Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Benton County, Tennessee ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

2

Benton County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

3

Benton County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Washington ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

4

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Androscoggin County, Maine ASHRAE Standard ASHRAE 169-2006 Climate...

5

Allegan County, Michigan ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Allegan County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allegan County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

6

Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Becker County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Becker County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

7

Bennington County, Vermont ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bennington County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bennington County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate...

8

Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anchorage Borough, Alaska ASHRAE Standard ASHRAE 169-2006 Climate Zone...

9

Baltimore County, Maryland ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Baltimore County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baltimore County, Maryland ASHRAE Standard ASHRAE 169-2006 Climate...

10

Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arapahoe County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone...

11

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Albemarle County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

12

Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

13

Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berks County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate...

14

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bayfield County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate...

15

Augusta County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Augusta County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Augusta County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

16

Archuleta County, Colorado ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Archuleta County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Archuleta County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate...

17

Beauregard Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Beauregard Parish, Louisiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beauregard Parish, Louisiana ASHRAE Standard ASHRAE 169-2006 Climate...

18

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barron County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

19

Bedford County, Tennessee ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bedford County, Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bedford County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate Zone...

20

Audrain County, Missouri ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Audrain County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Audrain County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

22

Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

23

Ballard County, Kentucky ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ballard County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ballard County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

24

Avoyelles Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Avoyelles Parish, Louisiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Avoyelles Parish, Louisiana ASHRAE Standard ASHRAE 169-2006 Climate...

25

Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beltrami County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate...

26

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashland County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

27

Accomack County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Accomack County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Accomack County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

28

Arlington County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Arlington County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arlington County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

29

Asotin County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Asotin County, Washington ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Asotin County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone...

30

Anderson County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Anderson County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, South Carolina ASHRAE Standard ASHRAE 169-2006...

31

Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Abbeville County, South Carolina ASHRAE Standard ASHRAE 169-2006...

32

Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barnwell County, South Carolina ASHRAE Standard ASHRAE 169-2006...

33

Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkshire County, Massachusetts ASHRAE Standard ASHRAE 169-2006...

34

Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone ...  

Open Energy Info (EERE)

Aleutians East Borough, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aleutians East Borough, Alaska ASHRAE Standard ASHRAE 169-2006...

35

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alexander County, North Carolina ASHRAE Standard ASHRAE 169-2006...

36

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alamance County, North Carolina ASHRAE Standard ASHRAE 169-2006...

37

Allendale County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Allendale County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allendale County, South Carolina ASHRAE Standard ASHRAE 169-2006...

38

Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baltimore City County, Maryland ASHRAE Standard ASHRAE 169-2006...

39

Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, South Carolina ASHRAE Standard ASHRAE 169-2006...

40

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bedford City County, Virginia ASHRAE Standard ASHRAE 169-2006...

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alleghany County, North Carolina ASHRAE Standard ASHRAE 169-2006...

42

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barbour County, West Virginia ASHRAE Standard ASHRAE 169-2006...

43

Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Belknap County, New Hampshire ASHRAE Standard ASHRAE 169-2006...

44

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bertie County, North Carolina ASHRAE Standard ASHRAE 169-2006...

45

Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone ...  

Open Energy Info (EERE)

Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bamberg County, South Carolina ASHRAE Standard ASHRAE 169-2006...

46

Alameda County, California ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Alameda County, California ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alameda County,...

47

Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

History Facebook icon Twitter icon Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaufort County, North...

48

Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aitkin County, Minnesota...

49

Adams County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

50

Baraga County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baraga County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baraga County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

51

Berrien County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Berrien County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berrien County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

52

Barbour County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barbour County, Alabama ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barbour County, Alabama ASHRAE Standard ASHRAE 169-2006 Climate Zone...

53

Banner County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Banner County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Banner County, Nebraska ASHRAE Standard ASHRAE 169-2006 Climate Zone...

54

Amelia County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Amelia County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Amelia County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

55

Andrew County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Andrew County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Andrew County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

56

Aroostook County, Maine ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Aroostook County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aroostook County, Maine ASHRAE Standard ASHRAE 169-2006 Climate Zone...

57

Baldwin County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baldwin County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baldwin County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

58

Alpena County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alpena County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alpena County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

59

Alcona County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alcona County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alcona County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

60

Armstrong County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Armstrong County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Armstrong County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Atchison County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Atchison County, Kansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atchison County, Kansas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

62

Addison County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Addison County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Addison County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate Zone...

63

Antrim County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Antrim County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Antrim County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

64

Anoka County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Anoka County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anoka County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

65

Alachua County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alachua County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alachua County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone...

66

Barton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barton County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barton County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

67

Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaver County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

68

Benton County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Arkansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Arkansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

69

Allen County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Indiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allen County, Indiana ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

70

Benton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

71

Adams County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Nebraska ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

72

Adair County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Iowa ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adair County, Iowa ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 5...

73

Adair County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adair County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

74

Adams County, Illinois ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Illinois ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Illinois ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

75

Allen County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allen County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

76

Benton County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Iowa ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Iowa ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number...

77

Ada County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Idaho ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ada County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 5...

78

Bay County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bay County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bay County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

79

Barton County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barton County, Kansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barton County, Kansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

80

Bergen County, New Jersey ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bergen County, New Jersey ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bergen County, New Jersey ASHRAE Standard ASHRAE 169-2006 Climate Zone...

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Adams County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Adams County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

82

Baylor County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baylor County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baylor County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

83

Appanoose County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Appanoose County, Iowa ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Appanoose County, Iowa ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

84

Aransas County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Aransas County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aransas County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

85

Benson County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Benson County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benson County, North Dakota ASHRAE Standard ASHRAE 169-2006 Climate...

86

Banks County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Banks County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Banks County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

87

Athens County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Athens County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Athens County, Ohio ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

88

Aiken County, South Carolina ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Aiken County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aiken County, South Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

89

Bacon County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bacon County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bacon County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

90

Austin County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Austin County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Austin County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

91

Atascosa County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Atascosa County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atascosa County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

92

Atlantic County, New Jersey ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Atlantic County, New Jersey ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atlantic County, New Jersey ASHRAE Standard ASHRAE 169-2006 Climate...

93

Beaver County, Utah ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Beaver County, Utah ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaver County, Utah ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

94

Bastrop County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bastrop County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bastrop County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

95

Alger County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alger County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alger County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

96

Baker County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baker County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baker County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

97

Bath County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bath County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bath County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

98

Bell County, Kentucky ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bell County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bell County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

99

Baker County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baker County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baker County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

100

Ashe County, North Carolina ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ashe County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashe County, North Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Albany County, New York ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Albany County, New York ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Albany County, New York ASHRAE Standard ASHRAE 169-2006 Climate Zone...

102

Barry County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barry County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barry County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

103

Aleutians West Census Area, Alaska ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Aleutians West Census Area, Alaska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aleutians West Census Area, Alaska ASHRAE Standard ASHRAE...

104

Adams County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Adams County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Ohio ASHRAE...

105

Benewah County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Benewah County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 5 Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169...

106

Bannock County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bannock County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 6 Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169...

107

Bear Lake County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bear Lake County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number 6 Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE...

108

Arthur County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Arthur County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arthur County, Nebraska...

109

Bee County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Bee County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bee County, Texas...

110

Ashley County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Ashley County, Arkansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashley County, Arkansas...

111

Bates County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Bates County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bates County, Missouri...

112

Belmont County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Belmont County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Belmont County, Ohio...

113

Barnes County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Barnes County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barnes County, North...

114

Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Adams County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, North...

115

Bennett County, South Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Page Edit History Share this page on Facebook icon Twitter icon Bennett County, South Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

116

Beadle County, South Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Data Page Edit History Share this page on Facebook icon Twitter icon Beadle County, South Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

117

Aurora County, South Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Data Page Edit History Share this page on Facebook icon Twitter icon Aurora County, South Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

118

Beckham County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleBeckham...

119

Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

120

Adams County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Appomattox County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAppomat...

122

Amite County, Mississippi ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAmiteC...

123

Amador County, California ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAmador...

124

Allegany County, Maryland ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAllegan...

125

Alleghany County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAllegha...

126

Arkansas County, Arkansas ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleArkansa...

127

Antelope County, Nebraska ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAntelop...

128

Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAcadia...

129

Adams County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype B Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

130

Adams County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdamsC...

131

Allen Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAllenP...

132

Angelina County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAngelin...

133

Baldwin County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleBaldwin...

134

Anderson County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAnderso...

135

Atoka County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAtokaC...

136

Autauga County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAutauga...

137

Audubon County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAudubon...

138

Adair County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleAdairC...

139

Barrow County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype Climate Zone Subtype A Start Date 2006-01-01 Source: ASHRAE 169 Standards http:www.ashrae.org Retrieved from "http:en.openei.orgwindex.php?titleBarrow...

140

ASHRAE 169-2006 | Open Energy Information  

Open Energy Info (EERE)

for Building Design Standards created by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org) Retrieved from "http:en.openei.orgw...

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Property:ASHRAE 169 Standard | Open Energy Information  

Open Energy Info (EERE)

Standard Standard Jump to: navigation, search This is a property of type Page. Pages using the property "ASHRAE 169 Standard" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 +

142

Property:ASHRAE 169 Climate Zone Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search This is a property of type Page. Pages using the property "ASHRAE 169 Climate Zone Number" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + Climate Zone Number 2 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + Climate Zone Number 4 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 +

143

Property:ASHRAE 169 Climate Zone Subtype | Open Energy Information  

Open Energy Info (EERE)

ASHRAE 169 Climate Zone Subtype ASHRAE 169 Climate Zone Subtype Jump to: navigation, search This is a property of type Page. Pages using the property "ASHRAE 169 Climate Zone Subtype" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Ada County, Idaho ASHRAE 169-2006 Climate Zone + Climate Zone Subtype B + Adair County, Iowa ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Adair County, Missouri ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A +

144

Property:ASHRAE 169 Start Date | Open Energy Information  

Open Energy Info (EERE)

This is a property of type Date. This is a property of type Date. Pages using the property "ASHRAE 169 Start Date" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + 1 January 2006 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + 1 January 2006 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + 1 January 2006 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + 1 January 2006 +

145

Category:County Climate Zones | Open Energy Information  

Open Energy Info (EERE)

County Climate Zones County Climate Zones Jump to: navigation, search This category contains county climate zone information in the United States of America. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "County Climate Zones" The following 200 pages are in this category, out of 3,141 total. (previous 200) (next 200) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone Accomack County, Virginia ASHRAE 169-2006 Climate Zone Ada County, Idaho ASHRAE 169-2006 Climate Zone Adair County, Iowa ASHRAE 169-2006 Climate Zone Adair County, Kentucky ASHRAE 169-2006 Climate Zone Adair County, Missouri ASHRAE 169-2006 Climate Zone Adair County, Oklahoma ASHRAE 169-2006 Climate Zone

146

Category:ASHRAE Climate Zones | Open Energy Information  

Open Energy Info (EERE)

ASHRAE Climate Zones ASHRAE Climate Zones Jump to: navigation, search Climate Zones defined in the ASHRAE 169-2006 standards. Pages in category "ASHRAE Climate Zones" The following 30 pages are in this category, out of 30 total. C Climate Zone 1A Climate Zone 1B Climate Zone 2A Climate Zone 2B Climate Zone 3A Climate Zone 3B Climate Zone 3C Climate Zone 4A Climate Zone 4B Climate Zone 4C C cont. Climate Zone 5A Climate Zone 5B Climate Zone 5C Climate Zone 6A Climate Zone 6B Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Climate Zone Number 1 C cont. Climate Zone Number 2 Climate Zone Number 3 Climate Zone Number 4 Climate Zone Number 5 Climate Zone Number 6 Climate Zone Number 7 Climate Zone Number 8 Climate Zone Subtype A Climate Zone Subtype B Climate Zone Subtype C Retrieved from

147

Climate Zone 5C | Open Energy Information  

Open Energy Info (EERE)

Climate Zone 5C Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 5 and Climate Zone Subtype C. Climate Zone...

148

Climate Zone 1B | Open Energy Information  

Open Energy Info (EERE)

search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 1 and Climate Zone Subtype B. Climate Zone 1B is defined as Dry with...

149

Climate Zone 8B | Open Energy Information  

Open Energy Info (EERE)

search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 8 and Climate Zone Subtype B. Climate Zone 8B is defined as Subarctic...

150

ASHRAE Climate Zones | Open Energy Information  

Open Energy Info (EERE)

ASHRAE Climate Zones Jump to: navigation, search Subtype A Subtype B Subtype C Climate Zone Number 1 Zone 1A Zone 1B NA Climate Zone Number 2 Zone 2A Zone 2B NA Climate Zone...

151

Property:ASHRAE 169 Climate Zone | Open Energy Information  

Open Energy Info (EERE)

Property Edit with form History Facebook icon Twitter icon Property:ASHRAE 169 Climate Zone Jump to: navigation, search This is a property of type Page. Retrieved from "http:...

152

Climate, comfort, & natural ventilation: a new adaptive comfort standard for ASHRAE standard 55  

E-Print Network (OSTI)

ASHRAE began funding a series of field studies of thermal comfort in office buildings in four different climate zones.

Brager, G. S.; de Dear, R.

2001-01-01T23:59:59.000Z

153

ASHRAE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ASHRAE ASHRAE Technology for a Better Environment 1791 Tullie Circle, NE  Atlanta, GA 30329-2305 USA  Tel 404.636.8400  Fax 404.321.5478  http://www.ashrae.org Lynn G. Bellenger, P.E., FASHRAE Reply to: PATHFINDER ENGINEERS & ARCHITECTS LLP President 134 South Fitzhugh Street Rochester, NY 14608-2268  585-325-6004 ext. 105 Fax: 585-325-6005 lbellenger@pathfinder-ea.com November 1, 2010 Michael Li U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Room 8H033 Washington, DC 20585 Regarding "Smart Grid RFI: Addressing Policy and Logistical Challenges" Dear Mr. Li: As a leader in developing and maintaining premier consensus-based energy standards for

154

Climate, comfort, & natural ventilation: a new adaptive comfort standard for ASHRAE standard 55  

E-Print Network (OSTI)

Guidelines for Comfort. ASHRAE Journal, vol 42, no. 8,Comfort in Office Buildings, ASHRAE Transactions, Vol. 94,System in Office Buildings. ASHRAE Transactions, Vol 104 (

Brager, G. S.; de Dear, R.

2001-01-01T23:59:59.000Z

155

Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE  

E-Print Network (OSTI)

HVAC on student performance. ASHRAE Journal 2006. 48: p. 22-and Opportunities for ASHRAE William Fisk Environmentaland Opportunities for ASHRAE William Fisk Sr. Scientist,

Fisk, William J.

2009-01-01T23:59:59.000Z

156

Climate Zone Number 1 | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 1 Climate Zone Number 1 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50ºF and SI Units 5000 < CDD10ºC Dry(1B) with IP Units 9000 < CDD50ºF and SI Units 5000 < CDD10ºC . The following places are categorized as class 1 climate zones: Broward County, Florida Hawaii County, Hawaii Honolulu County, Hawaii Kalawao County, Hawaii Kauai County, Hawaii Maui County, Hawaii Miami-Dade County, Florida Monroe County, Florida Retrieved from "http://en.openei.org/w/index.php?title=Climate_Zone_Number_1&oldid=21604" Category: ASHRAE Climate Zones What links here Related changes Special pages Printable version Permanent link Browse properties

157

Climate Zone 3B | Open Energy Information  

Open Energy Info (EERE)

Climate Zone 3B Climate Zone 3B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 3 and Climate Zone Subtype B. Climate Zone 3B is defined as Dry with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 . The following places are categorized as class 3B climate zones: Andrews County, Texas Baylor County, Texas Borden County, Texas Brewster County, Texas Butte County, California Callahan County, Texas Chaves County, New Mexico Childress County, Texas Clark County, Nevada Cochise County, Arizona Coke County, Texas Coleman County, Texas Collingsworth County, Texas Colusa County, California Concho County, Texas Contra Costa County, California Cottle County, Texas Crane County, Texas Crockett County, Texas

158

Climate Zone 5B | Open Energy Information  

Open Energy Info (EERE)

Climate Zone 5B Climate Zone 5B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 5 and Climate Zone Subtype B. Climate Zone 5B is defined as Dry with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 . The following places are categorized as class 5B climate zones: Ada County, Idaho Adams County, Colorado Adams County, Washington Apache County, Arizona Arapahoe County, Colorado Asotin County, Washington Baker County, Oregon Beaver County, Utah Benewah County, Idaho Bent County, Colorado Benton County, Washington Boulder County, Colorado Broomfield County, Colorado Canyon County, Idaho Carson City County, Nevada Cassia County, Idaho Catron County, New Mexico Chelan County, Washington Cheyenne County, Colorado

159

Climate Zone 2A | Open Energy Information  

Open Energy Info (EERE)

Climate Zone 2A Climate Zone 2A Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 2 and Climate Zone Subtype A. Climate Zone 2A is defined as Hot - Humid with IP Units 6300 < CDD50ºF ≤ 9000 and SI Units 3500 < CDD10ºC ≤ 5000 . The following places are categorized as class 2A climate zones: Acadia Parish, Louisiana Alachua County, Florida Allen Parish, Louisiana Anderson County, Texas Angelina County, Texas Appling County, Georgia Aransas County, Texas Ascension Parish, Louisiana Assumption Parish, Louisiana Atascosa County, Texas Atkinson County, Georgia Austin County, Texas Avoyelles Parish, Louisiana Bacon County, Georgia Baker County, Florida Baker County, Georgia Baldwin County, Alabama Bastrop County, Texas

160

ASHRAE/NIST Refrigerants Conference International concerns about the impact of refrigerants on climate change drive the  

E-Print Network (OSTI)

ASHRAE/NIST Refrigerants Conference International concerns about the impact of refrigerants conference between ASHRAE and NIST. Supporting Organizations: NOTE: Registration closes Oct. 18 and includes conference proceedings, daily lunch and dinner Monday evening. ASHRAE Members: $425 Non

Fernández-Juricic, Esteban

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Climate Zone 7B | Open Energy Information  

Open Energy Info (EERE)

B B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 7 and Climate Zone Subtype B. Climate Zone 7A is defined as Very Cold with IP Units 9000 < HDD65ºF ≤ 12600 and SI Units 5000 < HDD18ºC ≤ 7000 . The following places are categorized as class 7B climate zones: Clear Creek County, Colorado Grand County, Colorado Gunnison County, Colorado Hinsdale County, Colorado Jackson County, Colorado Lake County, Colorado Lincoln County, Wyoming Mineral County, Colorado Park County, Colorado Pitkin County, Colorado Rio Grande County, Colorado Routt County, Colorado San Juan County, Colorado Sublette County, Wyoming Summit County, Colorado Teton County, Wyoming Retrieved from "http://en.openei.org/w/index.php?title=Climate_Zone_7B&oldid=2161

162

Climate Zone 6B | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Climate Zone 6B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 6 and Climate Zone Subtype B. Climate Zone 6B is defined as Dry with IP Units 7200 < HDD65ºF ≤ 9000 and SI Units 4000 < HDD18ºC ≤ 5000 . The following places are categorized as class 6B climate zones: Adams County, Idaho Alamosa County, Colorado Albany County, Wyoming Alpine County, California Archuleta County, Colorado Bannock County, Idaho Bear Lake County, Idaho Beaverhead County, Montana Big Horn County, Montana Big Horn County, Wyoming

163

Climate Zone 4C | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Climate Zone 4C Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 4 and Climate Zone Subtype C. Climate Zone 4C is defined as Mixed - Marine with IP Units 3600 < HDD65ºF ≤ 5400 and SI Units 2000 < HDD18ºC ≤ 3000 . The following places are categorized as class 4C climate zones: Benton County, Oregon Clackamas County, Oregon Clallam County, Washington Clark County, Washington Clatsop County, Oregon Columbia County, Oregon Coos County, Oregon Cowlitz County, Washington Curry County, Oregon Douglas County, Oregon

164

Climate Zone 3C | Open Energy Information  

Open Energy Info (EERE)

C C Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 3 and Climate Zone Subtype C. Climate Zone 3C is defined as Warm - Marine with IP Units CDD50ºF ≤ 4500 AND HDD65ºF ≤ 3600 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 2000 . The following places are categorized as class 3C climate zones: Alameda County, California Marin County, California Mendocino County, California Monterey County, California Napa County, California San Benito County, California San Francisco County, California San Luis Obispo County, California San Mateo County, California Santa Barbara County, California Santa Clara County, California Santa Cruz County, California Sonoma County, California Ventura County, California

165

Climate Zone 3A | Open Energy Information  

Open Energy Info (EERE)

A A Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 3 and Climate Zone Subtype A. Climate Zone 3A is defined as Warm - Humid with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 . The following places are categorized as class 3A climate zones: Abbeville County, South Carolina Adair County, Oklahoma Adams County, Mississippi Aiken County, South Carolina Alcorn County, Mississippi Alfalfa County, Oklahoma Allendale County, South Carolina Amite County, Mississippi Anderson County, South Carolina Anson County, North Carolina Archer County, Texas Arkansas County, Arkansas Ashley County, Arkansas Atoka County, Oklahoma Attala County, Mississippi Autauga County, Alabama Baldwin County, Georgia

166

Climate Zone 5A | Open Energy Information  

Open Energy Info (EERE)

Zone 5A Zone 5A Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 5 and Climate Zone Subtype A. Climate Zone 5A is defined as Cool- Humid with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 . The following places are categorized as class 5A climate zones: Adair County, Iowa Adair County, Missouri Adams County, Illinois Adams County, Indiana Adams County, Iowa Adams County, Nebraska Adams County, Pennsylvania Albany County, New York Allegan County, Michigan Alleghany County, North Carolina Allegheny County, Pennsylvania Allen County, Indiana Allen County, Ohio Andrew County, Missouri Antelope County, Nebraska Appanoose County, Iowa Armstrong County, Pennsylvania Arthur County, Nebraska

167

Climate Zone Number 7 | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 7 Climate Zone Number 7 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 7 is defined as Very Cold with IP Units 9000 < HDD65ºF ≤ 12600 and SI Units 5000 < HDD18ºC ≤ 7000 . The following places are categorized as class 7 climate zones: Aitkin County, Minnesota Aleutians East Borough, Alaska Aleutians West Census Area, Alaska Anchorage Borough, Alaska Aroostook County, Maine Ashland County, Wisconsin Baraga County, Michigan Barnes County, North Dakota Bayfield County, Wisconsin Becker County, Minnesota Beltrami County, Minnesota Benson County, North Dakota Bottineau County, North Dakota Bristol Bay Borough, Alaska Burke County, North Dakota Burnett County, Wisconsin Carlton County, Minnesota Cass County, Minnesota

168

Climate Zone 2B | Open Energy Information  

Open Energy Info (EERE)

B B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 2 and Climate Zone Subtype B. Climate Zone 2B is defined as Dry with IP Units 6300 < CDD50ºF ≤ 9000 and SI Units 3500 < CDD10ºC ≤ 5000 . The following places are categorized as class 2B climate zones: Bandera County, Texas Dimmit County, Texas Edwards County, Texas Frio County, Texas Imperial County, California Kinney County, Texas La Paz County, Arizona La Salle County, Texas Maricopa County, Arizona Maverick County, Texas Medina County, Texas Pima County, Arizona Pinal County, Arizona Real County, Texas Uvalde County, Texas Val Verde County, Texas Webb County, Texas Yuma County, Arizona Zapata County, Texas Zavala County, Texas Retrieved from

169

Climate Zone 4A | Open Energy Information  

Open Energy Info (EERE)

A A Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 4 and Climate Zone Subtype A. Climate Zone 4A is defined as Mixed - Humid with IP Units CDD50ºF ≤ 4500 AND 3600 < HDD65ºF ≤ 5400 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 3000 . The following places are categorized as class 4A climate zones: Accomack County, Virginia Adair County, Kentucky Adams County, Ohio Alamance County, North Carolina Albemarle County, Virginia Alexander County, Illinois Alexander County, North Carolina Alexandria County, Virginia Allegany County, Maryland Alleghany County, Virginia Allen County, Kansas Allen County, Kentucky Amelia County, Virginia Amherst County, Virginia Anderson County, Kansas Anderson County, Kentucky

170

Climate Zone 4B | Open Energy Information  

Open Energy Info (EERE)

B B Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 4 and Climate Zone Subtype B. Climate Zone 4B is defined as Dry with IP Units CDD50ºF ≤ 4500 AND 3600 < HDD65ºF ≤ 5400 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 3000 . The following places are categorized as class 4B climate zones: Amador County, California Armstrong County, Texas Baca County, Colorado Bailey County, Texas Beaver County, Oklahoma Bernalillo County, New Mexico Briscoe County, Texas Calaveras County, California Carson County, Texas Castro County, Texas Cibola County, New Mexico Cimarron County, Oklahoma Cochran County, Texas Curry County, New Mexico Dallam County, Texas De Baca County, New Mexico Deaf Smith County, Texas

171

Climate Zone 6A | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 6 and Climate Zone Subtype A. Climate Zone 6A is defined as Cold - Humid with IP Units 7200 < HDD65ºF ≤ 9000 and SI Units 4000 < HDD18ºC ≤ 5000 . The following places are categorized as class 6A climate zones: Adams County, North Dakota Adams County, Wisconsin Addison County, Vermont Alcona County, Michigan Alger County, Michigan Allamakee County, Iowa Allegany County, New York Alpena County, Michigan Androscoggin County, Maine Anoka County, Minnesota Antrim County, Michigan Arenac County, Michigan Aurora County, South Dakota Barron County, Wisconsin Beadle County, South Dakota Belknap County, New Hampshire Bennington County, Vermont

172

2005 ASHRAE. 291 The recent ASHRAE project, "Updating the ASHRAE/  

E-Print Network (OSTI)

©2005 ASHRAE. 291 ABSTRACT The recent ASHRAE project, "Updating the ASHRAE/ ACCA Residential rate and ground (slab and basement) losses. INTRODUCTION The research project, "Updating the ASHRAE principles as described by Pedersen et al. (1997, 1998) and ASHRAE (2001). RHB is documented by Barnaby et al

173

308 2005 ASHRAE. The recent ASHRAE project, "Updating the ASHRAE/  

E-Print Network (OSTI)

308 ©2005 ASHRAE. ABSTRACT The recent ASHRAE project, "Updating the ASHRAE/ ACCA Residential cooling load, RHB applies the general approach of the ASHRAE heat balance (HB) method, based on room 95 application, devel- oped by modification and extension of the ASHRAE Loads Toolkit. The paper

174

Climate Zone Number 3 | Open Energy Information  

Open Energy Info (EERE)

Number 3 Number 3 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 3 is defined as Warm - Humid(3A) with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 Dry(3B) with IP Units 4500 < CDD50ºF ≤ 6300 and SI Units 2500 < CDD10ºC < 3500 Warm - Marine(3C) with IP Units CDD50ºF ≤ 4500 AND HDD65ºF ≤ 3600 and SI Units CDD10ºC ≤ 2500 AND HDD18ºC ≤ 2000 . The following places are categorized as class 3 climate zones: Abbeville County, South Carolina Adair County, Oklahoma Adams County, Mississippi Aiken County, South Carolina Alameda County, California Alcorn County, Mississippi Alfalfa County, Oklahoma Allendale County, South Carolina Amite County, Mississippi Anderson County, South Carolina

175

Climate Zone Number 5 | Open Energy Information  

Open Energy Info (EERE)

5 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 Dry(5B) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 Marine(5C) with IP Units 5400 < HDD65ºF ≤ 7200 and SI Units 3000 < HDD18ºC ≤ 4000 . The following places are categorized as class 5 climate zones: Ada County, Idaho Adair County, Iowa Adair County, Missouri Adams County, Colorado Adams County, Illinois Adams County, Indiana Adams County, Iowa Adams County, Nebraska Adams County, Pennsylvania Adams County, Washington Albany County, New York Allegan County, Michigan Alleghany County, North Carolina

176

ASHRAE and residential ventilation  

E-Print Network (OSTI)

conditioning Engineers. 2001. ASHRAE, Indoor Air QualityABOUT/IAQ_papr01.htm ASHRAE. Standard 62.2-2003:Ventilation Requirements. ASHRAE Journal, pp. 51- 55, June

Sherman, Max H.

2003-01-01T23:59:59.000Z

177

Development of the design climatic data for the 1997 ASHRAE Handbook -- Fundamentals  

SciTech Connect

This paper describes the process used to revise the design weather data tables in the 1997 ASHRAE Handbook--Fundamentals. Design conditions were determined for 509 US, 134 Canadian, 339 European, 293 Asian, and 169 other worldwide locations. Thirty-three years of hourly weather data were used for approximately half of the US and all of the Canadian locations. Twelve years of data were used for the other locations. The data went through quality checking and short-term linear interpolation filling processes. Months that had sufficient data were then used in the analysis. The data were analyzed to produce annual frequency-of-occurrence design dry-bulb (DB), wet-bulb (WB), and dew-point (DP) temperatures with mean coincident values at the design conditions. A comparison with the previous design values indicated that the new dry-bulb and wet-bulb design conditions are slightly less extreme than the values previously published. However, the new design dew-point values indicate the potential for significantly more extreme dehumidification design conditions than would be found by using the old extreme dry-bulb temperature with mean coincident wet-bulb temperature. Software was also developed so users could extract the design values, cumulative frequencies, and DB/DP, DB/WB, DB/H, and DB/WS coincident matrices for 1444 locations from a CD-ROM.

Colliver, D.G.; Burks, T.F.; Gates, R.S.; Zhang, H.

2000-07-01T23:59:59.000Z

178

Expectations of Indoor Climate Control  

E-Print Network (OSTI)

humid climate, ASHRAE Trans.. 100(2) (1994). [7] A . Lovins,isothermal environments, ASHRAE Trans. , 100 (2) (1994) 14.

Fountain, M.; Brager, G.; de Dear, Richard

1996-01-01T23:59:59.000Z

179

ASHRAE Research PROGRAM OVERVIEW  

E-Print Network (OSTI)

ASHRAE Research PROGRAM OVERVIEW November 8, 2011 Michael R. Vaughn, P.E. Manager, Research and Technical Services MORTS@ashrae.net #12;What we will cover · Introduction to ASHRAE Research · ASHRAE's Strategic Plan for Research · Research and Objectives related to Heat Pumps · GSHP System at ASHRAE HQ

Oak Ridge National Laboratory

180

Project Brief: ASHRAE, Inc.  

Science Conference Proceedings (OSTI)

... RECIPIENT: ASHRAE, Inc., Atlanta, GA. Project duration: 3 Years; Total NIST Funding: $1,500,000. ... Jodi Dunlop, 678-539-1140 jdunlop@ashrae.org. ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55  

E-Print Network (OSTI)

ASHRAE began funding a series of field studies of thermal comfort in office buildings spread across four different climate zones.

de Dear, Richard; Brager, Gail

2002-01-01T23:59:59.000Z

182

Expectations of Indoor Climate Control  

E-Print Network (OSTI)

a hot-humid climate, ASHRAE Trans.. 100(2) (1994). [7] A .isothermal environments, ASHRAE Trans. , 100 (2) (1994) 14.

Fountain, M.; Brager, G.; de Dear, Richard

1996-01-01T23:59:59.000Z

183

ASHRAE Building EQ  

SciTech Connect

This ASHRAE Journal article provides an overview of the evolution of ASHRAE Standard 90.1 from its inception in 1975 to the current year. Key milestones in the life of the standard are highlighted and the article presents a closer look at recent versions of the standard.

Jarnagin, Ronald E.

2009-12-01T23:59:59.000Z

184

ASHRAE Installs New Officers, Directors DENVER ASHRAE has installed  

E-Print Network (OSTI)

ASHRAE Installs New Officers, Directors DENVER ­ ASHRAE has installed new officers and directors for 2013-14 at its Annual Meeting held here June 22-26. The ASHRAE Presidential Address is viewable on You is William P. "Bill" Bahnfleth, Ph.D., P.E., Fellow ASHRAE, ASME Fellow, a professor of Architectural

Maroncelli, Mark

185

Comparison of ASHRAE Standard 90.1, 189.1 and IECC Codes for Large Office Buildings in Texas  

E-Print Network (OSTI)

Six energy codes were compared in terms of annual site and source energy consumption. This comparison includes ASHRAE Standard 90.1-1989, ASHRAE Standard 90.1-1999, ASHRAE Standard 90.1-2007, ASHRAE Standard 90.1-2010, IECC 2009 and ASHRAE 189.1-2009. The analysis was performed for three Texas counties: Harris (climate zone 2A), Tarrant (climate zone 3A) and Potter (climate zone 4B). Both annual site and source energy consumption were compared. ASHRAE Standard 90.1-1989 was considered as the base case. ASHRAE Standard 90.1-1989 was considered as the base-case. When considering site energy consumption, ASHRAE Standard 90.1-1999 provides an improvement of 16.7%-18.6%. ASHRAE Standard 90.1-2004 provides an improvement of 22.3%-32.6%, ASHRAE Standard 90.1-2007 provides an improvement of 28.1%-33.9%, IECC 2009 provides an improvement of 27.4%-35.3%, ASHRAE Standard 90.1-2010 provides an improvement of 42.1%-47.7%, and ASHRAE 189.1- 2009 provides an improvement of 46.9%-54.9% above the ASHRAE Standard 90.1-1989 base-case. When considering source energy consumption, ASHRAE Standard 90.1-1999 provides an improvement of 14.5%- 15.0%, ASHRAE Standard 90.1-2004 provides an improvement of 21.6%- 27.2%, ASHRAE Standard 90.1-2007 provides an improvement of 23.5%-28.4%, and IECC 2009 provides an improvement of 23.4%-30.5%. ASHRAE Standard 90.1-2010 provides an improvement of 41.8%-45.7% and ASHRAE 189.1-2009 provides an improvement of 44.5%-51.8% above the ASHRAE Standard 90.1-1989 base-case.

Mukhopadhyay, J.; Baltazar, J.C.; Kim, H.; Haberl, J.

2011-01-01T23:59:59.000Z

186

ASHRAE Standard 152 Spreadsheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ASHRAE Standard 152 Spreadsheet ASHRAE Standard 152 Spreadsheet ASHRAE Standard 152 quantifies the delivery efficiency of duct systems, based on factors including location,...

187

ANSI/ASHRAE/IES Standard 90.1-2010 Final Determination Quantitative  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Final Determination Quantitative 2010 Final Determination Quantitative Analysis The U.S. Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of ASHRAE Standard 90.1-2010 would result in energy savings compared with buildings constructed to ASHRAE Standard 90.1- 2007. The final analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1- 2010. All 109 addenda processed by ASHRAE in the creation of ASHRAE Standard 90.1-2010 from ASHRAE Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for

188

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

intheASHRAEHandbookofFundamentals. (WhilewecouldReferences ASHRAE Handbook of Fundamentals, Ch 27,

Sherman, Max

2008-01-01T23:59:59.000Z

189

Richmond City County, Virginia: Energy Resources | Open Energy...  

Open Energy Info (EERE)

City County is a county in Virginia. Its FIPS County Code is 760. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Retrieved from "http:...

190

Montgomery County, Kentucky: Energy Resources | Open Energy Informatio...  

Open Energy Info (EERE)

County is a county in Kentucky. Its FIPS County Code is 173. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Montgomery County,...

191

Park County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming. Its FIPS County Code is 029. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Registered Energy Companies in Park County, Wyoming Nacel...

192

Park County, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Montana. Its FIPS County Code is 067. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Places in Park County, Montana Clyde Park, Montana Cooke...

193

Carroll County, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County is a county in Tennessee. Its FIPS County Code is 017. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Carroll County,...

194

Bristol County, Rhode Island: Energy Resources | Open Energy...  

Open Energy Info (EERE)

County is a county in Rhode Island. Its FIPS County Code is 001. It is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Registered Energy Companies in...

195

Knox County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Knox County is a county in Kentucky. Its FIPS County Code is 121. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Knox County, Kentucky...

196

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

197

346 2010 ASHRAE This paper is based on findings resulting from ASHRAE Research Project RP-1299.  

E-Print Network (OSTI)

346 ©2010 ASHRAE This paper is based on findings resulting from ASHRAE Research Project RP-1299 (Minimum Efficiency Reporting Value, as defined by ASHRAE Standard 52.2-2007) typically have a greaterD Atila Novoselac, PhD Student Member ASHRAE Member ASHRAE Member ASHRAE Brent Stephens is a graduate

Siegel, Jeffrey

198

ASHRAE's Living Laboratory  

SciTech Connect

ASHRAE recently remodeled its headquarters building in Atlanta with the intention of making the building a LEED Gold building. As part of that renovation the building was enhanced with additional sensors and monitoring equipment to allow it to serve as a Living Laboratory for use by members and the general public to study the detailed energy use and performance of buildings. This article provides an overview of the Living Laboratory and its capabilities.

Jarnagin, Ronald E.; Brambley, Michael R.

2008-10-01T23:59:59.000Z

199

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network (OSTI)

May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 Berkeley National Laboratory Berkeley, CA 94720 April 1999 In January 1999 ASHRAE's Standard Project, approved ASHRAE's first complete standard on residential ventilation for public review

200

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

AssessingIndoorAirQuality,ASHRAETrans. 97(2),pp896?IndoorAirQuality ASHRAETrans. pp93?101Vol. 111(I)Energy Characteristics, ASHRAE Transactions,Vol.103(

Sherman, Max

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

LBNL-54331 1 ASHRAE'S FIRST RESIDENTIAL  

E-Print Network (OSTI)

LBNL-54331 1 ASHRAE'S FIRST RESIDENTIAL VENTILATION STANDARD1 M. H. Sherman2 , Ph.D. Fellow ASHRAE ABSTRACT ASHRAE has recently published its first residential ventilation standard, Standard 62 in the report. ASHRAE is continuing to develop and enhance these efforts by using a continuous maintenance

202

ANSI/ASHRAE/IESNA Standard 90.1-2010 Preliminary Determination Quantitative Analysis  

SciTech Connect

The United States (U.S.) Department of Energy (DOE) conducted a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The preliminary analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOEs preliminary determination. However, out of the 109 addenda, 34 were preliminarily determined to have measureable and quantifiable impact.

Halverson, Mark A.; Liu, Bing; Rosenberg, Michael I.

2010-11-01T23:59:59.000Z

203

2005 ASHRAE. 109 Groundwater heat pump systems using standing column  

E-Print Network (OSTI)

©2005 ASHRAE. 109 ABSTRACT Groundwater heat pump systems using standing column wells Carl D. Orio Carl N. Johnson, PhD, PE Simon J. Rees, PhD Member ASHRAE Member ASHRAE Member ASHRAE A. Chiasson, PhD, PE Zheng Deng, PhD Jeffrey D. Spitler, PhD, PE Member ASHRAE Student Member ASHRAE Fellow

204

Ventilation Based on ASHRAE 62.2  

E-Print Network (OSTI)

Indoor Ventilation Based on ASHRAE 62.2 Arnold Schwarzenegger Governor California Energy Commission Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California Energy Commission has created the following guide to provide assistance in complying with ANSI/ASHRAE

205

Can ASHRAE Standard 62-1989 Requirements be Satisfied while Maintaining Moisture Control using Stock HVAC Equipment in Hot, Humid Climates?  

E-Print Network (OSTI)

Outdoor air intake rates are studied to determine their impacts on moisture control in buildings, especially in hot, humid climates. Key impacts of outdoor air intake rates can be readily modeled and studied using computer simulations of building energy costs. Increased ventilation rates create real capital and operating costs for building owners and operators, with implications beyond energy costs relating to increased ventilation requirements. In hot, humid climates, increased ventilation rates increase latent loads more than sensible loads, requiring lower sensible heat ratios. Stock HVAC package units and split systems are not available with the requisite sensible heat ratios, and cannot maintain moisture control in small commercial buildings without costly modifications.

Turner, S. C.

1996-01-01T23:59:59.000Z

206

ASHRAE Standard 62-1989: Energy, Cost, and Program Implications.  

SciTech Connect

ASHRAE Standard 62-1989 (Standard 62-89) Ventilation for Acceptable Indoor Air Quality'' is the new heating, ventilating, and air-conditioning (HVAC) industry consensus for ventilation air in commercial buildings. Bonneville Power Administration (Bonneville) references ASHRAE Standard 62-81 (the predecessor to Standard 62-89) in their current environmental documents for required ventilation rates. Through its use, it had become evident to Bonneville that Standard 62-81 needed interpretation. Now that the revised Standard (Standard 62-89) is available, its usefulness needs to be evaluated. Based on current information and public comment, the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) revised Standard 62-1981 to Standard 62-89. Bonneville's study estimated the energy and cost implications of ASHRAE Standard 62-89 using simulations based on DOE-2.1D, a computer simulation program which estimates building use hourly as a function of building characteristics and climatic location. Ten types of prototypical commercial buildings used by Bonneville for load forecasting purposes were examined: Large and Small Office, Large and Small Retail, Restaurant, Warehouse, Hospital, Hotel, School, and Grocery. These building characterizations are based on survey and energy metering data and represent average or typical construction and operation practices and mechanical system types. Prototypical building ventilation rates were varied in five steps to estimate the impacts of outside air on building energy use. 11 refs., 14 tabs.

Steele, Tim R.; Brown, Marilyn A.

1990-10-15T23:59:59.000Z

207

ASHRAE Standard 62-1989: Energy, Cost, and Program Implications.  

SciTech Connect

ASHRAE Standard 62-1989 (Standard 62-89) Ventilation for Acceptable Indoor Air Quality'' is the new heating, ventilating, and air-conditioning (HVAC) industry consensus for ventilation air in commercial buildings. Bonneville Power Administration (Bonneville) references ASHRAE Standard 62-81 (the predecessor to Standard 62-89) in their current environmental documents for required ventilation rates. Through its use, it had become evident to Bonneville that Standard 62-81 needed interpretation. Now that the revised Standard (Standard 62-89) is available, its usefulness needs to be evaluated. Based on current information and public comment, the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) revised Standard 62-1981 to Standard 62-89. Bonneville's study estimated the energy and cost implications of ASHRAE Standard 62-89 using simulations based on DOE-2.1D, a computer simulation program which estimates building use hourly as a function of building characteristics and climatic location. Ten types of prototypical commercial buildings used by Bonneville for load forecasting purposes were examined: Large and Small Office, Large and Small Retail, Restaurant, Warehouse, Hospital, Hotel, School, and Grocery. These building characterizations are based on survey and energy metering data and represent average or typical construction and operation practices and mechanical system types. Prototypical building ventilation rates were varied in five steps to estimate the impacts of outside air on building energy use. 11 refs., 14 tabs.

Steele, Tim R.; Brown, Marilyn A.

1990-10-15T23:59:59.000Z

208

Comparison Between Predicted Duct Effectiveness from Proposed ASHRAE  

E-Print Network (OSTI)

LBNL-50008 Comparison Between Predicted Duct Effectiveness from Proposed ASHRAE Standard 152P of California. #12;1 LBNL-50008 Comparison Between Predicted Duct Effectiveness from Proposed ASHRAE Standard. McWilliams Iain S. Walker, Ph.D. ASHRAE Student Member ASHRAE Member ABSTRACT The proposed ASHRAE

209

72 ASHRAE Journal ashrae.org Fe b r u a r y 2 0 1 2 STANDARDS AND CODES  

E-Print Network (OSTI)

72 ASHRAE Journal ashrae.org Fe b r u a r y 2 0 1 2 STANDARDS AND CODES Led by ENERGY STAR Distribution5% = ~400 hrs/yr Percentage of Year 8,760 Hours This article was published in ASHRAE Journal, February 2012. Copyright 2012 ASHRAE. Reprinted here by permission from ASHRAE at http

Edwards, Paul N.

210

Indoor air movement acceptability and thermal comfort in hot-humid climates  

E-Print Network (OSTI)

climate zone showed almost 90% thermal acceptabil- ity within the operative temperature ranges prescribed in the ASHRAE

Candido, Christhina Maria

2010-01-01T23:59:59.000Z

211

ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Determination Quantitative Analysis  

SciTech Connect

The United States (U.S.) Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2004. The final analysis considered each of the 44 addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were reviewed by DOE, and their combined impact on a suite of 15 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOEs final determination. However, out of the 44 addenda, 9 were preliminarily determined to have measureable and quantifiable impact.

Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

2011-05-01T23:59:59.000Z

212

ASHRAE Transactions: Research 107 Commercial buildings and institutions are generally  

E-Print Network (OSTI)

ASHRAE Transactions: Research 107 ABSTRACT Commercial buildings and institutions are generally. Chiasson Jeffrey D. Spitler, Ph.D., P.E. Student Member ASHRAE Member ASHRAE Simon J. Rees, Ph.D. Marvin D. Smith, P.E. Member ASHRAE Andrew D. Chiasson is a research assistant, Jeffrey D. Spitler is a professor

213

ASHRAE Cleanroom Benchmarking Paper - REVISED  

NLE Websites -- All DOE Office Websites (Extended Search)

8E 8E Cleanroom Energy Efficiency: Metrics and Benchmarking Paul Mathew, William Tschudi, Dale Sartor Lawrence Berkeley National Laboratory James Beasley International SEMATECH Manufacturing Initiative October 2010 Published in ASHRAE Journal, v. 53, issue 10 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

214

Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55  

E-Print Network (OSTI)

and calculation according to ASHRAE Standard 55 U.S. Greenand calculation according to ASHRAE Standard 55and calculation according to ASHRAE Standard 55 Stefano

Schiavon, Stefano; Hoyt, Tyler; Piccioli, Alberto

2013-01-01T23:59:59.000Z

215

Draft or breeze? preferences for air movement in office buildings and schools from the ASHRAE database  

E-Print Network (OSTI)

Control, and Occupant Comfort. ASHRAE Transactions 110 (2):and schools from the ASHRAE database Tyler Hoyt * , Huihave been extracted from the ASHRAE database of indoor

Hoyt, Tyler; Zhang, Hui Ph.D; Arens, Edward

2009-01-01T23:59:59.000Z

216

A better way to predict comfort: the new ASHRAE standard 55-2004  

E-Print Network (OSTI)

and draft discomfort. ASHRAE Project 843-TRP, Tech- nicalcom- fort and preference. ASHRAE Transactions 104(1a):145tribution (UFAD) Design Guide. Atlanta: ASHRAE. August 2004

Olesen, B. W.; Brager, G. S.

2004-01-01T23:59:59.000Z

217

18 ASHRAEJournal ashrae.org S e p t e m b e r 2 0 1 0 By Brian A. Fricke, Ph.D., Member ASHRAE; and Bryan R. Becker, Ph.D., P.E., Fellow ASHRAE  

E-Print Network (OSTI)

18 ASHRAEJournal ashrae.org S e p t e m b e r 2 0 1 0 By Brian A. Fricke, Ph.D., Member ASHRAE; and Bryan R. Becker, Ph.D., P.E., Fellow ASHRAE T he continual operation of supermarket refrigeration in the 2011 ASHRAE Transactions. This article was published in ASHRAE Journal, September 2010. Copyright 2010

Oak Ridge National Laboratory

218

2004 ASHRAE. 3 Standing column wells can be used as highly efficient  

E-Print Network (OSTI)

©2004 ASHRAE. 3 ABSTRACT Standing column wells can be used as highly efficient ground heat Performance Simon J. Rees, Ph.D. Jeffrey D. Spitler, Ph.D., P.E. Zheng Deng Member ASHRAE Member ASHRAE Student Member ASHRAE Carl D. Orio Carl N. Johnson, Ph.D. Member ASHRAE Member ASHRAE Simon J. Rees

219

The following article was published in ASHRAE Journal -  

E-Print Network (OSTI)

This paper may not be copied and/or distributed electronically or in paper form without permission of ASHRAE

June American Society; Fred Bauman; Tom Webster

2002-01-01T23:59:59.000Z

220

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation  

E-Print Network (OSTI)

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation Max Sherman Energy Performance of Buildings Group IED/EETD Lawrence Berkeley Laboratory1 MHSherman@lbl.gov ASHRAE, the American of heating, ventilating, air-conditioning and refrigeration (HVAC&R). ASHRAE has recently released a new

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

10 ASHRAE Journal November 2004 Re: High-Performance Buildings  

E-Print Network (OSTI)

10 ASHRAE Journal November 2004 Re: High-Performance Buildings In their recent article, "High energy-per- formance for a green academic building." ASHRAE Transac- tions, 108 promoting their own buildings. But the public requires and ASHRAE should demand more. John Scofield, Ph

Scofield, John H.

222

Energy Implications of Meeting ASHRAE 62.2  

E-Print Network (OSTI)

Energy Implications of Meeting ASHRAE 62.2 Iain S. Walker and Max H. Sherman Environmental Energy Laboratory is an equal opportunity employer. #12;1 Energy Implications of Meeting ASHRAE Standard 62.2 ABSTRACT The first and only nation-wide standard for residential ventilation in the United States is ASHRAE

223

ASHRAE 2000 Annual Meeting, June 24-28, 2000, Minneapolis, MN, and published in ASHRAE Transactions, 106(2) 2000.  

E-Print Network (OSTI)

LBNL-44422 Mo-420 ASHRAE 2000 Annual Meeting, June 24-28, 2000, Minneapolis, MN, and published in ASHRAE Transactions, 106(2) 2000. This work was supported by the Assistant Secretary for Energy-factors of predominantly planar, vertical windows has been made by both ASHRAE and NFRC, and as increasing consensus has

224

A HISTORY OF ASHRAE STANDARDS 152P.  

Science Conference Proceedings (OSTI)

The American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) has been developing a standard test method for evaluating the efficiency of ducts and other types of thermal distribution systems in single-family residential buildings. This report presents an overview of the structure, function, and historical development of this test method.

ANDREWS,J.W.

2003-10-31T23:59:59.000Z

225

Climate Zone Number 8 | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Climate Zone Number 8 Jump to: navigation, search A type of climate defined in the ASHRAE...

226

Climate Zone 1A | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Climate Zone 1A Jump to: navigation, search A type of climate defined in the ASHRAE...

227

The following paper was published in ASHRAE Transactions Vol. #107, Part 2, Page nos. 527-537. 2001 American  

E-Print Network (OSTI)

The following paper was published in ASHRAE Transactions Vol. #107, Part 2, Page nos. 527 is by permission of ASHRAE, and is presented for educational purposes only. ASHRAE does not endorse or recommend form without permission of ASHRAE. Contact ASHRAE at www.ashrae.org. #12;LBNL-47073 TA-444 ASHRAE

228

Status of Revisions to ASHRAE Standard 62  

E-Print Network (OSTI)

The American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 62- 1989 "Ventilation for Acceptable Indoor air Quality", adopted in 1989, is widely used by HVAC engineers to determine ventilation rates for various occupancies. This standard has also been cited in court to help demonstrate compliance with state-of the- art indoor environmental design. In August 1996, ASHRAE released for public review Standard 62-1989R, the highly controversial proposed revisions to the Standard 62- 1989. Over 8,000 comments were received on the proposed revision. Due to the significant number of concerns expressed by ASHRAE members as well as others, ASHRAE withdrew the proposed new standard and placed the current standard in "continuous maintenance." As part of the continuous maintenance process ASHRAE is transforming the current Standard 62- 1989 from a design standard to code ready document. Furthermore, two code documents will be produced4ne for low-rise residential buildings and another for other types of occupancy. Finally, two new documents, a user's manual and an IAQ guideline, will be written concurrent with the code documents. The guideline document is intended to provide state-of-the-art guidance to designers while good IAQ practices not appropriate for codification will be incorporated into the guideline. It is likely that many of the provision in Standard 62-1989R will survive in some manner in one or more of the new documents to be produced. This paper will detail some of the more significant changes that were proposed in Standard 62-1989R and review the current state of standard development.

Gallo, F. M.

1998-01-01T23:59:59.000Z

229

7 September 2004 John Learned at Pylos ANITA and ASHRAANITA and ASHRA  

E-Print Network (OSTI)

7 September 2004 John Learned at Pylos ANITA and ASHRAANITA and ASHRA New Players inNew Players ASHRA: IntroductionASHRA: Introduction ((AAllll--skysky SSurveyurvey HHighigh--RResolutionesolution AAir hemisphere 48M-pixels #12;7 September 2004 John Learned at Pylos Virgo cluster ASHRA: 1ASHRA: 1 arc minutearc

Learned, John

230

26 ASHRAE Transactions: Research Cooling-dominated commercial and institutional build-  

E-Print Network (OSTI)

26 ASHRAE Transactions: Research ABSTRACT Cooling-dominated commercial and institutional build Simulation Approach Mahadevan Ramamoorthy Hui Jin Student Member ASHRAE Student Member ASHRAE Andrew D. Chiasson Jeffrey D. Spitler, Ph.D., P.E. Associate Member ASHRAE Member ASHRAE Mahadevan Ramamoorthy

231

30 ASHRAEJournal ashrae.org May2007 High-Performance Schools  

E-Print Network (OSTI)

30 ASHRAEJournal ashrae.org May2007 High-Performance Schools John Fischer is director of research By John Fischer, Member ASHRAE; Kirk Mescher, P.E., Member ASHRAE; Ben Elkin, P.E., Member ASHRAE; Stephen operatedtocomplywithASHRAE'sventilation,energyandthermal comfortstandards1,2,3whileremainingenergyefficientandcostef

Oak Ridge National Laboratory

232

ASHRAE Transactions: Research 3 A steady-state simulation model for a water-to-water  

E-Print Network (OSTI)

ASHRAE Transactions: Research 3 ABSTRACT A steady-state simulation model for a water Jeffrey D. Spitler, Ph.D., P.E. Student Member ASHRAE Member ASHRAE Hui Jin is a graduate student-Conditioning Engineers, Inc. (www.ashrae.org). Published in ASHRAE Transactions 2002, Vol 108, P

233

Infiltration in ASHRAE's Residential Ventilation Standards  

Science Conference Proceedings (OSTI)

The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

Sherman, Max

2008-10-01T23:59:59.000Z

234

Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55  

E-Print Network (OSTI)

G.S. Brager, R.J. de Dear, ASHRAE Journal 42 (10) (2000) 21M. Fountain, T. Doherty, ASHRAE Transactions 94 (2) (M.E. Fountain, C. Huizenga, ASHRAE Journal 38 (9) (1996) 39

de Dear, Richard; Brager, Gail

2002-01-01T23:59:59.000Z

235

ASHRAE draft regarding Smart Grid RFI: Addressing Policy and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy and Logistical Challenges The American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc. (ASHRAE), founded in 1894, is an international...

236

ASHRAE Standard 90.1-2004 Quantitative Analysis Worksheet | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

used in support of the U.S. Department of Energy's determination regarding whether ASHRAE Standard 90.1-2004 will improve energy efficiency in commercial buildings. This...

237

ASHRAE Standard 90.1-2004 -- Lighting and Power Requirements...  

NLE Websites -- All DOE Office Websites (Extended Search)

This course provides an overview of the lighting and power requirements of ASHRAE Standard 90.1-2004. Estimated Length: 50 minutes Presenters: Eric Richman, Pacific...

238

ASHRAE Standard 90.1-2007 -- Building Envelope Requirements ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirements This course provides an overview of the building envelope requirements of ASHRAE Standard 90.1-2007. Estimated Length: 1 hour, 4 minutes Presenters: John Hogan, City...

239

ANSI/ASHRAE/IES Standard 90.1-2010 Final Determination Quantitative Analysis  

SciTech Connect

The U.S. Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The final analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE's final determination. However, out of the 109 addenda, 34 were preliminarily determined to have a measureable and quantifiable impact. A suite of 240 computer energy simulations for building prototypes complying with ASHRAE 90.1-2007 was developed. These prototypes were then modified in accordance with these 34 addenda to create a second suite of corresponding building simulations reflecting the same buildings compliant with Standard 90.1-2010. The building simulations were conducted using the DOE EnergyPlus building simulation software. The resulting energy use from the complete suite of 480 simulation runs was then converted to energy use intensity (EUI, or energy use per unit floor area) metrics (Site EUI, Primary EUI, and energy cost intensity [ECI]) results for each simulation. For each edition of the standard, these EUIs were then aggregated to a national basis for each prototype using weighting factors based on construction floor area developed for each of the 15 U.S. climate zones using commercial construction data. When compared, the resulting weighted EUIs indicated that each of the 16 building prototypes used less energy under Standard 90.1-2010 than under Standard 90.1-2007 on a national basis when considering site energy, primary energy, or energy cost. The EUIs were also aggregated across building types to a national commercial building basis using the same weighting data. On a national basis, the final quantitative analysis estimated a floor-space-weighted national average reduction in new building energy consumption of 18.2 percent for source energy and 18.5 percent when considering site energy. An 18.2 percent savings in energy cost, based on national average commercial energy costs for electricity and natural gas, was also estimated.

Halverson, Mark A.; Rosenberg, Michael I.; Liu, Bing

2011-10-31T23:59:59.000Z

240

Passive-Solar-Heating Analysis: a new ASHRAE manual  

SciTech Connect

The forthcoming ASHRAE book, Passive Solar Heating Analysis, is described. ASHRAE approval procedures are discussed. An overview of the contents is given. The development of the solar load ratio correlations is described, and the applicability of the analysis method is discussed.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Residential HVAC Indoor Air Quality(ASHRAE 62.2)  

E-Print Network (OSTI)

Residential HVAC && Indoor Air Quality(ASHRAE 62.2) Tav Commins #12;Contact Information · Energy construction, Additions /Alterations · Nonresidential and Residential #12;Residential HVAC && Indoor Air Quality(ASHRAE 62.2) ·HVAC EfficiencyHVAC Efficiency ·Quality Installation (HERS Measures) S li b HERS R t

242

Comparison of the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA Standard 90.1-1999 and ASHRAE/ANSI/IESNA Standard 90.1-2004  

SciTech Connect

This document presents the qualitative comparison of DOEs formal determination of energy savings of ANSI/ASHRAE/IESNA Standard 90.1-2004. The term qualitative is used in the sense of identifying whether or not changes have a positive, negative, or neutral impact on energy efficiency of the standard, with no attempt made to quantify that impact. A companion document will present the quantitative comparison of DOEs determination. The quantitative comparison will be based on whole building simulation of selected building prototypes in selected climates. This document presents a comparison of the energy efficiency requirements in ANSI/ASHRAE/IESNA 90.1-1999 (herein referred to as Standard 90.1-1999) and ANSI/ASHRAE/IESNA 90.1-2004 (herein referred to as Standard 90.1-2004). The comparison was done through a thorough review of all addenda to Standard 90.1-1999 that were included in the published ANSI/ASHRAE/IESNA Standard 90.1-2001 (herein referred to as Standard 90.1-2001) and also all addenda to Standard 90.1-2001 that were included in the published Standard 90.1-2004. A summary table showing the impact of each addendum is provided. Each addendum to both Standards 90.1-1999 and 90.1-2001 was evaluated as to its impact on the energy efficiency requirements of the standard (greater efficiency, lesser efficiency) and as to significance. The final section of this document summarizes the impacts of the various addenda and proposes which addenda should be included in the companion quantitative portion of DOEs determination. Addenda are referred to with the nomenclature addendum 90.1-xxz, where xx is either 99 for 1999 or 01 for 2001, and z is the ASHRAE letter designation for the addendum. Addenda names are shown in bold face in text. DOE has chosen not to prepare a separate evaluation of Standard 90.1-2001 as that standard does not appear to improve energy efficiency in commercial buildings. What this means for the determination of energy savings for Standard 90.1-2004 is that the baseline standard for comparison is Standard 90.1-1999 and all addenda to both Standards 90.1-1999 and 90.1-2001 must be considered to determine the overall change in efficiency between Standard 90.1-1999 and Standard 90.1-2004.

Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

2006-12-01T23:59:59.000Z

243

96 ASHRAE Transactions: Research Current duct design methods for variable air volume  

E-Print Network (OSTI)

96 ASHRAE Transactions: Research ABSTRACT Current duct design methods for variable air volume (VAV in the 1997 ASHRAE Handbook--Fundamentals (ASHRAE 1997): equal friction, static regain, and the T Systems Taecheol Kim Jeffrey D. Spitler, Ph.D., P.E. Ronald D. Delahoussaye, Ph.D. Member ASHRAE Taecheol

244

Weighting Factors for the Commercial Building Prototypes Used in the Development of ANSI/ASHRAE/IESNA Standard 90.1-2010  

SciTech Connect

Detailed construction data from the McGraw Hill Construction Database was used to develop construction weights by climate zones for use with DOE Benchmark Buildings and for the ASHRAE Standard 90.1-2010 development. These construction weights were applied to energy savings estimates from simulation of the benchmark buildings to establish weighted national energy savings.

Jarnagin, Ronald E.; Bandyopadhyay, Gopal K.

2010-01-21T23:59:59.000Z

245

Presented at the ASHRAE 2003 Annual Meeting, June 28 July 2, 2003, in Kansas City, MO, and published in ASHRAE Transactions 109, part 2: 733-739  

E-Print Network (OSTI)

LBNL-50219 Presented at the ASHRAE 2003 Annual Meeting, June 28 ­ July 2, 2003, in Kansas City, MO, and published in ASHRAE Transactions 109, part 2: 733-739 The research reported here was funded, in part

246

New Peak Moisture Design Data in the 1997 ASHRAE Handbook of Fundamentals  

E-Print Network (OSTI)

Chapter 26 of the 1997 edition of the Handbook of Fundamentals published by ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers) contains climatic design data that has been completely revised, recalculated and expanded. Designers of air conditioning systems for hot and humid climates will be pleased to note that, for the first time, the chapter contains values for peak moisture conditions. This is in sharp contrast to older editions, which contained only the average moisture during periods of peak dry bulb temperatures. The new data show that using earlier, temperature-based data for humidity design underestimates the true peak moisture loads by 30 to 50% depending on the humidity control level in the space. This paper explains the new data elements and suggests some of its potential implications for engineers designing air conditioning systems for hot and humid climates.

Harriman, L.

1998-01-01T23:59:59.000Z

247

Property:ASHRAE 169 End Date | Open Energy Information  

Open Energy Info (EERE)

property of type Date. Retrieved from "http:en.openei.orgwindex.php?titleProperty:ASHRAE169EndDate&oldid21585" What links here Related changes Special pages Printable...

248

Analysis of IECC (2003, 2006, 2009) and ASHRAE 90.1-2007 Commercial Energy Code Requirements for Mesa, AZ.  

Science Conference Proceedings (OSTI)

This report summarizes code requirements and energy savings of commercial buildings in Climate Zone 2B built to the 2009 IECC and ASHRAE Standard 90.1-2007 when compared to the 2003 IECC and the 2006 IECC. In general, the 2009 IECC and ASHRAE Standard 90.1-2007 have higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment. HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted. The energy analysis results show that commercial buildings meeting the 2009 IECC requirements save 4.4% to 9.5% site energy and 4.1% to 9.9% energy cost when compared to the 2006 IECC; and save 10.6% to 29.4% site energy and 10.3% to 29.3% energy cost when compared to the 2003 IECC. Similar analysis comparing ASHRAE Standard 90.1-2007 requirements to the 2006 IECC shows that the energy savings are in the 4.0% to 10.7% for multi-family and retail buildings, but less than 2% for office buildings. Further comparison of ASHRAE Standard 90.1-2007 requirements to the 2003 IECC show site energy savings in the range of 7.7% to 30.6% and energy cost savings range from 7.9% to 30.3%. Both the 2009 IECC and ASHRAE Standard 90.1-2007 have the potential to save energy by comparable levels for most building types.

Huang, Yunzhi; Gowri, Krishnan

2011-02-28T23:59:59.000Z

249

National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007  

NLE Websites -- All DOE Office Websites (Extended Search)

2972 2972 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007 BA Thornton SA Loper V Mendon MA Halverson EE Richman MI Rosenberg M Myer DB Elliott November 2013 PNNL-22972 National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007 BA Thornton SA Loper V Mendon MA Halverson EE Richman MI Rosenberg M Myer DB Elliott November 2013 Prepared for The U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Executive Summary Pacific Northwest National Laboratory (PNNL) prepared this analysis for the U.S. Department of

250

Application of an ASHRAE 152-2004 Duct Model for Simulating Code-Compliant 2000/2001 IECC Residences  

E-Print Network (OSTI)

This paper presents the results of the application of the duct model based on ASHRAE 152-2004 - Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems (ASHRAE 2004) to the code compliant 2001 International Energy Conservation Code (IECC)1 (ICC 1999, 2001) using DOE-2.1e building energy simulation program2. Code compliant DOE-2 simulation model was developed based on IECC and the duct model (Kim and Haberl 20083) was applied to the IECC-code compliant model. Then, the efficiency analyses of the IECC-compliant simulation model were performed on: 1) duct properties, and 2) the different locations of HVAC system and ductwork including the attic space and conditioned space based on the different climate zones.

Haberl, J.S.; Kim, S.

2010-01-01T23:59:59.000Z

251

Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate simulation map Climate Global climate change processes and impacts research in EETD is aimed at understanding the factors-and the feedbacks among these factors-driving...

252

Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard  

NLE Websites -- All DOE Office Websites (Extended Search)

the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010 This report documents the progress indicator (PI) process and analysis that Pacific Northwest National Laboratory (PNNL) developed to evaluate the potential energy savings from the application of ASHRAE Standard 90.1-2010 to building design and construction compared to the application of ASHRAE Standard 90.1-2004. The report describes PNNL's EnergyPlus simulation framework, and the building prototype simulation models. The combined upgrades from ASHRAE Standard 90.1 -2004 to ASHRAE Standard 90.1-2010 are described, and consist of a total of 153 approved addenda (44 addenda to ASHRAE Standard 90.1-2007 and 109 addenda to ASHRAE Standard 90.1-2010). PNNL reviewed and considered all 153 addenda for quantitative analysis in

253

ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Qualitative Determination...  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualitative Determination A final qualitative analysis of all addenda to ASHRAE Standard 90.1-2004 that were included in ASHRAE Standard 90.1-2007 was conducted. All 44 addenda...

254

514 ASHRAE Transactions: Symposia Design cooling load calculation methods are, by the  

E-Print Network (OSTI)

514 ASHRAE Transactions: Symposia ABSTRACT Design cooling load calculation methods are test. In the tests proposed here, the ASHRAE heat balance method is used as a reference model. Details of confidence in load calculation methods and the computer implementations that they use. ASHRAE has a long

255

2009 ASHRAE 199 The issue of filter bypass has long been a topic of much  

E-Print Network (OSTI)

©2009 ASHRAE 199 ABSTRACT The issue of filter bypass has long been a topic of much interest on filtration efficiency. In this research, an ASHRAE 52.2 compliant test loop was used to study bypass, a test apparatus designed to ASHRAE Standard 52.2-2007 was used. This standard provides a methodology

Siegel, Jeffrey

256

ASHRAE Transactions 103(1) (1997). Solar Heat Gain Coefficient of Complex Fenestrations  

E-Print Network (OSTI)

LBNL-39248 DA-359 ASHRAE Transactions 103(1) (1997). Solar Heat Gain Coefficient of Complex, the most recent edition of the ASHRAE Handbook lists a table characterizing a venetian blind with a single shading coefficient number (ASHRAE 1993) for 0º azimuth and 35º incident angle, (the latter corresponding

257

ASHRAE Transactions: Symposia 1107 The interest in both modular simulation and alternative  

E-Print Network (OSTI)

ASHRAE Transactions: Symposia 1107 ABSTRACT The interest in both modular simulation and alternative Building Energy Simulation Program Richard K. Strand, Ph.D. Daniel E. Fisher, Ph.D., P.E. Member ASHRAE Member ASHRAE Richard J. Liesen, Ph.D. Curtis O. Pedersen, Ph.D. Associate Member

258

Guidelines for TCs on Content for the 2005 ASHRAE HandbookCD+  

E-Print Network (OSTI)

Guidelines for TCs on Content for the 2005 ASHRAE HandbookCD+ Vision for Product: Provide and supplemental tools and features developed or obtained by ASHRAE Technical Committees. Content: · PDF files. · Supplemental material, possibly including that from previously published print volumes. · Links to other ASHRAE

Massachusetts at Amherst, University of

259

2004 ASHRAE. 829 This paper presents an overview of the conduction trans-  

E-Print Network (OSTI)

©2004 ASHRAE. 829 ABSTRACT This paper presents an overview of the conduction trans- fer function attention is given to the methods included in the ASHRAE Loads Toolkit. The toolkit contains the source code for ASHRAE's new load calculation methods, the heat balance method (HBM) and the radiant time series method

260

ASHRAE Transactions: Research 105 Current duct design methods for variable air volume  

E-Print Network (OSTI)

ASHRAE Transactions: Research 105 ABSTRACT Current duct design methods for variable air volume (VAV for different design conditions are sought using a duct fitting database program as described in ASHRAE (1993 Jeffrey D. Spitler, Ph.D., P.E. Ronald D. Delahoussaye, Ph.D. Member ASHRAE Taecheol Kim is a Ph

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Labs21 Laboratory Modeling Guidelines using ASHRAE 90.1-1999  

E-Print Network (OSTI)

fpm pressure drop from ASHRAE DFDB @ 1500 fpm 500 fpm Coil - Steam 0.18 w.g. per ASHRAE DFDB at 800 fpm 1-rowcoil 0.38 w.g. per ASHRAE DFDB at 800 fpm 2-row coil 0.20

2008-01-01T23:59:59.000Z

262

Indoor sound criteria according to the American Society of Heating, Refrigerating and Air?Conditioning Engineers (ASHRAE)An introduction  

Science Conference Proceedings (OSTI)

ASHRAE TC?2.6 Sound and Vibration Controltechnical committee has been activity involved with development

2005-01-01T23:59:59.000Z

263

ASHRAE Standard 90.1-2004 -- Building Envelope Requirements | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Envelope Requirements Building Envelope Requirements This course provides an overview of the building envelope requirements of ASHRAE Standard 90.1-2004. Estimated Length: 60 minutes Presenters: John Hogan, City of Seattle Original Webcast Date: Thursday, June 14, 2007 - 13:00 CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Video Downloads: Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2004 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Wednesday, July 18, 2012 - 16:04

264

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140  

SciTech Connect

Ideally, whole-building energy simulation programs model all aspects of a building that influence energy use and thermal and visual comfort for the occupants. An essential component of the development of such computer simulation models is a rigorous program of validation and testing. This paper describes a methodology to evaluate the accuracy of whole-building energy simulation programs. The methodology is also used to identify and diagnose differences in simulation predictions that may be caused by algorithmic differences, modeling limitations, coding errors, or input errors. The methodology has been adopted by ANSI/ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2001a, 2004). A summary of the method is included in the 2005 ASHRAE Handbook--Fundamentals (ASHRAE 2005). This paper describes the ASHRAE Standard 140 method of test and its methodological basis. Also discussed are possible future enhancements to ASHRAE Standard 140 and related research recommendations.

Judkoff, R.; Neymark, J.

2006-01-01T23:59:59.000Z

265

ASHRAE's New Performance Measurement Protocols for Commercial Buildings  

E-Print Network (OSTI)

ASHRAE, CIBSE and USGBC are developing a standardized, consistent set of protocols to facilitate the comparison of the measured performance of buildings, especially those claimed to be green, sustainable, and/or high performance. Such protocols are needed because claims of high performance cannot be credible without such standardized protocols being applied consistently in the U.S. as well as internationally. The protocols will identify what is to be measured, how it is to be measured (instrumentation and spatial resolution), and how often it is to be measured. They will address both the use and reporting of the measured data, as well as appropriate benchmarks for each of the following characteristics: Energy Use (site, and source), Indoor Environmental Quality (IEQ)-Thermal Comfort, IEQ-Indoor Air Quality, IEQ-Lighting/ Daylighting Quality, IEQ-Acoustics and Water Use. The primary users of the protocols document will be building owners and facility managers, rating and labeling system developers, government officials, as well as architects and design engineers. To date, a scoping document has been developed, an extensive literature review has been performed (available on ASHRAEs web site), and a committee formed to write the protocols, which are intended for publication in January 2009.

Haberl, J.; Davies, H.; Owens, B.; Hunn, B.

2008-10-01T23:59:59.000Z

266

ANSI/ASHRAE/IESNA Standard 90.1-2007 Preliminary Qualitative Determination  

Science Conference Proceedings (OSTI)

A preliminary qualitative analysis of all addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007 was conducted. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were evaluated by DOE for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency.

Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

2010-05-25T23:59:59.000Z

267

Comparison between predicted duct effectiveness from proposed ASHRAE Standard 152P and measured field data for residential forced air cooling systems  

E-Print Network (OSTI)

for Forced Air Systems in Proposed ASHRAE Standard 152P.ASHRAE Transactions, 104(1B), 1360-1375. Walker I, ShermanDuct Effectiveness from Proposed ASHRAE Standard 152P and

Siegel, Jeffrey A.; McWilliams, Jennifer A.; Walker, Iain S.

2002-01-01T23:59:59.000Z

268

ASHRAE Standard 90.1-2007 -- Mechanical and Service Water Heating...  

NLE Websites -- All DOE Office Websites (Extended Search)

provides an overview of the mechanical and service water heating requirements of ASHRAE Standard 90.1-2007. Estimated Length: 1 hour, 32 minutes Presenters: Mark Hydeman,...

269

ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Determination Quantitative...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis to assess whether buildings constructed according to the requirements of the ASHRAE Standard 90.1-2007 would result in energy savings compared with buildings constructed...

270

ANSI/ASHRAE/IESNA Standard 90.1-2007 | Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

training purposes. The available presentation slides focus on the requirements of ASHRAE Standard 90.1-2007. Presenters: Course materials originally published by the DOE...

271

ASHRAE Standard 90.1-2004 -- Mechanical and Service Water Heating...  

NLE Websites -- All DOE Office Websites (Extended Search)

provides an overview of the mechanical and service water heating requirements of ASHRAE Standard 90.1-2004. Estimated Length: 1 hour, 35 minutes Presenters: Mark Hydeman,...

272

Labs21 Laboratory Modeling Guidelines using ASHRAE 90.1-1999  

E-Print Network (OSTI)

based on limiting water intake. Intake Louvers Intake DamperIntake Sound Attenuator 0.03 w.g. per ASHRAE DFDB @ 500 fpm Preheat Coil Hot Water &

2008-01-01T23:59:59.000Z

273

Trends in Data Center Design - ASHRAE Leads the Way to Large Energy Savings (Presentation)  

SciTech Connect

Energy savings strategies for data centers are described, including best practices, ASHRAE standards, and examples of successful strategies for incorporating energy savings.

Van Geet, O.

2013-06-01T23:59:59.000Z

274

Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Adoption Compliance Regulations Resource Center Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010 This report documents the...

275

Presented at the 1998 ASHRAE Winter Meeting, January 17-21, 1998, San Francisco, CA, and published in the proceedings.  

E-Print Network (OSTI)

LBNL-40690 DA-408 Presented at the 1998 ASHRAE Winter Meeting, January 17-21, 1998, San Francisco tests under standard American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE

276

Wei Liu, Student Member ASHRAE, is graduate research assistant. Zhengwei Long, PhD, is lecturer. Qingyan Chen, PhD, Fellow ASHRAE, is Changjiang Chair Professor and Vicent P. Reilly  

E-Print Network (OSTI)

Wei Liu, Student Member ASHRAE, is graduate research assistant. Zhengwei Long, PhD, is lecturer. Qingyan Chen, PhD, Fellow ASHRAE, is Changjiang Chair Professor and Vicent P. Reilly Professor loss coefficients used in their calculations (Shao et al. 1995). ASHRAE Standard 120 provides

Chen, Qingyan "Yan"

277

A critical review of the ASHRAE solar radiation model  

Science Conference Proceedings (OSTI)

Inconsistencies are shown to exist in the presentation and formulation of the ASHRAE solar radiation model. To remove them, it is proposed: 1. To include in the Fundamentals Handbook the clearness number in the expressions for the direct and, in particular, the sky diffuse irradiation under cloudless conditions, and 2. To rewrite the expressions for cloud sky conditions so that they reduce to the cloudless formulation when the cloud cover is zero and they do not give rise to negative values of the sky diffuse irradiation as is presently the case under certain conditions.

Galanis, N.; Chatigny, R.

1986-01-01T23:59:59.000Z

278

To be published in ASHRAE Transactions, Vol. 106, Part II 2000 LBNL-44479 SELECTING WHOLE-HOUSE  

E-Print Network (OSTI)

To be published in ASHRAE Transactions, Vol. 106, Part II 2000 LBNL-44479 SELECTING WHOLE-HOUSE VENTILATION STRATEGIES TO MEET PROPOSED ASHRAE STANDARD 62.2: ENERGY COST CONSIDERATIONS* Craig P. Wray Nance University of California Berkeley, CA 94720 April 2000 ASHRAE Standard 62.2P is being proposed to address

279

Presented at the ASHRAE Winter Meeting, Atlanta, GA, February 1721, 1996, and to be published in the Proceedings  

E-Print Network (OSTI)

LBL-37037 UC-1600 Presented at the ASHRAE Winter Meeting, Atlanta, GA, February 17­21, 1996 Berkeley National Laboratory is an equal opportunity employer. #12;LBL-37037 Mo-345 Presented atthe ASHRAE University of California Berkeley, CA 94720 September 1995 This research was jointly supported by ASHRAE

280

ANSI/ASHRAE/IES Standard 90.1- 2010 Final Qualitative Determination |  

NLE Websites -- All DOE Office Websites (Extended Search)

IES Standard 90.1- 2010 Final Qualitative Determination IES Standard 90.1- 2010 Final Qualitative Determination A final qualitative analysis of all addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010 was conducted. All 109 addenda processed by ASHRAE in the creation of ASHRAE Standard 90.1-2010 from ASHRAE Standard 90.1-2007 were evaluated by the U.S. Department of Energy (DOE) for their impact on energy efficiency. DOE determined whether each addendum would have a positive, neutral, or negative impact on overall building efficiency. Publication Date: Wednesday, October 19, 2011 BECP_FinalQualitativeAnalysisReport901-2010Determiniation_Oct2011_v00.pdf Document Details Last Name: Halverson Initials: M Affiliation: PNNL Document Number: PNNL-20883 Focus: Code Development Building Type:

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Overview of the Requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 |  

NLE Websites -- All DOE Office Websites (Extended Search)

the Requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 the Requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 Session 2 of a seven-part webcast series presented by the Department of Energy's (DOE's) Federal Energy Management Program to help federal agencies comply with the requirements of ASHRAE Standard 90.1-2004. The Overview of the Requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 webcast is a re-broadcast of three webcasts-originally broadcast by DOE's Building Energy Codes Program in 2007. This training provides an overview of the building envelope, mechanical and service water heating, and lighting requirements in ASHRAE Standard 90.1-2004. Estimated Length: 4 hours Presenters: John Hogan, City of Seattle; Eric Richman, PNNL; Mark Hydeman, Taylor Engineering LLC. Original Webcast Date: Thursday, August 21, 2008 - 13:00

282

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140; Preprint  

Science Conference Proceedings (OSTI)

Ideally, whole-building energy simulation programs model all aspects of a building that influence energy use and thermal and visual comfort for the occupants. An essential component of the development of such computer simulation models is a rigorous program of validation and testing. This paper describes a methodology to evaluate the accuracy of whole-building energy simulation programs. The methodology is also used to identify and diagnose differences in simulation predictions that may be caused by algorithmic differences, modeling limitations, coding errors, or input errors. The methodology has been adopted by ANSI/ASHRAE Standard 140 (ANSI/ASHRAE 2001, 2004), Method of Test for the Evaluation of Building Energy Analysis Computer Programs. A summary of the method is included in the ASHRAE Handbook of Fundamentals (ASHRAE 2005). This paper describes the ANSI/ASHRAE Standard 140 method of test and its methodological basis. Also discussed are possible future enhancements to Standard 140 and related research recommendations.

Judkoff, R.; Neymark, J.

2006-07-01T23:59:59.000Z

283

Analysis of Daylighting Requirements within ASHRAE Standard 90.1  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL), under the Building Energy Codes Program (BECP) funded by U.S. Department of Energy (DOE), provides support to the ASHRAE/IES/IESNA Standard 90.1(Standard 90.1) Standing Standards Project Committee (SSPC 90.1) and its subcommittees. In an effort to provide the ASHRAE SSPC 90.1 with data that will improve the daylighting and fenestration requirements in the Standard, PNNL collaborated with Heschong Mahone Group (HMG), now part of TRC Solutions. Combining EnergyPlus, a whole-building energy simulation software developed by DOE, with Radiance, a highly accurate illumination modeling software (Ward 1994), the daylighting requirements within Standard 90.1 were analyzed in greater detail. The initial scope of the study was to evaluate the impact of the fraction of window area compared to exterior wall area (window-to-wall ratio (WWR)) on energy consumption when daylighting controls are implemented. This scope was expanded to study the impact of fenestration visible transmittance (VT), electric lighting controls and daylighted area on building energy consumption.

Athalye, Rahul A.; Xie, YuLong; Liu, Bing; Rosenberg, Michael I.

2013-08-01T23:59:59.000Z

284

Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energys (DOEs) Building Energy Codes Program (BECP). DOEs BECP supports upgrading building energy codes and standards, and the states adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

Thornton, Brian A.; Halverson, Mark A.; Myer, Michael; Cho, Hee Jin; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

2013-06-18T23:59:59.000Z

285

National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energys (DOEs) Building Energy Codes Program (BECP). DOEs BECP supports upgrading building energy codes and standards, and the states adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

Thornton, Brian; Halverson, Mark A.; Myer, Michael; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

2013-11-30T23:59:59.000Z

286

Comparison of the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA  

NLE Websites -- All DOE Office Websites (Extended Search)

the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA Standard 90.1-1999 and ASHRAE/ANSI/IESNA Standard 90.1-2004 This document presents the qualitative comparison of the U.S. Department of Energy's (DOE's) formal determination of energy savings of ASHRAE Standard 90.1-2004. The term "qualitative" is used in the sense of identifying whether or not changes have a positive, negative, or neutral impact on energy efficiency of the standard, with no attempt made to quantify that impact. A companion document will present the quantitative comparison of DOE's determination. Publication Date: Friday, December 1, 2006 determinations_com_dif04.pdf Document Details Last Name: Halverson Initials: M Affiliation: PNNL Document Number: PNNL-17722 Focus: Code Development

287

Impact of ASHRAE standard 189.1-2009 on building energy efficiency and performance.  

E-Print Network (OSTI)

??The purpose of this report is to provide an introduction to the new ASHRAE Standard 189.1-2009, Standard for the Design of High-Performance Green Buildings. The (more)

Blush, Aaron

2010-01-01T23:59:59.000Z

288

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings Speaker(s): Steve Taylor Date: April 20, 2000 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact:...

289

Analysis of Energy Saving Impacts of ASHRAE 90.1-2004 for New York  

Science Conference Proceedings (OSTI)

The New York State Energy Research and Development Authority (NYSERDA) and New York State Department of State (DOS) requested the help of DOEs Building Energy Codes Program (BECP) in estimating the annual building energy savings and cost impacts of adopting ANSI/ASHRAE/IESNA Standard 90.1-2004 (ASHRAE 2004) requirements. This report summarizes the analysis methodology and results of energy simulation in response to that request.

Gowri, Krishnan; Halverson, Mark A.; Richman, Eric E.

2007-08-03T23:59:59.000Z

290

2009 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2009 ASHRAE WINTER CONFERENCE. The archival version of this paper along with comments and author responses will be pu  

E-Print Network (OSTI)

2009 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2009 ASHRAE WINTER CONFERENCE. The archival version of this paper along with comments and author responses will be published in ASHRAE Transactions, Volume 115, Part 1. ASHRAE must

Pennycook, Steve

291

2005 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2005 ASHRAE WINTER MEETING. The archival version of this paper along with comments and author responses will be publi  

E-Print Network (OSTI)

©2005 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2005 ASHRAE WINTER MEETING. The archival version of this paper along with comments and author responses will be published in ASHRAE Transactions, Volume 111, Part 1. ASHRAE must

292

2003 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2003 ASHRAE ANNUAL MEETING. The archival version of this paper along with comments and author responses will be publi  

E-Print Network (OSTI)

2003 ASHRAE. THIS PREPRINT MAY NOT BE DISTRIBUTED IN PAPER OR DIGITAL FORM IN WHOLE OR IN PART. IT IS FOR DISCUSSION PURPOSES ONLY AT THE 2003 ASHRAE ANNUAL MEETING. The archival version of this paper along with comments and author responses will be published in ASHRAE Transactions, Volume 109, Part 2. ASHRAE must

293

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

Vol 22, No 6. pg 10-11. 2003. ASHRAE 62.2 Recommended for6, 7, 10, 33, 37. ANSI/ASHRAE. 1988 (RA 94). Standard 119Inc. , Atlanta GA. ANSI/ASHRAE. 1993 (RA 2001). Standard

Roberson, J.

2004-01-01T23:59:59.000Z

294

Appliance Standards Update and Review of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011  

Energy.gov (U.S. Department of Energy (DOE))

This document is Appliance Standards Update and Review of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011

295

Nitrous oxide as a substitute for sulfur hexafluoride in the ANSI/ASHRAE 110 Method of hood performance evaluation.  

E-Print Network (OSTI)

??The ANSI/ASHRAE 110 Method is the standard test for laboratory hood containment performance. Sulfur hexafluoride is specified as the gas most suitable for this test (more)

Guffey, Eric J. (Eric Jemison)

2011-01-01T23:59:59.000Z

296

To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX. Measured energy performance a US-China demonstration  

E-Print Network (OSTI)

LBNL-60978 To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX efficient than ASHRAE 90.1- 1999. The utility data from the first year's operation match well the analysis

297

Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998  

E-Print Network (OSTI)

LBNL-41694 BS-384 Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance. Sullivan L. Beltran E.S. Lee M. Rubin, Ph.D. S. E. Selkowitz Member ASHRAE ABSTRACT INTRODUCTION Research

298

Presented at the ASHRAE Winter Meeting, Atlanta, GA, February 17-21, 1996, and published in the Proceedings. Calorimetric Measurements of Inward-Flowing Fraction  

E-Print Network (OSTI)

LBL-37038 Mo-346 Presented at the ASHRAE Winter Meeting, Atlanta, GA, February 17-21, 1996 was jointly supported by ASHRAE, as Research Project 548-RP under Agreement No. BG 87-127 with the U

299

ANSI/ASHRAE/IESNA Standard 90.1-2010 Preliminary Qualitative Determination  

Science Conference Proceedings (OSTI)

A preliminary qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (Standard 90.1-2007 or 2007 edition) that were included in ANSI/ASHRAE/IESNA Standard 90.1-2010 (Standard 90.1-2010 or 2010 edition) was conducted. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were evaluated by DOE for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency.

Halverson, Mark A.; Williamson, Jennifer L.; Liu, Bing; Rosenberg, Michael I.; Richman, Eric E.

2010-11-01T23:59:59.000Z

300

ANSI/ASHRAE/IES Standard 90.1-2010 Final Qualitative Determination  

SciTech Connect

A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (Standard 90.1-2007 or 2007 edition) that were included in ANSI/ASHRAE/IESNA Standard 90.1-2010 (Standard 90.1-2010 or 2010 edition) was conducted. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were evaluated by DOE for their impact on energy efficiency. DOE determined whether each addendum would have a positive, neutral, or negative impact on overall building efficiency.

Halverson, Mark A.; Rosenberg, Michael I.; Williamson, Jennifer L.; Richman, Eric E.; Liu, Bing

2011-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Qualitative Determination  

Science Conference Proceedings (OSTI)

A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007 was conducted. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were evaluated by the U.S. Department of Energy (DOE) for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency. Table S.1 shows the number of positive and negative changes for each section of Standard 90.1.

Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

2011-01-01T23:59:59.000Z

302

ASHRAE $1000 Scholarship Application (02/26/2013) The Utah Chapter of the American Society of Heating, Refrigerating and Air Conditioning  

E-Print Network (OSTI)

ASHRAE $1000 Scholarship Application (02/26/2013) The Utah Chapter of the American Society this application package, signed by your academic advisor (cover letter), to the Utah ASHRAE Student Activities, 2013. The Utah ASHRAE chapter Board of Governors will review the applications and select two or three

van den Berg, Jur

303

ASHRAE Transactions, Vol. 107 (2) 2001 This work was supported by Hydro Aluminum and the Assistant Secretary for Energy Efficiency and Renewable  

E-Print Network (OSTI)

LBNL-46825 TA-442 ASHRAE Transactions, Vol. 107 (2) 2001 This work was supported by Hydro Aluminum Contract No. DE-AC03-76SF00098. Reprinted by permission from ASHRAE Transactions Vol. 107, Part 2, pp 538 IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2001, V. 107, Pt. 2. Not to be reprinted

304

Development of an ASHRAE 152-2004 Duct Model for the Single-Family Residential House  

E-Print Network (OSTI)

This paper presents the results of the development of the duct model based on ASHRAE standard 152-2004 (ASHRAE, 2004) using the DOE-2.1e building energy simulation program. To accomplish this, FUNCTION commands for DOE-2 were used to develop the duct model and provide the improved predictions of the duct heat loss or gain from the unconditioned space as well as supply or return duct leakage. After applying the duct model to the DOE-2 base-case simulation model, simulation results were compared with the measurement from the case-study house for verification.

Kim, S.; Haberl, J.

2008-12-01T23:59:59.000Z

305

Evaluation of ANSI/ASHRAE/USGBC/IES Standard 189.1-2009  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory (NREL) evaluated ANSI/ASHRAE/USGBC/IES Standard 189.1-2009, 'The Standard for High-Performance Green Buildings Except Low-Rise Residential Buildings'. NREL performed this evaluation by examining the results of predictions for site energy use from a comprehensive set of EnergyPlus models. NREL has conducted an 'order-of-magnitude' analysis in this study to identify the likely overall impact of adopting Standard 189.1-2009 over ANSI/ASHRAE/IESNA Standard 90.1-2007.

Long, N.; Bonnema, E.; Field, K.; Torcellini, P.

2010-07-01T23:59:59.000Z

306

EERE's Building Technologies PowerPoint Presentation Template  

U.S. Energy Information Administration (EIA) Indexed Site

April 2008 April 2008 1 Application of Building Energy Consumption Data in Low-Energy Building Research Drury B. Crawley U. S. Department of Energy April 2008 2 Key Areas of Interest * Energy Use Intensity * What is energy use per floor area? * Floor-area weighting * What is average square foot vs. average building? * End use * What equipment is using the energy? * Climate zone distributions * How are buildings distributed in climate zones per ASHRAE Standard 169-2006? April 2008 3 * Mechanical equipment detail * What systems and component types are being used? * Schedules * How does occupancy and operation vary over time? * Utility pricing structures * What are demand, energy, and service charges really like? Key Areas of Interest (continued) April 2008 4 ASHRAE Standard 169 Climate Zones April 2008

307

AN AMMONIA-WATER ABSORPTION-HIAT-PUMP CYCLE Donald Kuhlenschmidt, Member ASHRAE  

E-Print Network (OSTI)

. Merrick, Member ASHRAE ABSTRACT The scate-of-art in ammonia-water absorption cooling has been applied. Reversible absorption cycles for heating and cooling are possible but with additional cost and complexity concentration change making possible the use of a solution-cooled absorber wherin some heat of absorption can

Oak Ridge National Laboratory

308

Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment Presentation, dated June 26, 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program eere.energy.gov BUILDING TECHNOLOGIES PROGRAM Update and Overview of DOE Rulemakings for ASHRAE 90.1 Equipment Ashley Armstrong Department of Energy Energy Efficiency & Renewable Energy 6/26/2011 Introduction and Background 1 Introduction and Background Status of Current DOE ASHRAE 90.1 Equipment Rulemaking 2 Update and Overview for Individual ASHRAE 90.1 Equipment Types 3 2 | Building Technologies Program eere.energy.gov Introduction and Background * The "ASHRAE Trigger": - EPCA directs DOE to review its minimum standards for certain commercial and industrial equipment whenever ASHRAE Standard 90.1 is amended with respect to such equipment. (42 USC 6313(a)(6)(A)) - The "ASHRAE Trigger" requires DOE review when ASHRAE

309

Nitrous oxide as a substitute for sulfur hexafluoride in the ANSI/ASHRAE 110 Method of hood performance evaluation  

E-Print Network (OSTI)

The ANSI/ASHRAE 110 Method is the standard test for laboratory hood containment performance. Sulfur hexafluoride is specified as the gas most suitable for this test and is most commonly used. Sulfur hexafluoride use has ...

Guffey, Eric J. (Eric Jemison)

2011-01-01T23:59:59.000Z

310

Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE  

SciTech Connect

In the U.S, buildings consume approximately 39percent of primary energy, including 70percent of electricity [1]. Buildings are responsible for approximately 38percent of U. S. carbon dioxide emissions [1]. The process of HVAC, for maintaining acceptable indoor environmental quality (IEQ), consumes 37percent of the energy used in buildings [1].

Fisk, William J.

2009-01-01T23:59:59.000Z

311

ASHRAE Standard 90.1-2007 -- Mechanical and Service Water Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical and Service Water Heating Mechanical and Service Water Heating Requirements This course provides an overview of the mechanical and service water heating requirements of ASHRAE Standard 90.1-2007. Estimated Length: 1 hour, 32 minutes Presenters: Mark Hydeman, Taylor Engineering Original Webcast Date: Thursday, February 28, 2008 - 13:00 CEUs Offered: 1.5 AIA/CES LU (HSW); .15 CEUs towards ICC renewal certification. Course Type: Video Downloads: Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2007 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies U.S. Department of Energy

312

ASHRAE Standard 90.1-1999 Quantitative Analysis Worksheet | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

1999 Quantitative Analysis Worksheet 1999 Quantitative Analysis Worksheet This worksheet aggregates the results of building energy simulations used in support of the U.S. Department of Energy's determination regarding whether ASHRAE Standard 90.1-1999 will improve energy efficiency in commercial buildings. This determination is required by Section 304 of the Energy Conservation and Production Act. Publication Date: Monday, January 30, 2006 BECP_90_1SavingsAnalysis(050101update).xls 90_1savingsanalysis.zip Document Details Focus: Regulatory Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: Analysis Determination Target Audience: Federal Official State Official Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Tuesday, December 10, 2013 - 13:20

313

The Best Way to Meet ASHRAE 62.2 in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BEST WAY TO MEET BEST WAY TO MEET ASHRAE 62.2 IN MULTIFAMILY BUILDINGS Iain Walker (LBNL) Building America Meeting 2013 ASHRAE 62.2 - 2013  Replaced previous 62-89 to be specifically for low-rise (under four story) residential  Under continuous revision  Current version is 2013  Has new section 8 for multi- family  A building = a unit  Applies to all units Local Exhaust  Local exhaust fans must be installed in bathrooms and kitchens  Must exhaust to outside  Bathrooms  50 CFM on-demand, or  20 CFM continuous.  Kitchen  100 CFM on-demand, or  5 ACH continuous, based on kitchen volume. Exception for existing units  Increase whole unit ventilation if lacking kitchen and bathroom exhausts  Missing exhausts are a "deficit"

314

ASHRAE Standard 90.1-2007 -- Lighting and Power Requirements | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting and Power Requirements Lighting and Power Requirements This course provides an overview of the lighting and power requirements of ASHRAE Standard 90.1-2007. Estimated Length: 60 minutes Presenters: Eric Richman, Pacific Northwest National Laboratory Original Webcast Date: Thursday, January 10, 2008 - 13:00 CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Video Downloads: Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2007 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies U.S. Department of Energy USA.gov

315

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140; Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Validation and Testing: Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140 Preprint R. Judkoff National Renewable Energy Laboratory J. Neymark J. Neymark & Associates Presented at the ASHRAE 2006 Annual Meeting Quebec City, Canada June 24-29, 2006 Conference Paper NREL/CP-550-40360 July 2006 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

316

ANSI/ASHRAE/IES Standard 90.1-2010 | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

IES Standard 90.1-2010 IES Standard 90.1-2010 The materials for this course may be used for in-person training purposes. The presentation slides focus on the envelope; heating, ventilation, and air conditioning; power and lighting; and scope and application requirements of ASHRAE Standard 90.1-2010. Presenters: Course materials originally published by the DOE Building Energy Codes Program, April, 2011. Course Type: Training Materials In-person Downloads: Presentation Slides -- Scope and Application Presentation Slides -- Envelope Presentation Slides -- HVAC Presentation Slides -- Power and Lighting Building Type: Commercial Focus: Compliance Code Version: ASHRAE Standard 90.1-2010 Target Audience: Architect/Designer Builder Code Official Contractor Engineer State Official Contacts Web Site Policies

317

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings Speaker(s): Steve Taylor Date: April 20, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Steve Taylor, the principal of Taylor Engineering, will be providing an overview of the envelope, lighting, and HVAC requirements of Standard 90.1. Mr. Taylor is a registered mechanical engineer specializing in HVAC system design, control system design, indoor air quality engineering, computerized building energy analysis, and HVAC system commissioning. He graduated from Stanford University with a BS in Physics and a MS in Mechanical Engineering and has over 20 years of commercial HVAC system design and construction experience. He was the primary author of the HVAC

318

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network (OSTI)

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review. The standard is an attempt by the Society to address concerns over indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency measures to be evaluated. The standard has requirements for whole-house ventilation, local exhaust ventilation, and source control. In addition to code-intended requirements, the standard also contains guidance information for the designer and/or user of the standard. This report summarizes the draft standard and attempts to address questions and concerns that those potentially affected by the standard might have. This report may also be of use to those considering public review comments on the draft standard.

Sherman, M.

2000-01-01T23:59:59.000Z

319

Present and future climate resources for various types of tourism in the Bay of Palma, Spain  

E-Print Network (OSTI)

are obtained from standardized values provided by ASHRAE (ASHRAE 2004). These data characterizes the mean expressing PET as a thermal sensation by using the standard nine-point ASHRAE scale (ASHRAE 2004). #12

Romero, Romu

320

Microsoft Word - ASHRAE_Water Heater Paper_2010-11-24_Final_LBNL_.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers Presented at: 2011 ASHRAE Winter Conference, Las Vegas, Nevada January 2011 Alex B. Lekov, Victor H. Franco, Steve Meyers, Lisa Thompson, and Virginie Letschert Lawrence Berkeley National Laboratory Environmental Energy Technologies Division One Cyclotron Road Berkeley, CA 94720 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY 2 Disclaimer This document was prepared as an account of work sponsored by the United States

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Presented at the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998, and published in the Proceedings.  

E-Print Network (OSTI)

LBNL-41352 TA-421 Presented at the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior, Christian Köhler, Howdy Goudey, Daniel Türler, and Dariush Arasteh P.E., ASHRAE member Windows Griffith, Christian Köhler, Howdy Goudey, Daniel Türler, and Dariush Arasteh P.E., ASHRAE member ABSTRACT

322

Labs21 Laboratory Modeling Guidelines using ASHRAE 90.1-1999  

SciTech Connect

The following is a guideline for energy modeling of laboratory spaces in a building in accordance with the Energy Cost Budget method described in ASHRAE 90.1-1999 Energy Standard for Buildings Except Low-Rise Residential Buildings. For the purposes of this document, a laboratory is defined as any space requiring once through ventilation systems (recirculation of air to other spaces in a building is not allowed). To accomplish this, ventilation systems in laboratories typically provide 100% outside air to the occupied space. The guideline is structured similarly to the ASHRAE 90.1-99 standard. Only those sections being clarified or modified are discussed in the guideline; all other sections should be followed as defined in the standard. Specifically, those sections that are affected include the following: (1) 6.3.3.1 - Fan Power Limitation (modification); (2) 6.3.7.2 - Fume Hoods (modification); (3) 11.3.11 - Schedules (modification); (4) 11.4.3 - HVAC Systems (clarification); (5) 11.4.3 (h) Budget Supply-Air-to-Room Air Temperature Difference (modification); (6) 11.4.3(i) - Fan system efficiency (modification); and (7) Table 11.4.3A - Budget System Descriptions (modification). For energy efficiency measures that are not explicitly addressed by the standard, we recommend application of Section 11.5, Exceptional Calculation Methods. This guideline does not cover the details of such calculation methods.

Reilly, Susan; Walsh, Michael; Graham, Carl; Maor, Itzhak; Mathew, Paul; Porter, Fred; Sartor, Dale; Van Geet, Otto

2005-10-01T23:59:59.000Z

323

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109, Pt. 1. Not to be reprinted in whole or in part without written permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, I  

E-Print Network (OSTI)

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109(s) and do not necessarily reflect the views of ASHRAE. Written questions and comments regarding this paper should be received at ASHRAE no later than February 7, 2003. ABSTRACT The proposed ASHRAE Standard 152P

Siegel, Jeffrey

324

Michigan State Code Adoption Analysis: Cost-Effectiveness of Lighting Requirements - ASHRAE/IESNA 90.1-2004  

SciTech Connect

This report documents PNNL's analysis of the potential energy effect and cost-effectiveness of the lighting requirements in ASHRAE/IESNA 90.1-2004 if this energy code is adopted in the state of Michigan, instead of the current standard.

Richman, Eric E.

2006-09-29T23:59:59.000Z

325

Methodology for Rating a Building's Overall Performance based on the ASHRAE/CIBSE/USGBC Performance Measurement Protocols for Commercial Buildings  

E-Print Network (OSTI)

This study developed and applied a field test to evaluate the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Chartered Institute of Building Services Engineers (CIBSE)/United States Green Building Council (USGBC) Performance Measurement Protocols (PMP) for Commercial Buildings in a case-study office building in central Texas. As the first integrated protocol on building performance measurement, the ASHRAE PMP accomplished its goal of providing the standardized protocols for measuring and comparing the overall performance of a building, including energy, water, thermal comfort, Indoor Air Quality (IAQ), lighting, and acoustics. However, several areas for improvement were identified such as conflicting results from different procedures or benchmarks provided in the ASHRAE PMP; limited guidelines for performing the measurements; lack of detailed modeling techniques, graphical indices, and clear benchmarks; and some practical issues (i.e., high cost requirements and time-intensive procedures). All these observations are listed as the forty issues, including thirteen for energy, five for water, and twenty-two for Indoor Environmental Quality (IEQ). Recommendations were developed for each issue identified. For the selected high-priority issues, twelve new or modified approaches were proposed and then evaluated against the existing procedures in the ASHRAE PMP. Of these twelve new or modified approaches, the following are the most significant developments: a more accurate monthly energy use regression model including occupancy; a monthly water use regression model for a weather-normalized comparison of measured water performance; a method how to use a vertical temperature profile to evaluate room air circulation; a method how to use LCeq LAeq difference as a low-cost alternative to estimate low frequency noise annoyance; a statistical decomposition method of time-varying distribution of indices; and a real-time wireless IEQ monitoring system for the continuous IEQ measurements. The application of the forty recommendations and the twelve new or modified approaches developed in this study to the ASHRAE PMP is expected to improve the applicability of the ASHRAE PMP, which aligns the overall purpose of this study. Finally, this study developed a new single figure-of-merit rating system based on the ASHRAE PMP procedures. The developed rating system is expected to improve the usability of the protocols.

Kim, Hyojin 1981-

2012-12-01T23:59:59.000Z

326

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network (OSTI)

climate zones City ASHRAE Climate Zone CBECS Census Regionclimate zone information for the three cities based on ASHRAE

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

327

Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment Presentation, dated June 26, 2011  

Energy.gov (U.S. Department of Energy (DOE))

This document is the U.S. Department of Energys presentation titled Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment?, date 6/26/2011.

328

Development of a Web-Based Code-Compliant ASHRAE 90.1-1999 Commercial Simulation for Texas  

E-Print Network (OSTI)

This paper describes the development of a web-based, code-compliant ASHRAE Standard 90.1-1999 commercial simulation for Texas. Included in the paper is a description of the software and database platform used in the web application and how this software is attached to the DOE-2 legacy software running on a cluster of servers. This tool will be used by commercial builders in Texas to check code compliance of new commercial construction for specific building types.

Haberl, J.; Culp, C.; Yazdani, B.

2009-07-01T23:59:59.000Z

329

McHenry County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

42.3039993,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]} 42.3039993,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]} Display map This article is a stub. You can help OpenEI by expanding it. McHenry County is a county in Illinois. Its FIPS County Code is 111. It is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Places in McHenry County, Illinois Algonquin, Illinois Barrington Hills, Illinois Bull Valley, Illinois Cary, Illinois Crystal Lake, Illinois Fox Lake, Illinois Fox River Grove, Illinois Greenwood, Illinois Harvard, Illinois Hebron, Illinois Holiday Hills, Illinois Huntley, Illinois Island Lake, Illinois Johnsburg, Illinois

330

Evaluation of Energy Efficiency Measures in Hot and Humid Climates  

E-Print Network (OSTI)

Hot and humid climates present some of the most complex challenges for sustainable building designs. High temperatures coupled with high humidity create extreme comfort problems and exacerbate the potential for condensation, mold and mildew. These are usually remedied with conventional mechanical air conditioning systems, but the move toward sustainability urges designers to find less energy intensive solutions. An integrated design process coupled with energy modeling and lifecycle analysis can unite design teams around desired outcomes to provide an optimized design solution for projects in these climates. Such an approach involves first minimizing building loads and then reducing residual energy consumed by the HVAC systems. This paper presents an integrated design approach to evaluating the most efficient energy measures in hot and humid climates and summarizes the findings of a series of cases using this approach, including international examples of office, education, and small retail buildings in ASHRAE Climate Zones 1A and 2A.

Zhao, Y.; Erwine, B.; Leonard, P.; Pease, B.; Dole, A.; Lee, A.

2010-08-01T23:59:59.000Z

331

Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE standard 62.2-2003  

E-Print Network (OSTI)

Determining Air Leakage Rate by Fan Pressurization. Americanof Building Envelopes by the Fan Pressurization Method.Dominated by Strong Exhaust Fan. ASHRAE Transactions. Vol

Roberson, J.

2004-01-01T23:59:59.000Z

332

Austin's Adoption of ASHRAE S.P. #41 into the Local Energy Code  

E-Print Network (OSTI)

The City of Austin amended the local Energy Code in December 1984 to incorporate the principal recommendations of ASHRAE Standard Project #41. Revisions to the Code were recommended by a special Task Force appointed by the City Council; Task Force members represented major elements of the construction industry and local community. The Code revisions were reviewed and supported by numerous local City boards and commissions after nearly a year's work by the Task Force. Principal changes effecting commercial construction involved deleting OTTV criteria and adding three new criteria: 1. Wall heating criteria 2. Wall cooling criteria 3. Peak cooling criteria The new envelope criteria makes adjustments for building geometry, orientation, shading, insulation, lighting power and controls. A performance index encourages good design by increased awareness of what factors make a difference, The new lighting code methodology is based upon specified watts per square foot for different tasks and gives credit for ceiling height and room size. Cooling equipment efficiencies were increased by 5 to 15%. Pipe and tank insulation Levels were raised and a variety of minor control modifications were added. This paper discusses the code changes related to commercial building envelopes and lighting s-system.

Hart, M. N.; Holder, L.M.

1985-01-01T23:59:59.000Z

333

Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010  

Science Conference Proceedings (OSTI)

This Technical Support Document presents the energy and cost savings analysis that PNNL conducted to measure the potential energy savings of 90.1-2010 relative to 90.1-2004. PNNL conducted this analysis with inputs from many other contributors and source of information. In particular, guidance and direction was provided by the Simulation Working Group under the auspices of the SSPC90.1. This report documents the approach and methodologies that PNNL developed to evaluate the energy saving achieved from use of ASHRAE/IES Standard 90.1-2010. Specifically, this report provides PNNLs Progress Indicator process and methodology, EnergyPlus simulation framework, prototype model descriptions. This report covers the combined upgrades from 90.1-2004 to 90.1-2010, resulting in a total of 153 addenda. PNNL has reviewed and considered all 153 addenda for quantitative analysis in the Progress Indicator process. 53 of those are included in the quantitative analysis. This report provides information on the categorization of all of the addenda, a summary of the content, and deeper explanation of the impact and modeling of 53 identified addenda with quantitative savings.

Thornton, Brian A.; Rosenberg, Michael I.; Richman, Eric E.; Wang, Weimin; Xie, YuLong; Zhang, Jian; Cho, Heejin; Mendon, Vrushali V.; Athalye, Rahul A.; Liu, Bing

2011-05-24T23:59:59.000Z

334

Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-2001 as the Commercial Building Energy Code in Tennessee  

SciTech Connect

ASHRAE Standard 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings (hereafter referred to as ASHRAE 90.1-2001 or 90.1-2001) was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The State of Tennessee is considering adopting ASHRAE 90.1-2001 as its commercial building energy code. In an effort to evaluate whether or not this is an appropriate code for the state, the potential benefits and costs of adopting this standard are considered in this report. Both qualitative and quantitative benefits and costs are assessed. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST) simulations combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits. Tennessee currently has ASHRAE Standard 90A-1980 as the statewide voluntary/recommended commercial energy standard; however, it is up to the local jurisdiction to adopt this code. Because 90A-1980 is the recommended standard, many of the requirements of ASHRAE 90A-1980 were used as a baseline for simulations.

Cort, Katherine A.; Winiarski, David W.; Belzer, David B.; Richman, Eric E.

2004-09-30T23:59:59.000Z

335

Sensitivity of Forced Air Distribution System Efficiency to Climate, Duct Location, Air Leakage and Insulation  

E-Print Network (OSTI)

........................................................................................................ 10 Part One Input data for ASHRAE 152P Calculations .......................................................................... 11 Table 1 Temperatures from ASHRAE 152P Second public review draft................................. 11 Table 2 Humidity Conditions from ASHRAE 152P Second public review draft..................... 11

336

Indoor air movement acceptability and thermal comfort in hot-humid climates  

E-Print Network (OSTI)

comfort in warm conditions. ASHRAE Trans 84 (2): 263 277.Moving air for comfort. ASHRAE Journal: 18-29. [9] Zhang,control, and occupant comfort. ASHRAE Trans 110:1735. [11

Candido, Christhina Maria

2010-01-01T23:59:59.000Z

337

Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140: Preprint  

SciTech Connect

ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

Judkoff, R.; Neymark, J.

2013-07-01T23:59:59.000Z

338

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109, Pt. 1. Not to be reprinted in whole or in part without written permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, I  

E-Print Network (OSTI)

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109(s) and do not necessarily reflect the views of ASHRAE. Written questions and comments regarding this paper should be received at ASHRAE no later than February 7, 2003. ABSTRACT Aspartofa

339

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109, Pt. 1. Not to be reprinted in whole or in part without written permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, I  

E-Print Network (OSTI)

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2003, V. 109(s) and do not necessarily reflect the views of ASHRAE. Written questions and comments regarding this paper should be received at ASHRAE no later than February 7, 2003. ABSTRACT Flow boiling in small passages

Kandlikar, Satish

340

Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-1999 as a Commercial Building Energy Code in Michigan  

SciTech Connect

The state of Michigan is considering adpoting ASHRAE 90.1-1999 as its commercial building energy code. In an effort to evaluate whether or not this is an appropraite code for the state, the potential benefits and costs of adopting this standard are considered. Both qualitative and quantitative benefits are assessed. The energy simulation and economic results suggest that adopting ASHRAE 90.1-1999 would provide postitive net benefits to the state relative to the building and design requirements currently in place.

Cort, Katherine A.; Belzer, David B.; Halverson, Mark A.; Richman, Eric E.; Winiarski, David W.

2002-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development of a Humid Climate Definition  

E-Print Network (OSTI)

The role of humidity in indoor air quality has become of increasing concern in recent years. High indoor humidities can result in microbial growth on building surfaces, resulting in poor indoor air quality, as well as damage to the building and its contents. In addition to the IAQ impacts, high indoor humidity can cause occupant discomfort. The public review draft of ASHRAE Standard 62-1989R included requirements for installation of dehumidification controls in buildings with mechanical cooling located in humid climates. The draft standard included a definition of humid climate: where, during the warmest six consecutive months of a typical year, the wetbulb temperature is 19C (67F) or higher for 3500 hours or more, or 23C (73F) or higher for 1750 hours or more. This definition is that used in the 1993 ASHRAE Handbook of Fundamentals to define the humid climate region. The only areas in the continental United States which meet these criteria are close to the Gulf coast, all of Florida, and along the Atlantic coast as far north as southern North Carolina While it is clear that buildings in this humid climate region need to be carefully designed with regard to humidity control, it is also clear that buildings in other areas have an equal need for humidity control. The work described in this paper examines a number of potential indicators of "humid climate" and correlates them with the prevalence of indoor humidity problems in three building types. The FSEC 2.3 energy simulation computer program (Kerestecioglu et al. 1989) was used to simulate the three building types, using weather from 10 cities in the southeastern U.S. The FSEC software was selected because it is capable of accurately modeling moisture transfer within the building space and the dehumidification performance of cooling coils at part-load conditions, and predicting resulting humidity levels. The buildings modeled were a retail store (similar to a K-Mart or Wal-Mart), a large office building, and a fast food restaurant. Existing building models were employed for this study with ventilation rates in accordance with ASHRAE Standard 62-1989. The HVAC systems used were typical for these building types, without any special humidity control measures. The selected indicators of humidity problems are the number of hours per year with space humidity above 60% RH and the number of occupied hours with space humidity above 60% RH. TMY2 weather data (NREL 1995) for 10 cities was used for the annual building energy simulations. TMY2 data was also used to calculate a number of potential humid climate parameters for the same 10 cities. These included: the number of hours and the wetbulb-degree hours above 3 different wetbulb temperatures, the number of hours and grain-hours above 4 different humidity ratios, and the sensible, latent and total Ventilation Load Index (VLI). The VLI is the load (latent, sensible or total) generated by bringing one cfm of outdoor air to space neutral conditions over the course of one year (Hamman, et al. 1997). The ability of each climate parameter to predict indoor humidity problems was analyzed and compared. Implications of using the selected parameters to define a humid climate will be discussed

Hedrick, R. L.; Shirey, D. B.

1998-01-01T23:59:59.000Z

342

ASHRAE's Proposed Guideline 14P for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit  

E-Print Network (OSTI)

ASHRAE has recently completed the development of Guideline 14 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14 is intended to be a guideline that provides a minimum acceptable level of performance in the measurement of energy and demand savings from energy management projects applied to residential, commercial or industrial buildings. Such measurements can serve as the basis for commercial transactions between Energy Service Companies (ESCOs) and their customers, or other energy conservation providers that rely on energy savings as the basis for repayment of the costs of the retrofit. When applied properly, ASHRAE Guideline 14 is expected to provide adequate assurance for the payment of services by allowing for well specified measurement methods that provide reasonably accurate savings calculations. ASHRAE Guideline 14 may also be used by governments to calculate pollution reductions from energy efficiency activities. Since Guideline 14 is intended to be applied to an individual building, or a few buildings served by a utility meter, large scale utility energy conservation programs, such as those involving statistical sampling, are not addressed by the current version of Guideline 14. Furthermore, metering standards and procedures for calculating savings from modifications to major industrial process loads are also not covered. This paper presents an overview of the measurement methods contained in ASHRAE Guideline 14 , including a discussion about how they were developed, and their intended relationship with other national protocols for measuring savings from energy conservation programs, such as the USDOE's International Performance Measurement and Verification Protocols (IPMVP).

Haberl, J. S.; Reeves, G.; Gillespie, K.; Claridge, D. E.; Cowan, J.; Culp, C.; Frazell, W.; Heinemeier, K.; Kromer, S.; Kummer, J.; Mazzucchi, R.; Reddy, A.; Schiller, S.; Sud, I.; Wolpert, J.; Wutka, T.

2001-01-01T23:59:59.000Z

343

Development of DOE-2 Based Simulation Models for the Code-Compliant Commercial Construction Based on the ASHRAE Standard 90.1  

E-Print Network (OSTI)

In 2001, the Texas State Senate passed Senate Bill 5 to reduce ozone levels by encouraging the reduction of emissions of NOx that were not regulated by the Texas Natural Resource Conservation Commission. These include point sources (power plants), area sources (such as residential emissions), road mobile sources, and non-road mobile sources. For the building energy sector, the Texas State Legislature adopted the 2000 International Energy Conservation Code, as modified by the 2001 Supplement, as the states building energy code. The 2000/2001 IECC is a comprehensive energy conservation code that establishes a standard for the insulation levels, glazing, cooling and heating system efficiencies through the use of prescriptive and performance-based provisions. This paper provides a detailed description of the procedures that were developed to calculate the electricity and natural gas savings in new office construction that is being built in compliance with Chapter 8 of the 2000/2001 International Energy Conservation Code. Since most of the commercial portion of the 2000/2001 International Energy Conservation Code refers to ASHRAE Standard 90.1-1999 as the current code requirement for commercial construction, the simulation models based on the ASHRAE Standard 90.1, with general commercial configurations, are created to quantify the electricity and gas savings. Then, simulation models are modified to accommodate the different scenarios of construction and HVAC equipment based on three different codes (i.e., ASHRAE Standard 90.1-1989 (pre-code), 1999 (code-compliant), and 2004 (new-code)). The pre-code designation is meant to represent the commercial construction characteristics before the passage of Texas Emission Reduction Plan (TERP) in September 2001. In the simulations, pre-code, code-complaint and new code represent the commercial constructions in compliance with ASHRAE Standard 90.1-1989, ASHRAE Standard 90.1-1999, and ASHRAE Standard 90.1-2004, respectively. This paper includes an explanation of the simulation models developed for the different versions of ASHRAE Standard 90.1, as mentioned above, which are used for investigating the electricity and gas energy savings.

Kim, S.; Haberl, J.; Liu, Z.

2009-11-01T23:59:59.000Z

344

Alternate Air Delivery Systems for Hot and Humid Climates  

E-Print Network (OSTI)

Carter & Burgess first began using triple deck multi-zone units, in place of traditional VAV systems, on the Texas State Capitol restoration. Since the completion of that project design in early 1991, our firm has now used triple deck multi-zone units in the Harris County Criminal Courts Building in Houston, one of the most hot and humid climates in the United States, as well as in several other facilities. This paper will discuss the adoption of ASHRAE 62, its effects on VAV systems, and how triple deck multi-zone units offer an alternative system to cooling in hot and humid climates. We recommend all design firms add triple deck multizone units to their repertoire of design solutions.

Wallace, M.

1996-01-01T23:59:59.000Z

345

Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates  

E-Print Network (OSTI)

A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the accelerated dissemination of energy efficient design. For the development of the toolkit, first, a survey was performed to identify high performance measures available today being implemented in new K-5 school buildings. Then an existing case-study school building in a hot and humid climate was selected and analyzed to understand the energy use pattern in a school building and to be used in developing a calibrated simulation. Based on the information from the previous step, an as-built and calibrated simulation was then developed. To accomplish this, five calibration steps were performed to match the simulation results with the measured energy use. The five steps include: 1) Using an actual 2006 weather file with measured solar radiation, 2) Modifying lighting & equipment schedule using ASHRAEs RP-1093iv methods, 3) Using actual equipment performance curves (i.e., scroll chiller), 4) Using the Winkelmanns method for the underground floor heat transfer, and 5) Modifying the HVAC and room setpoint temperature based on the measured field data. Next, the calibrated simulation of the case-study K-5 school was compared to an ASHRAE Standard 90.1-1999 code-compliant school. In the next step, the energy savings potentials from the application of several high performance measures to an equivalent ASHRAE Standard 90.1-1999 codecompliant school. The high performance measures applied included the recommendations from the ASHRAE Advanced Energy Design Guides (AEDG) for K-12 and other high performance measures from the literature review as well as a daylighting strategy and solar PV and thermal systems. The results show that the net energy consumption of the final high performance school with the solar thermal and a solar PV system would be 1,162.1 MMBtu, which corresponds to the 14.9 kBtu/sqft-yr of EUI. The calculated final energy and cost savings over the code compliant school are 68.2% and 69.9%, respectively. As a final step of the research, specifications for a simplified easy-to-use toolkit were then developed, and a prototype screenshot of the toolkit was developed. The toolkit is expected to be used by non-technical decision-maker to select and evaluate high performance measures for a new school building in terms of energy and cost savings in a quick and easy way.

Im, Piljae

2009-12-01T23:59:59.000Z

346

Climate Collections  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional/Global > Climate Collections Regional/Global > Climate Collections Climate Collections Overview Climate encompasses the statistics of temperature, humidity, atmospheric pressure, wind, rainfall, atmospheric particle count, and numerous other meteorological elements in a given region over long periods of time. Climate can be contrasted to weather, which is the present condition of these same elements over periods up to two weeks. The climate collections project includes data sets containing measured and modeled values for variables such as temperature, precipitation, humidity, radiation, wind velocity, and cloud cover and include station measurements as well as gridded mean values. The ORNL DAAC Climate Collections Data archive includes 10 data products from the following categories:

347

The Application and Verification of ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) to DOE-2-1e Simulation Program  

E-Print Network (OSTI)

This report describes the application and verification of duct model on DOE 2.1e version 119 using ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems). It begins with a concept of duct model which is developed by ASHRAE and shows the application and the verification of the duct model to DOE 2.1e version 119 simulation program.

Kim, S.; Haberl, J. S.

2008-06-01T23:59:59.000Z

348

Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures  

E-Print Network (OSTI)

preference. Final Report ASHRAE RP-884 1997. [10] FarawayArid Climate. Final Report ASHRAE RP-921 1998. Schiavon S,buildenv.2012.08.024 [14] ANSI/ASHRAE. ANSI/ASHRAE 55-1992:

Schiavon, Stefano; Lee, Kwang Ho

2012-01-01T23:59:59.000Z

349

Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-1999 as a Commercial Building Energy Code in Illinois Jurisdictions  

SciTech Connect

ASHRAE Standard 90.1-1999 was developed in an effort to set minimum requirements for energy efficienty design and construction of new commercial buildings. This report assesses the benefits and costs of adopting this standard as the building energy code in Illinois. Energy and economic impacts are estimated using BLAST combined with a Life-Cycle Cost approach to assess corresponding economic costs and benefits.

Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.; Friedrich, Michele

2002-05-01T23:59:59.000Z

350

J u l y , 1 9 9 7 A S H R A E J o u r n a l 19 The following article was published in ASHRAE Journal, July1997. Copyright 1997 American Society of Heating, Refrigerating and Air-Conditioning Engineers,  

E-Print Network (OSTI)

J u l y , 1 9 9 7 A S H R A E J o u r n a l 19 The following article was published in ASHRAE/or distributed electronically or in paper form without permission of ASHRAE. A S H RAE JOURNAL Most traditional By Gary S. Settles, Ph.D. Member ASHRAE he patterns of airflow are central to almost everything associated

Settles, Gary S.

351

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

Locations of the eight ASHRAE-defined climate zones in the5.5.3.1 of ASHRAE 90.1-2004). climate zone roof U-factorASHRAE Figure 2. Locations of the 16 California climate zones (

Akbari, Hashem

2008-01-01T23:59:59.000Z

352

Climate Science Overview  

Science Conference Proceedings (OSTI)

NIST Home > Climate Science Overview. NIST Greenhouse Gas Measurements and Climate Research Program Overview. Earth's climate is ...

2010-07-06T23:59:59.000Z

353

Simulation of Dehumidification Characteristics of High Efficiency Residential Central Air-Conditioners in Hot and Humid Climates  

E-Print Network (OSTI)

This study assesses the dehumidifying performance of the high efficiency residential central air conditioners (CAC) in hot/humid climates typified by that of Houston and Galveston. The performance study is based on such factors as: (i) weather (ii) thermostat set point and dead band, and (ill) sizing of unit relative to the design load of the residence. The units are evaluated on their ability to maintain conditions in the ASHRAE comfort zone in a typical residence in Houston area. The units, the thermostat, and the residence are simulated on a minute-by-minute basis using a commercial software (TRNSYS) after making certain modifications to it.

Katipamula, S.; O'Neal, D.; Somasundram, S.

1988-01-01T23:59:59.000Z

354

Climate Indices  

NLE Websites -- All DOE Office Websites (Extended Search)

Indices Indices Climate Indices Climate indices are diagnostic tools used to describe the state of the climate system and monitor climate. They are most often represented with a time series, where each point in time corresponds to one index value. An index can be constructed to describe almost any atmospheric event; as such, they are myriad. Therefore, CDIAC provides these links to other web sites to help guide users to the most widely used climate indices, which in many cases are updated monthly. Data Set Website/Name NOAA's Climate Prediction Center, Monitoring and Data Index Page NOAA's Earth Systems Research Laboratory, Monthly Atmospheric and Ocean Time Series Page (plot, analyze, and compare time series) The Monthly Teleconnection Indices Page from NOAA's National

355

Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates  

E-Print Network (OSTI)

A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the accelerated dissemination of energy efficient design. For the development of the toolkit, first, a survey was performed to identify high performance measures available today being implemented in new K-5 school buildings. Then an existing case-study school building in a hot and humid climate was selected and analyzed to understand the energy use pattern in a school building and to be used in developing a calibrated simulation. Based on the information from the previous step, an as-built and calibrated simulation was then developed. To accomplish this, five calibration steps were performed to match the simulation results with the measured energy use. The five steps include: 1) Using an actual 2006 weather file with measured solar radiation, 2) Modifying lighting & equipment schedule using ASHRAE's RP-1093 methods, 3) Using actual equipment performance curves (i.e., scroll chiller), 4) Using the Winkelmann's method for the underground floor heat transfer, and 5) Modifying the HVAC and room setpoint temperature based on the measured field data. Next, the calibrated simulation of the case-study K-5 school was compared to an ASHRAE Standard 90.1-1999 code-compliant school. In the next step, the energy savings potentials from the application of several high performance measures to an equivalent ASHRAE Standard 90.1-1999 codecompliant school. The high performance measures applied included the recommendations from the ASHRAE Advanced Energy Design Guides (AEDG) for K- 12 and other high performance measures from the literature review as well as a daylighting strategy and solar PV and thermal systems. The results show that the net energy consumption of the final high performance school with the solar thermal and a solar PV system would be 1,162.1 MMBtu, which corresponds to the 14.9 kBtu/sqft-yr of EUI. The calculated final energy and cost savings over the code compliant school are 68.2% and 69.9%, respectively. As a final step of the research, specifications for a simplified easy-to-use toolkit were then developed, and a prototype screenshot of the toolkit was developed. The toolkit is expected to be used by non-technical decision-maker to select and evaluate high performance measures for a new school building in terms of energy and cost savings in a quick and easy way.

Im, Piljae

2009-12-01T23:59:59.000Z

356

Air movement preferences observed in office buildings  

E-Print Network (OSTI)

in a Hot-humid Climate. ASHRAE Transactions 100: 457-475.in a Cold Climate. ASHRAE Transactions 103: 205-220. Fang L,Sensations of Sedentary Man. ASHRAE Transactions 80 (1):

2007-01-01T23:59:59.000Z

357

Sensitivity of forced air distribution system efficiency to climate, duct location, air leakage and insulation  

Science Conference Proceedings (OSTI)

This study was performed in order to find suitable efficiency and leakage specifications for Energy Star duct systems and provide recommendations on duct insulation specifications. This analysis looks at a typical house, with a selection of duct locations, climates, duct insulation (R-value), and duct leakage. A set of calculations were performed with reduced capacity and airflow to look at the effect of variable capacity systems. This was done to address concerns regarding the increased efficiency of multi-capacity equipment due to good part load performance and how these efficiency gains may be offset by increased duct losses. The duct system efficiencies were calculated using the procedures in proposed ASHRAE Standard 152P ''Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems'' (ASHRAE 1999). This proposed ASHRAE Standard can be used to calculate duct efficiency for both design and seasonal weather conditions. In this report, the seasonal efficiencies are used for most of the analysis because they are the most appropriate for estimating energy consumption in buildings. The effects at peak conditions are examined for changing duct insulation in order to provide preliminary estimates of the potential responses to time of use pricing. The study was performed in two parts. The first part focused on duct leakage and the second part on duct insulation. The HVAC systems in the two parts share many attributes, however, they differ in detail and so are treated separately here. All the calculation results are summarized in tables in the Appendix, and specific results are given in the text.

Walker, Iain

2001-09-01T23:59:59.000Z

358

Thermal efficiency standards and codes. Volume 2. Relationships of ASHRAE standards and external factors to energy efficient building practices in new homes  

Science Conference Proceedings (OSTI)

Available data on 1976 and 1979 new home construction practices were used to develop measures of average building practice for each of the 48 contiguous states. Four possible views of the function and purpose of building energy standards and codes were posited and used to guide the search for relationships between building practice and building energy codes and standards implemented by the states. It was found that the average thermal efficiency of new single family homes improved from 1976 to 1979 in each of the 48 states. It was observed that by 1979 the average thermal efficiency of new homes in each of the 48 states exceeded American Society of Heating, Refrigerating and Air Conditioning Engineers Standard 90-75 (ASHRAE 90). However, in all states, there were substantial numbers of new homes which did not meet the Standard. By January 1, 1979, 23 states had some type of applicable building energy code or standard in effect; 11 of these had state-wide mandatory codes. All codes and standards were either identical to or very similar to the ASHRAE Standard 90-75 in their building shell requirements. A search for statistical evidence of a relationship between state building code activities and building practice was performed. Three marginally significant relationships were found by analysis of variance; however, these relationships were not significant in regression equations with socio-economic variables present. The conclusion here is that the effects of state building code actions on building practices were not detectable by the statistical methods used.

McCold, L.N.; Collins, N.E.; Zuschneid, P.B.; Hofstra, R.B.

1984-02-01T23:59:59.000Z

359

Habitable Climates  

E-Print Network (OSTI)

According to the standard liquid-water definition, the Earth is only partially habitable. We reconsider planetary habitability in the framework of energy-balance models, the simplest seasonal models in physical climatology, to assess the spatial and temporal habitability of Earth-like planets. We quantify the degree of climatic habitability of our models with several metrics of fractional habitability. Previous evaluations of habitable zones may have omitted important climatic conditions by focusing on close Solar System analogies. For example, we find that model pseudo-Earths with different rotation rates or different land-ocean fractions have fractional habitabilities that differ significantly from that of the Earth itself. Furthermore, the stability of a planet's climate against albedo-feedback snowball events strongly impacts its habitability. Therefore, issues of climate dynamics may be central in assessing the habitability of discovered terrestrial exoplanets, especially if astronomical forcing conditions are different from the moderate Solar System cases.

David S. Spiegel; Kristen Menou; Caleb A. Scharf

2007-11-30T23:59:59.000Z

360

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects  

E-Print Network (OSTI)

climate zone classification was developed by Pacific Northwest National Laboratory, and has been adopted by ASHRAE [

Mills, Evan

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Application of Target Value Design to Energy Efficiency Investments  

E-Print Network (OSTI)

zones based on the climate designations used by the International Energy Conservation Code (IECC) and ASHRAE

Lee, Hyun Woo

2012-01-01T23:59:59.000Z

362

Development of a Toolkit for Calculating Linear, Change-Point Linear and Multiple-Linear Inverse Building Energy Analysis Models, ASHRAE Research Project 1050-RP, Final Report  

E-Print Network (OSTI)

This report summarizes the results of ASHRAE Research Project 1050: Development of a Toolkit for Calculating Linear, Change-Point Linear and Multiple Linear Inverse Building Energy Analysis Models. The Inverse Modeling Toolkit (WIT) is a FORTRAN 90 application for developing regression models of building energy use. IMT can identify single and multi-variable least-squares regression models. It can also identify variable-base degree-day and single and multi-variable change-point models, which have been shown to be especially useful for modeling building energy use. This report includes background information about IMT and the models, instructions for its installation and operation, and the results of accuracy and robustness testing.

Kissock, J. K.; Haberl, J. S.; Claridge, D. E.

2002-11-01T23:59:59.000Z

363

Electric co-heating in the ASHRAE standard method of test for thermal distribution efficiency: Test results on two New York State homes  

SciTech Connect

Electric co-heating tests on two single-family homes with forced-air heating systems were carried out in March 1995. The goal of these tests was to evaluate procedures being considered for incorporation in a Standard Method of Test for thermal distribution system efficiency now being developed by ASHRAE. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the building equipment that produces this thermal energy to the spaces in which it is used. Furthering the project goal, the first objective of the tests was to evaluate electric co-heating as a means of measuring system efficiency. The second objective was to investigate procedures for obtaining the distribution efficiency, using system efficiency as a base. Distribution efficiencies of 0.63 and 0.70 were obtained for the two houses.

Andrews, J.W.; Krajewski, R.F.; Strasser, J.J.

1995-10-01T23:59:59.000Z

364

Climate VISION: News - Bush Administration Launches "Climate...  

Office of Scientific and Technical Information (OSTI)

Will Address Challenge of Climate Change WASHINGTON, D.C., - Today, the Department of Energy, on behalf of the Administration, launched the President's "Climate VISION"...

365

Application: Cold Climate  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Application: Cold Climate. Fire Suppression in Cold Climates: A Technical Review.. Catchpole, DV; 2000. ...

2011-12-22T23:59:59.000Z

366

The adaptive model of thermal comfort and energy conservation in the built environment  

E-Print Network (OSTI)

ASHRAEs Technical Committee (TC 2.1) in charge of Standard 55 initiated a programme of field validation experiments in vari- ous climate zones

de Dear, Richard; Brager, Gail

2001-01-01T23:59:59.000Z

367

Critical Plane Analysis of Wall Assembly in a Hot, Humid Climate  

E-Print Network (OSTI)

Condensation plane analysis for determining critical planes at which condensation may occur can be performed for building assemblies in any climate. Procedures for doing so in heating climates where buildings dry to the outside of envelope assemblies are given in 1997 ASHRAE Fundamentals Handbook, Chapter 22 "Thermal and Moisture Control in Insulated Assemblies - Fundamentals." Little original work is available elsewhere in the literature to guide analysis for buildings in hot and humid climates. Example 1 in Chapter 22 of the Fundamentals Handbook gives step-by-step calculations, for a heating climate. To analyze envelope assemblies in hot and humid climates where drying predominately occurs to the indoors, no direct discussion or examples are available. This paper presents this detail for a typical light commercial wall assembly, and provides the basis for analysis of any envelope assembly in hot and humid climates. Analysis of an envelope assembly in hot and humid climates seeks to determine if there is a critical plane in the wall towards which water vapor flows more rapidly from the outdoors than it flows to the indoors. (In heating climates, the analysis is reversed). In order to do this, weather data must be examined to yield outdoor conditions, and indoor conditions must be identified. Water vapor and thermal resistance of the materials in the wall assembly must also be established. These data are then used to perform calculations using the basic diffusion equation and methods described in the Fundamentals Handbook.' Each potentially critical plane is analyzed to determine if water vapor can accumulate more rapidly than it dissipates. This potential accumulation would signify a heightened risk of equilibrium relative humidity sufficient to amplify microbial growth, or to promote the deterioration of building materials.

Turner, S. C.

2000-01-01T23:59:59.000Z

368

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network (OSTI)

climate, three typical climate zones, Chicago, Minneapolis,study. Table 1 lists the climate zone information for theof selected cities and climate zones City ASHRAE Climate

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

369

Climate Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Employee Operations Employee Climate Survey March 2009 Acknowledgements The Berkeley Lab Survey Team consisted of the following: Jim Krupnick, Sponsor Vera Potapenko, Project Lead Karen Ramorino, Project Manager Chris Paquette, MOR Associates Alexis Bywater, MOR Associates MOR Associates, an external consulting firm, acted as project manager for this effort, analyzing the data and preparing this report. MOR Associates specializes in continuous improve- ment, strategic thinking and leadership development. MOR Associates has conducted a number of large-scale surveys for organizations in higher education, including MIT, Stanford, the University of Chicago, and others. MOR Associates, Inc. 462 Main Street, Suite 300 Watertown, MA 02472 tel: 617.924.4501

370

Methodology to Develop and Test an Easy-to-use Procedure for the Preliminary Selection of High-performance Systems for Office Buildings in Hot and Humid Climates  

E-Print Network (OSTI)

A procedure has been developed for the preliminary selection of high-performance systems for office buildings in hot and humid climates. High-performance building systems and components were surveyed for buildings in the U.S., which were applicable for office buildings in hot and humid climates. This research developed a calibrated DOE-2.1e simulation model of a prototypical large office building. In addition, a Simplified Geometry DOE-2.1e (SGDOE-2.1e) model, was also developed, which used a simplified geometry to demonstrate the use of a proposed easy-to-use tool. The calibrated DOE-2.1e simulation model and the SGDOE-2.1e were compared and showed a good match with each. The SGDOE-2.1e model was then further modified based on the ASHRAE Standard 90.1-1999 commercial building energy code. A code-compliant (ASHRAE Standard 90.1-1999) SGDOE-2.1e simulation model was then used as a baseline for the evaluation of the high-performance measures. A total of 14 high-performance measures were implemented including the energy savings, while the comfort level was maintained based on the ASHRAE comfort zone. In addition to the 14 high-performance measures, solar thermal and solar PV system analysis were integrated with the SGDOE-2.1e simulation model to further reduce the annual energy use. Finally, specifications of the proposed easy-to-use simulation tool were developed. This tool includes options to choose systems from the 14 high-performance measures and solar systems. The proposed easy-to-use systems selection tool can be used for new building practitioners and existing building owners as well to evaluate the performance of their new buildings compared to the ASHRAE Standard 90.1-1999 code-compliant building, and to assess the feasibility of implementing high-performance measures to their existing buildings in terms of energy and cost savings.

Cho, Sool Yeon

2009-08-01T23:59:59.000Z

371

Methodology to Develop and Test an Easy-To-Use Procedure for the Preliminary Selection of High-Performance Systems for Office Buildings in Hot and Humid Climates  

E-Print Network (OSTI)

A procedure has been developed for the preliminary selection of high-performance systems for office buildings in hot and humid climates. High-performance building systems and components were surveyed for buildings in the U.S., which were applicable for office buildings in hot and humid climates. This research developed a calibrated DOE-2.1e simulation model of a prototypical large office building. In addition, a Simplified Geometry DOE-2.1e (SGDOE-2.1e) model, was also developed, which used a simplified geometry to demonstrate the use of a proposed easy-to-use tool. The calibrated DOE-2.1e simulation model and the SGDOE-2.1e were compared and showed a good match with each. The SGDOE-2.1e model was then further modified based on the ASHRAE Standard 90.1-1999 commercial building energy code. A code-compliant (ASHRAE Standard 90.1-1999) SGDOE-2.1e simulation model was then used as a baseline for the evaluation of the high-performance measures. A total of 14 high-performance measures iv were implemented including the energy savings, while the comfort level was maintained based on the ASHRAE comfort zone. In addition to the 14 high-performance measures, solar thermal and solar PV system analysis were integrated with the SGDOE-2.1e simulation model to further reduce the annual energy use. Finally, specifications of the proposed easy-to-use simulation tool were developed. This tool includes options to choose systems from the 14 high-performance measures and solar systems. The proposed easy-to-use systems selection tool can be used for new building practitioners and existing building owners as well to evaluate the performance of their new buildings compared to the ASHRAE Standard 90.1-1999 code-compliant building, and to assess the feasibility of implementing high-performance measures to their existing buildings in terms of energy and cost savings.

Cho, S.

2009-08-01T23:59:59.000Z

372

Climatic Change  

E-Print Network (OSTI)

Carbon dioxide (CO2) sequestration has been proposed as a key component in technological portfolios for managing anthropogenic climate change, since it may provide a faster and cheaper route to significant reductions in atmospheric CO2 concentrations than abating CO2 production. However, CO2 sequestration is not a perfect substitute for CO2 abatement because CO2 may leak back into the atmosphere (thus imposing future climate change impacts) and because CO2 sequestration requires energy (thus producing more CO2 and depleting fossil fuel resources earlier). Here we use analytical and numerical models to assess the economic efficiency of CO2 sequestration and analyze the optimal timing and extent of CO2 sequestration. The economic efficiency factor of CO2 sequestration can be expressed as the ratio of the marginal net benefits of sequestering CO2 and avoiding CO2 emissions. We derive an analytical solution for this efficiency factor for a simplified case in which we account for CO2 leakage, discounting, the additional fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical model, the economic efficiency of CO2 sequestration decreases as the CO2 tax growth rate, leakage rates and energy requirements for CO2 sequestration increase.

Klaus Keller; David Mcinerney; David F. Bradford

2007-01-01T23:59:59.000Z

373

Philosophy of Climate Science  

Science Conference Proceedings (OSTI)

The use of climate simulations in scientific assessments of climate change and in the formulation of climatechange scenarios has been contested for, among others, methodological reasons. The "philosophy of climate science"encompasses discussions ...

Arthur C. Petersen

2000-02-01T23:59:59.000Z

374

Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093, Preliminary Report, Literature Review and Database Search  

E-Print Network (OSTI)

In this report, the first report for the ASHRAE 1093-RP project, we present: (1) our extended literature search of methods used to derive load shapes and diversity factors in the U.S. and Europe, (2) a survey of available databases of monitored commercial end-use electrical data in the U.S. and Europe, and (3) a review of classification schemes of the commercial building stock listed in national standards and codes, and reported by researchers and utility projects. The findings in this preliminary report will help us in performing the next steps of the project where we will identify and test appropriate daytyping methods on relevant monitored data sets of lighting and equipment (and other surrogates for occupancy) to develop a library of diversity factors and schedules for use in energy and cooling load simulations. The goal of this project is to compile a library of schedules and diversity factors for energy and cooling load calculations in various types of indoor office environments in the U.S. and Europe. Two sets of diversity factors, one for peak cooling load calculations and one for energy calculations will be developed.

Abushakra, B.; Haberl, J. S.; Claridge, D. E.

1999-05-01T23:59:59.000Z

375

Climate Action Plan (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

The Commonwealth of Kentucky established the Kentucky Climate Action Plan Council (KCAPC) process to identify opportunities for Kentucky to respond to the challenge of global climate change while...

376

SEAB Climate Action Plan  

Energy.gov (U.S. Department of Energy (DOE))

A presentation on the Climate Action Plan presented by Dr. Jonathan Pershing, Deputy Assistant Secretary for Climate Change at the U.S. Department of Energy.

377

Evaluating Energy Performance and Improvement Potential of China Office Buildings in the Hot Humid Climate Against U.S. Reference Buildings: Preprint  

SciTech Connect

This study compares the building code standards for office buildings in hot humid climates of China and the USA. A benchmark office building model is developed for Guangzhou, China that meets China's minimum national and regional building codes with incorporation of common design and construction practices for the area. The Guangzhou office benchmark model is compared to the ASHRAE standard based US model for Houston, Texas which has similar climate conditions. The research further uses a building energy optimization tool to optimize the Chinese benchmark with existing US products to identify the primary areas for potential energy savings. The most significant energy-saving options are then presented as recommendations for potential improvements to current China building codes.

Herrman, L.; Deru, M.; Zhai, J.

2010-08-01T23:59:59.000Z

378

Evaluating Energy Performance and Improvement Potential of China Office Buildings in the Hot Humid Climate Against U.S. Reference Buildings: Preprint  

SciTech Connect

This study compares the building code standards for office buildings in hot humid climates of China and the USA. A benchmark office building model is developed for Guangzhou, China that meets China's minimum national and regional building codes with incorporation of common design and construction practices for the area. The Guangzhou office benchmark model is compared to the ASHRAE standard based US model for Houston, Texas which has similar climate conditions. The research further uses a building energy optimization tool to optimize the Chinese benchmark with existing US products to identify the primary areas for potential energy savings. The most significant energy-saving options are then presented as recommendations for potential improvements to current China building codes.

Herrman, L.; Deru, M.; Zhai, J.

2010-08-01T23:59:59.000Z

379

Changing climate  

SciTech Connect

This article reviews a book written by a committee of the National Research Council. The book discussed the Greenhouse Effect which is a warming of the earth's atmosphere caused by the doubling of the atmospheric carbon dioxide concentration. The excess carbon dioxide is pollution derived from the burning of fossil fuels. The report suggested that the warming of the atmosphere would cause thawing of the polar regions which in turn would cause a rise in sea levels and flooding of the coastal lowlands. In addition to the flooding, the report predicted climate changes that would effect the productivity of croplands in the west. The authors of the report stressed that there was no way to avoid this warming of the earth. They suggested that people should start preparing for the inevitable.

1983-01-01T23:59:59.000Z

380

Formulating Climate Change Scenarios to Inform Climate - Resilient...  

Open Energy Info (EERE)

Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary Name: Formulating Climate Change Scenarios to...

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mixed-mode simulations for climate feasibility  

E-Print Network (OSTI)

across all 16 California climate zones. Quantify the largerspan all 16 official CA climate zones with system sizing andClimate analysis For each climate zone: Quantitative climate

Borgeson, Sam; Brager, Gail; Coffey, Brian; Haves, Phil

2009-01-01T23:59:59.000Z

382

CDIAC Climate Reconstruction Data Sets  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Reconstructions CDIAC Climate Holdings Containing Climate Reconstruction Data Data Set Name Investigators Data TypeFormat Period of Record Historic isotopic temperature...

383

Eos Climate | Open Energy Information  

Open Energy Info (EERE)

Eos Climate Jump to: navigation, search Name Eos Climate Place South San Francisco, California Zip 94080 Product California-based firm focused on developing climate change...

384

Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Climate Change Climate Change Learn about the effects climate change can have on our energy supplies and infrastructure and explore a...

385

Building Energy Software Tools Directory: IDA Indoor Climate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Method in Appendix G of ASHRAE 90.1-2007, which is used in Green Building Programs like LEED and BREEAM. Slab Cooling and Heating The Slab Cooling and Heating extension allows...

386

Linking Weather and Climate  

Science Conference Proceedings (OSTI)

Historically, the atmospheric sciences have tended to treat problems of weather and climate separately. The real physical system, however, is a continuum, with short-term (minutes to days) weather fluctuations influencing climate variations and ...

Randall M. Dole

2008-11-01T23:59:59.000Z

387

The Climate Policy Dilemma  

E-Print Network (OSTI)

Climate policy poses a dilemma for environmental economists. The economic argument for stringent GHG abatement is far from clear. There is disagreement among both climate scientists and economists over the likelihood of ...

Pindyck, Robert S.

388

Climate Action Plan (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Climate Change Action Plan (DCCAP) was prepared with funding from the Delaware State Energy Office and the U.S. Environmental Protection Agencys State and Local Climate Change Program...

389

Climate Science Measurements Portal  

Science Conference Proceedings (OSTI)

... comparability and for international acceptance of measurement results and insights concerning climatic ... Global Warming and Greenhouse Gases ...

2012-12-27T23:59:59.000Z

390

International Governance of Climate Engineering  

E-Print Network (OSTI)

Solar Radiation Management Governance Initiative conference); Daniel Bodansky, Governing Climate Engineering: Scenarios for Analysis (Harvard Project on Climate Agreements,

Parson, Edward; Ernst, Lia

2012-01-01T23:59:59.000Z

391

Statistical Descriptors of Climate  

Science Conference Proceedings (OSTI)

An adequate description of climate is required to meet the informational needs of planners and policy-makers who use climate as a factor in their decision-making processes. Because normals have become firmly entrenched as a descriptor of climate, ...

Nathaniel B. Guttman

1989-06-01T23:59:59.000Z

392

A New Homogenized Climate Division Precipitation Dataset for Analysis of Climate Variability and Climate Change  

Science Conference Proceedings (OSTI)

A new homogeneous climate division monthly precipitation dataset [based on full network estimated precipitation (FNEP)] was created as an alternative to the National Climatic Data Center (NCDC) climate division dataset. These alternative climate ...

D. Brent McRoberts; John W. Nielsen-Gammon

2011-06-01T23:59:59.000Z

393

Formulating Climate Change Scenarios to Inform Climate - Resilient  

Open Energy Info (EERE)

Formulating Climate Change Scenarios to Inform Climate - Resilient Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary Name: Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Agency/Company /Organization: United Nations Development Programme (UNDP) Topics: Low emission development planning Resource Type: Guide/manual Website: www.climatefinanceoptions.org/cfo/node/256 Language: English Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Screenshot References: Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies[1] Tool Overview "This guidebook is part of a series of manuals, guidebooks, and toolkits that draw upon the experience and information generated by UNDP's support

394

Climate Literacy Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Literacy Framework Print E-mail Climate Literacy Framework Print E-mail A Guide for Individuals and Communities The Essential Principles of Climate Science presents important information for individuals and communities to understand Earth's climate, impacts of climate change, and approaches for adapting and mitigating change. Principles in the guide can serve as discussion starters or launching points for scientific inquiry. The guide can also serve educators who teach climate science as part of their science curricula. Development of the guide began at a workshop sponsored by the National Oceanic and Atmospheric Administration (NOAA) and the American Association for the Advancement of Science (AAAS). Multiple science agencies, non-governmental organizations, and numerous individuals also contributed through extensive review and comment periods. Discussion at the National Science Foundation (NSF) and NOAA-sponsored Atmospheric Sciences and Climate Literacy workshop contributed substantially to the refinement of the document.

395

Little Climates -- Part One  

NLE Websites -- All DOE Office Websites (Extended Search)

Part One Part One Nature Bulletin No. 478-A January 27, 1973 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation LITTLE CLIMATES -- Part One: Weather in the Soi. Climate vitally affects our lives. Wherever we live, climate has largely determined the plant and animal life in that region, the development of civilization there and what people do. The climate of any region represents its overall weather picture: the sum of its weather today, tomorrow, and during past centuries. We are accustomed to think of climate as a set of conditions occurring entirely in the atmosphere above the earth's surface, and it may sound silly when we say that there are climates underground -- little climates just as real as those above -- but it's true, There are special kinds of weather in the soil.

396

Comfort standards and variation in exceedance for mixed-mode buildings.  

E-Print Network (OSTI)

ASHRAE 55 adaptive comfort model and the PPD model across all 16 climate zonesASHRAE 55 adaptive comfort model versus PPD for the mixed- mode case with baseline gains in every climate zone

Brager, Gail; Borgeson, Sam

2010-01-01T23:59:59.000Z

397

Climate Change Science Program Issues Report on Climate Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Change Science Program Issues Report on Climate Models Climate Change Science Program Issues Report on Climate Models Climate Change Science Program Issues Report on Climate Models July 31, 2008 - 2:40pm Addthis WASHINGTON, DC - The U.S. Climate Change Science Program (CCSP) today announced the release of the report "Climate Models: An Assessment of Strengths and Limitations," the 10th in a series of 21 Synthesis and Assessment Products (SAPs) managed by U.S. federal agencies. Developed under the leadership of the U.S. Department of Energy (DOE), this report, SAP 3.1, describes computer models of the Earth's climate and their ability to simulate current climate change. "Complex climate models are tools that provide insights and knowledge into how future climate may evolve. To assure that future climate projections

398

MCA4Climate - Guidance for scientifically sound climate change planning |  

Open Energy Info (EERE)

MCA4Climate - Guidance for scientifically sound climate change planning MCA4Climate - Guidance for scientifically sound climate change planning Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Multicriteria Analysis for Climate (MCA4climate) Agency/Company /Organization: United Nations Environment Programme (UNEP), World Bank Climate Smart Planning Platform Sector: Climate, Energy, Land Topics: Co-benefits assessment, Low emission development planning, Policies/deployment programs Resource Type: Guide/manual Complexity/Ease of Use: Moderate Website: www.mca4climate.info/ Program Start: 2011 Cost: Free Multicriteria Analysis for Climate (MCA4climate) Screenshot References: MCA4Climate - Guidance for scientifically sound climate change planning[1]

399

Is this climate porn? How does climate change communication  

E-Print Network (OSTI)

Is this climate porn? How does climate change communication affect our perceptions and behaviour;1 Is this climate porn? How does climate change communication affect our perceptions and behaviour? Thomas D. Lowe 1 these kinds of messages (which have recently been dubbed `climate porn' (Ereaut and Segnit, 2006)), can

Watson, Andrew

400

Ventilating Existing Homes in the US Air Infiltration Review. 2010;31(2)  

E-Print Network (OSTI)

programs refer to ASHRAE Standard 62.2 ­ or its predecessor 62-89 (www.ashrae.org). These standards provide rate estimated based on the local #12;climate. ASHRAE 62.2 refers to the weather factors in ASHRAE

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

$/m ) California Climate Zone Typical Cost Premiums (0.0 -eight ASHRAE-defined climate zones in the United States (the 16 California climate zones (courtesy Eley Associates).

Akbari, Hashem

2008-01-01T23:59:59.000Z

402

Global Climate Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Data The climate data at the ORNL DAAC are used primarily as driving variables in terrestrial biogeochemistry models. These models typically use data on temperature (min,max), precipitation, humidity (relative humidity, vapor pressure deficit, dew point), radiation (PFD in PAR, shortwave, direct/diffuse, and UV radiation, daylength), and wind velocity. Climate / meteorology data are required at hourly to monthly time scales, either point or gridded, at spatial scales ranging from regional to continental to global. The ORNL DAAC currently distributes climate data from several related projects: VEMAP-1 Hydroclimatology, and Global Historical Climatology Network. We are also now distributing climate data developed at the East Anglia Climate Research Unit and the Potsdam Institute for Climate Research.

403

Additional Climate Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Additional Climate Reports Print E-mail Additional Climate Reports Print E-mail Intergovernmental Panel on Climate Change (IPCC) Reports Internationally, many assessments have been produced to address important questions related to environmental issues such as ozone depletion, climate change, and the loss of biodiversity. Many of these assessments have provided the scientific basis for the elaboration of international agreements, including the Assessment Report Series from the Intergovernmental Panel on Climate Change (IPCC). The IPCC is a scientific intergovernmental body set up by the World Meteorological Organization (WMO) and by the United Nations Environment Programme (UNEP). IPCC assesses the scientific, technical and socio-economic information relevant for the understanding of the risk of human-induced climate change. Because of its intergovernmental nature, the IPCC is able to provide scientific technical and socio-economic information in a policy-relevant but policy neutral way to decision makers.

404

National Climate Assessment: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Team Production Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate Assessment: Overview Print E-mail What is the National Climate Assessment (NCA)? The NCA is an important resource for understanding and communicating climate change science and impacts in the United States. It informs the nation about already observed changes, the current status of the climate, and anticipated trends for the future. The NCA report process integrates scientific information from multiple sources and sectors to highlight key findings and significant gaps in our knowledge. The NCA also establishes consistent methods for evaluating climate impacts in the U.S. in the context of broader global change. Finally, findings from the NCA provide input to Federal science priorities and are used by U.S. citizens, communities, and businesses as they create more sustainable and environmentally sound plans for the nation's future.

405

The changing climate  

SciTech Connect

The earth owes its hospitable climate to the greenhouse effect, but now the effect threatens to intensify, rapidly warming the planet. Rising concentrations of carbon dioxide and other gases are the cause. The danger of warming is serious enough to warrant prompt action. The paper examines data on atmospheric warming and attempts to project effects into the future using atmospheric models. Three kinds of response to the threat are described: technical measures to counteract climatic change; adaptation to the changing climate; and prevention.

Schneider, S.H.

1989-09-01T23:59:59.000Z

406

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

ASHRAE, 2005), the economizer design was less efficient than the baseline design in most of the California climate zones

Shehabi, Arman

2010-01-01T23:59:59.000Z

407

Environment/Climate Portal  

Science Conference Proceedings (OSTI)

... exercises for environmental contaminants in marine specimens were administered in 2007/2008 by the more. >> see all Environment/Climate ...

2013-10-23T23:59:59.000Z

408

Energy and Climate  

Science Conference Proceedings (OSTI)

Implementation of renewable energy and climate change related policies around the ... These will be critical for both policy-making purposes ...

2013-12-05T23:59:59.000Z

409

Climate Suitability Tool Description  

Science Conference Proceedings (OSTI)

... The Climate Suitability Tool implements the method outlined in the following publications ... The analysis is based on a single-zone model of natural ...

410

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

TR-081.2 iii Abstract This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval...

411

Regional Climate Information & Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Information & Modeling Print E-mail The specific impacts and vulnerabilities posed by climate change are largely defined by regional differences 9in things like geography,...

412

Climate and Architecture: The TVA Climatic Data Base  

Science Conference Proceedings (OSTI)

The TVA Climatic Data Base (Finsen, 1980) is a graphic portrayal and analysis of the climatic elements and influences important to the building professions toward the resolution of climate responsive architectural design. The data base, including ...

Peter I. Finsen; Charles L. Bach; Robert C. Beebe

1981-12-01T23:59:59.000Z

413

Climate-Science Computational Development Team: The Climate End...  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory Robert Jacob, Argonne National Laboratory Climate-Science Computational Development Team: The Climate End Station II PI Name: Warren Washington...

414

Climate Change and National Security  

Science Conference Proceedings (OSTI)

Climate change is increasingly recognized as having national security implications, which has prompted dialogue between the climate change and national security communitieswith resultant advantages and differences. Climate change research has ...

Elizabeth L. Malone

2013-01-01T23:59:59.000Z

415

Climate change risk and response  

E-Print Network (OSTI)

Climate Change Center White Paper. Cayan, Dan, PeterClimate Change Center White Paper. Cayan, Daniel R. , EdwinClimate Change Center White Paper. duVair, Pierre, Douglas

Kahrl, Fredrich; Roland-Holst, David

2008-01-01T23:59:59.000Z

416

Climate Modeling with Spectral Elements  

Science Conference Proceedings (OSTI)

As an effort toward improving climate modelcomponent performance and accuracy, an atmospheric-component climate model has been developed, entitled the Spectral Element Atmospheric Climate Model and denoted as CAM_SEM. CAM_SEM includes a unique ...

Ferdinand Baer; Houjun Wang; Joseph J. Tribbia; Aim Fournier

2006-12-01T23:59:59.000Z

417

The Atlantic Climate Change Program  

Science Conference Proceedings (OSTI)

The Atlantic Climate Change Program (ACCP) is a component of NOAA's Climate and Global Change Program. ACCP is directed at determining the role of the thermohaline circulation of the Atlantic Ocean on global atmospheric climate. Efforts and ...

Robert L. Molinari; David Battisti; Kirk Bryan; John Walsh

1994-07-01T23:59:59.000Z

418

Status of cool roof standards in the United States  

E-Print Network (OSTI)

roofs (Table 5.5 of ASHRAE 90.2- Climate Zone Roof U-FactorASHRAE 2004a) tabulates thermal transmittance multipliers by U.S. climate zones (ASHRAE 2007). ceilings with attics wood frame steel frame climate conventional cool conventional cool zone

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

419

CLIMATE PROTECTION UPDATE  

E-Print Network (OSTI)

Climate disruption is an urgent threat to the environmental and economic health of our communities. With less than 5 % of the worlds population, the United States produces more than 25 % of the global greenhouse gas emissions, and those emissions are continuing to grow. On February 16, 2005 the Kyoto Protocol, the international agreement to address climate disruption, became law for the 163

unknown authors

2006-01-01T23:59:59.000Z

420

Climate VISION: News  

Office of Scientific and Technical Information (OSTI)

News Climate Vison RSS Recent News Feed News Climate Vison RSS Recent News Feed July 20, 2010 Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean Energy Ministerial Read the Press Release and Download Fact Sheet (PDF 76 KB) July 20, 2010 Government and corporate leaders announced a new public-private partnership, Global Superior Energy Performancecm at the Clean Energy Ministerial in Washington D.C. Read More and Download Fact Sheet (PDF 124 KB) June 20, 2010 Seventh Meeting of the Leaders' Representatives of the Major Economies Forum on Energy and Climate Read the Co-Chair's Summary June 1, 2010 Department of State releases Fifth U.S. Climate Action Report Read the Press Release December 18, 2009 Remarks by the President at the Morning Plenary Session of the United Nations Climate Change Conference

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

climate | OpenEI  

Open Energy Info (EERE)

climate climate Dataset Summary Description The National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Services (NESDIS), in conjunction with the National Climatic Data Center (NCDC) publish monthly and annual climate data by state for the U.S., including, cooling degree days (total number of days per month and per year). The average values for each state are weighted by population, using 2000 Census data. The base temperature for this dataset is 65 degrees F. Source NOAA Date Released Unknown Date Updated June 24th, 2005 (9 years ago) Keywords climate cooling degree days NOAA Data application/vnd.ms-excel icon hcs_51_avg_cdd.xls (xls, 215.6 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

422

Climate VISION: News Archive  

Office of Scientific and Technical Information (OSTI)

News Archive News Archive Collapse all | Expand all 2007 November 30, 2007 USTR Schwab to Announce New Climate Initiatives for WTO, Including a New Environmental Goods and Services Agreement November 28, 2007 U.S. Energy Information Administration Anounces U.S. Greenhouse Gas Emissions Declined 1.5 Percent in 2006 November 20, 2007 Nobel Peace Prize for Research on Climate Change Awarded to U.S. Forest Service Scientists November 16, 2007 Our Changing Planet: The U.S. Climate Change Science Program for Fiscal Year 2008 Report Released October 18, 2007 U.S. DOE Issues Third U.S. Climate Change Science Program Report October 15, 2007 The Government of India Hosts the Second Asia-Pacific Partnership on Clean Development and Climate Ministerial Meeting Fall 2007 EPA's 2nd measurement campaign to evaluate the performance of installed PFC

423

Moisture performance of sealed attics in the mixed-humid climate  

SciTech Connect

Oak Ridge National Laboratory studied 8 homes in the mixed-humid climate, 4 with vented attics and 4 with sealed attics. ORNL wanted to understand the moisture performance of the sealed attic and how it affected the interior environment. We found that the attic and interior of sealed attic homes were more humid than the attic and interior observed in vented attic homes. This is due to the lack of ventilation in the sealed attic. Historically attics have been vented to dehumidify the attic and interior of the home. A sealed attic design greatly reduces the venting potential and thus this drying pathway and can cause elevated interior moisture over a vented attic home. Despite the elevated attic and interior moisture in the sealed attic homes, so far no mold or material degradation has been found. The roof sheathing moisture content has stayed below 20%, indicating low potential for material degradation. Also the relative humidity at the roof sheathing has stayed within the ASHRAE 160 design criteria except for a short time during the 2011/2012 winter. This was due to a combination of the sealed attic design (minimal venting to the outside) and the duct work not being operated in the attic which usually provides a dehumidification pathway. It was also found that when the humidity was controlled using the HVAC system, it resulted in 7% more cooling energy consumption. In the mixed-humid climate this reduces the cost effectiveness of the sealed attic design as a solution for bringing ducts into a semi-conditioned space. Because of this we are recommending the other alternatives be used to bringing ducts into the conditioned space in both new construction and retrofit work in the mixed-humid climate.

Boudreaux, Philip R [ORNL] [ORNL; Pallin, Simon B [ORNL] [ORNL; Jackson, Roderick K [ORNL] [ORNL

2013-12-01T23:59:59.000Z

424

Climate Advisers | Open Energy Information  

Open Energy Info (EERE)

strategies, and investments. In short, the firm is working with others to actively shape the low carbon economy. Climate Advisers believes climate change poses serious...

425

National Climate Assessment: Production Team  

NLE Websites -- All DOE Office Websites (Extended Search)

NCA & Development Advisory Committee NCA & Development Advisory Committee Production Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate Assessment: Production Team Print E-mail National Climate Assessment Staff (USGCRP National Coordination Office) Current NCA Staff Dr. Fabien Laurier, Director, Third National Climate Assessment Dr. Glynis Lough, Chief of Staff for the National Climate Assessment Emily Therese Cloyd, Engagement Coordinator for the National Climate Assessment Bryce Golden-Chen, Program Coordinator for the National Climate Assessment Alison Delgado, Scientist Dr. Ilya Fischhoffkri, Scientist Melissa Kenney, Indicators Coordinator Dr. Fred Lipschultz, Regional Coordinator for the National Climate Assessment

426

Climate change risk and response  

E-Print Network (OSTI)

Climate Change and Electricity Demand: Applying the NewClimate Change and Electricity Demand in California. Extreme Heat, and Electricity Demand in California.

Kahrl, Fredrich; Roland-Holst, David

2008-01-01T23:59:59.000Z

427

National Climate Assessment: Previous Assessments  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate...

428

Second National Climate Assessment (2009)  

NLE Websites -- All DOE Office Websites (Extended Search)

Print E-mail alt What is the Second National Climate Assessment? The Second National Climate Assessment, entitled Global Change Impacts in the United States, was published in...

429

Climate change 2007 - mitigation of climate change  

SciTech Connect

This volume of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change. It includes a detailed assessment of costs and potentials of mitigation technologies and practices, implementation barriers, and policy options for the sectors: energy supply, transport, buildings, industry, agriculture, forestry and waste management. It links sustainable development policies with climate change practices. This volume will again be the standard reference for all those concerned with climate change. Contents: Foreword; Preface; Summary for policymakers; Technical Summary; 1. Introduction; 2. Framing issues; 3. Issues related to mitigation in the long term context; 4. Energy supply; 5. Transport and its infrastructure; 6. Residential and commercial buildings; 7. Industry; 8. Agriculture; 9. Forestry; 10. Waste management; 11. Mitigation from a cross sectoral perspective; 12. Sustainable development and mitigation; 13. Policies, instruments and co-operative agreements. 300 figs., 50 tabs., 3 annexes.

Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L. (eds.)

2007-07-01T23:59:59.000Z

430

Climate VISION: Program Mission  

Office of Scientific and Technical Information (OSTI)

PROGRAM MISSION PROGRAM MISSION Climate VISION - Voluntary Innovative Sector Initiatives: Opportunities Now - is a voluntary public-private partnership initiative to improve energy efficiency and greenhouse gas intensity in energy-intensive industrial sectors. Climate VISION - Voluntary Innovative Sector Initiatives: Opportunities Now - is a public-private partnership initiative launched by the Department of Energy on February 12, 2003. Its primary goal is to identify and pursue cost-effective options to improve the energy or GHG intensity of industry operations by accelerating the transition to technologies, practices, and processes that are cleaner, more efficient, and capable of reducing, capturing or sequestering GHGs. Climate VISION links these objectives with technology development,

431

NIST Testimony on Climate Change  

Science Conference Proceedings (OSTI)

NIST Testimony on Climate Change. 2009. Monitoring, Measurement and Verification of Greenhouse Gas Emissions II: The ...

2010-10-05T23:59:59.000Z

432

The Polar Marine Climate Revisited  

Science Conference Proceedings (OSTI)

As an additional classification to Kppens climate classification for polar (E) climates, the Polar Marine (EM) climate was presented nearly five decades ago and is revisited in this paper. The EM climate was traced to the North Atlantic, North ...

Thomas J. Ballinger; Thomas W. Schmidlin; Daniel F. Steinhoff

2013-06-01T23:59:59.000Z

433

Climate Change and Runoff Management  

E-Print Network (OSTI)

· Adaptation strategies #12;What is climate? "Climate is properly the long average of weather in a single place UV radiation Solar radiation Reflected by atmosphere (34% ) Radiated by atmosphere as heat (66%) Heat climate concerns us? Humans experience climate as weather #12;High water impacts June 1-15, 2008 38 River

Sheridan, Jennifer

434

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

President-Elect Obama's Address to the Global Climate Summit President-Elect Obama's Address to the Global Climate Summit November 18, 2008 THE PRESIDENT: Let me begin by thanking the bipartisan group of U.S. governors who convened this meeting. Few challenges facing America - and the world - are more urgent than combating climate change. The science is beyond dispute and the facts are clear. Sea levels are rising. Coastlines are shrinking. We've seen record drought, spreading famine, and storms that are growing stronger with each passing hurricane season. Climate change and our dependence on foreign oil, if left unaddressed, will continue to weaken our economy and threaten our national security. I know many of you are working to confront this challenge. In particular, I want to commend Governor Sebelius, Governor Doyle, Governor Crist, Governor

435

Related Federal Climate Efforts  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Federal Climate Efforts Print E-mail Related Federal Climate Efforts Print E-mail Interagency Task Force on Carbon Capture and Storage The Interagency Task Force on Carbon Capture and Storage (CCS) is a group of technologies for capturing, compressing, transporting and permanently storing power plant and industrial source emissions of carbon dioxide. Rapid development and deployment of clean coal technologies, particularly CCS, will help position the United States as a leader in the global clean energy race. Climate Change Adaptation Task Force The Task Force's work has been guided by a strategic vision of a resilient, healthy, and prosperous Nation in the face of a changing climate. To achieve this vision, the Task Force identified a set of guiding principles that public and private decision-makers should consider in designing and implementing adaptation strategies.

436

G-Climate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

67 67 AUDIT REPORT THE U.S. DEPARTMENT OF ENERGY'S GLOBAL CLIMATE CHANGE ACTIVITIES U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES APRIL 2000 April 6, 2000 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "The U.S. Department of Energy's Global Climate Change Activities" BACKGROUND The President's Climate Change Proposal of October 1997 and the United Nation's Framework Convention on Climate Change (FCCC), were intended to identify methods of reducing greenhouse gas emissions. The FCCC was ratified by the U.S. Senate in 1992 and put into force in July 1994. The purpose of the Kyoto

437

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

Remarks by the President at the Morning Plenary Session of the United Remarks by the President at the Morning Plenary Session of the United Nations Climate Change Conference Bella Center Copenhagen, Denmark December 18, 2009 (Read the White House Press page.) THE PRESIDENT: Good morning. It is an honor for me to join this distinguished group of leaders from nations around the world. We come here in Copenhagen because climate change poses a grave and growing danger to our people. All of you would not be here unless you -- like me -- were convinced that this danger is real. This is not fiction, it is science. Unchecked, climate change will pose unacceptable risks to our security, our economies, and our planet. This much we know. The question, then, before us is no longer the nature of the challenge -- the question is our capacity to meet it. For while the reality of climate

438

Global Climate Change Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Climate Change Links Global Climate Change Links This page provides links to web pages that we at CDIAC feel do a responsible job of presenting information and discussion pertinent to the science behind the global climate change ("global warming") debate. These sites include those on both sides of the debate; some asserting that global warming is a clear and present danger, and others that might be labeled global warming "skeptics." Some of these sites don't take a position per se; they exist to offer the public objective scientific information and results on our present understanding of the climate system. The list is not intended to be comprehensive, by any means. We hope it will be especially helpful for those who may be just beginning their research into global

439

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman August 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

440

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman June 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Climate: The Elements  

Science Conference Proceedings (OSTI)

The authors present an analytical climate model, which has the features that (i) the atmosphere is a simple oscillator for all periods ?1 year, (ii) the ocean stores heat, (iii) the ocean exchanges momentum with the atmosphere, and (iv) random ...

John A. T. Bye; Roland A. D. Byron-Scott; Adrian H. Gordon

1996-07-01T23:59:59.000Z

442

Climate Action Plan (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

On July 12 and 13, 2007, Governor Charlie Crist hosted Serve to Preserve: A Florida Summit on Global Climate Change. The summit brought together leaders of business, government, science and...

443

Climate Action Plan (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

There is a growing scientific consensus that increasing emissions of greenhouse gases to the atmosphere are affecting the temperature and variability of the Earths climate. Recognizing the...

444

Regional Climate Research  

Science Conference Proceedings (OSTI)

The Workshop on Regional Climate Research: Needs and Opportunities was held 24 April 2001 at the National Center for Atmospheric Research, Boulder, Colorado. The workshop was cosponsored by the National Science Foundation and the Department of ...

L. Ruby Leung; Linda O. Mearns; Filippo Giorgi; Robert L. Wilby

2003-01-01T23:59:59.000Z

445

DOE Climate Change Researchers  

Office of Scientific and Technical Information (OSTI)

Mike (LLNL) Structure of the Tropical Lower Stratosphere as Revealed by Three Reanalysis Data Sets An Appraisal of Coupled Climate Model Simulations A B C D E F G H J K L M P R S...

446

Detecting Climate Change  

Science Conference Proceedings (OSTI)

The likelihood ratio of the data for a hypothesis of some change, relative to the hypothesis of no change, is a suitable statistical measure for the detection of climate change. Likelihood ratios calculated on the basis of Angell and Korshover's (...

Edward S. Epstein

1982-08-01T23:59:59.000Z

447

Climate Assessment for 1999  

Science Conference Proceedings (OSTI)

The global climate during 1999 was impacted by Pacific cold episode (La Nia) conditions throughout the year, which resulted in regional precipitation and atmospheric circulation patterns across the Pacific Ocean and the Americas that are ...

Gerald D. Bell; Michael S. Halpert; Russell C. Schnell; R. Wayne Higgins; Jay Lawrimore; Vernon E. Kousky; Richard Tinker; Wasila Thiaw; Muthuvel Chelliah; Anthony Artusa

2000-06-01T23:59:59.000Z

448

OpenEI - climate  

Open Energy Info (EERE)

617 at http:en.openei.orgdatasets Climate: monthly and annual average relative humidity GIS data at one-degree resolution of the World from NASASSE http:en.openei.org...

449

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman May 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

450

Global Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

When President Bush announced his Global Climate Change Initiative in February 2002, he committed the United States to a new strategy to cut greenhouse gas emissions over the next...

451

Climate Action Plan (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

On April 20, 2007, Governor Martin OMalley signed Executive Order 01.01.2007.07 establishing the Maryland Climate Change Commission (MCCC) charged with collectively developing an action plan to...

452

Bayesian Climate Change Assessment  

Science Conference Proceedings (OSTI)

A Bayesian fingerprinting methodology for assessing anthropogenic impacts on climate was developed. This analysis considers the effect of increased CO2 on near-surface temperatures. A spatial CO2 fingerprint based on control and forced model ...

L. Mark Berliner; Richard A. Levine; Dennis J. Shea

2000-11-01T23:59:59.000Z

453

Valuing Climate Forecast Information  

Science Conference Proceedings (OSTI)

The article describes research opportunities associated with evaluating the characteristics of climate forecasts in settings where sequential decisions are made. Illustrative results are provided for corn production in east central Illinois. ...

Steven T. Sonka; James W. Mjelde; Peter J. Lamb; Steven E. Hollinger; Bruce L. Dixon

1987-09-01T23:59:59.000Z

454

Climate Action Plan (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

Recognizing the implications that global climate change may have on the economy, environment and quality of life in Minnesota, Governor Tim Pawlenty signed into law the 2007 Next Generation Energy...

455

Achieving Climate Sustainability  

Science Conference Proceedings (OSTI)

It is often assumed that climate change policies, including the Kyoto Protocol and the follow-on Copenhagen agreement now being negotiated, align well with sustainability's tenets. A closer look reveals this is not the case. First, they treat ...

William B. Gail

2010-02-01T23:59:59.000Z

456

Energy, Climate & Infrastructure Security  

E-Print Network (OSTI)

Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-1670P Thermal thermal environments different from regulatory standards. Packaging, Transport, Storage & Security

457

Global Climate Change Alliance Training Workshops on Mainstreaming Climate  

Open Energy Info (EERE)

Global Climate Change Alliance Training Workshops on Mainstreaming Climate Global Climate Change Alliance Training Workshops on Mainstreaming Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Climate Change Alliance Training Workshop on Mainstreaming Climate Change Agency/Company /Organization: Global Climate Change Alliance (GCCA) Sector: Climate Topics: Low emission development planning, -LEDS Resource Type: Training materials, Workshop Website: www.gcca.eu/pages/75_2-OCT-Workshop.html Cost: Free References: GCCA Countries Training Workshop[1] A GCCA workshop for OCT countries took place 27-28 January 2012 immediately following the OCT-EU Forum meeting in Brussels, Belgium. The workshop aimed at sharing views, knowledge, tools and experiences on climate change mitigation and adaptation and at raising awareness on the benefits and

458

Building Technologies Office: Climate Zones  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Zones to Climate Zones to someone by E-mail Share Building Technologies Office: Climate Zones on Facebook Tweet about Building Technologies Office: Climate Zones on Twitter Bookmark Building Technologies Office: Climate Zones on Google Bookmark Building Technologies Office: Climate Zones on Delicious Rank Building Technologies Office: Climate Zones on Digg Find More places to share Building Technologies Office: Climate Zones on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

459

Mobile Climate Observatory on the Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Observatory on the Pacific The AMF2 mobile climate observatory is traveling the Pacific ocean between Los Angeles and Honolulu to improve the way global climate models...

460

Chicago Climate Exchange CCX | Open Energy Information  

Open Energy Info (EERE)

Chicago Climate Exchange CCX Jump to: navigation, search Name Chicago Climate Exchange (CCX) Place Chicago, Illinois Zip 60604 Product Chicago Climate Exchange (CCX) is aiming at...

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SEAB Climate Action Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Action Plan presented by Dr. Jonathan Pershing, Deputy Assistant Secretary for Climate Change at the U.S. Department of Energy. Climate Action Plan (pdf) More Documents...

462

Climate Change Science Institute | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and...

463

Climate Data Operators (CDO)  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Climate Data Operators (CDO) Climate Data Operators (CDO) Description and Overview CDO is a large tool set for working on climate data. NetCDF 3/4, GRIB including SZIP compression, EXTRA, SERVICE and IEG are supported as IO-formats. Apart from that cdo can be used to analyse any kind gridded data not related to climate science. CDO has very small memory requirements and can process files larger than the physical memory. How to Use CDO module load cdo cdo [Options] Operators ... Further Information CDO Online Documentation Availability Package Platform Category Version Module Install Date Date Made Default cdo carver libraries/ I/O 1.4.1 cdo/1.4.1 2012-01-13 2012-01-13 cdo carver libraries/ I/O 1.4.6 cdo/1.4.6 2012-05-24 2012-05-25 cdo carver libraries/ I/O 1.6.1 cdo/1.6.1 2013-07-02

464

BNL | Climate, Environment and Bisoscience  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate, Environment, and Biosciences Climate, Environment, and Biosciences bioscience research Revealing Nature-from Microscopic to Atmospheric Scales With recognized expertise in plant sciences, imaging, and climate studies, Brookhaven Lab advances some of the most promising scientific methods of achieving a sustainable future. This cross-disciplinary research seeks to understand the relationships between climate change, sustainable energy initiatives, and the planet's natural ecosystems. As environmental and economic issues mount, this research will provide increasingly important guidance and opportunities for climate change management strategies, approaches to adaptation, and policy decisions. Building a Sustainable Future Major goals include: Significantly improving climate models based on high-quality data

465

ORISE: Climate and Atmospheric Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate and Atmospheric Research Climate and Atmospheric Research Capabilities Overview U.S. Climate Reference Network U.S. Historical Climate Network Contact Us Oak Ridge Institute for Science Education Climate and Atmospheric Research The Oak Ridge Institute for Science and Education (ORISE) partners with the National Oceanic and Atmospheric Administration's Atmospheric Turbulence and Diffusion Division (ATDD) to conduct climate research focused on issues of national and global importance. Research is performed with personnel support from ORISE's Independent Environmental Assessment and Verification (IEAV) programs, as well as in collaboration with scientists and engineers from Oak Ridge National Laboratory (ORNL), and numerous other organizations, government agencies, universities and private research institutions.

466

Constraints on Climate Sensitivity from Radiation Patterns in Climate Models  

Science Conference Proceedings (OSTI)

The estimated range of climate sensitivity, the equilibrium warming resulting from a doubling of the atmospheric carbon dioxide concentration, has not decreased substantially in past decades. New statistical methods for estimating the climate ...

Markus Huber; Irina Mahlstein; Martin Wild; John Fasullo; Reto Knutti

2011-02-01T23:59:59.000Z

467

Second National Climate Assessment: Climate Change Impacts By...  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Impacts By Region Print E-mail alt An affiliated website was created specifically for the 2009 National Climate Assessment so that the report would be more...

468

Second National Climate Assessment: Climate Change Impacts By...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment: Climate Change Impacts By Sector Print E-mail alt An affiliated website was created specifically for the 2009 National Climate Assessment so that the report would be...

469

Climate System Response to External Forcings and Climate Change...  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate System Response to External Forcings and Climate Change Projections in CCSM4 Submitted by mkaczmar on March 8, 2012 - 11:03 Authors: Meehl, G.A., Washington, WM, Arblaster,...

470

Climate change cripples forests  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Cripples Forests Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "There will still be wet winters, but they will more often be followed by warm summers, putting stress on trees and limiting their ability to respond

471

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

Remarks by the President at Major Economies Meeting on Energy Security and Remarks by the President at Major Economies Meeting on Energy Security and Climate Change September 28, 2007 THE PRESIDENT: Good morning. Thank you. Welcome to the State Department. I'm honored to address this historic meeting on energy security and climate change. And I appreciate you all being here. Energy security and climate change are two of the great challenges of our time. The United States takes these challenges seriously. The world's response will help shape the future of the global economy and the condition of our environment for future generations. The nations in this room have special responsibilities. We represent the world's major economies, we are major users of energy, and we have the resources and knowledge base to develop clean energy technologies.

472

Reduce Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Climate Change Reduce Climate Change Highway vehicles release about 1.5 billion metric tons of greenhouse gases (GHGs) into the atmosphere each year-mostly in the form of carbon dioxide (CO2)-contributing to global climate change. Each gallon of gasoline you burn creates 20 pounds of CO2. That's roughly 5 to 9 tons of CO2 each year for a typical vehicle. more... How can a gallon of gasoline create 20 pounds of carbon dioxide? It seems impossible that a gallon of gasoline, which weighs about 6.3 pounds, could produce 20 pounds of carbon dioxide (CO2) when burned. However, most of the weight of the CO2 doesn't come from the gasoline itself, but the oxygen in the air. When gasoline burns, the carbon and hydrogen separate. The hydrogen combines with oxygen to form water (H2O), and carbon combines with oxygen

473

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

at United Nations Secretary General Ban Ki-Moon's at United Nations Secretary General Ban Ki-Moon's Climate Change Summit United Nations Headquarters New York, New York September 22, 2009 (Read the White House Press page.) PRESIDENT OBAMA: Thank you very much. Good morning. I want to thank the Secretary General for organizing this summit, and all the leaders who are participating. That so many of us are here today is a recognition that the threat from climate change is serious, it is urgent, and it is growing. Our generation's response to this challenge will be judged by history, for if we fail to meet it -- boldly, swiftly, and together -- we risk consigning future generations to an irreversible catastrophe. No nation, however large or small, wealthy or poor, can escape the impact of climate change. Rising sea levels threaten every coastline. More

474

Cattle and Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Cattle and Climate Cattle and Climate Name: Peter Location: N/A Country: N/A Date: N/A Question: Is there any link bteween global warming / climate change and the increased population of cattle worldwide. If so can it be estimated what proportion of the potential problem arises from this source. Replies: Some scientist speculate that when cows expel intestinal gas (to put it politely!) they contribute to global warming by increasing the amount of methane in the atmosphere. They certainly aren't the only source-a study was done on termites also that showed that methane was expelled as they broke down cellulose-but if they are increasing in number they probably are one of many sources. I'm sorry I can't steer you towards actual studies, but I think they were done in the 1970's

475

Climate change cripples forests  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate change cripples forests Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "There will still be wet winters, but they will more often be followed by warm summers, putting stress on trees and limiting their ability to respond

476

Climate VISION: Contact Us  

Office of Scientific and Technical Information (OSTI)

CONTACT US CONTACT US General Contact Information Please contact the individuals below for all general questions about information found on this website. Department of Energy Contact Russell Conklin Policy Analyst U.S. Climate Change Technology Program U.S. Department of Energy Office of Climate Change Policy and Technology (PI-50) 202-586-8339 Web Site Contacts Matt Antes 410-953-6218 Energetics, Incorporated Or Rebecca Gordon 202-406-4138 Energetics, Incorporated Private Sector Initiatives Contact Information Please contact the individuals below for questions about information found on this website regarding the private sector initiatives. Collapse all | Expand all Aluminum - Contacts Association Climate VISION Lead Bob Streiter Aluminum Association 900 19th Street, NW Washington, D.C. 20006

477

Climate change cripples forests  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Cripples Forests Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "There will still be wet winters, but they will more often be followed by warm summers, putting stress on trees and limiting their ability to respond

478

High Performance Building Facade Solutions PIER Final Project Report  

E-Print Network (OSTI)

zone in a sunny climate. Lighting energy use was 53-67% of ASHRAEzone in a sunny climate. Lighting energy use was 53-67% of ASHRAE

Lee, Eleanor

2011-01-01T23:59:59.000Z

479

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

480

On Climate Prediction in the Tropics  

Science Conference Proceedings (OSTI)

Climatic disasters are common in many tropical regions, and rainfall anomalies in particular have a severe human impact. Accordingly, both the World Climate Programme and the U.S. National Climate Program have identified climate prediction as a ...

Stefan Hastenrath

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ashrae 169-2006 climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Documenting Climate Models and Their Simulations  

Science Conference Proceedings (OSTI)

The results of climate models are of increasing and widespread importance. No longer is climate model output of sole interest to climate scientists and researchers in the climate change impacts and adaptation fields. Now nonspecialists such as government ...

Eric Guilyardi; V. Balaji; Bryan Lawrence; Sarah Callaghan; Cecelia Deluca; Sbastien Denvil; Michael Lautenschlager; Mark Morgan; Sylvia Murphy; Karl E. Taylor

2013-05-01T23:59:59.000Z

482

Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Change Climate Change Climate Change View our interactive climate vulnerability map to learn more about how climate change could impact energy supplies and delivery near your home. | Map by Daniel Wood, Energy Department. View our interactive climate vulnerability map to learn more about how climate change could impact energy supplies and delivery near your home. | Map by Daniel Wood, Energy Department. Addressing the effects of climate change is a top priority of the Energy Department. As global temperature rise, wildfires, drought and high electricity demand put stress on the nation's energy infrastructure. And severe weather -- the leading cause of power outages and fuel supply disruption in the United States -- is projected to worsen,

483

Climate Change | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Climate Change Climate Change The Office of Climate Change Policy and Technology (PI-50), located within the Office of Policy and International Affairs (PI), serves as the focal point within the U.S. Department of Energy (DOE) for the development, coordination, and implementation of DOE-related aspects of climate change technical programs, policies, and initiatives. The mission of the Office of Climate Change Policy and Technology is to accelerate the development and deployment of advanced technologies and best practices to mitigate climate change. To the extent delegated by the Secretary, the Office provides planning, analysis, and technical advisory services to other Federal agencies, and to Cabinet and sub-Cabinet-level interagency committees, working on climate

484

Climate Action Plan (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

29 members of Governor John Lynchs Climate Change Policy Task Force developed a Climate Action Plan in 2009. It is aimed at achieving the greatest feasible reductions in greenhouse gas emissions...

485

The Community Climate System Model  

Science Conference Proceedings (OSTI)

The community Earth System Model (CESM) is a fully coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states.

Worley, Patrick H [ORNL

2011-01-01T23:59:59.000Z

486

Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Change Climate Change November 19, 2013 Statement on U.S. Secretary of Energy Ernest Moniz's Travel to Istanbul, Turkey U.S. Secretary of Energy Ernest Moniz will travel to...

487

Storm Tracks and Climate Change  

Science Conference Proceedings (OSTI)

Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by ...

Lennart Bengtsson; Kevin I. Hodges; Erich Roeckner

2006-08-01T23:59:59.000Z

488

Climate Action Plan (New Orleans)  

Energy.gov (U.S. Department of Energy (DOE))

New Orleans' Climate Action Plan will provide a road map to reach the City's greenhouse gas (GHG) reduction goal by 2030 while orchestrating its adaptation to climate change. The CAP will outline...

489

Testing Climate Models: An Approach  

Science Conference Proceedings (OSTI)

The scientific merit of decadal climate projections can only be established by means of comparisons with observations. Testing of models that are used to predict climate change is of such importance that no single approach will provide the ...

Richard Goody; James Anderson; Gerald North

1998-11-01T23:59:59.000Z

490

Some thoughts about the Climatic  

E-Print Network (OSTI)

& variance) ­ probability #12;Afforestation has been proposed as a climate mitigation strategy #12;Vegetation and grasslands in mid-latitude with deciduous trees · Equilibrium calculations with the NCAR carbon-climate model

Kammen, Daniel M.

491

book review: Climate change mapped  

E-Print Network (OSTI)

6596 newsandupdate bookreview Climatechangemappedatlasismorethanjustabookofmaps. By thatcriterionthan just a science book. It alsocoversclimate

Shanahan, Mike

2012-01-01T23:59:59.000Z

492

Contrails, Cirrus Trends, and Climate  

Science Conference Proceedings (OSTI)

Rising global air traffic and its associated contrails have the potential for affecting climate via radiative forcing. Current estimates of contrail climate effects are based on coverage by linear contrails that do not account for spreading and, ...

Patrick Minnis; J. Kirk Ayers; Rabindra Palikonda; Dung Phan

2004-04-01T23:59:59.000Z

493

Environment and Climate in MML  

Science Conference Proceedings (OSTI)

... Laboratory's work in the areas of environment and climate ... soil, atmosphere, marine and aquatic environments, and environmental threats, and ...

2012-06-12T23:59:59.000Z

494

Climate Change and Aluminum - TMS  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... Softcover book: Carbon Dioxide Reduction Metallurgy. Knowledge Product: Sustainability, Climate Change, and Greenhouse Gas Emissions...

495

Climate Action Plan (Manitoba, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

Manitoba's Climate Action Plan centers around energy efficiency, although it includes mandates and initiatives for renewable sources of energy.

496

Measurements and Standards for the Climate Change ...  

Science Conference Proceedings (OSTI)

Measurements and Standards for the Climate Change Science Program (+$5 million). ... Shutterstock. Challenge. The climate is changing. ...

2010-10-05T23:59:59.000Z

497

Climatic Aspects of Droughts  

Science Conference Proceedings (OSTI)

Drought is an inevitable part of climate, even in regions of usually ample rainfall. Because of the effects of drought on food supply, long time series of occurrence exist in many parts of the world. Incidence is dominated by the long wave ...

H. E. Landsberg

1982-06-01T23:59:59.000Z

498

Vermont Climate Change Indicators  

Science Conference Proceedings (OSTI)

Climate change indicators are developed for Vermont in recent decades based on the trends in freeze dates, the length of the growing season, the frozen period of small lakes, and the onset of spring. These trends, which show a consistent pattern ...

Alan K. Betts

2011-04-01T23:59:59.000Z

499

Energy, Climate & Infrastructure Security  

E-Print Network (OSTI)

Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-1846P CustomTraining Sandia providesPRAsandhowtheycanbemanaged to increase levels of safety and security. Like othertrainings,Sandiaexpertsdesigncoursesto beasbroadorin

500

Energy, Climate & Infrastructure Security  

E-Print Network (OSTI)

Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-0987P Transportation of the safe and secure transport of radioactive and hazardous materials. AWaytoEnsureSafeTransport Sandia