National Library of Energy BETA

Sample records for ash li lime

  1. Fly ash chemical classification based on lime

    SciTech Connect (OSTI)

    Fox, J.

    2007-07-01

    Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

  2. Rate limitations of lime dissolution into coal ash slag

    SciTech Connect (OSTI)

    L.K. Elliott; John A. Lucas; Jim Happ; John Patterson; Harry Hurst; Terry F. Wall

    2008-11-15

    The rate-limiting mechanisms of lime dissolution from a solid pellet into coal ash slag and synthetic slag was investigated using an experiment involving a rotating cylinder of lime in a liquid slag bath at temperatures of 1450-1650{degree}C. Scanning electron microscopy (SEM) analysis of the slag composition around the lime cylinder was used to determine the nature of the boundary layer surrounding the pellet and the calcium concentration profile. Predictions using shrinking core models of a cylindrical pellet were compared to experimental results, suggesting that diffusion through the slag boundary layer and the change of the phase of lime from solid to liquid in the boundary layer combine to limit the process. These results indicate that a combination of controlling steps: diffusion through the boundary layer and the phase change of lime from solid to liquid, must be considered when predicting lime dissolution rates. 24 refs., 5 figs., 3 tabs.

  3. Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash

    SciTech Connect (OSTI)

    Ping Sun; Panuwat Taerakul; Linda K. Weavers; Harold W. Walker

    2005-10-01

    Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAH concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.

  4. Distribution of arsenic and mercury in lime spray dryer ash

    SciTech Connect (OSTI)

    Panuwat Taerakul; Ping Sun; Danold W. Golightly; Harold W. Walker; Linda K. Weavers

    2006-08-15

    The partitioning of As and Hg in various components of lime spray dryer (LSD) ash samples from a coal-fired boiler was characterized to better understand the form and fate of these elements in flue gas desulfurization byproducts. LSD ash samples, collected from the McCracken Power Plant on the Ohio State University campus, were separated by a 140-mesh (106 {mu}m) sieve into two fractions: a fly-ash-/unburned-carbon-enriched fraction (> 106 {mu}m) and a calcium-enriched fraction (< 106 {mu}m). Unburned carbon and fly ash in the material > 106 {mu}m were subsequently separated by density using a lithium heteropolytungstate solution. The concentrations of As and Hg were significant in all fractions. The level of As was consistently greater in the calcium-enriched fraction, while Hg was evenly distributed in all components of LSD ash. Specific surface area was an important factor controlling the distribution of Hg in the different components of LSD ash, but not for As. Comparing the LSD ash data to samples collected from the economizer suggests that As was effectively captured by fly ash at 600{sup o}C, while Hg was not. Leaching tests demonstrated that As and Hg were more stable in the calcium-enriched fraction than in the fly-ash- or carbon-enriched fractions, potentially because of the greater pH of the leachate and subsequently greater stability of small amounts of calcium solids containing trace elements in these fractions. 37 refs., 8 figs., 2 tabs.

  5. Stabilization of Oklahoma expensive soils using lime and class C fly ash

    SciTech Connect (OSTI)

    Buhler, R.L.; Cerato, A.B.

    2007-01-15

    This study uses lime and class C fly ash, an industrial byproduct of electric power production produced from burning lignite and subbituminous coal, to study the plasticity reduction in highly expensive natural clays from Idabel, Oklahoma. This study is important, especially in Oklahoma, because most of the native soils are expansive and cause seasonal damage to roadways and structures. The addition of lime or fly ash helps to arrest the shrinkage and swelling behavior of soil. Four soil samples with the same AASHTO classification were used in this study to show shrinkage variability within a soil group with the addition of lime and class C fly ash. The plasticity reduction in this study was quantified using the linear shrinkage test. It was found that soils classified within the same AASHTO group had varying shrinkage characteristics. It was also found that both lime and fly ash reduced the lienar shrinkage, however, the addition of lime reduced the linear shrinkage to a greater degree than the same percentage of class C fly ash. Even though it takes much less lime than fly ash to reduce the plasticity of a highly expansive soil, it may be less expensive to utilize fly ash, which is a waste product of electric power production. Lime also has a lower unit weight than fly ash so weight percentage results may be misleading.

  6. Barley seedling growth in soils amended with fly ash or agricultural lime followed by acidification

    SciTech Connect (OSTI)

    Renken, R.R.; McCallister, D.L.; Tarkalson, D.D.; Hergert, G.W.; Marx, D.B.

    2006-05-15

    Calcium-rich coal combustion fly ash can be used as an amendment to neutralize soil acidity because of its oxides and carbonate content, but its aluminum content could inhibit plant growth if soil pH values fall below optimal agronomic levels. This study measured root and shoot growth of an acid-sensitive barley (Hordeum vulgare L. 'Kearney') grown in the greenhouse on three naturally acid soils. The soils were either untreated or amended with various liming materials (dry fly ash, wet fly ash, and agricultural lime) at application rates of 0, .5, 1, and 1.5 times the recommended lime requirement, then treated with dilute acid solutions to simulate management-induced acidification. Plant growth indexes were measured at 30 days after planting. Root mass per plant and root length per plant were greater for the limed treatments than in the acidified check. Root growth in the limed treatments did not differ from root growth in the original nonacidified soils. Top mass per plant in all limed soils was either larger than or not different from that in the original nonacidified soils. Based on top mass per plant, no liming material or application rate was clearly superior. Both fly ash and agricultural lime reduced the impact of subsequent acidification on young barley plants. Detrimental effects of aluminum release on plant growth were not observed. Calcium-rich fly ash at agronomic rates is an acceptable acid-neutralizing material with no apparent negative effects.

  7. In-place stabilization of pond ash deposits by hydrated lime columns

    SciTech Connect (OSTI)

    Chand, S.K.; Subbarao, C.

    2007-12-15

    Abandoned coal ash ponds cover up vast stretches of precious land and cause environmental problems. Application of suitable in situ stabilization methods may bring about improvement in the geotechnical properties of the ash deposit as a whole, converting it to a usable site. In this study, a technique of in-place stabilization by hydrated lime columns was applied to large-scale laboratory models of ash ponds. Samples collected from different radial distances and different depths of the ash deposit were tested to study the improvements in the water content, dry density, particle size distribution, unconfined compressive strength, pH, hydraulic conductivity, and leachate characteristics over a period of one year. The in-place stabilization by lime column technique has been found effective in increasing the unconfined compressive strength and reducing hydraulic conductivity of pond ash deposits in addition to modifying other geotechnical parameters. The method has also proved to be useful in reducing the contamination potential of the ash leachates, thus mitigating the adverse environmental effects of ash deposits.

  8. Formation of calcium aluminates in the lime sinter process. [Extraction of alumina from fly ash

    SciTech Connect (OSTI)

    Chou, K.S.

    1980-03-01

    A study of the formation of several calcium aluminates from pure components in the lime sinter process was undertaken to determine the kinetics of formation and subsequent leaching using a dilute sodium carbonate solution. The composition CaO 61.98%, SiO/sub 2/ 26.67%, and Al/sub 2/O/sub 3/ 11.53% was used. Isothermal sintering runs of 0.2 to 10.0 h were carried out at 1200, 1250, 1300, and 1350/sup 0/C. When the sintering temperature was below the eutectic temperature (1335/sup 0/C), the ternary mixture behaved like two binary systems, i.e. CaO-Al/sub 2/O/sub 3/ and CaO-SiO/sub 2/. Only one compound, 3CaO.SiO/sub 2/, was formed between CaO and SiO/sub 2/. With lower sintering temperature and shorter sintering time, the ..beta..-phase was dominant. However, when both temperature and time increased, more and more of the ..beta..-C/sub 2/S was transformed into the ..gamma..-phase. Several different aluminates were formed during the sintering of CaO and Al/sub 2/O/sub 3/. The compounds CaO.Al/sub 2/O/sub 3/ and 3CaO.Al/sub 2/O/sub 3/ were observed at all tested sintering temperatures, while the 5CaO.3Al/sub 2/O/sub 3/ phase was found only at 1200/sup 0/C and 12CaO.7Al/sub 2/O/sub 3/ at 1250/sup 0/C or higher. The first compound formed between CaO and Al/sub 2/O/sub 3/ was probably 12CaO.7Al/sub 2/O/sub 3/, but the amount did not increase immediately with time. The first dominant compound between CaO and Al/sub 2/O/sub 3/ was CaO.3Al/sub 2/O/sub 3/. When the calcium ion diffused through the product layer of CaO.Al/sub 2/O/sub 3/, 3CaO.Al/sub 2/O/sub 3/ was formed. If unreacted Al/sub 2/O/sub 3/ were present after the formation of CaO.Al/sub 2/O/sub 3/, CaO.2Al/sub 2/O/sub 3/ would form. Subsequent leaching of the sinters showed that the extractable alumina in the products increased with both sintering temperature and time, reaching a max of about 90%. These extraction data corresponded very well to the quantities of aluminates in the sinters. 59 figures, 13 tables.

  9. Partially sulfated lime-fly ash sorbents activated by water or steam for SO{sub 2} removal at a medium temperature

    SciTech Connect (OSTI)

    Liming Shi; Xuchang Xu

    2005-12-01

    Laboratory experiments were conducted to investigate the reactivity of partially sulfated lime-fly ash sorbents activated by water or steam for SO{sub 2} removal. Sulfation tests were performed at 550{sup o}C using a fixed bed reactor under conditions simulating economizer zone injection flue gas desulfurization. Activation experiments were conducted with water or steam using a range of temperatures between 100 and 550{sup o}C. The results showed that the reactivity of the sorbents was closely related to the content of Ca(OH){sub 2} formed in the activation process, which varied with the water or steam temperature. The sulfur dioxide capture capacity of Ca(OH){sub 2} in the sorbent is higher than that of CaO at a medium temperature. Water or steam temperatures in the range of 100-200{sup o}C are favorable to the formation of Ca(OH){sub 2} from CaO. 15 refs., 8 figs., 2 tabs.

  10. Evaluation of Ohio fly ash/hydrated lime slurries and Type 1 cement sorbent slurries in the U.C. Pilot spray dryer facility. Final report, September 1, 1993--August 31, 1994

    SciTech Connect (OSTI)

    Keener, T.C.; Khang, S.J.; Meyers, G.R.

    1995-02-01

    The objectives of this year`s work included an evaluation of the performance of fly ash/hydrated lime as well as hydrated cement sorbents for spray drying adsorption (SDA) of SO{sub 2} from a simulated high-sulfur flue gas. These sorbents were evaluated for several different hydration methods, and under different SDA operating conditions. In addition, the physical properties of surface area and porosity of the sorbents was determined. The most reactive fly ash/hydrated lime sorbent studied was prepared at room temperature with milled fly ash. Milling fly ash prior to hydration with lime did have a beneficial effect on calcium utilization. No benefit in utilization was experienced either by hydrating the slurries at a temperature of 90{degrees}C as compared to hydration at room temperature, or by increasing hydration time. While the surface areas varied greatly from sorbent to sorbent, the pore size distributions indicated ``ink bottle`` pores with surface porosity on the order of 0.5 microns. No correlation could be drawn between the surface area of the sorbents and calcium utilization. These results suggest that the composition of the resulting sorbent might be more important than its surface area. The most effective sorbent studied this year was produced by hydrating cement for 3 days at room temperature. This sorbent provided a removal efficiency and a calcium utilization over 25 percent higher than baseline results at an approach to saturation temperature of 30{degrees}F and a stoichiometric ratio of 0.9. A maximum SO{sub 2} removal efficiency of about 90 percent was experienced with this sorbent at an approach to saturation temperature of 20{degrees}F.

  11. Regeneration of lime from sulfates for fluidized-bed combustion

    DOE Patents [OSTI]

    Yang, Ralph T.; Steinberg, Meyer

    1980-01-01

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  12. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  13. LI

    Office of Legacy Management (LM)

    \ LI g. / This document con&s of lf pages. No. 1 &of #copies, Series fl . .! ' \ ' > .b P .--r ' i ' ./' MJDIFICATION NO. k sUPPLEMENTALAMw24ENrto CONTRACT NO. A T (30-l)-1335 M O D IFICATION NO. 4 CONTRACTOR AND A D D m S : KIDIFICATION TO: -EINESTIEUTED CCSTOFWORKr TOTAT,ESTIIUTEDC~T OFWRKI INCREASEIN C O M K rSSI~ OBLlDATIONt NEMTOTALCOMMISSION OBLIOaTIONt PAYl%NTTDBEMADEBY: HORIZONS, INCORPOlZATED R-inceton, New Jersey AIBNDSCOPEOFK#tK,EXTENDTR?M AND OTflER CHANOES $&31,lbOO

  14. Lime addition to heavy crude oils prior to coking

    SciTech Connect (OSTI)

    Kessick, M. A.; George, Z. M.; Schneider, L. G.

    1985-06-04

    The sulphur emissive capability, on combustion, of coke which is formed during upgrading of sulphur-containing heavy crude oils, including oil sands bitumen, or residua is decreased by the addition of slaked lime or calcium oxide to the heavy crude oil prior to coking. The presence of the slaked lime or calcium oxide leads to an increased yield of liquid distillates at coking temperatures of about 450/sup 0/ to about 500/sup 0/ C. Ash remaining after combustion of the coke may be leached to recover nickel and vanadium values therefrom.

  15. LIME 0.5

    Energy Science and Technology Software Center (OSTI)

    2011-01-14

    LIME 0.5 is an initial version of a Lightweight Integrating Multi-physics Environment for coupling codes. LIME by itself is not a code for doing multiphysics simulations. Instead, LIME provides the key high-level software, a flexible but defined approach, and interface requirements for a collection of (potentially disparate) physics codes to be combined with strong coupling (when needed) though non-linear solution methods (e.g. JFNK, fixed point), thus creating a new multi-physics simulation capability customized for amore » particular need. ! ! The approach taken is designed to! •! preserve and leverage any important specialized algorithms and/or functionality an existing application may provide,! •! minimize the requirements barrier for an application to participate,! •! work within advanced solver frameworks (e.g. as extensions to the Trilinos/NOX nonlinear solver libraries, PETSc, . . .),! Of note is that components/physics codes that can be coupled within LIME are NOT limited to:! •! components written in one particular language,! •! a particular numerical discretization approach ( e.g. Finite Element), or! •! physical models expressed as PDEʼs.!« less

  16. Gypsum treated fly ash as a liner for waste disposal facilities

    SciTech Connect (OSTI)

    Sivapullaiah, Puvvadi V.; Baig, M. Arif Ali

    2011-02-15

    Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulic conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner.

  17. Experimental and numerical analysis of metal leaching from fly ash-amended highway bases

    SciTech Connect (OSTI)

    Cetin, Bora; Aydilek, Ahmet H.; Li, Lin

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer This study is the evaluation of leaching potential of fly ash-lime mixed soils. Black-Right-Pointing-Pointer This objective is met with experimental and numerical analysis. Black-Right-Pointing-Pointer Zn leaching decreases with increase in fly ash content while Ba, B, Cu increases. Black-Right-Pointing-Pointer Decrease in lime content promoted leaching of Ba, B and Cu while Zn increases. Black-Right-Pointing-Pointer Numerical analysis predicted lower field metal concentrations. - Abstract: A study was conducted to evaluate the leaching potential of unpaved road materials (URM) mixed with lime activated high carbon fly ashes and to evaluate groundwater impacts of barium, boron, copper, and zinc leaching. This objective was met by a combination of batch water leach tests, column leach tests, and computer modeling. The laboratory tests were conducted on soil alone, fly ash alone, and URM-fly ash-lime kiln dust mixtures. The results indicated that an increase in fly ash and lime content has significant effects on leaching behavior of heavy metals from URM-fly ash mixture. An increase in fly ash content and a decrease in lime content promoted leaching of Ba, B and Cu whereas Zn leaching was primarily affected by the fly ash content. Numerically predicted field metal concentrations were significantly lower than the peak metal concentrations obtained in laboratory column leach tests, and field concentrations decreased with time and distance due to dispersion in soil vadose zone.

  18. Process for the recovery of alumina from fly ash

    DOE Patents [OSTI]

    Murtha, M.J.

    1983-08-09

    An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

  19. Sulfur dioxide capture in the combustion of mixtures of lime, refuse-derived fuel, and coal

    SciTech Connect (OSTI)

    Churney, K.L.; Buckley, T.J. . Center for Chemical Technology)

    1990-06-01

    Chlorine and sulfur mass balance studies have been carried out in the combustion of mixtures of lime, refuse-derived fuel, and coal in the NIST multikilogram capacity batch combustor. The catalytic effect of manganese dioxide on the trapping of sulfur dioxide by lime was examined. Under our conditions, only 4% of the chlorine was trapped in the ash and no effect of manganese dioxide was observed. Between 42 and 14% of the total sulfur was trapped in the ash, depending upon the lime concentration. The effect of manganese dioxide on sulfur capture was not detectable. The temperature of the ash was estimated to be near 1200{degrees}C, which was in agreement with that calculated from sulfur dioxide capture thermodynamics. 10 refs., 12 figs., 10 tabs.

  20. Rising from the ashes: Coal ash in recycling and construction

    SciTech Connect (OSTI)

    Naquin, D.

    1998-02-01

    Beneficial Ash Management (BAM, Clearfield, Pa.) has won an environmental award for its use of ash and other waste to fight acid mine drainage. The company`s workers take various waste materials, mainly fly ash from coal-burning plants, to make a cement-like material or grouting, says Ernest Roselli, BAM president. The grouting covers the soil, which helps prevent water from contacting materials. This, in turn, helps control chemical reactions, reducing or eliminating formation of acid mine drainage. The company is restoring the 1,400-acre Bark Camp coal mine site near Penfield in Clearfield County, Pa. Under a no-cost contract with the state of Pennsylvania, BAM is using boiler slag, causticizing byproducts (lime) and nonreclaimable clarifier sludge from International Paper Co. (Erie, Pa.). The mine reclamation techniques developed and monitored at the site include using man-made wetlands to treat acid mine drainage and testing anhydrous ammonia as a similar treatment agent. BAM researches and tests fly ash mixed with lime-based activators as fill material for land reclamation, and develops and uses artificial soil material from paper mill and tannery biosolids.

  1. LimeAmps | Open Energy Information

    Open Energy Info (EERE)

    LimeAmps Jump to: navigation, search Name: LimeAmps Place: California Product: California-based energy management company. References: LimeAmps1 This article is a stub. You can...

  2. Geotechnical characterization of some Indian fly ashes

    SciTech Connect (OSTI)

    Das, S.K.; Yudhbir

    2005-10-01

    This paper reports the findings of experimental studies with regard to some common engineering properties (e.g., grain size, specific gravity, compaction characteristics, and unconfined compression strength) of both low and high calcium fly ashes, to evaluate their suitability as embankment materials and reclamation fills. In addition, morphology, chemistry, and mineralogy of fly ashes are studied using scanning electron microscope, electron dispersive x-ray analyzer, x-ray diffractometer, and infrared absorption spectroscopy. In high calcium fly ash, mineralogical and chemical differences are observed for particles, {gt}75 {mu} m and the particles of {lt} 45 {mu} m size. The mode and duration of curing significantly affect the strength and stress-strain behavior of fly ashes. The geotechnical properties of fly ash are governed by factors like lime content (CaO), iron content (Fe{sub 2}O{sub 3}) and loss on ignition. The distinct difference between self-hardening and pozzolanic reactivity has been emphasized.

  3. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  4. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  5. Arsenic removal in conjunction with lime softening

    DOE Patents [OSTI]

    Khandaker, Nadim R.; Brady, Patrick V.; Teter, David M.; Krumhansl, James L.

    2004-10-12

    A method for removing dissolved arsenic from an aqueous medium comprising adding lime to the aqueous medium, and adding one or more sources of divalent metal ions other than calcium and magnesium to the aqueous medium, whereby dissolved arsenic in the aqueous medium is reduced to a lower level than possible if only the step of adding lime were performed. Also a composition of matter for removing dissolved arsenic from an aqueous medium comprising lime and one or more sources of divalent copper and/or zinc metal ions.

  6. Hydration and strength development of binder based on high-calcium oil shale fly ash

    SciTech Connect (OSTI)

    Freidin, C. [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)] [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)

    1998-06-01

    The properties of high-calcium oil shale fly ash and low-calcium coal fly ash, which are produced in Israeli power stations, were investigated. High-calcium oil shale fly ash was found to contain a great amount of CaO{sub free} and SO{sub 3} in the form of lime and anhydrite. Mixtures of high-calcium oil shale fly ash and low-calcium coal fly ash, termed fly ash binder, were shown to cure and have improved strength. The influence of the composition and curing conditions on the compressive strength of fly ash binders was examined. The microstructure and the composition of fly ash binder after curing and long-term exposure in moist air, water and open air conditions were studied. It was determined that ettringite is the main variable in the strength and durability of cured systems. The positive effect of calcium silicate hydrates, CSH, which are formed by interaction of high-calcium oil shale fly ash and low-calcium coal fly ash components, on the carbonation and dehydration resistance of fly ash binder in open air is pronounced. It was concluded that high-calcium oil shale fly ash with high CaO{sub free} and SO{sub 3} content can be used as a binder for building products.

  7. 07Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li Thermal Neutron Capture Evaluated Data Measurements 1967RA24: 6Li(n, γ), E = thermal; measured Eγ; deduced Q. 1968SP01: 6Li(n, γ), E = thermal; measured Eγ, Iγ; deduced Q. 7Li deduced levels, branchings. 1970MEZS: 6Li(n, γ), E = thermal; measured σ. 1970SP02: 6Li(n, γ), E = thermal; measured Eγ, Iγ; deduced Q. 1972OP01: 6Li(n, γ), E = thermal; measured Eγ, Iγ. 1973JUZT, 1973JUZU: 6Li(n, γ), E = thermal; measured σ(Eγ). 7Li deduced γ-branching. 1985KO47: 6Li(n, γ), E =

  8. 9Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deduced log ft, Gamow-Teller transition strength, level width, di-neutron, neutron halo roles. 1991LUZZ: 9Li(-); measured T12. 1992LI24: 9Li(-); measured NMR...

  9. 5Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abstracted; deduced nuclear properties. 1968TA11: 2H(, p), E 29.2 MeV; measured (Ep, E, ). 5Li deduced resonances. 1968VI03: 6Li(3He, p), E 2 MeV; 5Li; measured...

  10. 4Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li Ground-State Decay Evaluated Data Measured Ground-State Γcm(T1/2) for 4Li Adopted value: 91 ± 9 ys (2003AU02) Measured Mass Excess for 4Li Adopted value: 25320 ± 210 keV (2003AU02) Measurements 1960BR05: 4Li; measured not abstracted; deduced nuclear properties. 1960BR10: 4Li; measured not abstracted; deduced nuclear properties. 1960BR19: 4Li; measured not abstracted; deduced nuclear properties. 1960RO11: 4Li; measured not abstracted; deduced nuclear properties. 1963WE10: 4Li; measured not

  11. 11Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li β--Decay Evaluated Data Measurements 1969KL08: 11Li; measured T1/2. 1974RO31: 11Li; measured Eγ, Iγ, T1/2, delayed neutrons, βγ-coin, Eβ. 1975TH08: 11Li; measured neutron binding energy, delayed neutron branching ratio, T1/2; deduced log ft. 1979ANZZ: 11Li; 11Li deduced evidence for β-delayed 2n emission. 1979AZ03: 11Li; measured β-delayed En, nn-coin. 11Be levels deduced 1n, 2n decay probabilities. 1979DEYX, 1980DE39, 1980DEZF: 11Li; measured Eγ, Iγ, Iβ, β-delayed En, In; deduced

  12. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  13. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  14. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  15. Power-plant fly-ash utilization: a chemical processing perspective

    SciTech Connect (OSTI)

    Burnet, G.; Murtha, M.J.

    1981-01-01

    The 1976 Resource Conservation and Recovery Act (RCRA) deals with the management of solid and hazardous wastes, and encourages energy and resource recovery. Recent research has indicated that solid wastes from coal combustion, including fly ash, could be classified as hazardous under present EPA definitions. The seriousness of this possibility has been recognized and new rules for coal ash waste disposal are being considered. Ames Laboratory research on fly ash utilization as an alternative to disposal includes extraction of metals from the ash and discovery of uses for the process residues. Recovery of alumina and iron oxides by physical and chemical processing would permit large scale utilization of fly ash and help reduce dependency on imports. One of the processes investigated uses a lime-soda sinter method to form soluble aluminate compounds from mixtures of fly ash, limestone, and soda ash. The aluminates are extracted, treated to remove silicates, and precipitated: the precipitate is calcined to metallurgical grade alumina. The extract residue shows promise as a raw material for the production of Portland cement. Process economics are presented, and the effects of alumina and silica contents of the fly ash, sintering temperatures and time, and sales credits for by-products are discussed.

  16. Lime Energy formerly Electric City Corporation | Open Energy...

    Open Energy Info (EERE)

    integrator of energy savings technologies and building automation systems. Specialist in demand response systems. References: Lime Energy (formerly Electric City Corporation)1...

  17. 08Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Neutron Capture Evaluated Data Measurements 1967RA24: 7Li(n, γ), E = thermal; measured Eγ; deduced Q. 1973JUZT, 1973JUZU: 7Li(n, γ), E = thermal; measured σ(Eγ). 7Li deduced γ-branching. 1991LY01: 7Li(n, γ), E = thermal; measured Eγ, Iγ, capture σ. 1996BL10: 7Li(n, γ), E = 1.5-1340 eV; measured Eγ, Iγ, γ yield, absolute σ(E). 1997HEZW, 1998HE35: 7Li(n, γ), E ≈ 5 meV, 54 keV; measured σ. 1999ZHZM, 2000ZHZP: 7Li(n, γ), E = thermal; compiled, evaluated prompt γ-ray

  18. 10Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li Ground-State Decay Evaluated Data Measured Ground-State Γcm(T1/2) for 10Li Adopted value: 2.0 ± 0.5 zs (2003AU02) Measured Mass Excess for 10Li Adopted value: 33051 ± 15 keV (2003AU02) Measurements 1975WI26: 9Be(9Be, 8B), E = 121 MeV; measured σ(E(8B), θ); deduced Q. 10Li deduced mass excess. 1990AM05: 11B(π-, X), E at rest; measured inclusive p-, d-, t-spectra, X = 10Li production. 10Li deduced level, Γ. 1992AMZY: 11B(π-, X), E at rest; measured pion, deuteron, triton spectra. 10Li

  19. Lime slurry use at the Industrial Wastewater Pretreatment Facility

    SciTech Connect (OSTI)

    Rice, L.E.; Hughes, R.W.; Baggett, G.

    1996-04-01

    The use of lime slurry at the IWPF demonstrated many benefits. Hazardous chemical use was reduced, solids handling was improved, water quality was enhanced and there has been a cost savings. The lime slurry also enabled the plant to begin treating the soluble oil waste, which we were not able to do in the past.

  20. 8Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -asymmetry, NMR; deduced polarization. 1986WA01: 8Li(-); analyzed -delayed breakup -spectra; deduced intruder states role. 8Be deduced level, , Gamow-Teller matrix...

  1. MARKET ASSESSMENT AND TECHNICAL FEASIBILITY STUDY OF PRESSURIZED FLUIDIZED BED COMBUSTION ASH USE

    SciTech Connect (OSTI)

    A.E. Bland; T.H. Brown

    1997-04-01

    Western Research Institute, in conjunction with the Electric Power Research Institute, Foster Wheeler International, Inc. and the US Department of Energy, has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for PFBC ashes. Ashes from the Foster Wheeler Energia Oy pilot-scale circulating PFBC tests in Karhula, Finland, combusting (1) low-sulfur subbituminous and (2) high-sulfur bituminous coal, and ash from the AEP's high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at WR1. The technical feasibility study examined the use of PFBC ash in construction-related applications, including its use as a cementing material in concrete and use in cement manufacturing, fill and embankment materials, soil stabilization agent, and use in synthetic aggregate production. Testing was also conducted to determine the technical feasibility of PFBC ash as a soil amendment for acidic and sodic problem soils and spoils encountered in agricultural and reclamation applications. The results of the technical feasibility testing indicated the following conclusions. PFBC ash does not meet the chemical requirements as a pozzolan for cement replacement. However, it does appear that potential may exist for its use in cement production as a pozzolan and/or as a set retardant. PFBC ash shows relatively high strength development, low expansion, and low permeability properties that make its use in fills and embankments promising. Testing has also indicated that PFBC ash, when mixed with low amounts of lime, develops high strengths, suitable for soil stabilization applications and synthetic aggregate production. Synthetic aggregate produced from PFBC ash is capable of meeting ASTM/AASHTO specifications for many construction applications. The residual calcium carbonate and calcium sulfate in the PFE3C ash has been shown to be of value in

  2. Ca(OH)[sub 2]/fly ash sorbents for SO[sub 2] removal

    SciTech Connect (OSTI)

    Ho, C.S.; Shih, S.M. )

    1992-04-01

    In this paper, the reactivity of Ca(OH)[sub 2]/fly ash sorbent with SO[sub 2] is studied by using a fixed-bed differential reactor under the conditions simulating the bag filters of the spray-drying flue gas desulfurization. The source of fly ash and the sorbent preparation conditions affect the reactivity of the sorbent. The reactivity of the sorbent was found to be closely related to the content of the calcium silicate hydrate formed in the sorbent preparation. The sorbent has a much higher utilization of Ca(OH)[sub 2] than that of pure Ca(OH)[sub 2] sorbent, and in some range of Ca(OH)[sub 2] content the sorbent also has a higher SO[sub 2] capture capacity per unit weight of sorbent than that of pure lime. The fly ash from the Shin-Da plant of the Taiwan Power Company produced the best sorbent of all fly ashes in this study. The higher ratio of fly ash/Ca(OH)[sub 2], the higher slurrying temperature, the longer slurrying time, and the smaller particles of fly ash enhance the utilization of Ca(OH)[sub 2], but the water/solid ratio has an optimal value. The relative humidity in the reactor has a significant effect on the reactivity of Ca(PH)[sub 2]/fly ash sorbents, but the effect of the sulfation temperature is subtle.

  3. The effect of additives on lime dissolution rates. Final report

    SciTech Connect (OSTI)

    Khang, S.J.

    1996-07-31

    Based on the previous years` studies concerning the efficiency of SO{sub 2} removal by spray dryers with high sulfur coal flue gas, the work for year five included investigations of lime dissolution rates at different slaking conditions and with the effect of additives. The prominent additives that have significant effects on lime dissolution rates were tested with the mini pilot spray drying absorber to see their effects on spray drying desulfurization applications. The mechanisms of these additive effects along with the properties of hygroscopic additives have been discussed and incorporated into the spray drying desulfurization model ``SPRAYMOD-M.`` Slaking conditions are very important factors in producing high quality lime slurry in spray drying desulfurization processes. At optimal slaking conditions, the slaked lime particles are very fine (3-5{mu}m) and the slaked lime has high BET surface areas which are beneficial to the desulfurization. The slaked lime dissolution rate experiments in our study are designed to determine how much lime can dissolve in a unit time if the initial lime surface area is kept constant. The purpose of the dissolution rate study for different additives is to find those effective additives that can enhance lime dissolution rates and to investigate the mechanisms of the dissolution rate enhancement properties for these additives. The applications of these additives on spray drying desulfurization are to further verify the theory that dissolution rate is a rate limiting step in the whole spray drying desulfurization process as well as to test the feasibility of these additives on enhancing SO{sub 2} removal in spray dryers.

  4. Engineering Model for Ash Formation

    Energy Science and Technology Software Center (OSTI)

    1994-12-02

    Ash deposition is controlled by the impaction and sticking of individual ash particles to heat transfer surfaces. Prediction of deposition therefore requires that the important factors in this process be predictable from coal and operational parameters. Coal combustion, boiler heat transfer, ash formation, ash particle aerodynamic, and ash particle sticking models are all essential steps in this process. The model described herein addresses the prediction of ash particle size and composition distributions based upon combustionmore » conditions and coal parameters. Key features of the model include a mineral redistribution routine to invert CCSEM mineralogical data, and a mineral interaction routine that simulates the conversion of mineral matter into ash during coal burning and yields ash particle size and composition distributions.« less

  5. Effect of curing conditions on the geotechnical and geochemical properties of CFBC ashes

    SciTech Connect (OSTI)

    Bland, A.E.

    1999-07-01

    Western Research Institute, in cooperation with the US Department of Energy Federal Energy Technology Center, initiated a multi-year program to examine the relationship between CFBC ash chemistry and geotechnical properties as they relate to ash disposal and utilization. Four CFBC facilities supplied ash from their units for the study representing high-sulfur (4%) and medium-sulfur (1.8%) bituminous coal. Sub-bituminous coal (0.9% sulfur) and petroleum coke (5--6% sulfur) fired ashes were also included in the study. The ashes were composed principally of large quantities of anhydrite (CaSO{sub 4}) and lime (CaO) and minor amounts of calcite (CaCO{sub 3}). The ash curing study addressed the impact of curing conditions (sealed and saturated curing and 23 C and 5 C curing temperature) on the geochemical and geotechnical properties of the ash. The strength development and expansion varied with the type and characteristics of the ashes. The expansion appeared to be inversely related to strength development. As the strength decreased under saturated curing, the expansion increased significantly. The application of 5 C saturated curing resulted in further strength loss and increased expansion. The hydration reaction products appeared to be principally the hydration of lime (CaO) to portlandite (Ca[OH]{sub 2}), the hydration of anhydrite (CaSO{sub 4}) to gypsum (CaSO{sub 4} {center{underscore}dot} 2H{sub 2}O), and the precipitation of ettringite (Ca{sub 6}Al{sub 2}[SO{sub 4}]{sub 3}[OH]{sub 12} {center{underscore}dot} 26H{sub 2}O) from the soluble calcium, sulfates and alumina. No thaumasite was noted in the specimens. The ashes appeared to follow one of several hydration reaction trends: (1) ettringite-only development, (2) ettringite and/or gypsum early followed by later gypsum formation, or (3) gypsum-only formation. Testing confirmed that the hydration reaction chemistry was related to geotechnical properties of the ashes. Strength development and expansion appeared to

  6. Influence of the composition of cement kiln dust on its interaction with fly ash and slag

    SciTech Connect (OSTI)

    Chaunsali, Piyush; Peethamparan, Sulapha

    2013-12-15

    Cement kiln dust (CKD), a by-product of the cement industry, contains significant amounts of alkali, free lime, chloride and sulfate. Wide variation reported in the chemical composition of CKDs limits their potential application as a sustainable binder component in concrete. In the current study, the performance of two different CKDs as components in a novel binder is evaluated. Several binders are developed by blending CKDs with fly ash or slag. Binders with 70% CKD were prepared at a water-to-binder ratio of 0.4, and heat-cured at 75 °C to accelerate the strength development. The hydration progress was monitored using X-ray diffraction, and morphological examination was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Ettringite and calcium aluminosilicate hydrate (C-A-S-H) were identified as the main hydration products in the hardened binder system. Strength development of CKD-based binder was found to be significantly influenced by its free lime and sulfate contents. -- Highlights: •Interaction of cement kiln dust with fly ash and slag was explored. •CKD with higher free lime and sulfate content increased the strength of binder. •C-S-H like reaction gel with fibrillar morphology is observed in CKD-based binders.

  7. Jennifer Li | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jennifer Li Jennifer Li Jennifer Li E-mail: jennifer.li

  8. Use of clean coal technology by-products as agricultural liming techniques

    SciTech Connect (OSTI)

    Stehouwer, R.C.; Sutton, P.; Dick, W.A.

    1995-03-01

    Dry flue gas desulfurization (FGD) by-products are mixtures of coal fly-ash, anhydrite (CaCO{sub 4}), and unspent lime- or limestone-based sorbent. Dry FGD by-products frequently have neutralizing values greater than 50% CaCO{sub 3} equivalency and thus have potential for neutralizing acidic soils. Owing to the presence of soluble salts and various trace elements, however, soil application of dry FGD by-products may have adverse effects on plant growth and soil quality. The use of a dry FGD by-product as a limestone substitute was investigated in a field study on three acidic agricultural soils (pH 4.6, 4.8, and 5.8) in eastern Ohio. The by-product (60% CaCO{sub 3} equivalency) was applied in September, 1992, at rates of 0, 0.5, 1.0, and 2.0 times the lime requirement of the soils, and alfalfa (Medicago sativa L.) and corn (Zea mays L.) were planted. Soils were sampled immediately after FGD application and three more times every six months thereafter. Samples were analyzed for pH and water soluble concentrations of 28 elements. Soil pH was increased by all FGD rates in the zone of incorporation (0--10 cm), with the highest rates giving a pH slightly above 7. Within one year pH increases could be detected at depths up to 30 cm. Calcium, Mg, and S increased, and Al, Mn, and Fe decreased with increasing dry FGD application rates. No trace element concentrations were changed by dry FGD application except B which was increased in the zone of incorporation. Dry FGD increased alfalfa yield on all three soils, and had no effect on corn yield. No detrimental effects on soil quality were observed.

  9. Modeling volcanic ash dispersal

    ScienceCinema (OSTI)

    None

    2011-10-06

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  10. Recovery of aluminum oxide by the Ames lime-soda sinter process: scale-up using a rotary kiln

    SciTech Connect (OSTI)

    Murtha, M.J.; Burnet, G.; Harnby, N.

    1985-01-01

    The Ames Lime-Soda Sinter Process provides a means for recovering aluminum oxide from power plant fly ash while producing a residue that can be used in the manufacture of sulfate resistant (Type V) portland cement. The process has been fully researched and its feasibility is now being demonstrated through pilot plant scale investigation. This paper reports results of the pelletized feed preparation by agglomeration in a rotary pan granulator, continuous feed sintering in an electrically heated rotary kiln, and product recovery from the clinker by aqueous extraction, desilication of the filtrate, and precipitation of a hydrated aluminum oxide. Results from earlier bench-scale research have been found to apply consistently to the pilot plant scale work.

  11. Draft final risk assessment lime settling basins. Version 2. 1

    SciTech Connect (OSTI)

    Not Available

    1990-10-25

    The preferred alternative Lime Settling Basins (LSB) Interim Response Action (IRA) selected to inhibit further migration of contaminants from the LSB included moving the stockpiled lime sludge adjacent to the LSB back into the LSB, the construction of a subsurface barrier (i.e., slurry wall), placement of a soil cap and vegative cover, and the installation of a groundwater extraction system. This IRA is expected to be completed in approximately 6 months. The LSB IRA Risk Assessment (RA) presents the methodologies, quantitative and qualitative results, and assumptions used to determine if a potential risk exists to humans and biota from the activities of the LSB IRA. The activities associated with the relocation of the lime sludge into the LSB and the installation of the slurry wall are the focus of this RA, since they include disturbance of soils identified as contaminated.

  12. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOE Patents [OSTI]

    Shen, Ming-Shing (Rocky Point, NY); Yang, Ralph T. (Middle Island, NY)

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  13. F LI

    Office of Legacy Management (LM)

    >"- -- F LI c ------- RADIATION SURVEY REPORT OF THE M IDDLESEX LANDFILL SITE RADIATION SURVEY REPORT OF THE ~IDDLESEX LfiMDFI.LL S I:TE it%RCH 25 - AFRiL 4, 1374 ;)UNE 27, 1974 T.!BLE OF CONTENTS Introduction and Summary . . . . . . . . . . . . . . . 1 Conclusions. . . . . . w . . . . . . , . . . , . . . . 2 Histohcal Background0 . . . . . . . . . . . . b (I . . 2 Description of Area Surveyed . . . . . . . . I . . . * 3 Survey Findings. * *,. a . . . , . . . . . . . . . . . 4 Surface

  14. Fly ash quality and utilization

    SciTech Connect (OSTI)

    Barta, L.E.; Lachner, L.; Wenzel, G.B.; Beer, M.J.

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  15. Incineration and incinerator ash processing

    SciTech Connect (OSTI)

    Blum, T.W.

    1991-01-01

    Parallel small-scale studies on the dissolution and anion exchange recovery of plutonium from Rocky Flats Plant incinerator ash were conducted at the Los Alamos National Laboratory and at the Rocky Flats Plant. Results from these two studies are discussed in context with incinerator design considerations that might help to mitigate ash processing related problems. 11 refs., 1 fig., 1 tab.

  16. 6Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 6Li is subdivided into the following categories: Ground State Properties of 6Li Special States Theoretical Shell Model Cluster Models Complex...

  17. 7Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7Li(, '): emission yield 1.0 - 3.4 1 01182012 2011YA02 7Li(, ): elastic scattering differential 1.0 - 4.5 cm 170 07192011 7Li(, p): differential...

  18. Landfilling ash/sludge mixtures

    SciTech Connect (OSTI)

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  19. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production

    SciTech Connect (OSTI)

    Li, Q.S.; Chen, J.J.; Li, Y.C.

    2008-02-15

    Coal fly ash has been proposed to be an alternative to lime amendment and a nutrient source of container substrates for ornamental plant production. A great concern over this proposed beneficial use, however, is the potential contamination of surface and ground water by heavy metals. In this study, three fly ashes collected from Florida, Michigan, and North Carolina and a commercial dolomite were amended in a basal substrate. The formulated substrates were used to produce Syngonium podophyllum Schott 'Berry Allusion' in 15-cm diameter containers in a shaded greenhouse. Leachates from the containers were collected during the entire six months of plant production and analyzed for heavy metal concentrations. There were no detectable As, Cr, Hg, Pb, and Se in the leachates; Cd and Mo were only detected in few leachate samples. The metals constantly detected were Cu, Mn, Ni, and Zn. The total amounts of Cu, Mn, Ni, and Zn leached during the six-month production period were 95, 210, 44, and 337 {mu} g per container, indicating that such amounts in leachates may contribute little to contamination of surface and ground water. In addition, plant growth indices and fresh and dry weights of S. podophyllum 'Berry Allusion' produced from fly ash and dolomite-amended substrates were comparable except for the plants produced from the substrate amended with fly ash collected from Michigan which had reduced growth indices and fresh and dry weights. Thus, selected fly ashes can be alternatives to commercial dolomites as amendments to container substrates for ornamental plant production. The use of fly ashes as container substrate amendments should represent a new market for the beneficial use of this coal combustion byproduct.

  20. Retrofit costs for lime/limestone FGD and lime spray drying at coal-fired utility boilers

    SciTech Connect (OSTI)

    Emmel, T.E.; Jones, J.W.

    1990-01-01

    The paper gives results of a research program the objective of which was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying SO2 controls to existing coal-fired utility boilers. The costs of retrofitting conventional lime/limestone wet flue gas desulfurization (L/LS FGD) and lime spray drying (LSD) FGD at 100-200 coal-fired power plants are being estimated under this program. The retrofit capital cost estimating procedures used for L/LS FGD and LSD FGD make two cost adjustments to current procedures used to estimate FGD costs: cost adders (for items not normally included in FGD system costs; e.g., demolition and relocation of existing facilities) and cost multipliers (to adjust capital costs for site access, congestion, and underground obstructions).

  1. ITER helium ash accumulation

    SciTech Connect (OSTI)

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  2. Long duration ash probe

    DOE Patents [OSTI]

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  3. Long duration ash probe

    DOE Patents [OSTI]

    Hurley, John P.; McCollor, Don P.; Selle, Stanley J.

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  4. Gasification of high ash, high ash fusion temperature bituminous coals

    DOE Patents [OSTI]

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  5. Publication sites productive uses of combustion ash

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public Affairs Golden, Colo., Jan. 23, 1997 -- A new technology brief published by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) describes how ash use can reduce the cost of waste management and not harm the environment. Communities in the United States typically dump municipal solid waste combustion ash in landfills. The new technology brief describes recent studies where ash

  6. A comparison between sludge ash and fly ash on the improvement in soft soil

    SciTech Connect (OSTI)

    Deng-Fong Lin; Kae-Long Lin; Huan-Lin Luo

    2007-01-15

    In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4 2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20 30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil. 9 refs., 5 figs., 2 tabs.

  7. Petrographic characterization of economizer fly ash

    SciTech Connect (OSTI)

    Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A.

    2009-11-15

    Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

  8. ACAA fly ash basics: quick reference card

    SciTech Connect (OSTI)

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  9. Advanced research and technology, direct utilization: recovery of minerals from coal fly ash. Fossil energy program. Technical progress report, 1 October 1980-31 December 1980

    SciTech Connect (OSTI)

    Burnet, G.; Weiss, S.J.; Murtha, M.J.

    1981-02-01

    The purpose of this research is to develop methods to process fly ash for the separation and use of an iron-rich fraction, for the recovery of metals, primarily Al and Ti, and for use of the process residues. Research during this report period of the HiChlor process for the extraction of alumina and titania by high-temperature chlorination of a fly ash-reductant mixture included investigation of the simulation of the reactions as a design tool, the assembly of a unit to measure reaction kinetic rates and particle specific surface areas and porosities, and the design of equipment to measure necessary chloride product separation data. A pretreatment chlorination reaction using CO and Cl/sub 2/ was found to be capable of removing 80% of the iron with only minimal alumina and silica reaction. Development of the lime-soda sinter process includes the collection of data on the phenomenon of auto-disintegration of lime-fly ash sinters. Results indicate that it is the presence of minor constituents having +5 pr +6 valence cations of a size that can enter the lattice of the calcium silicate which prevent sinter auto-disintegration.

  10. Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

    1997-05-01

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

  11. AEC Lowman Station FGD conversion from limestone to magnesium-enhanced lime scrubbing

    SciTech Connect (OSTI)

    Inkenhaus, W.; Babu, M.; Smith, K.; Loper, L.

    1996-12-31

    AEC`s Lowman Station is located in Leroy, Alabama. Units 2 and 3, with a total of 516 MW output capacity, were switched from the limestone FGD operation in January of 1996. Prior to switching, personnel from AEC and Dravo Lime Company conducted a four week test on magnesium-enhanced lime and obtained scrubber performance data including SO{sub 2} removal efficiencies on the modulus while burning higher sulfur coal. It was determined that the plant could take advantage of the higher SO{sub 2} removal efficiency of the magnesium-enhanced lime system. Major benefits resulting from this conversion were AEC`s ability to switch to a lower cost high sulfur coal while meeting the stringent SO{sub 2} emission requirements. Power cost savings resulted from the lower liquid to gas ratio required by the magnesium-enhanced lime process. Three recirculation pumps per module were reduced to a single operating pump per module, lowering the scrubber pressure drop. Significant cost reduction in the operating costs of the ball mill was realized due to modifications made to slake lime instead of grinding limestone. This paper discusses the plant modifications that were needed to make the switch, cost justifications, and AEC`s operating experiences to date. AEC and Dravo Lime Company working together as a team conducted detailed cost studies that followed with extended field tests and implementing plant modifications. This plant continues to operate in the magnesium-enhanced lime FGD mode to date.

  12. Production of cements from Illinois coal ash. Technical report, September 1, 1995--November 30, 1995

    SciTech Connect (OSTI)

    Wagner, J.C.; Bhatty, J.I.; Mishulovich, A.

    1995-12-31

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. Currently only about 30% of the 5 million tons of these coal combustion residues generated in Illinois each year are utilized, mainly as aggregate. These residues are composed largely Of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. The process being developed in this program will use the residues directly in the manufacture of cement products. Therefore, a much larger amount of residues can be utilized. To achieve the above objective, in the first phase (current year) samples of coal combustion residues will be blended and mixed, as needed, with a lime or cement kiln dust (CKD) to adjust the CaO composition. Six mixtures will be melted in a laboratory-scale furnace at CTL. The resulting products will then be tested for cementitious properties. Two preliminary blends have been tested. One blend used fly ash with limestone, while the other used fly ash with CKD. Each blend was melted and then quenched, and the resulting product samples were ground to a specific surface area similar to portland cement. Cementitious properties of these product samples were evaluated by compression testing of 1-inch cube specimens. The specimens were formed out of cement paste where a certain percentage of the cement paste is displaced by one of the sample products. The specimens were cured for 24 hours at 55{degrees}C and 100% relative humidity. The specimens made with the product samples obtained 84 and 89% of the strength of a pure portland cement control cube. For comparison, similar (pozzolanic) materials in standard concrete practice are required to have a compressive strength of at least 75% of that of the control.

  13. 5Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Table for 5Li is subdivided into the folowing categories: Ground State Properties Cluster Model Shell Model Special States Model Calculations Model Discussions Complex...

  14. Combustion with reduced carbon in the ash

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2005-12-27

    Combustion of coal in which oxygen is injected into the coal as it emerges from burner produces ash having reduced amounts of carbon.

  15. 7Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 7Li is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Theoretical Work Model Calculations Photodisintegration Polarization Fission and Fusion Elastic and Inelastic Scattering Projectile Fragmentation and Multifragmentation Astrophysical Hyperfine Structure b-decay Muons Hypernuclei and Mesons Hypernuclei and Baryons Pion, Kaon and Eta-Mesons Other Work Applications

  16. 8Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Tables The General Table for 8Li is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Models Photodissociation Fusion and Fission Elastic and Inelastic Scattering Fragmentation Reactions Astrophysical b Decay Hypernuclei Pions, Kaons and h-mesons

  17. 9Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 9Li is subdivided into the following categories: Shell Model Cluster Model Theoretical Ground State Properties Special States Other Model Calculations Complex Reactions Beta-Decay Pions Muons Photodisintegration Elastic and Inelastic Scattering Electromagnetic Transitions Astrophysical

  18. Characterization of ash cenospheres in fly ash from Australian power stations

    SciTech Connect (OSTI)

    Ling-ngee Ngu; Hongwei Wu; Dong-ke Zhang

    2007-12-15

    Ash cenospheres in fly ashes from five Australian power stations have been characterized. The experimental data show that ash cenosphere yield varies across the power stations. Ash partitioning occurred in the process of ash cenosphere formation during combustion. Contradictory to conclusions from the literature, iron does not seem to be essential to ash cenosphere formation in the cases examined in the present work. Further investigation was also undertaken on a series of size-fractioned ash cenosphere samples from Tarong power station. It is found that about 70 wt% of ash cenospheres in the bulk sample have sizes between 45 and 150 {mu}m. There are two different ash cenosphere structures, that is, single-ring structure and network structure. The percentage of ash cenospheres of a network structure increases with increasing ash cenosphere size. Small ash cenospheres (in the size fractions {lt}150 {mu}m) have a high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and the majority of the ash cenospheres are spherical and of a single-ring structure. Large ash cenosphere particles (in the size fractions of 150-250 {mu}m and {gt}250 {mu}m) have a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and a high proportion of the ash cenospheres are nonspherical and of a network structure. A novel quantitative technique has been developed to measure the diameter and wall thickness of ash cenospheres on a particle-to-particle basis. A monolayer of size-fractioned ash cenospheres was dispersed on a pellet, which was then polished carefully before being examined using a scanning electron microscope and image analysis. The ash cenosphere wall thickness broadly increases with increasing ash cenosphere size. The ratios between wall thickness and diameter of ash cenospheres are limited between an upper bound of about 10.5% and a lower bound of about 2.5%, irrespective of the ash cenosphere size. 52 refs., 9 figs., 4 tabs.

  19. AEC Lowman Station - coal switching and magnesium-enhanced lime scrubbing to lower operating costs

    SciTech Connect (OSTI)

    Inkenhaus, W.; Babu, M.; Smith, K.; Loper, L.

    1997-12-31

    AEC`s Lowman Station is located in Leroy, Alabama. There are three coal-fired boilers at this station. Unit 1 is capable of generating 85 MW without a flue gas desulfurization, FGD, system. Units 2 and 3, with a total of 516 MW output capacity, are equipped with FGD systems. The FGD plant was designed for wet limestone FGD with natural oxidation. Lowman Station burned low sulfur, 1.3 to 1.8% sulfur, coal. In January of 1996 AEC switched Units 2 and 3 from limestone to magnesium-enhanced lime FGD operation. It was determined that the plant could take advantage of the higher SO{sub 2} removal efficiency of the magnesium-enhanced lime system. Major benefits resulting from this conversion were AEC`s ability to switch to a lower cost high sulfur coal while meeting the stringent SO{sub 2} emission requirements. Power cost savings resulted from the lower liquid to gas ratio required by the magnesium-enhanced lime process. Three recirculation pumps per module were reduced to a single operating pump per module, lowering the scrubber pressure drop. Significant cost reduction in the operating costs of the ball mill was realized due to modifications made to slake lime instead of grinding limestone. Prior to switching, personnel from AEC and Dravo Lime Company ran a four week test on magnesium-enhanced lime to obtain scrubber performance data including SO{sub 2} removal efficiencies on the modules while burning a 1.8% sulfur coal. This paper discusses the plant modifications that were needed to make the switch, cost justifications due to coal switching, and AEC`s operating experiences to date. AEC and Dravo Lime Company working together as a team conducted detailed cost studies, followed by extensive field tests and implemented the plant modifications. This plant continues to operate burning higher sulfur coal with the magnesium-enhanced lime FGD system.

  20. DOE - Office of Legacy Management -- New England Lime Co - CT 10

    Office of Legacy Management (LM)

    England Lime Co - CT 10 FUSRAP Considered Sites Site: NEW ENGLAND LIME CO. (CT.10) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: NELCO (Magnesium Division) CT.10-1 Location: Canaan , Connecticut CT.10-2 Evaluation Year: 1987 CT.10-1 Site Operations: AEC source for magnesium and calcium. Conducted limited tests to evaluate potential for recovery of magnesium from uranium residues. CT.10-2 Site Disposition: Eliminated - Potential for contamination

  1. Treatment of fly ash for use in concrete

    DOE Patents [OSTI]

    Boxley, Chett

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  2. An introduction to LIME 1.0 and its use in coupling codes for multiphysics simulations.

    SciTech Connect (OSTI)

    Belcourt, Noel; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren

    2011-11-01

    LIME is a small software package for creating multiphysics simulation codes. The name was formed as an acronym denoting 'Lightweight Integrating Multiphysics Environment for coupling codes.' LIME is intended to be especially useful when separate computer codes (which may be written in any standard computer language) already exist to solve different parts of a multiphysics problem. LIME provides the key high-level software (written in C++), a well defined approach (with example templates), and interface requirements to enable the assembly of multiple physics codes into a single coupled-multiphysics simulation code. In this report we introduce important software design characteristics of LIME, describe key components of a typical multiphysics application that might be created using LIME, and provide basic examples of its use - including the customized software that must be written by a user. We also describe the types of modifications that may be needed to individual physics codes in order for them to be incorporated into a LIME-based multiphysics application.

  3. Presence of Li clusters in molten LiCl-Li

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-05-05

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. ln the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. Furthermore, this observation is indicative of a nanofluid type colloidal suspension of Li8, in a molten salt matrix.more » It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.« less

  4. Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Facility Hunt's...

  5. Impact of Biodiesel on Ash Emissions and Lubricant Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and Engine Wear Impact of Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and ...

  6. Settlement of footing on compacted ash bed

    SciTech Connect (OSTI)

    Ramasamy, G.; Pusadkar, S.S.

    2007-11-15

    Compacted coal ash fills exhibit capillary stress due to contact moisture and preconsolidation stress due to the compaction process. As such, the conventional methods of estimating settlement of footing on cohesionless soils based on penetration tests become inapplicable in the case of footings on coal ash fills, although coal ash is also a cohesionless material. Therefore, a method of estimating load-settlement behavior of footings resting on coal ash fills accounting for the effect of capillary and preconsolidation stresses is presented here. The proposed method has been validated by conducting plate load tests on laboratory prepared compacted ash beds and comparing the observed and predicted load-settlement behavior. Overestimation of settlement greater than 100% occurs when capillary and preconsolidation stresses are not accounted for, as is the case in conventional methods.

  7. Treatment of fly ash for use in concrete

    DOE Patents [OSTI]

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  8. Treatment of fly ash for use in concrete

    DOE Patents [OSTI]

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  9. 6Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/01/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1985NE05 6Li(α, γ): γ thick target yield resonance X4 02/15/2012 1966FO05 6Li(α, γ): σ 0.9 - 3.0 2 < Eγ < 4 MeV, 4 < Eγ < 7 MeV, thick target capture γ-ray yield, capture γ-ray yield of 2.43 MeV resonance 02/29/2012 1989BA24 6Li(α, γ): σ 1.085, 1.175 X4 02/15/2012 1979SP01 6Li(α, γ): thick target yield curve for 718 keV γ-rays 1140 - 1250 keV 1175 keV resonance 07/19/2011

  10. 6Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 03012016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2004TU02 6Li(p, ): coincidence yields, deduced S-factors low 1, S-factors from ...

  11. 7Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 12162015) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1997GO13 7Li(pol. p, ): total , S-factor for capture to third-excited state 0 - ...

  12. Li-Z

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Cloud Spectral Radiance/Irradiance at the Surface and Top-of-the-Atmosphere from Modeling and Observations Z. Li and A. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada M. Cribb Intermap Technologies Ltd. Ottawa, Ontario, Canada Introduction In view of some reported discrepancies concerning cloud parameter retrievals and cloud absorption (Stephens and Tsay 1990; Li et al. 1999; Rossow and Schiffer 1999) it is useful to compare cloud spectral signatures derived

  13. 10Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 10Li is subdivided into the following categories: Reviews Theoretical Ground State Properties Shell Model Cluster Model Other Models Special States Astrophysical Electromagnetic Transitions Hypernuclei Photodisintegration Light-Ion and Neutron Induced Reactions These General Tables correspond to the 2003 preliminary evaluation of ``Energy Levels of Light Nuclei, A = 10''. The prepublication version of A = 10 is available on this website in PDF format: A =

  14. Rocky Flats ash test procedure (sludge stabilization)

    SciTech Connect (OSTI)

    Winstead, M.L.

    1995-09-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.

  15. Potential products from North Dakota lignite fly ash. Final report

    SciTech Connect (OSTI)

    Anderson, G R

    1980-06-01

    Four major areas where fly ash can be used are explored. Concrete building blocks with fly ash replacing 50% of the portland cement have proven to be successful using current ASTM standards. Results in the ceramics area show that a ceramic-like product using fly ash and crushed glass with a small amount of clay as a green binder. Some preliminary results using sulfur ash in building materials are reported and with results of making wallboard from ash. (MHR)

  16. Fluidized bed gasification ash reduction and removal process

    DOE Patents [OSTI]

    Schenone, Carl E.; Rosinski, Joseph

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  17. Fluidized bed gasification ash reduction and removal system

    DOE Patents [OSTI]

    Schenone, Carl E.; Rosinski, Joseph

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  18. The effect of additives on lime dissolution rates. Final report, September 1, 1993--August 31, 1994

    SciTech Connect (OSTI)

    Keener, T.C.; Khang, S.J.; Wang, J.

    1995-02-01

    In spray dryer flue gas desulfurization, lime slurry is injected into a spray dryer where it contacts with the hot flue gas and desulfurization occurs. This process is complex owing to the heat and mass transfer which must take place. One of the most important fundamental steps in the scrubbing process is the rate at which lime dissolves from the solid particle in the slurry drop and becomes available for reaction with the absorbed sulfur dioxide. This dissolution rate to a large extent controls the degree of reactivity and is the rate controlling step for this process. However, studies on this dissolution rate have been very few and its magnitude under a variety of operating conditions is not well known. This research has as its objective, the study and understanding of the lime dissolution rate. This understanding should lead to a better method of predicting and optimizing spray dryer performance for flue gas desulfurization.

  19. Ashe County- Wind Energy System Ordinance

    Broader source: Energy.gov [DOE]

    In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a...

  20. Fly ash system technology improves opacity

    SciTech Connect (OSTI)

    2007-06-15

    Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, there have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.

  1. Rocky Flats Ash test procedure (sludge stabilization)

    SciTech Connect (OSTI)

    Funston, G.A.

    1995-06-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. The test will provide information to determine charge sizes, soak times and mesh screen sizes (if available at time of test) for stabilization of Rocky Flats Ash items to be processed in the HC-21C Muffle Furnace Process. Once the charge size and soak times have been established, a program for the temperature controller of the HC-21C Muffle Furnace process will be generated for processing Rocky Flats Ash.

  2. Flue gas desulfurization gypsum and fly ash

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

  3. A theory manual for multi-physics code coupling in LIME.

    SciTech Connect (OSTI)

    Belcourt, Noel; Bartlett, Roscoe Ainsworth; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren

    2011-03-01

    The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.

  4. Li Tec | Open Energy Information

    Open Energy Info (EERE)

    Drezden, Germany Product: Based in Kamez, near Dresden, Li-Tec produces components for lithium-ion batteries. References: Li-Tec1 This article is a stub. You can help OpenEI by...

  5. Comparative study on the characteristics of fly ash and bottom ash geopolymers

    SciTech Connect (OSTI)

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk

    2009-02-15

    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na{sub 2}SiO{sub 3}) solutions were used as activators. A mass ratio of 1.5 Na{sub 2}SiO{sub 3}/NaOH and three concentrations of NaOH (5, 10, and 15 M) were used; the geopolymers were cured at 65 deg. C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  6. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    SciTech Connect (OSTI)

    Rui Afonso; R. Hurt; I. Kulaots

    2006-03-01

    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  7. Hydrothermal reaction of fly ash. Final report

    SciTech Connect (OSTI)

    Brown, P.W.

    1994-12-31

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  8. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect (OSTI)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi , Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  9. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, Milton; Wai, Chien M.; Nagy, Zoltan

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  10. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  11. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    SciTech Connect (OSTI)

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. Here, we measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. We made all measurements in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. Finally, an understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  12. Uncovering Fundamental Ash-Formation Mechanisms and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results illustrate ash particle growth and formation pathways, and influence of lubricant chemistry and exhaust conditions on fundamental ash properties deer12kamp.pdf (9.21 MB) ...

  13. Recovery Act Workers Complete Environmental Cleanup of Coal Ash...

    Office of Environmental Management (EM)

    Site (SRS) recently cleaned up a 17- acre basin containing coal ash residues from Cold War ... Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin U.S. Depar tment of ...

  14. Market assessment and technical feasibility study of PFBC ash use

    SciTech Connect (OSTI)

    Smith, V.E.; Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Wheeldon, J.

    1994-10-01

    The overall objectives of this study are to determine the market potential and the technical feasibility of using PFBC ash in high volume ash use applications. The information will be of direct use to the utility industry in assessing the economics of PFBC power generation in light of ash disposal avoidance through ash marketing. In addition, the research is expected to result in the generation of generic data on the use of PFBC ash that could lead to novel processing options and procedures. The specific objectives of the proposed research and demonstration effort are: Define resent and future market potential of PFBC ash for a range of applications (Phase I); assess the technical feasibility of PFBC ash use in construction, civil engineering and agricultural applications (Phase II); and demonstrate the most promising of the market and ash use options in full-scale field demonstrations (Phase III).

  15. High carbon fly ash finds uses in highway construction

    SciTech Connect (OSTI)

    Wen, H.; Patton, R.

    2008-07-01

    The beneficial use of high carbon fly ash in a highway construction project is discussed. The fly ash also had a relatively high content of mercury and some other heavy metals. 1 fig., 4 photos.

  16. Eco-friendly fly ash utilization: potential for land application

    SciTech Connect (OSTI)

    Malik, A.; Thapliyal, A.

    2009-07-01

    The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants like mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.

  17. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect (OSTI)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  18. Using fly ash to mitigate explosions

    SciTech Connect (OSTI)

    Taulbee, D.

    2008-07-01

    In 2005 the University of Kentucky's Center for Applied Energy Research was given funding to evaluate the use of coal combustion by-products (CCBs) to reduce the explosive potential of ammonium nitrate (AN) fertilizers. Fly ash C (FAC), fly ash F (FAF) and flue gas desulfurization by-product (FGD) were evaluated. It was found that applying a CCB coating to the AN particles at concentrations of 5 wt% or greater prevented the AN explosion from propagating. The article reports on results so far and outlines further work to be done. 6 figs.

  19. Fly Ash Characteristics and Carbon Sequestration Potential

    SciTech Connect (OSTI)

    Palumbo, Anthony V.; Amonette, James E.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Daniels, William L.

    2007-07-20

    Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an an opportunity and funding to utilize fly ash in the reclamation of mine soils and other degraded lands. However, concerns associated with the use of fly ash must be addressed before this practice can be widely adopted. There is a vast extent of degraded lands across the world that has some degree of potential for use in carbon sequestration. Degraded lands comprise nearly 2 X 109 ha of land throughout the world.7 Although the potential is obviously smaller in the United States, there are still approximately 4 X 106 ha of degraded lands that previously resulted from mining operations14 and an additional 1.4 X 108 ha of poorly managed lands. Thus, according to Lal and others the potential is to sequester approximately 11 Pg of carbon over the next 50 years.1,10 The realization of this potential will likely be dependent on economic incentives and the use of soil amendments such as fly ash. There are many potential benefits documented for the use of fly ash as a soil amendment. For example, fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, HCO3-, Cl- and basic cations, although some effects are notably decreased in high-clay soils.8,13,9 The potential is that these effects will promote increased growth of plants (either trees or grasses) and result in greater carbon accumulation in the soil than in untreated degraded soils. This paper addresses the potential for carbon sequestration in soils amended with fly ash and examines some of the issues that should be considered in planning this option. We describe retrospective studies of soil carbon accumulation on

  20. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    SciTech Connect (OSTI)

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  1. I!' L;I)

    Office of Legacy Management (LM)

    ".>;jy i.~jp.~[~~ i,Zz>-c C,+;) ir,i:%J :' 0 p 'd-i I /) f) ic.c iq -.I ,'c i - * w. 3'2 , phi ': r-t;, ; *.i .; I!' L;I) --, -II s;.,yE;J-~,~;~* I' ;, f: >,p.yg ,p ' .L (3 i!>;' !i.3 y/y!-; x>:-y rJgbf;..qp: \' :sF*:l,' 5-".13, -9 _ ..-;~c~-' ~;Li;-~~~~;, 3h' ;[;i-y ; c; ' 1' 1.b y&k' 2 1 , . ..l =i. 1; G.1 ;Tr.; .j. i-:. I qr:i.gky, M,C. Jp, 2.1 F... ii, Ross CENTRAL F ILES ~"CTIVE OF TXIP m --w- The 0' 0 jet% ive Of this trip xas to evaluate tkie !- .zalth

  2. Uncovering Fundamental Ash-Formation Mechanisms and Potential Means to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control the Impact on DPF Performance and Engine Efficiency | Department of Energy Uncovering Fundamental Ash-Formation Mechanisms and Potential Means to Control the Impact on DPF Performance and Engine Efficiency Uncovering Fundamental Ash-Formation Mechanisms and Potential Means to Control the Impact on DPF Performance and Engine Efficiency Results illustrate ash particle growth and formation pathways, and influence of lubricant chemistry and exhaust conditions on fundamental ash

  3. Oil ash corrosion; A review of utility boiler experience

    SciTech Connect (OSTI)

    Paul, L.D. ); Seeley, R.R. )

    1991-02-01

    In this paper a review of experience with oil ash corrosion is presented along with current design practices used to avoid excessive tube wastage. Factors influencing oil ash corrosion include fuel chemistry, boiler operation, and boiler design. These factors are interdependent and determine the corrosion behavior in utility boilers. Oil ash corrosion occurs when vanadium-containing ash deposits on boiler tube surfaces become molten. These molten ash deposits dissolve protective oxides and scales causing accelerated tube wastage. Vanadium is the major fuel constituent responsible for oil ash corrosion. Vanadium reacts with sodium, sulfur, and chlorine during combustion to produce lower melting temperature ash compositions, which accelerate tube wastage. Limiting tube metal temperatures will prevent ash deposits from becoming molten, thereby avoiding the onset of oil ash corrosion. Tube metal temperatures are limited by the use of a parallel stream flow and by limiting steam outlet temperatures. Operating a boiler with low excess air has helped avoid oil ash corrosion by altering the corrosive combustion products. Air mixing and distribution are essential to the success of this palliative action. High chromium alloys and coatings form more stable protective scaled on tubing surfaces, which result in lower oil ash corrosion rates. However, there is not material totally resistant to oil ash corrosion.

  4. Utilization of CFB fly ash for construction applications

    SciTech Connect (OSTI)

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  5. 7Li MRI of Li batteries reveals location of microstructural lithium...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: 7Li MRI of Li batteries reveals location of microstructural lithium Citation Details In-Document Search Title: 7Li MRI of Li ...

  6. Phase relationship in coal ash corrosion products

    SciTech Connect (OSTI)

    Kalmanovitch, D.

    1996-12-31

    The corrosion of heat transfer surfaces in coal-fired utility boilers is a major concern to the efficient operation of these units. Despite the importance of the corrosion there has been limited research on the relationship between the ash components on the tube surface and the interactions and reactions between the various components and the steel surface. Mechanisms such as molten phase corrosion, sulfidation, and high temperature oxidation have been identified as leading to extensive wastage oftube metal. However, while the corrosion process can be identified using techniques such as metallography and x-ray diffraction there is limited insight into the role ofthe coal mineralogy and ash deposits on the surface in the corrosion process. This paper describes research into the formation of molten or sernimolten phases within ash deposits which are associated with corrosion of superheater and reheater fireside surfaces. For example, the phases potassium pyrosulfate (K{sub 2}S{sub 2}O{sub 7}) and potassium aluminum sulfate (K{sub 2}Al{sub 2}SO{sub 7}) have been determined by x-ray diffraction to be present in deposits where fireside corrosion has occurred. However, both these phases are not directly derived from coal minerals or the common matrix observed in ash deposits. The examination of the reactions and interactions within deposits which result in the formation of these and other phases associated with corrosion will be discussed in the paper.

  7. Screening technology reduces ash in spiral circuits

    SciTech Connect (OSTI)

    Brodzik, P.

    2007-05-15

    In 2006, the James River Coal Co. selected the Stack Sizer to remove the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits at the McCoy-Elkhorn Bevins Branch prep plant and at the Blue Diamond Leatherwood prep plant in Kentucky. The Stack Sizer is a multi-deck, high-frequency vibrating screen capable of separations as fine as 75 microns when fitted with Derrick Corp.'s patented high open area urethane screen panels. Full-scale lab tests and more than 10 months of continuous production have confirmed that the Stack Sizer fitted with Derrick 100 micron urethane screen panels consistently produces a clean coal fraction that ranges from 8 to 10% ash. Currently, each five-deck Stack Sizer operating at the Bevins Branch and Leatherwood prep plants is producing approximately 33 tons per hour of clean coal containing about 9% ash. This represents a clean coal yield of about 75% and an ash reduction of about 11% from the feed slurry. 3 figs. 2 tabs.

  8. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    SciTech Connect (OSTI)

    Eppler, F.H.; Yim, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1998-09-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al{sub 2}O{sub 3} to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition.

  9. An experimental investigation of the mass-transfer mechanisms in sulfur dioxide absorption in lime solutions

    SciTech Connect (OSTI)

    Markussen, J.M.

    1991-04-01

    The experiments were performed at gas temperatures from 24 to 114C using a wetted-wall column apparatus with SO{sub 2} concentrations ranging from 1800 to 7350 ppM, calcium concentrations of 2.82 {times} 10{sup {minus}6} to 1. 25 {times} 10{sup {minus}5} gmol/cm{sup 3}, and column heights of 14 to 29 cm. Inlet SO{sub 2} content had a significant effect on rate of SO{sub 2} absorption, with the average absorption flux increasing with increasing SO{sub 2} gas concentration. Increasing gas temperature did not significantly affect the rate of SO{sub 2} absorption. Presence of lime in solution enhanced the average SO{sub 2} absorption flux and appeared to maintain the SO{sub 2} absorption capacity of the liquid, thereby negating the effect of decreasing SO{sub 2} solubility in water with increasing temperature. Slight increases in both the system`s gas-phase resistances and enhancement factors were observed with increasing gas temperature. Under the conditions studied, the mass-transfer resistance in the SO{sub 2}-lime solution system was predominantly liquid-phase controlled, with observed gas-phase resistances ranging up to 42% of total. Comparison to literature shows that the system mass-transfer mechanism can be dominated by either the gas-phase resistance or the liquid-phase resistance, depending upon the gas-liquid contact times. Thus, results support the need to incorporate both gas- and liquid-phase mass-transfer resistances when modeling the absorption of SO{sub 2} in lime solutions and lime slurries, such as that occurring in the constant rate drying stage of the spray drying flue gas desulfurization process.

  10. An experimental investigation of the mass-transfer mechanisms in sulfur dioxide absorption in lime solutions

    SciTech Connect (OSTI)

    Markussen, J.M.

    1991-04-01

    The experiments were performed at gas temperatures from 24 to 114C using a wetted-wall column apparatus with SO[sub 2] concentrations ranging from 1800 to 7350 ppM, calcium concentrations of 2.82 [times] 10[sup [minus]6] to 1. 25 [times] 10[sup [minus]5] gmol/cm[sup 3], and column heights of 14 to 29 cm. Inlet SO[sub 2] content had a significant effect on rate of SO[sub 2] absorption, with the average absorption flux increasing with increasing SO[sub 2] gas concentration. Increasing gas temperature did not significantly affect the rate of SO[sub 2] absorption. Presence of lime in solution enhanced the average SO[sub 2] absorption flux and appeared to maintain the SO[sub 2] absorption capacity of the liquid, thereby negating the effect of decreasing SO[sub 2] solubility in water with increasing temperature. Slight increases in both the system's gas-phase resistances and enhancement factors were observed with increasing gas temperature. Under the conditions studied, the mass-transfer resistance in the SO[sub 2]-lime solution system was predominantly liquid-phase controlled, with observed gas-phase resistances ranging up to 42% of total. Comparison to literature shows that the system mass-transfer mechanism can be dominated by either the gas-phase resistance or the liquid-phase resistance, depending upon the gas-liquid contact times. Thus, results support the need to incorporate both gas- and liquid-phase mass-transfer resistances when modeling the absorption of SO[sub 2] in lime solutions and lime slurries, such as that occurring in the constant rate drying stage of the spray drying flue gas desulfurization process.

  11. UJ LiJ

    Office of Legacy Management (LM)

    o >- tD o UJ :> LiJ o W ~ Central Nevada-23 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Federal Center, Denver, Colorado 80225 ANALYSIS OF HYDRAULIC TESTS IN HOT CREEK VALLEY, NEVADA June 1970 Open-file report Prepared Under Contract AT(29-2)-474 for the Nevada Operations Office U.S. Atomic Energy Commission USGS-474-82 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor

  12. A=11Li (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E(11Li) 246 MeVA, analysis of a complete three-body kinematical measurement of 11Li breakup on a 12C target indicates the reaction mechanism is 11Li inelastic scattering to...

  13. Application of a computational glass model to the shock response of soda-lime glass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gorfain, Joshua E.; Key, Christopher T.; Alexander, C. Scott

    2016-04-20

    This article details the implementation and application of the glass-specific computational constitutive model by Holmquist and Johnson [1] to simulate the dynamic response of soda-lime glass under high rate and high pressure shock conditions. The predictive capabilities of this model are assessed through comparison of experimental data with numerical results from computations using the CTH shock physics code. The formulation of this glass model is reviewed in the context of its implementation within CTH. Using a variety of experimental data compiled from the open literature, a complete parameterization of the model describing the observed behavior of soda-lime glass is developed.more » Simulation results using the calibrated soda-lime glass model are compared to flyer plate and Taylor rod impact experimental data covering a range of impact and failure conditions spanning an order of magnitude in velocity and pressure. In conclusion, the complex behavior observed in the experimental testing is captured well in the computations, demonstrating the capability of the glass model within CTH.« less

  14. Stabilizing soft fine-grained soils with fly ash

    SciTech Connect (OSTI)

    Edil, T.B.; Acosta, H.A.; Benson, C.H.

    2006-03-15

    The objective of this study was to evaluate the effectiveness of self-cementing fly ashes derived from combustion of subbituminous coal at electric power plants for stabilization of soft fine-grained soils. California bearing ratio (CBR) and resilient modulus (M{sub r}) tests were conducted on mixtures prepared with seven soft fine-grained soils (six inorganic soils and one organic soil) and four fly ashes. The soils were selected to represent a relatively broad range of plasticity, with plasticity indices ranging between 15 and 38. Two of the fly ashes are high quality Class C ashes (per ASTM C 618) that are normally used in Portland cement concrete. The other ashes are off-specification ashes, meaning they do not meet the Class C or Class F criteria in ASTM C 618. Tests were conducted on soils and soil-fly ash mixtures prepared at optimum water content (a standardized condition), 7% wet of optimum water content (representative of the typical in situ condition in Wisconsin), and 9-18% wet of optimum water content (representative of a very wet in situ condition). Addition of fly ash resulted in appreciable increases in the CBR and M{sub r} of the inorganic soils. For water contents 7% wet of optimum, CBRs of the soils alone ranged between 1 and 5. Addition of 10% fly ash resulted in CBRs ranging between 8 and 17, and 18% fly ash resulted in CBRs between 15 and 31. Similarly, M{sub r} of the soil alone ranged between 3 and 15 MPa at 7% wet of optimum, whereas addition of 10% fly ash resulted in M{sub r} between 12 and 60 MPa and 18% fly ash resulted in M{sub r} between 51 and 106 MPa. In contrast, except for one fly ash, addition of fly ash generally had little effect on CBR or M{sub r} of the organic soil.

  15. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect (OSTI)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.

  16. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions andmore » conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.« less

  17. Lithium Salts for Advanced Lithium Batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect (OSTI)

    Younesi, Reza; Veith, Gabriel M; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability.

  18. Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete

    SciTech Connect (OSTI)

    Wang, Shuangzhen; Baxter, Larry

    2006-08-01

    Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

  19. Role of mag-enhanced lime scrubbing in the FGD industry

    SciTech Connect (OSTI)

    Babu, M.; College, J.; Smith, K.; Stowe, D.H.

    1997-12-31

    The mag-enhanced lime scrubbing process has been in commercial use in the US since the early 1970`s. At present over 14,000 MW of coal-fired utility plants in the US burning high sulfur coal (2.5--4.0% S) utilize this process with an excellent emission compliance and cost performance record to date. Dravo Lime Company (DLC) being the largest supplier of lime to this industry continues to conduct extensive R and D in this area and provides technical support service to these users. The success of the mag-enhanced lime process is largely attributed to the dual alkali effect of the Mg-Ca ions with a very distinct role for the highly soluble Mg ion in the scrubber liquor. It is well known that the high solubility of the magnesium ions provides alkalinities in the scrubbing liquor far in excess of the limestone systems. As a result of this high alkalinity liquor the mag-lime scrubbers need a much lower liquid to gas ratio, have lower scrubber pressure drop, consume lower parasitic load, are able to handle very high inlet SO{sub 2} concentrations, show little scaling tendency, etc. The scrubbers, recirculation pumps, piping, etc., are much smaller and the systems have lower capital and operating costs over comparable limestone systems. This system typically has a high availability and the process is less severe mechanically on the scrubber, pumps, nozzles, piping than comparable limestone processes. DLC`s patented ThioClear{reg_sign} process is an improvement over the conventional Thiosorbic process in use today. The ThioClear process while providing all of the advantages of the Thiosorbic process uses a nearly clear liquor to scrub and can use an innovative Horizontal Scrubber at gas velocities of up to 7.62--9.14 m/s (25--30 FPS). This process produces an excellent quality gypsum for wall board, cement or other applications and can also produce valuable Mg(OH){sub 2} as by-product. This paper discusses the merits of Thiosorbic/ThioClear processes, innovations with

  20. Fundamental Study of Low NOx Combustion Fly Ash Utilization

    SciTech Connect (OSTI)

    E. M. Suubert; I. Kuloats; K. Smith; N. Sabanegh; R.H. Hurt; W. D. Lilly; Y. M. Gao

    1997-05-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over forty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives.

  1. Fundamental Study of Low-Nox Combustion Fly Ash Utilization

    SciTech Connect (OSTI)

    E. M. Suuberg; I. Kuloats; K. Smith; N. Sabanegh; R. H. Hurt; W. D. Lilly; Y. M. Gao

    1997-11-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over forty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives.

  2. Application of solid ash based catalysts in heterogeneous catalysis

    SciTech Connect (OSTI)

    Shaobin Wang

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe{sub 2}O{sub 3} could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H{sub 2} production, deSOx, deNOx, hydrocarbon oxidation, and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. 107 refs., 4 figs., 2 tabs.

  3. The leaching characteristics of selenium from coal fly ashes

    SciTech Connect (OSTI)

    Wang, T.; Wang, J.; Burken, J.G.; Ban, H.; Ladwig, K.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results for different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.

  4. Water quality investigation of Kingston Fossil Plant dry ash stacking

    SciTech Connect (OSTI)

    Bohac, C.E.

    1990-04-01

    Changing to a dry ash disposal systems at Kingston Fossil Plant (KFP) raises several water quality issues. The first is that removing the fly ash from the ash pond could alter the characteristics of the ash pond discharge to the river. The second concerns proper disposal of the runoff and possibly leachate from the dry ash stack. The third is that dry ash stacking might change the potential for groundwater contamination at the KFP. This report addresses each of these issues. The effects on the ash pond and its discharge are described first. The report is intended to provide reference material to TVA staff in preparation of environmental review documents for new ash disposal areas at Kingston. Although the investigation was directed toward analysis of dry stacking, considerations for other disposal options are also discussed. This report was reviewed in draft form under the title Assessment of Kingston Fossil Plant Dry Ash Stacking on the Ash Pond and Groundwater Quality.'' 11 refs., 3 figs., 18 tabs.

  5. Helium transport and ash control studies

    SciTech Connect (OSTI)

    Miley, G.H.

    1992-01-01

    The Primary goal of this research is to develop a helium (ash) transport scaling law based on experimental data from devices such as TFTR and JET. To illustrate the importance of this, we have studied ash accumulation effects on ignition requirements using a O-D transport model. Ash accumulation is characterized in the model by the ratio of the helium particle confinement time to the energy confinement time t{sub {alpha}}/t{sub E}. Results show that the ignition window'' shrinks rapidly as t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E}. A best'' value for t{sub {alpha}}/t{sub E} will ultimately be determined from our scaling law studies. A helium transport scaling law is being sought that expresses the transport coefficients (D{sub {alpha}}, V{sub {alpha}}) as a function of the local plasma parameters. This is necessary for use in transport code calculations, e.g. for BALDUR. Based on experimental data from L-mode plasma operation in TFTR, a scaling law to a power law expression has been obtained using a least-square fit method. It is found that the transport coefficients are strongly affected by the local magnetic field and safety factor q. A preliminary conclusion from this work is that active control of ash buildup must be developed. To study control, we have developed a O-D plasma model which employs a simple pole-placement control model. Some preliminary calculations with this model are presented.

  6. Manufacture of ceramic tiles from fly ash

    DOE Patents [OSTI]

    Hnat, James G.; Mathur, Akshay; Simpson, James C.

    1999-01-01

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.

  7. Manufacture of ceramic tiles from fly ash

    DOE Patents [OSTI]

    Hnat, J.G.; Mathur, A.; Simpson, J.C.

    1999-08-10

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

  8. Eirich technology for the preparation of ashes

    SciTech Connect (OSTI)

    Eirich, G.

    1994-12-31

    The paper describes a mixer manufactured by Maschinenfabrik Gustav Eirich that can be used in the agglomeration of power plant ashes and residues. No matter whether the power plant burns coal, fuel oil, wood, peat, or garbage or whether the power plant plans to dispose or utilize the residue, most flowsheets will contain an agglomeration step. The paper describes some of the uses to which this mixer can be put.

  9. Recovery of Li from alloys of Al- Li and Li- Al using engineered scavenger compounds

    DOE Patents [OSTI]

    Riley, W. D.; Jong, B. W.; Collins, W. K.; Gerdemann, S. J.

    1994-01-01

    A method of producing lithium of high purity from lithium aluminum alloys using an engineered scavenger compound, comprising: I) preparing an engineered scavenger compound by: a) mixing and heating compounds of TiO2 and Li2CO3 at a temperature sufficient to dry the compounds and convert Li.sub.2 CO.sub.3 to Li.sub.2 O; and b) mixing and heating the compounds at a temperature sufficient to produce a scavenger Li.sub.2 O.3TiO.sub.2 compound; II) loading the scavenger into one of two electrode baskets in a three electrode cell reactor and placing an Al-Li alloy in a second electrode basket of the three electrode cell reactor; III) heating the cell to a temperature sufficient to enable a mixture of KCl-LiCl contained in a crucible in the cell to reach its melting point and become a molten bath; IV) immersing the baskets in the bath until an electrical connection is made between the baskets to charge the scavenger compound with Li until there is an initial current and voltage followed by a fall off ending current and voltage; and V) making a connection between the basket electrode containing engineered scavenger compound and a steel rod electrode disposed between the basket electrodes and applying a current to cause Li to leave the scavenger compound and become electrodeposited on the steel rod electrode.

  10. Phase relationships in coal ash corrosion products

    SciTech Connect (OSTI)

    Kalmanovitch, D.

    1996-10-01

    The corrosion of heat transfer surfaces in coal-fired utility boilers is a major concern to the efficient operation of these units. Despite the importance of the corrosion there has been limited research on the relationship between the ash components on the tube surface and the interactions and reactions between the various components and the steel surface. Mechanisms such as molten phase corrosion, sulfidation, and high temperature oxidation have been identified as leading to extensive wastage of tube metal. This paper describes research into the formation of molten or semimolten phases within ash deposits which are associated with corrosion of superheater and reheater fireside surfaces. For example, the phases potassium pyrosulfate (K{sub 2}S{sub 2}O{sub 7}) and potassium aluminum sulfate (K{sub 2}Al{sub 2}SO{sub 7}) have been determined by x-ray diffraction to be present in deposits where fireside corrosion has occurred. However, both these phases are not directly derived from coal minerals or the common matrix observed in ash deposits. The examination of the reactions and interactions within deposits which result a the formation of these and other phases associated with corrosion will be discussed in the paper.

  11. Market assessment of PFBC ash use

    SciTech Connect (OSTI)

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBC technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).

  12. A=14Li (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    86AJ01) (Not illustrated) 14Li has not been observed. The calculated mass excess is 72.29 MeV: see (1981AJ01). 14Li is then particle unstable with respect to decay into 13Li + n and 12Li + 2n by 3.88 and 3.22 MeV, respectively

  13. A=15Li (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1AJ01) (Not illustrated) 15Li has not been observed: its atomic mass excess is calculated to be 81.60 MeV. It is then unstable with respect to decay into 14Li + n and 13Li + 2n by 1.24 and 3.90 MeV, respectively (1974TH01). See also 13Li

  14. Development of Artificial Ash Accelerated Accumulation Test | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Artificial Ash Accelerated Accumulation Test Development of Artificial Ash Accelerated Accumulation Test Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-04_fujii.pdf (138.91 KB) More Documents & Publications Impact of Honeycomb Ceramics Geometrical Cell Design on Urea SCR System Controlled Experiments on the Effects of Lubricant/Additive (Low-Ash, Ashless) Characteristics on DPF

  15. Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions: | Department of Energy Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_plumley.pdf (398.5 KB) More Documents & Publications Detailed Characterization of Lubricant-Derived Ash-Related Species in Diesel Exhaust and Aftertreatment Systems Unraveling DPF Degradation using Chemical

  16. Recovery of aluminum and other metal values from fly ash

    DOE Patents [OSTI]

    McDowell, William J.; Seeley, Forest G.

    1981-01-01

    The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  17. Recovery of aluminum and other metal values from fly ash

    DOE Patents [OSTI]

    McDowell, W.J.; Seeley, F.G.

    1979-11-01

    The invention relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  18. Utilization of ash from municipal solid waste combustion

    SciTech Connect (OSTI)

    Jones, C.; Hahn, J.; Magee, B.; Yuen, N.; Sandefur, K.; Tom, J.; Yap, C.

    1999-09-01

    This ash study investigated the beneficial use of municipal waste combustion combined ash from the H-POWER facility in Oahu. These uses were grouped into intermediate cover for final closure of the Waipahu landfill, daily cover at the Waimanalo Gulch Landfill, and partial replacement for aggregate in asphalt for road paving. All proposed uses examine combined fly and bottom ash from a modern waste-to-energy facility that meets requirements of the Clean Air Act Amendments for Maximum Achievable Control Technology.

  19. High Carbon Fly Ash Treatment | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Carbon Fly Ash Treatment NETL Collaborators Invent Method for Treating High Carbon Fly Ash The U.S. Patent and Trademark Office has assigned Patent No. 8,440,015 to researchers from Waynesburg University and the National Energy Technology Laboratory (NETL) for a thermal method that retains yet passivates carbon and/or other components in fly ash. John Baltrus, a research chemist at NETL, along with Professor Robert LaCount and Douglas Kern of Waynesburg University cooperated on the

  20. Development of an Accelerated Ash-Loading Protocol for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  1. Ashe County, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Ashe County, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.4339674, -81.4718387 Show Map Loading map......

  2. Ash Fork, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ash Fork, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2250114, -112.4840675 Show Map Loading map... "minzoom":false,"mappingser...

  3. Reducing Lubricant Ash Impact on Exhaust Aftertreatment with...

    Office of Environmental Management (EM)

    Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Under the test conditions used in this study, the strong base filter had a significant and ...

  4. Retention of elemental mercury in fly ashes in different atmospheres

    SciTech Connect (OSTI)

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. In this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.

  5. Data Summary Report for Hanford Site Coal Ash Characterization

    SciTech Connect (OSTI)

    Sulloway, H. M.

    2012-03-06

    The purpose of this report is to present data and findings from sampling and analysis of five distinct areas of coal ash within the Hanford Site River Corridor

  6. Minimizing Lubricant-Ash Requirement and Impact on Emission Aftertreat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion ...

  7. Using fly ash and natural pozzolans in long life structures

    SciTech Connect (OSTI)

    Ramme, B.; Jacobsmeyer, J.

    2008-07-01

    The use of fly ash and natural pozzolans in various structures (roads, temples, bridges, buildings etc.) in the USA and Canada is discussed. 22 refs., 4 photos.

  8. Laboratory evaluation of limestone and lime neutralization of acidic uranium mill tailings solution. Progress report

    SciTech Connect (OSTI)

    Opitz, B.E.; Dodson, M.E.; Serne, R.J.

    1984-02-01

    Experiments were conducted to evaluate a two-step neutralization scheme for treatment of acidic uranium mill tailings solutions. Tailings solutions from the Lucky Mc Mill and Exxon Highland Mill, both in Wyoming, were neutralized with limestone, CaCO/sub 3/, to an intermediate pH of 4.0 or 5.0, followed by lime, Ca(OH)/sub 2/, neutralization to pH 7.3. The combination limestone/lime treatment methods, CaCO/sub 3/ neutralization to pH 4 followed by neutralization with Ca(OH)/sub 2/ to pH 7.3 resulted in the highest quality effluent solution with respect to EPA's water quality guidelines. The combination method is the most cost-effective treatment procedure tested in our studies. Neutralization experiments to evaluate the optimum solution pH for contaminant removal were performed on the same two tailings solutions using only lime Ca(OH)/sub 2/ as the neutralizing agent. The data indicate solution neutralization above pH 7.3 does not significantly increase removal of pH dependent contaminants from solution. Column leaching experiments were performed on the neutralized sludge material (the precipitated solid material which forms as the acidic tailings solutions are neutralized to pH 4 or above). The sludges were contacted with laboratory prepared synthetic ground water until several effluent pore volumes were collected. Effluent solutions were analyzed for macro ions, trace metals and radionuclides in an effort to evaluate the long term effectiveness of attenuating contaminants in sludges formed during solution neutralization. Neutralized sludge leaching experiments indicate that Ca, Na, Mg, Se, Cl, and SO/sub 4/ are the only constituents which show solution concentrations significantly higher than the synthetic ground water in the early pore volumes of long-term leaching studies.

  9. Microsoft Word - li_abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will be served at 3:30 pm A few new issues regarding the density dependence of nuclear symmetry energy Professor Bao-An Li Department of Physics and Astronomy, Texas A&M ...

  10. Women @ Energy: Yan Li | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yan Li Women @ Energy: Yan Li March 12, 2013 - 9:23am Addthis Yan Li is a Computational Physicist at the Computational Science Center at Brookhaven National Laboratory. Yan Li is a Computational Physicist at the Computational Science Center at Brookhaven National Laboratory. Yan Li is a Computational Physicist at the Computational Science Center at Brookhaven National Laboratory. Her work is mainly focused on developing and applying advanced computational tools to investigate material properties

  11. Liang Li | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liang Li Postdoctoral Appointee (Supervisor, Maria Chan) Current research focuses on ab-initio theoretical studies on hybrid lithium-ion/lithium-oxygen battery materials and photocatalytic reduction of CO2. News Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution Telephone 630.252.2788 Fax 630.252.4646 E-mail liangli@anl.gov CV/Resume PDF icon Liang_Li

  12. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect (OSTI)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  13. Anion Coordination Interactions in Solvates with the Lithium Salts LiDCTA and LiTDI

    SciTech Connect (OSTI)

    McOwen, Dennis W.; Delp, Samuel A.; Paillard, Elie; Herriot, Cristelle; Han, Sang D.; Boyle, Paul D.; Sommer, Roger D.; Henderson, Wesley A.

    2014-04-17

    Lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) and lithium 2-trifluoromethyl-4,5-dicyanoimidazole (LiTDI) are two salts proposed for lithium battery electrolyte applications, but little is known about the manner in which the DCTA- and TDI- anions coordinate Li+ cations. To explore this in-depth, crystal structures are reported here for two solvates with LiDCTA: (G2)1:LiDCTA and (G1)1:LiDCTA with diglyme and monoglyme, respectively, and seven solvates with LiTDI: (G1)2:LiTDI, (G2)2:LiTDI, (G3)1:LiTDI, (THF)1:LiTDI, (EC)1:LiTDI, (PC)1:LiTDI and (DMC)1/2:LiTDI with monoglyme, diglyme, triglyme, tetrahydrofuran, ethylene carbonate, propylene carbonate and dimethyl carbonate, respectively. These latter solvate structures are compared with the previously reported acetonitrile (AN)2:LiTDI structure. The solvates indicate that the LiTDI salt is much less associated than the LiDCTA salt and that the ions in LiTDI, when aggregated in solvates, have a very similar TDI-...Li+ cation mode of coordination through both the anion ring and cyano nitrogen atoms. Such coordination facilitates the formation of polymeric ion aggregates, instead of dimers. Insight into such ion speciation is instrumental for understanding the electrolyte properties of aprotic solvent mixtures with these salts.

  14. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    SciTech Connect (OSTI)

    Okada, Takashi; Tomikawa, Hiroki

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.

  15. The recycling of the coal fly ash in glass production

    SciTech Connect (OSTI)

    Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A.

    2006-09-15

    The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

  16. Optimizing the use of fly ash in concrete

    SciTech Connect (OSTI)

    Thomas, M.

    2007-07-01

    The optimum amount of fly ash varies not only with the application, but also with composition and proportions of all the materials in the concrete mixture (especially the fly ash), the conditions during placing (especially temperature), construction practices (for example, finishing and curing) and the exposure conditions. This document discusses issues related to using low to very high levels of fly ash in concrete and provides guidance for the use of fly ash without compromising the construction process or the quality of the finished product. The nature of fly ashes including their physical, mineralogical and chemical properties is covered in detail, as well as fly ash variability due to coal composition and plant operating conditions. A discussion on the effects of fly ash characteristics on fresh and hardened concrete properties includes; workability, bleeding, air entrainment, setting time, heat of hydration, compressive strength development, creep, drying shrinkage, abrasion resistance, permeability, resistance to chlorides, alkali-silica reaction (ASR), sulfate resistance, carbonation, and resistance to freezing and thawing and deicer salt scaling. Case studies were selected as examples of some of the more demanding applications of fly ash concrete for ASR mitigation, chloride resistance, and green building.

  17. Fly ash and coal mineral matter surface transformations during heating

    SciTech Connect (OSTI)

    Baer, D R; Smith, R D

    1982-05-01

    A study is reported of surface segregation phenomena for fly ash and aluminosilicates representative of coal mineral matter during heating. The materials studied included a 20-..mu..m average diameter fly ash powder, a glass prepared from the fly ash, and Ca- and K-rich aluminosilicate minerals. The samples were heated both in air and under vacuum for extended periods at temperatures up to 1100/sup 0/C. XPS, Auger and SIMS methods were used to obtain relative surface elemental concentrations for major and minor components and depth profiles for some of the samples. Major differences were noted between samples heated in air (oxidizing) and those heated in vacuum (reducing) environments. For the fly ash glass heated in air Fe, Ti and Mg become enriched on the surfaces while heating in vacuum leads to Si surface segregation. Different trends upon heating were also observed for the Ca- and K-rich aluminosilicates. The results indicate two levels of surface enrichment upon the fly ash glass; a thin (< 500 A) layer and a thicker (1- to 2-..mu..m) layer most evident for heating in air where an Fe-rich layer is formed. The present results indicate that the rates of surface segregation may not be sufficiently fast on the time scale of fly ash formation to result in equilibrium surface segregation. It is concluded that condensation processes during fly ash formation probably play a major role in the observed fly ash surface enrichments.

  18. Hot-Gas Filter Ash Characterization Project

    SciTech Connect (OSTI)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  19. P LI I CI L I

    Office of Legacy Management (LM)

    ... Coal ash usually has slightly elevated levels of naturally occurring uranium, radium, and thorium which are concentrated during coal combustion. Nevertheless, several auger samples ...

  20. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect (OSTI)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

    2002-09-10

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  1. A=12Li (1975AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    75AJ02) (Not illustrated) 12Li is not observed in the 4.8 GeV proton bombardment of a uranium target: it is particle unstable (1974BO05). Its atomic mass excess is therefore > 49.0 MeV. (1974TH01) calculate the mass excess of 12Li to be 52.92 MeV. 12Li would then be unstable with respect to 11Li + n, 10Li + 2n and 9Li + 3n by 3.9, 3.68 and 3.74 MeV, respectively. See also (1972TH13, 1973BO30, 1974IR04

  2. A=12Li (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    90AJ01) (Not illustrated) 12Li is not observed in the 4.8 GeV proton bombardment of a uranium target: it is particle unstable. The calculated value of its mass excess is 52.93 MeV [see (1980AJ01)]: 12Li would then be unstable with respect to 11Li + n ,10Li + 2n and 9Li + 3n by 4.01, 2.96 and 3.76 MeV, respectively. The ground state of 12Li is predicted to have Jπ = 2- (1988POZS, 1985PO10; theor.). See also (1980AJ01

  3. A=4Li (1992TI02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li (1992TI02) (See Energy Level Diagrams for 4Li) GENERAL: The stability of 8B against particle decay (1988AJ01), in particular against decay into 4He + 4Li, sets an upper limit of 1.7 MeV on the separation energy of 4Li into p + 3He (1952SH44). The instability of 4H against particle decay (see 4H, GENERAL section) makes the particle stability of 4Li very unlikely, since the Coulomb energy of 4Li is approximately 1.7 MeV larger than that of 4H (1963WE10), and the nuclear energies should be

  4. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  5. Assessment of the impact of radionuclides in coal ash

    SciTech Connect (OSTI)

    Styron, C.E.; Bishop, C.T.; Casella, V.R.; Jenkins, P.H.; Yanko, W.H.

    1981-01-01

    An assessment of the potential environmental and health impacts of radionuclides in the coal fuel cycle is being conducted at Mound. This paper describes our studies evaluating the potential for migration of radionuclides from ash disposal sites. Studies at a power plant burning western US coal dealt with an assessment of potential radiation doses from coal ash ponds and leachate discharges of radionuclides from the ponds. Emanation of radon-222 from the ash is relatively low. The emanation of radon-222 from the ash pond (radium-226 at 4.5 pCi/g) is predicted to be about six times less than from soil (radium-226 at 1 pCi/g). Ash with radium-226 at 25 pCi/g would approximate emanation of radon-222 from soil. At 1000 m from the center of the ash pond area, radon-222 from the ash pond is predicted to be 1000 to 6000 times less than background (0.1 to 0.5 pCi/liter). Pathways exist for transport of radionuclides leached from ash into the aquifer beneath the holding ponds, but concentrations of radionuclides in water leaving the pond are lower than concentrations in groundwater which is upgradient of the ponds. Leachability of the ash is quite low, on the order of 0.002% in one month, and flow of ash sluicing water (3% of the volume of the ponds each day) has actually diluted normal background concentrations of radionuclides in the aquifer between the ponds and the adjacent river.

  6. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect (OSTI)

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases

  7. Fluidization characteristics of power-plant fly ashes and fly ash-charcoal mixtures. [MS Thesis; 40 references

    SciTech Connect (OSTI)

    Nguyen, C.T.

    1980-03-01

    As a part of the continuing research on aluminum recovery from fly ash by HiChlor process, a plexiglass fluidization column system was constructed for measurement of fluidization parameters for power-plant fly ashes and fly ash-charcoal mixtures. Several bituminous and subbituminous coal fly ashes were tested and large differences in fluidization characteristics were observed. Fly ashes which were mechanically collected fluidized uniformly at low gas flow rates. Most fly ashes which were electrostatically precipitated exhibited channeling tendency and did not fluidize uniformly. Fluidization characteristics of electrostatically collected ashes improve when the finely divided charcoal powder is added to the mixture. The fluidization of the mixture was aided initially by a mechanical stirrer. Once the fluidization had succeeded, the beds were ready to fluidize without the assistance of a mechanical action. Smooth fluidization and large bed expansion were usually observed. The effects of charcoal size and aspect ratio on fluidization characteristics of the mixtures were also investigated. Fluidization characteristics of a fly ash-coal mixture were tested. The mixture fluidized only after being oven-dried for a few days.

  8. Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor

    SciTech Connect (OSTI)

    Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W.

    2007-06-15

    The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

  9. Construction Consultants, L.I., Inc.

    Office of Environmental Management (EM)

    Mr. Eric Baumack Senior Project Manager Construction Consultants L.I., Inc. 36 East 2 nd ... worker employed by a subcontractor to Construction Consultants L.I., Inc. (CCLI) at the ...

  10. A=11Li (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    80AJ01) (See the Isobar Diagram for 11Li) 11Li has been observed in the bombardment of iridium by 24 GeV protons. Its mass excess is 40.94 ± 0.08 MeV (1975TH08). The cross section for its formation is ~ 50 μb (1976TH1A). 11Li is bound: Eb for break up into 9Li + 2n and 10Li + n are 158 ± 80 and 960 ± 250 keV, respectively [see (1979AJ01) for discussions of the masses of 9Li and 10Li]. The half-life of 11Li is 8.5 ± 0.2 msec (1974RO31): it decays to neutron unstable states of 11Be [Pn =

  11. A=10Li (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2004TI06) (See Energy Level Diagrams for 10Li) GENERAL: References to articles on general properties of 10Li published since the previous review (1988AJ01) are grouped into...

  12. A=18Li (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li (1995TI07) (Not illustrated) 18Li has not been observed. Shell model calculations described in (1988POZS) predict the ground-state magentic dipole moment and charge and matter radii.

  13. Mutagenicity and genotoxicity of coal fly ash water leachate

    SciTech Connect (OSTI)

    Chakraborty, R.; Mukherjee, A.

    2009-03-15

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals - sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significantconcentration-dependent increases in DNA damage in whole blood cells, lymphocytes, and in Nicotiana plants. The comet parameters show increases in tail DNA percentage (%), tail length (mu m), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  14. Water holding capacities of fly ashes: Effect of size fractionation

    SciTech Connect (OSTI)

    Sarkar, A.; Rano, R.

    2007-07-01

    Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by the one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.

  15. Characterization and possible uses of ashes from wastewater treatment plants

    SciTech Connect (OSTI)

    Merino, Ignacio; Arevalo, Luis F. . E-mail: fromero@ehu.es

    2005-07-01

    This work, on the ashes from the wastewater treatment plant of Galindo (Vizcaya, Spain), has been outlined with the purpose of finding their physico-chemical properties and suggesting possible applications. Ashes contain important quantities of iron, calcium, silica, alumina and phosphates. X-Ray diffraction data make it possible to estimate the mineralogical compositions of the original ashes and also, after thermal treatment at 1200 and 1300 deg. C, the main reactions occurring in thermal treatment. Particle size analysis makes it possible to classify ashes as a very fine powdered material. The thermal treatment leads to a densification of the material and provokes losses of weight mainly due to the elimination of water, carbon dioxide and sulphur trioxide. Application tests show that ashes are not suitable for landfill and similar applications, because of their plastic properties. Testing for pozzolanic character, after the ashes had been heated at 1200 deg. C, did not lead to a strong material probably due to low contents in silica and alumina or to requiring a higher heating temperature. Thermal treatment leads to densification of the material with a considerable increase of compressive strength of the probes. The use of additives (clays and powdered glass) to improve ceramic properties of ashes will be the aim of a future work.

  16. Coal Ash Corrosion Resistant Materials Testing Program

    SciTech Connect (OSTI)

    McDonald, D K

    2003-04-22

    The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles' Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

  17. A=20Li (1998TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li (1998TI06) (Not observed) See (1977CE05, 1983ANZQ, 1986AN07, 1987SIZX).

  18. Ash formation, deposition, corrosion, and erosion in conventional boilers

    SciTech Connect (OSTI)

    Benson, S.A.; Jones, M.L.

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  19. A=14Li (1976AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    76AJ04) (Not illustrated) 14Li has not been observed: it is calculated to be particle unstable with a binding energy of -2.66 MeV for decay into 13Li + n and of -3.23 MeV for decay into 12Li + 2n. The calculated mass excess is 72.29 MeV (1974TH01)

  20. A=15Li (1976AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    76AJ04) (Not illustrated) 15Li has not been observed: its atomic mass excess is calculated to be 81.60 MeV. It is then unstable with respect to decay into 14Li + n and 13Li + 2n by 1.24 and 3.90 MeV, respectively (1974TH01)

  1. A=15Li (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ01) (Not illustrated) 15Li has not been observed. Its atomic mass excess is calculated to be 81.60 MeV: see (1981AJ01). It is then unstable with respect to decay into 14Li + n and 13Li + 2n by 1.24 and 3.90 MeV, repsectively

  2. A=8Li (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p)8Li Qm 0.80079 Angular distributions have been obtained at Et 23 MeV for the proton groups to 8Li*(0, 0.98, 2.26, 6.54 0.03); cm for 8Li*(2.26, 6.54) are 35 10 and 35...

  3. A=8Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the geometric value, supports the hypothesis that 7Li may be described as an ( + t) cluster (RO62C). See also (AL63N, BA63O, BR63M, VA64G). 9. 7Li(d, p)8Li Qm -0.192...

  4. A=11Li (1975AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by GeV protons. Its mass excess is 40.9 0.1 MeV (1973KL1C). 11Li is bound: Eb for breakup into 9Li + 2n and 10Li + n are 0.2 and 0.3 MeV, respectively see (1974AJ01) for a...

  5. A=13Li (1976AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13Li is predicted to have an atomic mass excess of 61.56 MeV: it is then unstable for breakup into 12Li + n and 11Li + 2n by 0.6 and 4.5 MeV, respectively (1974TH01). The modified...

  6. A=13Li (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13Li is predicted to have an atomic mass excess of 61.56 MeV: it is then unstable for breakup into 12Li + n and 11Li + 2n by 0.6 and 4.5 MeV, respectively (1974TH01). The modified...

  7. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect (OSTI)

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  8. Recovery of iron oxide from coal fly ash

    DOE Patents [OSTI]

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  9. Novel microorganism for selective separation of coal from pyrite and ash. Final report

    SciTech Connect (OSTI)

    Misra, M.; Smith, R.W.

    1995-09-01

    The separation of fine coal from ash and pyrite was evaluated using a microorganism Mycobacterium phlei.

  10. Recovery of Li from alloys of Al-Li and Li-Al using engineered scavenger compounds

    SciTech Connect (OSTI)

    Riley, W.D.; Jong, B.W.; Collins, W.K.; Gerdemann, S.J.

    1992-01-01

    The invention relates to a process for obtaining Li metal selectively recovered from Li-Al or Al-Li alloy scrap by: (1) removing Li from aluminum-lithium alloys at temperatures between about 400 C-750 C in a molten salt bath of KC1-LiCl using lithium titanate (Li2O.3TiO2) as an engineered scavenger compound (ESC); and (2) electrodepositing of Li from the loaded ESC to a stainless steel electrode. By use of the second step, the ESC is prepared for reuse. A molten salt bath is required in the invention because of the inability of molten aluminum alloys to wet the ESC.

  11. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect (OSTI)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  12. A=12Li (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5AJ01) (Not illustrated) 12Li is not observed in the 4.8 GeV proton bombardment of a uranium target: it is particle-unstable. The calculated value of its mass excess is 52.93 MeV [see (1980AJ01)]: 12Li would then be unstable with respect to 11Li + n, 10Li + 2n and 9Li + 3n by 3.92, 2.96 and 3.76 MeV, respectively. See also (1980AJ01) and (1982KA1D, 1983ANZQ, 1984VA06

  13. A=13Li (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    86AJ01) (Not illustrated) 13Li has not been observed. The calculated value of its mass excess is 60.34 MeV [see (1981AJ01)]: 13Li would then be unstable with respect to 11Li + 2n by 3.26 MeV. (1980BO31) have not observed 13Li in the bombardment of 124Sn by 6.7 GeV protons but state that the statistics were poor in the region of interest and that it is not excluded that 13Li may be stable. See also (1983ANZQ

  14. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  15. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  16. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  17. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  18. Blue Ash, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Ash is a city in Hamilton County, Ohio. It falls under Ohio's 2nd congressional...

  19. Recoverable immobilization of transuranic elements in sulfate ash

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O.

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  20. Transcending Portland Cement with 100 percent fly ash concrete

    SciTech Connect (OSTI)

    Cross, D.; Akin, M.; Stephens, J.; Cuelh, E.

    2009-07-01

    The use of concrete, made with 100% fly ash and no Portland cement, in buildings at the Transportation Institute in Bozeman, MT, USA, is described. 3 refs., 7 figs.

  1. Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin

    Broader source: Energy.gov [DOE]

    The Savannah River Site (SRS) recently cleaned up a 17-acre basin containing coal ash residues from Cold War operations. The American Recovery and Reinvestment Act project was safely completed at a...

  2. Optical properties of fly ash. Volume 2, Final report

    SciTech Connect (OSTI)

    Self, S.A.

    1994-12-01

    Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal and Ebert. Volume 2 contains the dissertation of Ebert which covers the measurements of the optical constants of slags, and calculations of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.

  3. How toxic is coal ash? A laboratory toxicity case study

    SciTech Connect (OSTI)

    Sherrard, Rick M.; Carriker, Neil; Greeley, Jr., Mark Stephen

    2014-12-08

    Under a consent agreement among the Environmental Protection Agency (EPA) and proponents both for and against stricter regulation, EPA is to issue a new coal ash disposal rule by the end of 2014. Laboratory toxicity investigations often yield conservative estimates of toxicity because many standard test species are more sensitive than resident species, thus could provide information useful to the rule-making. However, few laboratory studies of coal ash toxicity are available; most studies reported in the literature are based solely on field investigations. In this paper, we describe a broad range of toxicity studies conducted for the Tennessee Valley Authority (TVA) Kingston ash spill, results of which help provide additional perspective on the toxicity of coal ash.

  4. How toxic is coal ash? A laboratory toxicity case study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sherrard, Rick M.; Carriker, Neil; Greeley, Jr., Mark Stephen

    2014-12-08

    Under a consent agreement among the Environmental Protection Agency (EPA) and proponents both for and against stricter regulation, EPA is to issue a new coal ash disposal rule by the end of 2014. Laboratory toxicity investigations often yield conservative estimates of toxicity because many standard test species are more sensitive than resident species, thus could provide information useful to the rule-making. However, few laboratory studies of coal ash toxicity are available; most studies reported in the literature are based solely on field investigations. In this paper, we describe a broad range of toxicity studies conducted for the Tennessee Valley Authoritymore » (TVA) Kingston ash spill, results of which help provide additional perspective on the toxicity of coal ash.« less

  5. A=11Li (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5AJ01) (See the Isobar Diagram for 11Li) GENERAL: The mass excess of 11Li is 40.94 ± 0.08 MeV (1975TH08). [(A.H. Wapstra, private communication) suggests 40.91 ± 0.11 MeV.] Using the value reported by (1975TH08) 11Li is bound with respect to 9Li + 2n by 156 ± 80 keV and with respect to 10Li + n by 966 ± 260 keV [see (1984AJ01) for the masses of 9Li and 10Li]. Systematics suggest Jπ = 1/2- for 11Lig.s.. See also (1979AZ03, 1980AZ01, 1980BO31, 1981BO1X, 1982BO1Y, 1982OG02), (1981HA2C),

  6. A=9Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (Not illustrated) Mass of 9Li: From the threshold for 9Be(d, 2p)9Li, Ed = 19 ± 1 MeV (GA51C), the mass excess of 9Li is determined as M - A = 28.1 ± 1 MeV. 1. 9Li(β-)9Be* --> 8Be + n Qm = 12.4 9Li decays to excited states of 9Be which decay by neutron emission. The mean of the reported half-lives is 0.169 ± 0.003 sec (GA51C, HO52B). See also (SH52, FR53A, BE55D, FL56, TA58B). 2. 9Be(d, 2p)9Li Qm = -15.5 The threshold is 19 ± 1 MeV (GA51C). 3. 11B(γ, 2p)9Li Qm = -31.4 See (SH52,

  7. A=9Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 9Li) GENERAL: See (GR64C). See also Table 9.1 [Table of Energy Levels] (in PDF or PS). Mass of 9Li: From the Q-value for 7Li(t, p)9Li: Q = -2.397 ± 0.020 MeV, the mass excess of 9Li is 24.965 ± 0.020 MeV (MI64E, MA65A). 1. 9Li(β-)9Be Qm = 13.615 9Li decays to the ground state (25 ± 15 %) and to the 2.43 MeV, neutron-unstable state of 9Be (75 ± 15 %). The β-endpoints are 13.5 ± 0.3 MeV and 11.0 ± 0.4 MeV; log ft = 5.5 ± 0.2 and 4.7 ± 0.2,

  8. Minimizing Lubricant-Ash Requirement and Impact on Emission Aftertreatment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems via an Oil Conditioning Filter | Department of Energy Minimizing Lubricant-Ash Requirement and Impact on Emission Aftertreatment Systems via an Oil Conditioning Filter Minimizing Lubricant-Ash Requirement and Impact on Emission Aftertreatment Systems via an Oil Conditioning Filter Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of

  9. Ash Reduction of Corn Stover by Mild Hydrothermal Preprocessing

    SciTech Connect (OSTI)

    M. Toufiq Reza; Rachel Emerson; M. Helal Uddin; Garold Gresham; Charles J. Coronella

    2014-04-22

    Lignocellulosic biomass such as corn stover can contain high ash content, which may act as an inhibitor in downstream conversion processes. Most of the structural ash in biomass is located in the cross-linked structure of lignin, which is mildly reactive in basic solutions. Four organic acids (formic, oxalic, tartaric, and citric) were evaluated for effectiveness in ash reduction, with limited success. Because of sodium citrates chelating and basic characteristics, it is effective in ash removal. More than 75 % of structural and 85 % of whole ash was removed from the biomass by treatment with 0.1 g of sodium citrate per gram of biomass at 130 C and 2.7 bar. FTIR, fiber analysis, and chemical analyses show that cellulose and hemicellulose were unaffected by the treatment. ICPAES showed that all inorganics measured were reduced within the biomass feedstock, except sodium due to the addition of Na through the treatment. Sodium citrate addition to the preconversion process of corn stover is an effective way to reduced physiological ash content of the feedstock without negatively impacting carbohydrate and lignin content.

  10. Ash level meter for a fixed-bed coal gasifier

    DOE Patents [OSTI]

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  11. li(1)-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 Radiative Forcing by Smoke Aerosols Determined from Satellite and Surface Measurements Z. Li Canada Centre for Remote Sensing Ottawa, Ontario, Canada L. Kou Intermap Technologies Ottawa, Ontario, Canada Introduction As a potential offsetting agent to the greenhouse effect, aerosols are receiving increasing attention in the atmospheric science community. Notwithstanding, our knowledge of the impact of aerosols on radiation and climate is rather poor and falls well behind that of the greenhouse

  12. li(1)-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consistency Check of Cloud Optical Properties Derived from Satellite and Surface Observations Z. Li, A. P. Trishchenko, and F.-L. Chang Canada Center for Remote Sensing Ottawa, Canada H. W. Barker Atmospheric Environmental Service Downsview, Canada W. B. Sun Dalhousie University Halifax, Nova Scotia, Canada Introduction Much work has been done to retrieve both cloud and radiative variables using space-borne observations. Several recent studies also attempted to retrieve cloud optical depth using

  13. li(2)-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 A Consistency Analysis of ARESE Measurements Regarding Cloud Absorption Z. Li and A. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada H. W. Barker Atmospheric Environment Service Downsview, Ontario, Canada G. L. Stephens and P. Partain Colorado State University Fort Collins, Colorado P. Minnis NASA-Langley Research Center Hampton, Virginia Introduction In an attempt to resolve the recent debate over the cloud absorption anomaly, the U.S. Department of Energy sponsored a

  14. Design of Refractory Linings for Balanced Energy Efficiency, Uptime, and Capacity in Lime Kilns

    SciTech Connect (OSTI)

    Gorog, John Peter; Hemrick, James Gordon; Walker, Harold; Leary, William R; Ellis, Murray

    2014-01-01

    The rotary kilns used by the pulp and paper industry to regenerate lime in the Kraft process are very energy intensive. Throughout the 90 s, in response to increasing fuel prices, the industry used back up insulation in conjunction with the high alumina brick used to line the burning zones of their kilns. While this improved energy efficiency, the practice of installing insulating brick behind the working lining increased the inner wall temperatures. In the worst case, due to the increased temperatures, rapid brick failures occurred causing unscheduled outages and expensive repairs. Despite these issues, for the most part, the industry continued to use insulating refractory linings in that the energy savings were large enough to offset any increase in the cost of maintaining the refractory lining. Due to the dramatic decline in the price of natural gas in some areas combined with mounting pressures to increasing production of existing assets, over the last decade, many mills are focusing more on increasing the uptime of their kilns as opposed to energy savings. To this end, a growing number of mills are using basic (magnesia based) brick instead of high alumina brick to line the burning zone of the kiln since the lime mud does not react with these bricks at the operating temperatures of the burning zone of the kiln. In the extreme case, a few mills have chosen to install basic brick in the front end of the kiln running a length equivalent to 10 diameters. While the use of basic brick can increase the uptime of the kiln and reduce the cost to maintain the refractory lining, it does dramatically increase the heat losses resulting from the increased operating temperatures of the shell. Also, over long periods of time operating at these high temperatures, damage can occur in the shell. There are tradeoffs between energy efficiency, capacity and uptime. When fuel prices are very high, it makes sense to insulate the lining. When fuel prices are lower, trading some

  15. Leaching of Mixtures of Biochar and Fly Ash

    SciTech Connect (OSTI)

    Palumbo, Anthony Vito; Porat, Iris; Phillips, Jana Randolph; Amonette, J. E.; Drake, Meghan M; Brown, Steven D; Schadt, Christopher Warren

    2009-01-01

    Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments.2, 5, 6 Both the residual char from biomass pyrolysis7-9, 12 (biochar) and fly ash from coal combustion1, 13, 14 have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations.10, 11, 16 Adding biochar to soil generally raises pH, increases total nitrogen and total phosphorous, encourages greater root development, improves cation exchange capacity and reduces available aluminum.3, 17 Combinations of these benefits likely lead to the observed increased yields for crops including corn and sugarcane.17 with biochar addition to soil. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) 8, 17 than do unammended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way.18 Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes.15 Here, we are examining the properties of mixtures of biochar, fly ash, and soil and evaluating leaching of organic carbon and metals from the mixtures.

  16. A=12Li (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0AJ01) (Not illustrated) 12Li is not observed in the 4.8 GeV proton bombardment of a uranium target: it is particle unstable. Its atomic mass excess would then be > 49.0 MeV. (1974TH01) calculate the mass excess of 12Li to be 52.92 MeV, while (1975JE02) calculate 52.94 MeV. Taking the average of these two values, 12Li would then be unstable with respect to 11Li + n, 10Li + 2n and 9Li + 3n by 3.92, 2.96 and 3.76 MeV, respectively. See also (1975AJ02) and (1975BE31, 1976IR1B

  17. A=14Li (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 14Li has not been observed. The calculated mass excess is 72.29 MeV: see (1981AJ01). 14Li is then particle unstable with respect to decay into 13Li + n and 12Li + 2n by 3.9 and 3.2 MeV, respectively [see, however, 13Li]. (1985PO10) calculate [in a (0 + 1)ℏω model space] that the first four states of 14Li at 0, 0.75, 1.22 and 1.48 MeV have, respectively, Jπ = 2-, 4-, 3- and 1-. See also (1986AL09, 1989OG1B) and (1988POZS; theor.)

  18. Local field effects at Li K edges in electron energy-loss spectra of Li, Li{sub 2}O and LiF

    SciTech Connect (OSTI)

    Mauchamp, V.; Moreau, P.; Ouvrard, G.; Boucher, F.

    2008-01-15

    Local field effects (LFEs) in low-losses of electron energy-loss spectra of Li, Li{sub 2}O, and LiF were calculated using the density functional theory under the generalized gradient approximation. By including the lithium 1s semicore state in the pseudopotentials, the amplitude of LFE was assessed all the way up to the Li K edge (from 0 to 80 eV). They are found to be much larger for semicore levels (2s of oxygen, 2s of fluorine, and 1s of lithium) than for the valence electron energy-loss region. LFEs at the Li K edge are studied in detail. In particular, for q=0 they are shown to increase with the inhomogeneities of the compounds (from Li to LiF). The influence of the magnitude and the direction of q is also presented. Both parameters have negligible effect in the case of Li metal but changes are quite substantial for Li{sub 2}O and LiF. This is in agreement with the isotropy and the delocalization of the metallic bonding as compared to the ionic one. LFEs at the Li K edge are, however, whatever the compound, much smaller than those observed at transition metal M{sub 2,3} edges situated at similar energy positions. This result can be accounted for by considering the wave functions associated with the initial and final states involved in both edges. For lithium battery materials, most often presenting a transition metal edge close to the Li K edge, these findings imply significant consequences with respect to the interpretation of their electron energy-loss spectroscopy spectra. In particular, LFE can be expected to be stronger in positive electrodes than in negative ones.

  19. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity

    SciTech Connect (OSTI)

    Lu, XJ; Wu, G; Howard, JW; Chen, AP; Zhao, YS; Daemen, LL; Jia, QX

    2014-08-13

    Anti-perovskite solid electrolyte films were prepared by pulsed laser deposition, and their room-temperature ionic conductivity can be improved by more than an order of magnitude in comparison with its bulk counterpart. The cyclability of Li3OCl films in contact with lithium was evaluated using a Li/Li3OCl/Li symmetric cell, showing self-stabilization during cycling test.

  20. Microsoft PowerPoint - Electrolytic T Extraction in Molten Li-LiT_2.pptx

    Office of Environmental Management (EM)

    Electrolytic Tritium Extraction in Molten Li-LiT Luke Olson Brenda L. García-Díaz Hector Colon-Mercado Joe Teprovich Dave Babineau Savannah River National Laboratory Fall 2015 Tritium Focus Group Meeting November 3-5, 2015 SRNL-STI-2015-00605 This presentation does not contain any proprietary, confidential, or otherwise restricted information LiT Electrolysis Options LiT Electrolysis Maroni Process (Baseline Option) Improve Liquid-Liquid Extraction & Electrolysis Process Intensification

  1. Chloride chemical form in various types of fly ash

    SciTech Connect (OSTI)

    Fenfen Zhu; Masaki Takaoka; Kenji Shiota; Kazuyuki Oshita; Yoshinori Kitajima

    2008-06-01

    Chloride content is a critical problem for the reuse of fly ash as a raw material in cement, and the method used by recyclers to reduce the fly ash chloride content depends on the chemical form of the chlorides. However, limited information is available on the quantitative distribution of chlorides and the identity of some chlorides such as Friedel's salt. We examined chloride forms and percentages using X-ray absorption near edge structure and X-ray diffraction analyses, as well as corresponding washing experiments. Approximately 15% of the chlorine in raw fly ash was estimated to be in the form of NaCl, 10% in KCl, 50% in CaCl{sub 2}, and the remainder in the form of Friedel's salt. Fly ash collected in a bag filter with the injection of calcium hydroxide for acid gas removal (CaFA) contained 35% chlorine as NaCl, 11% as KCl, 37% as CaCl{sub 2}, 13% as Friedel's salt, and the remaining 4% as CaClOH. In fly ash collected in a bag filter with the injection of sodium bicarbonate for acid gas removal (NaFA), approximately 79% of chlorine was in NaCl, 12% was in KCl, and 9% was in Friedel's salt. 25 refs., 4 figs., 4 tabs.

  2. Release of Ammonium and Mercury from NOx Controlled Fly Ash

    SciTech Connect (OSTI)

    Schroeder, K.T.; Cardone, C.R.; Kim, A.G

    2007-07-01

    One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

  3. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    SciTech Connect (OSTI)

    CHRISTOPHER J. ZYGARLICKE; DONALD P. MCCOLLOR; JOHN P. KAY; MICHAEL L. SWANSON

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: ? Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. ? Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. ? Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. ? Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. ? Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. ? Evaluate corrosion for alloys being used in supercritical combustion systems.

  4. A=16Li (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li (1993TI07) (Not illustrated) This nucleus has not been observed. Shell model studies (1988POZS) are used to predict J and the magnetic dipole moment....

  5. A=5Li (2002TI10)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2002TI10) (See Energy Level Diagrams for 5Li) GENERAL: References to articles on general properties of 5Li published since the previous review (1988AJ01) are grouped into categories and listed, along with brief descriptions of each item, in the General Tables for 5Li located on our website at (www.tunl.duke.edu/NuclData/General_Tables/5li.shtml). See also Table Prev. Table 5.3 preview 5.3 [Table of Energy Levels] (in PDF or PS). See also the A = 5 introductory discussion titled A = 5 resonance

  6. A=9Li (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2004TI06) (See Energy Level Diagrams for 9Li) GENERAL: References to articles on general properties of 9Li published since the previous review (1988AJ01) are grouped into categories and listed, along with brief descriptions of each item, in the General Tables for 9Li located on our website at (www.tunl.duke.edu/nucldata/General_Tables/9li.shtml). See also Table Prev. Table 9.1 preview 9.1 [Table of Energy Levels] (in PDF or PS). Ground state properties: μ = 3.4391 ± 0.0006 μN (1983CO11). See

  7. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    SciTech Connect (OSTI)

    Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

    2009-08-04

    The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

  8. Ash bed level control system for a fixed-bed coal gasifier

    DOE Patents [OSTI]

    Fasching, George E.; Rotunda, John R.

    1984-01-01

    An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

  9. Cementation and solidification of Rocky Flats Plant incinerator ash

    SciTech Connect (OSTI)

    Phillips, J.A.; Semones, G.B.

    1994-04-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes.

  10. Antiperovskite Li 3 OCl superionic conductor films for solid...

    Office of Scientific and Technical Information (OSTI)

    Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries Citation Details In-Document Search Title: Antiperovskite Li 3 OCl superionic conductor films ...

  11. Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills

    SciTech Connect (OSTI)

    J.G. Groppo; T.L. Robl

    2005-09-30

    lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal

  12. Structure of the SPRY domain of human Ash2L and its interactions...

    Office of Scientific and Technical Information (OSTI)

    Structure of the SPRY domain of human Ash2L and its interactions with RbBP5 and DPY30 Citation Details In-Document Search Title: Structure of the SPRY domain of human Ash2L and its ...

  13. Ashe County, North Carolina ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Ashe County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashe County, North Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

  14. Non-Destructive X-ray Measurement of Soot, Ash, Washcoat and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    X-ray Measurement of Soot, Ash, Washcoat and Regeneration Damage for DPFs Non-Destructive X-ray Measurement of Soot, Ash, Washcoat and Regeneration Damage for DPFs New commercially ...

  15. Geotechnical properties of fly and bottom ash mixtures for use in highway embankments

    SciTech Connect (OSTI)

    Kim, B.; Prezzi, M.; Salgado, R.

    2005-07-01

    Class F fly ash and bottom ash are the solid residue byproducts produced by coal-burning electric utilities. They are usually disposed of together as a waste in utility disposal sites with a typical disposal rate of 80% fly ash and 20% bottom ash. Direct use of these materials in construction projects consuming large volumes of materials, such as highway embankment construction, not only provides a promising solution to the disposal problem, but also an economic alternative to the use of traditional materials. Representative samples of class F fly and bottom ash were collected from two utility power plants in Indiana and tested for their mechanical properties (compaction, permeability, strength, stiffness, and compressibility). Three mixtures of fly and bottom ash with different mixture ratios (i.e., 50, 75, and 100% fly ash content by weight) were prepared for testing. Test results indicated that ash mixtures compare favorably with conventional granular materials.

  16. Ash reduction system using electrically heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  17. High-performance, high-volume fly ash concrete

    SciTech Connect (OSTI)

    2008-01-15

    This booklet offers the construction professional an in-depth description of the use of high-volume fly ash in concrete. Emphasis is placed on the need for increased utilization of coal-fired power plant byproducts in lieu of Portland cement materials to eliminate increased CO{sub 2} emissions during the production of cement. Also addressed is the dramatic increase in concrete performance with the use of 50+ percent fly ash volume. The booklet contains numerous color and black and white photos, charts of test results, mixtures and comparisons, and several HVFA case studies.

  18. Continuous air agglomeration method for high carbon fly ash beneficiation

    DOE Patents [OSTI]

    Gray, McMahon L.; Champagne, Kenneth J.; Finseth, Dennis H.

    2000-01-01

    The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carboree mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

  19. Electrochemistry of LiCl-Li2O-H2O Molten Salt Systems

    SciTech Connect (OSTI)

    Natalie J. Gese; Batric Pesic

    2013-03-01

    Uranium can be recovered from uranium oxide (UO2) spent fuel through the combination of the oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li2O salt at 650 degrees C and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li0) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li0 generation required for the chemical reduction of UO2. In order for the oxide reduction process to be an effective method for the treatment of uranium oxide fuel, the role of moisture in the LiCl-Li2O system must be understood. The behavior of moisture in the LiCl-Li2O molten salt system was studied using cyclic voltammetry, chronopotentiometry and chronoamperometry, while reduction to hydrogen was confirmed with gas chromatography.

  20. The Sensitivity of DPF Performance to the Spatial Distribution of Ash Generated from Six Lubricant Formulations

    Broader source: Energy.gov [DOE]

    Discusses potential of DPF pressure drop reduction by optimizing the spatial distribution of ash inside DPF inlet channel

  1. A=11Li (68AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    68AJ02) (See the Isobar Diagram for 11Li) 11Li has been identified in the 5.3 GeV proton bombardment of uranium. It is particle stable (PO66H). See also (GA66C, CO67A

  2. A=10Li (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10B: see (HA68V), the mass excess of 10Li, (M - A) 33.10 0.06 MeV (AB73D). The breakup energy into 9Li + n is then -0.06 0.06 MeV. Using the calculated values suggested...

  3. A=8Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one event corresponding to the transition to an excited state at 0.7 0.2 MeV. 3. 7Li(n, )8Li Qm 2.035 The thermal capture cross section is 33 5 mb (HU47A), 42 10 mb...

  4. Nanoscale imaging of fundamental Li battery chemistry: solid...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase ... Citation Details In-Document Search Title: Nanoscale imaging of fundamental Li battery ...

  5. Enabling Future Li-Ion Battery Recycling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Li-Ion Battery Recycling Title Enabling Future Li-Ion Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract Presentation made...

  6. Key Parameters Governing the Energy Density of Rechargeable Li...

    Office of Scientific and Technical Information (OSTI)

    of Rechargeable LiS Batteries Citation Details In-Document Search Title: Key Parameters Governing the Energy Density of Rechargeable LiS Batteries Authors: Gao, Jie ; ...

  7. Electrode Materials for Rechargeable Li-ion Batteries: a New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrode Materials for Rechargeable Li-ion Batteries: a New Synthetic Approach ... multiple cycles which enables Li-ion batteries with exceptionally high-power.

    This ...

  8. Atsun Solar Electric Technology Co Ang Li Tiansheng | Open Energy...

    Open Energy Info (EERE)

    Co (Ang Li Tiansheng) Place: Zaozhuang, Shandong Province, China Product: Chinese PV cell and module maker. References: Atsun Solar Electric Technology Co (Ang Li...

  9. A=9Li (1974AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 9Li) GENERAL: See also Table 9.1 [Table of Energy Levels] (in PDF or PS). Model calculations: (1966BA26). Special reactions: (1965DO13, 1966GA15, 1966KL1C, 1967AU1B, 1967CA1J, 1967HA10, 1968DO1C, 1972VO06, 1973KO1D, 1973MU12, 1973WI15). Other topics: (1972CA37, 1972PN1A, 1973JU2A). Ground state properties: (1966BA26, , 1969JA1M). Mass of 9Li: From the Q-value of 18O(7Li, 16O)9Li, the atomic mass excess of 9Li is 24.9654 ± 0.005 MeV (1969NE1E; prelim.

  10. Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan

    SciTech Connect (OSTI)

    Shim, Young-Sook; Rhee, Seung-Whee; Lee, Woo-Keun . E-mail: woklee@kangwon.ac.kr

    2005-07-01

    The objective of this research was to compare the leaching characteristics of heavy metals such as cadmium, chromium, copper, nickel, lead, etc., in Korean and Japanese municipal solid waste incineration (MSWI) ash. The rate of leaching of heavy metal was measured by KSLT and JTL-13, and the amount of heavy metals leached was compared with the metal content in each waste component. Finally, bio-availability testing was performed to assess the risks associated with heavy metals leached from bottom ash and fly ash. From the results, the value of neutralization ability in Japanese fly ash was four times higher than that in Korean fly ash. The reason was the difference in the content of Ca(OH){sub 2} in fly ash. The amount of lead leached exceeded the regulatory level in both Japanese and Korean fly ash. The rate of leaching was relatively low in ash with a pH in the range of 6-10. The bio-availability test in fly ash demonstrated that the amount of heavy metals leached was Pb > Cd > Cr, but the order was changed to Pb > Cr > Cd in the bottom ash. The leaching concentration of lead exceeded the Japanese risk level in all fly ashes from the two countries, but the leaching concentration of cadmium exceeded the regulatory level in Korean fly ash only.

  11. Final decision document for the interim response action at the lime settling basins, Rocky Mountain Arsenal, version 4.0

    SciTech Connect (OSTI)

    1990-03-01

    The objective of the interim response action at the lime settling basins is to mitigate the threat of releases from the basins. The proposed IRA consists of: (1) relocation of sludge material to the settling basin; (2) construction of a 360 degree subsurface barrier around the basins; (3) construction of a soil and vegetative cover over the material; and (4) installation of a ground water extraction system. This decision document provides summaries of: (1) alternative technologies considered, (2) significant events leading to the initiation of the IRA, (3) the IRA Project, and (4) applicable or relevant and appropriate requirements, standards, criteria, and limitations (ARAR`s) associated with the program.

  12. Soil stabilization and pavement recycling with self-cementing coal fly ash

    SciTech Connect (OSTI)

    2008-01-15

    This manual provides design information for self-cementing coal fly ash as the sole stabilizing agent for a wide range of engineering applications. As in any process, the application of sound engineering practices, appropriate testing, and evaluation of fly ash quality and characteristics will lend themselves to successful projects using the guidelines in this manual. Topics discussed include: self-cementing coal fly ash characteristics; laboratory mix design; stabilization of clay soils; stabilisation of granular materials; construction considerations; high sulfate ash; environmental considerations for fly ash stabilization; design considerations; state specification/guidelines/standards; and a sample of a typical stabilization specification.

  13. Mechanical characterization of filler sandcretes with rice husk ash additions. Study applied to Senegal

    SciTech Connect (OSTI)

    Cisse, I.K.; Laquerbe, M.

    2000-01-01

    To capitalize on the local materials of Senegal (agricultural and industrial wastes, residual fines from crushing process, sands from dunes, etc.), rise husk ash and residues of industrial and agricultural wastes have been used as additions in sandcretes. The mechanical resistance of sandcrete blocks obtained when unground ash (and notably the ground ash) is added reveals that there is an increase in performance over the classic mortar blocks. In addition, the use of unground rice husk ash enables production of a lightweight sandcrete with insulating properties, at a reduced cost. The ash pozzolanic reactivity explains the high strengths obtained.

  14. Li2Se as a Neutron Scintillator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Mao-Hua; Shi, Hongliang; Singh, David J.

    2015-06-23

    We show that Li2Se:Te is a potential neutron scintillator material based on density functional calculations. Li2Se exhibits a number of properties favorable for efficient neutron detection, such as a high Li concentration for neutron absorption, a small effective atomic mass and a low density for reduced sensitivity to background gamma rays, and a small band gap for a high light yield. Our calculations show that Te doping should lead to the formation of deep acceptor complex VLi-TeSe, which can facilitate efficient light emission, similar to the emission activation in Te doped ZnSe.

  15. A=6Li (2002TI10)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2002TI10) (See Energy Level Diagrams for 6Li) GENERAL: References to articles on general properties of 6He published since the previous review (1988AJ01) are grouped into categories and isted, along with brief descriptions of each item, in the General Tables for 6Li located on our website at (www.tunl.duke.edu/NuclData/General_Tables/6li.shtml). See also Table Prev. Table 6.4 preview 6.4 [Table of Energy Levels] (in PDF or PS). Ground State Properties: μ = +0.8220473(6) nm, +0.8220567(3) nm:

  16. Automated system for removal and pneumatic transport of fly ash from electric precipitator hoppers

    SciTech Connect (OSTI)

    V.K. Konovalov; O.V. Yashkin; V.V. Ermakov

    2008-03-15

    A system for removal and pneumatic transport of fly ash is examined, in which air pulses act on batches (pistons) of ash formed in a duct. Studies are made of the effect of several physical parameters on the force required to displace a piston of ash and these serve as a basis for choosing a system for removal and pneumatic transport of ash simultaneously from several hoppers of an electric precipitator. This makes it possible to separate the ash particles according to size without introducing additional components. Formulas are given for calculating the structural and dynamic parameters of this system and measurements of indirect dynamic parameters are used to calculate the input-output characteristics of the system. In order to optimize the system, configurations for summing several ducts into a single transport duct for pneumatic ash transport are proposed. Some variants of dry ash utilization and the advantages of producing of size-separated particles are considered.

  17. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOE Patents [OSTI]

    Beaufrere, A.H.

    1982-04-30

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  18. Leaching of mixtures of biochar and fly ash

    SciTech Connect (OSTI)

    Palumbo, Anthony V.; Porat, Iris; Phillips, Jana R.; Amonette, James E.; Drake, Meghan M.; Brown, Steven D.; Schadt, Christopher W.

    2009-06-22

    Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments. Both the residual char from biomass pyrolysis (biochar) and fly ash from coal combustion have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations. Adding biochar to soil generally raises pH, increases total nitrogen and total phosphorous, encourages greater root development, improves cation exchange capacity and decreases available aluminum. A combination of these benefits likely is responsible for observed increases in yields for crops such as corn and sugarcane. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) than do unamended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way. Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil. Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes. In the present study, we examined the properties of mixtures of biochar, fly ash, and soil and evaluated the leaching of organic carbon and metals from these mixtures. The carbon sorption experiments showed release of carbon from biochar, rather than sorption, except at the highest concentrations in the Biochar HW sample. Similar results were obtained by others for oxidative leaching of bituminous coal, in

  19. Brick manufacture with fly ash from Illinois coals. Technical report, March 1, 1995--May 31, 1995

    SciTech Connect (OSTI)

    Hughes, R.E.; Dreher, G.; Moore, D.; Rostam-Abadi, M.; Fiocchi, T.; Swartz, D.

    1995-12-31

    This investigation seeks to utilize fly ash in fired-clay products such as building and patio bricks, ceramic blocks, field and sewer tile, and flower pots. This goal is accomplished by 1) one or more plant-scale, 5000-brick tests of fly ash mixed with brick clays at the 20% or higher level; 2) a laboratory-scale study to measure the firing reactions of a range of compositions of clay and fly ash mixtures; 3) a preliminary study to evaluate the potential environmental and economic benefits of brick manufacture with fly ash. Bricks and feed materials will be tested for compliance with market specifications and for leachability of pollutants derived from fly ash. The laboratory study will combine ISGS databases, ICCI-supported characterization methods, and published information to improve predictions of the firing characteristics of Illinois fly ash and brick clay mixtures. Because identical methods are used to test clay firing and coal ash fusion, and because melting mechanisms are the same, improved coal ash fusion predictions are and additional expected result of this research. During this quarter we completed a manufacturing run at Colonial Brick Co. and began laboratory testing of samples from that run: clays, fly ash (from Illinois Power Company`s Wood River plant), and green and fired bricks, with and without fly ash. Bricks with 20% fly ash ``scummed`` during firing, and the fly ash failed to increase oxidation rate or water absorption, which were both expected. We obtained chemical and mineralogical analyses of the fireclays and shales at Colonial and Marseilles Brick Companies and began a series of selective dissolution analyses to more accurately determine the composition of the principal clay minerals in brick clays and the components in fly ash. We began related work of calculating normative mineralogical analyses for all clays and fly ashes that we sample.

  20. Determination of slagging behavior of various coal ash samples by using DTF

    SciTech Connect (OSTI)

    Kim, H.T.; Choi, B.C.; Park, S.W.

    1999-07-01

    The objective of this study is to investigate slagging behavior of various ash samples with the conjunction to the properties of ashes and original coal such as concentration of each ash components, ash slagging temperature and slag viscosity. To simulate actual ash melting condition in coal combustion as well as gasification, DTF (drop tube furnace) is utilized for the acquisition of slag sample with different reaction condition. The sampled slag is photographed for the visual inspection and the shape of the slag is evaluated with ash properties. The sampled ash slag is also analyzed with XRD for the determination of phase transition during the ash melting. Furthermore, coal ashes are processed with Ash Fusion Determinator for the fusion temperature and High-Temperature Viscometer for the slag viscosity. Such ash-related properties are also determined by empirical formulation for the refinement of the result. So far, three different coal samples, Alaska, Datong, Cyprus are investigated. For the 3 ash samples, slag formation shows similar shape in combustion as well as gasification condition and completely different shape with different coal types. Alaska slag, which represents higher fluidity, is penetrated into alumina disk so that small half-cone shape of slag is produced. However, Cyprus slag is formed with more circular shape of sphere and Datong slag represents an in-between shape. More coal samples will be studied for the determination of slag behavior. The shape data will be analyzed with ash composition, fluidity behavior and ash fusion determination of original coal. Such relationship will be the baseline to determine the operation parameter of slag removal in the 3 ton/day coal gasifier located in the Ajou University, Suwon, Korea.

  1. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lü, Xujie; Howard, John W.; Chen, Aiping; Zhu, Jinlong; Li, Shuai; Wu, Gang; Dowden, Paul; Xu, Hongwu; Zhao, Yusheng; Jia, Quanxi

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  2. Microsoft Word - li_z.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cloud Liquid Water Path and Its Potential for Rain Detection Z. Li, R. Chen, and F-L Chang Earth System Science Interdisciplinary Center, University of Maryland College Park,...

  3. A=13Li (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 13Li has not been observed: see (1986AJ01). The calculated value of its mass excess is 60.34 MeV [see (1981AJ01)]: 13Li would then be unstable with respect to 11Li + 2n by 3.34 MeV. (1985PO10) calculate [in a (0 + 1)ℏω model space] that the first four states of 13Li at 0, 1.42, 2.09 and 2.77 MeV have, respectively, Jπ = 3/2-, 7/2-, 1/2-, 5/2-. See also (1987PE1C, 1989OG1B) and (1988POZS, 1988ZV1A

  4. A=15Li (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 15Li has not been observed. Its atomic mass excess is calculated to be 81.60 MeV: see (1981AJ01). It is then unstable with respect to decay into 14Li + n and 13Li + 2n by 1.2 and 5.1 MeV, respectively. (1985PO10) calculate [in a (0 + 1)ℏω model space] that the first four states of 15Li at 0, 0.73, 2.39 and 2.77 MeV have, respectively, Jπ = 3/2-, 1/2-, 7/2- and 5/2-. See also (1988POZS; theor.)

  5. A=8Li (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cross section, comparable to the geometric value, is understood in terms of the ( + t) cluster nature of 7Li (RO62C). Cross sections for this reaction have recently been...

  6. A=11Li (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    increase in matter radii with increasing A and do not support the idea of a neutron halo in 11Li (1988POZS; prelim.). See, however, (1988TA1A). Fragmentation cross sections of...

  7. A=7Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See the Energy Level Diagram for 7Li) GENERAL: See also Table 7.1 [Table of Energy Levels] (in PDF or PS). Theory: See (AU55, DA55, LA55A, AB56, FE56, KU56, ME56, FE57C, FR57, LE57F, MA57E, MA57J, SO57, HA58D, SK58). 1. 3H(α, γ)7Li Qm = 2.465 For Eα = 0.5 to 1.9 MeV, capture radiation is observed to 7Li(0) and 7Li*(0.48), with intensity ratio 5 : 2. The smooth rise of the cross section suggests a direct capture process. The angular distribution is not isotropic, indicating l > 0

  8. Construction Consultants, L.I., Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mr. Eric Baumack Senior Project Manager Construction Consultants L.I., Inc. 36 East 2 nd Street Riverhead, New York 11901 WEL-2015-05 Dear Mr. Baumack: The Office of Enterprise Assessments' Office of Enforcement has completed an investigation into an electrical shock incident involving a worker employed by a subcontractor to Construction Consultants L.I., Inc. (CCLI) at the Brookhaven National Laboratory (BNL). CCLI is a first-tier subcontractor to Brookhaven Science Associates, LLC (BSA),

  9. Fly Ash and Mercury Oxidation/Chlorination Reactions

    SciTech Connect (OSTI)

    Sukh Sidhu; Patanjali Varanasi

    2008-12-31

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using

  10. Ash reduction in clean coal spiral product circuits

    SciTech Connect (OSTI)

    Brodzik, P.

    2007-04-15

    The article describes the Derrick Corporation's Stack Sizer{trademark} technology for high capacity fine wet cleaning with long-lasting high open-area urethane screen panels. After field trials, a Stack Sizer fitted with a 100-micron urethane panel is currently processing approximately 40 stph of clean coal spiral product having about 20% ash at McCoy-Elkhorn's Bevin Branch coal preparation plant in Kentucky, USA. Product yield is about 32.5 short tons per hour with 10% ash. The material is then fed to screen bowl centrifuges for further processing. At Blue Diamond Coal's Leatherwood preparation plant similar Stacker Sizers are achieving the same results. 2 figs., 3 tabs., 2 photo.

  11. Effects of pulverized coal fly-ash addition as a wet-end filler in papermaking

    SciTech Connect (OSTI)

    Sinha, A.S.K.

    2008-09-15

    This experimental study is based on the innovative idea of using pulverized coal fly ash as a wet-end filler in papermaking. This is the first evaluation of the possible use of fly ash in the paper industry. Coal-based thermal power plants throughout the world are generating fly ash as a solid waste product. The constituents of fly ash can be used effectively in papermaking. Fly ash has a wide variation in particle size, which ranges from a few micrometers to one hundred micrometers. Fly ash acts as an inert material in acidic, neutral, and alkaline papermaking processes. Its physical properties such as bulk density (800-980 kg/m{sup 3}), porosity (45%-57%), and surface area (0.138-2.3076 m{sup 2}/g) make it suitable for use as a paper filler. Fly ash obtained from thermal power plants using pulverized coal was fractionated by a vibratory-sieve stack. The fine fraction with a particle size below 38 micrometers was used to study its effect on the important mechanical-strength and optical properties of paper. The effects of fly-ash addition on these properties were compared with those of kaolin clay. Paper opacity was found to be much higher with fly ash as a filler, whereas brightness decreased as the filler percentage increased Mechanical strength properties of the paper samples with fly ash as filler were superior to those with kaolin clay.

  12. Construction of an embankment with a fly and bottom ash mixture: field performance study

    SciTech Connect (OSTI)

    Yoon, S.; Balunaini, U.; Yildirim, I.Z.; Prezzi, M.; Siddiki, N.Z.

    2009-06-15

    Fly ash and bottom ash are coal combustion by-products (CCBPs) that are generated in large quantities throughout the world. It is often economical to dispose ash as mixtures rather than separately; that notwithstanding, only a few studies have been performed to investigate the behavior of fly and bottom ash mixtures, particularly those with high contents of fly ash. Also, there is very limited data available in the literature on the field performance of structures constructed using ash mixtures. This paper describes the construction and the instrumentation of a demonstration embankment built with an ash mixture (60:40 by weight of fly ash:bottom ash) on State Road 641, Terre Haute, Ind. Monitoring of the demonstration embankment was conducted for a period of 1 year from the start of construction of the embankment. The settlement of the embankment stabilized approximately 5 months after the end of its construction. According to horizontal inclinometer readings, the differential settlement at the top of the embankment is about 5 mm. Results from field quality control tests performed during construction of the demonstration embankment and monitoring data from vertical and horizontal inclinometers and settlement plates indicate that the ash mixture investigated can be considered an acceptable embankment construction material.

  13. Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char

    SciTech Connect (OSTI)

    Jing Gu; Shiyong Wu; Youqing Wu; Ye Li; Jinsheng Gao

    2008-11-15

    In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivity than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.

  14. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    SciTech Connect (OSTI)

    Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

    1998-05-01

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

  15. Utilization of ash from municipal solid waste combustion. Final report, Phase I

    SciTech Connect (OSTI)

    Jones, C.M.; Hartman, R.M.; Kort, D.; Rapues, N.

    1994-09-01

    This ash study investigates several aspects of Municipal Waste Combustion (MWC) ash utilization to develop an alternative to the present disposal practice of landfilling in a lined monofill. Ash was investigated as a daily or final cover for municipal waste in the landfill to prevent erosion and as a road construction aggregate. Samples of eight mixtures of ash and other materials, and one sample of soil were analyzed for chemical constituents. Biological tests on these mixters were conducted, along with erosion tests and sieve analyses. A chemical analysis of each sieve size was conducted. Geotechnical properties of the most promising materials were made. Findings to this point include: all ash samples take have passed the EPA TCLP testing; chemical analysis of bottom and combined ash samples indicate less than expected variability; selected ash mixtures exhibited very low coefficients of hydraulic conductivity; all but one of the ash mixtures exhibited greater erosion resistance than the currently used landfill cover material; MWC combined analysis indicates this is a viable alternative for landfill cover; MWC ash size reactions and chemical analysis show bottom and combined ash to be a viable alternative for road construction.

  16. Leaching characteristics of arsenic and selenium from coal fly ash: role of calcium

    SciTech Connect (OSTI)

    Tian Wang; Jianmin Wang; Yulin Tang; Honglan Shi; Ken Ladwig

    2009-05-15

    Understanding the leaching behavior of arsenic (As) and selenium (Se) in coal fly ash is important in evaluating the potential environmental impact of coal fly ash. Batch experiments were employed to systematically investigate the leaching behavior of As and Se in two major types of coal fly ashes, bituminous coal ash and sub-bituminous coal ash, and to determine the underlying processes that control As and Se leaching. The effects of pH, solid/liquid (S/L) ratio, calcium addition, and leaching time on the release of As and Se were studied. Overall, bituminous coal ash leached significantly more As and Se than sub-bituminous coal ash, and Se was more readily leachable, in both absolute concentration and relative fraction, than As for both types of fly ashes. Adsorption/desorption played a major role on As and Se leaching from bituminous coal ashes. However, calcium precipitation played the most important role in reducing As and Se leaching from sub-bituminous coal ashes in the entire experimental pH range. The leaching of As and Se from bituminous coal ashes generally increased with increases in the S/L ratio and leaching time. However, for sub-bituminous coal ashes, the leaching of As was not detected under most experimental conditions, while the leaching of Se increased with increases in the S/L ratio and leaching time. As{sup V} and Se{sup IV} were found to be the major species in all ash leachates in this study. 46 refs., 7 figs., 1 tab.

  17. Oil shale ash-layer thickness and char combustion kinetics

    SciTech Connect (OSTI)

    Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

    1992-04-15

    A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

  18. Effects of Sediment Containing Coal Ash from the Kingston Ash Release on Embryo-Larval Development in the Fathead Minnow, Pimephales promelas (Rafinesque, 1820)

    SciTech Connect (OSTI)

    Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty; Sherrard, Rick

    2014-01-01

    The largest environmental release of coal ash in U.S. history occurred in December 2008 with the failure of a retention structure at the Tennessee Valley Authority (TVA) Kingston Fossil Plant in East Tennessee. A byproduct of coal-burning power plants, coal ash is enriched in metals and metalloids such as selenium and arsenic with known toxicity to fish including embryonic and larval stages. The effects of contact exposure to sediments containing up to 78 % coal ash from the Kingston spill on the early development of fish embryos and larvae were examined in 7-day laboratory tests with the fathead minnow (Pimephales promelas). No significant effects were observed on hatching success, incidences of gross developmental abnormalities, or embryo-larval survival. Results suggest that direct exposures to sediment containing residual coal ash from the Kingston ash release may not present significant risks to fish eggs and larvae in waterways affected by the spill.

  19. Relationship between textural properties, fly ash carbons, and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends

    SciTech Connect (OSTI)

    Isabel Surez-Ruiz; Jose B. Parra

    2007-08-15

    In this work, the textural properties of a series of whole anthracitic-derived fly ashes sampled in eight hoppers from the electrostatic precipitators and their sized fractions (from {gt}150 to {lt}25 {mu}m) are investigated. Data from N{sub 2} adsorption isotherms at 77 K, helium density, and mercury porosimetry have contributed to establish a relationship between the Brunauer-Emmett-Teller (BET) surface areas, VTOT, porosity, carbon content (the type of fly ash carbons), and Hg retention in these fly ashes. The unburned carbons in these ashes are macroporous materials, and they are different from the carbons in fly ashes from classes C and F (the latter derived from the combustion of bituminous coals) and show different textural properties. These ashes represent the end member of the fly ash classes C and F with respect to certain textural properties. Although the BET surface area and VTOT values for the studied samples are the lowest reported, they increase with the increase in carbon content, anisotropic carbon content, and particle size of the ashes. Thus, a positive relationship between all these parameters and Hg capture by the coarser ash fractions was found. The finest fraction of carbons ({lt}25 {mu}m) represented an exception. Although it makes a significant contribution to the total carbon of the whole fly ashes and shows relatively higher surface areas and VTOT values, its Hg concentration was found to be the lowest. This suggests that the type of unburned carbons in the finest fraction and/or other adsorption mechanisms may play a role in Hg concentration. Because the textural properties of anisotropic carbons depend on their subtype and on their origin, the need for its differentiation has been evidenced. 54 refs., 8 figs., 3 tabs.

  20. Excitation functions of {sup 6,7}Li+{sup 7}Li reactions at low energies

    SciTech Connect (OSTI)

    Prepolec, L.; Soic, N.; Blagus, S.; Miljanic, D.; Siketic, Z.; Skukan, N.; Uroic, M.; Milin, M.

    2009-08-26

    Differential cross sections of {sup 6,7}Li+{sup 7}Li nuclear reactions have been measured at forward angles (10 deg. and 20 deg.), using particle identification detector telescopes, over the energy range 2.75-10.00 MeV. Excitation functions have been obtained for low-lying residual-nucleus states. The well pronounced peak in the excitation function of {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(3.37 MeV,2{sup +}) at beam energy about 8 MeV, first observed by Wyborny and Carlson in 1971 at 0 deg., has been observed at 10 deg., but is less evident at 20 deg. The cross section obtained for the {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(g.s,0{sup +}) reaction is about ten times smaller. The well pronounced peak in the excitation function of {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(3.37 MeV,2{sup +}) reaction could correspond to excited states in {sup 14}C, at excitation energies around 30 MeV.

  1. Integrated production/use of ultra low-ash coal, premium liquids and clean char

    SciTech Connect (OSTI)

    Kruse, C.W.

    1991-01-01

    This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

  2. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures

    SciTech Connect (OSTI)

    Kong, Daniel L.Y.; Sanjayan, Jay G. Sagoe-Crentsil, Kwesi

    2007-12-15

    This paper presents the results of a study on the effect of elevated temperatures on geopolymers manufactured using metakaolin and fly ash of various mixture proportions. Both types of geopolymers (metakaolin and fly ash) were synthesized with sodium silicate and potassium hydroxide solutions. The strength of the fly ash-based geopolymer increased after exposure to elevated temperatures (800 deg. C). However, the strength of the corresponding metakaolin-based geopolymer decreased after similar exposure. Both types of geopolymers were subjected to thermogravimetric, scanning electron microscopy and mercury intrusion porosimetry tests. The paper concludes that the fly ash-based geopolymers have large numbers of small pores which facilitate the escape of moisture when heated, thus causing minimal damage to the geopolymer matrix. On the other hand, metakaolin geopolymers do not possess such pore distribution structures. The strength increase in fly ash geopolymers is also partly attributed to the sintering reactions of un-reacted fly ash particles.

  3. System for removing solids from a used lime or limestone slurry scrubbing liquor in flue gas desulfurization

    SciTech Connect (OSTI)

    Randolph, A.D.

    1981-10-13

    The flue gas desulfurization process using a lime or limestone slurry scrubbing solution produces used liquor containing calcium sulfite or sulfate (Typically gypsum). Precipitated particles are removed by feeding the used scrubbing liquor to an agitated crystallization zone to grow crystals and directing part of the used scrubbing liquor from that zone to a quiescent crystallization zone, in which particles are settled back into the agitated zone. An underflow stream from the agitated zone containing large crystals is combined with an overflow stream from the quiescent zone, which combined stream is clarified with the fines being returned to the scrubber and the large crystals being removed as a waste product. Apparatus for performing the above process in which the agitated and quiescent crystallization zones form part of a single crystallization vessel, and the two zones are separated by a baffle.

  4. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; Westover, Tyler L.

    2016-04-22

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  5. 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus...

    Open Energy Info (EERE)

    .8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search OpenEI...

  6. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers recently cleaned up a second basin containing coal ash residues from Cold War operations at the Savannah River Site (SRS).

  7. The Development of a Small Engine Based Accelerated Ash Loading Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Accelerated Ash Loading Protocol The Development of a Small Engine Based Accelerated Ash Loading Protocol Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_bunting.pdf (371.89 KB) More Documents & Publications The Development of a Small Engine Based Ash Loading Protocol Development of an Accelerated Ash-Loading Protocol for Diesel

  8. The Development of a Small Engine Based Ash Loading Protocol | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Ash Loading Protocol The Development of a Small Engine Based Ash Loading Protocol When 5% lubrication oil is added to diesel fuel in a small engine test, ash increases linearly and at the back of a filter, the amount depending on the differences in substrate and wash-coat type. deer08_bunting.pdf (322.41 KB) More Documents & Publications Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Requirements-Driven Diesel Catalyzed Particulate Trap Design

  9. Savannah River Site Takes on Another Environmental Cleanup Challenge: Coal-Fired Ash

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Workers have begun excavating a thick layer of coal ash covering approximately 100 acres of the Savannah River Site (SRS).

  10. A=5Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9AJ01) (See Energy Level Diagrams for 5Li) GENERAL: See also (1974AJ01) and Table 5.3 [Table of Energy Levels] (in PDF or PS) here. Model calculations: (1975KR1A). Special states: (1974GO13, 1974IR04, 1976IR1B). Astrophysical questions: (1974RA1C, 1978ME1C). Special reactions: (1975BR1A, 1976VA29, 1978ME1C). Reactions involving pions: (1973AR1B, 1974AM01). Applied topics: (1975HU1A). Other topics: (1974GO13, 1974IR04, 1976IR1B, 1978GO1D). Ground state of 5Li: (1975BE31). 1. 3He(d, γ)5Li Qm =

  11. A=5Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See the Energy Level Diagram for 5Li) See Table 5.3 [Table of Energy Levels] (in PDF or PS). 1. 3H(3He, n)5Li Qm = 10.297 Not reported. 2. 3He(d, γ)5Li Qm = 16.555 The excitation curve measured from Ed = 0.2 to 2.85 MeV shows a broad maximum at Ed = 0.45 ± 0.04 MeV (Eγ = 16.6 ± 0.2, σ = 50 ± 10 μb, Γγ = 11 ± 2 eV). Above this maximum, non-resonant capture is indicated by a slow rise of the cross section. The radiation appears to be isotropic to ± 10% at Ed = 0.58 MeV,

  12. A=6Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    79AJ01) (See Energy Level Diagrams for 6Li) GENERAL: See also (1974AJ01) and Table 6.2 [Table of Energy Levels] (in PDF or PS) here. Shell model: (1974KA11, 1975DI04, 1975GO1B, 1975VE01, 1976CE03, 1976GH1A). Collective, rotational and deformed models: (1974BO25). Cluster and α-particle models: (1972KR1A, 1973DO09, 1973LI23, 1974BA30, 1974GR24, 1974JA1K, 1974KA11, 1974NO03, 1974PA1B, 1974SH08, 1974WO1B, 1975BL1C, 1975GO08, 1975GR26, 1975HA48, 1975KR1A, 1975LE1A, 1975LI1C, 1975MI09, 1975NO03,

  13. Re-evaluation of the eutectic region of the LiBr-KBr-LiF system

    SciTech Connect (OSTI)

    Redey, L.; Guidotti, R.A.

    1996-05-01

    The separator pellet in a thermal battery consists of electrolyte immobilized by a binder (typically, MgO powder). The melting point of the electrolyte determines the effective operating window for its use in a thermal battery. The development of a two-hour thermal battery required the use of a molten salt that had a lower melting point and larger liquidus range than the LiCl-KCl eutectic which melts at 352 C. Several candidate eutectic electrolyte systems were evaluated for their suitability for this application. One was the LiCl-LiBr-KBr eutectic used at Argonne National Laboratories for high-temperature rechargeable batteries for electric-vehicle applications. Using a custom-designed high-temperature conductivity cell, the authors were able to readily determine the liquidus region for the various compositions studied around the original eutectic for the LiBr-KBr-LiF system. The actual eutectic composition was found to be 60.0 m/o LiBr-37.5 m/o KBr-2.5 m/o LiF with a melting point of 324 {+-} 0.5 C.

  14. Low energy detectors: 6Li-glass scintillators (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    Low energy detectors: 6Li-glass scintillators Citation Details In-Document Search Title: Low energy detectors: 6Li-glass scintillators You are accessing a document from the ...

  15. Predicting Reaction Sequences for Li-S Batteries - Joint Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2, 2014, Research Highlights Predicting Reaction Sequences for Li-S Batteries Computed ... polysulfide species will be used to identify more stable electrolytes for Li-S batteries. ...

  16. Hydrogen storage in LiH: A first principle study

    SciTech Connect (OSTI)

    Banger, Suman Nayak, Vikas Verma, U. P.

    2014-04-24

    First principles calculations have been performed on the Lithium hydride (LiH) using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory. We have extended our calculations for LiH+2H and LiH+6H in NaCl structure. The structural stability of three compounds have been studied. It is found that LiH with 6 added Hydrogen atoms is most stable. The obtained results for LiH are in good agreement with reported experimental data. Electronic structures of three compounds are also studied. Out of three the energy band gap in LiH is ∼3.0 eV and LiH+2H and LiH+6H are metallic.

  17. Shanghai Shen Li High Tech Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shen Li High Tech Co Ltd Jump to: navigation, search Name: Shanghai Shen-Li High Tech Co Ltd Place: Shanghai, Shanghai Municipality, China Zip: 201400 Product: Focused on the...

  18. Coal-ash Corrosion of Alloys for Combustion Power Plants

    SciTech Connect (OSTI)

    Natesan, K.; Purohit, A.; Rink, D.L.

    2003-04-22

    A program on coal-ash corrosion is being conducted at Argonne National Laboratory to evaluate the performance of several structural alloys in the presence of mixtures of synthetic coal ash, alkali sulfates, and alkali chlorides. Candidate alloys are also exposed in a small-scale coal-fired combustor at the National Energy Technology Laboratory in Pittsburgh. Experiments in the present program, which addresses the effects of deposit chemistry, temperature, and alloy chemistry on the corrosion response of alloys, were conducted at temperatures in the range of 575-800 C for time periods up to {approx}1850 h. Fe-base alloys selected for the study included HR3C, 310TaN, HR120, SAVE 25, NF709, modified 800, 347HFG, and HCM12A. In addition, 800H clad with Alloy 671 was included in several of the exposures. Ni-base alloys selected for the study included 600, 601, 617, 690, 625, 602CA, 214, 230, 45TM, HR 160, and 693. Data were obtained on weight change, scale thickness, internal penetration, microstructural characteristics of corrosion products, mechanical integrity of the scales, and cracking of scales. Results showed that the relationship of corrosion rates to temperature followed a bell-shaped curve for Fe-base alloys, with peak rates at {approx}725 C, but the rate itself was dependent on the alloy chemistry. Several Fe-base alloys showed acceptable rates in the sulfate-containing coal-ash environment; but NaCl in the deposit led to catastrophic corrosion at 650 and 800 C. Ni-base alloys generally exhibited less corrosion than the Fe-base alloys under similar exposure conditions; however, they were susceptible to localized corrosion in the form of pits.

  19. Speciation of Selenium, Arsenic, and Zinc in Class C Fly Ash

    SciTech Connect (OSTI)

    Luo, Yun; Giammar, Daniel E.; Huhmann, Brittany L.; Catalano, Jeffrey G.

    2011-11-17

    A major environmental concern associated with coal fly ash is the mobilization of trace elements that may contaminate water. To better evaluate proper use of fly ash, determine appropriate disposal methods, and monitor postdisposal conditions, it is important to understand the speciation of trace elements in fly ash and their possible environmental impact. The speciation of selenium, arsenic, and zinc was determined in five representative Class C fly ash samples from combustion of sub-bituminous Powder River Basin coal using synchrotron-based X-ray absorption spectroscopy to provide an improved understanding of the mechanisms of trace element association with the fly ash. Selenium in all fly ash samples occurs predominantly as Se(IV), with the exception of one sample, in which there was a minor amount of Se(0). Se(0) is likely associated with the high content of unburned coal in the sample. Arsenic exists in the fly ash as a single phase most consistent with calcium pyroarsenate. In contrast, zinc occurs as two distinct species in the silicate glass matrix of the fly ash. This work demonstrates that residual carbon in fly ash may reduce potential Se mobility in the environment by retaining it as less soluble elemental Se instead of Se(IV). Further, this work suggests that As and Zn in Class C fly ash will display substantially different release and mobilization behaviors in aquatic environments. While As release will primarily depend upon the dissolution and hydrolysis of calcium pyroarsenate, Zn release will be controlled by the dissolution of alkaline aluminosilicate glass in the ash.

  20. Growth and elemental accumulation by canola on soil amended with coal fly ash

    SciTech Connect (OSTI)

    Yunusa, I.A.M.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Murray, B.R.; Nissanka, S.P.

    2008-05-15

    To explore the agronomic potential of an Australian coal fly ash, we conducted two glasshouse experiments in which we measured chlorophyll fluorescence, CO{sub 2} assimilation (A), transpiration, stomatal conductance, biomass accumulation, seed yield, and elemental uptake for canola (Brassica napus) grown on soil amended with an alkaline fly ash. In Experiment 1, application of up to 25 Mg/ha of fly ash increased A and plant weight early in the season before flowering and seed yield by up to 21%. However, at larger rates of ash application A, plant growth, chlorophyll concentration, and yield were all reduced. Increases in early vigor and seed yield were associated with enhanced uptake of phosphorus (P) by the plants treated with fly ash. Fly ash application did not influence accumulation of B, Cu, Mo, or Zn in the stems at any stage of plant growth or in the seed at harvest, except Mo concentration, which was elevated in the seed. Accumulation of these elements was mostly in the leaves, where concentrations of Cu and Mo increased with any amount of ash applied while that of B occurred only with ash applied at 625 Mg/ha. In Experiment 2, fly ash applied at 500 Mg/ha and mixed into the whole 30 cm soil core was detrimental to growth and yield of canola, compared with restricting mixing to 5 or 15 cm depth. In contrast, application of ash at 250 Mg/ha with increasing depth of mixing increased A and seed yield. We concluded that fly ash applied at not more than 25 Mg/ha and mixed into the top 10 to 15 cm of soil is sufficient to obtain yield benefits.

  1. Enforcement Letter, Construction Consultants L.I., Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Construction Consultants L.I., Inc. Enforcement Letter, Construction Consultants L.I., Inc. December 4, 2015 Worker Safety and Health Enforcement Letter issued to Construction Consultants L.I., Inc. On December 4, 2015, the U.S. Department of Energy (DOE) Office of Enterprise Assessments' Office of Enforcement issued an Enforcement Letter (WEL-2015-05) to Construction Consultants L.I., Inc., relating to an electrical shock suffered by a subcontractor while working on a meteorological

  2. Predictive Models of Li-ion Battery Lifetime (Presentation) (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Predictive Models of Li-ion Battery Lifetime (Presentation) Citation Details In-Document Search Title: Predictive Models of Li-ion Battery Lifetime (Presentation) Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage

  3. Probing the failure mechanism of nanoscale LiFePO₄ for Li-ion batteries

    SciTech Connect (OSTI)

    Gu, Meng; Shi, Wei; Zheng, Jianming; Yan, Pengfei; Zhang, Ji-guang; Wang, Chongmin

    2015-05-18

    LiFePO4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) to study the gradual capacity fading mechanism of LiFePO4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding is of great importance for the design and improvement of new LiFePO4 cathode for high-energy and high-power rechargeable battery for electric transportation.

  4. Thermal Stability of LiPF 6 Salt and Li-ion Battery Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form ...

  5. Controlled Experiments on the Effects of Lubricant/Additive (Low-Ash, Ashless) Characteristics on DPF Degradation

    Broader source: Energy.gov [DOE]

    Effects of lubricant additive chemistries and exhaust conditions on ash properties affecting diesel particulate filter performance. Comparison of ash characteristics such as packing density and elemental composition in field and laboratory aged DPFs.

  6. Influence of combustion conditions and coal properties on physical properties of fly ash generated from pulverized coal combustion

    SciTech Connect (OSTI)

    Hiromi Shirai; Hirofumi Tsuji; Michitaka Ikeda; Toshinobu Kotsuji

    2009-07-15

    To develop combustion technology for upgrading the quality of fly ash, the influences of the coal properties, such as the size of pulverized coal particles and the two-stage combustion ratio during the combustion, on the fly ash properties were investigated using our test furnace. The particle size, density, specific surface area (obtained by the Blaine method), and shape of fly ash particles of seven types of coal were measured. It was confirmed that the size of pulverized coal particles affects the size of the ash particles. Regarding the coal properties, the fuel ratio affected the ash particle size distribution. The density and shape of the ash particles strongly depended on their ash size. Our results indicated that the shape of the ash particles and the concentration of unburned carbon affected the specific surface area. The influence of the two-stage combustion ratio was limited. 8 refs., 13 figs., 3 tabs.

  7. A=10Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MeV) corresponds to the ground state. 10Lig.s. would then be unbound with respect to breakup into 9Li + n by 0.80 0.25 MeV: see (1979AJ01). See also (1986GI10, 1987AB15),...

  8. A=10Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    width of the ground state is 1.2 0.3 MeV. 10Lig.s. is unbound with respect to breakup into 9Li + n by 0.80 0.25 MeV (1975WI26). See also (1974BA15, 1974CE1A, 1974TH01,...

  9. A=10Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MeV) corresponds to the ground state. 10Lig.s. would the be unbound with respect to breakup into 9Li + n by 0.80 0.25 MeV (1975WI26). However (1979AB11, 1980AB16), on the...

  10. 6Li foil thermal neutron detector

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Swinhoe, Martyn T; Favalli, Andrea; Chung, Kiwhan; Macarthur, Duncan W

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  11. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    SciTech Connect (OSTI)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

  12. California bearing ratio behavior of soil-stabilized class F fly ash systems

    SciTech Connect (OSTI)

    Leelavathamma, B.; Mini, K.M.; Pandian, N.S.

    2005-11-01

    Fly ash is a finely divided mineral residue resulting from the combustion of coal in power plants that occupies large extents of land and also causes environmental problems. Hence, concerted attempts are being made to effectively use fly ash in an environmentally friendly way instead of dumping. Several studies have been carried out for its bulk utilization, such as its addition to improve the California bearing ratio (CBR) of soil in roads and embankments. But a thorough mixing of fly ash with soil may not be possible in the field. Hence a study has been carried out on the CBR behavior of black cotton soil and Raichur fly ash (which is class F) in layers and compared with the same in mixes. The results show that the CBR values of soil-fly ash mixes are better than layers, as expected. To improve the strength of layers, cement is used as an additive to fly ash. The results show that black cotton soil can be improved with stabilized fly ash, solving its strength problem as well as the disposal problem of fly ash.

  13. INVESTIGATION OF FLY ASH AND ACTIVATED CARBON OBTAINED FROM PULVERIZED COAL BOILERS

    SciTech Connect (OSTI)

    Edward K. Levy; Christopher Kiely

    2004-11-01

    One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addresses the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addresses the possible connection between SCR reactors, fly ash properties and Hg capture. The project is determining the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed are also being determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control, are being analyzed to determine the effect of SCR on the ash. These analyses will also determine the properties of ash which are important for Hg capture.

  14. Site-specific study on stabilization of acid-generating mine tailings using coal fly ash

    SciTech Connect (OSTI)

    Shang, J.Q.; Wang, H.L.; Kovac, V.; Fyfe, J.

    2006-03-15

    A site-specific study on stabilizing acid-generating mine tailings from Sudbury Mine using a coal fly ash from Nanticoke Generating Station is presented in this paper. The objective of the study is to evaluate the feasibility of codisposal of the fly ash and mine tailings to reduce environmental impacts of Sudbury tailings disposal sites. The study includes three phases, i.e., characterization of the mine tailings, and coal fly ash, oxidation tests on the mine tailings and kinetic column permeation tests. The results of the experiments indicate that when permeated with acid mine drainage, the hydraulic conductivity of Nanticoke coal fly ash decreased more than three orders of magnitude (from 1 x 10{sup -6} to 1 x 10{sup -9} cm/s), mainly due to chemical reactions between the ash solids and acid mine drainage. Furthermore, the hydraulic gradient required for acid mine drainage to break through the coal fly ash is increased up to ten times (from 17 to 150) as compared with that for water. The results also show that the leachate from coal fly ash neutralizes the acidic pore fluid of mine tailings. The concentrations of trace elements in effluents from all kinetic column permeation tests indicated that coplacement of coal fly ash with mine tailings has the benefit of immobilizing trace elements, especially heavy metals. All regulated element concentrations from effluent during testing are well below the leachate quality criteria set by the local regulatory authority.

  15. 488-D Ash Basin Vegetative Cover Treatibility Study

    SciTech Connect (OSTI)

    Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

    2003-01-01

    The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

  16. Quantification of the degree of reaction of fly ash

    SciTech Connect (OSTI)

    Ben Haha, M.; De Weerdt, K.; Lothenbach, B.

    2010-11-15

    The quantification of the fly ash (FA) in FA blended cements is an important parameter to understand the effect of the fly ash on the hydration of OPC and on the microstructural development. The FA reaction in two different blended OPC-FA systems was studied using a selective dissolution technique based on EDTA/NaOH, diluted NaOH solution, the portlandite content and by backscattered electron image analysis. The amount of FA determined by selective dissolution using EDTA/NaOH is found to be associated with a significant possible error as different assumptions lead to large differences in the estimate of FA reacted. In addition, at longer hydration times, the reaction of the FA is underestimated by this method due to the presence of non-dissolved hydrates and MgO rich particles. The dissolution of FA in diluted NaOH solution agreed during the first days well with the dissolution as observed by image analysis. At 28 days and longer, the formation of hydrates in the diluted solutions leads to an underestimation. Image analysis appears to give consistent results and to be most reliable technique studied.

  17. Evaluation of rice husk ash as filler in tread compounds

    SciTech Connect (OSTI)

    Fernandes, M. R. S.; Furtado, C. R. G. E-mail: ana.furtado.sousa@gmail.com; Sousa, A. M. F. de E-mail: ana.furtado.sousa@gmail.com

    2014-05-15

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)

  18. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    SciTech Connect (OSTI)

    Oguchi, Hiroyuki; Ikeshoji, Tamio; Orimo, Shin-ichi; Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro; Kuwano, Hiroki

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  19. Correlation of anisotropy and directional conduction in β-Li3PS4 fast Li+ conductor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Yan; Cai, Lu; Liu, Zengcai; dela Cruz, Clarina R.; Liang, Chengdu; An, Ke

    2015-07-06

    Our letter reports the correlation of anisotropy and directional conduction in the fast Li+ conductor β-Li3PS4, one of the low-symmetry crystalline electrolyte candidates. The material has both high conductivity and good stability that serves well for the large-scale energy storage applications of all-solid-state lithium ion batteries. The anisotropic physical properties, demonstrated here by the thermal expansion coefficients, are crucial for compatibility in the solid-state system and battery performance. Neutron and X-ray powder diffraction measurements were done to determine the crystal structure and thermal stability. Moreover, the crystallographic b-axis was revealed as a fast expansion direction, while negligible thermal expansion wasmore » observed along the a-axis around the battery operating temperatures. The anisotropic behavior has its structural origin from the Li+ conduction channels with incomplete Li occupancy and a flexible connection of LiS4 and PS4 tetrahedra within the framework. This indicates a strong correlation in the direction of the ionic transport in the low-symmetry Li+ conductor.« less

  20. pH-dependent leaching of dump coal ash - retrospective environmental analysis

    SciTech Connect (OSTI)

    Popovic, A.; Djordjevic, D. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

    2009-07-01

    Trace and major elements in coal ash particles from dump of 'Nikola Tesla A' power plant in Obrenovac near Belgrade (Serbia) can cause pollution, due to leaching by atmospheric and surface waters. In order to assess this leaching potential, dump ash samples were subjected to extraction with solutions of decreasing pH values (8.50, 7.00, 5.50, and 4.00), imitating the reactions of the alkaline ash particles with the possible alkaline, neutral, and acidic (e.g., acid rain) waters. The most recently deposited ash represents the greatest environmental threat, while 'aged' ash, because of permanent leaching on the dump, was shown to have already lost this pollution potential. On the basis of the determined leachability, it was possible to perform an estimation of the acidity of the regional rainfalls in the last decades.

  1. Mercury retention by fly ashes from coal combustion: Influence of the unburned carbon content

    SciTech Connect (OSTI)

    Lopez-Anton, M.A.; Diaz-Somoano, M.; Martinez-Tarazona, M.R.

    2007-01-31

    The objective of this study was to evaluate the effect of unburned carbon particles present in fly ashes produced by coal combustion on mercury retention. To achieve this objective, the work was divided into two parts. The aim of the first part of the study was to estimate the amount of mercury captured by the fly ashes during combustion in power stations and the relationship of this retention to the unburned carbon content. The second part was a laboratory-scale study aimed at evaluating the retention of mercury concentrations greater than those produced in power stations by fly ashes of different characteristics and by unburned carbon particles. From the results obtained it can be inferred that the unburned carbon content is not the only variable that controls mercury capture in fly ashes. The textural characteristics of these unburned particles and of other components of fly ashes also influence retention.

  2. Cutoff walls and cap for lime and M-1 settling basins, Rocky Mountain Arsenal, Colorado. Part 1: Final design analysis. Final report

    SciTech Connect (OSTI)

    1990-10-01

    This document consists of 2 parts, final design analysis and specifications. The purpose of the project was to develop a design for the Interim Response Actions (IRA) at the Lime and M-l Settling Basins at Rocky Mountain Arsenal (RMA), Commerce City, Colorado. The purpose of the IRA at the Lime and M-l Settling Basins is to mitigate the threat of release from the Basins on an interim basis, pending determination of the final remedy in the Onpost Record of Decision (ROD). The IRA for the M-l Basins also includes treatment of the waste materials in the basins with in-situ vitrification (ISV), which is being designed by contract with Woodward-Clyde Consultants.

  3. Making Li-air batteries rechargeable: material challenges

    SciTech Connect (OSTI)

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  4. Simulation of Coal Ash Particle Deposition Experiments (Copyright 2011, American Chemical Society)

    SciTech Connect (OSTI)

    Ai, Weiguo; Kuhlman, John M

    2011-01-20

    Existing experimental ash particle deposition measurements from the literature have been simulated using the computational fluid dynamics (CFD) discrete phase model (DPM) Lagrangian particle tracking method and an existing ash particle deposition model based on the Johnson−Kendall−Roberts (JKR) theory, in the Fluent commercial CFD code. The experimental heating tube was developed to simulate ash temperature histories in a gasifier; ash-heating temperatures ranged from 1873 to 1573 K, spanning the ash-melting temperature. The present simulations used the realizable k−ε turbulence model to compute the gas flow field and the heat transfer to a cooled steel particle impact probe and DPM particle tracking for the particle trajectories and temperatures. A user-defined function (UDF) was developed to describe particle sticking/rebounding and particle detachment on the impinged wall surface. Expressions for the ash particle Young’s modulus in the model, E, versus the particle temperature and diameter were developed by fitting to the E values that were required to match the experimental ash sticking efficiencies from several particle size cuts and ash-heating temperatures for a Japanese bituminous coal. A UDF that implemented the developed stiffness parameter equations was then used to predict the particle sticking efficiency, impact efficiency, and capture efficiency for the entire ash-heating temperature range. Frequency histogram comparisons of adhesion and rebound behavior by particle size between model and experiments showed good agreement for each of the four ash-heating temperatures. However, to apply the present particle deposition model to other coals, a similar validation process would be necessary to develop the effective Young’s modulus versus the particle diameter and temperature correlation for each new coal.

  5. Evaluation of the effects of coal fly ash amendments on the toxicity of a contaminated marine sediment

    SciTech Connect (OSTI)

    Burgess, R.M.; Perron, M.M.; Friedman, C.L.; Suuberg, E.M.; Pennell, K.G.; Cantwell, M.G.; Pelletier, M.C.; Ho, K.T.; Serbst, J.R.; Ryba, S.A.

    2009-01-15

    Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.

  6. Electrolyte effects in Li(Si)/FeS{sub 2} thermal batteries

    SciTech Connect (OSTI)

    Guidotti, R.A.; Reinhardt, F.W.

    1994-10-01

    The most common electrochemical couple for thermally activated (``thermal``) batteries is the Li-alloy/FeS{sub 2} system. The most common Li-alloys used for anodes are 20% Li-80% Al and 44% Li-56% Si (by weight); liquid Li immobilized with iron powder has also been used. The standard electrolyte that has been used in thermal batteries over the years is the LiCl-KCl eutectic that melts at 352{degrees}C. The LiCl-LiBr-LiF eutectic had the best rate and power characteristics. This electrolyte melts at 436{degrees}C and shows very low polarization because of the absence of Li+ gradients common with the LiCl-KCl eutectic. The low-melting electrolytes examined included a KBr-LiBr-LiCl eutectic (melting at 321{degrees}C), a LiBr-KBr-LiF eutectic (melting at 313{degrees}C), and a CsBr-LiBr-KBr eutectic (melting at 238{degrees}C). The CsBr-based salt had poor conductivity and was not studied further. The LiBr-KBr-LiF eutectic outperformed the KBr-LiBr-LiCl eutectic and was selected for more extensive testing. Because of their lower melting points and larger liquidi relative to the LiCl-KCl eutectic, the low-melting electrolytes are prime candidates for long-life applications (i.e., for activated lives of one hour or more). This paper will detail the relative performance of the Li(Si)/FeS{sub 2} couple using primarily the LiCl-KCl (standard) eutectic, the LiCl-LiBr-LiF (all-Li) eutectic, and the LiBr-KBr-LiF (low-melting) eutectic electrolytes. Most of the tests were conducted with 5-cell batteries; validation tests were also carried out with appropriate full-sized batteries.

  7. Evaluating the Effects of the Kingston Fly Ash Release on Fish Reproduction: Spring 2009 - 2010 Studies

    SciTech Connect (OSTI)

    Greeley Jr, Mark Stephen; Adams, Marshall; McCracken, Kitty

    2012-05-01

    On December 22, 2008, a dike containing fly ash and bottom ash at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits from the spill extended 4 miles upstream of the facility to Emory River mile 6 and downstream to Tennessee River mile 564 ({approx}8.5 miles downstream of the confluence of the Emory River with the Clinch River, and {approx}4 miles downstream of the confluence of the Clinch River with the Tennessee River). A byproduct of coal combustion, fly ash contains a variety of metals and other elements which, at sufficient concentrations and in specific forms, can be harmful to biological systems. The ecological effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to come from elevated levels of certain metals in the ash, particularly selenium, on fish reproduction and fish early life stages (Lemly 1993; Besser and others 1996). The ovaries of adult female fish in a lake contaminated by coal ash were reported to have an increased frequency of atretic oocytes (dead or damaged immature eggs) and reductions in the overall numbers of developing oocytes (Sorensen 1988) associated with elevated body burdens of selenium. Larval fish exposed to selenium through maternal transfer of contaminants to developing eggs in either contaminated bodies of water (Lemly 1999) or in experimental laboratory exposures (Woock and others 1987, Jezierska and others 2009) have significantly increased incidences of developmental abnormalities. Contact of fertilized eggs and developing embryos to ash in water and sediments may also pose an additional risk to the early life stages of exposed fish populations through direct uptake of metals and other ash constituents (Jezierska and others 2009). The establishment and maintenance of fish populations is intimately associated with

  8. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kern Ho Park; Oh, Dae Yang; Choi, Young Eun; Nam, Young Jin; Han, Lili; Kim, Ju -Young; Xin, Huolin; Lin, Feng; Oh, Seung M.; Jung, Yoon Seok

    2015-12-22

    The new, highly conductive (4.1 × 10–4 S cm–1 at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.6Li4SnS4 is prepared using a homogeneous methanol solution. Furthermore, the solution process enables the wetting of any exposed surface of the active materials with highly conductive solidified electrolytes (0.4LiI-0.6Li4SnS4), resulting in considerable improvements in electrochemical performances of these electrodes over conventional mixture electrodes.

  9. JV Task 120 - Coal Ash Resources Research Consortium Research

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett; Bruce Dockter; Kurt Eylands; Tera Buckley; Erick Zacher

    2009-03-28

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special

  10. On how differently the quasi-harmonic approximation works for two isostructural crystals: Thermal properties of periclase and lime

    SciTech Connect (OSTI)

    Erba, A. Dovesi, R.; Shahrokhi, M.; Moradian, R.

    2015-01-28

    Harmonic and quasi-harmonic thermal properties of two isostructural simple oxides (periclase, MgO, and lime, CaO) are computed with ab initio periodic simulations based on the density-functional-theory (DFT). The more polarizable character of calcium with respect to magnesium cations is found to dramatically affect the validity domain of the quasi-harmonic approximation that, for thermal structural properties (such as temperature dependence of volume, V(T), bulk modulus, K(T), and thermal expansion coefficient, α(T)), reduces from [0 K-1000 K] for MgO to just [0 K-100 K] for CaO. On the contrary, thermodynamic properties (such as entropy, S(T), and constant-volume specific heat, C{sub V}(T)) are described reliably at least up to 2000 K and quasi-harmonic constant-pressure specific heat, C{sub P}(T), up to about 1000 K in both cases. The effect of the adopted approximation to the exchange-correlation functional of the DFT is here explicitly investigated by considering five different expressions of three different classes (local-density approximation, generalized-gradient approximation, and hybrids). Computed harmonic thermodynamic properties are found to be almost independent of the adopted functional, whereas quasi-harmonic structural properties are more affected by the choice of the functional, with differences that increase as the system becomes softer.

  11. Geopolymer concretes: a green construction technology rising from the ash

    SciTech Connect (OSTI)

    Allouche, E.

    2009-07-01

    Researchers at Louisiana Tech University have embarked on a multi-year research initiative to develop applications for inorganic polymer concrete, or geopolymer concrete, in the area of civil construction, and to bring solve of these applications to market. One objective was to produce a spray-on coating for use in the harsh environment of wastewater conveyance and treatment facilities. Another project is to establish relationships between fly ash composition and particle size distribution and the mechanical attributes and workability of the resulting geopolymer concrete. A third project is to develop a 'smart' geopolymer concrete whose response to a given electric current can be correlated to the stress level to which the structure is subjected. 1 fig., 6 photos.

  12. Management of sewage sludge and ash containing radioactive materials.

    SciTech Connect (OSTI)

    Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

    2007-01-01

    Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

  13. Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures

    DOE Patents [OSTI]

    Khan, M. Rashid

    1990-01-01

    A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

  14. Suppression of phosphate liberation from eutrophic lake sediment by using fly ash and ordinary Portland cement

    SciTech Connect (OSTI)

    Heng-Peng Ye; Fan-Zhong Chen; Yan-Qing Sheng; Guo-Ying Sheng; Jia-Mo Fu

    2006-08-15

    In this study, the effect of suppression on phosphate liberation from eutrophic lake sediment by using fly ash and ordinary Portland cement (OPC) was investigated by small scale experiment. A system including sediment, lake water, and several kinds of capping materials was designed to clarify the suppression of phosphate liberation from sediment under the anaerobic condition. The suppression efficiencies of fly ash, OPC and glass bead used as control material were also determined, and these effects were discussed. The suppression efficiency of glass bead was 44.4%, and those of fly ash and OPC were 84.4%, 94.9%, respectively. The suppression by fly ash and OPC was mainly carried out by the adsorption effect, in addition to the covering effect. The suppression efficiency depended on the amounts of the material used, and about 90% of liberated phosphate was suppressed by fly ash of 10.0 Kg m{sup -2}, and OPC of 6.0 Kg m{sup -2}. The concentrations of heavy metals, such as mercury, cadmium, lead, copper, zinc, chromium, silver, arsenic and nickel, in fly ash and OPC were lower than those in the environmental materials. And it was considered that the concentrations of heavy metals in fly ash and OPC were too low to influence the ecosystem in natural water region.

  15. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment

    SciTech Connect (OSTI)

    Chen, C.C.; Lee, W.J.; Shih, S.I.; Mou, J.L.

    2009-07-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

  16. Investigation of Fly Ash and Activated Carbon Obtained from Pulverized Coal Boilers

    SciTech Connect (OSTI)

    Edward K. Levy; Christopher Kiely; Zheng Yao

    2006-08-31

    One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addressed the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addressed the possible connection between SCR reactors, fly ash properties and Hg capture. The project has determined the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed have also been determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control have been analyzed in an effort to determine the effects of SCR on the ash.

  17. Increase of available phosphorus by fly-ash application in paddy soils

    SciTech Connect (OSTI)

    Lee, C.H.; Lee, H.; Lee, Y.B.; Chang, H.H.; Ali, M.A.; Min, W.; Kim, S.; Kim, P.J.

    2007-07-01

    Fly ash from the coal- burning industry may be a potential inorganic soil amendment to increase rice productivity and to restore the soil nutrient balance in paddy soil. In this study, fly ash was applied at rates of 0, 40, 80, and 120 Mg ha{sup -1} in two paddy soils (silt loam in Yehari and loamy sand in Daegok). During rice cultivation, available phosphorus (P) increased significantly with fly ash application, as there was high content of P (786 mg kg{sup -1}) in the applied fly ash. In addition, high content of silicon (Si) and high pH of fly ash contributed to increased available-P content by ion competition between phosphate and silicate and by neutralization of soil acidity, respectively. With fly-ash application, water-soluble P (W-P) content increased significantly together with increasing aluminum- bound P (Al- P) and calcium- bound P (Ca- P) fractions. By contrast, iron- bound P (Fe- P) decreased significantly because of reduction of iron under the flooded paddy soil during rice cultivation. The present experiment indicated that addition of fly ash had a positive benefit on increasing the P availability.

  18. INVESTIGATION OF FLY ASH AND ACTIVATED CARBON OBTAINED FROM PULVERIZED COAL BOILERS

    SciTech Connect (OSTI)

    Edward K. Levy; Christopher Kiely

    2005-11-01

    One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addresses the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addresses the possible connection between SCR reactors, fly ash properties and Hg capture. The project is determining the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed are also being determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control, are being analyzed to determine the effect of SCR on the ash.

  19. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOE Patents [OSTI]

    Beaufrere, Albert H.

    1983-10-04

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  20. Assessment of the radiological impact of coal utilization. II. Radionuclides in western coal ash

    SciTech Connect (OSTI)

    Styron, C.E.; Bishop, C.T.; Casella, V.R.; Jenkins, P.H.; Yanko, W.H.

    1981-04-03

    A project has been initiated at Mound Facility specifically to evaluate the potential radiological impact of coal utilization. Phase I of the project included a survey of western US coal mines and an assessment of emissions from a power plant burning Western coal. Concentrations of uranium in coal from operating Western mines were slightly below the national average and roughly comparable to Eastern coal. Environmental deposition of radionuclides from stack emissions over a 20-year accumulation at a power plant burning Western coal was estimated to be 0.1 to 1.0% of measured background. Phase II of the project, the subject of the present report, has involved an interlaboratory comparison of results of radioanalytical procedures, determining partitioning coefficients for radionuclides in bottom ash and fly ash, and an assessment of the potential for migration of radionuclides from ash disposal sites. Results from the various laboratories for uranium-238, uranium-234, thorium-230, radium-226, polonium-210, thorium-232, thorium-228, and uranium-235 were generally in very good agreement. However, values for lead-210 in coal varied widely. Essentially all the nonvolatile radionuclides (uranium, radium, and thorium) from feed coal were accounted for in fly ash and bottom ash. However, 20 to 50% of the volatile radionuclides (lead and polonium) from subbituminous and lignitic coals could not be accounted for in ash, and it is assumed that this fraction exits via the stack. At the power plant burning bituminous coal, essentially all the lead and most of the polonium remained with the ash.

  1. A=5Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    84AJ01) (See Energy Level Diagrams for 5Li) GENERAL: See also (1979AJ01) and Table 5.3 [Table of Energy Levels] (in PDF or PS) here. Model calculations:(1978RE1A, 1979MA1J, 1980HA1M, 1981BE10, 1982FI13). Special states:(1981BE10, 1981KU1H, 1982EM1A, 1982FI13, 1982FR1D). Complex reactions involving 5Li:(1979BR02, 1979RU1B). Reactions involving pions:(1978BR1V, 1979SA1W, 1983AS02). Reactions involving antiprotons:(1981YA1B). Hypernuclei:(1980IW1A, 1981KO1V, 1981KU1H, 1983GI1C). Other

  2. A=5Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 5Li) GENERAL: See Table 5.4 [Table of Energy Levels] (in PDF or PS). See also (BA59N, MI59B, PE60C, PH60A, VA61K, DI62B, IN62, KU63I, BA64HH, GR64C, SA64G, ST64). 1. 3He(d, γ)5Li Qm = 16.388 The excitation curve measured from Ed = 0.2 to 2.85 MeV shows a broad maximum at Ed = 0.45 ± 0.04 MeV (Eγ = 16.6 ± 0.2 MeV, σ = 50 ± 10 μb, Γγ = 11 ± 2 eV). Above this maximum, non-resonant capture is indicated by a slow rise of the cross section. The

  3. A=8Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 8Li) GENERAL: See also (1979AJ01) and Table 8.2 [Table of Energy Levels] (in PDF or PS). Special states: (1980OK01). Complex reactions involving 8Li: (1978BO1B, 1978DU1B, 1979BO22, 1979IV1A, 1980AN1T, 1980BO31, 1980GR10, 1980WI1L, 1981BO1X, 1981MO20, 1982BO35, 1982BO1Y, 1982GO1E, 1982GU1H, 1982MO1N). Muon and neutrino interactions: (1978BA1G). Reactions involving pions and other mesons: (1977VE1C, 1979BA16, 1980HA29, 1981JU1A, 1981NI03, 1982HA57).

  4. A=8Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 8Li) GENERAL: See also (1984AJ01) and Table 8.2 [Table of Energy Levels] (in PDF or PS) here. Nuclear models: (1983KU17, 1983SH38, 1984MO1H, 1984REZZ, 1984VA06, 1988WO04). Special states: (1982PO12, 1983KU17, 1984REZZ, 1984VA06, 1986XU02). Electromagnetic transitions: (1983KU17). Astrophysics: (1987MA2C). Complex reactions involving 8Li: (1983FR1A, 1983GU1A, 1983OL1A, 1983WI1A, 1984GR08, 1984HI1A, 1984LA27, 1985JA1B, 1985MA02, 1985MA13, 1985MO17, 1986AV1B,

  5. A=9Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 9Li) GENERAL: See also (1979AJ01) and Table 9.1 [Table of Energy Levels] (in PDF or PS). Model calculations: (1979LA06). Complex reactions involving 9Li: (1978DU1B, 1979AL22, 1979BO22, 1979JA1C, 1980BO31, 1980WI1L, 1981BO1X, 1981MO20, 1982BO1Y). Muon and neutrino capture and reactions: (1980MU1B). Reactions involving pions and other mesons (See also reaction 3.): (1978FU09, 1979BO21, 1979PE1C, 1979WI1E, 1980NI03, 1980ST15, 1981YA1A). Hypernuclei: (1978DA1A,

  6. A=9Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 9Li) GENERAL: See also (1984AJ01) and Table 9.1 [Table of Energy Levels] (in PDF or PS). Model calculations: (1983KU17, 1984CH24, 1984VA06). Special states: (1983KU17, 1984VA06). Electromagnetic interactions: (1983KU17). Astrophysical questions: (1987MA2C). Complex reactions involving 9Li: (1983OL1A, 1983WI1A, 1984GR08, 1985JA1B, 1985MA02, 1985MO17, 1986CS1A, 1986HA1B, 1986SA30, 1986WE1C, 1987BA38, 1987CH26, 1987JA06, 1987KO1Z, 1987SH1K, 1987TAZU, 1987WA09,

  7. FIRST_Research Perspective_Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Structure factor obtained from MD (a) and SAXS (b) at different temperatures: comparison of spatial heterogeneity from snapshots (c) of DILs (top) and MILs (bottom) FIRST Center Research Perspective: Nanoscale Heterogeneity and Dynamics of Room Temperature Ionic Liquids Song Li Vanderbilt University Jianchang Guo, Kee Sung Han, Jose L. Bañuelos, Edward W. Hagaman, Robert W. Shaw Oak Ridge National Laboratory Research Summary: An increase of the alkyl chain length of the cation of room

  8. Li2OHCl crystalline electrolyte for stable metallic lithium anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; Keum, Jong Kahk; Liang, Chengdu

    2016-01-22

    In a classic example of stability from instability, we show that Li2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl system of crystalline solidmore » electrolytes where Li2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li2OHCl solid electrolyte.« less

  9. Impact of Collection Equipment on Ash Variability of Baled Corn Stover Biomass for Bioenergy

    SciTech Connect (OSTI)

    William Smith; Jeffery Einerson; Kevin Kenney; Ian J. Bonner

    2014-09-01

    Cost-effective conversion of agricultural residues for renewable energy hinges not only on the materials quality but also the biorefinerys ability to reliably measure quality specifications. The ash content of biomass is one such specification, influencing pretreatment and disposal costs for the conversion facility and the overall value of a delivered lot of biomass. The biomass harvest process represents a primary pathway for accumulation of soil-derived ash within baled material. In this work, the influence of five collection techniques on the total ash content and variability of ash content within baled corn stover in southwest Kansas is discussed. The equipment tested included a mower for cutting the corn stover stubble, a basket rake, wheel rake, or shred flail to gather the stover, and a mixed or uniform in-feed baler for final collection. The results showed mean ash content to range from 11.5 to 28.2 % depending on operational choice. Resulting impacts on feedstock costs for a biochemical conversion process range from $5.38 to $22.30 Mg-1 based on the loss of convertible dry matter and ash disposal costs. Collection techniques that minimized soil contact (shred flail or nonmowed stubble) were shown to prevent excessive ash contamination, whereas more aggressive techniques (mowing and use of a wheel rake) caused greater soil disturbance and entrainment within the final baled material. Material sampling and testing were shown to become more difficult as within-bale ash variability increased, creating uncertainty around feedstock quality and the associated costs of ash mitigation.

  10. Leachate concentrations from water leach and column leach tests on fly ash-stabilized soils

    SciTech Connect (OSTI)

    Bin-Shafique, S.; Benson, C.H.; Edil, T.B.; Hwang, K.

    2006-01-15

    Batch water leaching tests (WLTs) and column leaching tests (CLTs) were conducted on coal-combustion fly ashes, soil, and soil-fly ash mixtures to characterize leaching of Cd, Cr, Se, and Ag. The concentrations of these metals were also measured in the field at two sites where soft fine-grained soils were mechanically stabilized with fly ash. Concentrations in leachate from the WLTs on soil-fly ash mixtures are different from those on fly ash alone and cannot be accurately estimated based on linear dilution calculations using concentrations from WLTs on fly ash alone. The concentration varies nonlinearly with fly ash content due to the variation in pH with fly ash content. Leachate concentrations are low when the pH of the leachate or the cation exchange capacity (CEC) of the soil is high. Initial concentrations from CLTs are higher than concentrations from WLTs due to differences in solid-liquid ratio, pH, and solid-liquid contact. However, both exhibit similar trends with fly ash content, leachate pH, and soil properties. Scaling factors can be applied to WLT concentrations (50 for Ag and Cd, 10 for Cr and Se) to estimate initial concentrations for CLTs. Concentrations in leachate collected from the field sites were generally similar or slightly lower than concentrations measured in CLTs on the same materials. Thus, CLTs appear to provide a good indication of conditions that occur in the field provided that the test conditions mimic the field conditions. In addition, initial concentrations in the field can be conservatively estimated from WLT concentrations using the aforementioned scaling factors provided that the pH of the infiltrating water is near neutral.

  11. Salt-soda sinter process for recovering aluminum from fly ash

    DOE Patents [OSTI]

    McDowell, W.J.; Seeley, F.G.

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na/sub 2/CO/sub 3/ to a temperature in the range 700/sup 0/ to 900/sup 0/C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acidsoluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  12. Salt-soda sinter process for recovering aluminum from fly ash

    DOE Patents [OSTI]

    McDowell, William J.; Seeley, Forest G.

    1981-01-01

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na.sub.2 CO.sub.3 to a temperature in the range 700.degree.-900.degree. C. for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  13. Salt-soda sinter process for recovering aluminum from fly ash

    SciTech Connect (OSTI)

    Mcdowell, W.J.; Seeley, F.G.

    1981-03-03

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na2CO3 to a temperature in the range 700*-900* C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  14. Chemical Structure of Copper in Incineration Dry Scrubber and Bag Filter Ashes

    SciTech Connect (OSTI)

    Hsiao, M. C.; Wang, H. Paul; Peng, C. Y.; Huang, C. H.; Wei Yuling

    2007-02-02

    Speciation of copper in waste incineration fly ashes (dry scrubber (DS) and bag filter (BF)) has been studied by X-ray absorption near edge structural (XANES) spectroscopy in the present work. Copper species such as metallic Cu, CuO, Cu(OH)2, and a small amount of CuCO3 in the fly ashes could be distinguished by semi-quantitative analysis of the edge spectra. Interestingly, nano CuO (37%) were found in the BF fly ash, that might account for its relatively high leachability of copper.

  15. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    SciTech Connect (OSTI)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  16. Predictive Materials Modeling for Li-Air Battery Systems | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Predictive Materials Modeling for Li-Air Battery Systems PI Name: Larry Curtiss PI Email: curtiss@anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 50 Million Year: 2015 Research Domain: Materials Science A rechargeable lithium-air (Li-air) battery can potentially store five to ten times the energy of a lithium-ion (Li-ion) battery of the same weight. Realizing this enormous potential presents a challenging

  17. Trash, ash and the phoenix : a fifth anniversary review of the Supreme Court's City of Chicago waste-to-energy combustion ash decision.

    SciTech Connect (OSTI)

    Puder, M. G.; Environmental Assessment

    1999-01-01

    In 1994, the U.S. Supreme Court held that ash generated by waste-to-energy (WTE) facilities was not exempt from Subtitle C hazardous waste management regulations under the Resource Conservation and Recovery Act (RCRA). As a result of City of Chicago v. Environmental Defense Fund, Inc., WTE installations are required to test their combustion ash and determine whether it is hazardous. The WTE industry and the municipalities utilizing WTE technologies initially feared that if significant amounts of their ash tested hazardous, the costs and liabilities associated with RCRA Subtitle C hazardous waste management requirements would pose a serious threat to the continued viability of the WTE concept. In this article, the author presents a review of the WTE industry in the five years following the decision, and finds that the specter of the decline of WTE has not materialized.

  18. Notes on the efficacy of wet versus dry screening of fly ash

    SciTech Connect (OSTI)

    Valentim, B.; Hower, J.C.; Flores, D.; Guedes, A.

    2008-08-15

    The methodology used to obtain fly ash subsamples of different sizes is generally based on wet or dry sieving methods. However, the worth of such methods is not certain if the methodology applied is not mentioned in the analytical procedure. After performing a fly ash mechanical dry, sieving, the authors compared those results with the ones obtained by laser diffraction on the same samples and found unacceptable discrepancies. A preliminary, study of a wet sieving analysis carried out on an economizer fly ash sample showed that this method was more effective than the dry sieving. The importance of standardizing the way samples are handled, pretreated and presented to the instrument of analysis are suggested and interlaboratory reproducibility trials are needed to create a common standard methodology to obtain large amounts of fly ash size fraction subsamples.

  19. 2007 American Coal Ash Association membership directory as of June 21, 2007

    SciTech Connect (OSTI)

    2007-07-01

    A listing of names, addresses, contact numbers and websites is given for 101 members of the American Coal Ash Association. Honorary members are also named. Included are power generation companies, combustion by-product manufacturers and university departments.

  20. Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash

    SciTech Connect (OSTI)

    Chancey, Ryan T.; Stutzman, Paul; Juenger, Maria C.G.; Fowler, David W.

    2010-01-15

    A comprehensive approach to qualitative and quantitative characterization of crystalline and amorphous constituent phases of a largely heterogeneous Class F fly ash is presented. Traditionally, fly ash composition is expressed as bulk elemental oxide content, generally determined by X-ray fluorescence spectroscopy. However, such analysis does not discern between relatively inert crystalline phases and highly reactive amorphous phases of similar elemental composition. X-ray diffraction was used to identify the crystalline phases present in the fly ash, and the Rietveld quantitative phase analysis method was applied to determine the relative proportion of each of these phases. A synergistic method of X-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, and multispectral image analysis was developed to identify and quantify the amorphous phases present in the fly ash.

  1. Utilizing fly ash particles to produce low-cost metal matrix composites

    SciTech Connect (OSTI)

    Withers, G.

    2008-07-01

    Metal matrix composites (MMCs) are a blend of fine ceramic particles mixed with metals such as aluminium or magnesium. Fly ash is considerably cheaper than ceramics; aluminium-fly ash composites cost less than 60% of conventional aluminium-SiC composites making them attractive to automakers striving for lower weight and cheaper materials for brake rotors or brake drums. Ultalite.com has consulted with US researchers to to find the optimum requirements of the fly ash needed to make MMCs. Particle size 20-40 microns, low calcium oxide content and spherical particles were identified. The desired particles once extracted are stirred into molten aluminum and the resulting composite is into ingots for shipment to a casting facility. Dynamometer testing has shown that aluminium-fly ash composite brake drums have better performance and wear than cast iron drums. 6 figs., 1 tab.

  2. Investigation of air-entraining admixture dosage in fly ash concrete

    SciTech Connect (OSTI)

    Ley, M.T.; Harris, N.J.; Folliard, K.J.; Hover, K.C.

    2008-09-15

    The amount of air-entraining admixture (AEA) needed to achieve a target air content in fresh concrete can vary significantly with differences in the fly ash used in the concrete. The work presented in this paper evaluates the ability to predict the AEA dosage on the basis of tests on the fly ash alone. All results were compared with the dosage of AEA required to produce an air content of 6% in fresh concrete. Fly ash was sampled from six separate sources. For four of these sources, samples were obtained both before and after the introduction of 'low-NOx burners'. Lack of definitive data about the coal itself or the specifics of the burning processes prevents the ability to draw specific conclusions about the impact of low-NOx burners on AEA demand. Nevertheless, the data suggest that modification of the burning process to meet environmental quality standards may affect the fly ash-AEA interaction.

  3. Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace

    DOE Patents [OSTI]

    Mathur, Mahendra P.; Ekmann, James M.

    1989-01-01

    The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

  4. Cesium trapping characteristics on fly ash filter according to different carrier gases

    SciTech Connect (OSTI)

    Shin, Jin-Myeong; Park, Jang-Jin; Song, Kee-Chan

    2007-07-01

    Fly ash, which is a kind of waste from a coal fired power plant, has been used as a trapping material because it contains silica and alumina suitable for forming pollucite (CsAlSi{sub 2}O{sub 6}). Fly ash is sintered in order to fabricate it into a self-standing filter. The effect of a carrier gas on a cesium trapping quantity is investigated to analyze the cesium trapping characteristics by the fly ash filter in a lab-scale experimental apparatus. The chemical form of the cesium trapped on the filter after trapping cesium is identified to be a pollucite phase regardless of the type of carrier gas. The trapping efficiency of cesium by the fly ash filter under the air and NO{sub x}/air conditions is up to 99.0 %. However, the trapping efficiency of the cesium under the SO{sub x} condition was decreased to 80.0 %. (authors)

  5. Removal of radium from acidic solutions containing same by adsorption on coal fly ash

    DOE Patents [OSTI]

    Scheitlin, Frank M.

    1984-01-01

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of .sup.226 Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  6. Crystal structure of the N-terminal region of human Ash2L shows...

    Office of Scientific and Technical Information (OSTI)

    of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding Citation Details In-Document Search Title: Crystal structure of the N-terminal ...

  7. Treated bottom ash medium and method of arsenic removal from drinking water

    DOE Patents [OSTI]

    Gadgil, Ashok

    2009-06-09

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  8. Fan System Optimization Improves Production and Saves Energy at Ash Grove Cement Plant

    SciTech Connect (OSTI)

    2002-05-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  9. Nanoscale imaging of fundamental Li battery chemistry: solid...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters Prev Next Title: Nanoscale ...

  10. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    SciTech Connect (OSTI)

    Huang, G. Q.; Xing, Z. W.; Xing, D. Y.

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  11. Construction of a Li Ion Battery (LIB) Cathode Production Plant...

    Broader source: Energy.gov (indexed) [DOE]

    Process for Low Cost Domestic Production of LIB Cathode Materials Process for Low Cost Domestic Production of LIB Cathode Materials Construction of a Li Ion Battery (LIB) Cathode ...

  12. Li ion Motors Corp formerly EV Innovations Inc | Open Energy...

    Open Energy Info (EERE)

    Vegas, Nevada Zip: 89110 Sector: Vehicles Product: Las Vegas - based manufacturer of lithium-powered plug-in vehicles. References: Li-ion Motors Corp (formerly EV Innovations...

  13. Electrical conduction of LiF interlayers in organic diodes

    SciTech Connect (OSTI)

    Bory, Benjamin F.; Janssen, Ren A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; Leeuw, Dago M. de

    2015-04-21

    An interlayer of LiF in between a metal and an organic semiconductor is commonly used to improve the electron injection. Here, we investigate the effect of moderate bias voltages on the electrical properties of Al/LiF/poly(spirofluorene)/Ba/Al diodes by systematically varying the thickness of the LiF layer (2-50?nm). Application of forward bias V below the bandgap of LiF (V?LiF/poly(spirofluorene) hetero-junction. Electrons are trapped on the poly(spirofluorene) side of the junction, while positively charged defects accumulate in the LiF with number densities as high as 10{sup 25}/m{sup 3}. Optoelectronic measurements confirm the built-up of aggregated, ionized F centres in the LiF as the positive trapped charges. The charged defects result in efficient transport of electrons from the polymer across the LiF, with current densities that are practically independent of the thickness of the LiF layer.

  14. Predictive Models of Li-ion Battery Lifetime (Presentation) Smith...

    Office of Scientific and Technical Information (OSTI)

    Predictive Models of Li-ion Battery Lifetime (Presentation) Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A. 25 ENERGY STORAGE; 33 ADVANCED PROPULSION...

  15. Degradation Mechanisms in Li-Ion Battery Electrolytes Uncovered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation Mechanisms in Li-Ion Battery Electrolytes Uncovered by In-Situ Scanning ... to evaluate stability and degradation in battery electrolytes Developed a rapid method ...

  16. Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor...

    Office of Environmental Management (EM)

    12, 2016 Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, 1000 Independence Ave. ...

  17. LiDAR (Lewicki & Oldenburg, 2005) | Open Energy Information

    Open Energy Info (EERE)

    Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (2005) Strategies To Detect Hidden Geothermal Systems...

  18. LiDAR (Lewicki & Oldenburg, 2004) | Open Energy Information

    Open Energy Info (EERE)

    Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (2004) Strategies For Detecting Hidden Geothermal Systems...

  19. Characterization of Li-ion Batteries using Neutron Diffraction...

    Broader source: Energy.gov (indexed) [DOE]

    Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories Characterization of Materials for Li-ion Batteries: ...

  20. Properties of (Ga,Mn)As codoped with Li

    SciTech Connect (OSTI)

    Miyakozawa, Shohei; Chen, Lin; Matsukura, Fumihiro; Ohno, Hideo

    2014-06-02

    We grow Li codoped (Ga,Mn)As layers with nominal Mn composition up to 0.15 by molecular beam epitaxy. The layers before and after annealing are characterized by x-ray diffraction, transport, magnetization, and ferromagnetic resonance measurements. The codoping with Li reduces the lattice constant and electrical resistivity of (Ga,Mn)As after annealing. We find that (Ga,Mn)As:Li takes similar Curie temperature to that of (Ga,Mn)As, but with pronounced magnetic moments and in-plane magnetic anisotropy, indicating that the Li codoping has nontrivial effects on the magnetic properties of (Ga,Mn)As.

  1. Characterization of Materials for Li-ion Batteries: Success Stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion Batteries: Success Stories from the High...

  2. Brick manufacture with fly ash from Illinois coals. Quarterly technical report, September 1, 1994--November 30, 1994

    SciTech Connect (OSTI)

    Hughes, R.E.; Dreher, G.; Frost, J.; Moore, D.; Rostam-Abadi, M.; Fiocchi, T.; Swartz, D.

    1995-03-01

    This investigation seeks to utilize fly ash in fired-clay products such as building and patio bricks, ceramic blocks, field and sewer tile, and flower pots. This goal is accomplished by (1) one or more plant-scale, 5000-brick tests with fly ash mixed with brick clays at the 20% or higher level; (2) a laboratory-scale study to measure the firing reactions of a range of compositions of clay and fly ash mixtures; (3) a technical and economic study to evaluate the potential environmental and economic benefits of brick manufacture with fly ash. Bricks and feed materials will be tested for compliance with market specifications and for leachability of pollutants derived from fly ash. The laboratory study will combine ISGS databases, ICCI-supported characterization methods, and published information to improve predictions of the firing characteristics of Illinois fly ash and brick clay mixtures. Because identical methods are used to test clay firing and coal ash fusion, and because melting mechanisms are the same, improved coal ash fusion predictions are an expected result of this research. If successful, this project should convert an environmental problem (fly ash) into valuable products - bricks. During this quarter, the authors set up the manufacturing run at Colonial Brick Co., provided an expanded NEPA questionnaire for DOE, made preliminary arrangements for a larger brick manufacturing run at Marseilles Brick Co., revised laboratory procedures for selective dissolution analysis, and began characterization of brick clays that could be mixed with fly ash for fired-clay products.

  3. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes

    SciTech Connect (OSTI)

    Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Skilbeck, C.G.

    2009-07-15

    There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.

  4. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution

    SciTech Connect (OSTI)

    Li, L.; Wang, S.B.; Zhu, Z.H.

    2006-08-01

    Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate, geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 1.2:1 weight ratio of Na:fly-ash at 250-350{sup o}C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model produced the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics.

  5. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    SciTech Connect (OSTI)

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jrgen

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the CSH and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the CSH. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the CSH and a higher coarse porosity. -- Highlights: The reaction of quartz powder at 80 C strongly enhances the compressive strength. Almost no strength increase of fly ash blended OPC at 80 C was found after 2 days. Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. Temperature dependent change of the system was simulated by thermodynamic modelling. Destabilisation of ettringite above 50 C correlates with sulphate content of CSH.

  6. Industrial properties of lignitic and lignocellulosic fly ashes from Turkish sources

    SciTech Connect (OSTI)

    Demirbas, A.; Cetin, S.

    2006-01-21

    Fly ash is an inorganic matter from combustion of the carbonaceous solid fuels. More than half the electricity in Turkey is produced from lignite-fired power plants. This energy production has resulted in the formation of more than 13 million tons of fly ash waste annually. The presence of carbon in fly ash inducing common faults include adding unwanted black color and adsorbing process or product materials such as water and chemicals. One of the reasons for not using fly ash directly is its carbon content. For some uses carbon must be lower than 3%. Fly ash has been used for partial replacement of cement, aggregate, or both for nearly 70 years, and it is still used on a very limited scale in Turkey. The heavy metal content of industrial wastewaters is an important source of environmental pollution. Each of the three major oxides (SiO{sub 2} + Al{sub 2}O{sub 3} + Fe{sub 2}O{sub 3}) in fly ash can be ideal as a metal adsorbent.

  7. Selenium And Arsenic Speciation in Fly Ash From Full-Scale Coal-Burning Utility Plants

    SciTech Connect (OSTI)

    Huggins, F.E.; Senior, C.L.; Chu, P.; Ladwig, K.; Huffman, G.P.; /Kentucky U. /Reaction Engin. Int. /Elect. Power Res. Inst., Palo Alto

    2007-07-09

    X-ray absorption fine structure spectroscopy has been used to determine directly the oxidation states and speciation of selenium and arsenic in 10 fly ash samples collected from full-scale utility plants. Such information is needed to assess the health risk posed by these elements in fly ash and to understand their behavior during combustion and in fly ash disposal options, such as sequestration in tailings ponds. Selenium is found predominantly as Se(IV) in selenite (SeO{sub 3}{sup 2-}) species, whereas arsenic is found predominantly as As(V) in arsenate (AsO{sub 4}{sup 3-}) species. Two distinct types of selenite and arsenate spectra were observed depending upon whether the fly ash was derived from eastern U.S. bituminous (Fe-rich) coals or from western subbituminous or lignite (Ca-rich) coals. Similar spectral details were observed for both arsenic and selenium in the two different types of fly ash, suggesting that the post-combustion behavior and capture of both of these elements are likely controlled by the same dominant element or phase in each type of fly ash.

  8. Identifying fly ash at a distance from fossil fuel power stations

    SciTech Connect (OSTI)

    Flanders, P.J.

    1999-02-15

    A method has been developed to identify fly ash originating at fossil fuel power stations, even at a distance where the ash level is lower by a factor of 1000 from that close to a source. Until now such detection has been difficult and uncertain. The technique combines collection of particles, measurement of magnetization and coercive field, and microscopy. The analysis depends on the fact that ash from iron sulfide in fossil fuels is in the form of spherical magnetite. These particles have a relatively high coercive field H{sub c}, near 135 Oe, compared with airborne particulates from soil erosion which have an H{sub c} of {approximately}35 Oe. The coercive field of any sample therefore gives an indication for the percentage of fly ash relative to the total amount of magnetic material that is airborne. The concentration of ash from a large, isolated coal burning power station is found to fall off with the distance from the source, approximately as D{sup {minus}1}. As D increases there is a drop in H{sub c}, associated with the reduced amount of fly ash relative to the airborne particulates from soil erosion.

  9. Measuring Li+ inventory losses in LiCoO2/graphite cells using Raman microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Snyder, Chelsea Marie; Apblett, Christopher A.; Grillet, Anne; Thomas Edwin Beechem; Duquette, David

    2016-03-25

    Here, the contribution from loss of Li+ inventory to capacity fade is described for slow rates (C/10) and long-term cycling (up to 80 cycles). It was found through electrochemical testing and ex-situ Raman analysis that at these slow rates, the entirety of capacity loss up to 80 cycles can be explained by loss of Li+ inventory in the cell. The Raman spectrum of LiCoO2 is sensitive to the state of lithiation and can therefore be leveraged to quantify the state of lithiation for individual particles. With these Raman derived estimates, the lithiation state of the cathode in the discharged statemore » is compared to electrochemical data as a function of cycle number. High correlation is found between Raman quantifications of cycleable lithium and the capacity fade. Additionally, the linear relationship between discharge capacity and cell overpotential suggests that the loss of capacity stems from an impedance rise of the electrodes, which based on Li inventory losses, is caused by SEI formation and repair.« less

  10. Predicted Structure, Thermo-Mechanical Properties and Li Ion Transport in LiAlF4 Glass

    SciTech Connect (OSTI)

    Stechert, T. R.; Rushton, M. J. D.; Grimes, R. W.; Dillon, A. C.

    2012-08-15

    Materials with the LiAlF{sub 4} composition are of interest as protective electrode coatings in Li ion battery applications due to their high cationic conductivity. Here classical molecular dynamics calculations are used to produce amorphous model structures by simulating a quench from the molten state. These are analysed in terms of their individual pair correlation functions and atomic coordination environments. This indicates that amorphous LiAlF{sub 4} is formed of a network of corner sharing AlF{sub 6} octahedra. Li ions are distributed within this network, primarily associated with non-bridging fluorine atoms. The nature of the octahedral network is further analysed through intra- and interpolyhedral bond angle distributions and the relative populations of bridging and non-bridging fluorine ions are calculated. Network topology is considered through the use of ring statistics, which indicates that, although topologically well connected, LiAlF{sub 4} contains an appreciable number of corner-linked branch-like AlF{sub 6} chains. Thermal expansion values are determined above and below the predicted glass transition temperature of 1340 K. Finally, movement of Li ions within the network is examined with predictions of the mean squared displacements, diffusion coefficients and Li ion activation energy. Different regimes for lithium ion movement are identified, with both diffusive and sessile Li ions observed. For migrating ions, a typical trajectory is illustrated and discussed in terms of a hopping mechanism for Li transport.

  11. Characterization of low-melting electrolytes for potential geothermal borehole power supplies: The LiBr-KBr-LiF eutectic

    SciTech Connect (OSTI)

    Guidotti, R.A.; Reinhardt, F.W.

    1998-05-01

    The suitability of modified thermal-battery technology for use as a potential power source for geothermal borehole applications is under investigation. As a first step, the discharge processes that take place in LiSi/LiBr-KBr-LiF/FeS{sub 2} thermal cells were studied at temperatures of 350 C and 400 C using pelletized cells with immobilized electrolyte. Incorporation of a reference electrode allowed the relative contribution of each electrode to the overall cell polarization to be determined. The results of single-cell tests are presented, along with preliminary data for cells based on a lower-melting CsBr-LiBr-KBr eutectic salt.

  12. Primordial Li abundance and massive particles

    SciTech Connect (OSTI)

    Latin-Capital-Letter-Eth apo, H.

    2012-10-20

    The problem of the observed lithium abundance coming from the Big Bang Nucleosynthesis is as of yet unsolved. One of the proposed solutions is including relic massive particles into the Big Bang Nucleosynthesis. We investigated the effects of such particles on {sup 4}HeX{sup -}+{sup 2}H{yields}{sup 6}Li+X{sup -}, where the X{sup -} is the negatively charged massive particle. We demonstrate the dominance of long-range part of the potential on the cross-section.

  13. A=3Li (2010PU04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010PU04) GENERAL: The previous A = 3 evaluations (1975FI08, 1987TI07) identified reactions 1 through 4 below as possible candidates for the observation of a bound or resonant state of three protons. An additional possibility would be the double charge exchange reaction 3H(π+, π-)3Li. There is a report of this reaction (2001PA47), but the pion energy was high, 500 MeV, and the focus of the experiment was on the role of the Δ component in the 3H ground state, not on the possible presence of a

  14. Update on Performance Improvement of Sandia-Built Li/(CFx)n and...

    Office of Scientific and Technical Information (OSTI)

    Update on Performance Improvement of Sandia-Built Li(CFx)n and LiFePO4 Cells. Citation Details In-Document Search Title: Update on Performance Improvement of Sandia-Built Li...

  15. Update on Performance Improvement of Sandia-Built Li/(CFx)n and...

    Office of Scientific and Technical Information (OSTI)

    Update on Performance Improvement of Sandia-Built Li(CFx)n and LiFePO4 Cells. Citation Details In-Document Search Title: Update on Performance Improvement of Sandia-Built Li(CFx)n ...

  16. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Broader source: Energy.gov (indexed) [DOE]

    MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  17. Predicting Chemical Pathways for Li-O2 Batteries - Joint Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 6, 2014, Research Highlights Predicting Chemical Pathways for Li-O2 Batteries ... figure) and (LiO2)6 (red curve, upper figure) to Li2O2 using quantum chemical theory. ...

  18. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect (OSTI)

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  19. Chemical leaching of coal to remove ash, alkali and vanadium

    SciTech Connect (OSTI)

    Smit, F.J.; Huggins, D.K.; Berggren, M.; Anast, K.R.

    1986-04-15

    A process is described for upgrading powdered coal to improve the usefulness thereof as a fuel for internal combustion engines which consists of: (a) pressure-leaching powdered coal having a particle size ranging from about 28 mesh to about 200 mesh in an aqueous caustic solution at a temperature ranging from about 175/sup 0/C, to about 350/sup 0/C., the amount of caustic in the solution ranging from about 5% to about 30% by weight, the amount of coal being sufficient to form a slurry comprising about 10% to 30% by weight of solids, (b) hydrochloric acid leaching the caustic leached coal to dissolve acid-soluble constituents resulting from the caustic leach, (c) pressure leaching the acid-leached coal with a liquid from the group consisting of water and dilute aqueous ammonia to remove sodium and chlorine, and thereafter (d) filtering and washing the pressure leached coal, whereby the coal is characterized by up to about 0.85% by weight of ash, up to about 150 ppm of alkali metals and up to about 4 ppm vanadium.

  20. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    SciTech Connect (OSTI)

    Garca-Mat, M.; De la Torre, A.G.; Len-Reina, L.; Aranda, M.A.G.; CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona ; Santacruz, I.

    2013-12-15

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 2 and 72 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  1. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    SciTech Connect (OSTI)

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  2. Selected test results from the LiFeBatt iron phosphate Li-ion battery.

    SciTech Connect (OSTI)

    Ingersoll, David T.; Hund, Thomas D.

    2008-09-01

    In this paper the performance of the LiFeBatt Li-ion cell was measured using a number of tests including capacity measurements, capacity as a function of temperature, ohmic resistance, spectral impedance, high power partial state of charge (PSOC) pulsed cycling, pulse power measurements, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the iron phosphate Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, and wind farm energy smoothing. Test results have indicated that the LiFeBatt battery technology can function up to a 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h discharge rate (1C). The utility PSOC cycle test at up to the 4C{sub 1} pulse rate completed 8,394 PSOC pulsed cycles with a gradual loss in capacity of 10 to 15% depending on how the capacity loss is calculated. The majority of the capacity loss occurred during the initial 2,000 cycles, so it is projected that the LiFeBatt should PSOC cycle well beyond 8,394 cycles with less than 20% capacity loss. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were only very small changes after cycling. Finally, at a 1C charge rate, the over charge/voltage abuse test resulted in the cell venting electrolyte at 110 C after 30 minutes and then open-circuiting at 120 C with no sparks, fire, or voltage across the cell.

  3. A=07Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 7Li) GENERAL: See (HU57D, BA59K, BA59N, BR59M, FE59E, MA59E, MA59H, KU60A, PE60E, PH60A, SH60C, TA60L, BA61H, BA61N, BL61C, CL61D, KH61, TA61G, TO61B, CL62E, CR62A, IN62, CH63, CL63C, KL63, SC63I, BE64H, GR64C, MA64HH, NE64C, OL64A, SA64G, BE65F, FA65A, JA65H, NE65, PR65). See also Table 7.1 [Table of Energy Levels] (in PDF or PS). Ground state: Q = -45 ± 5 mb (KA61F, VA63F, WH64); μ = +3.2564 nm (FU65E). 1. 4He(t, γ)7Li Qm = 2.467 Excitation functions

  4. Comparing Metal Leaching and Toxicity from High pH, Low pH, and High Ammonia Fly Ash

    SciTech Connect (OSTI)

    Palumbo, Anthony Vito; Phillips, Jana Randolph; Fagan, Lisa Anne; Drake, Meghan M; Ruther, Rose Emily; Fisher, L. Suzanne; Amonette, J. E.

    2007-01-01

    Previous work with both class F and class C fly ash indicated minimal leaching from most fly ashes tested. However, the addition of NOx removal equipment might result in higher levels of ammonia in the fly ash. We have recently been testing fly ash with a wide range of pH (3.7-12.4) originating from systems with NOx removal equipment. Leaching experiments were done using dilute CaCl2 solutions in batch and columns and a batch nitric acid method. All methods indicated that the leaching of heavy metals was different in the highest ammonia sample tested and the high pH sample. However, toxicity testing with the Microtox system has indicated little potential toxicity in leachates except for the fly ash at the highest pH (12.4). When the leachate from the high pH fly ash was neutralized, toxicity was eliminated.

  5. Comparing metal leaching and toxicity from high pH, low pH, and high ammonia fly ash

    SciTech Connect (OSTI)

    Palumbo, Anthony V.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Ruther, Rose; Fisher, L. S.; Amonette, James E.

    2007-07-01

    Previous work with both class F and class C fly ash indicated minimal leaching from most fly ashes tested. However, the addition of NOx removal equipment might result in higher levels of ammonia in the fly ash. We have recently been testing fly ash with a wide range of pH (3.712.4) originating from systems with NOx removal equipment. Leaching experiments were done using dilute CaCl2 solutions in batch and columns and a batch nitric acid method. All methods indicated that the leaching of heavy metals was different in the highest ammonia sample tested and the high pH sample. However, toxicity testing with the Microtox* system has indicated little potential toxicity in leachates except for the fly ash at the highest pH (12.4). When the leachate from the high pH fly ash was neutralized, toxicity was eliminated.

  6. Enabling the Future of Li-Ion Batteries | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling the Future of Li-Ion Batteries Title Enabling the Future of Li-Ion Batteries Publication Type Presentation Year of Publication 2015 Authors Gaines, LL Abstract...

  7. Significant Cost Improvement of Li-Ion Cells Through Non-NMP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies Significant Cost Improvement of Li-Ion ...

  8. Localization of vacancies and mobility of lithium ions in Li{sub 2}ZrO{sub 3} as obtained by {sup 6,7}Li NMR

    SciTech Connect (OSTI)

    Baklanova, Ya. V., E-mail: baklanovay@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomaiskaya str., 620990 Ekaterinburg (Russian Federation); Arapova, I. Yu.; Buzlukov, A.L.; Gerashenko, A.P.; Verkhovskii, S.V.; Mikhalev, K.N. [Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 18 Kovalevskaya str., 620990 Ekaterinburg (Russian Federation); Denisova, T.A.; Shein, I.R.; Maksimova, L.G. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomaiskaya str., 620990 Ekaterinburg (Russian Federation)

    2013-12-15

    The {sup 6,7}Li NMR spectra and the {sup 7}Li spinlattice relaxation rate were measured on polycrystalline samples of Li{sub 2}ZrO{sub 3}, synthesized at 1050 K and 1300 K. The {sup 7}Li NMR lines were attributed to corresponding structural positions of lithium Li1 and Li2 by comparing the EFG components with those obtained in the first-principles calculations of the charge density in Li{sub 2}ZrO{sub 3}. For both samples the line width of the central {sup 7}Li transition and the spinlattice relaxation time decrease abruptly at the temperature increasing above ?500 K, whereas the EFG parameters are averaged (??{sub Q}?=42 (5) kHz) owing to thermally activated diffusion of lithium ions. - Graphical abstract: Path of lithium ion hopping in lithium zirconate Li{sub 2}ZrO{sub 3}. - Highlights: Polycrystalline samples Li{sub 2}ZrO{sub 3} with monoclinic crystal structure synthesized at different temperatures were investigated by {sup 6,7}Li NMR spectroscopy. Two {sup 6,7}Li NMR lines were attributed to the specific structural positions Li1 and Li2. The distribution of vacancies was clarified for both lithium sites. The activation energy and pathways of lithium diffusion in Li{sub 2}ZrO{sub 3} were defined.

  9. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect (OSTI)

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  10. Trophic structure and metal bioaccumulation differences in multiple fish species exposed to coal ash-associated metals

    SciTech Connect (OSTI)

    Otter, Ryan; Bailey, Frank; Fortner, Allison M; Adams, Marshall

    2012-01-01

    On December 22, 2008 a dike containing coal fly ash from the Tennessee Valley Authority Kingston Fossil Plant near Kingston Tennessee USA failed and resulted in the largest coal ash spill in U.S. history. Coal ash, the by-product of coal combustion, is known to contain multiple contaminants of concern, including arsenic and selenium. The purpose of this study was to investigate the bioaccumulation of arsenic and selenium and to identify possible differences in trophic dynamics in feral fish at various sites in the vicinity of the Kingston coal ash spill. Elevated levels of arsenic and selenium were observed in various tissues of largemouth bass, white crappie, bluegill and redear sunfish from sites associated with the Kingston coal ash spill. Highest concentrations of selenium were found in redear sunfish with liver concentrations as high as 24.83 mg/kg dry weight and ovary concentrations up to 10.40 mg/kg dry weight at coal ash-associated sites. To help explain the elevated selenium levels observed in redear sunfish, investigations into the gut pH and trophic dynamics of redear sunfish and bluegill were conducted which demonstrated a large difference in the gut physiology between these two species. Redear sunfish stomach and intestinal pH was found to be 1.1 and 0.16 pH units higher than in bluegill, respectively. In addition, fish from coal ash-associated sites showed enrichment of 15N & 13C compared to no ash sites, indicating differences in food web dynamics between sites. These results imply the incorporation of coal ash-associated compounds into local food webs and/or a shift in diet at ash sites compared to the no ash reference sites. Based on these results, further investigation into a broader food web at ash-associated sites is warranted.

  11. Coal Ash Resources Research Consortium. Annual report and selected publications, 1 July 1992--30 June 1993

    SciTech Connect (OSTI)

    Pflughoeft-Hassett, D.F.; Dockter, B.A.; Eylands, K.E.; Hassett, D.J.; O`Leary, E.M.

    1994-04-01

    The Coal Ash Resources Research Consortium (CARRC, pronounced cars), formerly the Western Fly Ash Research, Development, and Data Center (WFARDDC), has continued fundamental and applied scientific and engineering research focused on promoting environmentally safe, economical use of coal combustion fly ash. The research tasks selected for the year included: (1) Coal Ash Properties Database Maintenance and Expansion, (2) Investigation of the High-Volume Use of Fly Ash for Flowable Backfill Applications, (3) Investigation of Hydrated Mineralogical Phases in Coal Combustion By-Products, (4) Comparison of Department of Transportation Specifications for Coal Ash Utilization, (5) Comparative Leaching Study of Coal Combustion By-Products and Competing Construction Materials, (6) Application of CCSEM for Coal Ash Characterization, (7) Determination of Types and Causes of Efflorescence in Regional Concrete Products, and (8) Sulfate Resistance of Fly Ash Concrete: A Literature Review and Evaluation of Research Priorities. The assembly of a database of information on coal fly ash has been a focus area for CARRC since its beginning in 1985. This year, CARRC members received an updated run time version of the Coal Ash Properties Database (CAPD) on computer disk for their use. The new, user-friendly database management format was developed over the year to facilitate the use of CAPD by members as well as CARRC researchers. It is anticipated that this direct access to CAPD by members as well as CARRC researchers. It is anticipated that this direct access to CAPD by members will be beneficial to each company`s utilization efforts, to CARRC, and to the coal ash industry in general. Many additions and improvements were made to CAPD during the year, and a three-year plan for computer database and modeling related to coal ash utilization was developed to guide both the database effort and the research effort.

  12. Brick manufacture with fly ash from Illinois coals. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect (OSTI)

    Hughes, R.E.; Dreher, G.; Frost, J.; Moore, D.; Rostam-Abadi, M.; Fiocchi, T.; Swartz, D.

    1995-12-31

    This investigation seeks to utilize fly ash in fired-clay products such as building and patio bricks, ceramic blocks, field and sewer tile, and flower pots. This goal is accomplished by (1) one or more plant-scale, 5000-brick tests with fly ash mixed with brick clays at the 20% or higher level; (2) a laboratory-scale study to measure the firing reactions of a range of compositions of clay and fly ash mixtures; (3) a preliminary study to evaluate the potential environmental and economic benefits of brick manufacture with fly ash. Bricks and feed materials will be tested for compliance with market specifications and for leachability of pollutants derived from fly ash. The laboratory study will combine ISGS databases, ICCI-supported characterization methods, and published information to improve predictions of the firing characteristics of Illinois fly ash and brick clay mixtures. Because identical methods are used to test clay firing and coal ash fusion, and because melting mechanisms are the same, improved coal ash fusion predictions are an additional expected result of this research. If successful, this project should convert a disposal problem (fly ash) into valuable products-bricks. During this quarter we set up the manufacturing run at Colonial Brick Co., finalized arrangements for a larger brick manufacturing run at Marseilles Brick Co. in YR2, revised our laboratory procedures for selective dissolution analysis, obtained information to select three standard fly ashes, and continued our characterization of brick clays that could be mixed with fly ash for fired-clay products. Due to delays in other areas, we began construction of the optimization program for year 2. We discovered recently that fly ash dust will be an unanticipated problem at the brick plant.

  13. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries

    SciTech Connect (OSTI)

    Kern Ho Park; Oh, Dae Yang; Choi, Young Eun; Nam, Young Jin; Han, Lili; Kim, Ju -Young; Xin, Huolin; Lin, Feng; Oh, Seung M.; Jung, Yoon Seok

    2015-12-22

    The new, highly conductive (4.1 × 10–4 S cm–1 at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.6Li4SnS4 is prepared using a homogeneous methanol solution. Furthermore, the solution process enables the wetting of any exposed surface of the active materials with highly conductive solidified electrolytes (0.4LiI-0.6Li4SnS4), resulting in considerable improvements in electrochemical performances of these electrodes over conventional mixture electrodes.

  14. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash

    SciTech Connect (OSTI)

    Kuboňová, L.

    2013-11-15

    Highlights: • MSW fly ash was thermally and hydrometallurgically treated to remove heavy metals. • More than 90% of easy volatile heavy metals (Cd and Pb) were removed thermally. • More than 90% of Cd, Cr, Cu an Zn were removed by alkaline – acid leaching. • The best results were obtained for the solution of 3 M NaOH and 2 M H{sub 2}SO{sub 4}. - Abstract: Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050 °C and in a muffle oven at temperatures from 500 to 1200 °C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel.

  15. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; Kisslinger, K.; Zhang, L.; Pang, Y.; Efstathiadis, H.; Eisaman, M. D.

    2016-02-12

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 1012 e/cm2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 1013 e/cm2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-doping reaches 2.11 × 1013more » e/cm2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. As a result, the ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors.« less

  16. The correlation between reactivity and ash mineralogy of coke

    SciTech Connect (OSTI)

    Kerkkonen, O.; Mattila, E.; Heiniemi, R.

    1996-12-31

    Rautaruukki is a modern integrated Finnish steel works having a production of 2.4 mil. t/year of flat products. The total fuel consumption of the two blast furnaces in 1994 was 435 kg/t HM. Coke used was 345 kg/t HM and oil injection was 90 kg/t HM. The coking plant was taken in to operation in 1987 and is the only one in Finland, which means that the coking tradition is very short. Coke production is 0.9 mil. t/year. The coking blends include 70--80% medium volatile coals having a wide range of total dilatation. From time to time disturbances in the operation of the blast furnaces have occurred in spite of the fact that the reactivity of the coke used has remained constant or even decreased. It was thought necessary to investigate the factors affecting coke reactivity, in order to better understand the results of the reactivity test. This paper deals with carbonization tests done in a 7 kg test oven using nine individual coals having volatile-matter contents of 17--36% (dry) and seven blends made from these coals. Coke reactivity with CO{sub 2} at 1100 C (CRI) and coke strength after reaction (CSR) were determined using the test developed by the Nippon Steel Corporation. The influence of coke carbon form, porosity and especially ash mineralogy on the coke reactivity were examined. The effects of some additives; petroleum coke (pet coke), the spillage material from the coke ovens and oxidized coal, on coke quality were also studied. Typical inorganic minerals found in coals were added to one of the high volatile coals, which was then coked to determine the affect of the minerals on the properties of the coke produced.

  17. Structure of neutron-rich Isotopes {sup 8}Li and {sup 9}Li and allowance for it in elastic scattering

    SciTech Connect (OSTI)

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.; Sagindykov, Sh. Sh.

    2008-07-15

    The differential cross sections for elastic proton scattering on the unstable neutron-rich nuclei {sup 8}Li and {sup 9}Li at E = 700 and 60 MeV per nucleon were considered. The {sup 8}Li nucleus was treated on the basis of the three-body {alpha}-t-n model, while the {sup 9}Li nucleus was considered within the {alpha}-t-n and {sup 7}Li-n-n models. The cross sections in question were calculated within Glauber diffraction theory. A comparison of the results with available experimental data made it possible to draw conclusions on the quality of the wave functions and potential used in the calculations.

  18. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOE Patents [OSTI]

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  19. Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic LiO2 Battery

    SciTech Connect (OSTI)

    Lau, Kah Chun; Lu, Jun; Low, John; Peng, Du; Wu, Huiming; Albishri, Hassan M.; Al-Hady, D. Abd; Curtiss, Larry A.; Amine, Khalil

    2014-04-01

    The stability of the lithium bis(oxalate) borate (LiBOB) salt against lithium peroxide (Li2O2) formation in an aprotic LiO2 (Liair) battery is investigated. From theoretical and experimental findings, we find that the chemical decomposition of LiBOB in electrolytes leads to the formation lithium oxalate during the discharge of a LiO2 cell. According to density functional theory (DFT) calculations, the formation of lithium oxalate as the reaction product is exothermic and therefore is thermodynamically feasible. This reaction seems to be independent of solvents used in the LiO2 cell, and therefore LiBOB is probably not suitable to be used as the salt in LiO2 cell electrolytes.

  20. De-ashing of coal liquids with ceramic membrane microfiltration and diafiltration

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent de-ashing and filtration, both of which produce an ash reject stream containing up to 15% of the liquid hydrocarbon product. This program is directed towards development of an improved process for de-ashing and recovery of coal-derived residual oil: the use of ceramic membranes for high-temperature microfiltration and diafiltration. Using laboratory-scale ceramic membrane modules, samples of a coal-derived residual oil containing ash will be processed by crossflow microfiltration, followed by solvent addition and refiltration (diafiltration). Recovery of de-ashed residual oil will be demonstrated. Data from this program will be used to develop a preliminary engineering design and cost estimate for a demonstration pilot plant incorporating full-scale membrane modules. In addition, estimates for production system capital and operating costs will be developed to assess process economic feasibility. The five program tasks include (1) ceramic membrane fabrication, (2) membrane test system assembly, (3) testing of the ceramic membranes, (4) design of a demonstration system using full scale membrane modules, and (5) development of estimates for microfiltration capital and operating costs and assessment of process economic feasibility.

  1. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect (OSTI)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  2. Investigation of MSWI fly ash melting characteristic by DSC-DTA

    SciTech Connect (OSTI)

    Li, Rundong Wang, Lei; Yang, Tianhua; Raninger, Bernhard

    2007-07-01

    The melting process of MSWI (Municipal Solid Waste Incineration) fly ash has been studied by high-temperature DSC-DTA experiments. The experiments were performed at a temperature range of 20-1450 deg. C, and the considerable variables included atmosphere (O{sub 2} and N{sub 2}), heating rates (5 deg. C/min, 10 deg. C/min, 20 deg. C/min) and CaO addition. Three main transitions were observed during the melting process of fly ash: dehydration, polymorphic transition and fusion, occurring in the temperature range of 100-200 deg. C, 480-670 deg. C and 1101-1244 deg. C, respectively. The apparent heat capacity and heat requirement for melting of MSWI fly ash were obtained by DSC (Differential Scanning Calorimeter). A thermodynamic modeling to predict the heat requirements for melting process has been presented, and it agrees well with the experimental data. Finally, a zero-order kinetic model of fly ash melting transition was established. The apparent activation energy of MSWI fly ash melting transition was obtained.

  3. Fly ash properties and mercury sorbent affect mercury release from curing concrete

    SciTech Connect (OSTI)

    Danold W. Golightly; Chin-Min Cheng; Linda K. Weavers; Harold W. Walker; William E. Wolfe

    2009-04-15

    The release of mercury from concrete containing fly ashes from various generator boilers and powdered activated carbon sorbent used to capture mercury was measured in laboratory experiments. Release of gaseous mercury from these concretes was less than 0.31% of the total quantity of mercury present. The observed gaseous emissions of mercury during the curing process demonstrated a dependency on the organic carbon content of the fly ash, with mercury release decreasing with increasing carbon content. Further, lower gaseous emissions of mercury were observed for concretes incorporating ash containing activated carbon sorbent than would be expected based on the observed association with organic carbon, suggesting that the powdered activated carbon more tightly binds the mercury as compared to unburned carbon in the ash. Following the initial 28-day curing interval, mercury release diminished with time. In separate leaching experiments, average mercury concentrations leached from fly ash concretes were less than 4.1 ng/L after 18 h and 7 days, demonstrating that less than 0.02% of the mercury was released during leaching. 25 refs., 4 figs., 5 tabs.

  4. Coal Fly Ash as a Source of Iron in Atmospheric Dust

    SciTech Connect (OSTI)

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A.; Scherer, Michelle; Grassian, Vicki H.

    2012-01-18

    Anthropogenic coal fly ash aerosols may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made to compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report an investigation of the iron dissolution of three fly ash samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust, a reference material of mineral dust. The effects of pH, cloud processing, and solar irradiation on Fe solubility were explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provide predominant dissolved iron compared with iron in oxides. Iron solubility of fly ash is higher than Arizona test dust, especially at the higher pH conditions investigated. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology aluminosilicate glass, a dominantly material in fly ash particle. Iron continuously releases into the aqueous solution as fly ash particles break up into smaller fragments. The assessment of dissolved atmospheric iron deposition fluxes, and their effect on the biogeochemistry at ocean surface should be constrained by taking into account the source, environment pH, Fe speciation, and solar radiation.

  5. Thermal behavior of spiral fin-and-tube heat exchanger having fly ash deposit

    SciTech Connect (OSTI)

    Nuntaphan, Atipoang; Kiatsiriroat, Tanongkiat

    2007-08-15

    This research investigates the effect of fly-ash deposit on thermal performance of a cross-flow heat exchanger having a set of spiral finned-tubes as a heat transfer surface. A stream of warm air having high content of fly-ash is exchanging heat with a cool water stream in the tubes. In this study, the temperature of the heat exchanger surface is lower than the dew point temperature of air, thus there is condensation of moisture in the air stream on the heat exchanger surface. The affecting parameters such as the fin spacing, the air mass flow rate, the fly-ash mass flow rate and the inlet temperature of warm air are varied while the volume flow rate and the inlet temperature of the cold water stream are kept constant at 10 l/min and 5 C, respectively. From the experiment, it is found that as the testing period is shorter than 8 h the thermal resistance due to the fouling increases with time. Moreover, the deposit of fly-ash on the heat transfer surface is directly proportional to the dust-air ratio and the amount of condensate on heat exchange surface. However, the deposit of fly-ash is inversely proportional to the fin spacing. The empirical model for evaluating the thermal resistance is also developed in this work and the simulated results agree well with those of the measured data. (author)

  6. Post-treatment of fly ash by ozone in a fixed bed reactor

    SciTech Connect (OSTI)

    Kim Hougaard Pedersen; Merc Casanovas Meli; Anker Degn Jensen; Kim Dam-Johansen

    2009-01-15

    The residual carbon in fly ash produced from pulverized coal combustion can adsorb the air-entraining admixtures (AEAs) added to enhance air entrainment in concrete. This behavior of the ash can be suppressed by exposing the fly ash to oxidizing species, which oxidizes the carbon surface and thus prevents the AEA to be adsorbed. In the present work, two fly ashes have been ozonated in a fixed bed reactor and the results showed that ozonation is a potential post-treatment method that can lower the AEA requirements of a fly ash up to 6 times. The kinetics of the carbon oxidation by ozone was found to be fast. A kinetic model has been formulated, describing the passivation of carbon, and it includes the stoichiometry of the ozone consumption (0.8 mol of O{sub 3}/kg of C) and an ineffective ozone loss caused by catalytic decomposition. The simulated results correlated well with the experimental data. 28 refs., 7 figs., 3 tabs.

  7. Performance evaluation of highway embankment constructed using coal ash. Final report

    SciTech Connect (OSTI)

    Alleman, J.E.; Fox, P.J.; De Battista, D.J.

    1996-12-01

    The objective of this project was to assess the environmental and geotechnical performance of two highway embankments constructed using coal combustion fly ash. The environmental work focused on characterizing monitoring well water samples from the site before, during, and after construction. In addition, a number of in-situ lysimeter water samples were also tested during and after construction. In each case, water samples were evaluated in terms of their constitutive organic and metal concentrations, as well as their relative bioassay response using a MicrotoxTM protocol. The geotechnical work included monitoring of ash water content and unit weight during placement, settlement analysis and in-situ testing of the completed as fills using the Standard Penetration Test. Analysis of the groundwater and lysimeter water samples indicated that the coal ash had not adversely affected the environmental quality of the 56th Street overpass site. The embankments also performed well from a geotechnical perspective both during and after construction. The only difficulty was the measurement of coal ash water content and unit weight using the nuclear density gauge. The benefits of reusing coal combustion fly ash for highway construction are: (1) low-cost source material for INDOT, (2) reduced disposal costs for Indiana utilities, and (3) savings of Indiana landfill capacity.

  8. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement

    SciTech Connect (OSTI)

    Sales, Almir; Lima, Sofia Araujo

    2010-06-15

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of Sao Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.

  9. Radon exhalation rate from coal ashes and building materials in Italy

    SciTech Connect (OSTI)

    Battaglia, A.; Capra, D.; Queirazza, G.

    1992-12-31

    The Italian National Electricity Board, in cooperation with Centro Informazioni Stubi Esperienze (CISE) has a program to assess the hazards connected with using fly ash in civil applications as partial substitutes for cement and other building materials. We investigated the natural radioactivity levels of more than 200 building materials. The survey involved materials available in Italy, categorized by geographical location and type of production. We also examined approximately 100 samples of fly ash from United States and South African coal, obtained from Italian power plants. Exhalation rates from about 40 powdered materials were determined by continuously measuring radon concentration growth in closed containers. Measurements were also performed on whole bricks, slabs, and titles. Details about the high-sensitivity measuring devices are presented. The influence of fly ash on exhalation rates was investigated by accurately measuring radon emanation from slabs with various ash/cement ratios and with slabs of inert materials having various radium concentrations. We will discuss results of forecasting indoor radon concentrations under different ventilation conditions. Two identical test rooms are being built, one with conventional and one with fly-ash building materials, to compare theoretical calculations with experimental data. Specifications for instruments to control and to measure the most important parameters are also discussed.

  10. Role of fly ash in the removal of organic pollutants from wastewater

    SciTech Connect (OSTI)

    M. Ahmaruzzaman

    2009-03-15

    Fly ash, a relatively abundant and inexpensive material, is currently being investigated as an adsorbent for the removal of various organic pollutants from wastewater. The wastewater contains various types of phenolic compounds, such as chloro, nitro, amino, and other substituted compounds. Various types of pesticides, such as lindane, malathion, carbofuran, etc., and dyes, such as, methylene blue, crystal violet, malachite green, etc., are also present in the wastewater. These contaminants pollute the water stream. These organic pollutants, such as phenolic compounds, pesticides, and dyes, etc., can be removed very effectively using fly ash as adsorbent. This article presents a detailed review on the role of fly ash in the removal of organic pollutants from wastewater. Adsorption of various pollutants using fly ash has been reviewed. The adsorption mechanism and other influencing factors, favorable conditions, and competitive ions, etc., on the adsorption process have also been discussed in this paper. It is evident from the review that fly ash has demonstrated good removal capabilities for various organic compounds. 171 refs., 3 figs., 5 tabs.

  11. Direct acid dissolution of aluminum and other metals from fly ash

    SciTech Connect (OSTI)

    Kelmers, A.D.; Egan, B.Z.; Seeley, F.G.; Campbell, G.D.

    1981-01-01

    Fly ash could provide a significant domestic source of alumina and thus supply a large part of the US needs for aluminum and possibly also several other metals. The aluminum and other metals can be solubilized from fly ash by acid dissolution methods. The aluminum may be present in any or all of three solid phases: (1) crystalline; (2) glassy amorphous; and (3) irregular, spongy amorphous. The chemistry of these phases controls the solubilization behavior. The aluminum in high-calcium western ashes is primarily found in the amorphous phases, and much of it can be solubilized by using short-time, ambient-temperature leaching. Little of the aluminum in the low-calcium eastern ashes is solubilized under ambient-temperature conditions, and only a portion can be solubilized even at reflux temperature conditions. Some of the aluminum in these eastern ashes is present as mullite, while some is found in the amorphous material. The fraction contained in mullite is relativey acid insoluble, and only partial solubilization can be achieved even under vigorous acid leach conditions.

  12. New solid-state synthesis routine and mechanism for LiFePO{sub 4} using LiF as lithium precursor

    SciTech Connect (OSTI)

    Wang Deyu; Li Hong; Wang Zhaoxiang; Wu Xiaodong; Sun Yucheng; Huang Xuejie; Chen Liquan . E-mail: lqchen@aphy.iphy.ac.cn

    2004-12-01

    Li{sub 2}CO{sub 3} and LiOH.H{sub 2}O are widely used as Li-precursors to prepare LiFePO{sub 4} in solid-phase reactions. However, impurities are often found in the final product unless the sintering temperature is increased to 800 deg. C. Here, we report that lithium fluoride (LiF) can also be used as Li-precursor for solid-phase synthesis of LiFePO{sub 4} and very pure olivine phase was obtained even with sintering at a relatively low temperature (600 deg. C). Consequently, the product has smaller particle size (about 500nm), which is beneficial for Li-extraction/insertion in view of kinetics. As for cathode material for Li-ion batteries, LiFePO{sub 4} obtained from LiF shows high Li-storage capacity of 151mAhg{sup -1} at small current density of 10mAg{sup -1} (1/15C) and maintains capacity of 54.8mAhg{sup -1} at 1500mAg{sup -1} (10C). The solid-state reaction mechanisms using LiF and Li{sub 2}CO{sub 3} precursors are compared based on XRD and TG-DSC.

  13. Material review of Li ion battery separators

    SciTech Connect (OSTI)

    Weber, Christoph J. Geiger, Sigrid; Falusi, Sandra; Roth, Michael

    2014-06-16

    Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m{sup 2} mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.

  14. A=5Li (1974AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 5Li) GENERAL: See also (1966LA04) and Table 5.5 [Table of Energy Levels] (in PDF or PS) here. Shell model calculations: (1966FR1B, 1968GO01, 1969GO1G, 1970RA1D, 1971RA15, 1972LE1L, 1973HA49). Cluster calculations: (1965NE1B, 1971HE05). Special levels: (1970HE1D, 1971HE05, 1971RA15, 1973JO1J). Electromagnetic transitions:(1973HA49). General reviews: (1966DE1E). Special reactions: (1971CH31). Other topics: (1968GO01, 1970RA1J, 1971CH50, 1971ZA1D, 1972CA37,

  15. A=5Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 5Li) GENERAL: See also (1984AJ01) and Table 5.3 [Table of Energy Levels] (in PDF or PS) here. Model discussions: (1984ZW1A, 1985BA68, 1985FI1E, 1985KW02). Special states: (1982PO12, 1983FE07, 1984BE1B, 1984FI20, 1984GL1C, 1984VA1C, 1984ZW1A, 1985BA68, 1985FI1E, 1985PO18, 1985PO19, 1985WI1A, 1987SV1A, 1988BA86, 1988KW02). Electromagnetic transitions: (1985FI1E, 1987KR16). Astrophysical questions: (1984BA74, 1984SU1A, 1985BO1E, 1986HU1D). Complex reactions

  16. A=6Li (1974AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 6Li) GENERAL: See also (1966LA04) and Table 6.2 [Table of Energy Levels] (in PDF or PS). Shell model: (1961KO1A, 1965CO25, 1966BA26, 1966GA1E, 1966HA18, 1966WI1E, 1967BO1C, 1967CO32, 1967PI1B, 1967WO1B, 1968BO1N, 1968CO13, 1968GO01, 1968LO1C, 1968VA1H, 1969GU10, 1969RA1C, 1969SA1C, 1969VA1C, 1970LA1D, 1970SU13, 1970ZO1A, 1971CO28, 1971JA06, 1971LO03, 1971NO02, 1972LE1L, 1972LO1M, 1972VE07, 1973HA49, 1973JO1K, 1973KU03). Cluster and α-particle model:

  17. A=6Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 6Li) GENERAL: See also (1979AJ01) and Table 6.2 [Table of Energy Levels] (in PDF or PS). Shell model: (1978CH1D, 1978ST19, 1979CA06, 1980MA41, 1981BO1Y, 1982BA52, 1982FI13, 1982LO09). Cluster and α-particle models: (1978OS07, 1978PL1A, 1978RE1A, 1978SI14, 1979BE39, 1979CA06, 1979LU1A, 1979WI1B, 1980BA04, 1980KU1G, 1981BE1K, 1981HA1Y, 1981KR1J, 1981KU13, 1981VE04, 1981ZH1D, 1982AH09, 1982CH10, 1982GO1G, 1982JI1A, 1982KA24, 1982KR1B, 1982KR09, 1982KU05,

  18. A=6Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 6Li) GENERAL: See also (1984AJ01) and Table 6.2 [Table of Energy Levels] (in PDF or PS). Shell model: (1983LE14, 1983VA31, 1984AS07, 1984PA08, 1984REZZ, 1984VA06, 1984ZW1A, 1985ER06, 1985FI1E, 1985LO1A, 1986AV08, 1986LE21, 1987KI1C, 1988WO04). Cluster and α-particle models: (1981PL1A, 1982WE15, 1983CA13, 1983DZ1A, 1983FO03, 1983GA12, 1983GO17, 1983SA39, 1983SM04, 1984BE37, 1984CO08, 1984DU17, 1984GL02, 1984JO1A, 1984KH05, 1984KR10, 1984KU03, 1984LA33,

  19. A=6Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See the Energy Level Diagram for 6Li) GENERAL: See also Table 6.2 [Table of Energy Levels] (in PDF or PS). Theory: See (MO54F, AD55, AU55, BA55S, IR55, LA55, OT55, FE56, ME56, NE56D, FR57, LE57F, LY57, SO57, TA57, PI58, SK58). 1. (a) 3H(3He, d)4He Qm = 14.319 Eb = 15.790 (b) 3H(3He, p)5He Qm = 11.136 (c) 3H(3He, p)4He + n Qm = 12.093 The relative intensities (43 ± 2, 6 ± 2, 51 ± 2) of reactions (a), (b) and (c), do not vary for E(3He) = 225 to 600 keV. The deuterons are isotropic

  20. A=7Li (1974AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 7Li) GENERAL: See also (1966LA04) and Table 7.1 [Table of Energy Levels] (in PDF or PS). Shell model: (1961KO1A, 1965CO25, 1965KU09, 1965VO1A, 1966BA26, 1966HA18, 1966WI1E, 1967BO1C, 1967BO22, 1967CO32, 1967FA1A, 1969GU03, 1969TA1H, 1969VA1C, 1970ZO1A, 1971CO28, 1972LE1L, 1973HA49, 1973KU03). Cluster model: (1965NE1B, 1968HA1G, 1968KU1B, 1969ME1C, 1969SM1A, 1969VE1B, 1969WI21, 1970BA1Q, 1972HA06, 1972HI16, 1972JA23, 1972KU12, 1972LE1L, 1973KU03, 1973KU12).

  1. A=7Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9AJ01) (See Energy Level Diagrams for 7Li) GENERAL: See also (1974AJ01) and Table 7.2 [Table of Energy Levels] (in PDF or PS). Shell model: (1974KA11, 1975DI04, 1977ST04, 1978BO31). Collective, rotational or deformed models: (1974BO25, 1976BR26). Cluster and α-particle models: (1973HO1A, 1974GR24, 1974KA11, 1975KU1H, 1975GR26, 1975MI09, 1975PA11, 1975RO1B, 1977BE50, 1977MI03, 1977SA22, 1978RA09). Astrophysical questions: (1973BA1H, 1973CA1B, 1973CO1B, 1973IB1A, 1973SM1A, 1973TI1A, 1973TR1B,

  2. A=7Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 7Li) GENERAL: See also (1979AJ01) and Table 7.2 [Table of Energy Levels] (in PDF or PS). Shell model: (1978FU13, 1978MI13, 1979MA11, 1981BO1Y, 1982BA52, 1982FI13). Cluster and α-particle models: (1978MI13, 1979MA11, 1979VE08, 1980KA16, 1980SU04, 1981BE27, 1981EL06, 1981FI1A, 1981HA1Y, 1981KR1J, 1981RA1M, 1981SR01, 1982DE12, 1982FI13, 1982MU10, 1983DU1B, 1983KA1K). Special states: (1978MI13, 1979BU14, 1978DU1C, 1979KI10, 1980GO1Q, 1980SH1N, 1981BE27,

  3. A=7Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 7Li) GENERAL: See also (1984AJ01) and Table 7.2 [Table of Energy Levels] (in PDF or PS) here. Shell model: (1983BU1B, 1983KU17, 1983SH1D, 1983VA31, 1984CH24, 1984REZZ, 1984VA06, 1984ZW1A, 1985FI1E, 1985GO11, 1986AV08, 1987KA09, 1987KI1C, 1988WO04). Cluster and α-particle models: (1981PL1A, 1983FU1D, 1983HO22, 1983PA06, 1983SH1D, 1983SR1C, 1984BA53, 1984DA07, 1984DU13, 1984DU17, 1984JO1A, 1984KA06, 1984KA04, 1984LO09, 1984MI1F, 1984SH26, 1985FI1E, 1985FU01,

  4. A=8Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9AJ01) (See Energy Level Diagrams for 8Li) GENERAL: See also (1974AJ01) and Table 8.1 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1975KH1A, 1977ST24). Special states: (1974IR04, 1976IR1B, 1978KH03). Electromagnetic interactions: (1974KU06, 1976KU07). Special reactions: (1973SI38, 1974BA70, 1974BA1N, 1974BO08, 1975FE1A, 1975ZE01, 1976BE67, 1976BO08, 1976BU16, 1977FE1B, 1977PR05, 1977ST1J, 1977YA1B, 1978DI04). Muon and neutrino interactions: (1977BA1P). Pion and kaon reactions (See

  5. A=9Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9AJ01) (See Energy Level Diagrams for 9Li) GENERAL: See also (1974AJ01) and Table 9.1 [Table of Energy Levels] (in PDF or PS). Model calculations: (1974IR04, 1976IR1B, 1977JA14). Special reactions: (1975AB1D, 1975ZE01, 1976AL1F, 1976BE67, 1976BU16, 1977YA1B). Pion and kaon reactions (See also reaction 3.): (1973CA1C, 1976TR1A, 1977BA1Q, 1977DO06, 1977SH1C). Other topics: (1970KA1A, 1973TO16, 1974IR04, 1975BE56, 1976IR1B). Ground state properties: (1975BE31). μ = 3.4359 ± 0.0010 nm (1976CO1L;

  6. Effects of electrolyte salts on the performance of Li-O2 batteries

    SciTech Connect (OSTI)

    Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Burton, Sarah D.; Cosimbescu, Lelia; Gross, Mark E.; Zhang, Jiguang

    2013-02-05

    It is well known that the stability of nonaqueous electrolyte is critical for the rechargeable Li-O2 batteries. Although stability of many solvents used in the electrolytes has been investigated, considerably less attention has been paid to the stability of electrolyte salt which is the second major component. Herein, we report the systematic investigation of the stability of seven common lithium salts in tetraglyme used as electrolytes for Li-O2 batteries. The discharge products of Li-O2 reaction were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy. The performance of Li-O2 batteries was strongly affected by the salt used in the electrolyte. Lithium tetrafluoroborate (LiBF4) and lithium bis(oxalato)borate (LiBOB) decompose and form LiF and lithium borates, respectively during the discharge of Li-O2 batteries. Several other salts, including lithium bis(trifluoromethane)sulfonamide (LiTFSI), lithium trifluoromethanesulfonate (LiTf), lithium hexafluorophosphate (LiPF6), lithium perchlorate (LiClO4) , and lithium bromide (LiBr) led to the discharge products which mainly consisted of Li2O2 and only minor signs of decomposition of LiTFSI, LiTf, LPF6 and LiClO4 were detected. LiBr showed the best stability during the discharge process. As for the cycling performance, LiTf and LiTFSI were the best among the studied salts. In addition to the instability of lithium salts, decomposition of tetraglyme solvent was a more significant factor contributing to the limited cycling stability. Thus a more stable nonaqueous electrolyte including organic solvent and lithium salt still need to be further developed to reach a fully reversible Li-O2 battery.

  7. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash

    SciTech Connect (OSTI)

    De Weerdt, K.; Haha, M. Ben; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B.

    2011-03-15

    The effect of minor additions of limestone powder on the properties of fly ash blended cements was investigated in this study using isothermal calorimetry, thermogravimetry (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) techniques, and pore solution analysis. The presence of limestone powder led to the formation of hemi- and monocarbonate and to a stabilisation of ettringite compared to the limestone-free cements, where a part of the ettringite converted to monosulphate. Thus, the presence of 5% of limestone led to an increase of the volume of the hydrates, as visible in the increase in chemical shrinkage, and an increase in compressive strength. This effect was amplified for the fly ash/limestone blended cements due to the additional alumina provided by the fly ash reaction.

  8. Fly ash leachate generation and qualitative trends at Ohio test sites

    SciTech Connect (OSTI)

    Solc, J.; Foster, H.J.; Butler, R.D.

    1995-12-01

    Under the sponsorship of the U.S. Department of Energy, the environmental impact and potential contamination from landfilled fly ash (coal conversion solid residues - CCSRs) have been studied at field sites in Ohio. The progressive increase of moisture content within pilot cells over depth and time facilitated intensive chemical processes and generation of highly alkaline (pH of 10 to 12) leachate. Chemistry of pore water from lysimeters and ASTM leachate from fly ash and soil cores indicate the leachate potential to migrate out of deposit and impact the pore water quality of surrounding soils. Na, SO{sub 4} and, particularly, K, Cl, pH, and EC appeared to be valuable indicator parameters for tracking potential leachate transport both within the cells and below the ash/soil interface.

  9. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  10. Fly ash from Texas lignite and western subbituminous coal: a comparative characterization

    SciTech Connect (OSTI)

    Sears, D. R.; Benson, S. A.; McCollor, D. P.; Miller, S. J.

    1982-01-01

    As examples, we use two Jackson group lignites from Atascosa and Fayette Counties, Texas, and a Green River Region subbituminous coal from Routt County, Colorado. The composition of individual fly ash particles was determined using scanning electron microscopy and electron microprobe, with support from x-ray diffraction of bulk ash. Using particle sample populations large enough to permit statistical treatment, we describe the relationship of composition to particle size and the correlation between elemental concentrations, as well as particle size and composition distributions. Correlations are displayed as data maps which show the complete range of observed variation among these parameters, emphasizing the importance of coal variability. We next use this data to produce a population distribution of ash particle resistivities calculated with Bickelhaupt's model. The relationship between calculated resistivity and particle size is also displayed, and the results are compared with measured values. 7 figures.

  11. Influences of chemical activators on incinerator bottom ash

    SciTech Connect (OSTI)

    Qiao, X.C. Cheeseman, C.R.; Poon, C.S.

    2009-02-15

    This research has applied different chemical activators to mechanically and thermally treated fine fraction (<14 mm) of incinerator bottom ash (IBA), in order to investigate the influences of chemical activators on this new pozzolanic material. IBA has been milled and thermally treated at 800 deg. C (TIBA). The TIBA produced was blended with Ca(OH){sub 2} and evaluated for setting time, reactivity and compressive strength after the addition of 0.0565 mole of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, NaOH, KOH and CaCl{sub 2} into 100 g of binder (TIBA+Ca(OH){sub 2}). The microstructures of activated IBA and hydrated samples have been characterized by X-ray diffraction (XRD) and thermogravimetry (TG) analysis. Thermal treatment is found to produce gehlenite (Ca{sub 2}Al{sub 2}SiO{sub 7}), wollastonite (CaSiO{sub 3}) and mayenite (Ca{sub 12}Al{sub 14}O{sub 33}) phases. The thermally treated IBA samples are significantly more reactive than the milled IBA. The addition of Na{sub 2}CO{sub 3} can increase the compressive strength and calcium hydroxide consumption at 28-day curing ages. However, the addition of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, K{sub 2}CO{sub 3}, NaOH and KOH reduces the strength and hydration reaction. Moreover, these chemicals produce more porous samples due to increased generation of hydrogen gas. The addition of CaCl{sub 2} has a negative effect on the hydration of TIBA samples. Calcium aluminium oxide carbonate sulphide hydrate (Ca{sub 4}Al{sub 2}O{sub 6}(CO{sub 3}){sub 0.67}(SO{sub 3}){sub 0.33}(H{sub 2}O){sub 11}) is the main hydration product in the samples with activated IBA, except for the sample containing CaCl{sub 2}.

  12. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOE Patents [OSTI]

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  13. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOE Patents [OSTI]

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  14. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    SciTech Connect (OSTI)

    Madankan, R.; Pouget, S.; Singla, P.; Bursik, M.; Dehn, J.; Jones, M.; Patra, A.; Pavolonis, M.; Pitman, E.B.; Singh, T.; Webley, P.

    2014-08-15

    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions height, profile of particle location, volcanic vent parameters are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajkull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 1416 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  15. Guidelines for control and prevention of fly ash erosion in fossil fired power plants. Final report

    SciTech Connect (OSTI)

    Drennen, J.F.; Kratina, P.

    1994-02-01

    Boiler tube failures (BTF`s) due to fly ash erosion are one of the leading single causes of availability loss in fossil boilers. The damage, which can be very localized, has led to expensive and lengthy forced outages. As part of an overall BTF reduction program, EPRI has documented the available solutions being applied for fly ash erosion. Unfortunately, most of these are regarded as temporary fixes that do not provide long term solutions. A technique applied in Canadian and Australian utilities has provided long term solutions on the order of ten years. This technique has been demonstrated now at two US utilities under an EPRI sponsored project, (RP2711-2). The result of the project is a guideline that outlines, step-by-step, activities for stepping up and running an erosion control program at a utility boiler. The heart of the program is the cold air velocity test (CAVT), done in the convective pass at ambient conditions. With the fans running, one or more two-man teams measure gas flows entering and/or leaving pendants and banks. These data and a boiler assessment are used to identify operating conditions conducive to fly ash erosion. Flow control screens are then selected and installed to redistribute fly ash, reduce gas velocities and produce acceptable erosion rates. The result should be long term relief from boiler tube failures caused by fly ash erosion. The program cost is estimated to be $300--$400/MW depending on unit design, operating characteristics and extent of fly ash erosion.

  16. Sulfur capture by oil shale ashes under atmospheric and pressurized FBC conditions

    SciTech Connect (OSTI)

    Yrjas, K.P.; Hupa, M. [Aabo Akademi Univ., Turku (Finland). Dept. of Chemical Engineering; Kuelaots, I.; Ots, A. [Tallinn Technical Univ. (Estonia). Thermal Engineering Dept.

    1995-12-31

    When oil shale contains large quantities of limestone, a significant auto-absorption of sulfur is possible under suitable conditions. The sulfur capture by oil shale ashes has been studied using a pressurized thermogravimetric apparatus. The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. The Ca/S molar ratios in the two oil shales studied were 8 (Estonian) and 10 (Israeli). The samples were first burned in a gas atmosphere containing O{sub 2} and N{sub 2} (and CO{sub 2} if pressurized). After the combustion step, SO{sub 2} was added and sulfation started. The results with the oil shales were compared to those obtained with an oil shale cyclone ash from the Narva power plant in Estonia. In general, the results from the sulfur capture experiments under both atmospheric and pressurized conditions showed that the oil shale cannot only capture its own sulfur but also significant amounts of additional sulfur of another fuel if the fuels are mixed together. For example from the runs at atmospheric pressure, the conversion of CaO to CaSO{sub 4} was about 70% for Israeli oil shale and about 55% for Estonian oil shale (850 C). For the cyclone ash the corresponding conversion was about 20%. In comparison it could be mentioned that under the same conditions the conversions of natural limestones are about 30%. The reason the cyclone ash was a poor sulfur absorbent was probably due to its temperature history. In Narva the oil shale was burned at a significantly higher temperature (1,400 C) than was used in the experiments (750 C and 850 C). This caused the ash to sinter and the reactive surface area of the cyclone ash was therefore decreased.

  17. Synthesis of mesoporous silica materials from municipal solid waste incinerator bottom ash

    SciTech Connect (OSTI)

    Liu, Zhen-Shu Li, Wen-Kai; Huang, Chun-Yi

    2014-05-01

    Highlights: The optimal alkaline agent for the extraction of silica from bottom ash was Na{sub 2}CO{sub 3}. The pore sizes for the mesoporous silica synthesized from bottom ash were 23.8 nm. The synthesized materials exhibited a hexagonal pore structure with a smaller order. The materials have potential for the removal of heavy metals from aqueous solutions. - Abstract: Incinerator bottom ash contains a large amount of silica and can hence be used as a silica source for the synthesis of mesoporous silica materials. In this study, the conditions for alkaline fusion to extract silica from incinerator bottom ash were investigated, and the resulting supernatant solution was used as the silica source for synthesizing mesoporous silica materials. The physical and chemical characteristics of the mesoporous silica materials were analyzed using BET, XRD, FTIR, SEM, and solid-state NMR. The results indicated that the BET surface area and pore size distribution of the synthesized silica materials were 992 m{sup 2}/g and 23.8 nm, respectively. The XRD patterns showed that the synthesized materials exhibited a hexagonal pore structure with a smaller order. The NMR spectra of the synthesized materials exhibited three peaks, corresponding to Q{sup 2} [Si(OSi){sub 2}(OH){sub 2}], Q{sup 3} [Si(OSi){sub 3}(OH)], and Q{sup 4} [Si(OSi){sub 4}]. The FTIR spectra confirmed the existence of a surface hydroxyl group and the occurrence of symmetric SiO stretching. Thus, mesoporous silica was successfully synthesized from incinerator bottom ash. Finally, the effectiveness of the synthesized silica in removing heavy metals (Pb{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, and Cr{sup 2+}) from aqueous solutions was also determined. The results showed that the silica materials synthesized from incinerator bottom ash have potential for use as an adsorbent for the removal of heavy metals from aqueous solutions.

  18. Ammonium Additives to Dissolve Li2S through Hydrogen Binding for High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Li-S Batteries - Joint Center for Energy Storage Research July 1, 2016, Research Highlights Ammonium Additives to Dissolve Li2S through Hydrogen Binding for High Energy Li-S Batteries (a) Solubility of Li2S in DMSO solvent with different amounts of NH4NO3 as additive. (b) 1H chemical shifts as a function of Li2S concentration in DMSO-d6 with NH4NO3 additive. (c) DFT-derived structure of Li2S-NH4-NO3-8DMSO system shows the dissolution process of Li2S is enhanced through hydrogen

  19. Refinement of procedures for analysis and construction of hydraulicked ash-slag dumps to improve their in-service safety

    SciTech Connect (OSTI)

    Frolov, A. N.

    2013-03-15

    Solutions are proposed for enhancement of the in-service safety of hydraulicked ash-slag dumps with consideration of their hydrothermal regime. An assessment is given for the minimum dimensions of the settling basins and top surface of ash-slag dumps.

  20. Electrochemical Investigation of Al–Li/LixFePO4 Cells in Oligo(ethylene glycol) Dimethyl Ether/LiPF6

    SciTech Connect (OSTI)

    Wang, X.J.; Zhou, Y.N.; Lee, H.S.; Nam, K.W.; Yang, X.Q.; Haas, O.

    2011-02-01

    1 M LiPF{sub 6} dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight, 500 g mol{sup -1} (OEGDME500, 1 M LiPF{sub 6}), was investigated as an electrolyte in experimental Al-Li/LiFePO{sub 4} cells. More than 60 cycles were achieved using this electrolyte in a Li-ion cell with an Al-Li alloy as an anode sandwiched between two Li x FePO{sub 4} electrodes (cathodes). Charging efficiencies of 96-100% and energy efficiencies of 86-89% were maintained during 60 cycles at low current densities. A theoretical investigation revealed that the specific energy can be increased up to 15% if conventional LiC{sub 6} anodes are replaced by Al-Li alloy electrodes. The specific energy and the energy density were calculated as a function of the active mass per electrode surface (charge density). The results reveal that for a charge density of 4 mAh cm{sup -2} about 160 mWh g{sup -1} can be reached with Al-Li/LiFePO{sub 4} batteries. Power limiting diffusion processes are discussed, and the power capability of Al-Li/LiFePO{sub 4} cells was experimentally evaluated using conventional electrolytes.

  1. Transport and Failure in Li-ion Batteries | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the...

  2. Batteries - Next-generation Li-ion batteries Breakout session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to enable Li-metal * Inter-digitated electrodes for improved fast-charge capability * Nano-engineered electrode films to allow for thicker films Research Suggestions * See above ...

  3. Qiaojia River Power Co Ltd Li County | Open Energy Information

    Open Energy Info (EERE)

    Changde City, Hainan Province, China Zip: 415500 Sector: Hydro Product: Hunan-based small hydro developer. References: Qiaojia River Power Co., Ltd, Li County1 This article is a...

  4. LiDAR (Lewicki & Oldenburg) | Open Energy Information

    Open Energy Info (EERE)

    Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (Unknown) Near-Surface Co2 Monitoring And Analysis To...

  5. Low energy detectors: 6Li-glass scintillators (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Low energy detectors: 6Li-glass scintillators Authors: Lee, Hye Young 1 ; Taddeucci, Terry N 1 + Show Author Affiliations Los Alamos ...

  6. Beijing ChangLi Union Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Municipality, China Product: China-based technology company that research in zinc-air batteries (fuel cells). References: Beijing ChangLi Union Energy Company1 This article is a...

  7. Entrained-flow dry-bottom gasification of high-ash coals in coal-water slurries

    SciTech Connect (OSTI)

    E.G. Gorlov; V.G. Andrienko; K.B. Nefedov; S.V. Lutsenko; B.K. Nefedov

    2009-04-15

    It was shown that the effective use of dry ash removal during entrained-flow gasification of coal-water slurries consists in simplification of the ash storage system and utilization of coal ash, a decrease in the coal demand, a reduction in the atmospheric emissions of noxious substances and particulate matter, and abandonment of the discharge of water used for ash slurry. According to the results of gasification of coal-water slurries (5-10 {mu}m) in a pilot oxygen-blow unit at a carbon conversion of >91%, synthesis gas containing 28.5% CO, 32.5% H{sub 2}, 8.2% CO{sub 2}, 1.5% CH{sub 4}, the rest being nitrogen, was obtained. The fly ash in its chemical composition, particle size, and density meets the requirements of the European standard EN 450 as a cement additive for concrete manufacture.

  8. Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive - Joint Center for Energy Storage Research April 25, 2015, Research Highlights Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte Additive Dendrite growth leads to low CE and safety issues of Li anode. Trace amount of water enables dendrite-free Li deposition. Scientific Achievement Residual water (H2O) present in nonaqueous electrolytes has been widely regarded as a detrimental factor for lithium (Li) batteries. However, dendrite-free Li film can be obtained

  9. Heteroclite electrochemical stability of an I based Li7P2S8I superionic conductor

    SciTech Connect (OSTI)

    Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory; Pilar, Kartik; Sahu, Gayatri; Greenbaum, Steve; Liang, Chengdu

    2015-01-01

    Stability from Instability: A Li7P2S8I solid state Li-ion conductor derived from -Li3PS4 and LiI demonstrates exceptional electrochemical stability. The oxidation instability of I is subverted nullified via its incorporation into the coordinated structure. The inclusion of I also creates stability with metallic Li anode while simultaneously improving the interfacial kinetics. Low temperature membrane processability enables facile fabrication of dense membranes, making it suitable for industrial adoption.

  10. LiDAR Technology | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LiDAR Technology LiDAR Technology Enables the Location of Historic Energy Production Sites Understanding the impact that newly developed novel methods for extracting resources from the Earth has on our environment is important, but this requires baseline data against which potential changes can be measured. In Pennsylvania, as in other parts of the United States, commercial activity has already left environmental impacts that are not readily discernible. Charcoal from a completed burn (image

  11. Predictive Materials Modeling for Li-Air Battery Systems | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility electron density obtained from a density functional theory Shown here is the electron density obtained from a density functional theory (DFT) calculation of lithium oxide (Li2O) performed with the GPAW code. This visualization was the result of a simulation run on Intrepid, a supercomputer at the Argonne Leadership Computing Facility. Kah Chun Lau, Aaron Knoll and Larry A. Curtiss, Argonne National Laboratory Predictive Materials Modeling for Li-Air Battery

  12. ARM - Campaign Instrument - twin-otter-li-prof

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstwin-otter-li-prof Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Twin Otter Lidar Profiles (TWIN-OTTER-LI-PROF) Instrument Categories Aerosols, Atmospheric Profiling, Cloud Properties Campaigns Tropical Warm Pool - International Cloud Experiment (TWP-ICE) [ Download Data ] Tropical Western Pacific, 2006.01.21 - 2006.02.13 Primary Measurements Taken The following measurements are those considered

  13. Transformations and affinities for sulfur of Chinese Shenmu coal ash in a pulverized coal-fired boiler

    SciTech Connect (OSTI)

    Cheng, J.; Zhou, J.H.; Liu, J.Z.; Cao, X.Y.; Cen, K.F.

    2009-07-01

    The self-desulfurization efficiency of Shenmu coal with a high initial Ca/S molar ratio of 2.02 was measured in a 1,025 t/h pulverized coal-fired boiler. It increases from 29% to 32% when the power capacity decreases from 100% to 70%. About 60% of the mineral matter and calcium element fed into the furnace is retained in the fly ash, while less than 10% is retained in the bottom ash. About 70% of the sulfur element fed into the furnace is emitted as SO{sub 2} in the flue gas, while less than 10% is retained in the fly ash and less than 1% is retained in the bottom ash. The mineralogical compositions of feed coal, fly ash, and bottom ash were obtained by X-ray diffraction analysis. It is found that the initial amorphous phase content is 91.17% and the initial CaCO{sub 3} phase content is 2.07% in Shenmu coal. The vitreous phase and sulfation product CaSO{sub 4} contents are, respectively, 70.47% and 3.36% in the fly ash obtained at full capacity, while the retained CaCO{sub 3} and CaO contents are, respectively, 4.73% and 2.15%. However, the vitreous phase content is only 25.68% and no CaSO{sub 4} is detected in the bottom ash obtained at full capacity. When the power capacity decreases from 100% to 70%, the vitreous phase content in fly ash decreases from 70.47% to 67.41% and that in bottom ash increases from 25.68% to 28.10%.

  14. Fluoro-Carbonate Solvents for Li-Ion Cells

    SciTech Connect (OSTI)

    NAGASUBRAMANIAN,GANESAN

    1999-09-17

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

  15. Probing the failure mechanism of nanoscale LiFePO{sub 4} for Li-ion batteries

    SciTech Connect (OSTI)

    Gu, Meng; Yan, Pengfei; Wang, Chongmin; Shi, Wei; Zheng, Jianming; Zhang, Ji-guang

    2015-05-18

    LiFePO{sub 4} is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO{sub 4} materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO{sub 4} cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO{sub 4} cathode for high-energy and high-power rechargeable battery for electric transportation.

  16. THE HIGH TEMPERATURE CHEMICAL REACTIVITY OF LI2O

    SciTech Connect (OSTI)

    Kessinger, G.; Missimer, D.

    2009-11-13

    The ultimate purpose of this study was to investigate the use of a Li-Ca mixture for direct reduction of actinide oxides to actinide metals at temperatures below 1500 C. For such a process to be successful, the products of the reduction reaction, actinide metals, Li{sub 2}O, and CaO, must all be liquid at the reaction temperature so the resulting actinide metal can coalesce and be recovered as a monolith. Since the established melting temperature of Li{sub 2}O is in the range 1427-1700 C and the melting temperature of CaO is 2654 C, the Li{sub 2}O-CaO (lithium oxidecalcium oxide) pseudo-binary system was investigated in an attempt to identify the presence of low-melting eutectic compositions. The results of our investigation indicate that there is no evidence of ternary Li-Ca-O phases or solutions melting below 1200 C. In the 1200-1500 C range utilizing MgO crucibles, there is some evidence for the formation of a ternary phase; however, it was not possible to determine the phase composition. The results of experiments performed with ZrO{sub 2} crucibles in the same temperature range did not show the formation of the possible ternary phase seen in the earlier experiment involving MgO crucibles, so it was not possible to confirm the possibility that a ternary Li-Ca-O or Li-Mg-O phase was formed. It appears that the Li{sub 2}O-CaO materials reacted, to some extent, with all of the container materials, alumina (Al{sub 2}O{sub 3}), magnesia (MgO), zirconia (ZrO{sub 2}), and 95% Pt-5% Au; however, to clarify the situation additional experiments are required. In addition to the primary purpose of this study, the results of this investigation led to the conclusions that: (1) The melting temperature of Li{sub 2}O may be as low as 1250 C, which is considerably lower than the previously published values in the range 1427-1700 C; (2) Lithium oxide (Li{sub 2}O) vaporizes congruently; (3) Lithium carbonate and Li2O react with 95% Pt-5% Au, and also reacts with pure Pt; and (4

  17. Efimov physics in {sup 6}Li atoms

    SciTech Connect (OSTI)

    Braaten, Eric; Hammer, H.-W.; Kang, Daekyoung; Platter, Lucas

    2010-01-15

    A new narrow three-atom loss resonance associated with an Efimov trimer crossing the three-atom threshold has recently been discovered in a many-body system of ultracold {sup 6}Li atoms in the three lowest hyperfine spin states at a magnetic field near 895 G. O'Hara and coworkers have used measurements of the three-body recombination rate in this region to determine the complex three-body parameter associated with Efimov physics. Using this parameter as the input, we calculate the universal predictions for the spectrum of Efimov states and for the three-body recombination rate in the universal region above 600 G where all three scattering lengths are large. We predict an atom-dimer loss resonance at 672+-2 G associated with an Efimov trimer disappearing through an atom-dimer threshold. We also predict an interference minimum in the three-body recombination rate at 759+-1 G where the three-spin mixture may be sufficiently stable to allow experimental study of the many-body system.

  18. A=6Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 6Li) GENERAL: See Table 6.4 [Table of Energy Levels] (in PDF or PS). See also (AU55, LA55, ME56, FR57, HU57D, LE57F, PI58, BA59K, BR59M, FE59E, SK59, UB59, AN60, JA60G, KO60E, PH60A, TA60L, WA60F, BA61N, KO61A, SH61B, TA61G, VA61, CO62B, CR62A, DI62B, FO62E, GA62C, IN62, IN62A, IN62B, JA62, ME62A, NA62C, SA62C, ST62B, WA62H, BO63B, BU63D, DA63D, EL63D, HA63K, JA63C, JO63B, KL63, KU63B, KU63I, MO63C, OL63B, SA63K, SC63E, SC63I, VL63A, WA63, GR64C, JI64,

  19. Structural and Electrochemical Characterization of Pure LiFePO 4 and Nanocomposite C- LiFePO 4 Cathodes for Lithium Ion Rechargeable Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, Arun; Thomas, R.; Karan, N. K.; Saavedra-Arias, J. J.; Singh, M. K.; Majumder, S. B.; Tomar, M. S.; Katiyar, R. S.

    2009-01-01

    Pure limore » thium iron phosphate ( LiFePO 4 ) and carbon-coated LiFePO 4 (C- LiFePO 4 ) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating on LiFePO 4 particles. Ex situ Raman spectrum of C- LiFePO 4 at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms of LiFePO 4 and C- LiFePO 4 showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13 mAh/g for C/5, C/3, and C/2, respectively for LiFePO 4 where as in case of C- LiFePO 4 that were 163, 144, 118, and 70 mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pure LiFePO 4 was 69% after 25 cycles where as that of C- LiFePO 4 was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.« less

  20. Structural and Electrochemical Characterization of PureLiFePO4and Nanocomposite C-LiFePO4Cathodes for Lithium Ion Rechargeable Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, Arun; Thomas, R.; Karan, N. K.; Saavedra-Arias, J. J.; Singh, M. K.; Majumder, S. B.; Tomar, M. S.; Katiyar, R. S.

    2009-01-01

    Pure lithium iron phosphate (LiFePO4) and carbon-coatedLiFePO4(C-LiFePO4) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating onLiFePO4particles. Ex situ Raman spectrum of C-LiFePO4at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms ofLiFePO4and C-LiFePO4showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13?mAh/g for C/5, C/3, and C/2, respectively forLiFePO4where as in case of C-LiFePO4that were 163, 144,more118, and 70?mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pureLiFePO4was 69% after 25 cycles where as that of C-LiFePO4was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.less