Sample records for ashrae standard ashrae

  1. ASHRAE

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA TrainingANDREW ( ARI| March 29,ASHRAE

  2. Status of Revisions to ASHRAE Standard 62

    E-Print Network [OSTI]

    Gallo, F. M.

    1998-01-01T23:59:59.000Z

    The American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 62- 1989 "Ventilation for Acceptable Indoor air Quality", adopted in 1989, is widely used by HVAC engineers to determine ventilation rates for various...

  3. Infiltration in ASHRAE's Residential Ventilation Standards

    SciTech Connect (OSTI)

    Sherman, Max

    2008-10-01T23:59:59.000Z

    The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

  4. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and...

  5. ashrae standard 152p: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kim, S.; Haberl, J.; Liu, Z. 5 May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION Energy Storage, Conversion and Utilization Websites Summary: May 1999 LBNL - 42975 ASHRAE'S...

  6. ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2

    E-Print Network [OSTI]

    Sherman, M.

    2000-01-01T23:59:59.000Z

    In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review...

  7. ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2 

    E-Print Network [OSTI]

    Sherman, M.

    2000-01-01T23:59:59.000Z

    In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation ...

  8. ASHRAE standard 90a-1980: energy conservation in new building design - an updated version of ASHRAE 90-75

    SciTech Connect (OSTI)

    Not Available

    1982-02-01T23:59:59.000Z

    A National Voluntary Consensus Standard developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is presented. ASHRAE 90A-1980, like its predecessor, establishes energy-efficient design requirements for: Building exterior envelopes; HVAC systems and equipment; Service water heating systems; Electrical distribution systems. ''The purpose of this standard'', its foreward states, ''is to provide design requirements which will improve utilization on the depletion of energy resources''.

  9. Energy Codes and Standards - ASHRAE 90.1 2007

    E-Print Network [OSTI]

    Reihl, K.

    2012-01-01T23:59:59.000Z

    level appendix B: building envelope Climate Criteria 1 very hot 8 subartic 7 very cold 6 cold 5 cool 4 mixed 3 warm 2 hot U.S. Climate Classifications ASHRAE Standard 90.1 Compliance Paths: Envelope proposed building design 90... more. Eventually it is all about a cultural shift where folks dress for the climate/season inside and out. ASHRAE Standard 90.1 Purpose ?? Provide minimum requirements for the energy-efficient design of buildings except low-rise residential...

  10. Ventilation Based on ASHRAE 62.2

    E-Print Network [OSTI]

    Indoor Ventilation Based on ASHRAE 62.2 Arnold Schwarzenegger Governor California Energy Commission Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California/ASHRAE Standard 62.2-2007, Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings (ASHRAE

  11. ANSI/ASHRAE/IESNA Standard 90.1-2007 Preliminary Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2010-05-25T23:59:59.000Z

    A preliminary qualitative analysis of all addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007 was conducted. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were evaluated by DOE for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency.

  12. ANSI/ASHRAE/IESNA Standard 90.1-2010 Preliminary Determination Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Rosenberg, Michael I.

    2010-11-01T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) conducted a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The preliminary analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s preliminary determination. However, out of the 109 addenda, 34 were preliminarily determined to have measureable and quantifiable impact.

  13. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Wang, Weimin; Zhang, Jian; Mendon, Vrushali V.; Athalye, Rahul A.; Xie, YuLong; Hart, Reid; Goel, Supriya

    2014-03-01T23:59:59.000Z

    This report provides a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IES Standard 90.1-2010.

  14. Analysis of Daylighting Requirements within ASHRAE Standard 90.1

    SciTech Connect (OSTI)

    Athalye, Rahul A.; Xie, YuLong; Liu, Bing; Rosenberg, Michael I.

    2013-08-01T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL), under the Building Energy Codes Program (BECP) funded by U.S. Department of Energy (DOE), provides support to the ASHRAE/IES/IESNA Standard 90.1(Standard 90.1) Standing Standards Project Committee (SSPC 90.1) and its subcommittees. In an effort to provide the ASHRAE SSPC 90.1 with data that will improve the daylighting and fenestration requirements in the Standard, PNNL collaborated with Heschong Mahone Group (HMG), now part of TRC Solutions. Combining EnergyPlus, a whole-building energy simulation software developed by DOE, with Radiance, a highly accurate illumination modeling software (Ward 1994), the daylighting requirements within Standard 90.1 were analyzed in greater detail. The initial scope of the study was to evaluate the impact of the fraction of window area compared to exterior wall area (window-to-wall ratio (WWR)) on energy consumption when daylighting controls are implemented. This scope was expanded to study the impact of fenestration visible transmittance (VT), electric lighting controls and daylighted area on building energy consumption.

  15. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    SciTech Connect (OSTI)

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16T23:59:59.000Z

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  16. ASHRAE and residential ventilation

    SciTech Connect (OSTI)

    Sherman, Max H.

    2003-10-01T23:59:59.000Z

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

  17. National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    SciTech Connect (OSTI)

    Thornton, Brian; Halverson, Mark A.; Myer, Michael; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

    2013-11-30T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

  18. Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    SciTech Connect (OSTI)

    Thornton, Brian A.; Halverson, Mark A.; Myer, Michael; Cho, Hee Jin; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

    2013-06-18T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

  19. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Broader source: Energy.gov (indexed) [DOE]

    ensured dilution is dependent on an effective base standard for whole-house and spot ventilation. This is why the ASHRAE 62.2 residential ventilation standard is critical to...

  20. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Montana

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Montana.

  1. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Delaware

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Delaware.

  2. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of New Jersey

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of New Jersey.

  3. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Kentucky

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Kentucky.

  4. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Wisconsin

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Wisconsin.

  5. Cost Effectiveness of ASHRAE Standard 90.1-2010 for the State of Connecticut

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in teh State of Connecticut.

  6. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Utah

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Utah.

  7. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of North Carolina

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of North Carolina.

  8. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Virginia

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Virginia.

  9. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Iowa

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Iowa.

  10. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the District of Columbia

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the District of Columbia.

  11. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Rhode Island

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Rhode Island.

  12. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Arkansas

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-26T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Arkansas.

  13. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Colorado

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Colorado.

  14. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Massachusetts

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Massachusetts.

  15. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of South Carolina

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of South Carolina.

  16. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Texas

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Texas.

  17. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Nebraska

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-12-13T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Nebraska.

  18. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Georgia

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Georgia.

  19. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  20. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of New York

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of New York.

  1. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Oklahoma

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Oklahoma.

  2. ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Determination Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2011-05-01T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2004. The final analysis considered each of the 44 addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were reviewed by DOE, and their combined impact on a suite of 15 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s final determination. However, out of the 44 addenda, 9 were preliminarily determined to have measureable and quantifiable impact.

  3. 308 2005 ASHRAE. The recent ASHRAE project, "Updating the ASHRAE/

    E-Print Network [OSTI]

    Heating and Cooling Load Calculation Procedures and Data" (1199-RP), developed two new resi- dential load, "Updating the ASHRAE/ACCA Residential Heating and Cooling Load Calculation Proce- dures and Data" (1199-RP and data are presented in the "Residential Cooling and Heating Loads Calculation" chapter of the 2005

  4. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Qualitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Hart, Reid; Athalye, Rahul A.; Rosenberg, Michael I.; Richman, Eric E.; Winiarski, David W.

    2014-03-01T23:59:59.000Z

    Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. When the U.S. Department of Energy (DOE) issues an affirmative determination on Standard 90.1, states are statutorily required to certify within two years that they have reviewed and updated the commercial provisions of their building energy code, with respect to energy efficiency, to meet or exceed the revised standard. This report provides a preliminary qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition).

  5. ANSI/ASHRAE/IES Standard 90.1-2010 Final Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Williamson, Jennifer L.; Richman, Eric E.; Liu, Bing

    2011-10-31T23:59:59.000Z

    A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (Standard 90.1-2007 or 2007 edition) that were included in ANSI/ASHRAE/IESNA Standard 90.1-2010 (Standard 90.1-2010 or 2010 edition) was conducted. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were evaluated by DOE for their impact on energy efficiency. DOE determined whether each addendum would have a positive, neutral, or negative impact on overall building efficiency.

  6. ANSI/ASHRAE/IESNA Standard 90.1-2010 Preliminary Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Williamson, Jennifer L.; Liu, Bing; Rosenberg, Michael I.; Richman, Eric E.

    2010-11-01T23:59:59.000Z

    A preliminary qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (Standard 90.1-2007 or 2007 edition) that were included in ANSI/ASHRAE/IESNA Standard 90.1-2010 (Standard 90.1-2010 or 2010 edition) was conducted. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were evaluated by DOE for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency.

  7. ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2011-01-01T23:59:59.000Z

    A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007 was conducted. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were evaluated by the U.S. Department of Energy (DOE) for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency. Table S.1 shows the number of positive and negative changes for each section of Standard 90.1.

  8. ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Qualitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Hart, Philip R.; Richman, Eric E.; Athalye, Rahul A.; Winiarski, David W.

    2014-09-04T23:59:59.000Z

    This report provides a final qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition). All addenda in creating Standard 90.1-2013 were evaluated for their projected impact on energy efficiency. Each addendum was characterized as having a positive, neutral, or negative impact on overall building energy efficiency.

  9. Evaluation of ANSI/ASHRAE/USGBC/IES Standard 189.1-2009

    SciTech Connect (OSTI)

    Long, N.; Bonnema, E.; Field, K.; Torcellini, P.

    2010-07-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) evaluated ANSI/ASHRAE/USGBC/IES Standard 189.1-2009, 'The Standard for High-Performance Green Buildings Except Low-Rise Residential Buildings'. NREL performed this evaluation by examining the results of predictions for site energy use from a comprehensive set of EnergyPlus models. NREL has conducted an 'order-of-magnitude' analysis in this study to identify the likely overall impact of adopting Standard 189.1-2009 over ANSI/ASHRAE/IESNA Standard 90.1-2007.

  10. Comparison of the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA Standard 90.1-1999 and ASHRAE/ANSI/IESNA Standard 90.1-2004

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2006-12-01T23:59:59.000Z

    This document presents the qualitative comparison of DOE’s formal determination of energy savings of ANSI/ASHRAE/IESNA Standard 90.1-2004. The term “qualitative” is used in the sense of identifying whether or not changes have a positive, negative, or neutral impact on energy efficiency of the standard, with no attempt made to quantify that impact. A companion document will present the quantitative comparison of DOE’s determination. The quantitative comparison will be based on whole building simulation of selected building prototypes in selected climates. This document presents a comparison of the energy efficiency requirements in ANSI/ASHRAE/IESNA 90.1-1999 (herein referred to as Standard 90.1-1999) and ANSI/ASHRAE/IESNA 90.1-2004 (herein referred to as Standard 90.1-2004). The comparison was done through a thorough review of all addenda to Standard 90.1-1999 that were included in the published ANSI/ASHRAE/IESNA Standard 90.1-2001 (herein referred to as Standard 90.1-2001) and also all addenda to Standard 90.1-2001 that were included in the published Standard 90.1-2004. A summary table showing the impact of each addendum is provided. Each addendum to both Standards 90.1-1999 and 90.1-2001 was evaluated as to its impact on the energy efficiency requirements of the standard (greater efficiency, lesser efficiency) and as to significance. The final section of this document summarizes the impacts of the various addenda and proposes which addenda should be included in the companion quantitative portion of DOE’s determination. Addenda are referred to with the nomenclature addendum 90.1-xxz, where “xx” is either “99” for 1999 or “01” for 2001, and z is the ASHRAE letter designation for the addendum. Addenda names are shown in bold face in text. DOE has chosen not to prepare a separate evaluation of Standard 90.1-2001 as that standard does not appear to improve energy efficiency in commercial buildings. What this means for the determination of energy savings for Standard 90.1-2004 is that the baseline standard for comparison is Standard 90.1-1999 and all addenda to both Standards 90.1-1999 and 90.1-2001 must be considered to determine the overall change in efficiency between Standard 90.1-1999 and Standard 90.1-2004.

  11. ANSI/ASHRAE/IES Standard 90.1-2010 Final Determination Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Liu, Bing

    2011-10-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The final analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE's final determination. However, out of the 109 addenda, 34 were preliminarily determined to have a measureable and quantifiable impact. A suite of 240 computer energy simulations for building prototypes complying with ASHRAE 90.1-2007 was developed. These prototypes were then modified in accordance with these 34 addenda to create a second suite of corresponding building simulations reflecting the same buildings compliant with Standard 90.1-2010. The building simulations were conducted using the DOE EnergyPlus building simulation software. The resulting energy use from the complete suite of 480 simulation runs was then converted to energy use intensity (EUI, or energy use per unit floor area) metrics (Site EUI, Primary EUI, and energy cost intensity [ECI]) results for each simulation. For each edition of the standard, these EUIs were then aggregated to a national basis for each prototype using weighting factors based on construction floor area developed for each of the 15 U.S. climate zones using commercial construction data. When compared, the resulting weighted EUIs indicated that each of the 16 building prototypes used less energy under Standard 90.1-2010 than under Standard 90.1-2007 on a national basis when considering site energy, primary energy, or energy cost. The EUIs were also aggregated across building types to a national commercial building basis using the same weighting data. On a national basis, the final quantitative analysis estimated a floor-space-weighted national average reduction in new building energy consumption of 18.2 percent for source energy and 18.5 percent when considering site energy. An 18.2 percent savings in energy cost, based on national average commercial energy costs for electricity and natural gas, was also estimated.

  12. ASHRAE Research PROGRAM OVERVIEW

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    of appliances , such as heat pump water heaters 2. Our equipment rating methods are (at best) obsolete's Strategic Plan for Research · Research and Objectives related to Heat Pumps · GSHP System at ASHRAE HQ: · Indoor Environmental Quality (IEQ) · Sustainability: Solar, Geothermal, Heat Pumps, Fuel Cells, CHP, etc

  13. May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION

    E-Print Network [OSTI]

    May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 standard. 1 Max Sherman is a Senior Scientist at LBNL and the group leader of its Energy Performance

  14. ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Athalye, Rahul A.; Rosenberg, Michael I.; Xie, YuLong; Wang, Weimin; Hart, Philip R.; Zhang, Jian; Goel, Supriya; Mendon, Vrushali V.

    2014-09-04T23:59:59.000Z

    This report provides a final quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in improved energy efficiency in commercial buildings. The final analysis considered each of the 110 addenda to Standard 90.1-2010 that were included in Standard 90.1-2013. PNNL reviewed all addenda included by ASHRAE in creating Standard 90.1-2013 from Standard 90.1-2010, and considered their combined impact on a suite of prototype building models across all U.S. climate zones. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s final determination. However, out of the 110 total addenda, 30 were identified as having a measureable and quantifiable impact.

  15. Envelope design implications of ASHRAE Standard 90. 1P: a case study view

    SciTech Connect (OSTI)

    Crawley, D.B.; Briggs, R.S.

    1985-11-01T23:59:59.000Z

    ASHRAE recently issued a public review draft of Standard 90.1P, Energy Efficient Design of New Non-Residential Buildings and High-Rise Residential Buildings. The revisions proposed in Standard 90.1P are substantially different in structure and content from the existing Standard, especially those sections dealing with building envelope. In this paper, the envelope requirements of Standard 90.1P and their impacts on envelope design features are demonstrated. Several example buildings and locations are used to convey the underlying concepts and nature of the envelope criteria and the implications of those concepts for a variety of envelope attributes.

  16. Development of DOE-2 Based Simulation Models for the Code-Compliant Commercial Construction Based on the ASHRAE Standard 90.1

    E-Print Network [OSTI]

    Kim, S.; Haberl, J.; Liu, Z.

    Conservation Code. Since most of the commercial portion of the 2000/2001 International Energy Conservation Code refers to ASHRAE Standard 90.1-1999 as the current code requirement for commercial construction, the simulation models based on the ASHRAE Standard...

  17. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and...

    Broader source: Energy.gov (indexed) [DOE]

    ASHRAE fulfills its mission of advancing heating, ventilation, air conditioning and refrigeration to serve humanity and promote a sustainable world through research, standards...

  18. Geothermal System Overview ASHRAE Headquarters Building

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Geothermal System Overview ASHRAE Headquarters Building Dennis Meyer Director of Commercial Sales center #12;Geothermal Loop · Vertical closed-loop ­ 12 bores at 400 feet deep with 1.25" HDPE ­ Boreholes enhanced grout · Standard 2-pipe building loop with VFD pump #12;#12;#12;#12;ClimateMaster Geothermal

  19. ASHRAE Installs New Officers, Directors DENVER ASHRAE has installed

    E-Print Network [OSTI]

    Maroncelli, Mark

    for 2013-14 at its Annual Meeting held here June 22-26. The ASHRAE Presidential Address is viewable on You more global in outlook, broader in scope, and more collaborative in approach. Bahnfleth is the son Certified Building Energy Assessment and Building Energy Modeling Professional, principal and vice president

  20. Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010

    SciTech Connect (OSTI)

    Thornton, Brian A.; Rosenberg, Michael I.; Richman, Eric E.; Wang, Weimin; Xie, YuLong; Zhang, Jian; Cho, Heejin; Mendon, Vrushali V.; Athalye, Rahul A.; Liu, Bing

    2011-05-24T23:59:59.000Z

    This Technical Support Document presents the energy and cost savings analysis that PNNL conducted to measure the potential energy savings of 90.1-2010 relative to 90.1-2004. PNNL conducted this analysis with inputs from many other contributors and source of information. In particular, guidance and direction was provided by the Simulation Working Group under the auspices of the SSPC90.1. This report documents the approach and methodologies that PNNL developed to evaluate the energy saving achieved from use of ASHRAE/IES Standard 90.1-2010. Specifically, this report provides PNNL’s Progress Indicator process and methodology, EnergyPlus simulation framework, prototype model descriptions. This report covers the combined upgrades from 90.1-2004 to 90.1-2010, resulting in a total of 153 addenda. PNNL has reviewed and considered all 153 addenda for quantitative analysis in the Progress Indicator process. 53 of those are included in the quantitative analysis. This report provides information on the categorization of all of the addenda, a summary of the content, and deeper explanation of the impact and modeling of 53 identified addenda with quantitative savings.

  1. Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-2001 as the Commercial Building Energy Code in Tennessee

    SciTech Connect (OSTI)

    Cort, Katherine A.; Winiarski, David W.; Belzer, David B.; Richman, Eric E.

    2004-09-30T23:59:59.000Z

    ASHRAE Standard 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings (hereafter referred to as ASHRAE 90.1-2001 or 90.1-2001) was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The State of Tennessee is considering adopting ASHRAE 90.1-2001 as its commercial building energy code. In an effort to evaluate whether or not this is an appropriate code for the state, the potential benefits and costs of adopting this standard are considered in this report. Both qualitative and quantitative benefits and costs are assessed. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST) simulations combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits. Tennessee currently has ASHRAE Standard 90A-1980 as the statewide voluntary/recommended commercial energy standard; however, it is up to the local jurisdiction to adopt this code. Because 90A-1980 is the recommended standard, many of the requirements of ASHRAE 90A-1980 were used as a baseline for simulations.

  2. Comparison of ASHRAE Standard- 90.1, 189.1 and IECC Codes for Large Office Buildings in Texas, ICEBO Presentation

    E-Print Network [OSTI]

    Mukhopadhyay, Jaya; Baltazar, Juan Carlos; Kim, Hyojin; Haberl, Jeff; Lewis, Cyndi; Bahman, Yazdani

    Laboratory Texas A&M University 20th October 2011 New York Energy Systems Laboratory Texas A&M University System October 2011 ESL-TR-11-10-10 STRUCTURE ? BACKGROUND ?METHODOLOGY ? CLIMATE ZONE DECRIPTION ? BASE CASE DESCRIPTION... ? RESULTS ? SUMMARY Energy Systems Laboratory 2011 2/30 ESL-TR-11-10-10 BACKGROUND ? Codes compared: ? ASHRAE 90.1-1989 ? ASHRAE 90.1-1999 ? ASHRAE 90.1-2004 ? ASHRAE 90.1-2007 ? IECC 2009 ? ASHRAE 90.1-2010 ? ASHRAE 189.1-2009 ? The purpose...

  3. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140: Preprint

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    2013-07-01T23:59:59.000Z

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

  4. Trends in Data Center Design - ASHRAE Leads the Way to Large Energy Savings (Presentation)

    SciTech Connect (OSTI)

    Van Geet, O.

    2013-06-01T23:59:59.000Z

    Energy savings strategies for data centers are described, including best practices, ASHRAE standards, and examples of successful strategies for incorporating energy savings.

  5. Design predictions and diagnostic test methods for hydronic heating systems in ASHRAE standard 152P

    SciTech Connect (OSTI)

    Andrews, J.W.

    1996-04-01T23:59:59.000Z

    A new method of test for residential thermal distribution efficiency is currently being developed under the auspices of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). The initial version of this test method is expected to have two main approaches, or ``pathways,`` designated Design and Diagnostic. The Design Pathway will use builder`s information to predict thermal distribution efficiency in new construction. The Diagnostic Pathway will use simple tests to evaluate thermal distribution efficiency in a completed house. Both forced-air and hydronic systems are included in the test method. This report describes an approach to predicting and measuring thermal distribution efficiency for residential hydronic heating systems for use in the Design and Diagnostic Pathways of the test method. As written, it is designed for single-loop systems with any type of passive radiation/convection (baseboard or radiators). Multiloop capability may be added later.

  6. Weighting Factors for the Commercial Building Prototypes Used in the Development of ANSI/ASHRAE/IESNA Standard 90.1-2010

    SciTech Connect (OSTI)

    Jarnagin, Ronald E.; Bandyopadhyay, Gopal K.

    2010-01-21T23:59:59.000Z

    Detailed construction data from the McGraw Hill Construction Database was used to develop construction weights by climate zones for use with DOE Benchmark Buildings and for the ASHRAE Standard 90.1-2010 development. These construction weights were applied to energy savings estimates from simulation of the benchmark buildings to establish weighted national energy savings.

  7. Development of an ASHRAE 152-2004 Duct Model for the Single-Family Residential House

    E-Print Network [OSTI]

    Kim, S.; Haberl, J.

    This paper presents the results of the development of the duct model based on ASHRAE standard 152-2004 (ASHRAE, 2004) using the DOE-2.1e building energy simulation program. To accomplish this, FUNCTION commands for DOE-2 were used to develop...

  8. Application of CO{sub 2}-based demand-controlled ventilation using ASHRAE Standard 62: Optimizing energy use and ventilation

    SciTech Connect (OSTI)

    Schell, M.B. [Engelhard Sensor Technologies, Santa Barbara, CA (United States); Turner, S.; Shim, R.O. [Chelsea Group, Ltd., Delray Beach, FL (United States)

    1998-12-31T23:59:59.000Z

    CO{sub 2}-based demand-controlled ventilation (DCV), when properly applied in spaces where occupancies vary below design occupancy, can reduce unnecessary overventilation while implementing target per-person ventilation rates. A recent interpretation of ANSI/ASHRAE Standard 62-1989, Interpretation 1C 62-1989-27, has affirmed that carbon dioxide (CO{sub 2})-based demand-controlled ventilation (DCV) systems can use CO{sub 2} as an occupancy indicator to modulate ventilation below the maximum total outdoor air intake rate while still maintaining the required ventilation rate per person, provided that certain conditions are met. This paper, co-written by the author of the interpretation, provides guidelines on the application of CO{sub 2}-based DCV. In addition, a method is presented that allows reasonable estimates of the actual ventilation rate per person being effectively delivered to the space, based on comparing predicted CO{sub 2} ventilation levels with CO{sub 2} levels logged in an occupied space. Finally, a model is presented to evaluate various CO{sub 2}-based DCV strategies to predict their delivery of target per-person ventilation rates within the lag times required by the standard.

  9. Residential HVAC Indoor Air Quality(ASHRAE 62.2)

    E-Print Network [OSTI]

    Residential HVAC && Indoor Air Quality(ASHRAE 62.2) Tav Commins #12;Contact Information · Energy construction, Additions /Alterations · Nonresidential and Residential #12;Residential HVAC && Indoor Air Quality(ASHRAE 62.2) ·HVAC EfficiencyHVAC Efficiency ·Quality Installation (HERS Measures) S li b HERS R t

  10. Passive-Solar-Heating Analysis: a new ASHRAE manual

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01T23:59:59.000Z

    The forthcoming ASHRAE book, Passive Solar Heating Analysis, is described. ASHRAE approval procedures are discussed. An overview of the contents is given. The development of the solar load ratio correlations is described, and the applicability of the analysis method is discussed.

  11. Analysis of Energy Saving Impacts of ASHRAE 90.1-2004 for New York

    SciTech Connect (OSTI)

    Gowri, Krishnan; Halverson, Mark A.; Richman, Eric E.

    2007-08-03T23:59:59.000Z

    The New York State Energy Research and Development Authority (NYSERDA) and New York State Department of State (DOS) requested the help of DOE’s Building Energy Codes Program (BECP) in estimating the annual building energy savings and cost impacts of adopting ANSI/ASHRAE/IESNA Standard 90.1-2004 (ASHRAE 2004) requirements. This report summarizes the analysis methodology and results of energy simulation in response to that request.

  12. 514 ASHRAE Transactions: Symposia Design cooling load calculation methods are, by the

    E-Print Network [OSTI]

    Handbook--Fundamentals (ASHRAE 1997) and the Cooling and Heating Load Calculation Manual (Mc514 ASHRAE Transactions: Symposia ABSTRACT Design cooling load calculation methods are Load Calculation Methods (942-RP)" are also given. INTRODUCTION Design cooling load calculation

  13. 2005 ASHRAE. 109 Groundwater heat pump systems using standing column

    E-Print Network [OSTI]

    ©2005 ASHRAE. 109 ABSTRACT Groundwater heat pump systems using standing column wells the well through the heat pump in an open-loop pipe circuit. Standing column wells have been in use in growing numbers since the advent of geothermal heat pump systems and are recently receiving much more

  14. LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation

    E-Print Network [OSTI]

    LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation Max Sherman Energy and Community Programs under U.S. Department of Energy Contract No. DE-AC03- 76SF00098. #12;LBNL 53776 Table......................................................................................................12 2 #12;LBNL 53776 Introduction As HVAC&R professionals, our major concern is the engineering

  15. Domestic olivine vs magnesite as a thermal-energy-storage material: performance comparisons for electrically heated room-size units in accordance with ASHRAE Standard 94. 2

    SciTech Connect (OSTI)

    Laster, W.R.; Schoenhals, R.J.; Gay, B.M.; Palmour, H. III

    1982-01-01T23:59:59.000Z

    Electrically heated thermal-energy-storage (TES) heaters employing high-heat-capacity ceramic refractories for sensible heat storage have been in use in Europe for several years. With these heaters, low cost off-peak electrical energy is stored by heating a storage core composed of ceramic material to approximately 800/sup 0/C. During the peak period, no electrical energy is used as the building heating needs are supplied by extracting the stored heat from the core by forced air circulation. Recently significant interest in the use of off-peak TES units in the US has occured, leading to the search for a domestic supply of high heat capacity ceramic refractory material. North Carolina's extensive but under-utilized supply of refractory grade olivine has been proposed as a source of storage material for these units. In this paper, the suitability of North Carolina olivine for heat-storage applications is assessed by comparing its thermal performance with that of European materials. Using the method of ASHRAE Standard 94.2, the thermal performance of two small room-sized commercially available TES units was determined experimentally with two different storage materials, North Carolina olivine and German magnesite. Comparisons between the two materials are made and conclusions are drawn.

  16. Application of an ASHRAE 152-2004 Duct Model for Simulating Code-Compliant 2000/2001 IECC Residences

    E-Print Network [OSTI]

    Haberl, J.S.; Kim, S.

    2010-01-01T23:59:59.000Z

    This paper presents the results of the application of the duct model based on ASHRAE 152-2004 - Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems (ASHRAE 2004) to the code compliant 2001...

  17. Application of an ASHRAE 152-2004 Duct Model for Simulating Code-Compliant 2000/2001 IECC Residences 

    E-Print Network [OSTI]

    Haberl, J.S.; Kim, S.

    2010-01-01T23:59:59.000Z

    This paper presents the results of the application of the duct model based on ASHRAE 152-2004 - Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems (ASHRAE 2004) ...

  18. ASHRAE's Proposed Guideline 14P for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit

    E-Print Network [OSTI]

    Haberl, J. S.; Reeves, G.; Gillespie, K.; Claridge, D. E.; Cowan, J.; Culp, C.; Frazell, W.; Heinemeier, K.; Kromer, S.; Kummer, J.; Mazzucchi, R.; Reddy, A.; Schiller, S.; Sud, I.; Wolpert, J.; Wutka, T.

    2001-01-01T23:59:59.000Z

    ASHRAE has recently completed the development of Guideline 14 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14 is intended to be a guideline that provides a minimum acceptable level of performance...

  19. Michigan State Code Adoption Analysis: Cost-Effectiveness of Lighting Requirements - ASHRAE/IESNA 90.1-2004

    SciTech Connect (OSTI)

    Richman, Eric E.

    2006-09-29T23:59:59.000Z

    This report documents PNNL's analysis of the potential energy effect and cost-effectiveness of the lighting requirements in ASHRAE/IESNA 90.1-2004 if this energy code is adopted in the state of Michigan, instead of the current standard.

  20. To be published in ASHRAE Transactions, Vol. 106, Part II 2000 LBNL-44479 SELECTING WHOLE-HOUSE

    E-Print Network [OSTI]

    that mechanical ventilation is needed. In new houses with gas heating, the cheapest whole-house system-HOUSE VENTILATION STRATEGIES TO MEET PROPOSED ASHRAE STANDARD 62.2: ENERGY COST CONSIDERATIONS* Craig P. Wray Nance residential ventilation issues. As housing, especially new housing, gets more airtight and better insulated

  1. Analysis of IECC (2003, 2006, 2009) and ASHRAE 90.1-2007 Commercial Energy Code Requirements for Mesa, AZ.

    SciTech Connect (OSTI)

    Huang, Yunzhi; Gowri, Krishnan

    2011-02-28T23:59:59.000Z

    This report summarizes code requirements and energy savings of commercial buildings in Climate Zone 2B built to the 2009 IECC and ASHRAE Standard 90.1-2007 when compared to the 2003 IECC and the 2006 IECC. In general, the 2009 IECC and ASHRAE Standard 90.1-2007 have higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment. HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted. The energy analysis results show that commercial buildings meeting the 2009 IECC requirements save 4.4% to 9.5% site energy and 4.1% to 9.9% energy cost when compared to the 2006 IECC; and save 10.6% to 29.4% site energy and 10.3% to 29.3% energy cost when compared to the 2003 IECC. Similar analysis comparing ASHRAE Standard 90.1-2007 requirements to the 2006 IECC shows that the energy savings are in the 4.0% to 10.7% for multi-family and retail buildings, but less than 2% for office buildings. Further comparison of ASHRAE Standard 90.1-2007 requirements to the 2003 IECC show site energy savings in the range of 7.7% to 30.6% and energy cost savings range from 7.9% to 30.3%. Both the 2009 IECC and ASHRAE Standard 90.1-2007 have the potential to save energy by comparable levels for most building types.

  2. New Peak Moisture Design Data in the 1997 ASHRAE Handbook of Fundamentals

    E-Print Network [OSTI]

    Harriman, L.

    1998-01-01T23:59:59.000Z

    Chapter 26 of the 1997 edition of the Handbook of Fundamentals published by ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers) contains climatic design data that has been completely revised, recalculated and expanded...

  3. LBNL-54331 1 ASHRAE'S FIRST RESIDENTIAL

    E-Print Network [OSTI]

    .2-2003. This standard defines the roles of and minimum requirements for mechanical and natural ventilation systems on the interactions between ventilation and the building envelope. Unbalanced ventilation systems combined to ventilation, such as the operation of combustion appliances or entrainment of soil gas. Such "house-as-system

  4. Labs21 Laboratory Modeling Guidelines using ASHRAE 90.1-1999

    SciTech Connect (OSTI)

    Reilly, Susan; Walsh, Michael; Graham, Carl; Maor, Itzhak; Mathew, Paul; Porter, Fred; Sartor, Dale; Van Geet, Otto

    2005-10-01T23:59:59.000Z

    The following is a guideline for energy modeling of laboratory spaces in a building in accordance with the Energy Cost Budget method described in ASHRAE 90.1-1999 Energy Standard for Buildings Except Low-Rise Residential Buildings. For the purposes of this document, a laboratory is defined as any space requiring once through ventilation systems (recirculation of air to other spaces in a building is not allowed). To accomplish this, ventilation systems in laboratories typically provide 100% outside air to the occupied space. The guideline is structured similarly to the ASHRAE 90.1-99 standard. Only those sections being clarified or modified are discussed in the guideline; all other sections should be followed as defined in the standard. Specifically, those sections that are affected include the following: (1) 6.3.3.1 - Fan Power Limitation (modification); (2) 6.3.7.2 - Fume Hoods (modification); (3) 11.3.11 - Schedules (modification); (4) 11.4.3 - HVAC Systems (clarification); (5) 11.4.3 (h) Budget Supply-Air-to-Room Air Temperature Difference (modification); (6) 11.4.3(i) - Fan system efficiency (modification); and (7) Table 11.4.3A - Budget System Descriptions (modification). For energy efficiency measures that are not explicitly addressed by the standard, we recommend application of Section 11.5, Exceptional Calculation Methods. This guideline does not cover the details of such calculation methods.

  5. To be presented at the ASHRAE 2006 Summer Meeting, Quebec City, Canada, June 24-28, 2006, and published in ASHRAE Transactions. LBNL-58912.

    E-Print Network [OSTI]

    , and published in ASHRAE Transactions. LBNL-58912. Monitored Energy Performance of Electrochromic Windows-area tungsten-oxide absorptive electrochromic (EC) windows with a broad switching range in a private office buildings 1. Introduction Past simulation studies have indicated that electrochromic façade systems have

  6. Proceedings of ASHRAE-DOE-BTECC Conference on Building Thermal Envelopes Simplified Modeling for

    E-Print Network [OSTI]

    LBL-31305 Proceedings of ASHRAE-DOE-BTECC Conference on Building Thermal Envelopes Simplified in the envelopes of residential buildings is the primary mechanism to pro- vide ventilation to those buildings and exposure to be made and demonstrates how changes in the envelope or ventilation system would affect it

  7. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

  8. 2004 ASHRAE. 829 This paper presents an overview of the conduction trans-

    E-Print Network [OSTI]

    for ASHRAE's new load calculation methods, the heat balance method (HBM) and the radiant time series method (CTF) and periodic response factor (PRF) meth- ods of calculating conductive heat transfer. Different forms of the equations used in cooling load calculations are compared and contrasted. Particular

  9. Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Small Retail Buildings in the City of Arlington (Presentation) (Revised) , Energy Systems Laboratory, Texas A&M University.

    E-Print Network [OSTI]

    Kim, H.; Do, S; Kim, K.; Baltazar, J. C.; Haberl, J.; Lewis, C.

    2011-01-01T23:59:59.000Z

    of occupants = 120 Gross Area (sq. ft.) CoA Aspect Ratio PNNL 20405:ASHRAE 90.1-2010 245 ft (L) X 61 ft (W) Number of Floors PNNL 20405:ASHRAE 90.1-2010 Floor-to-Floor Height (ft.) PNNL 20405:ASHRAE 90.1-2010 Floor-to-Ceiling Height = 17 ft Orientation PNNL... 20405:ASHRAE 90.1-2010 Wall Construction CoA Roof Configuration PNNL 20405:ASHRAE 90.1-2010 Foundation Construction PNNL 20405:ASHRAE 90.1-2010 Wall Absorptance DOE 2.1E BDL SUMMARY, Page 12 Assuming gray, light oil paint Wall Insulation (hr...

  10. A Method for Simulating Heat Recovery Systems Using AirModel in Implementations of the ASHRAE Simplified Energy Analysis Procedure

    E-Print Network [OSTI]

    Liu, C.; Zeig, M.; Claridge, D. E.; Wei, G.; Bruner, H.; Turner, W. D.

    2005-01-01T23:59:59.000Z

    A Method for Simulating Heat Recovery Systems Using AirModel in Implementations of the ASHRAE Simplified Energy Analysis Procedure Chenggang Liu Research Associate Energy Systems Laboratory Texas A&M University College Station, TX Marvin..., TX W. Dan Turner, Ph.D., P.E. Professor & Director Energy Systems Laboratory Texas A&M University College Station, TX Abstract A method for simulating heat recovery systems using AirModel in implementations of the ASHRAE simplified...

  11. ASHRAE/IESNA 90.1-1989R, energy code for buildings except low-rise residential buildings, Revision update

    SciTech Connect (OSTI)

    Emerson, K. [Public Service Company of Colorado, Denver, CO (United States)

    1996-12-31T23:59:59.000Z

    The first public review draft of the next cyclical revision to ASHRAE/IESNA 90.1 - 1989, titled {open_quotes}Energy Efficient Design of New Buildings Except New Low-Rise Residential Buildings,{close_quotes} is currently available for public review. This paper provides commentary by the author on the background of the revision and a general comparison of this first public review draft to the 1989 version of the Standard. Those wishing further information on the draft should contact the American Society of Heating, Refrigerating and Air-Conditioning Engineers.

  12. Development of a Web-Based Code-Compliant ASHRAE 90.1-1999 Commercial Simulation for Texas

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.

    and domestic water heater. The following example illustrates the procedures used to calculate the pre-code run (i.e., a building that is compliant with ASHRAE Standard 90.1-1989)9. In this analysis, an office building 122 ft x 122 ft (37 m x 37 m), 6...-8). For the gas-fired domestic water heater, if the rating is less than 75,000 Btu/hr (22 kW), the energy factor is determined from the NAECA requirement (NAECA, 1987): Energy Factor = 0.62 - 0.0019 x V, where V = storage capacity of the tank in gallons...

  13. February 20, 2014: The attached paper was presented at the 2014 ASHRAE Winter Meeting in New York City. It was published as a conference paper.

    E-Print Network [OSTI]

    : Gehlin, S.E.A. and J.D. Spitler. 2014. Design of Residential Ground Source Heat Pump Systems for Heating, Oklahoma. Design of Residential Ground Source Heat Pump Systems for Heating Dominated Climates - Trade, PhD Jeffrey D. Spitler, PhD, PE Member ASHRAE Fellow ASHRAE ABSTRACT Residential ground source heat

  14. Infiltration in ASHRAE's Residential Ventilation Standards

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    of  the effective natural ventilation rate with weather to  Residential  Ventilation  Requirements”.  LBNL  57236.  and  M.H.   Sherman  "Ventilation  Behavior  and  Household 

  15. Infiltration in ASHRAE's Residential Ventilation Standards

    E-Print Network [OSTI]

    Sherman, Max

    2008-01-01T23:59:59.000Z

    often need mechanical ventilation systems to meet current about mechanical ventilation systems but has a default unbalanced mechanical ventilation systems change  the 

  16. ASHRAE Standard 152 Spreadsheet | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems AnalysisVOLUMEStatement ofAHAM -ALA-1-NMemo AppendicesAS&TASHRAE

  17. Adams County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy ResourcesAdams County, Iowa ASHRAE

  18. Alger County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformation ASHRAE 169-2006 Climate Zone Jump to:

  19. Athens County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,AsotinAston Solar23896°,Ohio ASHRAE

  20. Atkinson County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,AsotinAstonInformation Georgia ASHRAE

  1. Bennington County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County,Information Vermont ASHRAE 169-2006

  2. Benton County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformation Indiana ASHRAE 169-2006 Climate

  3. Benton County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformation Indiana ASHRAE 169-2006

  4. Benton County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformation Indiana ASHRAE 169-2006Iowa:

  5. Benton County, Mississippi ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformation Indiana ASHRAE

  6. ASHRAE/NIST Refrigerants Conference International concerns about the impact of refrigerants on climate change drive the

    E-Print Network [OSTI]

    Ginzel, Matthew

    ASHRAE/NIST Refrigerants Conference International concerns about the impact of refrigerants on climate change drive the need to look at new cooling and refrigeration options that are sustainable" refrigerants through papers, presentations and panel discussions. This is the fourth jointly sponsored

  7. Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998

    E-Print Network [OSTI]

    LBNL-41694 BS-384 Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998 This work was supported

  8. Status of cool roof standards in the United States

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen

    2007-06-01T23:59:59.000Z

    Since 1999, several widely used building energy efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool roof credits or requirements. We review the technical development of cool roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discuss the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool roof provisions can be used as models to address cool roofs in building energy standards worldwide.

  9. Energy Implications of Meeting ASHRAE 62.2

    E-Print Network [OSTI]

    homes often need mechanical ventilation systems to meet current ventilation standards. Mc.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but it allows for a wide variety of design solutions

  10. Development of the design climatic data for the 1997 ASHRAE Handbook -- Fundamentals

    SciTech Connect (OSTI)

    Colliver, D.G.; Burks, T.F.; Gates, R.S.; Zhang, H.

    2000-07-01T23:59:59.000Z

    This paper describes the process used to revise the design weather data tables in the 1997 ASHRAE Handbook--Fundamentals. Design conditions were determined for 509 US, 134 Canadian, 339 European, 293 Asian, and 169 other worldwide locations. Thirty-three years of hourly weather data were used for approximately half of the US and all of the Canadian locations. Twelve years of data were used for the other locations. The data went through quality checking and short-term linear interpolation filling processes. Months that had sufficient data were then used in the analysis. The data were analyzed to produce annual frequency-of-occurrence design dry-bulb (DB), wet-bulb (WB), and dew-point (DP) temperatures with mean coincident values at the design conditions. A comparison with the previous design values indicated that the new dry-bulb and wet-bulb design conditions are slightly less extreme than the values previously published. However, the new design dew-point values indicate the potential for significantly more extreme dehumidification design conditions than would be found by using the old extreme dry-bulb temperature with mean coincident wet-bulb temperature. Software was also developed so users could extract the design values, cumulative frequencies, and DB/DP, DB/WB, DB/H, and DB/WS coincident matrices for 1444 locations from a CD-ROM.

  11. Recommendations for 15% Above ASHRAE 90.1-2007 Code-Compliant Building Energy Efficiency Measures for Small Office Buildings

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J.; Yazdani, B.

    2012-01-01T23:59:59.000Z

    per 2009 IECC Section 501.2 15% Above-Code Analysis for Small Office, p.5 January 2012 Energy Systems Laboratory, Texas A&M University Table 1. Base-Case Building Description Building Type Number of occupants = 73 Gross Area (sq. ft.) PNNL...-19341 (Thornton et al. 2010) Aspect Ratio PNNL-19341 (Thornton et al. 2010) Square shape Number of Floors PNNL-19341 (Thornton et al. 2010) Floor-to-Floor Height (ft.) ASHRAE 90.1-1989 13.7.1 Floor-to-Ceiling Height = 9 ft Orientation PNNL-19341...

  12. A S H R A E J O U R N A L ashrae.org O CTO BER 201444 COLUMN BUILDING SCIENCES

    E-Print Network [OSTI]

    BY JOSEPH W. LSTIBUREK, PH.D., P.ENG., FELLOW ASHRAE Zeroing In Net Zero Houses So what does "net zero" mean. I can't help it. Engineers worship efficiency. The storage part worries me. A net zero energy house amount of energy generated on-site during that year."* In a net zero energy house the electri- cal grid

  13. Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998

    E-Print Network [OSTI]

    ;1 Proceedings of the Thermal Performance of the Exterior Envelopes of Buildings VII, December 7-11, 1998LBNL-41443 IS-390 Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998 The research reported

  14. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    E-Print Network [OSTI]

    Mendell, Mark

    2014-01-01T23:59:59.000Z

    affect IAQ negatively (health + productivity) InappropriateIAQ standards that support occupant comfort, health, productivity, and

  15. Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003

    E-Print Network [OSTI]

    Roberson, J.

    2004-01-01T23:59:59.000Z

    Install Residential Ventilation Systems. The Healthy HouseMechanical Ventilation Systems. Canadian StandardsCode: Whole House Ventilation Systems Research Report. 39

  16. Property:ASHRAE 169 Standard | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to:Information Promoting Clean Cars:

  17. 2005 ASHRAE. 291 The recent ASHRAE project, "Updating the ASHRAE/

    E-Print Network [OSTI]

    Heating and Cooling Load Calculation Procedures and Data" (RP-1199), developed two new resi- dential loads in the developmentofothermethods.ResultscomparingRLFtoRHB are presented. The RLF heating load calculation is also described/ACCA Residential Heating and Cooling Load Calculation Proce- dures and Data" (RP-1199), had two primary products

  18. Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Restaurant Buildings in the City of Arlington

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    of the improvement, #1; simple payback calculations, and #1; emissions savings. 2 ENERGY SYSTEMS LABORATORY Methodology 3 #1; ESL simulation model based on the DOE-2.2 of ASHRAE 90.1- 2001 and 2007 code-compliant, restaurant building for Tarrant County #1; A... for unoccupied periods 70F Heating 75 F Cooling Setback during unoccupied hours. Optimal start control one hour before occupied hours. 65F Heating 80 F Cooling ENERGY SYSTEMS LABORATORY Methodology 5 #1; 5,500 ft2, one- story, building – Dining space modeled (4...

  19. Cost-Effective Energy Efficiency Measures for Above Code(ASHRAE 90.1-2001 and 2007) Small Office Buildings in the City of Arlington

    E-Print Network [OSTI]

    Kim, H.; Do, S.; Kim, K.H.; Baltazar, J.C.; Haberl, J.S.; Lewis, C.

    Table 1. Base-Case Building Description Building Type Number of occupants = 73 Gross Area (sq. ft.) PNNL-19341 (Thornton et al. 2010) and CoA Aspect Ratio PNNL-19341 (Thornton et al. 2010) Square shape Number of Floors PNNL-19341 (Thornton et al.... 2010) Floor-to-Floor Height (ft.) ASHRAE 90.1-1989 13.7.1 Floor-to-Ceiling Height = 9 ft Orientation PNNL-19341 (Thornton et al. 2010) Wall Construction CoA Roof Configuration PNNL-19341 (Thornton et al. 2010) Foundation Construction PNNL-19341...

  20. Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Small Office Buildings in the City of Arlington

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    ,000 ft2, square-shape, two-story, office building ? Wood frame construction ? 20% window-to- wall ratio ? Packaged rooftop air conditioner (CAV, DX, gas furnace) Building Type Number of occupants = 73 Gross Area (sq. ft.) NREL TSD: AEDG-SMO-2011... and CoA Aspect Ratio NREL TSD: AEDG-SMO-2011 Square shape Number of Floors NREL TSD: AEDG-SMO-2011 Floor-to-Floor Height (ft.) ASHRAE 90.1-1989 13.7.1 Floor-to-Ceiling Height = 9 ft Orientation NREL TSD: AEDG-SMO-2011 Wall Construction CoA Roof...

  1. Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Restaurant Buildings in the City of Arlington 

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    of the improvement, #1; simple payback calculations, and #1; emissions savings. 2 ENERGY SYSTEMS LABORATORY Methodology 3 #1; ESL simulation model based on the DOE-2.2 of ASHRAE 90.1- 2001 and 2007 code-compliant, restaurant building for Tarrant County #1; A... for unoccupied periods 70F Heating 75 F Cooling Setback during unoccupied hours. Optimal start control one hour before occupied hours. 65F Heating 80 F Cooling ENERGY SYSTEMS LABORATORY Methodology 5 #1; 5,500 ft2, one- story, building – Dining space modeled (4...

  2. Building Energy Standards

    Broader source: Energy.gov [DOE]

    The 2015 Vermont Commercial Building Energy Standards (CBES) took effect on March 1, 2015. The code is based on the 2015 IECC, with amendments to incorporate ASHRAE 90.1-2013. The new guidelines ...

  3. 72 ASHRAE Journal ashrae.org Fe b r u a r y 2 0 1 2 STANDARDS AND CODES

    E-Print Network [OSTI]

    Edwards, Paul N.

    's application to major home appliances and lighting, the ENERGY STAR label became one of the most recognized brands in the public inventory of market transformation tools. Manu- facturers and retailers routinely as how much power that device consumes. Smart and connected appliances, broadly deployed, would be one

  4. Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework

    E-Print Network [OSTI]

    Mendell, Mark J.

    2014-01-01T23:59:59.000Z

    Refrigerating, and Air Conditioning Engineers, Inc. ASHRAE.Refrigerating and Air- Conditioning Engineers, Inc. ASHRAE.Refrigerating and Air-Conditioning Engineers, Inc. Beko Gl,

  5. Evolution of cool-roof standards in the United States

    E-Print Network [OSTI]

    Akbari, Hashem

    2008-01-01T23:59:59.000Z

    for steep-sloped nonresidential roofs in Title 24. Online atof SSP90.1 for Reflective Roofs. ASHRAE Transactions, 104(pp. 984-995. Evolution of cool roof standards in the United

  6. Standard 90, the planning

    SciTech Connect (OSTI)

    Not Available

    1985-10-01T23:59:59.000Z

    In order to understand the current proposed ANS/ASHRAE/IES Standard 90.1 Energy Efficient Design of New Non-Residential Buildings and New High-Rise, Residential Buildings, this article offers background on the initial Standard, the organization of the Standard committee, and the objectives established for the proposed Standard 90.1.

  7. Meeting Residential Ventilation Standards

    E-Print Network [OSTI]

    ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning EngineersLBNL 4591E Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide

  8. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA TrainingANDREW ( ARI| March 29,ASHRAERise

  9. Recommendations for Meeting ASHRAE Standard 62.2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11DepartmentEnergy 16: FY 2015Review of

  10. Status of cool roof standards in the United States

    E-Print Network [OSTI]

    Akbari, Hashem; Levinson, Ronnen

    2008-01-01T23:59:59.000Z

    ASHRAE 90.2, the International Energy Conservation Code, andor the International Energy Conservation Code (IECC). Other

  11. Evolution of cool-roof standards in the United States

    SciTech Connect (OSTI)

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11T23:59:59.000Z

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  12. The Revised Austin Energy Code and Comparisons with the Texas State Energy Standard

    E-Print Network [OSTI]

    Crow, G.

    For the past two years the City of Austin Energy Code has been under review using the State Energy Standard and ASHRAE 90.2P as models for the revised Austin Energy Code. The major changes to these documents are presented in this paper....

  13. ASHRAE's Guideline 14-2002 for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit

    E-Print Network [OSTI]

    Haberl, J. S.; Claridge, D. E.; Culp, C.

    2005-01-01T23:59:59.000Z

    developed standards for the laboratory measurement of temperature, pressure, airflow, liquid flow, power, thermal energy, and the testing standards for chillers, fans, pumps, motors, boilers, and furnaces. Guideline 14 also relied on the previous work... Guideline 14-2002 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14-2002 is intended to be a guideline that provides a minimum acceptable level of performance in the measurement of energy and demand...

  14. Development of a New ASHRAE Protocol for Measuring and Reporting the On-Site Performance of Buildings Except Low-Rise Residential Buildings 

    E-Print Network [OSTI]

    Haberl, Jeff; Case, Mark; Kettler, Herald; Hunn, Bruce; Owens, Brendan

    2006-01-01T23:59:59.000Z

    State Office Building (2002). This report describes how the performance of the new REJ building was evaluated with measured hourly data and a calibrated simulation. • NREL Report on energy performance analysis of six high-performance buildings (2005... standards. Such a protocol would be used to evaluate not only the as-built energy performance and water performance, but also the IEQ and comfort level being achieved in a building (e.g., Standard 90.1-2004, Standard 62.1-2004, Standard 55-2004, LEED, U...

  15. Comparison of ASHRAE Standard 90.1, 189.1 and IECC Codes for Large Office Buildings in Texas

    E-Print Network [OSTI]

    Mukhopadhyay, J.; Baltazar, J.C.; Kim, H.; Haberl, J.

    2011-01-01T23:59:59.000Z

    . 2009. Infiltration Modeling Guidelines for Commercial Building Energy Analysis. PNNL Report PNNL- 18898, Pacific Northwest National Laboratory. Grondzik, W., Kwok, A., Stien, B., Reynolds, J. 2010. Mechanical and Electrical Equipment...

  16. Appliance Standards Update and Review of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque,APPENDIX A: Technical Support Document

  17. Evolution of cool-roof standards in the United States

    E-Print Network [OSTI]

    Akbari, Hashem

    2008-01-01T23:59:59.000Z

    ASHRAE 90.2, the International Energy Conservation Code, andor the International Energy Conservation Code (IECC). Otherand Title 24 International Energy Conservation Code The 2003

  18. ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios inAS 42.05, AlaskaASEM GreenA

  19. ASHRAE 169-2006 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation, search40 -Solar GmbH Place:SRLfor

  20. EA-1872: Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Broader source: Energy.gov [DOE]

    This EA evaluated the environmental impacts of a proposal to amend the current rule for commercial and high-rise multi-family residential buildings, 10 CFR 433 “Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings,” to replace ASHRAE Standard 90.1-2004 with the more stringent ASHRAE Standard 90.1-2007, incorporated by reference. This EA also evaluated the environmental impacts with regard to low-rise residential buildings; this rulemaking updated 10 CFR 435 Subpart A, “Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings,” to replace the International Energy Conservation Code (IECC) 2004 with the more stringent IECC 2009, incorporated by reference. This EA was completed as DOE/EA-1871.

  1. Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota

    SciTech Connect (OSTI)

    Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

    2005-03-04T23:59:59.000Z

    The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

  2. Standard 90. 1's ENVSTD: Both a compliance program and an envelope design tool

    SciTech Connect (OSTI)

    Crawley, D.B.; Boulin, J.J.

    1989-12-01T23:59:59.000Z

    Since 1982, ASHRAE and the US Department of Energy have worked together to update ANSI/ASHRAE/IES Standard 90A-1980, Energy Conservation in Building Design.'' The new standard, ASHRAE/IES Standard 90.1-1989, Energy-Efficient Design of New Buildings Except Low-Rise Residential Buildings,'' is substantially changed in form and concept from Standard 90A-1980, especially in how it deals with exterior envelopes. In the new standard, designers can use either of two methods -- prescriptive or system performance -- to comply with building envelope requirements. Under the prescriptive method, requirements are listed in tabular form and designers must demonstrate compliance with each individual requirement. In the system performance method, designers generate the requirements for their specific building using a set of equations. The equations establish limits on permissible heating and cooling coil loads based on the local climate and the internal loads in the exterior zones of the building. A personal computer program, ENVSTD (ENVelope STanDard), has been written to simplify compliance with the system performance path of the standard. The program can also be used to evaluate the impact of varying envelope characteristics on building heating and cooling coil loads in specific locations. This paper provides examples of the impacts that the standard's envelope requirements have on envelope design. Use of the ENVSTD program as a design tool to determine the heating and cooling load impacts of various envelope strategies is also demonstrated. 7 refs., 12 figs.

  3. EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  4. 2012 ASHRAE 1061 This paper is based on findings resulting from ASHRAE Research Project RP-1356.

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    . ABSTRACT Mechanical pipe insulation systems are installed around cold cylindrical surfaces, such as chilled accurate prediction of the pipe insulation actual thermal conductivity is needed for the design thermal conductivity were developed based on insulation specimen average temperature and wall thicknesses

  5. Recommendations for energy conservation standards for new residential buildings: Volume 2: Automated residential energy standard---user's guide--version 1. 1

    SciTech Connect (OSTI)

    Lortz, V.B.; Taylor, Z.T.

    1989-05-01T23:59:59.000Z

    This report documents the development and testing of a set of recommendations from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations were developed over a 25-month period by a multidisciplinary project team under the management of the DOE and its prime contractor, Pacific Northwest Laboratory (PNL).

  6. Can ASHRAE Standard 62-1989 Requirements be Satisfied while Maintaining Moisture Control using Stock HVAC Equipment in Hot, Humid Climates?

    E-Print Network [OSTI]

    Turner, S. C.

    1996-01-01T23:59:59.000Z

    energy costs. Increased ventilation rates create real capital and operating costs for building owners and operators, with implications beyond energy costs relating to increased ventilation requirements. In hot, humid climates, increased ventilation rates...

  7. Comparison of ASHRAE Standard 90.1, 189.1 and IECC Codes for Large Office Building in Texas), Energy Systems Laboratory, Texas A&M University.

    E-Print Network [OSTI]

    Mukhopadhyay, J.; Baltazar, J.C.; Kim,H.; Haberl, J.

    2011-01-01T23:59:59.000Z

    herein is necessarily error-free. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the Energy.... The comparison is carried out using the simulation model for a large office building initially developed by Ahmad et al. (2005) and Kim et al. (2009) using DOE-2.1e simulation program. The model has been updated and modified as per the requirements...

  8. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic HeatingManagement of High-RmanagementDOE goals

  9. Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies

    SciTech Connect (OSTI)

    Reedy, Wayne R. [Sentech, Inc.

    2010-07-01T23:59:59.000Z

    This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

  10. Proposed new energy standard for commercial buildings

    SciTech Connect (OSTI)

    Reilly, R.W.

    1983-09-01T23:59:59.000Z

    A project was established to develop a new energy standard for commercial buildings, using the widely accepted ASHRAE/IES Standard 90A-1980, Energy Conservation in New Building Design, as a starting point and general pattern. Under this project, 90A-1980 was analyzed to determine its effectiveness and to define shortcomings; research was conducted to develop a technical/economic basis for setting improved cost-effective requirements for energy conservation; recommendations were developed for an improved standard; and the recommendations were tested across a suite of 10 building types in 8 climates. Preliminary results from these tests indicate that design compliance with the recommendations provides 15 to 30% annual energy savings in office buildings and smaller but significant savings in other building categories (as compared to buildings designed in compliance with 90A-1980). The recommendations also provide for expanded design freedom in demonstrating compliance, especially compliance with envelope requirements. The recommendations and technical support information were presented to ASHRAE to assist in its periodic upgrading of Standard 90, and to the US Department of Energy as major input to its Congressionally-mandated process of developing minimum design standards for federal buildings and voluntary guidelines for the private sector.

  11. Status of cool roof standards in the United States

    E-Print Network [OSTI]

    Akbari, Hashem; Levinson, Ronnen

    2008-01-01T23:59:59.000Z

    requirements for residential roofs in Title 24. Online atAkbari, H. 1998. Cool roofs save energy. ASHRAE Transactionsfor steep-sloped nonresidential roofs in Title 24. Online at

  12. 2014 ASHRAE/IBPSA-USA Building Simulation Conference

    E-Print Network [OSTI]

    Tennessee, University of

    buzz term. Many institutions and corporations are preparing themselves for a massive deluge just slightly touched by the data deluge, but, with newer technologies being implemented into sensors

  13. ASHRAE Transactions: Research 107 Commercial buildings and institutions are generally

    E-Print Network [OSTI]

    Ground-source heat pump (GSHP) systems have become increasingly popular for both residential for modeling the performance of a shallow pond as a supplemental heat rejecter in ground- source heat pump, under these circumstances, ground-source heat pump systems may be eliminated from consideration during

  14. ASHRAE's New Performance Measurement Protocols for Commercial Buildings

    E-Print Network [OSTI]

    Haberl, J.; Davies, H.; Owens, B.; Hunn, B.

    meters. Figure 8 shows an example of photograph of a lighting modelcompared with a simulated image using Radiance software. Chapter 5:Acoustics (CurtEichelberger). In Chapter 5 protocols are provided for the performance measurement of indoor acoustics...-metering of specific water using loads such as landscapewateringor coolingtowers. In a similar fashion as Level 1, the benchmark for Level 2 would be a comparison to a national database.Level 3 would consist of Level 2 information and hourly metering from data loggers...

  15. Category:ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst2-M Probe Survey as

  16. Property:ASHRAE 169 Climate Zone Number | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to:Information Promoting Clean Cars: Case

  17. Property:ASHRAE 169 Climate Zone Subtype | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to:Information Promoting Clean Cars: CaseSubtype Jump to:

  18. Property:ASHRAE 169 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to:Information Promoting Clean Cars: CaseSubtype Jump

  19. Property:ASHRAE 169 End Date | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to:Information Promoting Clean Cars: CaseSubtype

  20. Property:ASHRAE 169 Start Date | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to:Information Promoting Clean Cars:This is a property of

  1. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you're a16-17, 2015 |75.doc�FOR A201428, 2015 8:00AM

  2. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic FrameworkRoadmap ANSItheARPA-E March 29,Challenges |

  3. EA-1918: Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and MultiFamily High-Rise Residential Buildings" RIN 1904-AC60

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of implementing provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including commercial and multi-family high-rise residential buildings. This EA addresses Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010. The Final Rule was published in the Federal Register on July 9, 2013, 78 FR 40945.

  4. The St. Louis Chapter, ASHRAE Newsletter VOLUME 23, NUMBER 6 http://www.ashrae-stl.org March 2006

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    , retail, sports complexes, chiller installations, VAV systems, raised floor computer facilities, DDC

  5. EA-1871: Environmental Assessment for Final Rule, 10 CFR 433, “EE Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings” and 10 CFR 435, “EE Standards for New Federal Residential Low-Rise Residential Buildings"

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE‘s Final Rule, 10 CFR 433, ?Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings? and 10 CFR 435, ?Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings? Baseline Standards Update. The final rule updates the baseline standards in 10 CFR 433 and 10 CFR 435 to the latest private sector standards based on the cost-effectiveness of the latest private sector standards and DOE‘s determination that energy efficiency has been improved in these codes as required by 42 U.S.C 6831 et seq. DOE is issuing its final determinations on American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (ASHRAE 2007) and the International Code Council‘s 2009 International Energy Conservation Code (IECC) in the same edition of the Federal Register as this final rule.

  6. A history of the Building Energy Standards Program

    SciTech Connect (OSTI)

    Shankle, D.L.; Merrick, J.A.; Gilbride, T.L.

    1994-02-01T23:59:59.000Z

    This report describes the history of the Pacific Northwest Laboratory`s (PNL`s) work in development of energy standards for commercial and residential construction in the United States. PNL`s standards development efforts are concentrated in the Building Energy Standards Program (the Program), which PNL conducts for the U.S. Department of Energy (DOE) Office of Codes and Standards. The Program has worked with DOE, the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), and other building codes and standards organizations to develop, evaluate, and promulgate energy standards in all sectors of the building industry. This report describes the recent history of U.S. code development and PNL`s contributions through the 1980s and early 1990s, up to the passage of the Energy Policy Act of 1992. Impacts to standards development resulting from the passage of this act will be described in other reports.

  7. Building Efficiency and Indoor Air Quality - You Can Have Both

    E-Print Network [OSTI]

    Kettler, G. J.

    1998-01-01T23:59:59.000Z

    Providing ventilation for acceptable indoor air quality per ASHRAE Standard 62-1989 does not require large increases in utility costs. Building efficiency does not have to be sacrificed for a healthy building. The ASHRAE 62- 1989 requirement...

  8. EnergyPlusDeST DOE-2.1E Building energy modeling programs comparison

    E-Print Network [OSTI]

    ST #12; 1 IEA BESTest ASHRAE Standard 140[1] [2] 1 EnergyPlus, DeST, DOE-2, ESP, BLAST TRNSYS 1 ASHRAE RP865[1] 2ANSI/ASHRAE Standard 140 [4] 3 IEA SHC BESTest / [5] EnergyPlus [6] [7

  9. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California: predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    E-Print Network [OSTI]

    Apte, Michael G.

    2013-01-01T23:59:59.000Z

    20Climate%20Zones. Emmerich, S.J. , T. McDowell. (2005). “and the United States (Emmerich and McDowell, 2005; ASHRAE,motion. As described by Emmerich and McDowell (2005), “The

  10. Use of life-cycle costing in the development of standards. Master's thesis

    SciTech Connect (OSTI)

    Underwood, J.M.

    1988-12-01T23:59:59.000Z

    This thesis set out to determine how, and to what extent, life-cycle costing is used in the development of voluntary consensus standards. It explains how several organizations in the commercial sector develop voluntary standards. Among these organizations was ASHRAE, who is currently developing a standard based on life-cycle costing. Standard 90.2 Energy Efficient Design of New Low-Rise Residential Buildings prescribes the insulation values for the envelope of a building. The economic methodology was based on marginal analysis by considering an upgraded construction component and then determining the incremental energy-cost savings to the incremental modification costs over a specified life-cycle period. Questions arose concerning the economic assumptions used in developing the standard. It is recommended that an impact study be performed to evaluate the cost-estimating techniques and the basic economic assumptions.

  11. Comparison of Standard 90.1-2007 and the 2009 IECC with Respect to Commercial Buildings

    SciTech Connect (OSTI)

    Conover, David R.; Bartlett, Rosemarie; Halverson, Mark A.

    2009-12-11T23:59:59.000Z

    The U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP) has been asked by some states and energy code stakeholders to address the comparability of the 2009 International Energy Conservation Code® (IECC) as applied to commercial buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 (hereinafter referred to as Standard 90.1-07). An assessment of comparability will help states respond to and implement conditions specified in the State Energy Program (SEP) Formula Grants American Recovery and Reinvestment Act Funding Opportunity, Number DE-FOA-0000052, and eliminate the need for the states individually or collectively to perform comparative studies of the 2009 IECC and Standard 90.1-07. The funding opportunity announcement contains the following conditions: (2) The State, or the applicable units of local government that have authority to adopt building codes, will implement the following: (A) A residential building energy code (or codes) that meets or exceeds the most recent International Energy Conservation Code, or achieves equivalent or greater energy savings. (B) A commercial building energy code (or codes) throughout the State that meets or exceeds the ANSI/ASHRAE/IESNA Standard 90.1-2007, or achieves equivalent or greater energy savings . (C) A plan to achieve 90 percent compliance with the above energy codes within eight years. This plan will include active training and enforcement programs and annual measurement of the rate of compliance. With respect to item (B) above, many more states, regardless of the edition date, directly adopt the IECC than Standard 90.1-07. This is predominately because the IECC is a model code and part of a coordinated set of model building codes that state and local government have historically adopted to regulate building design and construction. This report compares the 2009 IECC to Standard 90.1-07 with the intent of helping states address whether the adoption and application of the 2009 IECC for commercial buildings can be considered equivalent to the adoption and application of Standard 90.1-07. Based on this document, states adopting the 2009 IECC, which is the document cited in (A), above, for residential construction, can also determine if they are in compliance with the above provisions for commercial buildings in (B) above and if their code meets or exceeds the ANSI/ASHRAE/IESNA Standard 90.1-07.

  12. Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings

    E-Print Network [OSTI]

    Hoyt, Tyler; Arens, Edward; Zhang, Hui

    2014-01-01T23:59:59.000Z

    Refrigerating, and Air Conditioning Engineers (ASHRAE);Refrigerating and Air Conditioning Engineers (ASHRAE); 2012.Refrigerating and Air-Conditioning Engineers (ASHRAE); [5

  13. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    E-Print Network [OSTI]

    Mendell, Mark

    2014-01-01T23:59:59.000Z

    EUI) predicted with building energy models created using theusing EPA model ? Health benefits of reduced energy usage (

  14. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    E-Print Network [OSTI]

    Mendell, Mark

    2014-01-01T23:59:59.000Z

    Achieving IAQ and Energy Conservation Goals with ASHRAEBalancing energy conservation and occupant needs in  500-99-013 Balancing energy conservation and occupant needs

  15. A New Ventilation System Integrates Total Energy Recovery, Conventional Cooling and a Novel 'Passive' Dehumidification Wheel to Mitigate the Energy, Humidity Control and First Cost Concerns Often Raised when Designing for ASHRAE Standard 62-1999 Compliance

    E-Print Network [OSTI]

    Fischer, J. C.

    2000-01-01T23:59:59.000Z

    This paper introduces a novel, ''passive" desiccant based outdoor air preconditioning system (PDH) that is shown to be significantly more energy-efficient than all known alternatives, and has the unique ability to dehumidify outdoor air streams...

  16. Recommendations for energy conservation standards for new residential buildings: Volume 4, Description of the testing process

    SciTech Connect (OSTI)

    Not Available

    1989-05-01T23:59:59.000Z

    This report documents the development and testing of recommendations, from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations were developed over a 25-month period by a multidisciplinary project team, under the management of the US Department of Energy and its prime contractor, Pacific Northwest Laboratory. The report has been issued in four volumes, VOLUME IV - Description of the Testing Process details how the Standard was tested and provides case studies of the possible impact of the Standard in select locations throughout the country. It is supported by a description of the assumptions and input data, and an analysis of the results.

  17. A Stable Whole Building Performance Method for Standard 90.1

    SciTech Connect (OSTI)

    Rosenberg, Michael I.; Eley, Charles

    2013-05-01T23:59:59.000Z

    Wouldn’t it be great if a single energy model could be used to demonstrate minimum code compliance, green code compliance, establish a Leadership in Energy and Environmental Design (LEED) rating, and determine eligibility for federal tax and utility incentives? Even better, what if the basic rules for creating those models did not change every few years? This paper descibes a recently proposed addendum to ASHRAE/ANSI/IES Standard 90.1 aims to meet those goals. Addendum BM establishes the Performance Rating Method found in Appendix G of Standard 90.1 as a new method of compliance while maintaining its traditional use in gauging the efficiency of beyond code buildings. Furthermore, Addendum BM sets a common baseline building that does not change with each update to the standard.

  18. Infiltration as Ventilation: Weather-Induced Dilution

    E-Print Network [OSTI]

    Sherman, Max H.

    2014-01-01T23:59:59.000Z

    Refrigerating and Air Conditioning Engineers. ASHRAERefrigerating and Air Conditioning Engineers. ASTM, StandardRefrigerating and Air-Conditioning Engineers (ASHRAE) is the

  19. HVAC Cabinet Air Leakage Test Method - Building America Top Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    Furthermore, this research led to the creation of ASHRAE Standard 193, "Method of Test for Determining the Airtightness of HVAC Equipment," which was ready for adoption in...

  20. Review of International Methods of Test to Rate the Efficiency of Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Water Heaters Jim Lutz, Lawrence Berkeley National Laboratory January 25, 2011 The American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standards

  1. STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    431.64 ANSI/ASHRAE Standard 32.1­2004 with ANSI/AHAM HRF­1­2004 AHRI 810­2007 with calculation in 10

  2. HOSPITAL ENERGY AUDITS: A BIBLIOGRAPHY

    E-Print Network [OSTI]

    Pollack, R. I.

    2011-01-01T23:59:59.000Z

    discussions of solar collector function and applications.77, methods of testing solar collectors; ASHRAE standard 94~are: HVAC systems, solar collectors, maintenance. materials

  3. Understanding Building Energy Codes and Standards

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2003-03-01T23:59:59.000Z

    Energy codes and standards play a vital role by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. The Difference Between Energy Codes, Energy Standards and the Model Energy Code Energy codes--specify how buildings must be constructed or perform, and are written in mandatory, enforceable language. States or local governments adopt and enforce energy codes for their jurisdictions. Energy standards--describe how buildings should be constructed to save energy cost-effectively. They are published by national organizations such as the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). They are not mandatory, but serve as national recommendations, with some variation for regional climate. States and local governments frequently use energy standards as the technical basis for developing their energy codes. Some energy standards are written in mandatory, enforceable language, making it easy for jurisdictions to incorporate the provisions of the energy standards directly into their laws or regulations.

  4. Humidity Implications for Meeting Residential Ventilation Requirements

    E-Print Network [OSTI]

    1 LBNL-62182 Humidity Implications for Meeting Residential Ventilation Requirements Iain S. Walker for Meeting Residential Ventilation Requirements ABSTRACT In 2003 ASHRAE approved the nation's first residential ventilation standard, ASHRAE Standard 62.2. Because meeting this standard can significantly change

  5. ASHRAE Transactions: Research 3 A steady-state simulation model for a water-to-water

    E-Print Network [OSTI]

    -fitting for some of the components. For example, in the reciprocating chiller model proposed by Bourdouxhe et al. (1994), the chiller was modeled as an assembly of several simplified components. Each component (e and superheating temperature differences) from the chiller or heat pump. The alternative approach, equation

  6. Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE

    E-Print Network [OSTI]

    Fisk, William J.

    2009-01-01T23:59:59.000Z

    improvements in building energy efficiency are anticipatedthe required pace of building energy efficiency improvementthese aggressive building energy efficiency goals will

  7. Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE

    E-Print Network [OSTI]

    Fisk, William J.

    2009-01-01T23:59:59.000Z

    change and improve energy security. To attain the largeof Energy, the Energy Independence and Security Act of 2007,

  8. 7 September 2004 John Learned at Pylos ANITA and ASHRAANITA and ASHRA

    E-Print Network [OSTI]

    Learned, John

    Imaging Particle Detector Key TechnologyKey Technology 9M9M--pix. CMOS Sensor Covering 50pix. CMOS Sensor Covering Sensor ChipCMOS Sensor Chip Pixel Cost Reduction by O(10Pixel Cost Reduction by O(1044 )) #12;7 September #12;7 September 2004 John Learned at Pylos Photo 2/3 Scale prototypePhoto 2/3 Scale prototype 2

  9. 26 ASHRAE Transactions: Research Cooling-dominated commercial and institutional build-

    E-Print Network [OSTI]

    - ings served by ground-source heat pump (GSHP) systems generally reject more heat to a closed ground design of hybrid ground- source heat pump systems. INTRODUCTION Ground-source heat pump (GSHP) systems of Hybrid Ground-Source Heat Pump Systems That Use a Cooling Pond as a Supplemental Heat Rejecter-- A System

  10. The Best Way to Meet ASHRAE 62.2 in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  11. ASHRAE Transactions: Symposia 1107 The interest in both modular simulation and alternative

    E-Print Network [OSTI]

    a limited Modular HVAC Simulation and the Future Integration of Alternative Cooling Systems in a New cooling systems continues to rise both in the United States and in other countries, particularly those method of the new program as back- ground and then discusses some of the alternative cooling system

  12. Fluctuations in ASHRAE Refrigerant Physical Properties and the Effect on Single and Two Phase Flow

    E-Print Network [OSTI]

    Nagy, Paul

    2014-11-17T23:59:59.000Z

    .00 -8.00 -6.00 -4.00 -2.00 0.00 2.00 4.00 6.00 81-'85 85-'89 89-'93 93-'97 97-'01 01-'05 05-'09 09-'13 P er ce n t C h an ge % Years Liquid Viscosity Percent Change With Respect to Previous Edition, 40F R-22 R-152a R-600a R-134a R-410a 17...

  13. Accepted for publication in ASHRAE IAQ Applications Contact: MGApte@lbl.gov

    E-Print Network [OSTI]

    both energy and IEQ perspectives. Operating costs, electric demand, and other constraints influence Indoor Environment Dept., Lawrence Berkeley National Laboratory, Berkeley, CA, USA Massachusetts

  14. AN AMMONIA-WATER ABSORPTION-HIAT-PUMP CYCLE Donald Kuhlenschmidt, Member ASHRAE

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    to an air-source heating- only heat-pump cycle which delivers its heat in- doors via circulating liquid,000 Btuh) input unit reported. KLY WORDS Absorption Heat-pump Air conditioning heating Ammonia Donald conditioning chillers. The authors are involved in a project to use this cycle in an air source heat pump

  15. Fluctuations in ASHRAE Refrigerant Physical Properties and the Effect on Single and Two Phase Flow 

    E-Print Network [OSTI]

    Nagy, Paul

    2014-11-17T23:59:59.000Z

    handbook edition is released. Thirteen properties (liquid and vapor viscosity, thermal conductivity, specific heat, enthalpy, surface tension, density and specific volume) from five widely used refrigerants (R-22, R-134a, R-410a, R-152a, R-600a...

  16. 2004 ASHRAE. 3 Standing column wells can be used as highly efficient

    E-Print Network [OSTI]

    exchangers in geothermal heat pump systems, where hydrological and geological conditions are suitable Geothermal heat pump systems that use groundwater drawn from wells as a heat source/sink are commonly known to a domestic water well). Water is circu- lated from the well through the heat pump in an open loop pipe

  17. ASHRAE Transactions: Symposia 617 The field validation of a short time step temperature

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    consumption, based on predicted and measured heat pump entering fluid temperatures,is compared and discussed heat exchanger borehole (Yavuzturk et al. 1999), a comparison of model predictions to actual field data response factor model is presented using actual operational data from an elementary school building

  18. 96 ASHRAE Transactions: Research Current duct design methods for variable air volume

    E-Print Network [OSTI]

    of the year. Conventional duct design methods do not account for the actual zone load profile. Consequently at an off-peak load condition, and the impact of varying airflow rates to the sizing of duct systems has.Hourlyairflowrequirements, part-load fan characteristics, and duct static pressure control are incorporated into the problem

  19. 406 ASHRAE Transactions: Research The transient response of snow melting systems for pave-

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    -state conditions. Design loads (surface heat fluxes) have been calculated by taking the instantaneous weather a significant effect on overall systemperformance.Traditionalsteady-statemethodsofsnow melting system load calculation have not been able to take into account the thermal history of the system or the transient nature

  20. Austin's Adoption of ASHRAE S.P. #41 into the Local Energy Code

    E-Print Network [OSTI]

    Hart, M. N.; Holder, L.M.

    1985-01-01T23:59:59.000Z

    commercial construction involved deleting OTTV criteria and adding three new criteria: 1. Wall heating criteria 2. Wall cooling criteria 3. Peak cooling criteria The new envelope criteria makes adjustments for building geometry, orientation, shading...

  1. 30 ASHRAEJournal ashrae.org May2007 High-Performance Schools

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    with an advanced vapor compression heat pump cycle into a com- pact, hybrid packaged unit. It is designed for Energy Efficiency, Humidity Control, Indoor Air Quality & First Cost ©2007, American Society of Heating an energy- efficient, packaged HVAC system that could control temperature and humidity while continuously

  2. Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation, search40 -SolarCase

  3. Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,

  4. Accomack County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation,Barriers to Scale-upAcciona

  5. Ada County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:

  6. Adair County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy Resources Jump to: navigation, search

  7. Adair County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy Resources Jump to: navigation,

  8. Adair County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy Resources Jump to:

  9. Adair County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy Resources Jump to:Information

  10. Adams County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy Resources JumpAdalenta Jump

  11. Adams County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy Resources JumpAdalenta

  12. Adams County, Illinois ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy Resources JumpAdalentaInformation

  13. Adams County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy Resources

  14. Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy ResourcesAdams County, Iowa

  15. Adams County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy ResourcesAdams County,

  16. Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy ResourcesAdams County,Information

  17. Adams County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy ResourcesAdams County,Information

  18. Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy ResourcesAdams

  19. Adams County, Washington ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy ResourcesAdamsInformation

  20. Adams County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy

  1. Addison County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy955°,

  2. Aiken County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWindcapital GmbHAhuachapan

  3. Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump to: navigation, search

  4. Alachua County, Florida ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008EnergyAlabama/Wind Resources

  5. Alamance County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008EnergyAlabama/Wind

  6. Alameda County, California ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60

  7. Alamosa County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60Alameda County, California:

  8. 2014-05-08 Issuance: Energy Efficiency Improvements in ANSI/ASHRAE/IES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability and A2e

  9. Albany County, New York ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone CoStatutes:

  10. Albany County, Wyoming ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone CoStatutes:Albany County,

  11. Albemarle County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone

  12. Alcona County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand TelephoneAlbemarleInformation Michigan

  13. Alcorn County, Mississippi ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin SeikiandAlcopar Jump to: navigation, search

  14. Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin SeikiandAlcopar Jump to:Alden,

  15. Aleutians West Census Area, Alaska ASHRAE 169-2006 Climate Zone | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin SeikiandAlcopar Jump to:Alden,East Borough,

  16. Alexander County, Illinois ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin SeikiandAlcopar Jump to:Alden,EastAlex New Energy

  17. Alexander County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin SeikiandAlcopar Jump to:Alden,EastAlex

  18. Alexandria County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin SeikiandAlcopar JumpInformation

  19. Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin SeikiandAlcoparInformation

  20. Allamakee County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformation ASHRAEAlkane

  1. Allegan County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformation ASHRAEAlkane0754°,

  2. Allegany County, Maryland ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformation ASHRAEAlkane0754°,Allegan,

  3. Allegany County, New York ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformation

  4. Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNew York: Energy Resources Jump

  5. Alleghany County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNew York: Energy

  6. Allegheny County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNew York: EnergyVirginia:

  7. Allen County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNew York:

  8. Allen County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNew York:Indiana: Energy Resources

  9. Allen County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNew York:Indiana: EnergyInformation

  10. Allen County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNew York:Indiana:

  11. Allen Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNew York:Indiana:69946°,

  12. Allendale County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNew

  13. Alpena County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne, Pennsylvania Product:AlmacenaInformation

  14. Alpine County, California ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne,Energy Information Jump to:AlphaInformation

  15. Amador County, California ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch Green Fuels joint ventureInformation

  16. Amelia County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch Green FuelsEnergyAmandusAmeco Solar

  17. Amherst County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch GreenAmerenSamoa:Amesville, Ohio:

  18. Amite County, Mississippi ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch

  19. Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExplorationDuring And

  20. Anderson County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan

  1. Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°, -95.3102505° Show Map Loading

  2. Anderson County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°, -95.3102505° Show Map

  3. Anderson County, Tennessee ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°, -95.3102505° Show MapCarolina:

  4. Anderson County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°, -95.3102505° Show

  5. Andrew County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°, -95.3102505°

  6. Andrews County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°, -95.3102505°Missouri: Energy

  7. Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°, -95.3102505°Missouri:Information

  8. Angelina County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°,Anfu Guanshan Hydropower

  9. Anne Arundel County, Maryland ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°,Anfu GuanshanPaiya4453°,Information

  10. Anoka County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°,AnfuNorth, Texas:Information

  11. Anson County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°,AnfuNorth,Open EnergyAnotherInformation

  12. Antelope County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°,AnfuNorth,OpenAntaris Solar Jump

  13. Antrim County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat

  14. Apache County, Arizona ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County, Michigan: Energy Resources

  15. Appanoose County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County, Michigan: EnergySalient ofApowerAppalachian

  16. Appling County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT), India Sector: SolarAppling

  17. Appomattox County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT), India Sector:

  18. Aransas County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT), IndiaOpenAquate

  19. Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT), IndiaOpenAquateTexas: Energy

  20. Archer County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT),ArborviewArcher City, Texas:

  1. Archuleta County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT),ArborviewArcher City,Information

  2. Arenac County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,DelhiArdmore, Pennsylvania: EnergyPark Place:

  3. Arkansas County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim

  4. Arlington County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansas County, Arkansas:

  5. Armstrong County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansas County, Arkansas:ArlingtonArmonk, New York:

  6. Armstrong County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansas County, Arkansas:ArlingtonArmonk, New

  7. Aroostook County, Maine ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansas County,Minnesota: Energy Resources

  8. Arthur County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansas County,Minnesota: EnergyArranjoArroyoFacility

  9. Ascension Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansas County,Minnesota:Arthur, NorthAsahiSolar

  10. Ashe County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansas County,Minnesota:Arthur,Ascent°,

  11. Ashland County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford, Alabama: Energy Resources

  12. Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford, Alabama: Energy ResourcesOhio:

  13. Ashley County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford, Alabama: EnergyNew

  14. Ashtabula County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford, Alabama: EnergyNewAshley

  15. Asotin County, Washington ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,

  16. Assumption Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,Asotin County,ResourceSpain Jump

  17. Atascosa County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,AsotinAston Solar LLC

  18. Atchison County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,AsotinAston Solar LLCTexas:

  19. Atchison County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,AsotinAston Solar

  20. Atlantic County, New Jersey ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation, search Name: AtlanticInformation

  1. Atoka County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation, search Name:EthanolAtlas

  2. Attala County, Mississippi ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation, searchInformation Atsun

  3. Audrain County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation,Kansas: EnergyInformation

  4. Audubon County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation,Kansas: EnergyInformationAudrainIowa

  5. Auglaize County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation,Kansas:Audubon,

  6. Augusta County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation,Kansas:Audubon,Ohio:

  7. Aurora County, South Dakota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga Energy Jump to: navigation,

  8. Austin County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga Energy JumpTexas: Energy Resources

  9. Autauga County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga Energy JumpTexas:Texas:

  10. Avery County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga EnergyAuxin Solar Jump

  11. Avoyelles Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga EnergyAuxinWisconsin: EnergyInformation

  12. Baca County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: JumpBPL

  13. Bacon County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: JumpBPLColorado:

  14. Bailey County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to:Bahamas: Energy Resources Jump

  15. Baker County, Florida ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to:Bahamas: EnergyBaiting Hollow,

  16. Baker County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to:Bahamas:

  17. Baker County, Oregon ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to:Bahamas:Georgia: Energy Resources-01

  18. Baldwin County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalch Springs, Texas:

  19. Baldwin County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalch Springs, Texas:Alabama:

  20. Ballard County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalchBallantine, Montana:

  1. Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalchBallantine,Baltazor Hot

  2. Baltimore County, Maryland ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalchBallantine,Baltazor HotCity

  3. Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont: Energy Resources Jump

  4. Bandera County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont: Energy Resources

  5. Banks County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont: EnergyclockBank of Italy Jump

  6. Banner County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont: EnergyclockBank of

  7. Bannock County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont: EnergyclockBank

  8. Baraga County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont:Solarfilms Co Ltd Jump

  9. Barber County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont:Solarfilms CoResilience Framework

  10. Barbour County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont:Solarfilms

  11. Barbour County, West Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont:SolarfilmsAlabama: Energy

  12. Barnes County, North Dakota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard, Vermont: Energy Resources JumpInformation

  13. Barnstable County, Massachusetts ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard, Vermont: EnergyInformation

  14. Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard, Vermont:

  15. Barren County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard, Vermont:Carolina: Energy

  16. Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard, Vermont:Carolina:Information

  17. Barrow County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,

  18. Barry County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County, Georgia: Energy Resources

  19. Barry County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County, Georgia: Energy

  20. Bartholomew County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County, Georgia: EnergyMissouri:

  1. Barton County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County,

  2. Barton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County,Kansas: Energy Resources

  3. Bartow County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County,Kansas:

  4. Bastrop County, Texas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow

  5. Bates County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,BarrowBastrop County, Texas:

  6. Bath County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,BarrowBastrop County, Texas:Missouri:

  7. Bath County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,BarrowBastrop County,

  8. Baxter County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,BarrowBastropDemonstration

  9. Bay County, Florida ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc

  10. Bay County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy Resources Jump to:

  11. Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy ResourcesBayWa Group

  12. Baylor County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy ResourcesBayWa GroupBayfieldB

  13. Beadle County, South Dakota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida:Tyngsboro, Massachusetts Zip:

  14. Bear Lake County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida:Tyngsboro, MassachusettsCreek,Head

  15. Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida:Tyngsboro,EnergyInformation Carolina

  16. Beaufort County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,

  17. Beauregard Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,South Carolina: Energy Resources Jump

  18. Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,South Carolina: Energy ResourcesInformation

  19. Beaver County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,South Carolina: EnergyInformation

  20. Beaver County, Utah ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,South Carolina:

  1. Beaverhead County, Montana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,South Carolina:Utah: Energy

  2. Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,South Carolina:Utah:

  3. Beckham County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,South Carolina:Utah:Minnesota:

  4. Bedford City County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,South

  5. Bedford County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County, Virginia: Energy Resources

  6. Bedford County, Tennessee ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County, Virginia: EnergyInformation

  7. Bedford County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County, Virginia:

  8. Bee County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County,New York: Energy ResourcesBeeCool

  9. Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCityStrategy | Open Energy

  10. Bell County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCityStrategy | Open

  11. Bell County, Texas ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCityStrategy | OpenCounty, Kentucky:

  12. Belmont County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay

  13. Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County, Ohio: Energy Resources JumpInformation

  14. Ben Hill County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County, Ohio: EnergyBelvedere,

  15. Benewah County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County, Ohio:Bendersville, Pennsylvania:

  16. Bennett County, South Dakota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County, Ohio:Bendersville,Increased

  17. Benson County, North Dakota ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County,Information VermontInformation

  18. Bent County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County,InformationBenson, Vermont:

  19. Benton County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County,InformationBenson,Bentley,Benton

  20. Benton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformation Indiana ASHRAEMississippi:

  1. Benton County, Oregon ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformation Indiana

  2. Benton County, Tennessee ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformation IndianaInformation

  3. Benton County, Washington ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformation

  4. Benzie County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformationBenton County,Information

  5. Bergen County, New Jersey ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: Energy Resources Jump to: navigation,

  6. Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: Energy Resources Jump to:Information Carolina

  7. Berkeley County, West Virginia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: Energy Resources Jump

  8. Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: Energy Resources JumpWestColorado:Information

  9. Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: Energy ResourcesInformation

  10. Bernalillo County, New Mexico ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: EnergyConnecticut: EnergyBerlín

  11. Berrien County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: EnergyConnecticut:New York: Energy

  12. Berrien County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: EnergyConnecticut:New York: EnergyBerrien

  13. Bertie County, North Carolina ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: EnergyConnecticut:New

  14. Recommendations for energy conservation standards for new residential buildings - volume 3: Introduction and Background to the Standard Development Effort

    SciTech Connect (OSTI)

    Not Available

    1989-05-01T23:59:59.000Z

    The Energy Conservation for New Buildings Act of 1976, as amended, 42 U.S.C Section 6831 et. seq. requires the US Department of Energy to issue energy conservation standards for the design of new residential and commercial buildings. The standards will be mandatory only for the design of new federal buildings, and will serve as voluntary guidelines for the design of new non-federal buildings. This report documents the development and testing of a set of recommendations, from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations have been developed over the past 25 months by a multidisciplinary project team, under the management of the US Department of Energy and its prime contractor, Pacific Northwest Laboratory. Volume III -- Introduction and Background to the Standard Development Effort is a description of the Standard development process and contains the rationale for the general approach and specific criteria contained within the recommendations.

  15. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01T23:59:59.000Z

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  16. Measuring Residential Ventilation System Airflows: Part 1 Laboratory

    E-Print Network [OSTI]

    1 Measuring Residential Ventilation System Airflows: Part 1 ­ Laboratory Evaluation of Airflow: residential, mechanical ventilation, measurement, ASHRAE 62.2, flow hood ABSTRACT Building codes increasingly require tighter homes and mechanical ventilation per ASHRAE Standard 62.2. These ventilation flows must

  17. A Computer Analysis of Energy Use and Energy Conservation Options for a Twelve Story Office Building in Austin, Texas

    E-Print Network [OSTI]

    Katipamula, S.; O'Neal, D. L.; Farad, M.

    1986-01-01T23:59:59.000Z

    the building. The energy consumption of the building was compared with the energy consumption of the building modified to comply with the proposed ASHRAE 90.1p standards. The base design and the ASHRAE design of the Travis building were evaluated in Brownsville...

  18. Static Pressure Losses in 6, 8, and 10-inch Non-Metallic Flexible Ducts

    E-Print Network [OSTI]

    Weaver, K.; Culp, C.

    2006-01-01T23:59:59.000Z

    This study measured airflow static pressure losses through non-metallic flexible ducts in compliance with ASHRAE Standard 120-1999, Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings (ASHRAE 1999). Duct sizes of 6, 8...

  19. Static Pressure Losses in 6, 8, and 10-inch Non-Metallic Flexible Ducts 

    E-Print Network [OSTI]

    Weaver, K.; Culp, C.

    2006-01-01T23:59:59.000Z

    This study measured airflow static pressure losses through non-metallic flexible ducts in compliance with ASHRAE Standard 120-1999, Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings (ASHRAE 1999). Duct sizes of 6, 8...

  20. SPECIAL INSTRUCTIONS TO DESIGNERS SID-D: ENERGY AND WATER CONSERVATION

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Reference Documents: ASHRAE 90.1-2007, "Energy Standard for Buildings Except Low-Rise Residential Buildings annual energy cost at least 30 percent below that of an ASHRAE 90.1 baseline building). Projects unable for the entire building and to calculate the percentage energy cost saved above the baseline. (d) Document

  1. Impacts of alternative residential energy standards - Rural Housing Amendments Study, Phase 1

    SciTech Connect (OSTI)

    Balistocky, S.; Bohn, A.A.; Heidell, J.A.; Hendrickson, P.L.; Lee, A.D.; Pratt, R.G.; Taylor, Z.T.

    1985-11-01T23:59:59.000Z

    This report has examined the role of manufactured housing in the housing market, the energy impacts of three manufactured housing standards and three site-built standards in 13 cities, and the economic impacts of those standards in 6 cities. The three standards applied to manufactured housing are the HUD Title VI standard (Manufactured Housing Construction and Safety Standards, or MHCSS), the Hud Title II-E standard, and the existing FmHA Title V standard. Those applied to site-built homes are the HUD Minimum Property Standards (MPS), the ASHRAE 90A-80 standard, and the FmHA Title V standard. Based on energy consumption alone, these analyses show that the FmHA Title V standard is the most stringent standard for both housing types (a single-section menufactured home and a single-story detached ''ranch house''). The HUD Title VI standard is the least stringent for manufactured homes, while the HUD Minimum Property Standards are the least stringent for site-built homes. Cost-effectiveness comparisons required by the Act were made for the two prototypical homes. Results of this preliminary economic analysis indicate that none of the site-built standards reflect minimum life-cycle cost as a basic criterion of their development. For manufactured homes, both the FmHA standard and the HUD Title II-E standard reduce life-cycle cost and effect positive first-year cash flows in all cities analyzed when electric resistance heating is assumed. When natural gas heating is used, both standards pass the life-cycle cost test in all cities, but the FmHA standard fails the cash flow test in all but one city. However, in the worst case, net monthly expenditures in the first year are increased by less than $9.

  2. Assessment of organic compound exposures, thermal comfort parameters, and HVAC system-driven air exchange rates in public school portable classrooms in California

    E-Print Network [OSTI]

    Shendell, Derek Garth

    2010-01-01T23:59:59.000Z

    to the ASHRAE 55 (1992) thermal comfort envelope provided inASHRAE 55 (1992) thermal comfort envelope values provided inthe ASHRAE 55 (1992) thermal comfort envelope of 30-60% RH.

  3. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    2 -based demand controlled ventilation using ASHRAE Standardoptimizing energy use and ventilation. ASHRAE TransactionsWJ, Grimsrud DT, et al. 2011. Ventilation rates and health:

  4. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    B. 2008. “Radiant floor cooling systems. ” ASHRAE Journal 4.embedded radiant heating and cooling. Geneva: InternationalM. Deru. 2010. “Radiant slab cooling for retail. ” ASHRAE

  5. Mixed-mode cooling.

    E-Print Network [OSTI]

    Brager, Gail

    2006-01-01T23:59:59.000Z

    ASHRAE’s permission. Mixed-Mode Cooling Photo Credit: Paulnatural ventilation for cooling. Buildings typically had1950s of large-scale mechanical cooling, along with other

  6. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    Washinton D.C. , Air Conditioning Contractors of America.Refrigeration and Air Conditioning Engineers. ASHRAE 2009a.Refrigerating, and Air-Conditioning Engineers. ASHRAE 2009b.

  7. Integrating Energy and Indoor Environmental Quality Retrofits in Apartments

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    ventilating, and air conditioning Indoor air quality IndoorRefrigerating, and Air Conditioning Engineers, Inc. ASHRAE (Refrigerating, and Air Conditioning Engineers, Inc. ASHRAE (

  8. Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    Washinton D.C. , Air Conditioning Contractors of America.Refrigeration and Air Conditioning Engineers. ASHRAE 2009a.Refrigerating, and Air-Conditioning Engineers. ASHRAE 2009b.

  9. An Investigation of Alternative Methods for Measuring Static Pressure of Unitary Air Conditioners and Heat Pumps

    E-Print Network [OSTI]

    Wheeler, Grant Benson

    2013-08-12T23:59:59.000Z

    This project was created to address an important issue currently faced by test facilities measuring static pressure for air-conditioning and heat pumps. Specifically, ASHRAE Standard 37, the industry standard for test setup, requires an outlet duct...

  10. Thermal Comfort of Neutral Ventilated Buildings in Different Cities

    E-Print Network [OSTI]

    Ye, X.; Zhou, Z.; Lian, Z.; Wen, Y.; Zhou, Z.; Jiang, C.

    2006-01-01T23:59:59.000Z

    Although the ASHRAE 55-1992 and ISO 7730 Standards are used all over the world, many researchers have pointed out that it is impossible to maintain a uniform thermal comfort standard worldwide because of differing climate conditions. Two field...

  11. Recommendations for 15% Above ASHRAE 90.1-2007 Code-Compliant Building Energy Efficiency Measures for Small Retail Buildings

    E-Print Network [OSTI]

    Kim, H.; Kim, K.; Baltazar, J. C.; Haberl, J. S.; Yazdani, B.

    2012-01-01T23:59:59.000Z

    Number of occupants = 120 Gross Area (sq. ft.) PNNL-16031 (Liu et al. 2006) Aspect Ratio PNNL-20405 (Thornton et al. 2011) 245 ft (L) X 61 ft (W) Number of Floors PNNL-20405 (Thornton et al. 2011) Floor-to-Floor Height (ft.) PNNL-20405 (Thornton et al.... 2011) Floor-to-Ceiling Height = 17 ft Orientation PNNL-20405 (Thornton et al. 2011) Wall Construction PNNL-16031 (Liu et al. 2006) Roof Configuration PNNL-20405 (Thornton et al. 2011) Foundation Construction PNNL-20405 (Thornton et al. 2011) Wall...

  12. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093-RP, Final Report

    E-Print Network [OSTI]

    Abushakra, B.; Sreshthaputra, A.; Haberl, J. S.; Claridge, D. E.

    2001-01-01T23:59:59.000Z

    of the diversity factor calculations are applied to the data collected for this project. The buildings analyzed for this report consisted of office buildings monitored by the ESL, and office buildings provided by the LBNL....

  13. Presented at the 1998 ASHRAE Winter Meeting, January 17-21, 1998, San Francisco, CA, and published in the proceedings.

    E-Print Network [OSTI]

    for the thermal bridging effect caused by bolts. Introduction Exterior glass facades known as curtain walls of Bolts in the Thermal Performance of Curtain-Wall Frames for Glazed Facades Brent Griffith, Elizabeth in the Thermal Performance of Curtain-Wall Frames for Glazed Facades Brent Griffith, Elizabeth Finlayson

  14. Methodology for Rating a Building's Overall Performance based on the ASHRAE/CIBSE/USGBC Performance Measurement Protocols for Commercial Buildings

    E-Print Network [OSTI]

    Kim, Hyojin 1981-

    2012-11-14T23:59:59.000Z

    for Administrative/Professional Office Buildings and Other Eight Representative Building Types based on the U.S. DOE EIA CBECS Database. ..................................................................................................................... 84 Figure... help in distributing and collecting the surveys at the case-study building. I am also grateful to my friends and colleagues at the Energy Systems Laboratory. Dr. Juan-Carlos Baltazar always supported and inspired me to complete this dissertation. Mr...

  15. The following paper was published in ASHRAE Transactions Vol. #107, Part 2, Page nos. 527-537. 2001 American

    E-Print Network [OSTI]

    ) thermography experiments, computational fluid dynamics (CFD) simulations, and calculations with traditional software for simulating two-dimensional heat conduction were conducted.The IR thermography

  16. Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary

    E-Print Network [OSTI]

    Parthasarathy, Srinandini

    2013-01-01T23:59:59.000Z

    J. 2008. Analysis of ventilation data from the United StatesASHRAE Standard 62.1-2010, Ventilation for Acceptable Indoorto VOCs and   SVOCs as ventilation rates vary   Srinandini 

  17. Preconditioning Outside Air: Cooling Loads from Building Ventilation

    E-Print Network [OSTI]

    Kosar, D.

    1998-01-01T23:59:59.000Z

    HVAC equipment manufacturers, specifiers and end users interacting in the marketplace today are only beginning to address the series of issues promulgated by the increased outside air requirements in ASHRAE Standard 62- 1989, "Ventilation...

  18. Technical Support Document: Development of the Advanced Energy Design Guide for Grocery Stores--50% Energy Savings

    SciTech Connect (OSTI)

    Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

    2008-09-01T23:59:59.000Z

    This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of grocery store buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  19. Building Aautomation system embedded air-handling unit performance degradation detector

    E-Print Network [OSTI]

    Song, L.; Wang, G.

    2014-01-01T23:59:59.000Z

    , September 14-17, 2014 Building Energy Efficiency Laboratory @ OU 23 Acknowledgements Dr. Gang Wang University of Miami Dr. Mike Brambley PNNL Funding agencies: 1. PNNL (2011): Summer research. 2. ASHRAE (2011-2013): Developing standard procedures...

  20. Utah Compliance Implementation and Evaluation Guide

    SciTech Connect (OSTI)

    Cole, Pamala C.

    2012-08-30T23:59:59.000Z

    This Guide is designed to assist state and local code jurisdictions in achieving statewide compliance with the 2009 International Energy Conservation Code (IECC) for residential buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 for commercial buildings.

  1. Grocery Store 50% Energy Savings Technical Support Document

    SciTech Connect (OSTI)

    Leach, M.; Hale, E.; Hirsch, A.; Torcellini, P.

    2009-09-01T23:59:59.000Z

    This report documents technical analysis for grocery stores aimed at providing design guidance that achieves whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  2. General Merchandise 50% Energy Savings Technical Support Document

    SciTech Connect (OSTI)

    Hale, E.; Leach, M.; Hirsch, A.; Torcellini, P.

    2009-09-01T23:59:59.000Z

    This report documents technical analysis for medium-box general merchandise stores aimed at providing design guidance that achieves whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  3. Iowa Compliance Implementation and Evaluation Guide

    SciTech Connect (OSTI)

    Cole, Pamala C.

    2012-09-04T23:59:59.000Z

    This Guide is designed to assist state and local code jurisdictions in achieving statewide compliance with the 2009 International Energy Conservation Code (IECC) for residential buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 for commercial buildings.

  4. Nevada Compliance Implementation and Evaluation Guide

    SciTech Connect (OSTI)

    Cole, Pamala C.

    2012-08-30T23:59:59.000Z

    This Guide is designed to assist state and local code jurisdictions in achieving statewide compliance with the 2009 International Energy Conservation Code (IECC) for residential buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 for commercial buildings.

  5. Recommendations for 15% Above-Code Energy Efficiency Measures for Commercial Office Buildings

    E-Print Network [OSTI]

    Montgomery, C.; Yazdani, B.; Haberl, J. S.; Culp, C.; Liu, Z.; Mukhopadhyay, J.; Cho, S.

    This report presents detailed information about the recommendations for achieving 15% above-code energy performance for commercial office buildings complying with ASHRAE Standard 90.1-19991. To accomplish the 15% annual energy consumption reductions...

  6. A Retrospective Analysis of Commercial Building Energy Codes: 1990 – 2008

    SciTech Connect (OSTI)

    Belzer, David B.; McDonald, Sean C.; Halverson, Mark A.

    2010-10-01T23:59:59.000Z

    Building Energy Codes Program's efforts are designed to result in increased stringency in national model energy codes, more rapid and broader adoption by states and localities of updated codes, and increased compliance and enforcement. Report estimates the historical impact of Building Energy Codes Program in terms of energy savings achieved that are based upon various editions of ANSI/ASHRAE/IESNA Standard 90.1 (ASHRAE Standard 90.1).

  7. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    SciTech Connect (OSTI)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01T23:59:59.000Z

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  8. Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings

    SciTech Connect (OSTI)

    Bonnema, E.; Leach, M.; Pless, S.; Torcellini, P.

    2013-02-01T23:59:59.000Z

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).

  9. Statewide Savings Projections from the Adoption of Commercial Building Energy Codes in Illinois

    SciTech Connect (OSTI)

    Cort, Katherine A.; Belzer, David B.

    2002-09-30T23:59:59.000Z

    ANSI/ASHRAE/IESNA Standard 90.1-1999 Energy Standard for Buildings except Low-Rise Residential Buildings was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. A number of jurisdictions in the state of Illinois are considering adopting ASHRAE 90.1-1999 as their commercial building energy code. This report builds on the results of a previous study, "Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-1999 as a Commercial Building Energy Code in Illinois Jurisdictions," to estimate the total potential impact of adopting ASHRAE 90.1-1999 as a statewide commercial building code in terms of Life-Cycle Cost (LCC) savings, total primary energy savings, and pollution emissions reductions.

  10. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    E-Print Network [OSTI]

    Warner, J.L.

    2009-01-01T23:59:59.000Z

    Outdoor Temperature for District Heating Systems. ” ASHRAEAssessment of Buried District Heating Piping. ” ASHRAE

  11. A Procedure for the Performance Evaluation of a New Commercial Building: Part II – Overall Methodology and Comparison of Results

    E-Print Network [OSTI]

    Song, S.; Haberl, J.S.

    Transactions Vol. 114, Part 2. For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. ESL-PA-08-06-02 Published in ASHRAE Transactions Vol. 114... reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. ESL-PA-08-06-02 Published in ASHRAE Transactions Vol. 114, Part 2. ASHRAE Transactions 391 mance of the case-study building...

  12. Foundation futures: Energy saving opportunities

    SciTech Connect (OSTI)

    Christian, J.E.

    1988-01-01T23:59:59.000Z

    Significant energy savings will result from compliance to the foundation insulation recommendations in ASHRAE Standard 90.2P, /open quotes/Energy Efficient Design of New, Low-Rise Residential Buildings/close quotes/ (ASHRAE 1987). This paper summarizes an assessment of current US energy savings from foundation insulation and estimates future savings resulting from broad-scale adoption of ASHRAE 90.2P. The assessment is based on the premise that the detailed analysis behind ASHRAE 90.2P and its systematic method of determining insulation levels in a balanced manner will allow it to become the accepted base energy performance standard for all residential construction. The total energy currently being saved by foundation insulation (30% of 1.7 million new units) in one year's worth of new housing starts in the United States is estimated at 9.6 /times/ 10/sup 12/ Btu/yr (10.1 PJ/yr (petajoule = 10/sup 15/ joule)). The full compliance with ASHRAE 90.2P leads to more than a doubling of current foundation insulation energy savings. The extrapolation of existing practice and the addition of other contributions resulting from compliance with ASHRAE 90.2 lead to an estimated energy savings by the year 2010 between 0.38 and 0.45 quad/yr (400 and 475 PJ/yr (quad = 10/sup 15/ Btu)). 11 refs., 14 tabs., 7 figs.

  13. Knight Law Center Eugene, Oregon

    E-Print Network [OSTI]

    Oregon, University of

    Knight Law Center Eugene, Oregon ASHRAE Level I Energy Audit June 2011 Prepared for University................................................................................................................................. 6 Energy Audit Procedure and Results.................................................................................................................................................. 22 #12;| ASHRAE Level One Energy Audit3 SUMMARY The William W. Knight Law Center is a four story

  14. Aircraft Cabin Environmental Quality Sensors

    E-Print Network [OSTI]

    Gundel, Lara

    2010-01-01T23:59:59.000Z

    O3.pdf Ozone_Optec _Battelle_EVS_Optec2008.pdf Ref A1.13studies (NAS/ NRC, ASHRAE/Battelle), and continuing byof the ASHRAE-sponsored Battelle study collected passenger

  15. Dynamic Thermal Modeling of a Radiant Panels System and its Environment for Commissioning: Application to Case Study

    E-Print Network [OSTI]

    Diaz, N. F.; Bertagnolio, S.; Andre, P.

    . REFERENCES Alamdari F. and Hammond P. 1983. Improved data correlations for bouyancy-driven convection in rooms.Building Services Engineering research and Techonology. Vol 4. N? 3. Pp.106-112. ASHRAE 2009. ASHRAE Handbook: Fundamentals Atlanta: American...

  16. Cost-Effective Energy Efficiency Measures for Above Code(ASHRAE 90.1-2001 and 2007) Small Restaurant Buildings in the City of Arlington

    E-Print Network [OSTI]

    Mukhopadhyay, J.; Kim, H.; Do, S.; Kim, K.H.; Baltazar, J.C.; Haberl, J.; Lewis, C.

    % of current usage from 12:00 AM to 6:00 AM) 2.7% 3.9% $1,030 1.0% $23 $1,053 $480 - $720 0.5 - 0.7 D HVAC System Measures 13 Improved HVAC System Eff iciency (From 9.3 EER to 10.5 EER) 1.9% 2.7% $713 5.8% $139 $852 $1,366 - $2,050 1.6 - 2.4 14 Improved Fan....5 - 2.3 Description of Combined Measures NOx Emissions Savings SO2 Emissions Savings CO2 Emissions Savings Site Source Annual (tons/yr) Annual (tons/yr) Annual (tons/yr) 13 Improved HVAC System Eff iciency (From 9.3 EER to 10.5 EER) $1,366 - $2...

  17. To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX. Measured energy performance a US-China demonstration

    E-Print Network [OSTI]

    and construction of an energy- efficient demonstration office building and design center to be located in Beijing. The proposed 13,000 m2 (140,000 ft2 ) nine-story office building would use U.S. energy-efficient materials) to collaborate on the design and construction of an energy-efficient demonstration building and design center

  18. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093, Preliminary Report, Literature Review and Database Search

    E-Print Network [OSTI]

    Abushakra, B.; Haberl, J. S.; Claridge, D. E.

    buildings). This study provides some guidelines as to what to look for in the current database search. Wall et al. (1984) presented an extensive data collection effort for new energy-efficient commercial buildings, in a continuing systematic... and refrigerators on the peak day, (3) to determine the effect of substituting more energy efficient ACs and refrigerators, and (4) to attempt to develop a model for estimating end-use profiles based on total load and demographic data without the need for end...

  19. Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Small Retail Buildings in the City of Arlington

    E-Print Network [OSTI]

    Do, S.; Baltazar, J.C.; Haberl, J.; Lewis, C.; Kim, K.H.; Kim, H.

    .) CoA Aspect Ratio PNNL-20405 (Thornton et al. 2011) 245 ft (L) X 61 ft (W) Number of Floors PNNL-20405 (Thornton et al. 2011) Floor-to-Floor Height (ft.) PNNL-20405 (Thornton et al. 2011) Floor-to-Ceiling Height = 17 ft Orientation PNNL-20405... (Thornton et al. 2011) Wall Construction CoA Roof Configuration PNNL-20405 (Thornton et al. 2011) Foundation Construction PNNL-20405 (Thornton et al. 2011) Wall Absorptance DOE 2.1E BDL SUMMARY, Page 12 Assuming gray, light oil paint Wall Insulation (hr...

  20. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093, Phase III Draft Report, Compilation of Diversity Factors and Load Shapes

    E-Print Network [OSTI]

    Abushakra, B.; Haberl, J. S.; Claridge, D. E.; Sreshthaputra, A.

    2000-01-01T23:59:59.000Z

    and diversity factors from: ? 27 Office Buildings monitored by ESL ? 9 Office Buildings provided by LBNL (Energy-Edge Buildings). If time allows we will process 28 additional buildings provided to us by PNNL. These additional buildings were monitored under... The Final set of the RP-1093 buildings. 7 Further Data from PNNL Mr. Todd Taylor, from PNNL, provided us with 28 ELCAP office buildings data. These ELCAP buildings are in Seattle (WA), Oregon, and Idaho, and were monitored by the Bonneville Power...

  1. ASHRAE Transactions, Vol. 106, Part 1 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of

    E-Print Network [OSTI]

    Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community. A Database of Window Annual Energy Use in Typical North American Single Family Houses Dariush Arasteh, Joe Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory University

  2. A S H R A E J O U R N A L ashrae.org MARCH 201436 Improving the rated efficiency of RTUs will yield

    E-Print Network [OSTI]

    , mod- ulating the supply fan in conjunc- tion with DCV will not only reduce the heating and cooling and new units. Building codes require that when a building is occu- pied, the supply fan should operate continuously to meet the ventilation needs, regardless of whether the RTU provides cooling or heating

  3. Presented at the ASHRAE Winter Meeting, Atlanta, GA, February 17-21, 1996, and published in the Proceedings. Calorimetric Measurements of Inward-Flowing Fraction

    E-Print Network [OSTI]

    ) or evaluated theoretically using an idealized heat transfer model (Farber, Smith et al. 1963). The underlying

  4. Development of a New ASHRAE Protocol for Measuring and Reporting the On-Site Performance of Buildings Except Low-Rise Residential Buildings

    E-Print Network [OSTI]

    Haberl, Jeff; Case, Mark; Kettler, Herald; Hunn, Bruce; Owens, Brendan

    procedures, the CAL-ARCH and ARCH rating protocols by LBNL, the United Kingdom’s British Research Establishment Environmental Assessment (BREEAM) protocol, and EnergyPrism Benchmarking Module by Nexus Energy Software. Significant work has also been...

  5. Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment Presentation, dated June 26, 2011

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy Office of Energy EfficiencyProgram

  6. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01T23:59:59.000Z

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  7. Air change effectiveness in laboratory tests of combined chilled ceiling and displacement ventilation.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2011-01-01T23:59:59.000Z

    for Displacement Ventilation. Atlanta: ASHRAE. ISO. 1993.ceiling and displacement ventilation systems. Energy andceiling and displacement ventilation systems. Submitted to

  8. A Modular Building Controls Virtual Test Bed for the Integrations of Heterogeneous Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2008-01-01T23:59:59.000Z

    Marija, Michael Wetter, and Jan Hensen. 2007. “Comparison ofASHRAE, Atlanta, GA. Hensen, Jan L. M. 1999. “A comparison

  9. Ready to Retrofit: The Process of Project Team Selection, Building Benchmarking, and Financing Commercial Building Energy Retrofit Projects

    E-Print Network [OSTI]

    Sanders, Mark D.

    2014-01-01T23:59:59.000Z

    potential  oversight  of  retrofit  and  construction  projects   •   familiarity  with  ASHRAE  energy  efficiency  and  ventilation  requirements   •   familiarity  with  renewable  

  10. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    E-Print Network [OSTI]

    Akbari, Hashem

    2010-01-01T23:59:59.000Z

    ASHRAE 90.2, the International Energy Conservation Code, andThe 2003 International Energy Conservation Code allows

  11. This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University

    E-Print Network [OSTI]

    at Oklahoma State University (http://www.hvac.okstate.edu) The correct citation for this paper is: Jeffrey without ASHRAE's permission. #12;This article was downloaded by: [Oklahoma State University] On: 16 Bernier PhD b a Fellow ASHRAE, Oklahoma State University b Member ASHRAE, Ecole Polytechnique de Montréal

  12. Impact of the Implementation of the 2000/2001 IECC on Commercial Energy Use in Texas: Analysis of Commercial Energy Savings

    E-Print Network [OSTI]

    Yazdani, B.; Im, P.; Culp, C.; Haberl, J. S.; Chongcharoensuk, C.; Kim, S.; Ahmad, M.

    2006-01-01T23:59:59.000Z

    as shown in Figure 1. In 2002, the US-DOE instructed PNNL to complete a detailed analysis of the energy savings for buildings built to ASHRAE standard 90.1-1989 versus ASHRAE Standard 90.1-1999 according to the commercial building types. In addition, F....W. Dodge publishes annual data about the total square footage of commercial building being constructed by building type. Unfortunately, the commercial building types in the PNNL study did not exactly match the F.W. Dodge data. Therefore, certain...

  13. Energy Analysis and Energy Conservation Options for the Addition to Records Storage Building

    E-Print Network [OSTI]

    Farzad, M.; O'Neal, D. L.

    1986-01-01T23:59:59.000Z

    analyzed using the DOE 2.1B building energy simulation program. An analysis was made for the building as specified in schematic designs and primary drawings. To reduce the solar heat gain of the building through the windows and skylights, a glass with high..., and implementing the proposed ASHRAE standards. Finally, the energy consumption of the building was compared with the energy consumption of the building with solar film and other options which conformed to the proposed ASHRAE energy standard. SUMMARY The energy...

  14. Ventilation Requirements in Hot Humid Iain S. Walker and Max H. Sherman

    E-Print Network [OSTI]

    LBNL-59889 Ventilation Requirements in Hot Humid Climates Iain S. Walker and Max H. Sherman residential ventilation standard, ASHRAE Standard 62.2. Meeting this standard in new construction requires the use of mechanical ventilation, which in turn can often significantly increase the latent load faced

  15. Technical support document for the proposed Federal Commercial Building energy code

    SciTech Connect (OSTI)

    Somasundaram, S.; Halverson, M.A.; Jones, C.C.; Hadley, D.L.

    1995-11-01T23:59:59.000Z

    This report presents the justification and technical documentation for all changes and updates made (since 1993) to the Energy Code for Commercial and High-Rise Residential Buildings, the codified version of ASHRAE/IES Standard 90.1-1989, ``Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings.`` These changes and updates, which were subject to the ASHRAE addenda approval process, include Addenda b, c, d, e, g, and i. A seventh addenda, Addenda f, which has not been officially approved by ASHRAE, has been included into the proposed rule. Also included in the changes was technical work conducted to justify revisions to the 1993 DOE lighting power densities. The updated text will be reviewed by the U.S. Department of Energy (DOE) and issued as the new Federal Commercial Building Energy Code (10 CFR 434); Mandatory for New Federal Commercial and Multi-Family High Rise Residential Buildings.

  16. CONFIDENTIAL: DO NOT QUOTE 1 Equivalence in Ventilation and

    E-Print Network [OSTI]

    CONFIDENTIAL: DO NOT QUOTE 1 Equivalence in Ventilation and Indoor Air Quality M. H. Sherman, I ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum

  17. Conventional Facilities Chapter 6: HVAC Systems 6-1 NSLS-II Preliminary Design Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    American Society for Testing Materials Standards American Society of Heating, Refrigeration, and Air Except Low-Rise Residential Buildings American Water Works Association ANSI/ASHRAE Standard 62 supply units, and miscellaneous cooling equipment. Since the chilled water pumps at the central plant

  18. Technical Support Document for Version 3.4.0 of the COMcheck Software

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan; Halverson, Mark A.; Lucas, Robert G.; Richman, Eric E.; Schultz, Robert W.; Winiarski, David W.

    2007-09-14T23:59:59.000Z

    COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989 and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards.

  19. Technical Support Document for Version 3.9.1 of the COMcheck Software

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan; Halverson, Mark A.; Lucas, Robert G.; Richman, Eric E.; Schultz, Robert W.; Winiarski, David W.

    2012-09-01T23:59:59.000Z

    COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989 and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards. Beginning with COMcheck version 3.8.0, support for 90.1-1989, 90.1-1999, and the 1998 IECC and version 3.9.0 support for 2000 and 2001 IECC are no longer included, but those sections remain in this document for reference purposes.

  20. Technical Support Document for Version 3.9.0 of the COMcheck Software

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan; Halverson, Mark A.; Lucas, R. G.; Richman, Eric E.; Schultz, Ralph W.; Winiarski, David W.

    2011-09-01T23:59:59.000Z

    COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989 and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards. Beginning with COMcheck version 3.8.0, support for 90.1-1989, 90.1-1999, and the 1998 IECC are no longer included, but those sections remain in this document for reference purposes.

  1. Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?

    SciTech Connect (OSTI)

    Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

    2013-05-13T23:59:59.000Z

    Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

  2. Development of Design Guidance for K-12 Schools from 30% to 50% Energy Savings: Preprint

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.; Long, N.

    2008-07-01T23:59:59.000Z

    This paper describes the development of energy efficiency recommendations for achieving 30% whole-building energy savings in K-12 schools over levels achieved by following the ANSI/ASHRAE/IESNA Standard 90.1. These design recommendations look at building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outside air treatment, and service water heating.

  3. Technical Support Document: The Development of the Advanced Energy Design Guide for Small Retail Buildings

    SciTech Connect (OSTI)

    Liu, Bing; Jarnagin, Ronald E.; Winiarski, David W.; Jiang, Wei; McBride, Merle F.; Crall, C.

    2006-09-30T23:59:59.000Z

    The Advanced Energy Design Guide for Small Retail Buildings (AEDG-SR) was developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the Department of Energy (DOE). The guide is intended to offer recommendations to achieve 30% energy savings and thus to encourage steady progress towards net-zero energy buildings. The baseline level energy use was set at buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings (refer to as the ?Standard? in this report). ASHRAE and its partners are engaged in the development of a series of guides for small commercial buildings, with the AEDG-SR being the second in the series. Previously the partnership developed the Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, which was published in late 2004. The technical support document prepared by PNNL details how the energy analysis performed in support of the Guide and documents development of recommendation criteria.

  4. Kohl's Aims for Energy Savings in Warm-Humid Climates (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    Kohl's Department Stores partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build new stores that consume at least 50% less than the requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE's Commercial Building Partnership (CBP) program. The National Renewable Energy Laboratory (NREL) provided technical expertise on the project.

  5. A Study of Transient Behavior During Start-Up of Residential Heat Pumps

    E-Print Network [OSTI]

    Katipamula, Srinivas

    in the cooling node. All the tests were conducted according to the ASHRAE Standard (1983). The effects of indoor dry-bulb temperature (72 to 80 F), indoor relative humidity (20 to 67%), outdoor dry-bulb temperature (82 to 100 F), cycling rate (0.8 to 10 cph...

  6. E F F I C I E N CY A N D R E N E W A B L E E N E R GY D IV I S I O N CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    · Energy Education Center Wins Awards · Indoor Ventilation Requirements · Energy Standards Hotline, Outdoor 53 Water Heating 42 Climate Zones 40 Computer Programs 37 Walls 36 Lighting, Kitchen 20 Website Reference Appendices 5 Other 111 Not recorded 65 Total 1966 Indoor Ventilation Based on ASHRAE 62.2 Arnold

  7. Energy Efficiency/Renewable Energy (EERE) Projects in Texas Public Schools 

    E-Print Network [OSTI]

    Kim, H.; Liu, Z.; Baltazar, J. C.; Mukhopadhyay, J.; Haberl, J. S.; Do, S.; Yazdani, B.; Culp, C.

    2010-01-01T23:59:59.000Z

    that uses ASHRAE Standard 90.1 code-compliant, school buildings for three climate zones in Texas. In this analysis, government and private data sources from the U.S. EPA Energy Star, the Texas Education Agency, and the EnergyPlus Benchmark school models were...

  8. Squeezing more light out of tighter energy codes

    SciTech Connect (OSTI)

    Richman, Eric E.

    2010-04-01T23:59:59.000Z

    This article discusses what builders and contractors should know about the various code requirements and their intent, exemptions, and allowances to streamline compliance. In order to cover most code applications, this article will focus on the ANSI/ASHRAE/IESNA 90.1 Standard and the IECC code.

  9. Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Armstrong, P. R.; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-01-31T23:59:59.000Z

    Documentation of a study to investigate one heating, ventilation and air conditioning (HVAC) system option, low-lift cooling, which offers potentially exemplary HVAC energy performance relative to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004.

  10. Proposed Specifications for Implementation of Fifth Power Plan

    E-Print Network [OSTI]

    the Washington and Oregon state energy codes, the Seattle Energy Code, the International Energy and Conservation. The proposed specifications are a compilation of the best provisions of energy codes from ASHRAE1 Standard 90 are designed to capture the most stringent energy provisions for each component of the code and reflect

  11. Conventional Facilities Chapter 7: Mechanical -Plumbing 7-1 NSLS-II Preliminary Design Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    .3.1.1 Potable Water Scope/Major elements Water heaters Piping and accessories Safety showers/ eye washes Tanks Galvanized steel (storage) Stainless steel or glass lined (water heaters) Remarks Disinfected for Buildings Except Low-Rise Residential Buildings American Water Works Association ANSI/ASHRAE Standard 62

  12. An Application of State-Of-The-Art HVAC and Building Systems

    E-Print Network [OSTI]

    Fiorino, D. P.

    planning, design, and management of the project is given particular emphasis. Also, the engineering strategies used to integrate energy efficiency, performance optimization, current technology, and cost effectiveness are underscored throughout... as well as the pre-established finish-out allowance and capital budget for the project. The standard code used for building energy efficiency was ASHRAE Standard 90 "Energy Conserva? tion in New Bui lding Design." ASH RAE Standard 90 provides minimum...

  13. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01T23:59:59.000Z

    6 th AIVC Conference “Ventilation Strategies and MeasurementAir Infiltration and Ventilation Centre, U.K. 1985REFERENCES ASHRAE. 2007. “Ventilation for Acceptable Indoor

  14. VARIATIONAL PROPERTIES OF VALUE FUNCTIONS 1 ...

    E-Print Network [OSTI]

    2012-11-15T23:59:59.000Z

    Nov 15, 2012 ... ... p(x) ? ? }. The function ? (x | X) is the indicator to a convex set X. ...... Bayesian non-linear modelling for the prediction competition. ASHRAE ...

  15. ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    et al. , Thermosiphon Water Heaters with Heat Exchangers,Refrigerators and Water Heaters, May 1977; and S. Talbert,Gas-Fired Furnaces and Water Heaters," ASHRAE Transactions,

  16. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    E-Print Network [OSTI]

    Lutz, Jim

    2014-01-01T23:59:59.000Z

    for Rating Residential Water Heaters. Atlanta, GA: ASHRAE,for Residential Water Heaters, Direct Heating Equipment, andthe Energy Consumption of Water Heaters. Title 10 Code of

  17. ENERGY ANALYSIS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Authors, Various

    2014-01-01T23:59:59.000Z

    Freezers Clothes dryers Water heaters Electric Gas Room airRefrigerators and Water Heaters, May 1977; and S. Talbert,Gas-Fired Furnaces and Water Heaters," ASHRAE Transactions,

  18. HVAC Loads in High-Performance Homes (Presentation)

    SciTech Connect (OSTI)

    Christensen, D.; Fang, X.; Winkler, J.

    2010-06-27T23:59:59.000Z

    This presentation was delivered at the ASHRAE 2010 Annual Summer Conference on June 27, 2010, and addresses humidity and AC loads in energy efficient houses.

  19. Building America Whole-House Solutions for Existing Homes: Community...

    Energy Savers [EERE]

    of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all electric production-built homes' was modeled. The...

  20. Comparison of Building Energy Modeling Programs: Building Loads

    E-Print Network [OSTI]

    Zhu, Dandan

    2014-01-01T23:59:59.000Z

    Refrigerating and Air-Conditioning Engineers. Judkoff, R. ,room and calculation of air conditioning load. ASHRAE Trans,Refrigerating and Air-Conditioning Engineers, Atlanta, GA.

  1. Healthy Zero Energy Buildings (HZEB) Program Interim Report on Cross Sectional Study of Contaminant Levels, Source Strengths, and Ventilation Rates in Retail Stores

    E-Print Network [OSTI]

    Chan, Wanyu R.

    2014-01-01T23:59:59.000Z

    Refrigerating, and Air Conditioning Engineers, Inc. Bennett,Ventilating, and Air Conditioning Survey of Small and MediumRefrigerating and Air- Conditioning Engineers (ASHRAE,

  2. Comparative Policy Study for Green Buildings in U.S. and China

    E-Print Network [OSTI]

    Khanna, Nina

    2014-01-01T23:59:59.000Z

    Refrigerating and Air-Conditioning Engineers (ASHRAE)least 75% of homes use air-conditioning equipment except inthird of homes use air conditioning. The main space heating

  3. Fact Sheet: Improving Energy Efficiency for Server Rooms and Closets

    E-Print Network [OSTI]

    Cheung, Hoi Ying Iris

    2014-01-01T23:59:59.000Z

    Heating, Ventilation and Air Conditioning Power Distributionlike a packaged air conditioning unit) for your server room(Refrigerating and Air-Conditioning Engineers’ (ASHRAE)

  4. Indoor environmental quality, adaptive action and thermal comfort in naturally ventilated and mixed-mode buildings

    E-Print Network [OSTI]

    Honnekeri, Anoop N

    2014-01-01T23:59:59.000Z

    Refrigerating and Air-Conditioning Engineers. ANSI/ASHRAE (Refrigerating and Air-Conditioning Engineers. Apte MG, FiskCooling without air conditioning: The Torrent Research

  5. Modeling the comfort effects of short-wave solar radiation indoors

    E-Print Network [OSTI]

    Arens, Edward; Huang, Li; Hoyt, Tyler; Zhou, Xin; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Refrigerating and Air-Conditioning Engineers (ASHRAE);comfort and on the air conditioning energy needed to correctby energy-intensive air-conditioning. Second, solar gain in

  6. Building operating systems services: An architecture for programmable buildings.

    E-Print Network [OSTI]

    Dawson-Haggerty, Stephen

    2014-01-01T23:59:59.000Z

    Heating, Ventilation, and Air Conditioning 2.1.2 LightingVentilation, and Air Conditioning Heating, ventilation, andRefrigerating and Air-Conditioning Engineers. ASHRAE

  7. Building Performance Simulation

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Ventilation  and  Air? conditioning, Shanghai, 2011.   10.ven- tilation, and air conditioning) systems, lighting (forRefrigerating, and Air-Conditioning Engineers, Inc. ASHRAE.

  8. Qualification of Fan Generated Duct Rumble Noise: Part 2: Results (RP 1219)

    E-Print Network [OSTI]

    Kading, J.; Mann, A.; Pate, M.B.

    represented the closest to the ideal configuration. REMOVING TONES In the cases where the sound levels were low, tones enter- ing the sound measurements from the fan and motor vibration were a concern. This issue was remedied by removing the tones from... is not permitted without ASHRAE’s prior written permission. ESL-PA-08-06-09 Published in ASHRAE Transactions Vol. 114, Part 2 36 ASHRAE Transactions 3. Redesign the fan and motor support structure to reduce vibration. 4. Study additional fans and select fans...

  9. Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    through dynamic control of ventilation systems. Energy andcontinuous mechanical ventilation systems a mean annualcompliant ASHRAE 62.2 ventilation system. Table 12: Average

  10. Indoor Airflow And Pollutant Removal In A Room With Floor-Based Task Ventilation: Results of Additional Experiments

    E-Print Network [OSTI]

    Faulkner, D.

    2011-01-01T23:59:59.000Z

    C , "Displacement Ventilation Systems in Office Rooms,"Controlled Office Ventilation System," ASHRAE Transactions,of a floor-based task ventilation system designed for use in

  11. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    E-Print Network [OSTI]

    Sherman, Max H.

    2010-01-01T23:59:59.000Z

    Mechanical Ventilation Systems. ” Int. J. Ventilation, 6(4),Residential Mechanical Ventilation Systems. ” ASHRAE HVAC&Rfor Extension of Ventilation System Tracer Gas Testing. ” (

  12. Does Mixing Make Residential Ventilation More Effective?

    E-Print Network [OSTI]

    Sherman, Max

    2011-01-01T23:59:59.000Z

    Mechanical Ventilation Systems. ” Int. J. Ventilation, 6(4),Residential Mechanical Ventilation Systems. ” ASHRAE HVAC&Rfor Extension of Ventilation System Tracer Gas Testing. ”

  13. Room air stratification in combined chilled ceiling and displacement ventilation systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01T23:59:59.000Z

    and displacement ventilation systems. HVAC&R Research, 12 (and displacement ventilation system. ASHRAE RP-1438 Finalof Displacement Ventilation System—Experimental and

  14. Performance testing of a floor-based, occupant-controlled office ventilation system

    E-Print Network [OSTI]

    Bauman, Fred; Johnston, L.; Zhang, H.; Arens, Edward A

    1991-01-01T23:59:59.000Z

    a room ment ventilation systems." ASHRAE Transactions, Vol.95, Part 2. ence, Ventilation System Performance, 18-21Fountain. 1990. "A ventilation systems in office rooms."

  15. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    Turner, William J.N.

    2014-01-01T23:59:59.000Z

    through dynamic control of ventilation systems. Energy andcontinuous mechanical ventilation systems a mean annualcompliant ASHRAE 62.2 ventilation system. Table 12: Average

  16. The energy-savings potential of electrochromic windows in the US commercial buildings sector

    E-Print Network [OSTI]

    Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

    2004-01-01T23:59:59.000Z

    Alone Photovoltaic-Powered Electrochromic Smart Window.Subject responses to electrochromic windows. To be publishedAnalysis of Prototype Electrochromic Windows, ASHRAE

  17. Experimental comparison of zone cooling load between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Olesen, Radiant floor cooling systems, ASHRAE Journal, 50 (radiant heating and cooling systems -- Part 2: Determinationradiant heating and cooling systems -- Part 4: Dimensioning

  18. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    B. 2008. “Radiant floor cooling systems. ” ASHRAE Journal 4.gain on radiant floor cooling system design. ” Proceedings,of designing radiant slab cooling systems, including load

  19. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    the energy performance of  photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer 

  20. Visualizing Energy Information in Commercial Buildings: A Study of Tools, Expert Users, and Building Occupants

    E-Print Network [OSTI]

    Lehrer, David; Vasudev, Janani

    2011-01-01T23:59:59.000Z

    of LEED-Certified Commercial Buildings. ” Proceedings,on Energy Efficiency in Buildings, ACEEE, Washington DC,System User Interface for Building Occupants. ” ASHRAE