Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Facility Hunt's Ash Springs Sector Geothermal energy Type Pool and Spa Location Hiko, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

2

Fish Health Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010  

Science Conference Proceedings (OSTI)

On December 22, 2008, over 4 million cubic meters of fly ash slurry was released into the Emory River when a dike surrounding a solid waste containment area at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant ruptured. One component of TVA's response to the spill is a biological monitoring program to assess short- and long-term ecological responses to the ash and associated chemicals, including studies on fish health and contaminant bioaccumulation. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure to metals and health effects on fish, (4) evaluating, along with information from other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology information transfer or model study focused on how to best evaluate the environmental effects of fly ash (and related environmental stressors), not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report presents the results of the first two years of the fish health study. To date, fish health and bioaccumulation studies have been conducted from Spring 2009 though Fall 2011 and includes 6 seasonal studies: Spring 2009, Fall 2009, Spring 2010, Fall 2010, Spring 2011, and Fall 2011. Both the Spring and Fall studies have focused on 3-4 sentinel fish species that represent different feeding habits, behaviors, and home ranges. In addition to fish health and bioaccumulation, the Spring investigations also included reproductive integrity studies on the same fish used for bioaccumulation and fish health. In this report, results of the fish health studies from Spring 2009 through Fall 2010 are presented while an associated report will present the fish reproductive studies conducted during Spring 2009 and Spring 2010. A report on fish bioaccumulation was submitted to TVA in June 2011. The fish health study conducted in conjunction with the bioaccumulation and reproductive study is critical for assessing and evaluating possible causal relationships between contaminant exposure (bioaccumulation) and the response of fish to exposure as reflected by the various measurements of fish health.

Adams, Marshall [ORNL; Fortner, Allison M [ORNL

2012-05-01T23:59:59.000Z

3

Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010  

SciTech Connect

In December 2008, an ash dike at the Tennessee Valley Authority (TVA) Kingston Fossil Plant ruptured, releasing over one billion gallons of coal fly ash into the Emory and Clinch Rivers. Coal fly ash may contain several contaminants of concern, but of these selenium (Se) and arsenic (As) have been highlighted because of their toxicity and tendency to bioaccumulate in aquatic food chains. To assess the potential impact of the spilled fly ash on humans and the environment, a comprehensive biological and environmental monitoring program was established, for which resident aquatic organisms (among other sample media) are collected to determine contaminant exposure and evaluate the risk to humans and wildlife. Studies on bioaccumulation and fish health are major components of the TVA Biological Monitoring Program for the Kingston fly ash project. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure (to metals) and effects on fish, (4) evaluating, along with information regarding other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology transfer or model study focused on how to best evaluate the environmental effects of fly ash, not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report summarizes the bioaccumulation results from the first two years of study after the fly ash spill, including four seasonal collections: Spring 2009, Fall 2009, Spring 2010, and Fall 2010. Both the Spring and Fall studies have focused on 3-4 sentinel fish species that represent different feeding habits, behaviors, and home ranges. In addition to bioaccumulation studies, the Spring investigations also included evaluation of fish health and reproductive integrity on the same fish used for bioaccumulation. Two associated reports present the fish health (Adams et al 2012) and reproductive studies (Greeley et al 2012) conducted in 2009 and 2010. The fish health study conducted in conjunction with the bioaccumulation and reproductive study is critical for assessing and evaluating possible causal relationships between contaminant exposure (bioaccumulation) and the response of fish to exposure as reflected by the various measurements of fish health. This report emphasizes evaluation of arsenic and selenium bioaccumulation in fish and consists of four related studies (Sections 2-5) including, (1) bioaccumulation in liver and ovaries, (2) bioaccumulation in whole body gizzard shad (Dorosoma cepedianum), (3) bioaccumulation in muscle tissue or fillets, and (4) a reconstruction analysis which establishes the relationship between selenium in muscle tissue and that of the whole body of bluegill (Lepomis machrochirus). Metals other than arsenic and selenium are evaluated separately in Section 6. This report focuses on selenium and arsenic for the following reasons: (1) based on baseline studies conducted in early 2009 in the Emory and Clinch River, only two potentially fly-ash related metals, selenium and arsenic, appeared to be elevated above background or reference levels, (2) selenium and arsenic are two of the metals in coal ash that are known to bioaccumulate and cause toxicity in wildlife, and (3) based on bioaccumulation studies of bluegill and carp (Cyprinus carpio) in the Stilling Pond during Spring 2009, which would represent a worst case situation for metal bioaccumulation, selenium and arsenic were the only two metals consistently elevated above background levels in fish. E

Adams, Marshall [ORNL; Brandt, Craig C [ORNL; Fortner, Allison M [ORNL

2012-05-01T23:59:59.000Z

4

EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties,...

5

Evaluating the Effects of the Kingston Fly Ash Release on Fish Reproduction: Spring 2009 - 2010 Studies  

Science Conference Proceedings (OSTI)

On December 22, 2008, a dike containing fly ash and bottom ash at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits from the spill extended 4 miles upstream of the facility to Emory River mile 6 and downstream to Tennessee River mile 564 ({approx}8.5 miles downstream of the confluence of the Emory River with the Clinch River, and {approx}4 miles downstream of the confluence of the Clinch River with the Tennessee River). A byproduct of coal combustion, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be harmful to biological systems. The ecological effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to come from elevated levels of certain metals in the ash, particularly selenium, on fish reproduction and fish early life stages (Lemly 1993; Besser and others 1996). The ovaries of adult female fish in a lake contaminated by coal ash were reported to have an increased frequency of atretic oocytes (dead or damaged immature eggs) and reductions in the overall numbers of developing oocytes (Sorensen 1988) associated with elevated body burdens of selenium. Larval fish exposed to selenium through maternal transfer of contaminants to developing eggs in either contaminated bodies of water (Lemly 1999) or in experimental laboratory exposures (Woock and others 1987, Jezierska and others 2009) have significantly increased incidences of developmental abnormalities. Contact of fertilized eggs and developing embryos to ash in water and sediments may also pose an additional risk to the early life stages of exposed fish populations through direct uptake of metals and other ash constituents (Jezierska and others 2009). The establishment and maintenance of fish populations is intimately associated with the ability of individuals within a population to reproduce. Reproduction is thus generally considered to be the most critical life function affected by environmental contamination. From a regulatory perspective, the issue of potential contaminant-related effects on fish reproduction from the Kingston fly ash spill has particular significance because the growth and propagation of fish and other aquatic life is a specific classified use of the affected river systems. To address the potential effects of fly ash from the Kingston spill on the reproductive health of exposed fish populations, ORNL has undertaken a series of studies in collaboration with TVA that include: (1) a combined field study of metal bioaccumulation in ovaries and other fish tissues (Adams and others 2012) and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill (the current report); (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (Greeley and others 2012); (3) additional laboratory experimentation focused on the potential effects of long-term exposures to fly ash on fish survival and reproductive competence (unpublished); and (4) a combined field and laboratory study examining the in vitro developmental success of embryos and larvae obtained from fish exposed in vivo for over two years to fly ash in the Emory and Clinch Rivers (unpublished). The current report focuses on the reproductive condition of adult female fish in reaches of the Emory and Clinch Rivers influenced by the fly ash spill at the beginning of the spring 2009 breeding season - the first breeding season immediately following the fly ash release - and during the subsequent spring 2010 breeding season. Data generated from this and related reproductive/early life stage studies provide direct input to ecological risk assessment efforts and complement and support other phases of the overall biomonitoring program associated with the fly ash spill.

Greeley Jr, Mark Stephen [ORNL; Adams, Marshall [ORNL; McCracken, Kitty [ORNL

2012-05-01T23:59:59.000Z

6

Microsoft Word - GrandCoulee_FONSI.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project BPA's Finding of No Significant Impact 1 Bonneville Power Administration's Finding of No Significant Impact (FONSI) for the Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project DOE/EA-1679 SUMMARY The Bonneville Power Administration (BPA) announces its environmental findings on the Bureau of Reclamation's (Reclamation) Grand Coulee Third Powerplant 500-kV Transmission Line Replacement Project. This project involves replacing the six 500-kV transmission lines of the Third Powerplant (TPP) at Grand Coulee Dam. The transmission lines are presently installed within the dam and a two-chambered tunnel that leads to a Spreader Yard about a mile west of the TPP. BPA would design and construct

7

Microsoft Word - CX-Coulee_Westside_Relay_Replacement_130205.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2013 6, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Roy Slocum Project Manager - TEP-CSB-2 Proposed Action: Coulee-Westside Transfer Trip Replacement Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 Electronic Equipment Locations: Grand Coulee, WA and Spokane, WA Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The BPA has entered into a three-party agreement with Bureau of Reclamation (Bureau) and Avista Corporation (Avista) to coordinate the replacement of relays and removal of transfer trip equipment at Avista's Westside Substation and the Bureau's Grand Coulee Switchyard on the Grand Coulee-Westside 230-kilovolt (kV) Transmission Line. Under this agreement, BPA proposes to:

8

Microsoft Word - GrandCoulee_FinalEA_CommentResponses.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant Grand Coulee's Third Powerplant 500-kilovolt Transmission Line Replacement Project Revision Sheet for the Environmental Assessment Finding of No Significant Impact Mitigation Action Plan DOE/EA-1679 December 2011 Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Revision Sheet for the Environmental Assessment 2 SUMMARY This revision sheet documents the changes to be incorporated into the Grand Coulee's Third Powerplant 500-kilovolt (kV) Transmission Line Replacement Project Preliminary Environmental Assessment (EA). With the addition of these changes, the Preliminary EA will not be reprinted and will serve as the Final EA. On May 2, 2011, the Preliminary EA was sent to agencies and interested parties.

9

Springs  

NLE Websites -- All DOE Office Websites (Extended Search)

Springs Springs Nature Bulletin No. 618 November 19, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist SPRINGS Springs -- cold, clear springs bubbling from hillsides or welling up from secret depths -- played an important part in the settlement of these United States from the Blue Ridge mountains of Virginia and the Great Smokies in Tennessee to the Ozarks of Illinois, Missouri and Arkansas. Always more plentiful in mountainous and hilly country, they were much more numerous and vigorous in those days before the great forests were cut over or destroyed. Then, most of the rainfall was retained and sank into the ground. Springs are fed by ground water. An early settler, penetrating a frontier wilderness with his family and their meager possessions, traveled and searched until he found a suitable home-site. That was determined not only by the quality of the land and what brew on it but also by the availability of water and timber. Although some preferred to dig a well, fearful that the dreaded milk sickness and "the shakes" or ague might lurk in spring water, a favorite location was near some good "strong" spring.

10

Microsoft Word - CX-GrandCoulee-Creston_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Clearance Memorandum Robert Keudell Robert Zeller Lineman Foreman III - TFWK-Grand Coulee Lineman Foreman I - TFWK-Grand Coulee Proposed Action: Selected wood pole replacement and minor access road maintenance along the Grand Coulee-Creston transmission line at miles 14, 15, 21 and 28. PP&A Project No: 1828 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities...for structures, rights of way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures... in a condition suitable for a facility to be used for its designed purpose.

11

Grand Coulee - Bell 500-kV Transmission Line Project, Draft Environmental Impact Statement  

Science Conference Proceedings (OSTI)

BPA is proposing to construct a 500-kilovolt (kV) transmission line that would extend approximately 84 miles between the Grand Coulee 500-kV Switchyard, near Grand Coulee Dam, and the Bell Substation, in Mead just north of Spokane. The new line would cross portions of Douglas, Grant, Lincoln, and Spokane counties. In addition to the transmission line, new equipment would be installed at the substations at each end of the new line and at other facilities. The proposed action would remove an existing 115-kV transmission line and replace it with the new 500-kV line on existing right-of-way for most of its length. Additional right-of-way would be needed in the first 3.5 miles out of the Grand Coulee Switchyard to connect to the existing 115-kV right-of-way. Since the mid-1990s, the transmission path west of Spokane, called the West of Hatwai transmission pathway, has grown increasingly constrained. To date, BPA has been able to manage operation of the path through available operating practices, and customer needed have been met while maintaining the reliability of the path. however, in early 2001, operations showed that the amount of electricity that needs to flow from east to west along this path creates severe transmission congestion. Under these conditions, the system is at risk of overloads and violation of industry safety and reliability standards. The problem is particularly acute in the spring and summer months because of the large amount of power generated by dams east of the path. Large amounts of water cannot be spilled during that time in order for BPA to fulfill its obligation to protect threatened and endangered fish. The amount of power that needs to move through this area during these months at times could exceed the carrying capacity of the existing transmission lines. In additional capacity is not added, BPA will run a significant risk that it will not be able to continue to meet its contractual obligations to deliver power and maintain reliability standards that minimize risks to public safety and to equipment. BPA is considering two construction alternatives, the Agency Proposed Action and the Alternative Action. The Alternative Action would include all the components of the Preferred Action except a double-circuit line would be constructed in the Spokane area between a point about 2 miles west of the Spokane River and Bell Substation, a distance of about 9 miles. BPA is also considering the No Action Alternative.

N /A

2002-08-09T23:59:59.000Z

12

EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE's...

13

EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

50: Grand Coulee-Creston Transmission Line Rebuild; Grant and 50: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington SUMMARY Bonneville Power Administration is preparing this EA to assess the potential environmental impacts of the proposed rebuild of approximately 28 miles of transmission line between the cities of Coulee Dam in Grant County and Creston in Lincoln County, Washington. The proposed project would include replacing all wood pole structures and conductor, improving existing access roads, and developing temporary access roads. Additional information is available at the project website: http://www.bpa.gov/goto/CouleeCrestonRebuild. PUBLIC COMMENT OPPORTUNITIES Draft EA: Comment Period Ends 2/3/14.

14

EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

79: Grand Coulee's Third Powerplant 500-kV Transmission Line 79: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington Summary This EA evaluates potential environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE's Bonneville Power Administration (BPA), a cooperating agency, was asked by the U. S. Department of the Interior's Bureau of Reclamation to design and construct the proposed new transmission lines. A Finding of No Significant Impact was issued by BPA in December 2011. BPA website: http://efw.bpa.gov/environmental_services/Document_Library/Grand_Coulee/

15

Coulee Region Bio Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Region Bio Fuels LLC Region Bio Fuels LLC Jump to: navigation, search Name Coulee Region Bio-Fuels LLC Place Ettrick, Wisconsin Zip 54627 Sector Biofuels Product LLC created by PrairieFire BioFuels Coop, INOV8, and Arcade Pumping to distribute waste vegetable oil vehicle fuel in Wisconsin. Coordinates 44.16944°, -91.268549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.16944,"lon":-91.268549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Microsoft Word - CX-GrandCoulee-Bell3WestsideInsulatorRepAccessImprov_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark Kjelland Mark Kjelland Project Manager - TEP-TPP-2 Proposed Action: Grand Coulee-Bell No. 3/Grand Coulee-Westside No. 1 double circuit 230-kV transmission line insulator replacement and access improvement project Budget Information: Work Order #00255064 PP&A Project No.: PP&A 1946 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment... routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designated purpose. Proposed by: Bonneville Power Administration (BPA) Location: The proposed Grand Coulee-Bell No. 3/Grand Coulee-Westside No. 1 double circuit

17

Bonneville Power Administration Grand Coulee-Bell 500-kV Transmission Line Project Record of Decision  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee-Bell 500-kV Transmission Line Project Grand Coulee-Bell 500-kV Transmission Line Project Record of Decision Decision The Bonneville Power Administration (BPA) has decided to construct the proposed Grand Coulee-Bell 500-kV Transmission Line Project in Douglas, Grant, Lincoln, and Spokane Counties, Washington. BPA has decided to implement the proposed action identified in the Grand Coulee-Bell 500-kV Transmission Line Project Final Environmental Impact Statement (DOE/EIS-0344, December 2002). The proposed action consists of constructing a new 500- kilovolt (kV) transmission line between the Bureau of Reclamation's (BOR) Grand Coulee 500- kV Switchyard near Grand Coulee, Washington, and BPA's Bell Substation near Spokane, a distance of 84 miles. The proposed action involves removing an existing 115-kV transmission

18

Microsoft Word - CX-GrandCoulee-OkanoganWP-AR-Landing_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Cleareance Memorandum Jim Semrau Robert Keudell Road Engineer - TELF-TPP-3 Line Foreman III - TFWK-Grand Coulee Todd Wehner Robert Zellar Road Engineer - TELF-TPP-3 Line Foreman I - TFWK-Grand Coulee Proposed Action: Wood pole replacement, equipment landing construction and access road construction/maintenance along the Grand Coulee-Okanogan #2 115-kV transmission line right-of-way (ROW). PP&A Project No: 1776 Work Order No.: 275584 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021):  B1.13 Construction, acquisition, and relocation of onsite pathways and short onsite access roads and railroads.  B1.3 Routine maintenance activities...for structures, rights-of-way, infrastructures such

19

Microsoft Word - CX-GrandCoulee-ChiefJoseph_ARandWood Poles_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Cleareance Memorandum Todd Wehner Road Engineer - TELF-TPP-3 Robert Keudell Line Foreman III - TFWK-Grand Coulee Robert Zellar Line Foreman I - TFWK-Grand Coulee Proposed Action: Wood pole replacement, equipment landing construction and access road construction/maintenance along portions of the Grand Coulee-Chief Joseph #1 and #2 230-kV transmission line rights-of-way. PP&A Project No: 1777 Work Order No.: 275582 and 275583 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021):  B1.13 Construction, acquisition, and relocation of onsite pathways and short onsite access roads and railroads.  B1.3 Routine maintenance activities...for structures, rights-of-way, infrastructures such

20

Microsoft Word - CX-GrandCouleeDistrictWoodPoleReplacementsAccessRoadsFY13_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KEPR-Bell-1 SUBJECT: Environmental Clearance Memorandum Todd Wehner Civil Design/Access Roads - TELF-TPP-3 James Semrau Project Manager - TEP-TPP-1 Proposed Action: Wood pole replacement, equipment landing construction, and access road improvements along various transmission lines in Bonneville Power Administration's (BPA) Grand Coulee District. PP&A Project No.: 2152 (Grand Coulee-Chief Joseph No. 1), 2151 (Grand Coulee-Chief Joseph No. 2), 2121 (Grand Coulee-Foster Creek No. 1) and 1776 (Grand Coulee-Okanogan No. 2) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Douglas and Okanogan counties, Washington. Refer to table below for project locations: Line Name Structure Township Range Section County

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wildlife Mitigation and Restoration for Grand Coulee Dam: Blue Creek Project, Phase 1.  

DOE Green Energy (OSTI)

This report is a recommendation from the Spokane Tribe to the Northwest Power Planning Council (NPPC) for partial mitigation for the extensive wildlife and wildlife habitat losses on the Spokane Indian Reservation caused by the construction of Grand Coulee Dam. NPPC`s interim wildlife goal over the next 7 years for the Columbia hydropower system, is to protect, mitigate and enhance approximately 35% basin wide of the lost habitat units. Grand Coulee Dam had the greatest habitat losses of any Dams of the Wildlife Rule.

Merker, Christopher

1993-04-01T23:59:59.000Z

22

Grand Coulee Dam Wildlife Mitigation Program : Pygmy Rabbit Programmatic Management Plan, Douglas County, Washington.  

DOE Green Energy (OSTI)

The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.

Ashley, Paul

1992-06-01T23:59:59.000Z

23

Microsoft Word - CX-GrandCouleeBellNo3-WestsideAgLand_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Mark Kjelland Project Manager - TEP-TPP-2 Proposed Action: Insulator replacement in agricultural lands along the Grand Coulee-Bell No. 3/Grand Coulee-Westside No. 1 double circuit 230-kV transmission line Budget Information: Work Order #00255064 PP&A Project No.: PP&A 1909 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment... routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designed purpose. Proposed by: Bonneville Power Administration (BPA)

24

Microsoft Word - CX-GrandCoulee-BellNo3ReconductoringFY12_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 SUBJECT: Environmental Clearance Memorandum Frank Weintraub Project Manager - TEP-TPP-1 Proposed Action: Grand Coulee-Bell No. 3 double circuit 230-kV transmission line reconductoring project Budget Information: Work Order #00280243 PP&A Project No.: PP&A 1946 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance Proposed by: Bonneville Power Administration (BPA) Location: The proposed Grand Coulee-Bell No. 3 Double Circuit 230-kV Transmission Line Reconductoring Project is located in Grant, Lincoln, and Spokane counties, Washington, in BPA's Spokane Operations and Maintenance District. Townships, Ranges, and Sections crossed by the proposed project listed below (Table 1).

25

Microsoft Word - CX-GrandCoulee-BellNo5InsultatorFY13_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Stacie Hensley Project Manager - TEP-TPP-4 Proposed Action: Grand Coulee-Bell No. 5 Dead End Insulator Replacement Project Budget Information: Work Order #00339638 PP&A Project No.: 2699 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance Proposed by: Bonneville Power Administration (BPA) Location: Grant and Lincoln counties, Washington, in BPA's Spokane Operations and Maintenance District. Townships, Ranges, and Sections crossed by the proposed project are listed below (Table 1). Table 1. Townships, Ranges, and Sections for the Grand Coulee-Bell No.5 Dead End Insulator Replacement Project. Township Range Sections

26

Microsoft Word - Grand Coulee Transmission Line Replacement Project Prelim EA.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant 500-kilovolt Transmission Line Replacement Project Preliminary Environmental Assessment May 2011 DOE/EA-1679 Agency Proposing Action. U.S. Bureau of Reclamation is the lead NEPA agency. The Bonneville Power Administration is assisting Reclamation through project design, environmental review and construction, if the Proposed Action is taken. Action. Reclamation is proposing to replace the six, 500- kV transmission lines of the Third Powerplant (TPP) at Grand Coulee Dam. The transmission lines are presently installed within the dam and a two-chambered tunnel that leads to a Spreader Yard about a mile away. Purpose and Need. The TPP's six generators and transmission lines are critical to the regional power supply.

27

Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.  

DOE Green Energy (OSTI)

The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

1999-07-01T23:59:59.000Z

28

Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay  

DOE Green Energy (OSTI)

This report documents the fourth year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

Johnson, Robert L.; Simmons, Mary Ann; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

2005-02-25T23:59:59.000Z

29

Study of the effects of a disaster at Grand Coulee Dam upon the Hanford Works  

SciTech Connect

Declassified 23 Nov 1973. It is assumed that the Grand Coulee Dam would be destroyed by one direct hit following detonation of an atomic bomb. Major effects of the explosion include flooding and isolation of Richland, flooding of Midway Substation, and flooding of surrounding areas. Maximum water elevations following a direct hit and indirect hits are estimated. Data are presented for flow through openings and flow through dam failure. (HLW)

Kramer, H.A.

1950-02-01T23:59:59.000Z

30

Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay  

SciTech Connect

This report documents the third year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

2004-01-01T23:59:59.000Z

31

Deborah Ash  

NLE Websites -- All DOE Office Websites (Extended Search)

Deborah Rebecca Ash Deborah Ash Energy Analysis and Environmental Impacts Department Energy Efficiency Standards Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS...

32

Characterization of Pump Flow at the Grand Coulee Pumping Station for Fish Passage, 2004  

DOE Green Energy (OSTI)

This report describes a study conducted by PNNL for the Bonneville Power Administration to characterized the conditions fish experience when entrained in pump flow at the Grand Coulee Dam. PNNL used the Sensor Fish to measure the acceleration and pressure conditions that might be experienced by fish who are pulled through the pumps and turbines at Grand Coulee Dam's pump generation station and transported up into the feeder canal leading to Banks Lake. The probability that fish would be struck by the pump generating plant's new 9-bladed turbines was also calculated using Monte Carlo simulations. Our measurements showed relatively low turbulence except in the immediate vicinity of the runner environment. The highest pressure experienced by the Sensor Fish was estimated at 157 psi (the pressure gauge saturated at 155 psi). The probability of strike was also calculated, based on the average length of hatchery-reared juvenile kokanee (land-locked sockeye). Strike probabilities ranged from 0.755 for 2.36-inch fish to 0.3890 for 11.8-inch fish. The probability of strike estimates indicate that the majority (77%) of kokanne would be carried through the pump without being struck and most likely without injury resulting from pressure and turbulence exposure. Of the 23% that might be struck it is expected that 60% would arrive in Banks Lake without visible external injuries. Thus more than 90% of entrained fish would be expected to arrive in Banks Lake without injury.

Carlson, Thomas J.; Duncan, Joanne P.; Johnson, Robert L.

2005-03-31T23:59:59.000Z

33

Microsoft Word - CX-Olympia-GrandCoulee85-5RelocationFY12_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2012 9, 2012 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Amanda Williams Project Manager - TEP-TPP-1 Proposed Action: Olympia-Grand Coulee Structure 85/5 Relocation Project Budget Information: Work Order #00291628 PP&A Project No.: PP&A 1984 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance Proposed by: Bonneville Power Administration (BPA) Location: The proposed Olympia-Grand Coulee Structure 85/5 Relocation Project is located in King County, Washington, within the Mt. Baker-Snoqualmie National Forest (MBS), in BPA's Covington Operations and Maintenance District. Township, Range, and Section crossed by the proposed project are listed below:

34

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2000 Annual Report.  

DOE Green Energy (OSTI)

The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, commonly known as the Joint Stock Assessment Project (JSAP) is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (blocked area). The three-phase approach of this project will enhance the fisheries resources of the blocked area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information housed in a central location will allow managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP (NWPPC program measure 10.8B.26) is designed and guided jointly by fisheries managers in the blocked area and the Columbia Basin blocked area management plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of blocked area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the blocked area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. The use of common collection and analytical tools is essential to the process of streamlining joint management decisions. In 1999 and 2000 the project began to address some of the identified data gaps, throughout the blocked area, with a variety of newly developed sampling projects, as well as, continuing with ongoing data collection of established projects.

Crossley, Brian (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA); Lockwood, Jr., Neil W. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA)

2001-01-01T23:59:59.000Z

35

Wildlife Protection, Mitigation and Enhancement Planning for Grand Coulee Dam, Final Report.  

SciTech Connect

The development and operation of Grand Coulee Dam inundated approximately 70,000 acres of wildlife habitat under the jurisdictions of the Colville Confederated Tribes, the Spokane Tribe, and the State of Washington. Under the provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, this study reviews losses to wildlife and habitat, and proposes mitigation for those losses. Wildlife loss estimates were developed from information available in the literature. Habitat losses and potential habitat gains through mitigation were estimated by a modified Habitat Evaluation Procedure. The mitigation plan proposes (1) acquisition of sufficient land or management rights to land to protect Habitat Units equivalent to those lost (approximately 73,000 acres of land would be required), (2) improvement and management of those lands to obtain and perpetuate target Habitat Units, and (3) protection and enhancement of suitable habitat for bald eagles. Mitigation is presented as four actions to be implemented over a 10-year period. A monitoring program is proposed to monitor mitigation success in terms of Habitat Units and wildlife population trends.

Creveling, Jennifer

1986-08-01T23:59:59.000Z

36

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2006-02-01T23:59:59.000Z

37

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2002 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); Butler, Chris (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA)

2003-09-01T23:59:59.000Z

38

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Olympia, WA); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2005-11-01T23:59:59.000Z

39

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2001 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power Planning Council (NPPC). The NPPC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPPC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area and the Columbia Basin Blocked Area Management Plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of seven streams and four lakes on the Spokane Indian Reservation were completed by 2000. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in southern Pend Oreille County, and water bodies within and near the Spokane Indian Reservation were conducted in 2001. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispell Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); O'Connor, Dick (Washington Department of Fish and Wildlife, Olympia, WA)

2003-01-01T23:59:59.000Z

40

"1. Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" Washington" "1. Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 "2. Chief Joseph","Hydroelectric","USCE-North Pacific Division",2456 "3. Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1596 "4. Rocky Reach","Hydroelectric","PUD No 1 of Chelan County",1254 "5. Columbia Generating Station","Nuclear","Energy Northwest",1097 "6. Wanapum","Hydroelectric","PUD No 2 of Grant County",1059 "7. Boundary","Hydroelectric","Seattle City of",1040 "8. Priest Rapids","Hydroelectric","PUD No 2 of Grant County",932

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Grand Coulee-Creston  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Grand Coulee-Creston Transmission Line Rebuild Project Draft Environmental Assessment December 2013 DOE/EA-1950 Grand Coulee-Creston Transmission Line Rebuild Project Draft Environmental Assessment December 2013 DOE/EA-1950 This page left intentionally blank. Grand Coulee-Creston Transmission Line Rebuild Project i

42

White Ash Biology  

NLE Websites -- All DOE Office Websites (Extended Search)

White Ash Biology Name: blondi Location: NA Country: NA Date: NA Question: 1. Is the white ash tree endangered or is it a protected variety? 2. How does the white ash tree...

43

Ward Co. Dunn Co. McLean Co. McHenry Co. Mountrail Co. McKenzie Co.  

U.S. Energy Information Administration (EIA) Indexed Site

WHISKEY JOE WHISKEY JOE WHITE ASH SPRING COULEE DES LACS MAGPIE HARTLAND BEICEGEL CREEK RANCH COULEE WINNER CRAZY MAN CREEK GROS VENTRE BANK W BULLSNAKE UPLAND COULEE REFUGE LARSON GARNET ALKALI CREEK PLUMER RATTLESNAKE POINT ELLSWORTH CHURCH BORDER HANSON GROVER HULSE COULEE SAKAKAWEA AURELIA ROUND TOP BUTTE GORHAM BUTTE W MARMON MANITOU SHEALEY CLAYTON SERGIS N SADDLE BUTTE HAYLAND CEDAR COULEE BOWLINE LITTLE BUTTE LONG CREEK RHOADES HEDBERG FILLMORE EIDSVOLD FAIRFIELD WOLF BAY TOBACCO GARDEN N SPRING VALLEY ARNEGARD STAFFORD RICHBURG PRESCOTT BULL MOOSE S PASSPORT PHELPS BAY STAMPEDE BIG GULCH BLACKTAIL WESTHOPE WESTBERG DRY CREEK BEARS TAIL MINNESOTA ANTELOPE CREEK BLUE RIDGE NEWBURG E GRASSLAND NORTHGATE PLEASANT S SANDROCKS EAGLE NEST BEAR BUTTE DOLLAR JOE BIG MEADOW BARTA CHARLIE BOB HEART BUTTE RPD_MCKENZIECO_2 VALLEY ROAD GREAT NORTHERN

44

(DOE/EIS-0285/SA-99): Supplement Analysis for the Transmission System Vegetation Management Program FEIS -Olympia-Grand Coulee No.1 8/29/02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 9, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-99-Olympia-Grand Coulee No. 1 Don Atkinson - TFN/Snohomish Proposed Action: Vegetation Management along the Olympia-Grand Coulee No. 1, 287 kV transmission line from structure 53/4 through structure 64/1. Corridor width is 125 feet. Location: The project area is located within King County, Washington. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of-way, access roads and around tower structures along the subject transmission line corridor. Approximately 163 acres will be treated using selective and non-selective methods that include hand cutting, mowing and herbicide treatments. Vegetation management is required for unimpeded

45

Spring Frogs  

NLE Websites -- All DOE Office Websites (Extended Search)

Frogs Frogs Nature Bulletin No. 6 March 17, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Dr. David H. Thompson, Zoologist SPRING FROGS The CRICKET FROG and the SPRING PEEPER are among the first of the winter sleepers to come out of hibernation and greet the new year, On March 10, a few were found at McGinnis Slough, near Orland Park, where the sun had melted the ice and warmed the water along the shore. A week later the ice was all gone and they were singing in full chorus. If it freezes again, they will crawl back under the logs, leaves and trash where they spent the winter. Both of these frogs are tiny -- about the size of a lima bean. The cricket frog has a rough skin and a dark triangle between the eyes. The spring peeper' s skin is smooth with a large dark-colored X on the back. The male frog does all the singing, blowing up the loose skin at his throat into a small balloon to serve as an amplifier. The cricket frog gets its name from the song of the male, which is a rapid series of staccato chirps -- as sharp as a note struck on a xylophone. The spring peeper's voice is a drawn-out "pe-e-e-ep", sounding like that of a cold hungry baby chick.

46

Ash Static Liquefaction  

Science Conference Proceedings (OSTI)

This laboratory study was focused on assessing fundamental geotechnical engineering properties of fly ash. It involved the testing of fly ash recovered from the existing ash ponds and from dry fly ash silos operated by 5 participating utilities. Materials from 22 different sites were involved in the testing program. To provide comprehensive fundamental understanding of the similarities and differences between the samples, a series of basic geotechnical engineering characterization ...

2012-12-28T23:59:59.000Z

47

Activation of fly ash  

DOE Patents (OSTI)

Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

1986-08-19T23:59:59.000Z

48

Activation of fly ash  

DOE Patents (OSTI)

Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

Corbin, David R. (New Castle, DE); Velenyi, Louis J. (Lyndhurst, OH); Pepera, Marc A. (Northfield, OH); Dolhyj, Serge R. (Parma, OH)

1986-01-01T23:59:59.000Z

49

Spring Walks  

NLE Websites -- All DOE Office Websites (Extended Search)

Walks Walks Nature Bulletin No. 111 April 12, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation SPRING WALKS Spring is here. Get out into the forest preserves and enjoy it. Wild ducks are stopping on their northward night to rest and feed in the ponds and sloughs. You will hear the shrill singing of the spring peeper and cricket frogs. The robins, bluebirds, meadow larks, flickers and redwing blackbirds are here, and every day new birds appear. By the middle of April, some of the early wildflowers should be blooming on sunny slopes; by May the woodlands will be carpeted with blossoms. Wear stout walking shoes and heavy socks without holes or wrinkles. Wear old clothing but not too much, the outer garments preferably of hard smooth cloth, such as khaki or denim, that last year's burs and weed seeds can't cling to. Don't load yourself with equipment. Travel light. If you have a small knapsack, all right.

50

Optimizing Ash Handling - SmartAshTM System Evaluation  

Science Conference Proceedings (OSTI)

High ash levels in electrostatic precipitator (ESP) hoppers are notorious for increasing particulate matter (PM) emissions and plume opacity. Conventional means of monitoring hopper ash levels and fly ash handling system performance have been time-consuming and problematic. Neundorfer, Inc., has developed a fly ash conveying system-monitoring package (SmartAshSystem) that provides improved monitoring of fly ash removal process parameters and provides graphical depictions of ash system performance. Additi...

2007-11-21T23:59:59.000Z

51

Chief Joseph Kokanee Enhancement Project; Characterization of Pump Flow at the Grand Coulee Dam Pumping Station for Fish Passage, 2004-2005 Final Report.  

DOE Green Energy (OSTI)

This report describes a study conducted by Pacific Northwest National Laboratory (PNNL) for the Bonneville Power Administration to characterize the conditions fish experience when entrained in pump flow at the Grand Coulee Dam. PNNL conducted field studies at Grand Coulee Dam in 2004 using the Sensor Fish to measure the acceleration and pressure conditions that might be experienced by fish that pass through pumps at Grand Coulee Dam's Pump-Generating Plant and are transported up into the feeder canal leading to Banks Lake. The probability that fish would be struck by the Pump-Generating Plant's new nine-bladed turbines was also estimated. Our measurements showed relatively low turbulence except in the immediate vicinity of the runner environment. The lowest and highest pressures experienced by the Sensor Fish were 6.4 and 155 psi (the pressure gauge saturated at 155 psi). The probability of strike was also calculated, based on the average length of hatchery-reared juvenile kokanee (land-locked sockeye). Strike probabilities ranged from 0.0755 for 2.36-inch fish to 0.3890 for 11.8-inch fish. The probability of strike estimates indicate that the majority (77%) of recently released hatchery kokanee would be carried through the test pump without being struck and most likely with low risk of injury resulting from pressure and turbulence exposure. Of the 23% that might be struck it is expected that 60% would arrive in Banks Lake without visible external injuries. Thus more than 90% of entrained fish could be expected to arrive in Banks Lake without significant injury, assuming that no kokanee were injured or killed by pressure exposure during passage.

Carlson, T.; Duncan, J.; Johnson, R.

2005-03-01T23:59:59.000Z

52

Factors affecting the failure of copper connectors brazed to copper bus bar segments on a 615-MVA hydroelectric generator at Grand Coulee Dam  

DOE Green Energy (OSTI)

On March 21, 1986, the United States Bureau of Reclamation experienced a ground fault in the main parallel ring assembly of Unit G19 - a 615-MVA hydroelectric generator - at Grand Coulee Dam, Washington. Inspection of the unit revealed that the ground fault had been induced by fracture of one or more of the copper connectors used to join adjacent segments of one of the bus bars in the north half of the assembly. Various experimental techniques were used to detect and determine the presence of cracks, crack morphology, corrosion products, and material microstructure and/or embrittlement. The results of these inspections and recommendations are given. 7 refs., 27 figs.

Atteridge, D.G.; Klein, R.F.; Layne, R.; Anderson, W.E.; Correy, T.B.

1988-01-01T23:59:59.000Z

53

Chief Joseph Kokanee Enhancement Project -- Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay  

DOE Green Energy (OSTI)

This report describes the work conducted during the first year of a long-term study to assess the efficacy of a prototype strobe light system in eliciting a negative phototactic response in kokanee and rainbow trout. The strobe light system is being evaluated as a means to prevent entrainment (and subsequent loss) of fish at the entrance to the forebay adjacent to the third powerplant at Grand Coulee Dam. Pacific Northwest National Laboratory and the Colville Confederated Tribes are collaborating on the three-year study being conducted for the Bonneville Power Administration and the Northwest Power Planning Council.

Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Anglea, Steven M.; Simmons, Carver S.; Thorsten, Susan L.; Lecaire, R; Francis, S

2002-01-29T23:59:59.000Z

54

Fly Ash Systems  

Science Conference Proceedings (OSTI)

..., ASM International, 2006, p 499??500ASM Handbook, Vol 13C, Corrosion: Environments and IndustriesCorrosion and Erosion of Ash-Handling

55

Wet Bottom Ash Systems  

Science Conference Proceedings (OSTI)

..., ASM International, 2006, p 499??500ASM Handbook, Vol 13C, Corrosion: Environments and IndustriesCorrosion and Erosion of Ash-Handling

56

Dancing in the ashes.  

E-Print Network (OSTI)

??The following novel is the third draft of my creative thesis entitled Dancing in the Ashes . It is an exploration of the Detroit rave (more)

Malesh, Vytautas Adolph

2009-01-01T23:59:59.000Z

57

Ash cloud aviation advisories  

SciTech Connect

During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

1992-06-25T23:59:59.000Z

58

Thermal springs of Wyoming  

SciTech Connect

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

59

Thermal springs of Wyoming  

DOE Green Energy (OSTI)

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

60

Ash Handling System Maintenance Guide  

Science Conference Proceedings (OSTI)

This Ash Handling System Maintenance Guide provides fossil plant maintenance personnel with current maintenance information on this system. This guide will assist plant maintenance personnel in improving the reliability and reducing the maintenance costs for the ash handling system.

2005-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Chief Joseph Kokanee Enhancement Project : Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grond Coulee Dam Third Powerplant Forebay.  

SciTech Connect

Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC's Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the first year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory (PNNL). The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. Analysis of the effect of strobe lights on the distribution (numbers) and behavior of kokanee and rainbow trout was based on 51, 683 fish targets detected during the study period (June 30 through August 1, 2001). Study findings include the following: (1) Analysis of the count data indicated that significantly more fish were present when the lights were on compared to off. This was true for both the 24-hr tests as well as the 1-hr tests. Powerplant discharge, distance from lights, and date were significant factors in the analysis. (2) Behavioral results indicated that fish within 14 m of the lights were trying to avoid the lights by swimming across the lighted region or upstream. Fish were also swimming faster and straighter when the lights were on compared to off. (3) The behavioral results were most pronounced for medium- and large-sized fish at night. Medium-sized fish, based on acoustic target strength, were similar to the size of kokanee and rainbow trout released upstream of Grand Coulee Dam. Based on this study and general review of strobe lights, the researchers recommend several modifications and enhancements to the follow-on study in 2002. The recommendations include: (1) modifying the study design to include only the 24-hr on/off treatments, and controlling the discharge at the third powerplant, so it can be included as a design variable; and (2) providing additional data by beginning the study earlier (mid-May) to better capture the kokanee population, deploying an additional splitbeam transducer to sample the region close to the lights, and increasing the number of lights to provide better definition of the lit and unlit region.

Simmons, M.A.; McKinstry, C.A.; Simmons, C.S.

2002-01-01T23:59:59.000Z

62

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven-transducer splitbeam hydroacoustic system was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. Two of the seven transducers were mounted to the frame containing the strobe lights and were oriented horizontally. The remaining five transducers were spaced approximately 4 m apart on individual floating frames upstream of the barge, with the transducers looking vertically downward.

Johnson, R.; McKinstry, C.; Simmons, C. (Pacific Northwest National Laboratory)

2003-01-01T23:59:59.000Z

63

Coil spring venting arrangement  

DOE Patents (OSTI)

A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

McCugh, R.M.

1975-10-21T23:59:59.000Z

64

Continuing disposal of coal ash  

Science Conference Proceedings (OSTI)

The large volume of power-plant coal ash produced and stricter Federal water pollution controls are making ash disposal increasingly difficult for utilities. The protection of surface and ground water quality required in the Resource conservation and Recovery Act of 1976 (RCRA) and the Federal Water Pollution Control Act's Clean Water Act (CWA) amendments of 1977 have raised the cost of disposal to a level where an acceptable method must be found. The Electric Power Research Institute's Coal Ash Disposal Manual (EPRI-FM--1257) describes-ash chemistry, disposal site selection, site monitoring and reclamation, and other information of interest to utilities that are making cost estimates and procedure evaluations. (DCK)

Lihach, N.; Golden, D.

1980-03-01T23:59:59.000Z

65

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay, 2005-2006 Annual Report.  

Science Conference Proceedings (OSTI)

The construction of Grand Coulee and Chief Joseph dams on the Columbia River resulted in the complete extirpation of the anadromous fishery upstream of these structures. Today, this area is totally dependent upon resident fish resources to support local fisheries. The resident fishing is enhanced by an extensive stocking program for target species in the existing fishery, including kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss). The kokanee fishery in Lake Roosevelt has not been meeting the return goals set by fisheries managers despite the stocking program. Investigations of physical and biological factors that could affect the kokanee population found predation and entrainment had a significant impact on the fish population. In 1999 and 2000, walleye (Sander vitreum) consumed between 15% and 9%, respectively, of the hatchery kokanee within 41 days of their release, while results from a study in the late 1990s estimated that entrainment at Grand Coulee Dam could account for up to 30% of the total mortality of the stocked fish. To address the entrainment loss, the Bonneville Power Administration commissioned a study to determine if fish would avoid areas illuminated by strobe lights in the forebay of the third powerplant. This work was conducted by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). From 2002 through 2004, six strobe lights were suspended in the center of the opening to the third powerplant forebay during summer months. Results from those studies indicated that fish appeared to be attracted to the illuminated area but only at night and when flow conditions within the third powerplant forebay were minimal. However, small but consistent results from these studies indicated that under high flow conditions, fish might be avoiding the lights. The 2005 study was designed to examine whether, under high flow conditions near the penstock openings, fish would avoid the lighted regions. Four omnidirectional strobe lights were deployed on the one trash rack directly in front of one turbine penstock. Seven splitbeam transducers were deployed to monitor fish approaching three penstock openings either from in front of the trash racks or moving down the dam behind the trash racks. Four key results emerged from the 2005 study. The results provide insight into the current level of entrainment and how fish respond to strobe lights under high flow conditions. First, very few fish were detected inside the trash racks. Of the more than 3,200 targets identified by the data processing, less than 100 were detected inside the trash racks. Only 23 fish were found inside the trash racks behind the strobe lights. Of those 21 fish, 13 were detected when the lights were on. Most of the fish detected behind the trash racks were above the turbine penstock but were headed downward. No fish were detected at night when minimal flows occurred between midnight and 4:00 a.m. Second, significantly more fish (P number of detections by the transducers aimed away from the lights. Third, fish clearly manifested a behavioral response to the strobe lights during the day. When the lights were on, fish detected by three of the four transducers generally were swimming north, parallel to the face of the dam. Howeve

Simmons, M.; Johnson, Robert; McKinstry, C. [Pacific Northwest National Laboratory

2006-03-01T23:59:59.000Z

66

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly within a 3-day block throughout the study period. Hydroacoustic technology was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The hydroacoustic system in 2003 comprised seven splitbeam transducers arrayed in front of the strobe lights, two multibeam transducers behind the lights, and a mobile splitbeam system. The seven splitbeam transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. These transducers were spaced approximately 4 m apart on an aluminum frame floating upstream of the barge and looked vertically downward. The multibeam transducers monitored the distribution of fish directly behind and to both sides of the lights, while the mobile splitbeam system looked at the distribution of fish within the third powerplant forebay. To augment the hydroacoustic data, additional studies were conducted. The hydrodynamic characteristics of the third powerplant forebay were measured, and acoustically tagged juvenile kokanee were released upstream of the strobe lights and tracked within the forebay and downstream of the dam. Analysis of the effect of strobe lights on kokanee and rainbow trout focused on the number of fish detected in each of the areas covered by one of the downlooking transducers, the timing of fish arrivals after the status of the strobe lights changed, fish swimming effort (detected velocity minus flow velocity), and fish swimming direction. Water velocity measurements were used to determine fish swimming effort. The tracking of tagged kokanee provided data on fish movements into and out of the third powerplant forebay, including entrainment.

Simmons, M.; McKinstry, C.; Cook, C.

2004-01-01T23:59:59.000Z

67

Comparison between MSW Ash and RDF Ash from Incineration Process  

E-Print Network (OSTI)

, the unwashed incineration ash were tested and analyzed for TCLP (Toxicity Characteristic Leaching Procedure of auxiliary air. The flue gases are PEER-REVIEW 963 #12;eventually led through air pollution control system to prevent visible flue gas emissions due to higher moisture content. TCLP ANALYSIS Samples of fly ash

Columbia University

68

Operational Implications of Airborne Volcanic Ash  

Science Conference Proceedings (OSTI)

Volcanic ash clouds pose a real threat to aircraft safety. The ash is abrasive and capable of causing serious damage to aircraft engines, control surfaces, windshields, and landing lights. In addition, ash can clog the pitotstatic systems, which ...

Gary L. Hufford; Leonard J. Salinas; James J. Simpson; Elliott G. Barske; David C. Pieri

2000-04-01T23:59:59.000Z

69

Incineration and incinerator ash processing  

Science Conference Proceedings (OSTI)

Parallel small-scale studies on the dissolution and anion exchange recovery of plutonium from Rocky Flats Plant incinerator ash were conducted at the Los Alamos National Laboratory and at the Rocky Flats Plant. Results from these two studies are discussed in context with incinerator design considerations that might help to mitigate ash processing related problems. 11 refs., 1 fig., 1 tab.

Blum, T.W.

1991-01-01T23:59:59.000Z

70

Coal Ash Carbon Removal Technologies  

Science Conference Proceedings (OSTI)

Market resistance to the use of ash containing elevated levels of carbon and/or ammonia has become a major concern for coal-fired facilities in recent years as a result of increased use of nitrogen oxide (NOx) reduction environmental control technologies. EPRI initiated this state of practice assessment to help power producers evaluate alternatives for ash beneficiation.

2001-11-01T23:59:59.000Z

71

Prickly Ash and Prickly Pear  

NLE Websites -- All DOE Office Websites (Extended Search)

Prickly Ash and Prickly Pear Prickly Ash and Prickly Pear Nature Bulletin No. 649-A October 1, 1977 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation PRICKLY ASH AND PRICKLY PEAR In the plant kingdom, as among people, there are so-me that we avoid. They have few virtues, if any, and our experiences with them are painful or have unpleasant after effects. Poison ivy is a notorious example. Prickly Ash, a shrub, is another. Although not poisonous it is thickly armed with wicked thorns and has no ornamental, economic or wildlife value. In 1821 when the first section lines were established in Cook County, the surveyor recorded -- for the benefit of land buyers -- the principal kinds of trees and other vegetation observed along each mile. He frequently encountered prickly ash in thickets near the Little Calumet River and also the north and south branches of the Chicago River.

72

Insurance coverage for coal ash liabilities  

Science Conference Proceedings (OSTI)

The paper discusses how liability insurance can be a valuable tool for limiting coal ash liabilities.

Elkind, D.L. [Dickstein Shapiro LLP (United States)

2009-07-01T23:59:59.000Z

73

Ash Deposit Physical and Chemical Analysis  

Science Conference Proceedings (OSTI)

This report focuses on identifying ash deposit materials and mounting them to a heat transfer surface for further study. A group of synthetic slag of various compositions was also produced using a sodium silicate binder, Powder River Basin (PRB) bottom ash, and ash cenospheres for porosity to test the effects of pulse detonation techniques on the removal of ash deposits.

2010-12-17T23:59:59.000Z

74

Beppu hot springs  

SciTech Connect

Beppu is one of the largest hot springs resorts in Japan. There are numerous fumaroles and hot springs scattered on a fan-shaped area, extending 5 km (3.1 miles) from east to west and 8 km (5.0 miles) from north to south. Some of the thermal manifestations are called {open_quotes}Jigoku (Hells){close_quotes}, and are of interest to visitors. The total amount of discharged hot springs water is estimated to be 50,000 ton/day (9,200 gpm) indicating a huge geothermal system. The biggest hotel in Beppu (Suginoi Hotel) installed a 3-MW geothermal power plant in 1981 to generate electricity for its own private use.

Taguchi, Schihiro [Fukuoka Univ. (Japan); Itoi, Ryuichi [Kyushu Univ., Kasuga (Japan); Yusa, Yuki [Kyoto Univ., Beppu (Japan)

1996-05-01T23:59:59.000Z

75

Hot Springs | Open Energy Information  

Open Energy Info (EERE)

Springs Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hot Springs Dictionary.png Hot Springs: A naturally occurring spring of hot water, heated by geothermal processes in the subsurface, and typically having a temperature greater than 37°C. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mammoth Hot Springs at Yellowstone National Park (reference: http://www.hsd3.org/HighSchool/Teachers/MATTIXS/Mattix%20homepage/studentwork/Laura%20Cornelisse%27s%20Web%20Page/Yellowstone%20National%20Park.htm) Hot springs occur where geothermally heated waters naturally flow out of the surface of the Earth. Hot springs may deposit minerals and spectacular

76

Integrated Fly Ash Pond Management  

Science Conference Proceedings (OSTI)

This report is directed toward solving new challenges to meeting U.S. Environmental Protection Agency (USEPA) National Pollutant Discharge Elimination System (NPDES) discharge limits for ammonia and selected metals from coal-fired power plants. Based on the field and laboratory study of fly ash ponds at five operating coal-fired power plants, the physical, chemical, and biological processes that occur in fly ash sluicing systems are discussed and recommendations are made as to how to best manage the pond...

2009-11-24T23:59:59.000Z

77

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay, 2005-2006 Annual Report.  

DOE Green Energy (OSTI)

The construction of Grand Coulee and Chief Joseph dams on the Columbia River resulted in the complete extirpation of the anadromous fishery upstream of these structures. Today, this area is totally dependent upon resident fish resources to support local fisheries. The resident fishing is enhanced by an extensive stocking program for target species in the existing fishery, including kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss). The kokanee fishery in Lake Roosevelt has not been meeting the return goals set by fisheries managers despite the stocking program. Investigations of physical and biological factors that could affect the kokanee population found predation and entrainment had a significant impact on the fish population. In 1999 and 2000, walleye (Sander vitreum) consumed between 15% and 9%, respectively, of the hatchery kokanee within 41 days of their release, while results from a study in the late 1990s estimated that entrainment at Grand Coulee Dam could account for up to 30% of the total mortality of the stocked fish. To address the entrainment loss, the Bonneville Power Administration commissioned a study to determine if fish would avoid areas illuminated by strobe lights in the forebay of the third powerplant. This work was conducted by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). From 2002 through 2004, six strobe lights were suspended in the center of the opening to the third powerplant forebay during summer months. Results from those studies indicated that fish appeared to be attracted to the illuminated area but only at night and when flow conditions within the third powerplant forebay were minimal. However, small but consistent results from these studies indicated that under high flow conditions, fish might be avoiding the lights. The 2005 study was designed to examine whether, under high flow conditions near the penstock openings, fish would avoid the lighted regions. Four omnidirectional strobe lights were deployed on the one trash rack directly in front of one turbine penstock. Seven splitbeam transducers were deployed to monitor fish approaching three penstock openings either from in front of the trash racks or moving down the dam behind the trash racks. Four key results emerged from the 2005 study. The results provide insight into the current level of entrainment and how fish respond to strobe lights under high flow conditions. First, very few fish were detected inside the trash racks. Of the more than 3,200 targets identified by the data processing, less than 100 were detected inside the trash racks. Only 23 fish were found inside the trash racks behind the strobe lights. Of those 21 fish, 13 were detected when the lights were on. Most of the fish detected behind the trash racks were above the turbine penstock but were headed downward. No fish were detected at night when minimal flows occurred between midnight and 4:00 a.m. Second, significantly more fish (P < 0.001) were detected in front of the trash racks when the lights were on at night. On a count-per-hour basis, the difference between lights off and lights on was apparent in the early morning hours at depths between 25 m and 50 m from the transducers. The lights were approximately 34 m below the splitbeam transducers, and fish detected at night with lights on were found at a median depth of approximately 35 m, compared to a median depth of from 20.6 to 23.5 m when the lights were off. The differences in depth between lights on and off at night were also significant (P < 0.001). Additionally, the increase in fish occurred only in front of the trash rack where the strobe lights were mounted; there was no increase in the number of detections by the transducers aimed away from the lights. Third, fish clearly manifested a behavioral response to the strobe lights during the day. When the lights were on, fish detected by three of the four transducers generally were swimming north, parallel to the face of the dam. Howeve

Simmons, M.; Johnson, Robert; McKinstry, C. [Pacific Northwest National Laboratory

2006-03-01T23:59:59.000Z

78

Genetic Transformation and Regeneration of Green Ash (Fraxinus pennsylvanica) for Resistance to the Emerald Ash Borer  

E-Print Network (OSTI)

bats, tool handles, furniture, and firewood. However, the emerald ash borer (EAB) (Agrilus planipennis) develop an efficient regeneration and genetic transformation system for green ash, (2) regenerateGenetic Transformation and Regeneration of Green Ash (Fraxinus pennsylvanica) for Resistance

79

Long duration ash probe  

DOE Patents (OSTI)

A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

Hurley, John P. (Grand Forks, ND); McCollor, Don P. (Grand Forks, ND); Selle, Stanley J. (Grand Forks, MN)

1994-01-01T23:59:59.000Z

80

Learning From Real Springs  

E-Print Network (OSTI)

Many springs do not obey Hooke's Law because they are constructed to have an intrinsic tension which must be overcome before normal elongation occurs. This property, well-known to engineers, is universally neglected in elementary physics courses. In fact it can be used to enhance learning and to deepen understanding of potential energy.

Bassichis, William

2013-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Spring 2008 Euro Newsletter  

Science Conference Proceedings (OSTI)

EAOCS Newsletter Spring 2008 From the President This is the first newsletter from the section since the new Board was elected. I would therefore like to take this opportunity to thank our previous President Asgeir Sb for his services to th

82

Spring Cleaning. Calorie Burning.  

E-Print Network (OSTI)

Spring Cleaning. Calorie Burning. Laundry: 73 Dusting: 85 Mopping the Floor: 153 Washing the Car Painting: 161 (Estimate based on 150 lb person per 30 minutes, more calories burned if weigh more, fewer calories burned if weigh less) Allergy Sufferers' Survival Guide > Wash your hair before bed to avoid

Acton, Scott

83

Rocky Mountain carbonate spring deposit development.  

E-Print Network (OSTI)

??Relict Holocene carbonate spring deposits containing diverse biotic and abiotic depositional textures are present at Fall Creek cold sulphur springs, Alberta, Fairmont Hot Springs, British (more)

Rainey, Dustin

2009-01-01T23:59:59.000Z

84

Fly ash chemical classification based on lime  

Science Conference Proceedings (OSTI)

Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

Fox, J. [BASF Construction Chemicals, LLC (United States)

2007-07-01T23:59:59.000Z

85

Spring 2009 Technical Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring 2009 Technical Workshop Spring 2009 Technical Workshop in Support of U.S. Department of Energy 2009 Congestion Study Webcast, transcript, and presentations available at: http://www.congestion09.anl.gov/ Crowne Plaza Chicago O'Hare Hotel & Conference Center March 25-26, 2009 Agenda Day 1 - Wednesday, March 25, 2009 9:00 a.m. Registration Check-In & Continental Breakfast 10:00 a.m. DOE Welcome/Purpose of Workshop David Meyer, Senior Policy Advisor, Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy (DOE-OE) 10:15 a.m. Session 1 - Historic Congestion in the Western Interconnection The Western Electric Coordinating Council Transmission Expansion Planning and Policy Committee has conducted an analysis of historic congestion in the Western

86

EPRI Journal, Spring 2013  

Science Conference Proceedings (OSTI)

The EPRI Journal is the flagship publication of the Electric Power Research Institute. The Spring 2013 issue (3002000916) includes a cover story on customer resilience, as well as features on CoSeq sequestration resin for accelerating cleanup of nuclear power plant coolant, TERESA and fine particles in the real world, mitigating the effects of cycling on environmental control equipment, and opportunities presented by a smarter grid and its growing data streams.

2013-05-13T23:59:59.000Z

87

Spring 2013 National Transportation Stakeholders Forum Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Transportation Stakeholders Forum Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum...

88

Water Management in Ash-Handling Systems  

Science Conference Proceedings (OSTI)

In 1980, EPA proposed revisions to the effluent standards and guidelines for fly ash and bottom ash transport systems. This review of utility practices provides a comprehensive account of the operation of and problems experienced in wet handling of bottom and fly ash and suggests areas for further research.

1987-08-24T23:59:59.000Z

89

Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

(Poncha Spring) Space Heating Low Temperature Geothermal (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Facility Salida Hot Springs (Poncha Spring) Sector Geothermal energy Type Space Heating Location Salida, Colorado Coordinates 38.5347193°, -105.9989022° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

90

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert  

Open Energy Info (EERE)

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Peak Geothermal Systems, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Peak Geothermal Systems, Nevada Details Activities (3) Areas (3) Regions (0) Abstract: Gaseous emissions from the landscape can be used to explore for geothermal systems, characterize their lateral extent, or map the trends of concealed geologic structures that may provide important reservoir permeability at depth. Gaseous geochemical signatures vary from system to system and utilization of a multi-gas analytical approach to exploration or characterization should enhance the survey's clarity. This paper describes

91

Bottom Ash System Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to personnel involved in the bottom ash system and its components, including good maintenance practices, condition monitoring, predictive and preventive maintenance techniques, probable failure modes, and troubleshooting guidance. The guide was developed primarily to provide detailed maintenance and troubleshooting information but also includes basic system information.

2000-10-31T23:59:59.000Z

92

Snapshot (Spring 2012) | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

resources Small business resources State and local government resources Snapshot (Spring 2012) The ENERGY STAR Snapshot provides an at-a-glance summary of the key performance...

93

PNNL: Breakthroughs Magazine - Spring 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

Spring 2007 issue Scientific Discovery Breakthroughs Magazine Breakthroughs Archive In this issue... Cover Editor's Screen Contents At A Glance Science of Doing Business Science...

94

200 N. Spring Street  

Office of Legacy Management (LM)

Dipartment of Energy. ,' Dipartment of Energy. ,' Washington,DC20585 ., .\ FEB 1 7 ' 19g5' ,The Honorable Richa,rd. Riordon .', 200 N. Spring Street 'Los Angeles, California ,90012 '~ Dear Mayor Riordon: " Secretary of Energy Hazel O'Leary'has announced a neb approach to openness ins- the Department of Energy (DOE) and its communications with the public. fin support of this initiative, we are pleased~ to forward the enclosed information related to the. former Shannon Luminous Metals site in your jurisdiction that pe.rformed work for DOE's'predecessor agencies.' .This'information is provided foryour information, use! and,retention.~' "I , DOE's Formerly.Utilized Sites Remedial Action Program (FUSRAP) is responsible for identification of, sites used by DOE's predecessor agencies, determining

95

Schedule of Classes Spring 2011  

E-Print Network (OSTI)

Quarter, and $1,786 is charged in Winter and Spring quarters. An additional tem- porary increase of $700 is $4,913 (a permanent supplement of $600.66 per quarter [$1,802 annual] applies). An additional in Winter and Spring quarters. An additional temporary increase of $700 ($350 per quarter in Winter

Grether, Gregory

96

Influence of woody plant on spring and riparian vegetation in central Texas  

E-Print Network (OSTI)

With the increase in human population, water resources have become more and more precious. A comprehensive study of water yield characteristics is imperative, especially in water-limited semiarid regions. The objective of this study is to examine spring flow and vegetation cover in a first-order watershed and investigate the herbaceous community structure of upland riparian zones. This study consists of two major components: (1) the effects of environmental factors and vegetation cover on spring flow at Pedernales River upland catchments, and (2) the ecological responses of vegetation to altered flow regimes that result from brush management at the upland riparian zones. The study finds that an average of 3.67% of the monthly water budget of first-order catchments in central Texas is made up of spring flow. The influence of woody plant cover on streamflow was evaluated by comparing spring sites with different percentages of woody cover three times during 2003 and 2004. Our findings indicate that changes in woody plant cover had no influence on the amounts of streamflow from these catchments, and the surface catchment area had only a minor influence. This suggests that the real spring catchment area might be different from the surface watershed boundaries that have been delineated by topography. Plant species richness and diversity gradually decreased with increasing lateral distances from the stream bank. Herbaceous richness and diversity declined with increasing Ashe juniper cover in the riparian zone. Ashe juniper canopy cover had a larger effect on the understory composition than the cover of other woody species. Herbaceous diversity and production was greater in areas with sparse tree density than in areas with no trees, but was lowest at high tree densities. The complete removal of Ashe juniper in the riparian zones is not recommended because of the potential loss of grass cover. The recommended management would be to leave a sparse cover of canopy trees to maintain understory plants.

Shen, Li

2007-05-01T23:59:59.000Z

97

Cement Additives from Fly Ash Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Device and Method for Separating Minerals, Carbon and Device and Method for Separating Minerals, Carbon and Cement Additives from Fly Ash Opportunity Research is currently active on the patented technology "Device and Method for Separating Minerals, Carbon, and Cement Additives from Fly Ash." The technology is available for licensing and/or further collaborative research from the U.S. Depart- ment of Energy's National Energy Technology Laboratory (NETL). Overview This invention includes a device, along with a method, to recover and use fly ash as a source of high purity carbon, ash, and minerals. The device and associated method can isolate components of the fly ash based on size and electrical charge. By improving beneficiation and usage methods, fly ash can be transformed from a waste material to a valuable by-product. Recent shifts to low nitrogen

98

Proceedings of the 2009 Spring Simulation Multiconference  

Science Conference Proceedings (OSTI)

Welcome to the 2009 Spring Simulation Multiconference (SpringSim'09), in beautiful San Diego! SpringSim 2009 --- sponsored by The Society for Modeling and Simulation International (SCS), in collaboration with ACM/SIGSIM, brings together various Symposia, ...

Gabriel Wainer; Cliff Shaffer; Robert McGraw; Michael J. Chinni

2009-03-01T23:59:59.000Z

99

Compositional Analysis of Beneficiated Fly Ashes  

Science Conference Proceedings (OSTI)

... Fly ash is a byproduct of combustion of coal in coal-fired powerplants through ... to be disposed of at a significant cost to power plant companies, and ...

1997-09-03T23:59:59.000Z

100

WARM SPRINGS, OREGON  

DOE Green Energy (OSTI)

and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

2009-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Orientation program at SLU, Ultuna, spring 2012  

E-Print Network (OSTI)

Orientation program at SLU, Ultuna, spring 2012 Monday, January 16th 16:00 Welcome-campus-ultuna) #12;Orientation program at SLU, Ultuna, spring 2012 #12;

102

Treatment of fly ash for use in concrete  

DOE Patents (OSTI)

A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

Boxley, Chett (Park City, UT)

2012-05-15T23:59:59.000Z

103

Spring Already? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Already? Spring Already? Spring Already? March 22, 2011 - 5:25pm Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy Seems we were just hunkering down for cold weather and bundling into our big coats just last week. Well, come to think of it, it WAS last week-it got pretty darn cold here in the DC area a couple of nights back. This might make you wonder when spring is going to get here. Good question. Even though the average temperature shows an upward trend over the weeks to come, we all know that temperatures bounce up and down a lot. Add to that the atmospheric instability that generates, and we get plenty of rain (and even severe thunderstorms) as well. What does this have to do with energy? Everything. For one, home and business owners have to compensate for erratic, unpredictable changes in

104

cctoday_spring_05.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION NEWS BYTES OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY * DOEFE-0484* ISSUE NO. 62, SPRING 2005 See "News...

105

Clean Coal Today - Spring 1998  

NLE Websites -- All DOE Office Websites (Extended Search)

SPPC" on page 2... See "News Bytes" on page 8... OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY DOEFE-0215P-28 ISSUE NO. 28, SPRING 1998 Successful firing on coal of the...

106

Spring Already? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Already? Spring Already? Spring Already? March 22, 2011 - 5:25pm Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy Seems we were just hunkering down for cold weather and bundling into our big coats just last week. Well, come to think of it, it WAS last week-it got pretty darn cold here in the DC area a couple of nights back. This might make you wonder when spring is going to get here. Good question. Even though the average temperature shows an upward trend over the weeks to come, we all know that temperatures bounce up and down a lot. Add to that the atmospheric instability that generates, and we get plenty of rain (and even severe thunderstorms) as well. What does this have to do with energy? Everything. For one, home and business owners have to compensate for erratic, unpredictable changes in

107

Use of Class C Fly Ash in High-Volume Fly Ash Concrete Applications  

Science Conference Proceedings (OSTI)

Although the use of fly ash in concrete is a well-established practice, the volume of high-calcium Class C ash used lags behind that of low-calcium Class F ash. Because Class C may be the only type of ash produced in some western states, this disparity can significantly limit its use potential. The literature results presented in this report represent the first phase of a longer term research effort to provide technical information supporting the increased use of Class C ash in concrete applications.

2007-09-24T23:59:59.000Z

108

Schedule of Classes Spring 2006  

E-Print Network (OSTI)

. In addition, a new Dance subject area was established. This makes dance classes easier to find in the Schedule student), not on the number of enrolled units. They do not include additional course or unit-based fees. For additional deadline informa- tion, see the Ashe Center website at http://www.studenthealth.ucla .edu

Grether, Gregory

109

Recovery Act Workers Complete Environmental Cleanup of Coal Ash...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Complete Environmental Cleanup of Coal Ash Basin Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin The Savannah River Site (SRS) recently cleaned up a 17-acre...

110

Recovery Act Workers Complete Environmental Cleanup of Coal Ash...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Complete Environmental Cleanup of Coal Ash Basin Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin The Savannah River Site (SRS) recently cleaned up a...

111

Investigation on the utilization of coal fly ash as amendment to compost for vegetation in acid soil: Progress report, 1 June 1988--15 March 1989  

Science Conference Proceedings (OSTI)

This is the first progress report that is submitted to the US Department of Energy on the research performed during the first year of the project which started on June 1, 1988. This project for coal fly ash research was approved to study the chemical composition of fly ashes collected from several coal-powered power plants located in Savannah River Plant (SRP) facilities and explore the possibility of utilizing the fly ash as an amendment to organic compost for vegetation. The schedule for the first year of the project includes the construction of a greenhouse, analysis of fly ash samples, preparation of compost, planting the seeds for and harvesting the fall-winter plants, analysis of the winter plant materials and potting the spring-summer plants. 4 refs., 6 figs., 7 tabs.

Menon, M.P.

1989-03-15T23:59:59.000Z

112

Treatment of fly ash for use in concrete  

DOE Patents (OSTI)

A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

Boxley, Chett (Park City, UT); Akash, Akash (Salt lake City, UT); Zhao, Qiang (Natick, MA)

2012-05-08T23:59:59.000Z

113

Treatment of fly ash for use in concrete  

DOE Patents (OSTI)

A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

Boxley, Chett; Akash, Akash; Zhao, Qiang

2013-01-08T23:59:59.000Z

114

Motor Gasoline Market Spring 2007 and Implications for Spring 2008  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Market Spring 2007 Motor Gasoline Market Spring 2007 and Implications for Spring 2008 April 2008 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor. Preface and Contacts

115

Spring 2008 ASA Meeting Disclaimer  

U.S. Energy Information Administration (EIA) Indexed Site

8 Meeting of the 8 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2008 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place on April 9, 2008 in the Forrestal Building at 1000 Independence Ave., S.W., Washington, D.C. 20585. All sessions were plenary and were held in room 8E-089. The spring meeting agenda, papers, presentation slides and other materials may be found at: http://www.eia.gov/smg/asa_meeting_2008/spring/index.html

116

Motor gasoline assessment, Spring 1997  

SciTech Connect

The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

NONE

1997-07-01T23:59:59.000Z

117

Rocky Flats ash test procedure (sludge stabilization)  

SciTech Connect

Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.

Winstead, M.L.

1995-09-14T23:59:59.000Z

118

Fusibility and sintering characteristics of ash  

Science Conference Proceedings (OSTI)

The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

Ots, A. A., E-mail: aots@sti.ttu.ee [Tallinn University of Technology (Estonia)

2012-03-15T23:59:59.000Z

119

Investigation of Ammonia Adsorption on Fly Ash and Potential Impacts of Ammoniated Ash  

Science Conference Proceedings (OSTI)

Problems associated with ammoniated fly ash have become a major concern for coal-fired facilities in recent years due to the increased use of ammonia-based environmental control technologies. Of particular note is more frequent use of ammonia-based NOx control systems and electrostatic precipitator (ESP) conditioning with ammonia. To help power producers evaluate and mitigate the impacts of ammoniated ash, this project provides crucial information in the areas of fly ash characterization, adsorption test...

1999-12-10T23:59:59.000Z

120

Proceedings: Tenth International Ash Use Symposium, Volume 2: Ash Use R&D and Clean Coal By-Products  

Science Conference Proceedings (OSTI)

Topics discussed at the tenth symposium on coal ash use included fundamental ash use research, product marketing, applied research, ash management and the environment, and commercial applications. Intense international research interest continues in coal ash use due to the prospects of avoiding disposal costs and generating revenue from by-product sales.

1993-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Case Studies in Ash Pond Management, Volume 2  

Science Conference Proceedings (OSTI)

"Toward Developing Integrated Strategies for Managing Multiple Constituents in Ash Pond Discharges," EPRI's second workshop on Ash Pond Management, was hosted by TVA on May 16, 2006, in Chattanooga, Tennessee. The presentations in this workshop reflected specific research challenges identified by participants in the first Ash Pond Management workshop, held in 2004. Among the presentations given in this second workshop were the following: Ash Pond Limnology Optimizing Ash Pond Treatment of Ammonia Predic...

2007-03-26T23:59:59.000Z

122

Fluidized bed gasification ash reduction and removal process  

DOE Patents (OSTI)

In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

1984-12-04T23:59:59.000Z

123

Fluidized bed gasification ash reduction and removal system  

DOE Patents (OSTI)

In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

1984-02-28T23:59:59.000Z

124

Winter'04Ash4-5  

NLE Websites -- All DOE Office Websites (Extended Search)

process, fly ash is used as a raw material to substitute for part of the clay and shale, which are the two main raw materials of a conventional brick. Test bricks produced...

125

The 1983 Ash Wednesday Fires in Australia  

Science Conference Proceedings (OSTI)

Australia experienced the most disastrous bushfires in over 40 years on Ash Wednesday, 16 February 1983. This article describes the meteorological conditions prior to, during and after these fires, and includes photographs from GMS-2. It also ...

M. E. Voice; F. J. Gauntlett

1984-03-01T23:59:59.000Z

126

Coal Ash Contaminants in Wetlands | SREL Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracey Tuberville, and Bill Hopkins The ash plume wetland (APW). The APW received coal combustion wastes from a breach in a receiving basin in the 1970s. Several trace metals...

127

Airborne Volcanic Ash Forecast Area Reliability  

Science Conference Proceedings (OSTI)

In support of aircraft flight safety operations, daily comparisons between modeled, hypothetical, volcanic ash plumes calculated with meteorological forecasts and analyses were made over a 1.5-yr period. The Hybrid Single-Particle Lagrangian ...

Barbara J. B. Stunder; Jerome L. Heffter; Roland R. Draxler

2007-10-01T23:59:59.000Z

128

Ashe County- Wind Energy System Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a...

129

NETL: Events - World of Coal Ash 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

(WOCA) 2007 conference, jointly sponsored by the American Coal Ash Association and the University of Kentucky Center for Applied Energy Research, will be held May 7-10, 2007 at...

130

Carbon-in-Ash Monitor Demonstration  

Science Conference Proceedings (OSTI)

Based on the lack of publicly available performance and operational data for the current carbon-in-ash monitor (CIAM) commercial offerings, EPRI and Southern Company initiated a demonstration of several commercial technologies on Southern Company's coal-fired units.

2000-09-25T23:59:59.000Z

131

Ash Deposit Physical and Chemical Analysis  

Science Conference Proceedings (OSTI)

As part of the Electric Power Research Institutes (EPRIs) ongoing Boiler Tube Failure Reduction (BTFR) program, this report has been compiled to discuss chemical and mechanical mechanisms that lead to the formation of ash deposits. Ash deposits are a known cause of several boiler tube failure mechanisms, which can not only impact plant performance, but also lead to millions of dollars in lost revenue due to forced outages.

2010-12-17T23:59:59.000Z

132

Coal Ash: Characteristics, Management, and Environmental Issues  

Science Conference Proceedings (OSTI)

Coal-fired power plants in the United States produce more than 92 million tons of coal ash per year. About 40% is beneficially used in a variety of applications, and about 60% is managed in storage and disposal sites. This technical update summarizes information and data on the physical and chemical characteristics of coal ash, beneficial use applications, disposal practices, and management practices to mitigate environmental concerns.

2009-09-17T23:59:59.000Z

133

Ash Deposit Physical and Chemical Analysis  

Science Conference Proceedings (OSTI)

As part of the Electric Power Research Institutes (EPRIs) ongoing Boiler Tube Failure Reduction (BTFR) program, this report has been compiled to discuss chemical and mechanical mechanisms that lead to the formation of ash deposits. Ash deposits are a known cause of a number of boiler tube failure mechanisms, which can not only impact plant performance, but lead to millions of dollars in lost revenue due to forced outages.

2010-12-17T23:59:59.000Z

134

Spring Cleaning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Cleaning Spring Cleaning Spring Cleaning April 23, 2012 - 3:58pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory One thing I forget to do in the spring is to change the furnace filter. I try to do it at least quarterly, but that doesn't always happen. I don't have air conditioning (which would also have a filter that needed to be changed periodically)-I don't particularly need it at 8,000 ft, especially when I'm working in town all day-so I just turn the furnace off altogether for the summer, usually some time in May. I can just open the house up on a summer evening, and the evening breezes cool everything off pretty well-the ultimate in energy efficiency! I'll remember again in September, when it's time to turn the furnace back on. Part of the problem is that I can't just change the filter. I have to

135

Densification of pond ash by blasting  

Science Conference Proceedings (OSTI)

Fly ash from thermal power plants is disposed, in huge quantities in ash ponds, which occupy large land areas otherwise useful for agriculture, housing, or other development. For effective rehabilitation of ash ponds, densification of the slurry deposit is essential to increase the bearing capacity and to improve its resistance to liquefaction. Extensive field trials were carried out to evaluate the effectiveness of deep blasting for densification of deposited fly ash. Ninety explosions comprising 15 single blasts, with varying depths and quantities of charges, and 3 group blasts, each having 25 charges placed at various spacings, were carried out. The compaction achieved in terms of an increase in relative density was evaluated from surface settlement measurements. Extensive field monitoring was undertaken through pore-water pressure measurements, vibration measurements, penetration tests, and block vibration tests. For the average charge of 2--4 g of explosive per cubic meter of untreated deposit, the average relative density was found to improve from 50% to 56--58%. Analysis of the test results indicates that deep blasting may be an effective technique for modest compaction of loose fly ash deposits. The field testing program presented in this paper provides valuable information that can be used for planning blast densification of fly ash deposits.

Gandhi, S.R.; Dey, A.K.; Selvam, S. [Indian Inst. of Tech., Madras (India)

1999-10-01T23:59:59.000Z

136

Marketing coal ash, slag, and sludge  

SciTech Connect

Investigates the selling of by-products of coal-fired power generation--fly ash, bottom ash, boiler slag, and scrubber sludge--by utilities for use in highways, parking lots, cement, roofing, bricks, and blocks. Points out that the EPA has drafted tough new regulations for solid-waste storage, transportation, and disposal that may soon cost power plants $25-$40 a ton to dispose of wastes. Reports that the EPRI is studying high-volume by-product applications that have low technology requirements (e.g. fly ash for use in highways, parking lots, and utility construction) and medium-volume, medium-technology applications (e.g. by-products used for cement manufacture, asphalt, blocks, bricks, roofing granules, and wallboards). Reveals that EPRI plans to eventually identify a representative set of perhaps half a dozen basic fly ashes, characterize them, do proportion studies of existing concrete mixes (including those with fly ash in them), and then develop guidelines for fly ash proportions in concrete.

Lihach, N.; Golden, D.; Komai, R.; Maulbetsch, J.

1982-12-01T23:59:59.000Z

137

Spring into Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring into Energy Savings Spring into Energy Savings Spring into Energy Savings April 14, 2009 - 6:00am Addthis Amy Foster Parish No winter lasts forever; no spring skips its turn. - Hal Borland In my part of the country, winter seems to hang on an interminably long time. So I always look forward to the first signs of spring with unbridled glee. At the first glimpse of a cherry blossom, the winter boots are banished to the back of the closet and the sandals are put to work in earnest. But while spring may give the perfect excuse to hang up the winter coat, the advent of spring does not mean that we can pack away thoughts of energy efficiency with our wool sweaters. Last winter, Jennifer Carter gave us a number of great energy efficiency tips for winter. Now that spring's milder temperatures are upon us and it's time to consider what energy efficiency

138

Mechanical energy storage in carbon nanotube springs  

E-Print Network (OSTI)

Energy storage in mechanical springs made of carbon nanotubes is a promising new technology. Springs made of dense, ordered arrays of carbon nanotubes have the potential to surpass both the energy density of electrochemical ...

Hill, Frances Ann

2011-01-01T23:59:59.000Z

139

Erera, Spring School 2004 Transportation Security  

E-Print Network (OSTI)

! Transportation security research: future #12;Erera, Spring School 2004 Outline ! Understanding transportationErera, Spring School 2004 Transportation Security Alan Erera and Chelsea C. White III Industrial transportation security ! Security regulations and programs ! Transportation security research: present

Erera, Alan

140

Dale M. Meade APS Spring Meeting  

E-Print Network (OSTI)

and Particle Handling self - heating self-driven current Fusion Plasmas are Complex Non-Linear Dynamic Systems to plasma electrons · Burn Control · Alpha Ash Removal · Alpha Driven Instabilities Self-Heating is Critical stabilized Pressure profile evolution and burn control > 10 E Alpha ash accumulation/pumping > several He

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Scale-Up and Demonstration of Fly Ash Ozonation Technology  

Science Conference Proceedings (OSTI)

The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

Rui Afonso; R. Hurt; I. Kulaots

2006-03-01T23:59:59.000Z

142

Proceedings of the 2008 Spring simulation multiconference  

Science Conference Proceedings (OSTI)

On behalf of the Organizing Committee we welcome you to the 2008 Spring Simulation Multiconference (SpringSim'08), sponsored by The Society for Modeling and Simulation International (SCS) in collaboration with ACM/SIGSIM. SpringSim'08 brings together ...

Hassan Rajaei

2008-04-01T23:59:59.000Z

143

Spring 2009 ASA Meeting Disclaimer  

U.S. Energy Information Administration (EIA) Indexed Site

9 Meeting of the 9 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2009 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place on April 2 and 3, 2009 in the Forrestal Building at 1000 Independence Ave., S.W., Washington, D.C. 20585. All of the plenary and one of the break-out sessions were in room 8E-089. Another breakout session was held in room 5E-069. The spring meeting agenda, papers, presentation slides and other materials

144

AMF Deployment, Steamboat Springs, Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado Colorado Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace AMF Deployment, Steamboat Springs, Colorado This view shows the instrument locations for the STORMVEX campaign. At the westernmost site is the Valley Floor. Heading east up the mountain is Christy Peak, Thunderhead, and Storm Peak Laboratory at the far east. Valley Floor: 40° 39' 43.92" N, 106° 49' 0.84" W Thunderhead: 40° 39' 15.12" N, 106° 46' 23.16" W Storm Peak: 40° 27' 18.36" N, 106° 44' 40.20" W

145

Spring Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Spring Valley Facility Spring Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy Developer Pattern Energy Energy Purchaser NV Energy Location Ely NV Coordinates 39.10555447°, -114.4940186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.10555447,"lon":-114.4940186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

ENERGY STAR Snapshot Spring 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Spring 2012 Spring 2012 Snapshot data runs through December 31, 2011. The ENERGY STAR Snapshot provides an at-a-glance summary of the latest national ENERGY STAR metrics to help you, our partners, see the impact of your efforts. The ENERGY STAR Snapshot is distributed twice a year and provides: * Trends in energy benchmarking of commercial and industrial buildings. * State-by-state activity along with activity for the top Designated Market Areas. * Industrial sector participation in ENERGY STAR. * Trends in ENERGY STAR certified commercial and industrial facilities. Summary By the end of calendar year 2011, commercial and industrial organizations exceeded figures for benchmarking and certification that were achieved in 2010. Since June, 2011:

147

Extraction of trace metals from fly ash  

DOE Patents (OSTI)

A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

1984-01-01T23:59:59.000Z

148

Extraction of trace metals from fly ash  

DOE Patents (OSTI)

A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, M.; Wai, C.M.; Nagy, Z.

1983-08-15T23:59:59.000Z

149

Marketing coal ash, slag, and sludge  

Science Conference Proceedings (OSTI)

The increase in coal-fired power plants and tighter environmental problems have put utilities in the position of marketing coal ash, slag, and sludge by turning waste products into a resource. Many utilities are looking beyond road and structural fill uses in their marketing efforts. Slag can be made into sandblasting grit, aggregate, and roofing granules, or used for soil stabilization or the chemical fixation of municipal wastes. Composition and collection variations discourage many utilities from marketing their by-products, while availability can be a problem for customers if the power plant should shut down. Other problems include storage and transportation, competition, and institutional barriers. Documentation of the fly ash, bottom ash, boiler slag, and scrubber waste markets by the Electric Power Research Institute considers these factors and develops a marketing method to help utilities evaluate and promote their product. (DCK)

Lihach, N.; Golden, D.; Komai, R.; Maulbetsch, J.

1982-12-01T23:59:59.000Z

150

Jet Engine Coatings Resist Volcanic Ash Damage - Materials ...  

Science Conference Proceedings (OSTI)

Apr 27, 2011 ... Upon cooling, the molten ash forms a brittle glass that flakes off, taking the coating with it. Like sand, ash is made mostly of silica and poses a...

151

Development of High-Volume Fly Ash Blended Cements  

Science Conference Proceedings (OSTI)

High-volume fly ash (HVFA) blended cement can be produced either by intergrinding fly ash with portland cement clinker or by blending dry fly ash with portland cement. Production of HVFA cement using the intergrinding method may be the most cost-effective and practical of the two approaches. This report documents the results of commercial-scale production of HVFA blended cements using up to 55 percent fly ash to replace the portland cement.

2001-10-11T23:59:59.000Z

152

Use of Coal Ash in Highway Construction: Michigan Demonstration Project  

Science Conference Proceedings (OSTI)

A 3000-ft-length fly ash base under a highway shoulder will help demonstrate the impact of reused ash on structural integrity and groundwater. This report provides valuable design details for utilities seeking to increase ash reuse and for state highway design engineers responsible for preparing construction specifications.

1989-01-10T23:59:59.000Z

153

ASH VITRIFICATION -A TECHNOLOGY READY FOR TRANSFER  

E-Print Network (OSTI)

methods for treating ash in the near future [1]. The lack of specific rules by RCRA has led to confusion the Toxic Characterization Leaching Procedure (TCLP) extraction tests conducted on slag samples which were(ml!!l) in TCLP Extract Arsenic BQL · Barium 0.8 Cadmium 0.010 Chromium BOL Lead 0.43 Mercury 0.0007 Selenium BOL

Columbia University

154

Spring Cleaning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleaning Cleaning Spring Cleaning April 23, 2012 - 3:58pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory One thing I forget to do in the spring is to change the furnace filter. I try to do it at least quarterly, but that doesn't always happen. I don't have air conditioning (which would also have a filter that needed to be changed periodically)-I don't particularly need it at 8,000 ft, especially when I'm working in town all day-so I just turn the furnace off altogether for the summer, usually some time in May. I can just open the house up on a summer evening, and the evening breezes cool everything off pretty well-the ultimate in energy efficiency! I'll remember again in September, when it's time to turn the furnace back on. Part of the problem is that I can't just change the filter. I have to

155

Spring Fever Time is Here Again  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequently, every spring, we children were obliged to swallow nauseous doses of cod liver oil, sulfur and molasses, or bitter tonics brewed from the leaves and stems, or...

156

Weldon Spring Site Federal Facility Agreement  

Office of Legacy Management (LM)

monitor radioactive contamination from within the confines of the SED because the "hot spots" are not defined spatially. Hikers have direct access to Springs located along...

157

Snapshot (Spring 2013) | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Snapshot (Spring 2013) Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

158

Colorado Springs Utilities- Energy Efficient Builder Program  

Energy.gov (U.S. Department of Energy (DOE))

The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR qualified homes within the CSU service area. The incentive range...

159

PNNL: Breakthroughs Magazine - Spring/Summer 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

SpringSummer 2004 issue Advanced Nanoscale Materials: Putting Science at your fingertips Breakthroughs Magazine Breakthroughs Archive In this issue... Cover Editor's Screen...

160

Brushless Motor Controller Report Spring 2010  

E-Print Network (OSTI)

Brushless Motor Controller Report Spring 2010 May 15, 2010 Brian Clementi MAE of 2010 322 Bogert ...................................................................................................... 5 A. Motor Description...................................................................................................... 5 B. The Motor Controller Board

Ruina, Andy L.

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL Publications: NETL-RUA Spring Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Conference Proceedings NETL-RUA Spring Meeting March 5, 2013 Webcast Strategic Plan - Mark Redfern, Pitt 2012 Success Stories - Cindy Powell, NETL URS Funding Competition - Janet...

162

Plutonium dissolution from Rocky Flats Plant incinerator ash  

SciTech Connect

Rockwell Hanford Operations (Rockwell) soon will commence recovery of plutonium from Rocky Flats Plant incinerator ash. In preparation for this processing, Rockwell undertook literature and laboratory studies to identify, select and optimize plutonium dissolution methods for treating the ash. Ash reburning, followed by dissolution in nitric acid containing calcium fluoride, was selected as the processing method for the ash. Recommended values of process parameters were identified. Using the selected process, 99.5% plutonium recovery was achieved, leaving about 12.7 wt % heel residue for an equal weight composite of the three ashes tested. 15 refs., 26 figs.

Delegard, C.H.

1985-06-01T23:59:59.000Z

163

Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete  

SciTech Connect

Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

Wang, Shuangzhen; Baxter, Larry

2006-08-01T23:59:59.000Z

164

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

165

Manufacture of ceramic tiles from fly ash  

DOE Patents (OSTI)

The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.

Hnat, James G. (Collegeville, PA); Mathur, Akshay (Tampa, FL); Simpson, James C. (Perkiomenville, PA)

1999-01-01T23:59:59.000Z

166

Manufacture of ceramic tiles from fly ash  

DOE Patents (OSTI)

The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

Hnat, J.G.; Mathur, A.; Simpson, J.C.

1999-08-10T23:59:59.000Z

167

Fundamental Study of Low NOx Combustion Fly Ash Utilization  

SciTech Connect

This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over forty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives.

E. M. Suubert; I. Kuloats; K. Smith; N. Sabanegh; R.H. Hurt; W. D. Lilly; Y. M. Gao

1997-05-01T23:59:59.000Z

168

Geochemical studies at four northern Nevada hot spring areas. [Kyle Hot Springs, Leach Hot Springs, Buffalo Hot Springs, and Beowave Hot Springs  

DOE Green Energy (OSTI)

Water samples from both hot and cold sources in the hydrologic areas surrounding the hot springs were collected and analyzed. Analyses of major, trace, and radio-element abundances of the water samples and of associated rock samples are presented. From this study it is possible that trace- and major-element abundances and/or ratios may be discerned which are diagnostic as chemical geothermometers, complementing those of silica and alkali elements that are presently used. Brief discussions of mixing calculations, possible new chemical geothermometers, and interelement relationships are also included.

Wollenberg, H.; Bowman, H.; Asaro, F.

1977-08-01T23:59:59.000Z

169

Spring/dimple instrument tube restraint  

DOE Patents (OSTI)

A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs. 7 figures.

DeMario, E.E.; Lawson, C.N.

1993-11-23T23:59:59.000Z

170

Spring/dimple instrument tube restraint  

DOE Patents (OSTI)

A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs.

DeMario, Edmund E. (Columbia, SC); Lawson, Charles N. (Columbia, SC)

1993-01-01T23:59:59.000Z

171

Cross-shaped torsional spring  

DOE Patents (OSTI)

The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

Williamson, Matthew M. (Boston, MA); Pratt, Gill A. (Lexington, MA)

1999-06-08T23:59:59.000Z

172

Cross-shaped torsional spring  

DOE Patents (OSTI)

The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

Williamson, M.M.; Pratt, G.A.

1999-06-08T23:59:59.000Z

173

Factors Controlling the Solubility of Mercury Adsorbed on Fly Ash  

NLE Websites -- All DOE Office Websites (Extended Search)

N:\R&D_Projects_Partial\FlyAsh&CCBs\Meetings\2005_04_WorldOfCoalAsh\AnnKim\HgSol N:\R&D_Projects_Partial\FlyAsh&CCBs\Meetings\2005_04_WorldOfCoalAsh\AnnKim\HgSol ubility_Paper.doc Factors Controlling the Solubility of Mercury Adsorbed on Fly Ash Ann G. Kim 1 and Karl Schroeder 2 1 ORISE Research Fellow, National Energy Technology Laboratory, U.S. Department of Energy, 626 Cochrans Mill Rd., Pittsburgh, PA 15236-0940 2 Research Group Leader, National Energy Technology Laboratory, U.S. Department of Energy, 626 Cochrans Mill Rd., Pittsburgh, PA 15236-0940 KEYWORDS Coal Utilization By-Products, leaching, activated carbon, pH ABSTRACT It is expected that increased controls on Hg emissions will shift the environmental burden from the flue gas to the solid coal utilization by-products (CUB), such as fly ash and flue-gas

174

Warm Springs State Hospital Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal...

175

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

176

Trace Element Geochemical Zoning in the Roosevelt Hot Springs...  

Open Energy Info (EERE)

Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area, Utah Abstract Chemical interaction of thermal brines with reservoir rock in the Roosevelt Hot Springs...

177

Hydrogeologic investigation of Coso Hot Springs, Inyo County...  

Open Energy Info (EERE)

and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater...

178

City of Glenwood Springs, Colorado (Utility Company) | Open Energy...  

Open Energy Info (EERE)

Glenwood Springs, Colorado (Utility Company) Jump to: navigation, search Name Glenwood Springs City of Place Colorado Utility Id 7300 Utility Location Yes Ownership M NERC Location...

179

Building America Spring 2012 Stakeholder Meeting Report: Austin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Spring 2012 Stakeholder Meeting Report: Austin, Texas; February 29 - March 2, 2012 Building America Spring 2012 Stakeholder Meeting Report: Austin, Texas; February...

180

City of Sharon Springs, Kansas (Utility Company) | Open Energy...  

Open Energy Info (EERE)

Sharon Springs, Kansas (Utility Company) Jump to: navigation, search Name City of Sharon Springs Place Kansas Utility Id 16988 Utility Location Yes Ownership M NERC Location SPP...

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Symes Hotel and Medicinal Springs Pool & Spa Low Temperature...  

Open Energy Info (EERE)

Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Facility Symes Hotel and Medicinal Springs Sector Geothermal energy Type Pool and Spa Location Hot...

182

Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Hotel Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Hot Springs Hotel Sector Geothermal energy Type Pool and Spa Location Glenwood Springs, Colorado...

183

Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005...  

Open Energy Info (EERE)

Springs Area (Goranson, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005)...

184

Core Holes At Hot Sulphur Springs Area (Goranson, 2005) | Open...  

Open Energy Info (EERE)

Springs Area (Goranson, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Hot Sulphur Springs Area (Goranson, 2005)...

185

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

186

ARM - News from the Steamboat Springs Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

ColoradoNews from the Steamboat Springs Deployment Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace News from the Steamboat Springs Deployment Releases WPSD (Paducah, KY) "STORMVEX Cloud Study" January 19, 2011 The Daily Sentinel, Grand Junction "Steamboat project gives scientists unique, grounded look at clouds" December 12, 2010 Steamboat Pilot & Today "Steamboat cloud study to help create better global climate models" Image Gallery December 12, 2010 Also picked up by:

187

In-Plant Ash-Handling Reference Manual  

Science Conference Proceedings (OSTI)

Despite problems with ash-handling systems that have led to failures in electrostatic precipitators, there has been no extensive reference manual for specifying, operating, and maintaining such systems. The comprehensive manual compiled in this study serves as a reference for every phase of boiler bottom ash- and fly ash-handling systems design and operation as well as a primer for those unfamiliar with these systems.

1986-12-01T23:59:59.000Z

188

Recovery of aluminum and other metal values from fly ash  

DOE Patents (OSTI)

The invention relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

McDowell, W.J.; Seeley, F.G.

1979-11-01T23:59:59.000Z

189

Recovery of aluminum and other metal values from fly ash  

DOE Patents (OSTI)

The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

McDowell, William J. (Oak Ridge, TN); Seeley, Forest G. (Oak Ridge, TN)

1981-01-01T23:59:59.000Z

190

The Effect of Ammonia on Mercury Partitioning in Fly Ash  

Science Conference Proceedings (OSTI)

Management options and environmental assessments for fly ash are driven primarily by their physical and chemical characteristics. This report describes the results of a laboratory study on the leaching of mercury from several paired fly ash samples from facilities employing powdered activated carbon (PAC) injection for mercury control. While previous EPRI research has shown that mercury leaching from ash with PAC is negligible, it has also been found that ammonia complexes can increase the mobility of so...

2008-03-25T23:59:59.000Z

191

Identification of Arsenic Species in Coal Ash Particles  

Science Conference Proceedings (OSTI)

Identification of the chemical species and compounds of arsenic in individual coal fly ash particles will help provide a scientifically sound basis for assessing health risks from inhalation of these particles. This report presents the results of an analytical chemistry study of coal-combustion ash, with some work also completed on oil-combustion ash and copper smelter dust collected from several sources in the United States and Europe. Results showed that most arsenic is present on the surface of coal a...

1998-08-13T23:59:59.000Z

192

NETL: Utilization Projects - Managing High-Carbon Ash  

NLE Websites -- All DOE Office Websites (Extended Search)

Managing High-Carbon Ash Managing High-Carbon Ash Task 1: Effect of Coal Quality The objective of this task is to assess if fuel selection is an important factor determining ash quality. Work on this task will involve each of the three participating organizations. Ash samples from three coals will be generated under identical firing conditions in the pilot furnace at the University of Utah, and the matching ash and coal samples sent to Brown. Additional matching sets of coal and ash will be obtained from commercial-scale firing at Southern Company. The ashes will be characterized for LOI and surfactant adsorption activity under standard conditions and trends with fuel type identified. At the same time, chars will be prepared from the matching coal set under standard conditions in a laboratory furnace and also characterized for surfactant adsorptivity. A variety of standard conditions may need to be explored. The combined data set will be analyzed to determine cross correlations between ash behavior, standard laboratory char behavior, and parent coal properties. Our goal is to be able to anticipate ash behavior either (a) from coal properties directly, or (b) from the properties of chars made by a simple laboratory procedure. Either could be the basis for a coal quality index -- one based on fuel properties and the other based on a simple screening test.

193

Embankment Loading on Saturated Coal Ash: Centrifuge Demonstration Test  

Science Conference Proceedings (OSTI)

When an embankment of coal combustion residuals or soil is built over a coal ash pond, pore water pressures can accumulate in the underlying saturated ash deposits and trigger a rapid slope failure. This report documents a scale model test completed to obtain data on the conditions that may lead to a slope failure. A 6.5-inch tall sand embankment was built on top of a 6-inch thick deposit of saturated fly ash. The strength of the fly ash was characterized using consolidated undrained triaxial ...

2013-12-10T23:59:59.000Z

194

Data Summary Report for Hanford Site Coal Ash Characterization  

Science Conference Proceedings (OSTI)

The purpose of this report is to present data and findings from sampling and analysis of five distinct areas of coal ash within the Hanford Site River Corridor

Sulloway, H. M.

2012-03-06T23:59:59.000Z

195

Coal Fly Ash as Alternative Source of Smelter Grade Alumina  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, COM 2011. Symposium, COM 2011 (held with the World Gold Conference), POSTER SESSION. Presentation Title, Coal Fly Ash as

196

HIGH STRENGTH PHOSPHATE CEMENT USING INDUSTRIAL BYPRODUCT ASHES ...  

industries that use fossil fuels. Approximately one third of this ash is recycled in the cement based products as an additive. Typically, ...

197

Kinetics of beneficiated fly ash by carbon burnout  

Science Conference Proceedings (OSTI)

The presence of carbon in fly ash requires an increase in the dosage of the air-entraining admixture for concrete mix, and may cause the admixture to lose efficiency. Specifying authorities for the concrete producers have set maximum allowable levels of residual carbon. These levels are the so called Loss On Ignition (LOI). The concrete producers` day-to-day purchasing decisions sets the LOI at 4%. The objective of the project is to investigate the kinetics of oxidation of residual carbon present in coal fly ash as a possible first step toward producing low-carbon fly ash from high-carbon, low quality fly ash.

Okoh, J.M.; Dodoo, J.N.D.; Diaz, A. [Univ. of Maryland Eastern Shore, Princess Anne, MD (United States). Dept. of Natural Sciences; Ferguson, W.; Udinskey, J.R. Jr.; Christiana, G.A. [Delmarva Power, Wilmington, DE (United States)

1997-12-31T23:59:59.000Z

198

Mechanical Activation of Deposited Fly Ash by Grinding  

Science Conference Proceedings (OSTI)

May 1, 2007 ... According to laboratory experience the breaking of fly ash particles is required to increase its hydraulic potential (Opoczky, 2001). Aim of the...

199

NETL: News Release - Novel Treatment of Fly Ash Yields Safer...  

NLE Websites -- All DOE Office Websites (Extended Search)

successfully tested at near full-scale levels. Easily integrated with existing ash handling equipment, the simple-to-operate, cost-efficient technology can be retrofitted to...

200

Study on Aluminum Foam with Fly Ash Increase Viscosity  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Study on Aluminum Foam with Fly Ash Increase Viscosity by Yong Wang, Guang- chun Yao, and Bing Li. Publisher: TMS. Product Format: PDF.

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Proportioning CLSM Using Fly Ash and GGBS - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Proportioning CLSM Using Fly Ash and GGBS. Author(s), Udayashankar B C, Raghavendra T. On-Site Speaker (Planned), Udayashankar ...

202

Rebound characteristics for ash particles impacting a planar surface  

Science Conference Proceedings (OSTI)

The formation of ash deposition on the heat transfer tubes in a boiler reduces the heat transfer coefficient by about 25%. Because of these fouling layers

2013-01-01T23:59:59.000Z

203

Driving Green: Spring has Sprung, but don't 'Spring Ahead' | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green: Spring has Sprung, but don't 'Spring Ahead' Green: Spring has Sprung, but don't 'Spring Ahead' Driving Green: Spring has Sprung, but don't 'Spring Ahead' March 14, 2012 - 2:32pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory With gas prices skyrocketing, it may be time to evaluate your driving habits. No, I'm not talking about "hypermilling" (going to extreme lengths to get the best fuel economy possible), which can involve some dangerous techniques. (There actually is a Hypermiling Safety Foundation, which advocates legal techniques to get the best mileage possible.) You can still "drive green" safely to help save fuel and operating costs. First, of course, you should keep your car well maintained, whatever its age - regular oil changes, tires properly inflated and aligned, engine tuned up

204

SpringWorks | Open Energy Information  

Open Energy Info (EERE)

SpringWorks SpringWorks Jump to: navigation, search Name SpringWorks Place Minnetonka, Minnesota Zip 55343-8684 Product SpringWorks was created to discover and nurture incubation companies and emerging technologies for Petters Group Worldwide. Coordinates 44.939448°, -93.467869° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.939448,"lon":-93.467869,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Think Spring, Think Local... | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Think Spring, Think Local... Think Spring, Think Local... Think Spring, Think Local... April 25, 2013 - 11:15am Addthis Eating locally grown produce is healthy and reduces greenhouse gas emissions. | Photo courtesy of ©iStockphoto.com/CDH_Design Eating locally grown produce is healthy and reduces greenhouse gas emissions. | Photo courtesy of ©iStockphoto.com/CDH_Design Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs How can I participate? Visit your local farmers' market or join a CSA to get your fruits and vegetables this summer. Are you getting excited thinking about how you plan to support your local economy, your larger environment and also your health this spring? I know I am! The nicer weather the eastern regions have been experiencing lately has got

206

Summary of Weldon Spring Site Focus Area  

Office of Legacy Management (LM)

of Weldon Spring Site Focus Area of Weldon Spring Site Focus Area Work Session February 5, 2003 Weldon Spring Interpretive Center Focus Area: Monitoring and Maintenance This was the third of three work sessions that focus on specific issues addressed in the draft Long-Term Stewardship Plan for the Weldon Spring, Missouri, Site, dated August 9, 2002. At 6:00 p.m., before the start of the work session, Dan Collette, Technical Support Manager for S.M. Stoller, the U.S. Department of Energy (DOE) Grand Junction Office (GJO) contractor, gave a demonstration of the on-line document retrieval and geographic information systems. Introduction Dave Geiser, DOE Headquarters Director of the Office of Long-Term Stewardship, discussed a DOE Headquarters proposal to establish the Office of Legacy Management in fiscal year 2004.

207

Spring Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Spring Canyon Wind Farm Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Xcel Energy Location Near Peetz CO Coordinates 40.95366°, -103.166993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.95366,"lon":-103.166993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

Wessington Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wessington Springs Wind Farm Wessington Springs Wind Farm Facility Wessington Springs Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Babcock & Brown Energy Purchaser Heartland Consumers Power District Location Southwest of Wessington Springs SD Coordinates 43.947387°, -98.657427° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.947387,"lon":-98.657427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Spring 2012 Cosmopolitanism-Prof. Vlasak  

E-Print Network (OSTI)

Spring 2012 Cosmopolitanism- Prof. Vlasak 36419 CAS 100 M120 12:45-2:05 37586 CAS 100 M121 2 to no special community whatsoever. In this course we will examine the significance of cosmopolitanism in its

Kovalev, Leonid

210

Spring 2013 Composite Data Products - Backup Power  

DOE Green Energy (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes 21 composite data products (CDPs) produced in Spring 2013 for fuel cell backup power systems.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.

2013-05-01T23:59:59.000Z

211

cctoday_spring_2006_FINAL.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

top- ics as risk assessment; monitoring, mitigation, and verifi cation (MM&V); NEWS BYTES OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY * DOEFE-0498 * ISSUE NO. 66, SPRING...

212

Macho Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Macho Springs Wind Farm Macho Springs Wind Farm Jump to: navigation, search Name Macho Springs Wind Farm Facility Macho Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Owner Element Power Developer Element Power Energy Purchaser American Electric Power Location Luna County NM Coordinates 32.573639°, -107.456399° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.573639,"lon":-107.456399,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Environmental Performance Assessment of Coal Ash Use Sites: Waukegan Ash Embankment  

Science Conference Proceedings (OSTI)

A comprehensive database on the environmental effects of reusing coal combustion residues is essential to increased application of these products. This report discusses changes in soils, vegetation, and groundwater quality around an embankment containing coal fly ash and develops an approach for building a statistically sound environmental performance database.

1991-01-03T23:59:59.000Z

214

Long-Range Forecast Trajectories of Volcanic Ash from Redoubt Ash from Redoubt Volcano Eruptions  

Science Conference Proceedings (OSTI)

The Redoubt Volcano in Alaska began a series of eruptions on 14 December 1989. Volcanic ash was often reported to reach heights where, as it moved with the upper-level flow, it could affect aircraft operations thousands of km from the eruption. ...

Jerome L. Heffter; Barbara J. B. Stunder; Glenn D. Rolph

1990-12-01T23:59:59.000Z

215

Environmental Performance Assessment of Coal Ash Use Sites: Little Canada Structural Ash Fill  

Science Conference Proceedings (OSTI)

An insufficient database on the environmental effects of reusing coal combustion residues hampers increased utilization of these products. This report discusses the changes in soils, vegetation, and groundwater quality around a structural fill containing coal fly ash and develops an approach for building a statistically sound environmental performance database.

1990-06-06T23:59:59.000Z

216

Tubular spring slip joint and jar  

SciTech Connect

The present invention comprises a pressure balanced tubular spring slip-joint and jar including a generally tubular outer housing having longitudinal slot means in the wall thereof, and a hammer area of increased wall thickness at one end thereof, within which housing slidably extends a jar mandrel means having first and second longitudinally spaced enlarged diameter anvil areas, at least one fastener tapped into one of those anvil areas, the heads of said fastener protruding into said slot means. Both said housing and said mandrel means possesses axial bores therethrough, which are placed in communication via the bore of a tubular spring within the housing, whereby during extension and contraction of the slip-joint and jar means of the present invention the area within said axial bores and said spring bore is of a constant volume. The invention may be employed to provide force impulses in either longitudinal direction, said tubular spring aiding the application of those impulses when said housing and said mandrel means move relatively toward each other. By proper selection of spring length and use of a coiled spring having spaced coils, the present invention may also be employed as a bi-directional shock absorber.

Heemstra, T. R.

1985-04-23T23:59:59.000Z

217

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

E-Print Network (OSTI)

using Iron-oxide Coated Coal Ash. In Arsenic Contaminationwaterusing iron?oxidecoatedcoalbottomash JohannaL. using iron-oxide coated coal bottom ash JOHANNA L. MATHIEU

MATHIEU, JOHANNA L.

2010-01-01T23:59:59.000Z

218

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants  

E-Print Network (OSTI)

Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

219

Spring 2011 1 Ph.D. Handbook SOCIAL WELFARE  

E-Print Network (OSTI)

Spring 2011 1 Ph.D. Handbook SCHOOL OF SOCIAL WELFARE DOCTOR OF PHILOSOPHY IN SOCIAL WORK Degree Requirements and Policy Handbook Spring, 2011 The University of Kansas School of Social Welfare 1545 Lilac Lane Lawrence, Kansas 66045-3129 (785) 864-8976 www.ku.edu #12;Spring 2011 2 Ph.D. Handbook #12;Spring 2011 3 Ph

Peterson, Blake R.

220

Multi-objective Optimization Design for Gradient Stiffness Leaf Spring  

Science Conference Proceedings (OSTI)

Gradient stiffness leaf spring is of a positive meaning for increasing the ride smooth of vehicle, which has a more stable natural frequency of leaf spring stiffness. A multi-objective optimization model of Gradient stiffness leaf spring of vehicles ... Keywords: leaf spring, multi-objective, optimization design

Qin-man Fan

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evaluation of Leachate Chemistry from Coal Refuse Blended and Layered with Fly Ash.  

E-Print Network (OSTI)

??Alkaline fly ash has been studied as a liming agent within coal refuse fills to reclaim acid-forming refuse. Previous studies focused on bulk blending ash (more)

Hunt, Joseph Edward

2008-01-01T23:59:59.000Z

222

Hazards Associated with the Use of Bone Ash in Contact with Molten ...  

Science Conference Proceedings (OSTI)

Bone ash itself is non-toxic and environmentally benign. However recent evidence indicates that bone ash can be reduced upon contact with aluminum alloys to...

223

IN HARM'S WAY: Lack Of Federal Coal Ash  

E-Print Network (OSTI)

IN HARM'S WAY: Lack Of Federal Coal Ash Regulations Endangers Americans And Their Environment 2010 Thirty-nine New Damage Cases of Contamination from Improperly Disposed Coal Combustion Waste, Editor and Contributing Author #12;IN HARM'S WAY: Lack of Federal Coal Ash Regulations Endangers

Short, Daniel

224

Characterization of Ammonia Leaching from Coal Fly Ash  

Science Conference Proceedings (OSTI)

This interim report presents the results of a preliminary laboratory assessment of the leaching of ammonia from coal ashes that have been ammoniated by pollution control devices installed on power plants to reduce nitrogen oxide (NOx) emissions. This laboratory assessment project was designed to measure the leaching rates of ammonia from ashes in a disposal environment.

2001-11-30T23:59:59.000Z

225

Infiltration Processing of Metal Matrix-Fly Ash Particle Composites  

Science Conference Proceedings (OSTI)

Metal Matrix composites can provide improved functional properties compared to solid metal castings while saving production energy and raw material costs. Ash-derived metal matrix composites, in particular, can provide high value-added use to coal fly ash. This report describes research on use of pressure infiltration techniques to produce composites for automotive component applications.

1997-09-16T23:59:59.000Z

226

Process for the recovery of alumina from fly ash  

DOE Patents (OSTI)

An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

Murtha, M.J.

1983-08-09T23:59:59.000Z

227

Use of Coal Ash in Highway Construction: Michigan Demonstration Project  

Science Conference Proceedings (OSTI)

This report documents the construction and performance testing of a 3000-ft length of fly ash base under a highway shoulder. Following three years of service, the road shoulder shows no signs of premature deterioration. This report should aid utilities seeking to increase ash-use rates in highway-related projects, as well as state highway design engineers responsible for preparing construction specifications.

1991-03-05T23:59:59.000Z

228

Manganese Occurrence Near Three Coal Ash Impoundments in Illinois  

Science Conference Proceedings (OSTI)

This report describes research performed to better understand the cause of elevated manganese concentrations sometimes found in groundwater near coal ash management facilities. Three impoundments in Illinois were selected for detailed field and laboratory studies of conditions conducive to manganese release from coal ash as well as natural soils.

2002-09-24T23:59:59.000Z

229

The recycling of the coal fly ash in glass production  

Science Conference Proceedings (OSTI)

The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

2006-09-15T23:59:59.000Z

230

Twelve Months of Air Quality Monitoring at Ash Meadows National Wildlife Refuge, Southwestern Rural Nevada, U.S.A (EMSI April 2007)  

SciTech Connect

The one year of air quality monitoring data collected at the Ash Meadows National Wildlife Refuge (NWR) was the final part of the air quality "Scoping Studies" for the Environmental Monitoring Systems Initiative (EMSI) in southern and central Nevada. The objective of monitoring at Ash Meadows was to examine aerosol and meteorological data, seasonal trends in aerosol and meteorological parameters as well as to examine evidence for long distance transport of some constituents. The 9,307 hectare refuge supports more than 50 springs and 24 endemic species, including the only population of the federally listed endangered Devils Hole pupfish (Cyprinodon diabolis) (U.S. Fish and Wildlife Service, 1990). Ash Meadows NWR is located in a Class II air quality area, and the aerosol measurements collected with this study are compared to those of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites. Measurements taken at Ash Meadows NWR over a period of 12 months provide new baseline air quality and meteorological information for rural southwestern Nevada, specifically Nye County and the Amargosa Valley.

Engelbrecht, Johann P; Shafer, David S; Campbell, Dave; Campbell, Scott; McCurdy, Greg; Kohl, Steven D; Nikolich, George; Sheetz, Larry

2011-08-01T23:59:59.000Z

231

Ashe County - Wind Energy System Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashe County - Wind Energy System Ordinance Ashe County - Wind Energy System Ordinance Ashe County - Wind Energy System Ordinance < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal Utility Nonprofit Residential Rural Electric Cooperative Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Ashe County Planning Department In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a system may be obtained. This policy was adopted in the context of an ongoing debate over

232

Purple traps yield Reservation's first detection of Emerald Ash Borer  

NLE Websites -- All DOE Office Websites (Extended Search)

traps yield Reservation's first detection of Emerald Ash Borer traps yield Reservation's first detection of Emerald Ash Borer The question of whether or not DOE's forests are infested with Emerald Ash Borer (EAB) has been answered. On May 10, a trap on Highway 95 at the Highway 58 interchange produced the first instance of the destructive non-native insect in Roane County. Five days later, a second trap on Bethel Valley Road near the East Portal turned up the first capture in Anderson County. "Unfortunately, these finds signal the beginning of a decline of ash species throughout the reservation" according to Greg Byrd, forester with the ORNL Natural Resources Program. "Dieback will become more prominent as the insect populations expand. Native ash trees have little defense against this pest, which was

233

Element associations in ash from waste combustion in fluidized bed  

SciTech Connect

The incineration of MSW in fluidized beds is a commonly applied waste management practice. The composition of the ashes produced in a fluidized bed boiler has important environmental implications as potentially toxic trace elements may be associated with ash particles and it is therefore essential to determine the mechanisms controlling the association of trace elements to ash particles, including the role of major element composition. The research presented here uses micro-analytical techniques to study the distribution of major and trace elements and determine the importance of affinity-based binding mechanisms in separate cyclone ash particles from MSW combustion. Particle size and the occurrence of Ca and Fe were found to be important factors for the binding of trace elements to ash particles, but the binding largely depends on random associations based on the presence of a particle when trace elements condensate in the flue gas.

Karlfeldt Fedje, K., E-mail: karinka@chalmers.s [Department of Chemical and Biological Engineering, Division of Environmental Inorganic Chemistry, Chalmers University of Technology, Kemivaegen 10, 412 96 Goeteborg (Sweden); Rauch, S. [Department of Civil and Environmental Engineering, Division of Water Environment Technology, Chalmers University of Technology, Sven Hultins Gata 8, 412 96 Goeteborg (Sweden); Cho, P.; Steenari, B.-M. [Department of Chemical and Biological Engineering, Division of Environmental Inorganic Chemistry, Chalmers University of Technology, Kemivaegen 10, 412 96 Goeteborg (Sweden)

2010-07-15T23:59:59.000Z

234

State Waste Discharge Permit application: 200-W Powerhouse Ash Pit  

Science Conference Proceedings (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

Atencio, B.P.

1994-06-01T23:59:59.000Z

235

COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS  

SciTech Connect

The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

2001-04-01T23:59:59.000Z

236

Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.

Ivan Diaz-Loya, E. [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Allouche, Erez N., E-mail: allouche@latech.edu [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Eklund, Sven; Joshi, Anupam R. [Department of Chemistry, Louisiana Tech University, Ruston, LA 71272 (United States); Kupwade-Patil, Kunal [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)

2012-08-15T23:59:59.000Z

237

Behavior of Ammoniated Fly Ash: Effects of Ammonia on Fly Ash Handling, Disposal, and End-Use  

Science Conference Proceedings (OSTI)

The implementation of ammonia-based nitrogen oxides (NOx) control technologies has had the undesired side effect of creating potential problems for operating units due to ammonia-contaminated fly ash. The work described in this report is a continuation of long-term EPRI efforts to address various industry concerns associated with ammoniated fly ash.

2002-02-22T23:59:59.000Z

238

School Trips & Projects in Spring  

NLE Websites -- All DOE Office Websites (Extended Search)

& Projects in Spring & Projects in Spring Nature Bulletin No. 484 March 9, 1957 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist SCHOOL TRIPS & PROJECTS IN SPRINg Spring is the morning of the year when nature reawakens. The days become noticeably longer and warmer. We feel an urge to get out-of- doors and see green growing plants, early wildflowers, and swelling buds on trees and shrubs; see and hear birds returning from their winter homes; hear the mating songs of frogs and toads. The nearest forest preserve, park, meadow or hedgerow -- even a city street or weedy vacant lot -- will have a wealth of plant and animal life. March is a chancy month for field trips but spring can be perking in a classroom before many signs of it appear outdoors. One twig of a forsythia bush, placed in a bottle of water, will soon display its yellow flowers; willow and aspen twigs will develop fat fuzzy catkins; the end of branches from cottonwood, soft maple and elm trees will reveal how some of their winter buds produce flowers and others burst into leaves. The long reddish catkins on a male cottonwood are showy but the small flowers of a maple or an elm are no less beautiful, although seldom noticed on the trees.

239

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most current innovation projects in the residential buildings sector. This meeting provided an opportunity for researchers and industry stakeholders to showcase and discuss the latest in cutting-edge, energy-efficient residential building technologies and practices. The meeting also included working sessions from each Standing Technical Committee (STC), which outlined work that will best assist in overcoming

240

Boiling Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Boiling Springs Geothermal Area Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3641,"lon":-115.856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Tuana Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Tuana Springs Wind Farm Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.814261°, -114.996665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.814261,"lon":-114.996665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Granite Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Project Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Granite Springs Geothermal Project Project Location Information Coordinates 40.1475°, -118.64861111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1475,"lon":-118.64861111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Okpilak Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Okpilak Springs Geothermal Area Okpilak Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Okpilak Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":69.3,"lon":-144.0333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Serpentine Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Serpentine Springs Geothermal Area Serpentine Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Serpentine Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.85703165,"lon":-164.7097211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

ARM - Field Campaign - Spring Cloud IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsSpring Cloud IOP govCampaignsSpring Cloud IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring Cloud IOP 2000.03.01 - 2000.03.26 Lead Scientist : Gerald Mace For data sets, see below. Summary The Atmospheric Radiation Measurement (ARM) Program conducted a Cloud Intensive Operational Period (IOP) in March 2000 that was the first-ever effort to document the 3-dimensional cloud field from observational data. Prior numerical studies of solar radiation propagation through the atmosphere in the presence of clouds have been limited by the necessity to use theoretical representations of clouds. Three-dimensional representations of actual clouds and their microphysical properties, such as the distribution of ice and water, had previously not been possible

246

Baltazor Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Project Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location Information Coordinates 41.923888888889°, -118.71° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.923888888889,"lon":-118.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Spring Grove Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grove Biomass Facility Grove Biomass Facility Jump to: navigation, search Name Spring Grove Biomass Facility Facility Spring Grove Sector Biomass Owner P.H. Glatfelder Location Spring Grove, Pennsylvania Coordinates 39.8745436°, -76.8658078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8745436,"lon":-76.8658078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Pebble Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Pebble Springs Wind Farm Pebble Springs Wind Farm Facility Pebble Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser LADWP/Burbank/Glendale Location Gilliam County near Arlington OR Coordinates 45.712306°, -120.184242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.712306,"lon":-120.184242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Camp Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Camp Springs Wind Farm Camp Springs Wind Farm Facility Camp Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location TX Coordinates 32.739516°, -100.741382° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.739516,"lon":-100.741382,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Butte Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Area Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.771138,"lon":-119.114138,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Shakes Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Shakes Springs Geothermal Area Shakes Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Shakes Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.71765648,"lon":-132.0025034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Sulphur Springs Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sulphur Springs Geothermal Facility General Information Name Sulphur Springs Geothermal Facility Facility Sulphur Springs Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.786346628248°, -122.78226971626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.786346628248,"lon":-122.78226971626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Categorical Exclusion 4566, Ash Removal Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOrnI FOrnI Project Title: Ash Removal Project (4566) Program or Program Office: Y -12 Site Office Location: Oak Ridge Tennessee Project Description: This work scope is to split, containerize, package, transport and disposition one hundred and two (102) cans of mixed waste. General Administration/Management OA I - Routine business actions OA2 * Administrative contract amendments OA4 - Interpretations/rulings for existing regulations OA5 - Regulatory interpretations without environmental effect OA6 - Procedural rule makings upgrade OA 7 - Transfer of property, use unchanged OA8 . Award of technical supportlM&O/personal service contracts OA9 - Info gathering, analysis, documentation, dissemination, and training OA 10 - Reports on non-DOE legislation OA II -

254

cctoday_spring_2007web.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

7 * ISSUE NO. 71, SPRING 2007 7 * ISSUE NO. 71, SPRING 2007 A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION INSIDE THIS ISSUE NETL Mercury Control ....................1 New Turbine Consortium ................4 NETL Monitors CO 2 Storage............6 Upcoming Events ...........................7 2007 Budget Emphasizes Coal ........7 International Initiatives ...................8 Active CCT, PPII, CCPI Status ........10 See "NETL Mercury" on page 2... See "News Bytes" on page 5... On March 5, 2007, Jeffrey D. Jarrett resigned his post as Assistant Sec- retary for Fossil Energy to join the private sector. In December 2006, Thomas D. Shope was appointed as FE's Principal Deputy Assistant Secretary. Shope, an attorney, previ- ously served as FE's Chief of Staff,

255

Rapid River Hatchery - Spring Chinook, Final Report  

SciTech Connect

This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

Watson, M.

1996-05-01T23:59:59.000Z

256

Phenolic acids as bioindicators of fly ash deposit revegetation  

Science Conference Proceedings (OSTI)

The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic [Institute for Biological Research 'Sinisa Stankovic,' Belgrade (Serbia and Montenegro). Department of Ecology

2006-05-15T23:59:59.000Z

257

High Volume Fly Ash Blended Cements: Status Report  

Science Conference Proceedings (OSTI)

At present, the production of high-volume fly ash (HVFA) concrete involves the addition of large volumes of fly ash as a separate ingredient at a ready-mixed concrete batch plant. This necessitates additional storage silos and quality control at the job site. In order to resolve these issues, CANMET, in partnership with Electric Power Research Institute, U.S.A., undertook a major research project to develop blended cements incorporating high volumes of ASTM Class fly ash. The blended cements are made by ...

1999-10-28T23:59:59.000Z

258

Recovery of iron oxide from coal fly ash  

DOE Patents (OSTI)

A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

Dobbins, Michael S. (Ames, IA); Murtha, Marlyn J. (Ames, IA)

1983-05-31T23:59:59.000Z

259

Arsenic and Selenium Speciation in Fly Ash and Wastewater  

Science Conference Proceedings (OSTI)

The objective of the work is to predict As and Se behavior in pond wastewater based on coal and power plant characteristics so that utilities will have tools for selection of coals (and blends) that will allow them to meet applicable water quality regulations in the ash pond discharge. Arsenic and selenium were chosen as the focus of this work because the behavior of arsenic and selenium is not well correlated with pH in ash pond water, but with speciation of these oxyanions in the fly ash. Furthermore, ...

2005-03-28T23:59:59.000Z

260

Scale-up and Demonstration of Fly Ash Ozonation Technology  

Science Conference Proceedings (OSTI)

This project is the first large pilot scale test of a new process to passivate the carbon in ash so that it can be used in concrete without physically removing the carbon from the ash. The tests were conducted at PPL's Montour SES, sponsored by DOE and supported by EPRI. Near full-scale industrial equipment was used to expose fly ash, carbon mixtures to ozone to see if ozone would passivate the surface of carbon so that it would not react with air entraining agents that are used by concrete manufacturers...

2005-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power Plants  

E-Print Network (OSTI)

Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power color from pulp mill effluent using coal ash. Prevent coal ash adsorbent from leaching arsenic, chromium, lead, and zinc. Define a treatment procedure using coal ash that will result in the maximum

Hutcheon, James M.

262

Respiratory and Reproductive Characteristics of Eastern Mosquitofish (Gambusia holbrooki) Inhabiting a Coal Ash Settling Basin  

E-Print Network (OSTI)

) Inhabiting a Coal Ash Settling Basin B. P. Staub, W. A. Hopkins, J. Novak, J. D. Congdon Savannah River 2002/Accepted: 29 March 2002 Abstract. Coal fly ash and effluent from coal ash settling basins viable populations in areas contaminated by coal ash. While eastern mosquitofish are present

Hopkins, William A.

263

Coal- and Ash-Handling Systems Reliability Conference and Workshop Proceedings  

Science Conference Proceedings (OSTI)

This report presents papers, discussion summaries, and conclusions from an EPRI workshop on reliability problems with coal- and ash-handling systems in power plants. Held in October 1980 in St. Louis, the workshop covered yard and in-plant coal handling, frozen coal, fugitive dust, fly ash handling, bottom ash handling, and ash disposal.

1981-08-01T23:59:59.000Z

264

Proceedings: Tenth International Ash Use Symposium, Volume 1: High-Volume Uses/Concrete Applications  

Science Conference Proceedings (OSTI)

Topics discussed at the tenth symposium on coal ash use included fundamental ash use research, product marketing, applied research, ash management and the environment, and commercial applications. Intense international research interest continues in coal ash use due to the prospects of avoiding disposal costs and generating revenue from by-product sales.

1993-01-22T23:59:59.000Z

265

Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Steamboat Springs Geothermal Area Steamboat Springs Geothermal Area (Redirected from Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (1) 10 Exploration Activities (14) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.388,"lon":-119.743,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Springs Geothermal Area Jemez Springs Geothermal Area (Redirected from Jemez Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.77166667,"lon":-106.69,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network (OSTI)

CHEMICAL ENGINEERING CURRICULUM Fall Term Spring Term EGGG 101 Introduction to Engineering (FYE) 2 CHEG 112 Introduction to Chemical Engineering 3 CHEM 111 General Chemistry 3 CHEM 112 General Chemistry and Writing 3 Breadth Requirement Elective 1 3 15 17 CHEG 231 Chemical Engineering Thermodynamics 3 CHEG 325

Lee, Kelvin H.

268

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network (OSTI)

CHEMICAL ENGINEERING CURRICULUM FALL 2010 Fall Term Spring Term EGGG 101 Introduction to Chemical Engineering 3 MATH 242 Analytic Geometry & Calculus B 4 MATH 243 Analytic Geometry & Calculus C 4 Critical Reading and Writing 3 Breadth Requirement Elective 1 3 15 17 CHEG 231 Chemical Engineering

Lee, Kelvin H.

269

Davison Health Center Price List* Spring 2013  

E-Print Network (OSTI)

Davison Health Center Price List* Spring 2013 Visits to Health Services are free and part of your services can be filed through insurance. Please see a Health Center representative for claim information - $21.00 Tetanus vaccine - $25.00 Tdap vaccine - $45.00 Typhim vaccine - $65.00 Laboratory Services

Devoto, Stephen H.

270

Energy, the Environment, and Society Spring 2013  

E-Print Network (OSTI)

1 Energy, the Environment, and Society Spring 2013 MW 3-4:30pm, L1118 ES&T Prof. Kim Cobb Email for a sustainable energy future involves balancing a series of oftentimes competing goals. On the one hand, continued population growth, combined with increased energy consumption by citizens in ever

Weber, Rodney

271

SPRING 2012 The History Of Brazil  

E-Print Network (OSTI)

1 of 4 SPRING 2012 The History Of Brazil MONDAY, WEDNESDAY, FRIDAY, 11:50 TO 12:40 HPR, RM. W117 of Brazil. It begins with Portuguese colonization in the sixteenth century, traces the development, dictatorship, and democratization. It ends with Brazil's twenty-first century transformation into one

Utah, University of

272

Physics 5794 Computational Physics Syllabus Spring 2003  

E-Print Network (OSTI)

Physics 5794 ­ Computational Physics Syllabus ­ Spring 2003 Instructor: Massimiliano Di Ventra, by H. Gould and J. Tobochnik (Addison Wesley). Computational Physics, by S.E. Koonin, D.C. Meredith 3:30 ­ 4:45 p.m., Torgensen 2050. Course Content: The majority of problems encountered in Physics

Di Ventra, Massimiliano

273

Adsorption of Trace Elements on Fresh and Weathered Coal Fly Ash  

Science Conference Proceedings (OSTI)

A variety of trace elements are associated with fly ash produced by coal combustion. These trace elements are potentially of concern for human health if they are released to the environment, and thus it is important to understand their mobility in coal fly ash management settings. In the fly ash management environment, the ash may react with meteoric fluid to release trace elements into groundwater or surface water. However, fly ash particles also have a relatively high surface area and have the ability ...

2012-05-23T23:59:59.000Z

274

Jet Engine Coatings Resist Volcanic Ash Damage - Materials ...  

Science Conference Proceedings (OSTI)

Posted on: 4/27/2011 12:00:00 AM... Concerns about the damage that volcanic ash clouds can inflict on aircraft engines resulted in last year's $2 billion...

275

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

1997-01-01T23:59:59.000Z

276

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

1998-12-29T23:59:59.000Z

277

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

1998-01-01T23:59:59.000Z

278

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

1997-04-29T23:59:59.000Z

279

Guideline for Control and Prevention of Fly Ash Erosion  

Science Conference Proceedings (OSTI)

Boiler tube failures (BTFs) represent the largest portion of availability loss in the fossil boiler industry at about 4%. Approximately 25% of all tube failures are due to fly ash erosion (FAE).

2011-11-04T23:59:59.000Z

280

Volcanic Ash Forecast Transport And Dispersion (VAFTAD) Model  

Science Conference Proceedings (OSTI)

The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has developed a Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model for emergency response use focusing on hazards to aircraft flight operations. ...

Jerome L. Heffter; Barbara J. B. Stunder

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Optical properties of fly ash. Volume 2, Final report  

Science Conference Proceedings (OSTI)

Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal and Ebert. Volume 2 contains the dissertation of Ebert which covers the measurements of the optical constants of slags, and calculations of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.

Self, S.A.

1994-12-01T23:59:59.000Z

282

Recoverable immobilization of transuranic elements in sulfate ash  

DOE Patents (OSTI)

Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

Greenhalgh, Wilbur O. (Richland, WA)

1985-01-01T23:59:59.000Z

283

Spring Forward and Start Saving Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Forward and Start Saving Money Spring Forward and Start Saving Money March 8, 2013 - 10:15am Addthis Installing blinds or draperies can help you save on cooling costs during...

284

Nonlinear springs with applications to flow regulation valves and mechanisms  

E-Print Network (OSTI)

This thesis focuses on the application of nonlinear springs for fluid flow control valves where geometric constraints, or fabrication technologies, limit the use of available solutions. Types of existing nonlinear springs ...

Freeman, David Calvin

2008-01-01T23:59:59.000Z

285

Armored spring-core superconducting cable and method of construction  

DOE Patents (OSTI)

An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

McIntyre, Peter M. (611 Montclair, College Station, TX 77840); Soika, Rainer H. (1 Hensel, #X4C, College Station, TX 77840)

2002-01-01T23:59:59.000Z

286

KINETICS OF FLY ASH BENEFICIATION BY CARBON BURNOUT  

SciTech Connect

Surface area analyses performed on fly ash samples reveal that the surface area is controlled by carbon content. The higher surface areas found in large particles are due to the presence of highly porous carbonaceous particles. Adsorption-desorption isotherms and t-plots of fly ash samples indicate that fly ash is porous. BJH Adsorption/Desorption pore size analysis reveal that pore diameters are independent of sieve size. They appear to be dependent only on the nature of the material which confers porosity. Based on the results of Brown and Dykstra (41) it is reasonable to assume that calculations of reaction rates at temperatures above 550 C were confounded by weight losses from processes other than carbon oxidation and, therefore, are not useful in determination of the temperature dependence of carbon oxidation in fly ash. The results of the present study indicate that temperatures below 550 C should be used for future studies in order to satisfactorily assess the temperature dependence of carbon oxidation in fly ash. Furthermore, it is also advisable that percent carbon determinations be performed on fly ash samples after the oxidation reactions to determine whether all carbon present in fly ash is oxidized. This will ensure that reaction rates are representative of the complete oxidation of carbon. An inverse relationship was determined between reaction rates and oxygen concentration for this study. As discussed, this may be due to volatilization of volatiles from fly ash and ease of transport of products away from the reaction sites by the action of the vacuum applied to the samples. A more accurate determination of oxygen dependence of carbon oxidation can be accomplished by the use of specialty gases containing different concentrations of oxygen which could eliminate the need to apply vacuum to the samples.

Dr. Joseph N.D. Dodoo; Dr. Joseph M. Okoh

2000-11-01T23:59:59.000Z

287

Triboelectric Fly Ash Beneficiation: Summary Report, Phase IV  

Science Conference Proceedings (OSTI)

The Center for Applied Energy Research (CAER) at the University of Kentucky has devised new approaches for extracting marketable fly ash from high carbon combustion ashes. Dry beneficiation technology based on pneumatic transport, triboelectric principles has emerged with the potential for high efficiency removal of carbon at low cost and with no secondary waste products. (EPRI Interim Report TR-109016, November, 1997; EPRI Interim Report TR-111647, November 1998; EPRI Report TE-113673, September 1999; E...

2000-11-27T23:59:59.000Z

288

Ash level meter for a fixed-bed coal gasifier  

DOE Patents (OSTI)

An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

Fasching, George E. (Morgantown, WV)

1984-01-01T23:59:59.000Z

289

Manchester Spring Chinook Broodstock Project, 1998-1999 Annual Report.  

DOE Green Energy (OSTI)

This yearly report concerned facilities upgrade and endangered Snake River spring/summer chinook salmon captive broodstock rearing.

McAuley, W.Carlin; Wastel, Michael R.; Flagg, Thomas A. (Northwest and Alaska Fisheries Science Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

2000-02-01T23:59:59.000Z

290

Insights into Spring 2008 Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices EIA released a new analytical report entitled Motor Gasoline Market Spring 2007 and Implications for Spring 2008. It includes a discussion of scheduled refinery outages in 2008 prepared in accordance with Section 804 of the Energy Independence and Security Act (EISA) of 2007, which requires EIA to review and analyze information on such outages from commercial reporting services and assess to their expected effects on the price and supply of gasoline. Changes in wholesale gasoline prices relative to crude oil are determined by the tightness between gasoline supply (production and net imports) and demand. Expectations for U.S. gasoline supply relative to demand are for a more favorable situation in January through May 2008 than was the case in the comparable 2007 period. Demand growth, which varies seasonally and depends on economic factors, is expected to slow. New gasoline supply is affected by refinery outages, refinery run decisions, and import variations. Planned refinery outages for January through May 2008 are lower than for the same period in 2007. Given lower planned outages and assuming the return of unplanned outages to more typical levels, including the return of BP's Texas City refinery to full operation, gasoline production could increase between 100 and 200 thousand barrels per day over last year's level, depending on the market incentives. In addition, ethanol use, which adds to gasoline supply, is expected to continue to increase. Considering the uncertainty in all the gasoline supply components, there is little likelihood of events combining in 2008 to lead to the kind of tight supply downstream from crude oil markets seen in spring 2007. In summary, refinery outage and import impacts should contribute less to gasoline price increases in 2008 than in 2007. If all of the low-range estimates for supply occurred, total gasoline supply would increase about 200 thousand barrels per day (Figure S1). However, record crude oil prices are nonetheless pushing current and expected gasoline prices to record levels.

291

Hydrogeochemistry of the Jowshan thermal springs, Kerman, Iran  

Science Conference Proceedings (OSTI)

Jowshan geothermal system comprises of 6 thermal springs with outlet temperatures ranging from 39.3 to 46.6 C. The thermal water of these springs is presently used for swimming and as a treatment for rheumatism, sinusitis and skin diseases. The ... Keywords: Iran, geothermometry, hydrogeochemistry, thermal spring

Zargham Mohammadi; Hassan Sahraie Parizi

2010-07-01T23:59:59.000Z

292

Testing Technology of Torsional Vibration Spring Static Stiffness  

Science Conference Proceedings (OSTI)

The principle and method of testing static stiffness of torsional vibration spring are put forward based on the structure of dual-mass flywheel with torsional vibration spring, and the test bench is designed for these. The testing data is collected by ... Keywords: LabVIEW, dual-mass flywheel, static stiffness, torsional vibration spring

Zhengfeng Jiang; Shaobo Xu; Lei Chen

2008-10-01T23:59:59.000Z

293

Coal Ash Corrosion Resistant Materials Testing  

Science Conference Proceedings (OSTI)

In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that, due to excessive wastage, certain tube samples needed to be removed and replaced in order to ensure that Test Sections B and C would have a chance of remaining in the boiler for their intended exposure period. These suspect tube samples were replaced and the two remaining test sections were put back into service. The tube samples that were removed from Test Sections B and C were set aside for later analysis at the end of the planned exposure period. Test Sections B and C were again examined approximately six months later. At that time, measured wall thickness losses raised concerns about additional tube samples. These suspect samples were also removed, set aside for later analysis, and replaced. The test sections then went back into service until the end of the second exposure period, which was concluded in May 2003 when, due to evidence of excessive wastage, the valves were opened increasing cooling steam flow and thereby effectively stopping corrosion. In August 2003, Test Sections B and C were removed for closer examination. Section C had experienced about 42 months of service at the desired team temperature set point with 28.5 months at temperature at full temperature. Additional suspect samples were removed from Test Section B, then, it was re-installed into the boiler (at the location originally occupied by Section C), where it remained in service until the end of the program. Due to this removal history, the samples from Test Section B had a total service duration that varied from a minimum of 15.5 months (for samples that performed poorly) to 37 months for samples the survived for the full intended service exposure for Section B. The figure below shows a schematic of Test Section B and indicates the length of service exposure for different locations. This report provides the results of the evaluation of Test Section B, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. This report also is intended to compare and summarize the results for all three test sections. The analysis of T

D. K. McDonald; P. L. Daniel; D. J. DeVault

2007-12-31T23:59:59.000Z

294

Microsoft Word - WeldonSpringFAQ.docx  

Office of Legacy Management (LM)

Spring, Missouri, Site Spring, Missouri, Site Page 1 of 2 Last Updated: 8/11/2009 Frequently Asked Questions Q: Is my drinking water safe? A: On the basis of groundwater studies conducted by the U.S. Department of Energy (DOE), U.S. Geological Survey, and Missouri Department of Natural Resources, the extent of groundwater contamination is well understood. DOE can state with confidence that groundwater contaminants of concern generated by WSSRAP are not detectable above background levels in samples from any private drinking water wells or any of the pumping wells in the St. Charles County well field. The Missouri Department of Health has conducted private well surveys during the 1990s to test for project-related contaminants; data have shown no cause for concern. The St. Charles County well field is sampled quarterly.

295

Thousand Springs Wind Park | Open Energy Information  

Open Energy Info (EERE)

Park Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.7452°, -114.828° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7452,"lon":-114.828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Hot Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho Windfarms / John Deere Developer Idaho Windfarms Energy Purchaser Idaho Power Location Elmore County ID Coordinates 42.95°, -115.63° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.95,"lon":-115.63,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Wilbur Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wilbur Springs Geothermal Area Wilbur Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wilbur Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.038874,"lon":-122.419653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

N Springs expedited response action proposal  

SciTech Connect

Since signing the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in 1989, the parties to the agreement have recognized the need to modify the approach to conducting investigations, studies, and cleanup actions at Hanford. To implement this approach, the parties have jointly developed the Hanford Past-Practice Strategy. The strategy defines a non-time-critical expedited response action (ERA) as a response action ``needed to abate a threat to human health or welfare or the environment where sufficient time exists for formal planning prior to initiation of response. In accordance with the past-practice strategy, DOE proposes to conduct an ERA at the N Springs, located in the Hanford 100 N Area, to substantially reduce the strontium-90 transport into the river through the groundwater pathway. The purpose of this ERA proposal is to provide sufficient information to select a preferred alternative at N Springs. The nature of an ERA requires that alternatives developed for the ERA be field ready; therefore, all the technologies proposed for the ERA should be capable of addressing the circumstances at N Springs. A comparison of these alternatives is made based on protectiveness, cost, technical feasibility, and institutional considerations to arrive at a preferred alternative. Following the selection of an alternative, a design phase will be conducted; the design phase will include a detailed look at design parameters, performance specifications, and costs of the selected alternative. Testing will be conducted as required to generate design data.

Not Available

1994-01-01T23:59:59.000Z

299

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Springs Geothermal Area Jemez Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.77166667,"lon":-106.69,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Spring 2013 National Transportation Stakeholders Forum Meeting, New York |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Transportation Stakeholders Forum » Spring 2013 National National Transportation Stakeholders Forum » Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum Meeting, New York Save the Date NTSF Registration Announcement NTSF 2013 Agenda EM's Huizenga Gives Keynote Address at National Transportation Stakeholders Forum Spring 2013 NTSF Presentations May 14, 2013 Presentations Communication Is Key to Packaging and Transportation Safety and Compliance North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing U.S. Nuclear Waste Technical Review Board: Roles and Priorities

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SWIR at Steamboat Springs Geothermal Area (Kruse 2012) | Open Energy  

Open Energy Info (EERE)

SWIR at Steamboat Springs Geothermal Area (Kruse 2012) SWIR at Steamboat Springs Geothermal Area (Kruse 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: SWIR At Steamboat Springs Geothermal Area (Kruse 2012) Exploration Activity Details Location Steamboat Springs Geothermal Area Exploration Technique SWIR Activity Date Spectral Imaging Sensor MASTER, ASTER, AVIRIS Usefulness useful DOE-funding none Notes Analysis of the SWIR MASTER/ASTER data allow mapping of characteristic minerals associated with hot springs/mineral deposits, including carbonate, kaolinite, alunite, buddingtonite, muscovite, and hydrothermal silica. Mineral identification and the general distribution of specific minerals were verified utilizing ground spectral measurements and mineral maps produced from AVIRIS hyperspectral data.

302

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California.  

Open Energy Info (EERE)

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Details Activities (2) Areas (1) Regions (0) Abstract: This investigation included: review of existing geologic, geophysical, and hydrologic information; field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; and determination of the

303

Leaching of Mixtures of Biochar and Fly Ash  

SciTech Connect

Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments.2, 5, 6 Both the residual char from biomass pyrolysis7-9, 12 (biochar) and fly ash from coal combustion1, 13, 14 have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations.10, 11, 16 Adding biochar to soil generally raises pH, increases total nitrogen and total phosphorous, encourages greater root development, improves cation exchange capacity and reduces available aluminum.3, 17 Combinations of these benefits likely lead to the observed increased yields for crops including corn and sugarcane.17 with biochar addition to soil. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) 8, 17 than do unammended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way.18 Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes.15 Here, we are examining the properties of mixtures of biochar, fly ash, and soil and evaluating leaching of organic carbon and metals from the mixtures.

Palumbo, Anthony Vito [ORNL; Porat, Iris [ORNL; Phillips, Jana Randolph [ORNL; Amonette, J. E. [Pacific Northwest National Laboratory (PNNL); Drake, Meghan M [ORNL; Brown, Steven D [ORNL; Schadt, Christopher Warren [ORNL

2009-01-01T23:59:59.000Z

304

Spring and Summer Energy-Saving Tips | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips May 30, 2012 - 1:21pm Addthis Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Here you'll find strategies to help you save energy during the spring and summer when the weather is warm and you are trying to keep your home cool. Some of the tips below are free and can be used on a daily basis to increase your savings; others are simple and inexpensive actions you can take to ensure maximum savings through the spring and summer. If you haven't already, conduct an energy assessment to find out where you

305

Spring and Summer Energy-Saving Tips | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips May 30, 2012 - 1:21pm Addthis Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Here you'll find strategies to help you save energy during the spring and summer when the weather is warm and you are trying to keep your home cool. Some of the tips below are free and can be used on a daily basis to increase your savings; others are simple and inexpensive actions you can take to ensure maximum savings through the spring and summer. If you haven't already, conduct an energy assessment to find out where you

306

Geochemistry And Geothermometry Of Spring Water From The Blackfoot  

Open Energy Info (EERE)

Geothermometry Of Spring Water From The Blackfoot Geothermometry Of Spring Water From The Blackfoot Reservoir Region, Southeastern Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geochemistry And Geothermometry Of Spring Water From The Blackfoot Reservoir Region, Southeastern Idaho Details Activities (3) Areas (1) Regions (0) Abstract: The Blackfoot Reservoir region in southeastern Idaho is recognized as a potential geothermal area because of the presence of several young rhyolite domes (50,000 years old), Quaternary basalt flows, and warm springs. North- to northwest-trending high-angle normal faults of Tertiary to Holocene age appear to be the dominant structural control of spring activity. Surface spring-water temperatures average 14°C except for a group of springs west of the Reservoir Mountains which average 33°C.

307

Chemical And Isotopic Investigation Of Warm Springs Associated With Normal  

Open Energy Info (EERE)

Isotopic Investigation Of Warm Springs Associated With Normal Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical And Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Details Activities (3) Areas (1) Regions (0) Abstract: Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40°C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40°C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by

308

Fine ash formation during pulverized coal combustion  

Science Conference Proceedings (OSTI)

In this study, 15 pulverized coal samples were burnt in a drop-tube furnace to investigate the formation of fine particulates and the influence of coal ash properties on their emission. Coal combustion was carried out at 1673 K in air. Fine particles were collected by a cyclone and a low-pressure impactor. The elemental compositions of the collected particles were analyzed by scanning electron microscopy with energy-dispersive X-ray spectroscopy. We examined the chemical compositions of the fine particles as a function of particle diameter and examined the proportions of the elements in the parent coal samples. We determined that almost all particles less than 0.22 {mu}m in diameter were formed by means of volatilization-condensation of SiO{sub 2} and Al{sub 2}O{sub 3} in the coal. We also demonstrated that the amount of SiO{sub 2} in particle size less than 0.22 {mu}m in diameter was related to the amount of fine included quartz and clay minerals in the parent coal. The primary components of particles greater than 0.76 {mu}m in diameter were SiO{sub 2} and Al{sub 2}O{sub 3}, and as the diameter of the particles decrease, the mass fractions of iron, magnesium, calcium, and phosphorus increased. However, the particle diameter at which this tendency commenced differed depending on the element. Particles between 0.22 and 0.76 {mu}m in diameter were thought to have been formed by the fragmentation and coalescence of particles in the coal and by the simultaneous condensation of volatilized elements onto other particles. 17 refs., 12 figs., 1 tab.

Tsuyoshi Teramae; Takayuki Takarada [Idemitsu Kosan Company, Limited, Chiba (Japan). Coal and Environmental Research Laboratory

2009-04-15T23:59:59.000Z

309

2003 Conference on Unburned Carbon on Utility Fly Ash  

NLE Websites -- All DOE Office Websites (Extended Search)

2003 Conference on Unburned Carbon on Utility Fly Ash 2003 Conference on Unburned Carbon on Utility Fly Ash October 28, 2003 Table of Contents Disclaimer Participants List [PDF-31KB] Papers and Presentations Control Measures Predictive Performance Tools (Including Instrumentation) Processing and Utilization of High-LOI Fly Ash Beneficiation of High-LOI Fly Ash Characterization of High-LOI Fly Ash Poster Presentations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

310

LOW-TEMPERATURE ASH SINTERING AND STRENGTH DEVELOPMENT  

DOE Green Energy (OSTI)

The objective of the project is to develop fundamental sintering-viscosity relationships for coal-type ash at relatively low temperatures, with the end result being a simplified soot-blowing index for power systems. This involves correlating several important factors which control the ease of deposit removal, including deposit strength, deposit porosity, chemical composition, and temperature. Testing was performed on ashes derived from three coals and two biomass materials along with a standard soda-lime glass. The coals were selected because detailed analyses as well as ash samples were already available. Sintering characteristics of the ashes were to be determined by observation using an HSM and video recording system, with a stainless steel microscope stage chamber constructed to allow the use of corrosive gas atmospheres. The measurements would allow calculation of the viscosity of liquid phases as the sintering progressed, using the Frenkel and other sintering models. The sintering behavior and viscosity would be correlated with ash mineralogy and chemistry and information on bench-scale deposit strength and porosity to develop an initial relationship to predict deposit removability.

Christopher J. Zygarlicke; Donald P. McCollor; John P. Kay

1999-10-01T23:59:59.000Z

311

ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS  

SciTech Connect

The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: ? Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. ? Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. ? Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. ? Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. ? Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. ? Evaluate corrosion for alloys being used in supercritical combustion systems.

CHRISTOPHER J. ZYGARLICKE; DONALD P. MCCOLLOR; JOHN P. KAY; MICHAEL L. SWANSON

1998-09-01T23:59:59.000Z

312

ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS  

Science Conference Proceedings (OSTI)

The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: ? Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. ? Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. ? Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. ? Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. ? Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. ? Evaluate corrosion for alloys being used in supercritical combustion systems.

CHRISTOPHER J. ZYGARLICKE; DONALD P. MCCOLLOR; JOHN P. KAY; MICHAEL L. SWANSON

1998-09-01T23:59:59.000Z

313

ENVIRONMENTAL EVALUATION FOR UTILIZATION OF ASH IN SOIL STABILIZATION  

Science Conference Proceedings (OSTI)

The Minnesota Pollution Control Agency (MPCA) approved the use of coal ash in soil stabilization, indicating that environmental data needed to be generated. The overall project goal is to evaluate the potential for release of constituents into the environment from ash used in soil stabilization projects. Supporting objectives are: (1) To ensure sample integrity through implementation of a sample collection, preservation, and storage protocol to avoid analyte concentration or loss. (2) To evaluate the potential of each component (ash, soil, water) of the stabilized soil to contribute to environmental release of analytes of interest. (3) To use laboratory leaching methods to evaluate the potential for release of constituents to the environment. (4) To facilitate collection of and to evaluate samples from a field runoff demonstration effort. The results of this study indicated limited mobility of the coal combustion fly ash constituents in laboratory tests and the field runoff samples. The results presented support previous work showing little to negligible impact on water quality. This and past work indicates that soil stabilization is an environmentally beneficial CCB utilization application as encouraged by the U.S. Environmental Protection Agency. This project addressed the regulatory-driven environmental aspect of fly ash use for soil stabilization, but the demonstrated engineering performance and economic advantages also indicate that the use of CCBs in soil stabilization can and should become an accepted engineering option.

David J. Hassett; Loreal V. Heebink

2001-08-01T23:59:59.000Z

314

Fly ash as a liming material for corn production  

Science Conference Proceedings (OSTI)

Fly ash produced as a by-product of subbituminous coal combustion can potentially serve as an alternative liming material without negatively affecting corn (Zea mays L.) production in areas where use of conventional liming materials can be uneconomical due to transportation costs. A study was conducted to determine if fly ash produced from the Nebraska Public Power District Gerald Gentleman Power Station located in Sutherland, NE could be used as an alternative liming material. Combinations of dry fly ash (DFA), wet fly ash (WFA), beet lime (by-product of sugar beet (Beta vulgaris L.) processing) (BL), and agricultural lime (AGL) were applied at rates ranging from 0.43 to 1.62 times the recommended lime rate to plots on four acidic soils (Anselmo fine sandy loam, Hord fine sandy loam, Holdrege sandy loam, and Valentine fine sand). Soil samples were collected to a depth of 0.2 m from plots and analyzed for pH before lime applications and twice periodically after lime application. The Hord and Valentine soils were analyzed for exchangeable Ca, Mg, K, Na,and Al for determination of percent Al saturation on selected treatments and sampling dates. Corn grain yields were determined annually. It is concluded that the fly ash utilized in this study and applied at rates in this study, increases soil pH comparable to agricultural lime and is an appropriate alternative liming material.

Tarkalson, D.D.; Hergert, G.W.; Stevens, W.B.; McCallister, D.L.; Kackman, S.D. [University of Nebraska, North Platte, NE (US)

2005-05-01T23:59:59.000Z

315

Ash bed level control system for a fixed-bed coal gasifier  

DOE Patents (OSTI)

An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

Fasching, George E. (Morgantown, WV); Rotunda, John R. (Fairmont, WV)

1984-01-01T23:59:59.000Z

316

Cementitious binder from fly ash and other industrial wastes  

SciTech Connect

In this paper, investigations were undertaken to formulate cementitious binder by judicious blending of fly ash with Portland cement as well as by admixing fly ash with calcined phosphogypsum, fluorogypsum, lime sludge, and chemical activators of different finenesses. The effect of addition of calcined clay in these types of binders was studied. Data showed that cementitious binders of high compressive strength and water retentivity can be produced. The strength of masonry mortars increased with the addition of chemical activators. The strength development of binders takes place through formation of ettringite. C-S-H, and C{sub 4}AH{sub 13}. The binders are eminently suitable for partial replacement (up to 25%) of the cement in concrete without any detrimental affect on the strength. The results showed that fly ash can be used in the range from 45% to 70% in formulating these binders along with other industrial wastes to help in mitigating environmental pollution.

Singh, M.; Garg, M. [Central Building Research Inst., Roorkee (India)] [Central Building Research Inst., Roorkee (India)

1999-03-01T23:59:59.000Z

317

E&PNews Spring09.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Commentary ...................................1 Commentary ...................................1 Deepwater power .........................4 Alabama shales ..............................7 Near-miscible CO 2 flooding .......9 UDS overview ...............................11 Bakken shale projects .............. 14 GAO report ....................................19 Wired pipe technology ............ 21 E&P Snapshots ............................ 22 Upcoming Presentations ........ 24 ContaCts Roy Long Technology Manager- Ultra-Deepwater, Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov albert Yost Technology Manager- Exploration & Production, Strategic Center for Natural Gas & Oil 304-285-4479 albert.yost@netl.doe.gov Oil & Natural Gas Program Newsletter Spring 2009 1 Dear e&P Focus Readers:

318

Activation Of Fly Ash-Lime Reactions By Curing At Elevated Temperature And By Addition Of Phosphogypsum.  

E-Print Network (OSTI)

??Pozzolanic reactions play a key role in improving the compressive strengths of compacted fly ash-lime specimens. Based on studies performed with cement amended fly ash (more)

Asha, K

2011-01-01T23:59:59.000Z

319

Testing the ecological stability of ectomycorrhizal symbiosis: effects of heat, ash and mycorrhizal colonization on Pinus muricata seedling performance  

E-Print Network (OSTI)

metal pan and heating it in a soil drying oven. During thesoil heating and ash addition, using a drying oven and ash

Peay, Kabir G.; Bruns, Thomas D.; Garbelotto, Matteo

2010-01-01T23:59:59.000Z

320

Ashe County, North Carolina ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ashe County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashe County, North Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Extracting Alumina from Coal Fly Ash Using Acid Sintering-Leaching ...  

Science Conference Proceedings (OSTI)

Presentation Title, Extracting Alumina from Coal Fly Ash Using Acid ... Coal fly- ash from coal-fired power plants is rich in Al2O3 content with potential use as a...

322

An Advanced System to Monitor the 3D Structure of Diffuse Volcanic Ash Clouds  

Science Conference Proceedings (OSTI)

Major disruptions of the aviation system from recent volcanic eruptions have intensified discussions and increased the international consensus to improve volcanic ash warnings. Central to making progress is to better discern low volcanic ash ...

J.-P. Vernier; T. D. Fairlie; J. J. Murray; A. Tupper; C. Trepte; D. Winker; J. Pelon; A. Garnier; J. Jumelet; M. Pavolonis; A. H. Omar; K. A. Powell

323

Continuous air Agglomeration Method for high Carbon fly ash Beneficiation  

DOE Patents (OSTI)

The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carbon-free mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

Gray, McMahan L.; Champagne, Kenneth J.; Finseth, Dennis H.

1998-09-29T23:59:59.000Z

324

Ash reduction system using electrically heated particulate matter filter  

DOE Patents (OSTI)

A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

2011-08-16T23:59:59.000Z

325

Continuous air agglomeration method for high carbon fly ash beneficiation  

DOE Patents (OSTI)

The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carboree mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

Gray, McMahon L. (Pittsburgh, PA); Champagne, Kenneth J. (Monongahela, PA); Finseth, Dennis H. (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

326

cctoday_spring_2006_pat_Rev4.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

be found. CCB APPLICATIONS Each year, the U.S. electric utility industry generates over 120 million tons of CCBs. Just over half of this amount is fl y ash, which is removed from...

327

Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave |  

Open Energy Info (EERE)

Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Author Andreas Kucha Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Citation Andreas Kucha. Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave [Internet]. 2012. [cited 2013/10/17]. Available from: http://www.agw.kit.edu/english/blauhoele_cave.php Retrieved from "http://en.openei.org/w/index.php?title=Hydrogeology_of_the_Blautopf_spring_-_Tracer_tests_in_Blauhohle_cave&oldid=688895"

328

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase  

Open Energy Info (EERE)

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2010 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Citation U.S. Geothermal Inc.. 2010. Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement. Boise Idaho: (!) . Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Idaho_Public_Utilities_Commission_Approves_Neal_Hot_Springs_Power_Purchase_Agreement&oldid=682748"

329

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Details Activities (5) Areas (2) Regions (0) Abstract: Studies of the geology, geochemistry of thermal waters, and of one exploratory geothermal well show that two related hot spring systems discharge in Canon de San Diego at Soda Dam (48°C) and Jemez Springs (72°C). The hot springs discharge from separate strands of the Jemez fault zone which trends northeastward towards the center of Valles Caldera. Exploration drilling to Precambrian basement beneath Jemez Springs

330

EIS-0451: Hooper Springs Project, Caribou County, Idaho | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Hooper Springs Project, Caribou County, Idaho 1: Hooper Springs Project, Caribou County, Idaho EIS-0451: Hooper Springs Project, Caribou County, Idaho Summary This EIS evaluates the environmental impacts of DOE's Bonneville Power Administration's proposal to construct, operate, and maintain a single-circuit, 115-kilovolt (kV) transmission line and a 138/115-kV substation (collectively referred to as the Hooper Springs Project). The new substation would be located adjacent to PacifiCorp's existing 345/138-kV Threemile Knoll Substation, located near the City of Soda Springs in Caribou County, Idaho. Public Comment Opportunities None available at this time. Documents Available for Download March 11, 2013 EIS-0451: Draft Environmental Impact Statement Hooper Springs Project, Caribou County, Idaho March 8, 2013

331

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area (Redirected from Beowawe Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

332

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region

333

FLY ASH GENERATION AND UTILIZATION -AN OVERVIEW* Tarun R. Naik, Ph.D., P.E.  

E-Print Network (OSTI)

a sodium-based sorbent such as sodium bicarbonate, soda ash, trona, or nahcalite (ICF Northwest, 1988). By

Wisconsin-Milwaukee, University of

334

Evaluation of an Ecolotree TM CAP for Closure of Coal Ash Disposal Sites  

Science Conference Proceedings (OSTI)

Once they are filled or become inactive, coal ash disposal ponds at power plant sites must meet state and federal regulations for permanent closure. In-place closure of ash ponds typically requires an impermeable cover to protect groundwater from leachate generated by stormwater infiltration through the ash. This report documents the construction, maintenance, and performance of the EcolotreeTM Cap (Tree Cap) -- an ash pond closure alternative consisting of poplar trees, grasses, and surface soil amendme...

1999-06-16T23:59:59.000Z

335

Using Zeolites Synthesized from Fly Ash to Reduce Ammonia Loss to the Environment  

Science Conference Proceedings (OSTI)

This interim report describes studies using zeolites synthesized from fly ash to reduce ammonia loss to the environment.

2002-02-19T23:59:59.000Z

336

Mercury Leachability From Concretes That Contain Fly Ashes and Activated Carbon Sorbents  

Science Conference Proceedings (OSTI)

This report presents new laboratory data on the leaching of mercury from concrete that contains fly ash and powdered activated carbon (PAC) sorbents used to capture mercury. The concretes studied during this project were made with fly ashes from lignite and subbituminous coal, including fly ashes containing PAC. Only very low levels of mercuryless than 5 parts per trillionwere leached from the fly ash concretes in both 18-hour and 7-day laboratory leach tests.

2007-07-18T23:59:59.000Z

337

Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Steamboat Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (1) 10 Exploration Activities (14) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.388,"lon":-119.743,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Buildings characterization sampling plan, Weldon Spring Site  

SciTech Connect

The purpose of the Buildings Sampling Plan is to provide a systematic approach to characterizing radiological, asbestos and chemical contamination in and around the buildings and structures at the Weldon Spring Chemical Plant Site (WSCPS). This sampling plan reviews historical information; identifies data needs; and outlines sampling procedures, quality assurance, data documentation and reporting requirements for the buildings and equipment characterization at the Weldon Spring Site (WSS). The scope of this plan is limited to the buildings, structures, and equipment from the previous operation of the WSCPS. The Buildings Sampling Plan is divided into nine sections: introduction, background, data needs and sampling plan objectives, sampling rationale and procedure, sample analysis, quality assurance, data documentation, reporting requirements, and references. The data needs, sampling rationale and procedures and sample analysis sections of this work plan are subdivided into radiological, asbestos and chemical sections. Because different sampling techniques and analyses will be required for radiological, asbestos and chemical contamination, separate subsections are used. The investigations for each contaminant will be conducted independently. Similar historical and descriptive information is repeated in the subsections, but the perspective and information vary slightly. 24 refs., 5 figs., 14 tabs.

Not Available

1988-08-01T23:59:59.000Z

339

Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit  

Science Conference Proceedings (OSTI)

This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

S. W. Clark and H. M. Sulloway

2007-09-26T23:59:59.000Z

340

Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit  

SciTech Connect

This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

S. W. Clark and H. M Sulloway

2007-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydration and strength development of binder based on high-calcium oil shale fly ash  

Science Conference Proceedings (OSTI)

The properties of high-calcium oil shale fly ash and low-calcium coal fly ash, which are produced in Israeli power stations, were investigated. High-calcium oil shale fly ash was found to contain a great amount of CaO{sub free} and SO{sub 3} in the form of lime and anhydrite. Mixtures of high-calcium oil shale fly ash and low-calcium coal fly ash, termed fly ash binder, were shown to cure and have improved strength. The influence of the composition and curing conditions on the compressive strength of fly ash binders was examined. The microstructure and the composition of fly ash binder after curing and long-term exposure in moist air, water and open air conditions were studied. It was determined that ettringite is the main variable in the strength and durability of cured systems. The positive effect of calcium silicate hydrates, CSH, which are formed by interaction of high-calcium oil shale fly ash and low-calcium coal fly ash components, on the carbonation and dehydration resistance of fly ash binder in open air is pronounced. It was concluded that high-calcium oil shale fly ash with high CaO{sub free} and SO{sub 3} content can be used as a binder for building products.

Freidin, C. [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)

1998-06-01T23:59:59.000Z

342

Fly Ash Construction Manual for Road and Site Applications, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

This two-volume construction manual details the use of fly ash in high-volume road construction and site development, covering all project elements from ash procurement to finishing. It addresses the use of fly ash in fills, embankments, backfills, subgrade stabilization, pavement base course, and slurried backfills, as well as its application as a soil amendment.

1988-10-28T23:59:59.000Z

343

Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater  

E-Print Network (OSTI)

Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater Reyad; available online 29 October 2003 Abstract A by-product fly ash from oil shale processing was converted shale; Ash; Zeolite; Cadmium and lead removal 1. Introduction Oil shale exists in Jordan with large

Shawabkeh, Reyad A.

344

Swirling Melting Characteristics of Fly Ashes from Co-Firing of MSWI in China  

Science Conference Proceedings (OSTI)

Melting treatment is an efficient for heavy metal stabilization in MSW fly ash. The fly ashes from co-firing of municipal solid waste and coal incinerator were melted in the swirling melting furnace system under various temperatures. The melting characteristics ... Keywords: fly ash, co-firing, melting, melting temperature, heavy metals, fixation rate

Wang Xue-tao; Jiao You-zhou; Xu Bin; Jin Bao-sheng

2009-10-01T23:59:59.000Z

345

Understanding The Chena Hot Springs, Alaska, Geothermal System Using  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Details Activities (7) Areas (1) Regions (0) Abstract: Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some

346

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

347

Multispectral Imaging At Pilgrim Hot Springs Area (Prakash, Et...  

Open Energy Info (EERE)

Up Search Page Edit History Facebook icon Twitter icon Multispectral Imaging At Pilgrim Hot Springs Area (Prakash, Et Al., 2010) Jump to: navigation, search GEOTHERMAL...

348

Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al., 2010) Exploration Activity Details Location...

349

Data Acquisition-Manipulation At Lake City Hot Springs Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004)...

350

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation,...

351

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

352

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation, search...

353

Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa...

354

Motor Gasoline Assessment Spring 1997 - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-0613 July 1997 Motor Gasoline Assessment Spring 1997 Energy Information Administration Washington, DC 20585 This report was prepared by the Energy Information ...

355

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal...

356

Office of Indian Energy Newsletter: Spring 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring 2013 Spring 2013 Office of Indian Energy Newsletter: Spring 2013 Indian Energy Beat: News on Actions to Accelerate Energy Development in Indian Country Spring 2013 Issue: Federal Technical Assistance Aims to Accelerate Tribal energy Project Deployment Message from the Director Indian Country Energy Roundup: Conferences and Webinars Sharing Knowledge: Renewable Energy Technical Potential on Tribal Lands Winning the Future: Strategic Planning Opens Doors for Isolated Alaskan Village Building Bridges: NANA Regional Corporation Collaborates to Help Alaska Natives Tackle Energy Challenges Opening Doors Webinar Series Addresses Top Tribal Energy Development Considerations Education Program Helps Tribes Prepare for Energy Projects Leading the Charge: Bright Skies Ahead for Moapa

357

Sulphur Springs Valley EC- Residential Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC offers the Member Loan Program to residential customers to improve the energy efficiency of eligible...

358

Colorado Springs Utilities- Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Colorado Springs Utilities (CSU) Business Energy and Water Efficiency Rebate Program offers a variety of incentives to business customers who upgrade evaporative cooling, HVAC, irrigation,...

359

Former Worker Medical Screening Program - Weldon Spring Plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

Weldon Spring Plant Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site:...

360

Fuel Cell Vehicle Learning Demonstration: Spring 2007 Results (Presentation)  

DOE Green Energy (OSTI)

This presentation provides the results, as of Spring 2007, for the fuel cell vehicle learning demonstration conducted by the National Renewable Energy Laboratory.

Wipke, K.; Sprik, S.; Thomas, H.; Welch, C.; Gronich, S.; Garbak, J.

2007-03-20T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993)...

362

Chemical And Isotopic Investigation Of Warm Springs Associated...  

Open Energy Info (EERE)

Normal Faults In Utah edit Details Activities (3) Areas (1) Regions (0) Abstract: Thermal springs associated with normal faults in Utah have been analyzed for major cations...

363

Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details...

364

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration...

365

Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell, Et Al., 2008) Exploration...

366

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of...  

Open Energy Info (EERE)

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemistry...

367

Pilgrim Hot Springs Project - PHASE 1 | Open Energy Information  

Open Energy Info (EERE)

2012 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Pilgrim Hot Springs Project - PHASE 1 Citation Alaska Energy Wiki. Pilgrim...

368

Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle...  

Open Energy Info (EERE)

2012 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave...

369

Idaho Public Utilities Commission Approves Neal Hot Springs Power...  

Open Energy Info (EERE)

Number NA DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase...

370

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski, Et Al., 2002) Exploration Activity...

371

Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity...

372

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski, Et Al., 2004) Exploration Activity...

373

Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Exploration Activity...

374

Goddard Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Area: Goddard Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field...

375

GeoSprings Hybrid Water Heater - Energy Innovation Portal  

The GeoSpring Hybrid Water Heater creates the same amount of hot water as a traditional electric ... Hydrogen and Fuel Cell; Hydropower, Wave and ...

376

Weldon Spring Federal Facility Agreement, January 28, 1992 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weldon Spring Site Agreement Name First Amended Federal Facility Agreement Cercla-VII-85- F-0057 State Missouri Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA...

377

Big Spring, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigSpring,Texas&oldid227777" Categories: Places Stubs Cities What links here Related...

378

Big Springs, Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigSprings,Nebraska&oldid227778" Categories: Places Stubs Cities What links here...

379

Self Potential At Dixie Hot Springs Area (Combs 2006) | Open...  

Open Energy Info (EERE)

Springs Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes "MT, EM sounding, SP?; SP data and reservoir model may be...

380

Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results (Presentation)  

DOE Green Energy (OSTI)

Presentation prepared for the 2008 National Hydrogen Association Conference that describes the spring 2008 results for DOE's Fuel Cell Vehicle Learning Demonstration.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Seismic baseline and induction studies- Roosevelt Hot Springs...  

Open Energy Info (EERE)

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and...

382

Sulphur Springs Valley EC - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Sulphur Springs Valley EC - Residential Energy Efficiency Rebate Eligibility Residential Savings For Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances &...

383

Spring Green, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Spring Green, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

384

Green Cove Springs, Florida: Energy Resources | Open Energy Informatio...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Cove Springs, Florida: Energy Resources Jump to: navigation, search Equivalent URI...

385

Green Spring, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Spring, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

386

Green Springs, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Springs, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

387

Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Fairmont Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Anaconda, Montana Coordinates 46.1285369, -112.9422641 Loading map......

388

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

389

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

390

Warm Springs Water District District Heating Low Temperature...  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

391

Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration...

392

Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results; Preprint  

DOE Green Energy (OSTI)

Conference paper presented at the 2008 National Hydrogen Association Meeting that describes the spring, 2008 results of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-04-01T23:59:59.000Z

393

,"Highgate Springs, VT Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","L...

394

Geochemistry And Geothermometry Of Spring Water From The Blackfoot...  

Open Energy Info (EERE)

And Geothermometry Of Spring Water From The Blackfoot Reservoir Region, Southeastern Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

395

Direct-Current Resistivity Survey At Beowawe Hot Springs Area...  

Open Energy Info (EERE)

Activity Details Location Beowawe Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown References Sabodh...

396

Geothermal Literature Review At Breitenbush Hot Springs Area...  

Open Energy Info (EERE)

Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown...

397

Aluminum - Fly Ash Metal Matrix Composites as Advanced Automobile Material  

Science Conference Proceedings (OSTI)

Metal matrix composites such as silicon carbide-aluminum, alumina-aluminum, and graphite-aluminum represent a class of emerging materials with significant potential for commercial use in the auto and aerospace industries. In industrial foundry trials, a joint industry and Department of Energy project demonstrated a promising new process for producing a low cost aluminum metal matrix composite containing fly ash particles.

2001-08-16T23:59:59.000Z

398

Novel Ash Beneficiation Processes for Managing Unburned Carbon and Ammonia  

Science Conference Proceedings (OSTI)

This report describes new fly ash beneficiation concepts for managing deleterious effects of unburned carbon and ammonia contamination associated with low nitrogen oxides (low-NOx) combustion systems. The report contains technical data, scientific discussion, and a description of ongoing development and scale-up activities.

2002-12-10T23:59:59.000Z

399

Thermal analysis and characterization of Elephant grass ash  

Science Conference Proceedings (OSTI)

Conference Tools for 2014 TMS Annual Meeting & Exhibition ... Here, ashes from incineration of elephant grass are characterized and its incorporation into clay to produce ... Moreover, thermal analysis was performed including gas emission ... Differential characterization of Ikperejere Iron shale and Iron sandstone deposit.

400

Spectroscopic research on infrared emittance of coal ash deposits  

SciTech Connect

This paper deals with thermal radiation characteristics of ash deposits on a pulverized coal combustion boiler of an electric power plant. Normal emittance spectra in the near to medium infrared (2.5-25 {mu}m) region and total normal emittances were measured on four kinds of ground ash deposits. Measurements were conducted in the 570-1460 K temperature range which is common for boiler furnaces, by both heating and cooling the ash samples, with the aim to study the effect of their thermal history. Dependence of emittance on wavelength, temperature and chemical composition was studied, too. Samples were tested for transparency (opacity) to verify the accuracy of results. It was determined that the thicknesses used for the ash powders are opaque for infrared radiation for thicknesses in the order of a millimeter. Tests have shown that spectral emittance increases with an increase of wavelength with a characteristic pattern common for all samples. Spectral normal emittance increases strongly with temperature at shorter wavelengths and remains high and unchanged at longer ones. Emittance spectra are not very sensitive to chemical composition of ashes especially beyond {lambda} {approx} 5 {mu}m. With an increase of temperature, total emittance of the powdered sample decreases to a minimum value around 1200 K. Further temperature rise induces an increase of total emittance due to sintering in the ash. On cooling, the emittance increases monotonically following the hysteresis. Quantitative directions for evaluating thermal radiation characteristics of ash deposits for the merits of the safety design of boiler furnaces were proposed. That comprises correlating the experimentally obtained emittance spectra with curves of simple analytical form, i.e., a continuous function of minimum emittance vs. wavelength. The proposed method can be extended to other specimens from the same furnace and used to determine correlations for thermal calculation of old and design of new furnaces - with similar geometry and combusting similar coal. The method is potentially applicable to completely different boiler furnaces combusting different coal, and the authors recommend running the tests with new deposit samples. The data will then be applicable to the thermal design of a whole new class of furnaces, having similar geometry and combusting similar coal. This is expected to greatly enhance the accuracy and precision of thermal calculation as well as the efficiency of thermal design of steam boilers. (author)

Saljnikov, Aleksandar; Komatina, Mirko; Gojak, Milan [Department of Thermomechanics, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade 35 (RS); Vucicevic, Biljana [Laboratory for Thermal Engineering, Institute of Nuclear Sciences VINCA, P.O. Box 522, Belgrade 11001 (RS); Goricanec, Darko [Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000 (Slovenia); Stevanovic, Zoran [Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11120 Belgrade 35 (RS)

2009-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Silver Spring Networks | Open Energy Information  

Open Energy Info (EERE)

Networks Networks Jump to: navigation, search Name Silver Spring Networks Address 575 Broadway Street Place Redwood City, California Zip 94063 Sector Efficiency Product Energy efficiency Website http://www.silverspringnetwork Coordinates 37.4858629°, -122.2067269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4858629,"lon":-122.2067269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Summary of the Spring 2004 ASA Meeting  

U.S. Energy Information Administration (EIA) Indexed Site

of the Spring Meeting of the American Statistical Association (ASA) Committee on Energy Statistics April 22 and 23, 2004 with the Energy Information Administration 1000 Independence Ave., SW. Washington, D.C. 20585 Thursday, April 22, 2004 Natural Gas Prices and Industrial Sector Responses: An Experimental Module for the Short-Term Integrated Forecasting System (STIFS), Dave Costello, Office of Energy Markets and End Use (EMEU) and Frederick L. Joutz, Associate Professor, Department of Economics, The George Washington University. The Short-Term Integrated Forecasting System (STIFS) generates monthly forecasts of energy demand, supply and prices using some forecast information that is incorporated into STIFS that is generated by other models that do not run in an integrated framework with STIFS. This

403

Wessington Springs Wind Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Facility Wessington Springs Sector Wind energy Facility Type Community Wind Location SD Coordinates 44.081932°, -98.559685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.081932,"lon":-98.559685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Hot Springs-Garrison Fiber Optic Project  

SciTech Connect

Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

Not Available

1994-10-01T23:59:59.000Z

405

Final Environmental Assessment BPA's Hot Springs - Garrison  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BPA's Hot Springs - Garrison Fiber Optic Project DOE-EA-1 002 POWER ADMINISTRATION Bonneville Power Administration DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

406

Summary of the Spring 2006 ASA Meetings  

U.S. Energy Information Administration (EIA) Indexed Site

Summaries of the Summaries of the American Statistical Association (ASA) Committee on Energy Statistics Advice and Energy Information Administration (EIA) Responses at the spring 2006 Meeting 1. How Can Modeling Suggest Data Needs? Open discussion between the Committee and EIA. This session was prompted by Committee remarks in the fall 2005 meeting. Nancy Kirkendall, Chair, and Margot Anderson, Director, EMEU. See transcript for discussion on EIA's Home Page: http://www.eia.gov/calendar/asa_overview.htm 2. Measuring Perceptions of Applying Alternative Disclosure Limitation Methods, Jake Bournazian, SMG Suppression is the most common method that federal agencies use to protect the confidentiality of reported data when releasing an information product. During the past 15 years,

407

A Limnological Approach to the Management of Fly Ash Disposal Ponds  

Science Conference Proceedings (OSTI)

Fly ash disposal ponds are found at half of the U.S. coal burning power plants and receive a mixture of fly ash and water used to sluice the ash from the power plant to the pond. Leaching of metals, notably Cu, As, and Se, from fly ash can be decreased by control of inflow pH, but their release through the discharge to surface waters remains a problem, particularly for Se. Comanagement of low volume wastes of varying chemical composition and volume with fly ash make the management of water quality at the...

2004-12-27T23:59:59.000Z

408

Okanogan Basin Spring Spawner Report for 2007.  

DOE Green Energy (OSTI)

The Okanogan Basin Monitoring and Evaluation Program collected data related to spring spawning anadromous salmonid stocks across the entire Okanogan River basin. Data were collected using redd surveys, traps, underwater video, and PIT-tag technology then summarized and analyzed using simple estimate models. From these efforts we estimated that 1,266 summer steelhead spawned in the Okanogan River basin and constructed 552 redds;152 of these fish where of natural origin. Of these, 121 summer steelhead, including 29 of natural origin, created an estimated 70 redds in the Canadian portion of the Okanagan basin. We estimated summer steelhead spawner escapement into each sub-watershed along with the number from natural origin and the number and density of redds. We documented redd desiccation in Loup Loup Creek, habitat utilization in Salmon Creek as a result of a new water lease program, and 10 spring Chinook returning to Omak Creek. High water through most of the redd survey period resulted in development of new modeling techniques and allowed us to survey additional tributaries including the observation of summer steelhead spawning in Wanacut Creek. These 2007 data provide additional support that redd surveys conducted within the United States are well founded and provide essential information for tracking the recovery of listed summer steelhead. Conversely, redd surveys do not appear to be the best approach for enumerating steelhead spawners or there distribution within Canada. We also identified that spawning distributions within the Okanogan River basin vary widely and stocking location may play an over riding roll in this variability.

Colville Tribes, Department of Fish & Wildlife

2007-09-01T23:59:59.000Z

409

Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications  

SciTech Connect

REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner corecoupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

None

2012-01-01T23:59:59.000Z

410

Geothermal resource assessment of Waunita Hot Springs, Colorado  

DOE Green Energy (OSTI)

This assessment includes the project report; the geothermal prospect reconnaissance evaluation and recommendations; interpretation of water sample analyses; a hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle Rock, and Anderson Hot Springs; geothermal resistivity resource evaluation survey, the geophysical environment; temperature, heat flow maps, and temperature gradient holes; and soil mercury investigations.

Zacharakis, T.G. (ed.)

1981-01-01T23:59:59.000Z

411

Chemical characteristics of the major thermal springs of Montana  

DOE Green Energy (OSTI)

Twenty-one thermal springs in western Montana were sampled for chemical, isotope, and gas compositions. Most of the springs issue dilute to slightly saline sodium-bicarbonate waters of neutral to slightly alkaline pH. A few of the springs issue sodium-mixed anion waters of near neutral pH. Fluoride concentrations are high in most of the thermal waters, up to 18 miligrams per litre, while F/Cl ratios range from 3/1 in the dilute waters to 1/10 in the slightly saline waters. Most of the springs are theoretically in thermodynamic equilibrium with respect to calcite and fluorite. Nitrogen is the major gas escaping from most of the hot springs; however, Hunters Hot Springs issue principally methane. The deuterium content of the hot spring waters is typical of meteoric water in western Montana. Geothermal calculations based on silica concentrations and Na-K-Ca ratios indicate that most of the springs are associated with low temperature aquifers (less than 100/sup 0/C). Chalcedony may be controlling the silica concentrations in these low temperature aquifers even in ''granitic'' terranes.

Mariner, R.H.; Presser, T.S.; Evans, W.C.

1976-07-01T23:59:59.000Z

412

Preliminary geothermal investigations at Manley Hot Springs, Alaska  

DOE Green Energy (OSTI)

Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

East, J.

1982-04-01T23:59:59.000Z

413

Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

1997-10-28T23:59:59.000Z

414

Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

1997-01-01T23:59:59.000Z

415

Regeneratively cooled coal combustor/gasifier with integral dry ash removal  

DOE Patents (OSTI)

A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

Beaufrere, A.H.

1982-04-30T23:59:59.000Z

416

Evaluation of Concrete Containing Fly Ash With High Carbon Content and/or Small Amounts of Wood  

Science Conference Proceedings (OSTI)

This report provides a comprehensive database of information on the impacts of the use of high carbon coal ashes and concretes with small amounts of wood ash on the performance of concretes. It is expected these data will support easing the restrictions on the use of high carbon ashes and any wood ash products in concrete in the ASTM standards.

1998-06-25T23:59:59.000Z

417

The Physical and Chemical Properties of Fly Ash from Coal Gasification and Study on Its Recycling Utilization  

Science Conference Proceedings (OSTI)

Aiming at the difficulties in utilization of fly ash from coal gasification, the physical and chemical properties of fly ash were investigated. This research studied recycling utilization on using fly ash as one of cement raw materials for cement clinker. ... Keywords: fly ash, X-ray diffraction (XRD), Scanning Electron Microscope (SEM), recycling utilization

Guohua Qiu; Weiqiang Zeng; Zhenglun Shi; Mengxiang Fang; Zhongyang Luo

2010-12-01T23:59:59.000Z

418

To be published in Waste Management (2010) Bodnan et al. MINERALOGY AND PORE WATER CHEMISTRY OF A BOILER ASH  

E-Print Network (OSTI)

OF A BOILER ASH FROM A MSW FLUIDIZED-BED INCINERATOR F. Bodénan* , D. Guyonnet, P. Piantone, P. Blanc BRGM presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from to as "boiler ash", is analogous to what Abbas et al. (2003) refer to as "hopper ash" (see Fig. 1 of Abbas et al

Paris-Sud XI, Université de

419

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Desert Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot Springs Sector Geothermal energy Type Space Heating Location Desert Hot Springs, California Coordinates 33.961124°, -116.5016784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs  

Open Energy Info (EERE)

Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Details Activities (0) Areas (0) Regions (0) Abstract: In total 24 direct current resistivity soundings were carried out during the preliminary stages of a geothermal exploration survey of the Langada hot springs area (northern Greece). The analysis of the data revealed a horst-type morphology striking NW-SE. Correlation between the location of hot springs, successful drill holes and the basement (horst) indicates that the sector of geothermal interest is concentrated along the major axis of the horst mapped. The horst type geothermal structure fits in

422

Seismic refraction and gravity surveys of Pilgrim Springs KGRA, Alaska  

Science Conference Proceedings (OSTI)

Pilgrim Springs KGRA is located in a major northeast-trending tectonic depression on the Seward Peninsula, Alaska. Refraction has identified a layer which coincides with a hot artesian aquifer in hydrothermally cemented sediments. The presence of a hydrothermal cap rock is possible but not proven. Crystalline bedrock lies at least 200 m beneath the springs, dropping to possibly 500 m in depth immediately to the southwest in what appears to be a trough bounded by normal faults on the north, south and east. Pilgrim Springs are situated over the intersection of the two faults at the northeastern corner of this trough, suggesting that one or both faults are acting as conduits to the springs. Pilgrim Springs are associated with extensional tectonics and recent alkalic volcanism suggestive of active rifting in the region.

Lockhart, A.; Kienle J.

1980-09-01T23:59:59.000Z

423

Geophysical Characterization of a Geothermal System Neal Hot Springs,  

Open Energy Info (EERE)

Characterization of a Geothermal System Neal Hot Springs, Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Abstract Neal Hot Springs is an active geothermal area that is also the proposed location of a binary power plant, which is being developed by US Geothermal Inc. To date, two production wells have been drilled and an injection well is in the process of being completed. The primary goal of this field camp was to provide a learning experience for students studying geophysics, but a secondary goal was to characterize the Neal Hot Springs area to provide valuable information on the flow of geothermal fluids through the subsurface. This characterization was completed using a variety of

424

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

425

Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

Hot Springs Ranch Area (Szybinski, 2006) Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005).

426

White Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sulphur Springs Space Heating Low Temperature Geothermal Facility Sulphur Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility White Sulphur Springs Sector Geothermal energy Type Space Heating Location White Sulphur Springs, Montana Coordinates 46.548277°, -110.9021561° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

427

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Greenhouse Location Manley Hot Springs, Alaska Coordinates 65.0011111°, -150.6338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

428

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

429

Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Facility Masson Radium Springs Farm Sector Geothermal energy Type Greenhouse Location Radium Springs, New Mexico Coordinates 32.501453°, -106.926575° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

430

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

431

Chena Hot Springs Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Chena Hot Springs Geothermal Facility Chena Hot Springs Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Hot Springs Geothermal Facility General Information Name Chena Hot Springs Geothermal Facility Facility Chena Hot Springs Sector Geothermal energy Location Information Location Fairbanks, Alaska Coordinates 65.0518255°, -146.0474319° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.0518255,"lon":-146.0474319,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Noble Gas Geochemistry In Thermal Springs | Open Energy Information  

Open Energy Info (EERE)

Geochemistry In Thermal Springs Geochemistry In Thermal Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Noble Gas Geochemistry In Thermal Springs Details Activities (1) Areas (1) Regions (0) Abstract: The composition of noble gases in both gas and water samples collected from Horseshoe Spring, Yellowstone National Park, was found to be depth dependent. The deeper the sample collection within the spring, the greater the enrichment in Kr, Xe, radiogenic 4He, and 40Ar and the greater the depletion in Ne relative to 36Ar. The compositional variations are consistent with multi-component mixing. The dominant component consists of dissolved atmospheric gases acquired by the pool at the surface in contact with air. This component is mixed in varying degree with two other

433

Brady Hot Springs I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Hot Springs I Geothermal Facility Hot Springs I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs I Geothermal Facility General Information Name Brady Hot Springs I Geothermal Facility Facility Brady Hot Springs I Sector Geothermal energy Location Information Location Churchill, Nevada Coordinates 39.796370120458°, -119.00998950005° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.796370120458,"lon":-119.00998950005,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel &  

Open Energy Info (EERE)

Valles Caldera - Sulphur Springs Area (Woldegabriel & Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Woldegabriel_%26_Goff,_1992)&oldid=510971"

435

EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Grande Ronde Basin Endemic Spring Chinook Salmon 3: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy Bonneville Power Administration's proposal to fund a program designed to prevent the extinction and begin the recovery of spring Chinook salmon stocks in the Grande Ronde River Basin in the Upper Grande Ronde River, Lostine River, and Catherine Creek in Northeastern Oregon. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 18, 2003 EA-1173-SA-01: Supplement Analysis Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program

436

Geothermal resource assessment of Idaho Springs, Colorado. Resource series 16  

DOE Green Energy (OSTI)

Located in the Front Range of the Rocky Mountains approximately 30 miles west of Denver, in the community of Idaho Springs, are a series of thermal springs and wells. The temperature of these waters ranges from a low of 68/sup 0/F (20/sup 0/C) to a high of 127/sup 0/F (53/sup 0/C). To define the hydrothermal conditions of the Idaho Springs region in 1980, an investigation consisting of electrical geophysical surveys, soil mercury geochemical surveys, and reconnaissance geological and hydrogeological investigations was made. Due to topographic and cultural restrictions, the investigation was limited to the immediate area surrounding the thermal springs at the Indian Springs Resort. The bedrock of the region is faulted and fractured metamorphosed Precambrian gneisses and schists, locally intruded by Tertiary age plutons and dikes. The investigation showed that the thermal waters most likely are fault controlled and the thermal area does not have a large areal extent.

Repplier, F.N.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

437

Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Area (Laney, 2005) Buffalo Valley Hot Springs Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

438

Gila Hot Springs District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Gila Hot Springs District Heating Low Temperature Geothermal Facility Gila Hot Springs District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Gila Hot Springs District Heating Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

439

Leaching of mixtures of biochar and fly ash  

Science Conference Proceedings (OSTI)

Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments. Both the residual char from biomass pyrolysis (biochar) and fly ash from coal combustion have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations. Adding biochar to soil generally raises pH, increases total nitrogen and total phosphorous, encourages greater root development, improves cation exchange capacity and decreases available aluminum. A combination of these benefits likely is responsible for observed increases in yields for crops such as corn and sugarcane. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) than do unamended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way. Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil. Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes. In the present study, we examined the properties of mixtures of biochar, fly ash, and soil and evaluated the leaching of organic carbon and metals from these mixtures. The carbon sorption experiments showed release of carbon from biochar, rather than sorption, except at the highest concentrations in the Biochar HW sample. Similar results were obtained by others for oxidative leaching of bituminous coal, in which more C was released as dissolved C than was oxidized to CO2 by the oxygen in water. We confirmed that both fly ash and two types of biochar (oak char [OKEB], and hardwood [HW] char) exhibited minimal leaching of heavy metals including Cr, Ni, Zn, Ga, and Ag, and no detectable leaching of Pb or Cd (data not shown) under the conditions tested. The Biochar HW had a slightly higher C/N ratio (334) and pH (7.7) than did the Biochar OKEB (284 and 6.5). There was no toxicity exhibited by the fly ash (not shown) or biochar leachates as measured by the Microtox assay under the conditions tested. In previous results no toxicity was reported in testing the fly ash samples except for one high-pH sample. The most notable leachate component from both types of biochar, but not the fly ash, was organic carbon with the HW biochar leaching less organic carbon than the OKEB biochar (5.71 ppm vs. 59.3 ppm). Alone (in batch sorption experiments), or in mixtures of 90% soil and 10% biochar (column studies), we noted significant loss of carbon from the biochar into soluble components. However, when we added fly ash to the column experiments (80% soil, 10% fly ash, and 10% biochar) we observed significant decreases in the amounts of C leached (20% for HW, and 47% for OKEB). The results indicate that applying a combination of fly ash and biochar may result in maximizing the amount of carbon sequestration in soil while also increasing beneficial soil properties and fertility. The lower amount of carbon leached from the HW biochar compared to the OKEB biochar is likely due to the more recalcitrant form of the carbon in the HW char, due to its preparation at a higher temperature (600 C) than the OKEB biochar (450 C). High heat treatment temperatures during biochar preparation increase both the total carbon content of the biochar and the proportion of the carbon that is present in fused aromatic rings resistant to chemical and physical degradation.

Palumbo, Anthony V.; Porat, Iris; Phillips, Jana R.; Amonette, James E.; Drake, Meghan M.; Brown, Steven D.; Schadt, Christopher W.

2009-06-22T23:59:59.000Z

440

Hydrology and geochemistry of thermal springs of the appalachians  

DOE Green Energy (OSTI)

Thermal springs in nine areas in the Appalachians from Georgia to New York were studied in 1975 and 1976 using satellite imagery, local well and spring data, and results of current and early studies by other investigators. All the springs investigated discharge from folded and faulted sandstone or carbonate rocks in valley areas. Where geologic structure is relatively uncomplicated, ground water discharging from thermal springs probably has circulated to great depths roughly parallel to the strike of the bedding and has moved upward rapidly where a fault or faults cross the bedding. Hydrologic and chemical data suggest that most of the water discharging from warm springs in the Devonian Oriskany Sandstone is derived from recharge entering and circulating through that formation. The discharge at springs where temperature fluctuates very little is primarily water from deep circulation. The discharge at springs where temperature fluctuates widely is warm water mixed with variable proportions of shallow-circulating cool water. Observed temperatures of the warm springs range from 18/sup 0/ to 41/sup 0/C; the highest chemical thermometer temperature is 84/sup 0/C. Agreement among observed, chalcedony, and cation temperatures of the warmest springs suggests reservoir temperatures of 30/sup 0/ to 50/sup 0/C. Dissolved helium, arsenic, potassium, and delta/sup 18/O are considered as geothermal indicators. Tritium analyses are used to calculate fractions of old and modern components of mixed waters. Computer calculations of carbonate saturation indices show (1) considerable undersaturation in silica-rock warm spring waters and (2) carbonate equilibrium in the limestone and dolomite thermal waters. Better values of saturation indices are obtained when analyzed carbon dioxide rather than field pH is used in the computer input data. A method is described for adjusting delta/sup 13/C to correct for carbon dioxide outgassing from water samples.

Hobba, W.A. Jr.; Fisher, D.W.; Pearson, F.J. Jr.; Chemerys, J.C.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

JV Task 6 - Coal Ash Resources Research Consortium Research  

DOE Green Energy (OSTI)

The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of coal combustion by-products (CCBs). CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program (JSRP), which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCB performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 1998 to 2007 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. CARRC topical reports were prepared on several completed tasks. Specific CARRC 1998B2007 accomplishments included: (1) Development of several ASTM International Standard Guides for CCB utilization applications. (2) Organization and presentation of training courses for CCB professionals and teachers. (3) Development of online resources including the Coal Ash Resource Center, Ash from Biomass in Coal (ABC) of cocombustion ash characteristics, and the Buyer's Guide to Coal-Ash Containing Products. In addition, development of expanded information on the environmental performance of CCBs in utilization settings included the following: (1) Development of information on physical properties and engineering performance for concrete, soil-ash blends, and other products. (2) Training of students through participation in CARRC research projects. (3) Participation in a variety of local, national, and international technical meetings, symposia, and conferences by presenting and publishing CCB-related papers.

Debra Pflughoeft-Hassett; Tera Buckley; Bruce Dockter; Kurt Eylands; David Hassett; Loreal Heebink; Erick Zacher

2008-04-01T23:59:59.000Z

442

Fly Ash and Mercury Oxidation/Chlorination Reactions  

Science Conference Proceedings (OSTI)

Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using a diffusion tube as the source of Hg0(g). All experiments were conducted using 4% O2 in nitrogen mix as a reaction gas, and other reactants (HCl, H2O and SO2, NO2, Br2) were added as required. The fixed bed reactor was operated over a temperature range of 200 to 400 C. In each experiment, the reactor effluent was analyzed using the modified Ontario-Hydro method. After each experiment, fly ash particles were also analyzed for mercury. The results show that the ability of fly ash to adsorb and/or oxidize mercury is primarily dependent on its carbon, iron and calcium content. There can be either one or more than one key component at a particular temperature and flue gas condition. Surface area played a secondary role in effecting the mercury transformations when compared to the concentration of the key component in the fly ash. Amount of carbon and surface area played a key important role in the adsorption of mercury. Increased concentration of gases in the flue gas other than oxygen and nitrogen caused decreased the amount of mercury adsorbed on carbon surface. Mercury adsorption by iron oxide primarily depended on the crystalline structure of iron oxide. {alpha}-Iron oxide had no effect on mercury adsorption or oxidation under most of the flue gas conditions, but ?-iron oxide adsorbed mercury under most of the flue gas conditions. Bromine is a very good oxidizing agent for mercury. But in the presence of calcium oxide containing fly ashes, all the oxidized mercury would be reduced to elemental form. Among the catalysts, it was observed that presence of free lattice chlorine in the catalyst was very important for the oxidation of mercury. But instead of using the catalyst alone, using it along with carbon may better serve the purpose by providing the adsorption surface for mercury and also some extra surface area for the reaction to occur (especially for fly ashes with low surface area).

Sukh Sidhu; Patanjali Varanasi

2008-12-31T23:59:59.000Z

443

Limestone and Ash Storage Silos and Lime Preparation Equipment, Part  

NLE Websites -- All DOE Office Websites (Extended Search)

Limestone and Ash Storage Silos and Lime Preparation Equipment, Part Limestone and Ash Storage Silos and Lime Preparation Equipment, Part of the System to Inject Limestone Sorbent for SO, Control. Nucla, CO Nucla...continued Before being repowered, the plant consisted of three 12 MWe coal stoker- fired units built in 1959, which were taken out of service in 1984 due to low efficiency and high fuel cost. Antici- pating a need for additional power in the early 1990s. and after review of many power generation alternatives, CUEA started constmction of the re- powered Nucla CFB plant in Novem- ber 1984 and completed the project in May 1987. The original boilers were replaced with a new Fympower Corp. CFB bailer, a new high pressure 74 MWe steam turbine generator was installed, the three original 12 MWe steam turbines were

444

Blue Ash, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Blue Ash, Ohio: Energy Resources Blue Ash, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2320029°, -84.3782734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2320029,"lon":-84.3782734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Utilization of Biomineralization Processes with Fly Ash for Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilization of Biomineralization Processes with Fly Ash Utilization of Biomineralization Processes with Fly Ash for Carbon Sequestration Y. Roh (rohy@ornl.gov; 865-576-9931) T. J. Phelps (phelpstj1@ornl.gov; 865-574-7290) Environmental Sciences Division, Oak Ridge National Laboratory*, Oak Ridge, TN 37831-6036 A. D. McMillan (mcmillanad@ornl.gov; 865-241-4554) R. J. Lauf (laufrj@ornl.gov; 865-574-5176) Metal and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6085 *Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725 Introduction The Department of Energy (DOE) Energy Information Administration estimates atmospheric greenhouse gas releases may exceed 8 billion metric tons by the year 2010 heightening its international environmental concern. Carbon dioxide will dominate the

446

Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site (SRS) recently cleaned up a 17- Site (SRS) recently cleaned up a 17- acre basin containing coal ash residues from Cold War operations. The American Recovery and Reinvestment Act project was safely completed at a cost of $8.9 million, $2.9 million under budget. The manmade earthen basin received ash from the former R Area Pow- erhouse operations, which ended in 1964. The first of five reactors con- structed at SRS, the R Reactor produced nuclear materials for national defense. Recovery Act funding allowed SRS to accelerate cleanup of the basin and complete the project five years earlier than the target set in a regu- latory schedule. In late 2010, the U.S. Environmental Protection Agency and South Carolina Department of Health and Environmental Control determined the closure met all regulatory requirements after inspection

447

Preventing ash agglomeration during gasification of high-sodium lignite  

Science Conference Proceedings (OSTI)

Various additives were evaluated to assess their ability to prevent ash agglomeration during the gasification of high-sodium lignite. Additives that showed promise in simple muffle furnace tests included meta-kaolin, vermiculite, two types of silica fume, and one type of bauxite. Additives that were tested and rejected included dolomite, calcite, sand flour, kaolinite, fine kaolin, and calcined bauxite. Based on the muffle furnace test results, the meta-kaolin was selected for a follow-on demonstration in a pilot-scale coal gasifier. Pilot-scale testing showed that the addition of coarse (minus 14-mesh, 920-{mu}m mean size) meta-kaolin at a feed rate roughly equivalent to the ash content of the lignite (10 wt %) successfully prevented agglomeration and deposition problems during gasification of high-sodium lignite at a maximum operating temperature of 927{sup o}C (1700{sup o}F). 13 refs., 24 figs., 1 tab.

Robert S. Dahlin; Johnny R. Dorminey; WanWang Peng; Roxann F. Leonard; Pannalal Vimalchand [Southern Research Institute and Southern Company Services, Wilsonville, AL (USA). Power Systems Development Facility

2009-01-15T23:59:59.000Z

448

Coal-ash spills highlight ongoing risk to ecosystems  

SciTech Connect

Two recent large-scale spills of coal combustion waste have highlighted the old problem of handling the enormous quantity of solid waste produced by coal. Both spills happened at power plants run by the Tennessee Valley Authority (TVA). In December 2008 a holding pond for coal ash collapsed at a power plant in Kingstom, Tenn., releasing coal-ash sludge onto farmland and into rivers: in January 2009 a break in a pipe removing water from a holding pond for gypsum caused a spill at Widows Creek Fossil Plant in Stevenson, Ala. The article discusses the toxic outcome of such disasters on ecosystems, quoting work by Willaim Hopkins at Virginia Polytechnic Institute and State University and recommendations and reports of the US EPA. 2 photos.

Chatterjee, R.

2009-05-01T23:59:59.000Z

449

Microsoft Word - CX-Ashe-CGSFiberInstallation_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Debbie Ruckwardt Electrical Engineer - TEP-CSB-1 Proposed Action: Installing fiber optic cables between Bonneville Power Administration's (BPA) Ashe Substation and Energy Northwest's Columbia Generating Station (CGS). Budget Information: Work Order # 00261540 PP&A Project No.: PP&A 1864 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights of way, infrastructures such as roads, equipment... routine maintenance activities, corrective....are required to maintain...infrastructures...in a condition suitable for a facility to be used for its designed purpose. Location: The project takes place between BPA's Ashe Substation and Energy Northwest's

450

Ash Fork, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ash Fork, Arizona: Energy Resources Ash Fork, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2250114°, -112.4840675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2250114,"lon":-112.4840675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

A Laboratory Method for Ash Particle Size Determination  

Science Conference Proceedings (OSTI)

Increasing stringent particulate emissions limits are putting more pressure on power producers to improve electrostatic precipitator (ESP) performance. In an effort to select the most cost effective upgrade option, many power plant engineers are using ESP computer models to estimate the impact of the available options. These models are sensitive to the fly ash particle size distribution used in the calculations, but the actual distribution is rarely known. Furthermore, measuring this distribution has, in...

2005-03-23T23:59:59.000Z

452

Ash Properties Analysis from Co-Firing Biomass and Coal  

Science Conference Proceedings (OSTI)

Power plant interest in renewable energy has been increasing, especially in response to legislative requirements to include renewables in the generation mix. One promising renewable strategy is co-firing biomass with coal, in pulverized coal- (PC-) fired units. The objective of this research is to provide quantitative data on full-scale test burn samples to demonstrate changes in ash characteristics and to identify anomalies affecting particulate material (PM) collection efficiency that result from co-fi...

2011-09-06T23:59:59.000Z

453

Spring bow, centralizer, and related methods  

SciTech Connect

This patent describes a centralizer for well casing to function in an annular space between the casing and a wellbore, the centralizer having a longitudinal central axis, the wellbore having an upper edge at an upper wellbore opening. The centralizer consists of: a pair of spaced-apart and aligned collar means adapted to encircle the casing, a plurality of spring bows extending between and secured to the collar means, each bow having two ends and a bow mid-portion curved outwardly from the longitudinal central axis of the centralizer, the bows disposed so that a bow part of the bow mid-portion is at a bow angle with respect to the upper edge of the wellbore upon insertion of the centralizer into the wellbore, at least one of the bows having at least one contact angle reduction member, the contact angle reduction member comprising a member protruding from the bow part, the contact angle reduction member protruding outwardly with respect to the longitudinal central axis of the centralizer, the contact reduction member contacting the upper edge of the wellbore at a contact angle which is smaller than the bow angle.

Langer, F.H.

1988-11-29T23:59:59.000Z

454

Self potential survey, Roosevelt Hot Springs, Utah  

DOE Green Energy (OSTI)

A large scale (35 km/sup 2/) self potential (SP) survey was made at Roosevelt Hot Springs. The survey consisted of approximately 47 line-km of profiles at station spacings of 100 m. The profiles were run using a fixed electrode and a traveling electrode out to distances of 1 to 2 km, before advancing the fixed electrode up to the last occupied station. Repeated measurements show a standard deviation about +- 6mv, although the spread on groups of measurements might be as large as 30 mv. Some of the SP profiles show correlations with the thermal system, having generally low values over the thermal high and the coincident resistivity low. Some of the smaller scale features appear to be associated with mapped faults. In plan view, the contoured self potential shows a character very similar to the 300 m, dipole-dipole resistivity. The SP values are generally low, where the resistivity is low. Along the eastern margin of the system, in the vicinity of steep resistivity gradients, the contour map show a series of localized highs.

Sill, W.R.; Johng, D.S.

1979-01-01T23:59:59.000Z

455

A new way to stabilize fly ash from municipal incinerators  

Science Conference Proceedings (OSTI)

Heavy metals and toxic chlorinated organics, added to very low grain-size distributions, make fly ashes from municipal incinerators a very hazardous waste. For their disposal, the present general trend is, not only to stabilize chemically the ashes, i.e., to reduce the leachability of the toxic substances, but also to stabilize them mechanically, i.e., to convert them into massive, resistant, and unleachable solids. This paper describes various stabilization methods used on representative European fly ash samples, which led to the development of a new stabilization technique taking place in four stages: elimination of the alkali chlorides by dissolution; addition of a moderate quantity of phosphoric acid; calcination; and solidification with Portland clinker or cement. The principal advantages of the process are as follows: the polychlorodibenzodioxins-polychlorodibenzofurans are destroyed, the reactivity of the heavy metals is reduced drastically, the final solids have satisfactory mechanical properties, and the increase in weight of the waste to be disposed of does not exceed one fourth. Comparative results of TCLP extraction tests are presented.

Derie, R. [Free Univ. of Brussels (Belgium). Dept. of Ore Dressing

1996-12-31T23:59:59.000Z

456

Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP...  

Open Energy Info (EERE)

Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim Hot Springs Area Exploration Technique Controlled Source Audio MT...

457

2-M Probe At Pilgrim Hot Springs Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

2-M Probe At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim Hot Springs Area Exploration Technique 2-M Probe Activity Date Usefulness not...

458

Price of Highgate Springs, VT Natural Gas LNG Imports from Canada...  

Annual Energy Outlook 2012 (EIA)

Springs, VT Natural Gas LNG Imports from Canada (Dollars per Thousand Cubic Feet) Price of Highgate Springs, VT Natural Gas LNG Imports from Canada (Dollars per Thousand...

459

Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) | Open...  

Open Energy Info (EERE)

Water Sampling At Jemez Springs Area (Goff, Et Al., 1981) Exploration Activity Details Location Jemez Springs Area Exploration Technique Water Sampling Activity Date Usefulness not...

460

Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) | Open...  

Open Energy Info (EERE)

Water Sampling At Jemez Springs Area (Rao, Et Al., 1996) Exploration Activity Details Location Jemez Springs Area Exploration Technique Water Sampling Activity Date Usefulness not...

Note: This page contains sample records for the topic "ash spring coulee" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Slim Holes At Crump's Hot Springs Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Crump's Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Crump's Hot Springs Area (DOE GTP) Exploration...

462

FLIR At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

FLIR At Pilgrim Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: FLIR At Pilgrim Hot Springs Area (DOE GTP) Exploration...

463

Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Exploration Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical

464

Spring 2012 National Transportation Stakeholder Forum Meetings, Tennessee |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Packaging and Transportation » Services » Waste Management » Packaging and Transportation » National Transportation Stakeholders Forum » Spring 2012 National Transportation Stakeholder Forum Meetings, Tennessee Spring 2012 National Transportation Stakeholder Forum Meetings, Tennessee NTSF Registration Website Save The Date! NTSF Spring 2012 Agenda NTSF Agenda Midwestern Radioactive Materials Transportation Committee Agenda Northeast High-Level Radioactive Waste Transportation Task Force Agenda Transuranic Waste Transportation Working Group Agenda Western Governor's Association Agenda NTSF Presentations Session Newcomers' Orientation Plenary Sessions Keynote Address Oak Ridge Operations Office of Environmental Management Overview Global Threat Reduction Initiative Task Force for Strategic Developments to Blue Ribbon Commission

465

Colorado Springs Utilities - Energy Efficient Builder Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Builder Program Energy Efficient Builder Program Colorado Springs Utilities - Energy Efficient Builder Program < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate $800 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount $110 - $800 Provider Colorado Springs Utilities The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR® qualified homes within the CSU service area. The incentive range from $110 to $800 per home. ENERGY STAR® qualified homes are designed to deliver improved comfort, healthier air quality, longer durability, and lower energy bills.

466

Spring Valley Public Utilities - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Valley Public Utilities - Commercial and Industrial Energy Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Other Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely, see program website Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use Lodging Guestroom Energy Management Systems: $75 - $85

467

Superheater Tube Corrosion in Wood Gasifier Ash Deposits  

DOE Green Energy (OSTI)

The upper operating temperature of tubes in heat exchangers/steam generators is strongly influenced by the degradation that can occur because of the reaction of the exchanger/generator tubing with the deposits that accumulate on the surface of the tubes. In fact, severe corrosion has been observed in some biomass fired systems, particularly with elevated potassium and chlorine concentrations in the deposits. Wood gasifiers have recently been and are currently being constructed at several sites in North America. In these systems, the syngas is burned to produce steam and the performance of the heat exchanger tubes under ash deposits is of great concern. As temperatures of the heat exchangers are increased in an effort to increase their operating efficiency, the performance of the tubes is of greater interest. The corrosion behavior of alloy steel tubes as a function of temperature has been investigated by exposing samples of selected alloys to ash collected from the steam generator fired by syngas produced in wood gasifiers. This study compares corrosion rates from laboratory exposures of synthesis gas and ash at 500 C and 600 C. This study investigated the material performance of four ferritic steels and one austenitic steel exposed to conditions expected on the fireside of a wood gasifier. The purpose of this study was to identify an effective method for determining material performance for samples exposed to both the process gas and the fly ash that is typically observed within the steam generator for times up to 1000 hours. Mass changes were measured for all of the samples, but this information can be misleading concerning material performance due to the difficulty in sufficiently cleaning the samples after exposure in the ash. Therefore, small cross sections of the samples were collected and imaged using optical microscopy. Oxide thicknesses were measured along with metal losses. The metal loss information provides a clear indication of material performance. The metal loss rates for the ferritic steels at 500 C were almost half of those observed at 600 C and the rates decreased with increasing exposure time. It was also reported that the metal loss rates generally decrease with increasing chromium concentration.

Bestor, Michael A [ORNL; Keiser, James R [ORNL; Meisner, Roberta A [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

2011-01-01T23:59:59.000Z

468

Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accomplish Cleanup of Second Cold War Coal Ash Accomplish Cleanup of Second Cold War Coal Ash Basin Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin American Recovery and Reinvestment Act workers recently cleaned up a second basin containing coal ash residues from Cold War operations at the Savannah River Site (SRS). About $24 million from the Recovery Act funded the environmental restoration project, allowing SRS to complete the project at least five years ahead of schedule. The work is part of a larger Recovery Act cleanup of the P Area scheduled for completion by the end of September 2011. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin More Documents & Publications Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin Recovery Act Workers Add Time Capsule Before Sealing Reactor for Hundreds

469

Geothermal Exploration in Hot Springs, Montana  

SciTech Connect

The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165???????????????????????????????°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250???????????????¢???????????????????????????????? of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the ???????????????¢????????????????????????????????center???????????????¢??????????????????????????????? of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165???????????????????????????????°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

Toby McIntosh, Jackola Engineering

2012-09-26T23:59:59.000Z

470

Medical Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility Facility Medical Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

471

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector Geothermal energy Type Space Heating Location Ukiah, California Coordinates 39.1501709°, -123.2077831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

472

Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Facility Kelly Hot Springs Sector Geothermal energy Type Aquaculture Location Alturas, California Coordinates 41.4871146°, -120.5424555° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords