, M.; Claridge, D. E.; Wei, G.; Bruner, H.; Turner, W. D.

    2005-01-01

    A Method for Simulating Heat Recovery Systems Using AirModel in Implementations of the ASHRAE Simplified Energy Analysis Procedure Chenggang Liu Research Associate Energy Systems Laboratory Texas A&M University College Station, TX Marvin..., TX W. Dan Turner, Ph.D., P.E. Professor & Director Energy Systems Laboratory Texas A&M University College Station, TX Abstract A method for simulating heat recovery systems using AirModel in implementations of the ASHRAE simplified...

  3. Bartholomew County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation Bartholomew County, Indiana ASHRAE 169-2006

  4. Beaufort County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, South Carolina ASHRAE 169-2006 Climate Zone

  5. Beauregard Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, South Carolina ASHRAE 169-2006

  6. Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, South Carolina ASHRAE 169-2006Parish,Beaux

  7. Beaver County, Utah ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, South Carolina ASHRAEInformationUtah ASHRAE

  8. Allen County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > AllOhio ASHRAE 169-2006 Climate Zone

  9. Allen Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > AllOhio ASHRAE 169-2006

  10. Allendale County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > AllOhio ASHRAE

  11. ASHRAE Standard 152 Spreadsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice |4-01r2.pdf AL2004-01r2.pdfAL2

  12. Infiltration in ASHRAE's Residential Ventilation Standards (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _ _1motion inArticle) |

  13. Infiltration in ASHRAE's Residential Ventilation Standards (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _ _1motion inArticle)

  14. Standard Methods of Characterizing Performance of Fan Filter Units, Version 3.0

    E-Print Network [OSTI]

    Xu, Tengfang

    2007-01-01

    LBNL-62118 ASHRAE. 1999. ANSI/ASHRAE Standard 51-1999. Alsoin 1953, IEST is an ANSI-accredited standard-developingAdministrator of the ANSI-accredited US TAG to ISO/TC 209;

  15. Development of a Toolkit for Calculating Linear, Change-Point Linear and Multiple-Linear Inverse Building Energy Analysis Models, ASHRAE Research Project 1050-RP, Final Report 

    E-Print Network [OSTI]

    Kissock, J. K.; Haberl, J. S.; Claridge, D. E.

    2002-11-01

    This report summarizes the results of ASHRAE Research Project 1050: Development of a Toolkit for Calculating Linear, Change-Point Linear and Multiple Linear Inverse Building Energy Analysis Models. The Inverse Modeling ...

  16. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093, Phase III Draft Report, Compilation of Diversity Factors and Load Shapes 

    E-Print Network [OSTI]

    Abushakra, B.; Haberl, J. S.; Claridge, D. E.; Sreshthaputra, A.

    2000-01-01

    This is a draft of the Final Report in the ASHRAE RP-1093 project that, first summarizes the work completed during the scheduled Phase I and Phase II (presented to the PMSC in Seattle - June 1999, and Dallas February 2000), ...

  17. Property:ASHRAE 169 Start Date | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,Information Promoting Clean Cars:Standard Jump

  18. APPLICATION OF DOE-2 TO RESIDENTIAL BUILDING ENERGY PERFORMANCE STANDARDS

    E-Print Network [OSTI]

    Lokmanhekim, M.

    2013-01-01

    2 and DO:C-2". ASHRAE- DOE Conference on Thermal PerformanceLeighton, G. ; Ross, H. (1979). "DOE~2: A New State-of-the-Performance Standards". ASHRAE-DOE Conference on Thermal

  19. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093, Preliminary Report, Literature Review and Database Search 

    E-Print Network [OSTI]

    Abushakra, B.; Haberl, J. S.; Claridge, D. E.

    1999-01-01

    -05-01 COMPILATION OF DIVERSITY FACTORS AND SCHEDULES FOR ENERGY AND COOLING LOAD CALCULATIONS ASHRAE Research Project 1093 Preliminary Report LITERATURE REVIEW AND DATABASE SEARCH Bass Abushakra Jeff S. Haberl, Ph.D., P.E. David E. Claridge..., Ph.D., P.E. Energy Systems Laboratory Texas A&M University College Station, Texas, 77843-3581 May 1999 ASHRAE RP-1093 page i May 1999, Preliminary Report Energy...

  20. About ASHRAE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice |4-01r2.pdfATVM GuidanceDepartment ofDepartment

  1. Status of cool roof standards in the United States

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen

    2007-06-01

    Since 1999, several widely used building energy efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool roof credits or requirements. We review the technical development of cool roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discuss the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool roof provisions can be used as models to address cool roofs in building energy standards worldwide.

  2. Recommendations for 15% Above ASHRAE 90.1-2007 Code-Compliant Building Energy Efficiency Measures for Small Office Buildings 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J.; Yazdani, B.

    2012-01-01

    per 2009 IECC Section 501.2 15% Above-Code Analysis for Small Office, p.5 January 2012 Energy Systems Laboratory, Texas A&M University Table 1. Base-Case Building Description Building Type Number of occupants = 73 Gross Area (sq. ft.) PNNL...-19341 (Thornton et al. 2010) Aspect Ratio PNNL-19341 (Thornton et al. 2010) Square shape Number of Floors PNNL-19341 (Thornton et al. 2010) Floor-to-Floor Height (ft.) ASHRAE 90.1-1989 13.7.1 Floor-to-Ceiling Height = 9 ft Orientation PNNL-19341...

  3. Reducing the uncertainties associated with using the ASHRAE zone method for R-value calculations of metal frame walls

    SciTech Connect (OSTI)

    Kosny, J.; Christian, J.E. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    Several authors report the accuracy of the ASHRAE zone method of R-value calculation of metal frame walls as unsatisfactory. A series of more than 1,000 two-dimensional computer simulations was conducted for several metal frame wall configurations. Several wall design parameters, such as stud spacing, stud (depth) size, stud flange size, stud metal thickness, thermal resistance of cavity insulation, and thermal resistance of exterior sheathing, were considered during modeling. This allowed the influence of each above-mentioned designing parameter on metal frame wall thermal performance to be assessed. Wall R-values calculated by the ASHRAE zone method were compared with the results of the computer simulation. The comparison showed that the differences in the thermal calculations are caused by the metal stud zone area estimation. Based on results of finite-difference thermal modeling and regression analysis, a new, more precise technique of estimating zones of thermal anomalies caused by metal studs for metal frame walls was developed. The effects of several wall design parameters were calculated. An improved method of R-value predictions for metal frame walls is proposed.

  4. Appliance Standards Update and Review of Certification, Compliance...

    Energy Savers [EERE]

    of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011 Appliance Standards Update and Review of Certification, Compliance...

  5. Recommendations for Meeting ASHRAE Standard 62.2

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question ¨What are the best ventilation techniques?"

  6. Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Restaurant Buildings in the City of Arlington 

    E-Print Network [OSTI]

    2011-01-01

    of the improvement, #1; simple payback calculations, and #1; emissions savings. 2 ENERGY SYSTEMS LABORATORY Methodology 3 #1; ESL simulation model based on the DOE-2.2 of ASHRAE 90.1- 2001 and 2007 code-compliant, restaurant building for Tarrant County #1; A... for unoccupied periods 70F Heating 75 F Cooling Setback during unoccupied hours. Optimal start control one hour before occupied hours. 65F Heating 80 F Cooling ENERGY SYSTEMS LABORATORY Methodology 5 #1; 5,500 ft2, one- story, building – Dining space modeled (4...

  7. Cost-Effective Energy Efficiency Measures for Above Code(ASHRAE 90.1-2001 and 2007) Small Office Buildings in the City of Arlington 

    E-Print Network [OSTI]

    Kim, H.; Do, S.; Kim, K.H.; Baltazar, J.C.; Haberl, J.S.; Lewis, C.

    2011-01-01

    Table 1. Base-Case Building Description Building Type Number of occupants = 73 Gross Area (sq. ft.) PNNL-19341 (Thornton et al. 2010) and CoA Aspect Ratio PNNL-19341 (Thornton et al. 2010) Square shape Number of Floors PNNL-19341 (Thornton et al.... 2010) Floor-to-Floor Height (ft.) ASHRAE 90.1-1989 13.7.1 Floor-to-Ceiling Height = 9 ft Orientation PNNL-19341 (Thornton et al. 2010) Wall Construction CoA Roof Configuration PNNL-19341 (Thornton et al. 2010) Foundation Construction PNNL-19341...

  8. Changing ventilation rates in U.S. offices: Implications for health, work performance, energy, and associated economics

    E-Print Network [OSTI]

    Fisk, William

    2012-01-01

    8] Janssen JE. Working with ANSI/ASHRAE Standard 62-1989.ASHRAE Journal. [9] ASHRAE. ANSI/ASHRAE Standard 62.1-2010.and Technology; 2008. [16] ANSI/ASHRAE. ANSI/ASHRAE Standard

  9. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01

    Paul, MN. ASHRAE. 1999. “ANSI/ASHRAE Standard 52.2-1999,Inc. ASHRAE. 1989. “ANSI/ASHRAE Standard 62-1989 -Engineers, Inc. ASHRAE. 2001. “ANSI/ASHRAE Standard 90.2-

  10. Indoor Air Quality Assessment of the San Francisco Federal Building

    E-Print Network [OSTI]

    Apte, Michael

    2010-01-01

    References ASHRAE. 1999. ANSI/ASHRAE Standard 129-199,Atlanta GA. ASHRAE. 2004. ANSI/ASHRAE Standard 55, ThermalAtlanta GA. ASHRAE. 2007. ANSI/ASHRAE Standard 62.1,

  11. Assessing the Impact of Measurement Policy on the Accuracy of Certified Energy Efficiency Ratio for Split-System Air Conditioners

    E-Print Network [OSTI]

    Yu, Bingyi

    2013-01-01

    20740-6001. [15] ASHRAE (1995). ANSI/ASHRAE Standard 116-95,Volume 32, pg. ASHRAE (2009). ANSI/ASHRAE Standard 37-2009,GA, 30329. ASHRAE (2007). ANSI/ASHRAE Standard 51-2007,

  12. Building Energy Standards

    Broader source: Energy.gov [DOE]

    The 2015 Vermont Commercial Building Energy Standards (CBES) took effect on March 1, 2015. The code is based on the 2015 IECC, with amendments to incorporate ASHRAE 90.1-2013. The new guidelines ...

  13. ASHRAE Research PROGRAM OVERVIEW

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    : · Indoor Environmental Quality (IEQ) · Sustainability: Solar, Geothermal, Heat Pumps, Fuel Cells, CHP, etc of appliances , such as heat pump water heaters 2. Our equipment rating methods are (at best) obsolete. #12;Heat Pump Research · RP-247, A Solar Heat Pump Heating System with Latent Heat Storage for Cold

  14. Evolution of cool-roof standards in the United States

    E-Print Network [OSTI]

    Akbari, Hashem

    2008-01-01

    for steep-sloped nonresidential roofs in Title 24. Online atof SSP90.1 for Reflective Roofs. ASHRAE Transactions, 104(pp. 984-995. Evolution of cool roof standards in the United

  15. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    E-Print Network [OSTI]

    Fisk, William

    2012-01-01

    removing particulate matter. ANSI/ASHRAE standard 52.1-1992efficiency by particle size. ANSI/ASHRAE Standard 52.2-1999.GA, ASHRAE. ASHRAE (2007). ANSI/ASHRAE Standard 62.1.

  16. Predictive clothing insulation model based on outdoor air and indoor operative temperatures

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho

    2012-01-01

    Atlanta. ANSI/ASHRAE. (2010) ANSI/ASHRAE 55-2010: ThermalAtlanta. ASHRAE. (1981) ANSI/ASHRAE Standard 55-1981:impact on thermal comfort (ANSI/ASHRAE, 2010). Clothing

  17. Methodology for Rating a Building's Overall Performance based on the ASHRAE/CIBSE/USGBC Performance Measurement Protocols for Commercial Buildings 

    E-Print Network [OSTI]

    Kim, Hyojin 1981-

    2012-11-14

    Load Value viii IPMVP International Performance Measurement and Verification Protocol IQR Interquartile Range ISO International Organization for Standardization LAeq A-Weighted Equivalent Sound Pressure Level LCeq C-Weighted Equivalent Sound...

  18. Development of a Web-Based Code-Compliant ASHRAE 90.1-1999 Commercial Simulation for Texas 

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.

    2009-01-01

    Emissions Reduction Plan (TERP), the Texas State Legislature adopted the 2000 International Energy Conservation Code (IECC), as amended by the 2001 Supplement (IECC, 2000; 2001), which remains as the state building code for those counties determined... characteristics and interior loads defined by Standard 90.1-1989. From DOE-2?s verification report (PV-A), from the plant portion of the DOE-2 simulation output, the number and type of chillers were determined. For this example, the chiller size was 1...

  19. Presentedatthe 2014 ASHRAE Winter Conference

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Cheriyadat ­ Amy Rose ­ Marie Urban ­ Steve Fernandez ­ Mark Tuttle ­ Devin White ­ ... and many others data driven computing ­ Modeling population distribution and dynamics · Energy and transportation-Battelle for the Department of Energy Deforestation in Brazilian Amazonia * Wind turbines and energy policy ** Vehicular

  20. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of North

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collider TestspolycarbonateArticle) | SciTech ConnectCarolina

  1. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of North

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collider TestspolycarbonateArticle) | SciTech

  2. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s sconveyance of9, 2013 ASER Web Addresses

  3. CASE STUDY OF KRESGE FOUNDATION OFFICE COMPLEX

    E-Print Network [OSTI]

    Goins, John

    2011-01-01

    May.     ASHRAE.  1999.  ANSI/ASHARE Standard 90.1?1999, Engineers.    ASHRAE.  2004.  ANSI/ASHRAE Standard 55?2004, Engineers.   ASHRAE.  2004a.  ANSI/ASHARE Standard 62.1?

  4. Case study of Kresge Foundation office complex.

    E-Print Network [OSTI]

    Goins, John

    2011-01-01

    May.     ASHRAE.  1999.  ANSI/ASHARE Standard 90.1?1999, Engineers.    ASHRAE.  2004.  ANSI/ASHRAE Standard 55?2004, Engineers.   ASHRAE.  2004a.  ANSI/ASHARE Standard 62.1?

  5. Benefits and Costs of Improved IEQ in U.S. Offices

    E-Print Network [OSTI]

    Fisk, William J.

    2012-01-01

    0668.2011.00719.x. REFERENCES ANSI/ASHRAE (2007).ANSI/ASHRAE Standard 90.1 Energy standard for buildingsEngineers, Inc. ASHRAE (2007). ANSI/ASHRAE Standard 62.1-

  6. Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho

    2012-01-01

    dx.doi.org/10.1016/j.buildenv.2012.08.024 [14] ANSI/ASHRAE.ANSI/ASHRAE 55-1992: Thermal environmental conditions forAtlanta 1992. [15] ASHRAE. ANSI/ASHRAE Standard 55-1981:

  7. Development of Revised Energy Standards for Texas Buildings: Preliminary Results 

    E-Print Network [OSTI]

    Hunn, B. D.; Jones, J. W.; Silver, S. C.

    1988-01-01

    for Energy Studies (CES) at The University of Texas at Austin is revising and updating the nonresidential building portion of the Energy Conservation Manual. The proposed revision is a Texas-specific adaptation of ASHRAE Standard 90.1P ("Energy Efficient...

  8. Appliance Standards Update and Review of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t yWaste |4 2014 AnnualDOE's Report to CongressB: 2

  9. Evolution of cool-roof standards in the United States

    SciTech Connect (OSTI)

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  10. The Revised Austin Energy Code and Comparisons with the Texas State Energy Standard 

    E-Print Network [OSTI]

    Crow, G.

    1992-01-01

    For the past two years the City of Austin Energy Code has been under review using the State Energy Standard and ASHRAE 90.2P as models for the revised Austin Energy Code. The major changes to these documents are presented in this paper....

  11. Geothermal System Overview ASHRAE Headquarters Building

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ,510 sq. ft. · Square footage of floor 2 - 15,290 sq. ft. · Set point for each level - 68ŗF Heating, 74ŗF Cooling #12;Building Specifics · Heating / cooling area for GSHPs ­ 15,558 sq. ft. ­ All zones on floor 2 and a corridor zone on floor 1 · Heating / cooling area for VRF ­ 18,226 sq. ft. ­ All zones on floor 1 (minus

  12. ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data bookresult9)

  13. Calculation of the Solar Load onto Occupants in a Room using Bidirectional Scattering Distribution Functions and a View Factor Approach

    E-Print Network [OSTI]

    Jedek, Christoph

    2012-01-01

    References References ANSI/ASHRAE Standard 55 (2010).that applied in the American ANSI/ASHRAE Standard 55 (2010)The adaptive model after ANSI/ASHRAE Standard 55 (2010, p.

  14. Air movement as an energy efficient means toward occupant comfort

    E-Print Network [OSTI]

    Arens, Edward; Zhang, Hui; Pasut, Wilmer; Zhai, Yongchao; Hoyt, Tyler; Huang, Li

    2013-01-01

    the floor fans. References ANSI/ASHRAE/IES Standard 55-2010:in the new code-compliant ANSI/ASHRAE Standard 55- 2013,code- compliant version of ANSI/ASHRAE Standard 55-2013, in

  15. Learning from Buildings: Technologies for Measuring, Benchmarking, and Improving Performance

    E-Print Network [OSTI]

    Arens, Edward; Brager, Gail; Goins, John; Lehrer, David

    2011-01-01

    Comfort Zone, now part of ANSI/ASHRAE Standard 55 (2004),make them happen. REFERENCES ANSI/ASHRAE Standard 55-2004.Air- Conditioning Engineers. ANSI/ASHRAE Standard 55-2010.

  16. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01

    Conference of IBPSA-USA. ANSI/ASHRAE/IESNA Standard 90.1-rise residential buildings. ANSI/ASHRAE/IESNA Standard 90.1-performance buildings database, ANSI/ASHRAE/IESNA Standard

  17. Metrics and Benchmarks for Energy Efficiency in Laboratories

    E-Print Network [OSTI]

    Mathew, Paul; Rumsey Engineers

    2008-01-01

    and Health Administration 10. ANSI/ ASHRAE Standard 62.1:bp_guide.htm 13. ASHRAE/ANSI/IESNA Standard 55: Thermal05CH11231.       References ASHRAE/ANSI/IESNA Standard 90.1:

  18. Status of cool roof standards in the United States

    E-Print Network [OSTI]

    Akbari, Hashem; Levinson, Ronnen

    2008-01-01

    Refrigerating, and Air-Conditioning Engineers. Konopacki, S.Refrigerating, and Air-Conditioning Engineers. Parker, D. ,Refrigerating, and Air-Conditioning Engineers. ASHRAE. 2001.

  19. Appliance Standards and Building Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    states 30 states 10 states (total of 35) + IN, FL, SC, NC, NV, CT, AL, OH, VT, KY - ME, HI states that have adopted ASHRAE 90.1-2007 or equivalent 34 states 30 states 9 states...

  20. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBerylliumDepartmentResolution ofBETTER|BrianOvercoat: Airtightness3. Effective

  1. Can ASHRAE Standard 62-1989 Requirements be Satisfied while Maintaining Moisture Control using Stock HVAC Equipment in Hot, Humid Climates? 

    E-Print Network [OSTI]

    Turner, S. C.

    1996-01-01

    energy costs. Increased ventilation rates create real capital and operating costs for building owners and operators, with implications beyond energy costs relating to increased ventilation requirements. In hot, humid climates, increased ventilation rates...

  2. Comparison of ASHRAE Standard 90.1, 189.1 and IECC Codes for Large Office Building in Texas), Energy Systems Laboratory, Texas A&M University. 

    E-Print Network [OSTI]

    Mukhopadhyay, J.; Baltazar, J.C.; Kim,H.; Haberl, J.

    2011-01-01

    ........................................................................................................................ 31 Table 12: Comparison of Simulation Input Files Version 2.00 and Version 2.06 ...................................................... 39 Table 13: Specifications input for F-Chart (5% of Total Roof Area for Solar Collectors for DHW....1 0.1 0.1 0.1 0.05 0.05 Sat 0 0 0 0 0 0 0.1 0.1 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0 0 0 0 0 Sun 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0 0 0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 F R A C T IO N O F...

  3. Development of DOE-2 Based Simulation Models for the Code-Compliant Commercial Construction Based on the ASHRAE Standard 90.1 

    E-Print Network [OSTI]

    Kim, S.; Haberl, J.; Liu, Z.

    2009-01-01

    PV-A report E Q U I P M E N T SIZE (MBTU/H) ------------------ -- HW-BOILER 1.206 DHW-HEATER 0.017 OPEN-CENT-CHLR 1.912 - Calculation of chiller size = 1.912 * 10 6 Btu... I P M E N T SIZE INSTD (MBTU/H) AVAIL ------------------ ------ -- -- HW-BOILER 1.206 1 1 DHW-HEATER 0.017 1 1 OPEN-CENT-CHLR 1.912 1 1 COOLING-TWR 2.318 1 1 2...

  4. Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies

    SciTech Connect (OSTI)

    Reedy, Wayne R. [Sentech, Inc.

    2010-07-01

    This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

  5. ASHRAE Transactions: Research 107 Commercial buildings and institutions are generally

    E-Print Network [OSTI]

    can be integrated into the ground-loop heat exchanger design. GSHP systems that incorporate some type cooling-dominatedand therefore rejectmore heat to a ground- loop heat exchanger than they extract over as supplemental heat rejecters in GSHP systems. Through this example, it is shown that ground-loop heat exchanger

  6. LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation

    E-Print Network [OSTI]

    .........................................................10 11. Water Intrusion Control.............................................................10 What control and ventilation are key control means. People spend, on average, nearly 90% of their time indoors

  7. 2005 ASHRAE. 109 Groundwater heat pump systems using standing column

    E-Print Network [OSTI]

    borehole that is filled with groundwater up to the level of the water table. Water is circulated from in growing numbers since the advent of geothermal heat pump systems and are recently receiving much more benefits, low maintenance, etc., as other forms of geothermal heat pump systems. The heat exchange rate

  8. ASHRAE Transactions: Research 107 Commercial buildings and institutions are generally

    E-Print Network [OSTI]

    for modeling the performance of a shallow pond as a supplemental heat rejecter in ground- source heat pump Ground-source heat pump (GSHP) systems have become increasingly popular for both residential, under these circumstances, ground-source heat pump systems may be eliminated from consideration during

  9. 2014 ASHRAE/IBPSA-USA Building Simulation Conference

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    that highlights the technical difficulties that were encountered and overcome in order to run 3.5 million EnergyPlus

  10. ASHRAE's New Performance Measurement Protocols for Commercial Buildings 

    E-Print Network [OSTI]

    Haberl, J.; Davies, H.; Owens, B.; Hunn, B.

    2008-01-01

    (instrumentation and spatial resolution), and how often it is to be measured. They will address both the use and reporting of the measured data, as well as appropriate benchmarks for each of the following characteristics: Energy Use (site, and source), Indoor...

  11. Property:ASHRAE 169 Climate Zone Number | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,Information Promoting Clean Cars: CaseNumber Jump

  12. Property:ASHRAE 169 Climate Zone Subtype | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,Information Promoting Clean Cars: CaseNumber

  13. Property:ASHRAE 169 End Date | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,Information Promoting Clean Cars:

  14. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks25CommunicationAPBFARPA-e OPENASAP &

  15. UGA DESIGN & CONSTRUCTION SUPPLEMENTAL GENERAL REQUIREMENTS & STANDARDS PROJECTION SCREENS

    E-Print Network [OSTI]

    Arnold, Jonathan

    . Although, the use of air curtains are acceptable. iii. The hood shall be factory tested to pass ASHRAE 110 through front loaded control valves (serviceable from the front of hood). G. Provide an alarm monitor

  16. Status of cool roof standards in the United States

    E-Print Network [OSTI]

    Akbari, Hashem; Levinson, Ronnen

    2008-01-01

    requirements for residential roofs in Title 24. Online atAkbari, H. 1998. Cool roofs save energy. ASHRAE Transactionsfor steep-sloped nonresidential roofs in Title 24. Online at

  17. Develop Standard Method of Test for Integrated Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    T. P. McDowell, J. D. Munk, and B. Shen, 2013. "Development of a Residential Ground- Source Integrated Heat Pump", 2013 ASHRAE Winter Conference Paper, Dallas, TX., January. *...

  18. Commercial HVAC and Water-Heating Equipment Minimum Efficiency Standards in the United States

    SciTech Connect (OSTI)

    Nasseri, Cyrus H.; Somasundaram, Sriram

    2001-08-01

    ABSTRACT In 1992, Federal legislation mandated that the U.S. Department of Energy (DOE) set the efficiency levels in the then-current ASHRAE Standard 90.1 as mandatory minimums for heating, ventilating, and air-conditioning (HVAC) and service water-heating (SWH) equipment sold in the U.S. market, as well as a process for revising the minimum equipment efficiency standards to comply with requirements in an updated Standard 90.1. Because Standard 90.1 was updated in October 1999 (Standard 90.1-1999), DOE is now undertaking a rulemaking process for these equipment categories. In January 2001, DOE published a final rule adopting Standard 90.1-1999 levels as uniform national standards for 18 product categories of commercial HVAC and SWH equipment. For 11 other categories of commercial products, DOE has signaled its intention to consider more stringent standards than those adopted by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE). DOE has now initiated a formal rulemaking process to further analyze these equipment categories.

  19. EA-1871: Environmental Assessment for Final Rule, 10 CFR 433, “EE Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings” and 10 CFR 435, “EE Standards for New Federal Residential Low-Rise Residential Buildings"

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE‘s Final Rule, 10 CFR 433, ?Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings? and 10 CFR 435, ?Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings? Baseline Standards Update. The final rule updates the baseline standards in 10 CFR 433 and 10 CFR 435 to the latest private sector standards based on the cost-effectiveness of the latest private sector standards and DOE‘s determination that energy efficiency has been improved in these codes as required by 42 U.S.C 6831 et seq. DOE is issuing its final determinations on American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (ASHRAE 2007) and the International Code Council‘s 2009 International Energy Conservation Code (IECC) in the same edition of the Federal Register as this final rule.

  20. A history of the Building Energy Standards Program

    SciTech Connect (OSTI)

    Shankle, D.L.; Merrick, J.A.; Gilbride, T.L.

    1994-02-01

    This report describes the history of the Pacific Northwest Laboratory`s (PNL`s) work in development of energy standards for commercial and residential construction in the United States. PNL`s standards development efforts are concentrated in the Building Energy Standards Program (the Program), which PNL conducts for the U.S. Department of Energy (DOE) Office of Codes and Standards. The Program has worked with DOE, the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), and other building codes and standards organizations to develop, evaluate, and promulgate energy standards in all sectors of the building industry. This report describes the recent history of U.S. code development and PNL`s contributions through the 1980s and early 1990s, up to the passage of the Energy Policy Act of 1992. Impacts to standards development resulting from the passage of this act will be described in other reports.

  1. A New Ventilation System Integrates Total Energy Recovery, Conventional Cooling and a Novel 'Passive' Dehumidification Wheel to Mitigate the Energy, Humidity Control and First Cost Concerns Often Raised when Designing for ASHRAE Standard 62-1999 Compliance 

    E-Print Network [OSTI]

    Fischer, J. C.

    2000-01-01

    to very low dewpoints unattainable with conventional cooling approaches. The system allows for precise control of the indoor space humidity while delivering high quantities of outdoor air, at both peak and part load conditions, and during both occupied...

  2. Comparison of Standard 90.1-2007 and the 2009 IECC with Respect to Commercial Buildings

    SciTech Connect (OSTI)

    Conover, David R.; Bartlett, Rosemarie; Halverson, Mark A.

    2009-12-11

    The U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP) has been asked by some states and energy code stakeholders to address the comparability of the 2009 International Energy Conservation Code® (IECC) as applied to commercial buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 (hereinafter referred to as Standard 90.1-07). An assessment of comparability will help states respond to and implement conditions specified in the State Energy Program (SEP) Formula Grants American Recovery and Reinvestment Act Funding Opportunity, Number DE-FOA-0000052, and eliminate the need for the states individually or collectively to perform comparative studies of the 2009 IECC and Standard 90.1-07. The funding opportunity announcement contains the following conditions: (2) The State, or the applicable units of local government that have authority to adopt building codes, will implement the following: (A) A residential building energy code (or codes) that meets or exceeds the most recent International Energy Conservation Code, or achieves equivalent or greater energy savings. (B) A commercial building energy code (or codes) throughout the State that meets or exceeds the ANSI/ASHRAE/IESNA Standard 90.1-2007, or achieves equivalent or greater energy savings . (C) A plan to achieve 90 percent compliance with the above energy codes within eight years. This plan will include active training and enforcement programs and annual measurement of the rate of compliance. With respect to item (B) above, many more states, regardless of the edition date, directly adopt the IECC than Standard 90.1-07. This is predominately because the IECC is a model code and part of a coordinated set of model building codes that state and local government have historically adopted to regulate building design and construction. This report compares the 2009 IECC to Standard 90.1-07 with the intent of helping states address whether the adoption and application of the 2009 IECC for commercial buildings can be considered equivalent to the adoption and application of Standard 90.1-07. Based on this document, states adopting the 2009 IECC, which is the document cited in (A), above, for residential construction, can also determine if they are in compliance with the above provisions for commercial buildings in (B) above and if their code meets or exceeds the ANSI/ASHRAE/IESNA Standard 90.1-07.

  3. Temperature stratification and air change effectiveness in a high cooling load office with two heat source heights in a combined chilled ceiling and displacement ventilation system

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01

    industrial premises, Guidebook n. 1, REHVA, 2002. [3] ANSI/ASHRAE, ANSI/ASHRAE 55-2010: Thermal environmental45 (2010) 1214-1224. [22] ANSI/ASHRAE, ANSI/ASHRAE 129-2002:

  4. Building America Whole-House Solutions for New Homes: Evluating...

    Energy Savers [EERE]

    relative ability of this system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and...

  5. Advanced Controls for Residential Whole-House Ventilation Systems...

    Office of Scientific and Technical Information (OSTI)

    AND MISCELLANEOUS Residential ventilation, ventilation controller, ASHRAE Standard 62.2, demand response Word Cloud More Like This Full Text preview image File size NAView Full...

  6. Evaluating the energy performance of the first generation of LEED-certified commercial buildings

    E-Print Network [OSTI]

    Diamond, Rick

    2011-01-01

    a simulation of the building's energy performance to qualify11 of the building standard for energy performance, ASHRAE/building system commissioning, minimum energy performance,

  7. What School Buildings Can Teach Us: Post-Occupancy Evaluation Surveys in K-12 Learning Environments

    E-Print Network [OSTI]

    Baker, L.

    2011-01-01

    generations. References ANSI (American National Standardsfor Schools. Washington, DC: ANSI. ASHRAE (2008). Advancedwhich has produced its own ANSI standard based on years of

  8. Deep Energy Retrofits - Eleven California Case Studies

    E-Print Network [OSTI]

    Less, Brennan

    2014-01-01

    Apartment Building to Passive House Standard. Resources,10.1038/477271a. International Passive House Association. (Term Monitoring of a Passive House. ASHRAE transactions,

  9. HOSPITAL ENERGY AUDITS: A BIBLIOGRAPHY

    E-Print Network [OSTI]

    Pollack, R. I.

    2011-01-01

    discussions of solar collector function and applications.77, methods of testing solar collectors; ASHRAE standard 94~are: HVAC systems, solar collectors, maintenance. materials

  10. 96 ASHRAE Transactions: Research Current duct design methods for variable air volume

    E-Print Network [OSTI]

    -round electrical energy cost of the fan. The initial cost of the fan is not included. The calculation procedure to determine duct sizes, overall system pressure drop, and fan energy cost. However, in VAV systems for effective, energy-efficient, and comfortable heating, ventilat- ing, and air-conditioning (HVAC) systems

  11. 2004 ASHRAE. 3 Standing column wells can be used as highly efficient

    E-Print Network [OSTI]

    exchangers in geothermal heat pump systems, where hydrological and geological conditions are suitable Geothermal heat pump systems that use groundwater drawn from wells as a heat source/sink are commonly known borehole that is filled with groundwater up to the level of the water table (i.e., similar construction

  12. Fluctuations in ASHRAE Refrigerant Physical Properties and the Effect on Single and Two Phase Flow 

    E-Print Network [OSTI]

    Nagy, Paul

    2014-11-17

    handbook edition is released. Thirteen properties (liquid and vapor viscosity, thermal conductivity, specific heat, enthalpy, surface tension, density and specific volume) from five widely used refrigerants (R-22, R-134a, R-410a, R-152a, R-600a...

  13. Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE

    E-Print Network [OSTI]

    Fisk, William J.

    2009-01-01

    38% of U. S. carbon dioxide emissions [1]. The process ofreductions in carbon dioxide emissions considered necessary80% reductions in carbon dioxide emissions by 2020 and 2080,

  14. 30 ASHRAEJournal ashrae.org May2007 High-Performance Schools

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    with an advanced vapor compression heat pump cycle into a com- pact, hybrid packaged unit. It is designed for Energy Efficiency, Humidity Control, Indoor Air Quality & First Cost ©2007, American Society of Heating) to provide supply air (5) having the desired sensible heat ratio. A small amount of outdoor air (6) is heated

  15. 26 ASHRAE Transactions: Research Cooling-dominated commercial and institutional build-

    E-Print Network [OSTI]

    design of hybrid ground- source heat pump systems. INTRODUCTION Ground-source heat pump (GSHP) systems of Hybrid Ground-Source Heat Pump Systems That Use a Cooling Pond as a Supplemental Heat Rejecter-- A System- ings served by ground-source heat pump (GSHP) systems generally reject more heat to a closed ground

  16. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    operating and control strategies in a hybrid ground-source heat pump application using an hourly system performance, one of the available options is a hybrid ground-source heat pump application. Hybrid systems of Operating and Control Strategies for Hybrid Ground-Source Heat Pump Systems Using a Short Time Step

  17. ASHRAE Transactions: Symposia 617 The field validation of a short time step temperature

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    hybrid ground-source heat pump systems (Yavuzturk and Spitler 2000; Ramamoor- thy et al. 2001) and-loop heat exchangers as used in ground-source heat pump applications. The model was based on an analytically of sensitivity analyses are also presented. The sensitivity anal- yses focus on the impact of the heat pump

  18. AN AMMONIA-WATER ABSORPTION-HIAT-PUMP CYCLE Donald Kuhlenschmidt, Member ASHRAE

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ,000 Btuh) input unit reported. KLY WORDS Absorption Heat-pump Air conditioning heating Ammonia Donald the cycle, comment on the design differences compared to the air conditioning application and report are more demanding than the air conditioning application where heat is re- jected to 35°C(95F) ambient air

  19. The Best Way to Meet ASHRAE 62.2 in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  20. Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE

    SciTech Connect (OSTI)

    Fisk, William J.

    2009-01-01

    In the U.S, buildings consume approximately 39percent of primary energy, including 70percent of electricity [1]. Buildings are responsible for approximately 38percent of U. S. carbon dioxide emissions [1]. The process of HVAC, for maintaining acceptable indoor environmental quality (IEQ), consumes 37percent of the energy used in buildings [1].

  1. Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE

    E-Print Network [OSTI]

    Fisk, William J.

    2009-01-01

    air cleaning that consume less energy than OA ventilationnew buildings to consume zero net energy by 2025 or 2030.U.S, buildings consume approximately 39% of primary energy,

  2. ASHRAE Transactions: Symposia 617 The field validation of a short time step temperature

    E-Print Network [OSTI]

    -loop heat exchangers as used in ground-source heat pump applications. The model was based on an analytically. INTRODUCTION The heat transferred by the ground-loop heat exchanger of a ground-source heat pump (GSHP) system hybrid ground-source heat pump systems (Yavuzturk and Spitler 2000; Ramamoor- thy et al. 2001) and

  3. ASHRAE Transactions: Research 263 Determination of the ground's thermal conductivity is a

    E-Print Network [OSTI]

    is a significant challenge facing designers of ground-source heat pump (GSHP) systems applied in commercial buildings. The ground heat exchanger size and cost are highly dependent on the ground thermal properties parameters in ground heat exchanger design, and they are among the most difficult to quantify with sufficient

  4. 26 ASHRAE Transactions: Research Cooling-dominated commercial and institutional build-

    E-Print Network [OSTI]

    - ings served by ground-source heat pump (GSHP) systems generally reject more heat to a closed ground design of hybrid ground- source heat pump systems. INTRODUCTION Ground-source heat pump (GSHP) systems of Hybrid Ground-Source Heat Pump Systems That Use a Cooling Pond as a Supplemental Heat Rejecter-- A System

  5. 7 September 2004 John Learned at Pylos ANITA and ASHRAANITA and ASHRA

    E-Print Network [OSTI]

    Learned, John

    Particle Detector!VHE Particle Detector! Phase-1 Phase-2 · Environmental Requirements: ·Clearn air ·Less cloud @ >2500m ·Less light pollution ·30-40km separations ·Roads, electricity, ... ·Near cultureObservation 3 m Diameter Air Cherenkov Telescope #12;7 September 2004 John Learned at Pylos Large Diameter Image

  6. Labs21 Laboratory Modeling Guidelines using ASHRAE 90.1-1999

    E-Print Network [OSTI]

    2008-01-01

    Required for Biocontainment Laboratories – Project Specific.Static Pressure Allowance – Budget Laboratory BuildingCommercial Laboratory Difference Criteria for Comments

  7. Austin's Adoption of ASHRAE S.P. #41 into the Local Energy Code 

    E-Print Network [OSTI]

    Hart, M. N.; Holder, L.M.

    1985-01-01

    , insulation, lighting power and controls. A performance index encourages good design by increased awareness of what factors make a difference, The new lighting code methodology is based upon specified watts per square foot for different tasks and gives credit...

  8. Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE

    E-Print Network [OSTI]

    Fisk, William J.

    2009-01-01

    controlled ventilation, heat recovery, and gas phase airtemporal control Ventilation heat recovery Increased use of

  9. 2014-05-08 Issuance: Energy Efficiency Improvements in ANSI/ASHRAE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document. 2014-05-08...

  10. Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE

    E-Print Network [OSTI]

    Fisk, William J.

    2009-01-01

    change and improve energy security. To attain the largeof Energy, the Energy Independence and Security Act of 2007,

  11. Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground Source

  12. Anderson County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 |

  13. Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 |Anderson

  14. Anderson County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008

  15. Anderson County, Tennessee ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008South Carolina:

  16. Anderson County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008SouthInformation

  17. Andrew County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,InofMill, Texas:

  18. Andrews County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,InofMill, Texas:Andrew

  19. Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,InofMill,

  20. Angelina County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,InofMill,AndroscogginAngeleno

  1. Anne Arundel County, Maryland ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola on the Lake, NewJump to:

  2. Anoka County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola on the Lake,Information Anoka County,

  3. Anson County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola on theAnselmo, Nebraska:

  4. Antelope County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola on theAnselmo, Nebraska:Anson

  5. Antrim County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola on theAnselmo,Texas:

  6. Apache County, Arizona ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola on theAnselmo,Texas:AntrimAnuvu

  7. Appanoose County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola onAperion EnergyInformation Appanoose

  8. Appling County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:AngolaEnergy Management

  9. Appomattox County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:AngolaEnergy ManagementGeorgia: Energy

  10. Aransas County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:AngolaEnergyAqua QuietaAquebogue,

  11. Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:AngolaEnergyAqua QuietaAquebogue,Aransas

  12. Archer County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:AngolaEnergyAquaAratuaOklahoma:andBiogas N

  13. Archuleta County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump

  14. Arenac County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuleta County, Colorado:Ardentown,Area Science

  15. Arkansas County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuletaArise

  16. Arlington County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuletaAriseCounty,Arlas Invest Jump to:

  17. Armstrong County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuletaAriseCounty,Arlas InvestInformation

  18. Armstrong County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuletaAriseCounty,ArlasInformation Armstrong

  19. Aroostook County, Maine ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen Energy Information ApplicationInformation

  20. Arthur County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen Energy InformationArpin,Arroyo Grande,Facility

  1. Ascension Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformation Ascension Parish, Louisiana

  2. Ashe County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformation AscensionAscot

  3. Ashland County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformationAshkelon Technological

  4. Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformationAshkelon TechnologicalOhio:

  5. Ashley County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformationAshkelonMaine:Information

  6. Ashtabula County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy Resources Jump to:

  7. Asotin County, Washington ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy- Transport JumpAsola Advanced

  8. Assumption Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy-Resource |Carbon

  9. Atascosa County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy-ResourceAsthaAstrum Solar

  10. Atchison County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy-ResourceAsthaAstrum

  11. Atchison County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy-ResourceAsthaAstrumAtchison

  12. Athens County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio:Atchison-Holt Electric Coop Place:

  13. Atkinson County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio:Atchison-Holt ElectricAthol,

  14. Atlantic County, New Jersey ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio:Atchison-HoltAtlantaBiomass

  15. Atoka County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,Atlantisstrom Jump to: navigation,Information

  16. Attala County, Mississippi ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,Atlantisstrom Jump to:Atraverda Ltd

  17. Audrain County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,Atlantisstrom JumpIllinois:Al., 1978) |

  18. Audubon County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,Atlantisstrom JumpIllinois:Al., 1978)

  19. Auglaize County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,Atlantisstrom JumpIllinois:Al.,Neue Energien

  20. Augusta County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,Atlantisstrom

  1. Aurora County, South Dakota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,AtlantisstromAugusta County,AuricaInformation

  2. Austin County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,AtlantisstromAugustaEnergy CoTexas:

  3. Autauga County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria Geothermal Region Jump to: navigation,

  4. Avery County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria Geothermal Region Jump to:AuxinAvant,Inc

  5. Avoyelles Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria Geothermal Region JumpFacilityNewInformation

  6. Baca County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels Brasil Jump to:Babette Jee

  7. Bacon County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels Brasil Jump to:Babette JeeBaca2 GEPP

  8. Bailey County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels Brasil Jump to:Babette

  9. Baker County, Florida ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels Brasil Jump to:BabetteBaileyBaiting

  10. Baker County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels Brasil Jump

  11. Baker County, Oregon ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels Brasil JumpGeorgia: Energy Resources Jump

  12. Baldwin County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels Brasil JumpGeorgia:Balch

  13. Baldwin County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels Brasil JumpGeorgia:BalchAlabama:

  14. Ballard County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels BrasilMaine: Energy ResourcesInformation

  15. Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels BrasilMaine: EnergyBallengerInformation

  16. Baltimore County, Maryland ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels BrasilMaine:Information Baltimore County,

  17. Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels BrasilMaine:InformationOhio:Bamberg

  18. Bandera County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen Energy Information Space Heating

  19. Banks County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen Energy

  20. Banner County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen EnergyBanks County, Georgia:

  1. Bannock County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen EnergyBanks County,Information Bannock

  2. Baraga County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen EnergyBanksSolar Thermal

  3. Barber County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen EnergyBanksSolarStrategy |

  4. Barbour County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen EnergyBanksSolarStrategy

  5. Barbour County, West Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen EnergyBanksSolarStrategyAlabama:

  6. Barnes County, North Dakota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpenBardonia, New York:Barnegat, New

  7. Barnstable County, Massachusetts ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpenBardonia, New

  8. Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpenBardonia, NewBarnstable

  9. Barren County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpenBardonia,

  10. Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpenBardonia,Kentucky:

  11. Barrow County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpenBardonia,Kentucky:Barron

  12. Barry County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpenBardonia,Kentucky:BarronBarrow

  13. Barry County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpenBardonia,Kentucky:BarronBarrowBarry

  14. Barton County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation Bartholomew County, IndianaTexas:

  15. Barton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation Bartholomew County, IndianaTexas:Kansas:

  16. Bartow County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation Bartholomew County,Creek, Texas:

  17. Bastrop County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation Bartholomew County,Creek,Basile,

  18. Bates County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation Bartholomew

  19. Bath County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation BartholomewBates County, Missouri:

  20. Bath County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation BartholomewBates County,

  1. Baxter County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation

  2. Bay County, Florida ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas: Energy Resources Jump to:Biodiesel

  3. Bay County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas: Energy Resources JumpBay County,

  4. Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas: Energy

  5. Baylor County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas: EnergyCounty, Wisconsin: EnergyTexas

  6. Beadle County, South Dakota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas:Information DeliHavenCorp Jump

  7. Bear Lake County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas:InformationHead Lake,

  8. Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas:InformationHeadBear,Beasley,

  9. Beaver County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, South Carolina ASHRAEInformation Beaver

  10. Beaverhead County, Montana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, South CarolinaInformation Beaverhead

  11. Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgramInformationEnergyAG Jump

  12. Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgramInformationEnergyAGGeorgia:SLAbu

  13. Accomack County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to: navigation, searchWindpower Jump

  14. Ada County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-Oshima Volcano, CentralAda County,

  15. Adair County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-Oshima Volcano, CentralAdaAdair

  16. Adair County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-Oshima Volcano,

  17. Adair County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-Oshima Volcano,Information

  18. Adair County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-Oshima

  19. Adams County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-OshimaAdak, Alaska:

  20. Adams County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-OshimaAdak, Alaska:Adams County,

  1. Adams County, Illinois ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-OshimaAdak, Alaska:Adams

  2. Adams County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-OshimaAdak,

  3. Adams County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-OshimaAdak,source History View New

  4. Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-OshimaAdak,source History View

  5. Adams County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-OshimaAdak,source

  6. Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to:Izu-OshimaAdak,sourceInformation

  7. Adams County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump

  8. Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC JumpInformation Adams County, Pennsylvania

  9. Adams County, Washington ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC JumpInformation Adams County,

  10. Adams County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC JumpInformation Adams

  11. Addison County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC JumpInformationAdding InternationalJump

  12. Aiken County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodynallIndustrias doInformation Aiken County,

  13. Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen Energy Information Geothermal

  14. Alachua County, Florida ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruaryInformation 5th

  15. Alamance County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruaryInformation 5thAlachua

  16. Alameda County, California ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruaryInformation

  17. Alamosa County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruaryInformationAlameda

  18. Albany County, New York ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to:Elec Coop, IncAlbabio

  19. Albany County, Wyoming ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to:Elec Coop,

  20. Albemarle County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to:Elec

  1. Alcona County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co JumpAlcoholes Biocarburantes

  2. Alcorn County, Mississippi ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co JumpAlcoholesAlcopan Jump

  3. Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone CoAledia Jump to:

  4. Aleutians West Census Area, Alaska ASHRAE 169-2006 Climate Zone | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone CoAledia Jump to:Aleutians East

  5. Alexander County, Illinois ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone CoAledia Jump to:AleutiansAlex New

  6. Alexander County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone CoAledia Jump

  7. Alexandria County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone CoAledia

  8. Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone CoAlediaVirginia: EnergyInformation

  9. Alger County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -TelephoneInformation Alger County, Michigan

  10. Allamakee County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > All By term QAllMerus Energy Jump

  11. Allegan County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > All By term QAllMerusInformation

  12. Allegany County, Maryland ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > All By termInformation Maryland

  13. Allegany County, New York ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > All By

  14. Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > All ByNew York: Energy Resources

  15. Alleghany County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > All ByNew York: EnergyInformation

  16. Allegheny County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > All ByNew York:Information Allegheny

  17. Allen County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > All ByNewInformation Allen County,

  18. Allen County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > All ByNewInformation AllenAllen

  19. Allen County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home > All ByNewInformationInformation

  20. Alpena County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All Home >

  1. Alpine County, California ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All HomeAlphakat GmbH Jump to:

  2. Amador County, California ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All HomeAlphakatResourcesAlvord HotAma,

  3. Amelia County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergy InformationAmboy,

  4. Amherst County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergyAmeriPowerLaboratory Jump

  5. Amite County, Mississippi ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergyAmeriPowerLaboratoryInformation Amite

  6. Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, South

  7. Beckham County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, SouthBecker County, Minnesota:

  8. Bedford City County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, SouthBecker County,

  9. Bedford County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, SouthBecker County,Bedford City

  10. Bedford County, Tennessee ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, SouthBecker County,Bedford

  11. Bedford County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, SouthBecker County,BedfordTennessee:

  12. Bee County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, SouthBeckerPark, Illinois:Cool Inc Jump to:Bee

  13. Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,Bel Air North, Maryland:

  14. Bell County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,Bel Air North,

  15. Bell County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,Bel Air North,Bell County, Kentucky: EnergyBell

  16. Belmont County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,Bel AirPennsylvania: EnergyBellonaBelmont

  17. Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,Bel AirPennsylvania:California:

  18. Ben Hill County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,BelBelvedere, South Carolina:Information Ben

  19. Benewah County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,BelBelvedere, SouthBend,Information Benewah

  20. Bennett County, South Dakota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,BelBelvedere,Benjamin, Utah: Energy

  1. Bennington County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,BelBelvedere,Benjamin, Utah:Information

  2. Bent County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort

  3. Benton County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County, Colorado: Energy ResourcesCounty Jump

  4. Benton County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County, Colorado: Energy

  5. Benton County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County, Colorado: Energy644786Ā°,

  6. Benton County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County, Colorado: Energy644786Ā°,Iowa:

  7. Benton County, Mississippi ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County, Colorado:

  8. Benton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County, Colorado:Mississippi: Energy Resources

  9. Benton County, Oregon ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County, Colorado:Mississippi: EnergyInformation

  10. Benton County, Tennessee ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County, Colorado:Mississippi:

  11. Benton County, Washington ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County, Colorado:Mississippi:Tennessee:

  12. Benzie County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County,Benton, New Hampshire: Energy

  13. Bergen County, New Jersey ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County,Benton, New Hampshire:formInformation

  14. Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County,Benton, NewBergenfield, New Jersey:

  15. Berkeley County, West Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County,Benton, NewBergenfield, New

  16. Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County,Benton,

  17. Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County,Benton,Berks County, Pennsylvania:

  18. Bernalillo County, New Mexico ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County,Benton,BerksWisconsin: Energy Resources

  19. Berrien County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent County,Benton,BerksWisconsin:Information

  20. Berrien County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBent

  1. Bertie County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan: Energy Resources JumpInformation

  2. Design of a Green Demo Building in a Hot and Humid City in China 

    E-Print Network [OSTI]

    Hammer, W.; Kluz, E.; Sonan, A.; Jiang, Y.; Bacall, A.; Jones, B.

    2006-01-01

    advanced green design practice and technologies to reduce energy consumption and improve comfort, and to achieve sustainable demonstration. CODE INVESTIGATION The design needs to comply with the relevant standards and building regulations in China..., in conjunction with the best design practice in the USA. To recommend building parameters for the building, the local regulations on building envelope were compared with ASHRAE 90.1 (ASHRAE, 2004). ASHRAE 90.1 divided US territories into different climate...

  3. Methodology Development for Determining Long-Term Performance of Cool Storage Systems from Short-Term Tests 

    E-Print Network [OSTI]

    Reddy, T.A.; Elleson, J.S.; Haberl, J.S.

    2002-01-01

    ), IPMVP (1997), ARI (1998), Standard 150-2000 (ASHRAE 2000), and Guideline 14P (ASHRAE 2001), there are no widely accepted standard methods or protocols to conduct long-term evaluations of entire cool storage systems in the field (i.e., in-situ). Therefore...

  4. Metrics and Benchmarks for Energy Efficiency in Laboratories

    E-Print Network [OSTI]

    Mathew, Paul

    2007-01-01

    References 1. ASHRAE/ANSI/IESNA Standard 90.1: EnergyA B S F O R T H E 2 1 S T 5. ANSI/AIHA Z9.5-2003. “AmericanAssociation. 12. ASHRAE/ANSI/IESNA Standard 55: Thermal

  5. Recommendations for energy conservation standards for new residential buildings - volume 3: Introduction and Background to the Standard Development Effort

    SciTech Connect (OSTI)

    Not Available

    1989-05-01

    The Energy Conservation for New Buildings Act of 1976, as amended, 42 U.S.C Section 6831 et. seq. requires the US Department of Energy to issue energy conservation standards for the design of new residential and commercial buildings. The standards will be mandatory only for the design of new federal buildings, and will serve as voluntary guidelines for the design of new non-federal buildings. This report documents the development and testing of a set of recommendations, from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations have been developed over the past 25 months by a multidisciplinary project team, under the management of the US Department of Energy and its prime contractor, Pacific Northwest Laboratory. Volume III -- Introduction and Background to the Standard Development Effort is a description of the Standard development process and contains the rationale for the general approach and specific criteria contained within the recommendations.

  6. Static Pressure Losses in 6, 8, and 10-inch Non-Metallic Flexible Ducts 

    E-Print Network [OSTI]

    Weaver, K.; Culp, C.

    2006-01-01

    This study measured airflow static pressure losses through non-metallic flexible ducts in compliance with ASHRAE Standard 120-1999, Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings (ASHRAE 1999). Duct sizes of 6, 8...

  7. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  8. Impacts of alternative residential energy standards - Rural Housing Amendments Study, Phase 1

    SciTech Connect (OSTI)

    Balistocky, S.; Bohn, A.A.; Heidell, J.A.; Hendrickson, P.L.; Lee, A.D.; Pratt, R.G.; Taylor, Z.T.

    1985-11-01

    This report has examined the role of manufactured housing in the housing market, the energy impacts of three manufactured housing standards and three site-built standards in 13 cities, and the economic impacts of those standards in 6 cities. The three standards applied to manufactured housing are the HUD Title VI standard (Manufactured Housing Construction and Safety Standards, or MHCSS), the Hud Title II-E standard, and the existing FmHA Title V standard. Those applied to site-built homes are the HUD Minimum Property Standards (MPS), the ASHRAE 90A-80 standard, and the FmHA Title V standard. Based on energy consumption alone, these analyses show that the FmHA Title V standard is the most stringent standard for both housing types (a single-section menufactured home and a single-story detached ''ranch house''). The HUD Title VI standard is the least stringent for manufactured homes, while the HUD Minimum Property Standards are the least stringent for site-built homes. Cost-effectiveness comparisons required by the Act were made for the two prototypical homes. Results of this preliminary economic analysis indicate that none of the site-built standards reflect minimum life-cycle cost as a basic criterion of their development. For manufactured homes, both the FmHA standard and the HUD Title II-E standard reduce life-cycle cost and effect positive first-year cash flows in all cities analyzed when electric resistance heating is assumed. When natural gas heating is used, both standards pass the life-cycle cost test in all cities, but the FmHA standard fails the cash flow test in all but one city. However, in the worst case, net monthly expenditures in the first year are increased by less than $9.

  9. Commercial Building Indoor Environmental Quality Evaluation: Methods and Tools

    E-Print Network [OSTI]

    Heinzerling, David

    2012-01-01

    uc/item/2f6562gr 6 References ANSI/ASHRAE. (2010a). ANSI/ASHRAE 55-2010: Thermal environmentalConditioning Engineers, Atlanta. ANSI/ASHRAE. (2010b). ANSI/

  10. Mixed-mode cooling.

    E-Print Network [OSTI]

    Brager, Gail

    2006-01-01

    ASHRAE’s permission. Mixed-Mode Cooling Photo Credit: Paulnatural ventilation for cooling. Buildings typically had1950s of large-scale mechanical cooling, along with other

  11. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01

    B. 2008. “Radiant floor cooling systems. ” ASHRAE Journal 4.embedded radiant heating and cooling. Geneva: InternationalM. Deru. 2010. “Radiant slab cooling for retail. ” ASHRAE

  12. Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01

    Control of Building Thermal Storage. ” ASHRAE TransactionsControl of Building Thermal Storage. ” ASHRAE Transactionsto how fast the passive thermal storage can be charged and

  13. Peak Demand Reduction from Pre-Cooling with Zone Temperature Reset in an Office Building

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01

    Control of Building Thermal Storage. ASHRAE Transactions 96(Control of Building Thermal Storage. ASHRAE Transactions1992. Heat Storage in Building Thermal Mass: A Parametric

  14. Evaluation of Demand Shifting with Thermal Mass in Two Large Commercial Buildings

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01

    Control of Building Thermal Storage. ASHRAE Transactions 96(Control of Building Thermal Storage. ASHRAE Transactions1992. Heat Storage in Building Thermal Mass: A Parametric

  15. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01

    Control of Building Thermal Storage. ” ASHRAE TransactionsControl of Building Thermal Storage. ” ASHRAE Transactionsshifting technology. Thermal storage can be achieved with

  16. Technology Assessment Report: Duty Cycling Controllers Revisited

    E-Print Network [OSTI]

    Webster, Tom; Benenson, Peter

    1998-01-01

    of Fossil Fuel Fired Boilers,” ASHRAE Proceedings, Paper6 . U. Bonne, “ Furnace and Boiler System Efficiency andEfficiency of a Gas-Fired Boiler,” ASHRAE Proceedings, Paper

  17. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01

    forthcoming. May 2008. [10] ANSI/ASHRAE 135-2001. BACnet: AJune 2001; REPLACED by ANSI/ASHRAE 135-2004. [11] Rubinstein

  18. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093-RP, Final Report 

    E-Print Network [OSTI]

    Abushakra, B.; Sreshthaputra, A.; Haberl, J. S.; Claridge, D. E.

    2001-01-01

    from the diversity factors are then compared with the EUI?s calculated directly from the raw data (Total kWh per year divided by the square footage) to assure that the data manipulation during the derivation of the diversity factors is free...

  19. Recommendations for 15% Above ASHRAE 90.1-2007 Code-Compliant Building Energy Efficiency Measures for Small Retail Buildings 

    E-Print Network [OSTI]

    Kim, H.; Kim, K.; Baltazar, J. C.; Haberl, J. S.; Yazdani, B.

    2012-01-01

    Number of occupants = 120 Gross Area (sq. ft.) PNNL-16031 (Liu et al. 2006) Aspect Ratio PNNL-20405 (Thornton et al. 2011) 245 ft (L) X 61 ft (W) Number of Floors PNNL-20405 (Thornton et al. 2011) Floor-to-Floor Height (ft.) PNNL-20405 (Thornton et al.... 2011) Floor-to-Ceiling Height = 17 ft Orientation PNNL-20405 (Thornton et al. 2011) Wall Construction PNNL-16031 (Liu et al. 2006) Roof Configuration PNNL-20405 (Thornton et al. 2011) Foundation Construction PNNL-20405 (Thornton et al. 2011) Wall...

  20. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP): Vol. II 

    E-Print Network [OSTI]

    Haberl, Jeff; Culp, Charles; Yazdani, Bahman; Gilman, Don; Fitzpatrick, Tom; Muns, Shirley; Verdict, Malcolm; Ahmed, M.; Liu, Zi; Baltazar, Juan Carlos; Montgomery, Cynthia; McKelvey, Katherine; Mukhopadhyay, Jaya; Degelman, Larry

    2008-01-01

    Construction. ................................................................................. 181 In the next step the PNNL energy savings, which represent buildings built to ASHRAE Standard 90.1-1989 versus Standard 90.1-1999, which are expressed per...

  1. Emerging, Cost-Effective Applications for Desiccant Dehumidification in the U.S. 

    E-Print Network [OSTI]

    Witte, M. J.; Kosar, D. R.

    1998-01-01

    refrigeration operations resulting from the introduction of drier air. New application niches in the commercial sector are emerging due to the increased outside air quantities required by Indoor Air Quality codes and standards such as ASHRAE Standard 62- 1989...

  2. Determining Pressure Losses For Airflow In Residential Ductwork 

    E-Print Network [OSTI]

    Weaver, Kevin Douglas

    2012-02-14

    Airflow pressure losses through rigid metallic and non-metallic flexible ducts were studied and recommendations to improve the rating of flexible ducts were made as part of this study. The testing was done in compliance with ASHRAE Standard 120...

  3. Utah Compliance Implementation and Evaluation Guide

    SciTech Connect (OSTI)

    Cole, Pamala C.

    2012-08-30

    This Guide is designed to assist state and local code jurisdictions in achieving statewide compliance with the 2009 International Energy Conservation Code (IECC) for residential buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 for commercial buildings.

  4. Building Aautomation system embedded air-handling unit performance degradation detector 

    E-Print Network [OSTI]

    Song, L.; Wang, G.

    2014-01-01

    Acknowledgements Dr. Gang Wang University of Miami Dr. Mike Brambley PNNL Funding agencies: 1. PNNL (2011): Summer research. 2. ASHRAE (2011-2013): Developing standard procedures for filling climate data gaps for use in building performance monitoring and analysis...

  5. CX-012121: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Notice of Preliminary Determination of Energy Savings for ANSI/ASHRAE/IES Standard 90.1-2013 CX(s) Applied: A6 Date: 04/25/2014 Location(s): CX: none Offices(s): Golden Field Office

  6. Grocery Store 50% Energy Savings Technical Support Document

    SciTech Connect (OSTI)

    Leach, M.; Hale, E.; Hirsch, A.; Torcellini, P.

    2009-09-01

    This report documents technical analysis for grocery stores aimed at providing design guidance that achieves whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  7. General Merchandise 50% Energy Savings Technical Support Document

    SciTech Connect (OSTI)

    Hale, E.; Leach, M.; Hirsch, A.; Torcellini, P.

    2009-09-01

    This report documents technical analysis for medium-box general merchandise stores aimed at providing design guidance that achieves whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    Delaware Energy Code is reviewed by Delaware Energy Office every three years for potential updates to the most recent version of International Energy Conservation Code (IECC) and ASHRAE Standard ...

  9. Introduction Prior research has shown that energy savings are

    E-Print Network [OSTI]

    Carreira-Perpińįn, Miguel Į.

    detectors, CO2 sensors, etc) make efficient system control difficult. Occupancy prediction can be achieved,Inc., 2004. [5] ASHRAE standard 62.1: Ventilation for acceptable indoor air quality. American Society

  10. Nevada Compliance Implementation and Evaluation Guide

    SciTech Connect (OSTI)

    Cole, Pamala C.

    2012-08-30

    This Guide is designed to assist state and local code jurisdictions in achieving statewide compliance with the 2009 International Energy Conservation Code (IECC) for residential buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 for commercial buildings.

  11. Iowa Compliance Implementation and Evaluation Guide

    SciTech Connect (OSTI)

    Cole, Pamala C.

    2012-09-04

    This Guide is designed to assist state and local code jurisdictions in achieving statewide compliance with the 2009 International Energy Conservation Code (IECC) for residential buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 for commercial buildings.

  12. A Retrospective Analysis of Commercial Building Energy Codes: 1990 – 2008

    SciTech Connect (OSTI)

    Belzer, David B.; McDonald, Sean C.; Halverson, Mark A.

    2010-10-01

    Building Energy Codes Program's efforts are designed to result in increased stringency in national model energy codes, more rapid and broader adoption by states and localities of updated codes, and increased compliance and enforcement. Report estimates the historical impact of Building Energy Codes Program in terms of energy savings achieved that are based upon various editions of ANSI/ASHRAE/IESNA Standard 90.1 (ASHRAE Standard 90.1).

  13. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    SciTech Connect (OSTI)

    Bonnema, Eric; Leach, Matt; Pless, Shanti

    2013-06-05

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  14. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    SciTech Connect (OSTI)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  15. Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings

    SciTech Connect (OSTI)

    Bonnema, E.; Leach, M.; Pless, S.; Torcellini, P.

    2013-02-01

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).

  16. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01

    Outdoor Temperature for District Heating Systems. ” ASHRAEAssessment of Buried District Heating Piping. ” ASHRAE

  17. Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed

    E-Print Network [OSTI]

    Wetter, Michael

    2012-01-01

    their control and energy management systems. ASHRAE Trans-schedules, Energy Management System (EMS) actuator objects

  18. A Survey of High Performance Schools 

    E-Print Network [OSTI]

    Im, P.; Haberl, J. S.

    2006-01-01

    , S., Kurn, D., & Hanford, J. 1997. Peak power and cooling energy savings of high- albedo roofs. Energy and Buildings, 25, 117-126. ASHRAE. 1999. ASHRAE Standard 90.1-1999. Atalanta, GA: American Society of Heating, Refrigerating and Air... in old school buildings. Energy and Buildings, 29, 241-246. Callahan, Michael P., Danny S. Parker, Wanda L. Dutton, Janet E.R. McIlvaine. 1997. Energy Efficiency for Florida Educational Facilities: The 1996 Energy Survey of Florida Schools. Final...

  19. Literature Review on Underfloor Air Distribution (UFAD) Systems 

    E-Print Network [OSTI]

    Im, P.; Cho, S.; Haberl, J. S.

    2006-01-10

    : Controlling Stratification (Bauman, 2003) According to ASHRAE Standard 55-1992 (ASHRAE 1992), the vertical air temperature differences in interior zone is limited to 5 ?F. Recent laboratory experiments show the thermal stratification performance of UFAD... increased to 6.8 ?F, exceeding the limit of 5 ?F. To improve energy performance (reduce airflow) while maintaining thermal comfort (avoiding excessive stratification), the middle profile at a flow rate of 0.6 cfm/ft 2 could be a reasonable target...

  20. Program Overview: The Texas LoanSTAR Program; 1989-October 1999, A 10-Year Experience 

    E-Print Network [OSTI]

    Turner, W. D.; Claridge, D. E.; O'Neal, D. L.; Haberl, J. S.; Heffington, W. M.; Taylor, D.; Sifuentes, T.

    2000-01-01

    program impacts will be briefly assessed, including the contributions to national documents such as the DOE building monitoring protocols (NEMVP and IPMVP), the ASHRAE GPC- 14P standards work, and other related programs. Figure 1 Cumulative Loan... American Energy Measurement and Verification Protocols) and now called the IPMVP (International Performance Monitoring and Verification Protocols), this document contains many of the methodologies developed in LoanSTAR. ASHRAE is also developing...

  1. Application of the Continuous Commissioning Process at a K-12 School Distrcit Located in Cental Texas 

    E-Print Network [OSTI]

    Shah, M.; Sun, Y.; Lander, W.; Yagua, C.; Watt, J.; Oh, S.; Claridge, D.

    2013-01-01

    usage in these facilities, energy savings analysis, and lessons learned from the implementation of the CC? process. To assess the energy usage and building performance of these facilities, the ESL applied IPMVP Option C (IPMVP 2012), whole... that directly contributed to this report. REFERENCES ASHRAE. 2010, ANSI/ASHRAE Standard 62.1-2010, Ventilation for Acceptable Indoor Air Quality. Atlanta: American Society of Heating, Air- Conditioning and Refrigeration Engineers, Inc. IPMVP. 2012. DOE...

  2. A S H R A E J O U R N A L ashrae.org O CTO BER 201444 COLUMN BUILDING SCIENCES

    E-Print Network [OSTI]

    . I can't help it. Engineers worship efficiency. The storage part worries me. A net zero energy house amount of energy generated on-site during that year."* In a net zero energy house the electri- cal grid to power the house with the excess electrical energy generated going into the grid. Net zero energy houses

  3. February 20, 2014: The attached paper was presented at the 2014 ASHRAE Winter Meeting in New York City. It was published as a conference paper.

    E-Print Network [OSTI]

    expert at the Swedish Centre for Shallow Geothermal Energy, Lund, Sweden. Jeffrey D Spitler/hr) capacity heat pump connected to a 100-200 m (328-656 ft.) deep vertical groundwater filled borehole in hard

  4. ASHRAE $1000 Scholarship Application (02/26/2013) The Utah Chapter of the American Society of Heating, Refrigerating and Air Conditioning

    E-Print Network [OSTI]

    van den Berg, Jur

    of Heating, Refrigerating and Air Conditioning Engineers is offering multiple $1,000 scholarships automation or controls, heating, ventilating, refrigeration or air conditioning (HVAC) principles are invited

  5. ASHRAE's Guideline 14-2002 for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit 

    E-Print Network [OSTI]

    Haberl, J. S.; Claridge, D. E.; Culp, C.

    2005-01-01

    no moving parts. The only power involved in their use is that associated with the small pressure drop produced by their insertion into a tube or pipe. Energy savings are typically 75% to 90% when compared to mechanical mixers. Case histories are described....

  6. Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Small Retail Buildings in the City of Arlington 

    E-Print Network [OSTI]

    Do, S.; Baltazar, J.C.; Haberl, J.; Lewis, C.; Kim, K.H.; Kim, H.

    2011-01-01

    .) CoA Aspect Ratio PNNL-20405 (Thornton et al. 2011) 245 ft (L) X 61 ft (W) Number of Floors PNNL-20405 (Thornton et al. 2011) Floor-to-Floor Height (ft.) PNNL-20405 (Thornton et al. 2011) Floor-to-Ceiling Height = 17 ft Orientation PNNL-20405... (Thornton et al. 2011) Wall Construction CoA Roof Configuration PNNL-20405 (Thornton et al. 2011) Foundation Construction PNNL-20405 (Thornton et al. 2011) Wall Absorptance DOE 2.1E BDL SUMMARY, Page 12 Assuming gray, light oil paint Wall Insulation (hr...

  7. Cost-Effective Energy Efficiency Measures for Above Code(ASHRAE 90.1-2001 and 2007) Small Restaurant Buildings in the City of Arlington 

    E-Print Network [OSTI]

    Mukhopadhyay, J.; Kim, H.; Do, S.; Kim, K.H.; Baltazar, J.C.; Haberl, J.; Lewis, C.

    2011-01-01

    Biological incidents, both man-made and naturally occurring, represent a significant threat to the national security of the United States. Identifying these crises begins with the detection and reporting of essential ...

  8. A S H R A E J O U R N A L ashrae.org MARCH 201436 Improving the rated efficiency of RTUs will yield

    E-Print Network [OSTI]

    continuously to meet the ventilation needs, regardless of whether the RTU provides cooling or heating a signifi- cant cooling/heating load.3,4 Traditional DCV strate- gies modulate the outdoor-air damper) of the commercial building floor space in the U.S.1 Primary energy use associated with these units is more than 1

  9. Development of a New ASHRAE Protocol for Measuring and Reporting the On-Site Performance of Buildings Except Low-Rise Residential Buildings 

    E-Print Network [OSTI]

    Haberl, Jeff; Case, Mark; Kettler, Herald; Hunn, Bruce; Owens, Brendan

    2006-01-01

    regarding the specification of a performance monitoring system. • NEMVP, IPMVP (1996 – 2003). The US DOE has developed the International Performance Measurement and Verification Protocols (IPMVP), beginning in 1996 and revised up through 2003.... It included a 4-116© 2006 ACEEE Summer Study on Energy Efficiency in Buildings purpose/scope, an overview, three M&V options, a section of other issues and references. o International Performance Measurement and Verification Protocol (IPMVP), 1997...

  10. *ASHRAE is a national organization focused on building energy and the built environment that provides baseline energy efficiency guidelines for use in building design and construction.

    E-Print Network [OSTI]

    Gunawardena, Jeremy

    : · An 80kW rooftop solar photovoltaic installation uses 320 AC modules to produce electricity for use solar capacity on campus). ENERGY EFFICIENCY: · A 37-foot-tall double-skin glass wall uses two vented each solar panel ­ a technology that allows HBS to maximize the output of each panel

  11. Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment Presentation, dated June 26, 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics Ā» USAJobs Search USAJobs Search The jobsFelixContracts(NFCTEC) | Department

  12. Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions

    E-Print Network [OSTI]

    Mathew, Paul

    2010-01-01

    Energy Efficiency,” ASHRAE Journal, Vol.50, No.4, April 2008. American Society of Heating Refrigerating and Air conditioning

  13. Advanced Benchmarking for Complex Building Types: Laboratories as an Exemplar

    E-Print Network [OSTI]

    Mathew, Paul A.

    2010-01-01

    Energy Efficiency,” ASHRAE Journal, Vol.50, No.4, April 2008. American Society of Heating Refrigerating and Air conditioning

  14. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  15. This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University

    E-Print Network [OSTI]

    at Oklahoma State University (http://www.hvac.okstate.edu) The correct citation for this paper is: Jeffrey without ASHRAE's permission. #12;This article was downloaded by: [Oklahoma State University] On: 16 Bernier PhD b a Fellow ASHRAE, Oklahoma State University b Member ASHRAE, Ecole Polytechnique de Montréal

  16. >.........standard

    E-Print Network [OSTI]

    to the multimedia research and product development industry Planned Accomplishments MPEG Standards: ·Establishing 2D. ......... IETF standard protocols Collaborators / Customers Standards Groups: MPEG, SMPTE NIST Collaborators: ATP Other Collaborators: Academic

  17. Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America-funded research by teams and national laboratories that resulted in the development of an ASHRAE standard and a standardized testing method for testing the air leakage of HVAC air handlers and furnace cabinets and has spurred equipment manufacturers to tighten the cabinets they use for residential HVAC systems.

  18. Technical Support Document for Version 3.9.1 of the COMcheck Software

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan; Halverson, Mark A.; Lucas, Robert G.; Richman, Eric E.; Schultz, Robert W.; Winiarski, David W.

    2012-09-01

    COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989 and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards. Beginning with COMcheck version 3.8.0, support for 90.1-1989, 90.1-1999, and the 1998 IECC and version 3.9.0 support for 2000 and 2001 IECC are no longer included, but those sections remain in this document for reference purposes.

  19. Technical Support Document for Version 3.9.0 of the COMcheck Software

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan; Halverson, Mark A.; Lucas, R. G.; Richman, Eric E.; Schultz, Ralph W.; Winiarski, David W.

    2011-09-01

    COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989 and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards. Beginning with COMcheck version 3.8.0, support for 90.1-1989, 90.1-1999, and the 1998 IECC are no longer included, but those sections remain in this document for reference purposes.

  20. Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?

    SciTech Connect (OSTI)

    Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

    2013-05-13

    Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

  1. Whole Foods Market Improves Energy Efficiency in New Construction

    SciTech Connect (OSTI)

    2013-03-01

    Whole Foods Market partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce annual energy consumption in new stores by at least 50% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE’s Commercial Building Partnership (CBP) program.

  2. Kohl's Aims for Energy Savings in Warm-Humid Climates (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    Kohl's Department Stores partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build new stores that consume at least 50% less than the requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE's Commercial Building Partnership (CBP) program. The National Renewable Energy Laboratory (NREL) provided technical expertise on the project.

  3. Squeezing more light out of tighter energy codes

    SciTech Connect (OSTI)

    Richman, Eric E.

    2010-04-01

    This article discusses what builders and contractors should know about the various code requirements and their intent, exemptions, and allowances to streamline compliance. In order to cover most code applications, this article will focus on the ANSI/ASHRAE/IESNA 90.1 Standard and the IECC code.

  4. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    Efficiency and Renewable Energy, Building Technologies, of the U.S. Department of Energy under contract No for estimating the efficiency of HVAC energy distribution within residential buildings. In order to be of use values used for Forced Air Systems in Proposed ASHRAE Standard 152P I.S. Walker Environmental Energy

  5. An Investigation of Alternative Methods for Measuring Static Pressure of Unitary Air Conditioners and Heat Pumps 

    E-Print Network [OSTI]

    Wheeler, Grant Benson

    2013-08-12

    , with the two smallest units additionally being tested in Scenario 1 with an over-sized duct. The scenario tests were required to be within 5% power and 2.5% airflow of a baseline test following ASHRAE Standard 37. he results for Scenario 1 have shown...

  6. Target Improves Efficiency in New Construction

    SciTech Connect (OSTI)

    2013-03-01

    Target Corporation partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce annual energy consumption in new stores by at least 50% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE’s Commercial Building Partnership (CBP) program.

  7. Kohl’s Furthers Efforts to Maximize Efficiency

    SciTech Connect (OSTI)

    2013-03-01

    Kohl’s Department Stores partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce annual energy consumption by at least 30% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE’s Commercial Building Partnership (CBP) program.

  8. A FULL SCALE ROOM FOR THE EXPERIMENTAL STUDY OF INTERIOR BUILDING CONVECTIVE HEAT TRANSFER

    E-Print Network [OSTI]

    heated panel system mounted on the inside of the cells. ASHRAE Standard 51 was employed for volumetric air flow measurement. A water source heat pump provided chilled water to a fan-coil unit which in turn on volumetric air flow measurement and an overall room heat balance. Analysis was directed at results from

  9. Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Armstrong, P. R.; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-01-31

    Documentation of a study to investigate one heating, ventilation and air conditioning (HVAC) system option, low-lift cooling, which offers potentially exemplary HVAC energy performance relative to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004.

  10. Target Pilots Energy Efficiency Measures for Broad Rollout in Existing Stores

    SciTech Connect (OSTI)

    2013-03-01

    Target Corporation partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce annual energy consumption by at least 30% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE’s Commercial Building Partnership (CBP) program.

  11. Sustainability Commitments Commitment

    E-Print Network [OSTI]

    Heller, Barbara

    and renovations will have achieved LEED Gold Certification (LEED- New Construction) and IIT will have renovated ASHRAE and IEEE standards for indoor environmental quality. Energy Commitment: On a fully sustainable urban campus, all energy serves the core mission of the institution, and any necessary energy transfer

  12. Study on Influencing Factors of Night Ventilation in Office Rooms 

    E-Print Network [OSTI]

    Wang, Z.; Sun, X.

    2006-01-01

    in Harbin are simulated and analyzed. The results show that the inlet velocity and area can influence the effects of night ventilation. When the inlet velocity is 2.5m/s, both indoor air temperature and air velocity meet ASHRAE standard 55-2004. Indoor...

  13. Residential Forced Air System Cabinet Leakage and Blower Performance

    SciTech Connect (OSTI)

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  14. Physical and Chemical Characterization of Kuwaiti Atmospheric Dust and Synthetic Dusts: Effects on the Pressure Drop and Fractional Efficiency of HEPA Filters 

    E-Print Network [OSTI]

    Al-Attar, I.; Wakeman, R. J.; Tarleton, E. S.; Husain, A.

    2010-01-01

    aluminium, calcium, iron and some traces of potassium and magnetism. On the other hand, ASHRAE and SAE coarse dust contains carbon and they also consist of mainly silica. SAE fine dust contains aluminium, calcium and traces of potassium. From... such chemical analysis, the ASHRAE dust seems to be the closest to the Kuwaiti dust from silica-content standpoint. However, analysis of the ASHRAE dust does not show any presence of aluminium, calcium and traces of potassium which are found in the Kuwaiti...

  15. A Blind Hero 

    E-Print Network [OSTI]

    Bridgewater, G. Thornton [author

    2012-03-05

    aluminium, calcium, iron and some traces of potassium and magnetism. On the other hand, ASHRAE and SAE coarse dust contains carbon and they also consist of mainly silica. SAE fine dust contains aluminium, calcium and traces of potassium. From... such chemical analysis, the ASHRAE dust seems to be the closest to the Kuwaiti dust from silica-content standpoint. However, analysis of the ASHRAE dust does not show any presence of aluminium, calcium and traces of potassium which are found in the Kuwaiti...

  16. The Application and Verification of ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) to DOE-2-1e Simulation Program 

    E-Print Network [OSTI]

    Kim, S.; Haberl, J. S.

    2008-01-01

    A&M University System 6 The heating, ventilation and air-conditioning system consists of a 10.5 SEER (Seasonal Energy Efficiency Ratio) air-conditioning unit (2.5 tons), a furnace with 80% AFUE (Annual Fuel Utilization Efficiency), and a 0.... This caused the CV(RMSE) and MBE for the attic temperature to be reduced from 14.5 % to 8.0 % and 6.9 % to 2.0 %. These results showed that using layered materials with DOE-2?s custom weighting factors predicted more accurately than using overall U...

  17. Modeling particle loss in ventilation ducts

    E-Print Network [OSTI]

    Sippola, M R; Nazaroff, William W

    2003-01-01

    m) (c) 85% ASHRAE filters at air intake high-loss ducts low-loss ducts fractional fate (-) exhausted indoors indoorssurface deposition supply & return duct deposition filtered

  18. Air temperature thresholds for indoor comfort and perceived air quality

    E-Print Network [OSTI]

    Zhang, Hui; Edward, Arens; Pasut, Wilmer

    2012-01-01

    in the Netherlands, Indoor Air 2, 127 – 136. BuildingPaliaga, G. (2009) Moving air for comfort. ASHRAE Journal,ventilation system on perceived air quality, Indoor Air

  19. Human thermal sensation and comfort in transient and non-uniform thermal environments

    E-Print Network [OSTI]

    Zhang, H.

    2003-01-01

    the Human and the Thermal Environment." ASHRAE TransactionA field Study of Thermal Environment and Comfort in OfficeISO 7730 - Moderate Thermal Environments - Determination of

  20. Applicability of whole-body heat balance models for evaluating thermal sensation under non-uniform air movement in warm environments

    E-Print Network [OSTI]

    Huang, Li; Arens, Edward; Zhang, Hui; Zhu, Yingxin

    2014-01-01

    of complex dynamic thermal environments. Energy Conservationresponse to the thermal environment. ASHRAE Transactions,transient and non-uniform thermal environments, in CEDR2003,

  1. Building America Whole-House Solutions for Existing Homes: Community...

    Energy Savers [EERE]

    of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all electric production-built homes' was modeled. The...

  2. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01

    the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

  3. Minimum Efficiency Requirements Tables for Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (FEMP) created tables that mirror American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 tables, which include minimum efficiency...

  4. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    E-Print Network [OSTI]

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Code of practice-air conditioning and mechanical ventilation62.1. Refrigerating and Air-Conditioning Engineers. OlesenRefrigerating and Air-Conditioning Engineers. ASHRAE (2013)

  5. HVAC Loads in High-Performance Homes (Presentation)

    SciTech Connect (OSTI)

    Christensen, D.; Fang, X.; Winkler, J.

    2010-06-27

    This presentation was delivered at the ASHRAE 2010 Annual Summer Conference on June 27, 2010, and addresses humidity and AC loads in energy efficient houses.

  6. Infiltration as Ventilation: Weather-Induced Dilution

    E-Print Network [OSTI]

    Sherman, Max H.

    2014-01-01

    LOGICS. 1999. Canadian Weather for Energy Calculations, In:natural ventilation rate with weather conditions, Renewablefor ASHRAE 136 [1/h] WSF Weather and Shielding Factor [1/h

  7. Evolving opportunities for providing thermal comfort

    E-Print Network [OSTI]

    Brager, Gail; Zhang, Hui; Arens, Edward

    2015-01-01

    control in offices for thermal comfort and energy savings.ANSI/ASHRAE 55-2013: Thermal environmental conditions forA global database of thermal comfort field experiments.

  8. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01

    Off-peak cooling with thermal storage." ASHRAE Journal, Vol.1. Brady, T.W. 1986. "Thermal storage for the merchandiseof Wisconsin, Madison Thermal Storage Research Institute 150

  9. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    E-Print Network [OSTI]

    Yin, Rongxin

    2010-01-01

    and Passive Building Thermal Storage Utilization. ” JournalControl of Passive Thermal Storage. ” ASHRAE Transactions,due to the high thermal storage during the pre-cooling

  10. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01

    Model Predictive Control and Thermal Storage: a Simple 3.3of Building Thermal Storage”. In: ASHRAE Transactions 96.2 (and Passive Building Thermal Storage”. In: International

  11. Energy performance of underfloor air distribution systems

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Linden, Paul; Buhl, Fred

    2007-01-01

    distribution: Thermal  stratification. ” ASHRAE Journal, M.  Shi.  2002b.  “Thermal stratification performance of controlled/optimized thermal stratification is critical  to 

  12. Application analysis of ground source heat pumps in building space conditioning

    E-Print Network [OSTI]

    Qian, Hua

    2014-01-01

    methods for ground-source heat pumps. in ASHRAE Summergas emission savings of ground source heat pump systems inheat exchangers for ground-source heat pumps: A literature

  13. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01

    Length Design for Ground Source Heat Pumps. ” InternationalClosed-Loop/Ground-Source Heat Pump Systems Installationon Closed-Loop Ground-Source Heat Pump Systems. ” ASHRAE

  14. Home Energy Score Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heater models - Heat pump & tankless water heater o Evaporative cooling models o Ground-source heat pump model o Hourly duct efficiency calculation with regain heat flows (ASHRAE...

  15. Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers

    E-Print Network [OSTI]

    Coles, Henry C.

    2012-01-01

    Mounting, Example Shown at Data Center Room Supply or Returnconcentrations in data centers, Atmospheric Environment, 42,OA Economizers for Data Centers. ASHRAE Journal, December,

  16. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01

    that Learn From Occupants’ Behavior. ” ASHRAE Transactions.Occupancy preference Occupant behavior Goal Seeking Layereducate occupants and encourage energy conservation behavior

  17. Ventilation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to mold growth and structural damage. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) has determined that a home's living area should be...

  18. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    Refrigerating, and Air-Conditioning Engineers. Dawson-of European Heating and Air-Conditioning Associations. CEN.Refrigerating and Air Conditioning Engineers (ASHRAE).

  19. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01

    IL: AHAM. The Air Conditioning, Heating and RefrigerationArlington, VA: ARI. ARI, Air-Conditioning and RefrigerationRefrigeration, and Air-conditioning Engineers (ASHRAE).

  20. Thermal comfort in naturally-ventilated and air-conditioned classrooms in the tropics.

    E-Print Network [OSTI]

    Kwok, Alison G

    1997-01-01

    Refrigerating, and Air-Conditioning Engineers, Inc. Elliot,Refrigerating, and Air- Conditioning Engineers, Inc. Nicol,Refrigerating and Air-conditioning Engineers, Inc. ASHRAE.

  1. Development and evaluation of fully automated demand response in large facilities

    E-Print Network [OSTI]

    Piette, Mary Ann; Sezgen, Osman; Watson, David S.; Motegi, Naoya; Shockman, Christine; ten Hope, Laurie

    2004-01-01

    Development for Demand Response Calculation - Findings and2003. “Dividends with Demand Response. ” ASHRAE Journal,Management and Demand Response in Commercial Buildings. ”

  2. A Modular Building Controls Virtual Test Bed for the Integrations of Heterogeneous Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2008-01-01

    control and energy management systems. ” ASHRAE TransactionsSimulation of Energy Management Systems in EnergyPlus. ”the EnergyPlus Energy Management System module, cur- rently

  3. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01

    for Rating Residential Water Heaters. Atlanta, GA: ASHRAE,Procedures for Residential Water Heaters, Direct HeatingY. Qin, and M. Melody. "Hot Water Draw Patterns in Single-

  4. Ventilation | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture, which can lead to mold growth and structural damage. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) has determined that a home's...

  5. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01

    Demand Response .with ASHRAE 62.2 2. demand response – the shifting (andPeak Energy Demand and Demand Response ‘Peak energy demand’

  6. Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01

    Demand Response .with ASHRAE 62.2 2. demand response – the shifting (andPeak Energy Demand and Demand Response ‘Peak energy demand’

  7. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    Menguc, Thermal radiation heat transfer, CRC Press, 2011.convection and radiation heat transfer are compared to theused for this study. Radiation Heat Transfer In the ASHRAE

  8. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States

    E-Print Network [OSTI]

    Bojda, Nicholas

    2011-01-01

    Residential Furnaces and Boilers NIA Main. USDOE. USDOE (2010c). ASHRAE Equipment (Boilers) Final Rule TechnicalProducts  Battery Chargers   Boilers  Central AC and Heat 

  9. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualN ATIONAL L ABORATORY Heat Recovery in Building Envelopes

  10. Advanced Integrated Systems Technology Development: Personal Comfort Systems and Radiant Slab Systems

    E-Print Network [OSTI]

    2015-01-01

    CIEE State Partnership for Energy Efficient DemonstrationsAir Volume Term Definition W Watt ZNE Zero-net-energyASHRAE. CPUC. 2011. CA Energy Efficiency Strategic Plan:

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Columbia Water & Light- Commercial Energy Efficiency Loans The process involves several steps. First, the customer should have an ASHRAE Level II energy assessment conducted and...

  12. SANDIA REPORT SAND2014-1535 Unlimited Release

    Energy Savers [EERE]

    ASHRAE American Society of Heating, Refrigerating, & Air-Conditioning Engineers BACnet Building Automation and Control Networks CERTS Consortium of Electric Reliability...

  13. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualWalker, I.S. (2001). "Heat Recovery in Building Envelopes".

  14. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    M. Filippi, B.W. Olesen, Solar radiation and cooling loadY. Chen, The effect of solar radiation on dynamic thermaldependant upon solar radiation, ASHRAE Transactions, (2006)

  15. Jcpenney is Sold on Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2013-03-01

    Jcpenney partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  16. Jcpenney Buying into Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2013-03-01

    Jcpenney partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air- Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  17. The Home Depot Upgrades its Corporate Building Prototype

    SciTech Connect (OSTI)

    none,

    2013-03-01

    The Home Depot partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  18. Increasing Property Value with Energy Saving Practices: Hines Retrofit Case Study

    SciTech Connect (OSTI)

    none,

    2013-03-13

    Hines partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  19. Regency Centers Develops Leadership in Energy-Efficient Renovations

    SciTech Connect (OSTI)

    none,

    2013-03-01

    Regency Centers (Regency) partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  20. Technical Support Document: 50% Energy Savings Design Technology Packages for Highway Lodging Buildings

    SciTech Connect (OSTI)

    Jiang, Wei; Gowri, Krishnan; Lane, Michael D.; Thornton, Brian A.; Rosenberg, Michael I.; Liu, Bing

    2009-09-28

    This Technical Support Document (TSD) describes the process, methodology and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document intended to provide recommendations for achieving 50% energy savings in highway lodging properties over the energy-efficiency levels contained in ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.