Sample records for ash grove cement

  1. Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2013-01-01T23:59:59.000Z

    http://www.wbcsd.ch/web/projects/cement/pop-report.pdfShui Ni 1 and Shui Ni 2 cement plants in Shangdong ProvinceReferences Ash Grove Cement, n.d. , “Cement Manufacturing

  2. Optimization of cement and fly ash particle sizes to produce sustainable concretes Dale P. Bentz a,

    E-Print Network [OSTI]

    Bentz, Dale P.

    Optimization of cement and fly ash particle sizes to produce sustainable concretes Dale P. Bentz a and Technology, 100 Bureau Drive, Stop 7313, Gaithersburg, MD 20899-7313, USA b Roman Cement LLC, Salt Lake City form 29 April 2011 Accepted 30 April 2011 Available online 7 May 2011 Keywords: Blended cement Design

  3. Soil stabilization and pavement recycling with self-cementing coal fly ash

    SciTech Connect (OSTI)

    NONE

    2008-01-15T23:59:59.000Z

    This manual provides design information for self-cementing coal fly ash as the sole stabilizing agent for a wide range of engineering applications. As in any process, the application of sound engineering practices, appropriate testing, and evaluation of fly ash quality and characteristics will lend themselves to successful projects using the guidelines in this manual. Topics discussed include: self-cementing coal fly ash characteristics; laboratory mix design; stabilization of clay soils; stabilisation of granular materials; construction considerations; high sulfate ash; environmental considerations for fly ash stabilization; design considerations; state specification/guidelines/standards; and a sample of a typical stabilization specification.

  4. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    SciTech Connect (OSTI)

    García-Maté, M.; De la Torre, A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)] [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); León-Reina, L. [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain)] [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain) [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Santacruz, I., E-mail: isantacruz@uma.es [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)

    2013-12-15T23:59:59.000Z

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  5. ash cement concrete: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 410 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  6. ash substituted cements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 199 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  7. ash belite cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 150 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  8. ash cements stabilized: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 173 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  9. ash blended cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass blends Texas A&M University - TxSpace Summary: , low ash partially composted manure LAPC, high ash raw manure HARM, and high ash partially composted manure HAPC)...

  10. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01T23:59:59.000Z

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs.

  11. ash cement matrixes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 201 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  12. Feasibility of using reject fly ash in cement-based stabilization/solidification processes

    SciTech Connect (OSTI)

    Poon, C.S.; Qiao, X.C.; Cheeseman, C.R.; Lin, Z.S. [Hong Kong Polytechnic University, Kowloon (China). Dept. of Civil & Structural Engineering

    2006-01-15T23:59:59.000Z

    Stabilization/solidification (s/s) has been routinely used for the final treatment of hazardous wastes prior to land disposal. These processes involve adding one or more solidifying reagents into the waste to transform it into a monolithic solid with improved structural integrity. Cement-based systems with partial replacement by pulverized fuel ash (PFA) have been widely used to minimize leaching of contaminants from hazardous wastes. The finer fraction of PFA ({lt}45 {mu} m, fine fly ash, MA), produced by passing the raw ash through a classifying process is commonly used in s/s processes. Low-grade fly ash is rejected (rFA) from the ash classifying process, and is largely unused due to high carbon content and large particle size but represents a significant proportion of PFA. This paper presents experimental results of a study that has assessed the feasibility of using rFA in the cement-based s/s of a synthetic heavy metal waste. Results were compared to mixes containing fFA. The strength results show that cement-based waste forms with rFA replacement are suitable for disposal at landfill and that the addition of heavy metal sludge can increase the degree of hydration of fly ash and decrease the porosity of samples. Adding Ca(OH){sub 2} and flue gas desulphurization sludge reduces the retarding effect of heavy metals on strength development. The results of the Toxicity Characteristic Leaching Procedure and Dynamic Leach Test show that rFA can be used in cement-based s/s wastes without compromising performance of the product.

  13. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    SciTech Connect (OSTI)

    Deschner, Florian, E-mail: florian.deschner@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland)] [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Lothenbach, Barbara; Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland)] [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Neubauer, Jürgen [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)] [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)

    2013-10-15T23:59:59.000Z

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  14. Influence of the composition of cement kiln dust on its interaction with fly ash and slag

    SciTech Connect (OSTI)

    Chaunsali, Piyush, E-mail: chaunsa2@illinois.edu [Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, IL 61801 (United States)] [Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, IL 61801 (United States); Peethamparan, Sulapha, E-mail: speetham@clarkson.edu [Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699 (United States)] [Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699 (United States)

    2013-12-15T23:59:59.000Z

    Cement kiln dust (CKD), a by-product of the cement industry, contains significant amounts of alkali, free lime, chloride and sulfate. Wide variation reported in the chemical composition of CKDs limits their potential application as a sustainable binder component in concrete. In the current study, the performance of two different CKDs as components in a novel binder is evaluated. Several binders are developed by blending CKDs with fly ash or slag. Binders with 70% CKD were prepared at a water-to-binder ratio of 0.4, and heat-cured at 75 °C to accelerate the strength development. The hydration progress was monitored using X-ray diffraction, and morphological examination was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Ettringite and calcium aluminosilicate hydrate (C-A-S-H) were identified as the main hydration products in the hardened binder system. Strength development of CKD-based binder was found to be significantly influenced by its free lime and sulfate contents. -- Highlights: •Interaction of cement kiln dust with fly ash and slag was explored. •CKD with higher free lime and sulfate content increased the strength of binder. •C-S-H like reaction gel with fibrillar morphology is observed in CKD-based binders.

  15. The variability of fly ash and its effects on selected properties of fresh Portland cement/fly ash mortars

    E-Print Network [OSTI]

    McKerall, William Carlton

    1980-01-01T23:59:59.000Z

    the needed quality control of concrete . Another source of concern results from the recent development of lignite and sub-bituminous coal as fuel sources. The ash produced from these coals is of a different chemical composition than traditional bituminous... 50 percent to greater than 200 percent of a control test. An exhaustive literature review has revealed neglig1ble information concerning the PAI of sub- b1tuminous and lignite ashes. Research is greatly needed to determine the ash properties...

  16. Engineering properties of miniature cement - fly ash compacts prepared by high pressure compaction 

    E-Print Network [OSTI]

    Bormann, Jeffrey Ray

    1985-01-01T23:59:59.000Z

    ENGINEERING PROPERTIES OF MINIATURE CEMENT - FLY ASH COMPACTS PREPARED BY HIGH PRESSURE COMPACTION E NGIRPR OT SFMMAFU AEU C-ALEYY HDOBPvvIi va vGI ge(iD(vI oannItI au NId(R E)L xrP1IeRPvT 9(evP(n uDnuPnnBIrv au vGI eI0DPeIBIrvR uae vGI i...?H?? NId(R E)L xrP1IeRPvT oG(PeB(r au Ei1PRaeT oaBBPvvII? ?e? ??C? ?IiOIvvIe oDeeIrv 9e(8vP8IR (ri vGIaeT 8aruaeB va vGI 8ar8I9v vG(v uae R9I8P(nP?Ii DRIR ( 9aevn(ri 8IBIrv 8ar8eIvI B(vIeP(n ?PvG RveIrtvG (99ea(8GPrt ?????? 9RP B(T OI 9eaiD8Ii OT eIiD8...

  17. THE IMPACT OF DISSOLVED SALTS ON PASTES CONTAINING FLY ASH, CEMENT AND SLAG

    SciTech Connect (OSTI)

    Harbour, J.; Edwards, T.; Williams, V.

    2009-09-21T23:59:59.000Z

    The degree of hydration of a mixture of cementitious materials (Class F fly ash, blast furnace slag and portland cement) in highly concentrated alkaline salt solutions is enhanced by the addition of aluminate to the salt solution. This increase in the degree of hydration, as monitored with isothermal calorimetry, leads to higher values of dynamic Young's modulus and compressive strength and lower values of total porosity. This enhancement in performance properties of these cementitious waste forms by increased hydration is beneficial to the retention of the radionuclides that are also present in the salt solution. The aluminate ions in the solution act first to retard the set time of the mix but then enhance the hydration reactions following the induction period. In fact, the aluminate ions increase the degree of hydration by {approx}35% over the degree of hydration for the same mix with a lower aluminate concentration. An increase in the blast furnace slag concentration and a decrease in the water to cementitious materials ratio produced mixes with higher values of Young's modulus and lower values of total porosity. Therefore, these operational factors can be fine tuned to enhance performance properties of cementitious waste form. Empirical models for Young modulus, heat of hydration and total porosity were developed to predict the values of these properties. These linear models used only statistically significant compositional and operational factors and provided insight into those factors that control these properties.

  18. Nano-ChemoMechanical assessment of Rice Husk Ash cement by wavelength dispersive spectroscopy and nanoindentation

    E-Print Network [OSTI]

    Abuhaikal, Muhannad (Muhannad A. R.)

    2011-01-01T23:59:59.000Z

    Cement global production stands at 3 Giga tons making concrete the most consumed structural mateial worldwide. This massively produced material comes with a heavy environmental footprint rendering the cement industry ...

  19. Unprocessed rice husk ash as a partial replacement of cement for low-cost concrete

    E-Print Network [OSTI]

    Brown, Dorothy Kamilah

    2012-01-01T23:59:59.000Z

    Cement is a very valuable commodity as it can be used to construct structurally sound buildings and infrastructure. However, in many developing countries cement is expensive due to the unavailability of local resources to ...

  20. Evaluation of sulfidic mine tailings solidified/stabilized with cement kiln dust and fly ash to control acid mine drainage

    SciTech Connect (OSTI)

    Nehdi, M.; Tariq, A. [University of Western Ontario, London, ON (Canada). Dept. of Civil & Environmental Engineering

    2008-11-15T23:59:59.000Z

    In the present research, industrial byproducts, namely, cement kiln dust (CKD) and Class C fly ash (FAC) have been used as candidate materials along with the partial addition of sulfate-resistant cement (SRC) in the Stabilization/solidification of polymetallic sulfidic mine tailings (MT). The effectiveness of S/S was assessed by comparing laboratory experimental values obtained from unconfined compressive strength, hydraulic conductivity and leaching propensity tests of S/S samples with regulatory standards for safe surface disposal of such wastes. Despite general regulatory compliance of compressive strength and hydraulic conductivity, some solidified/stabilized-cured matrices were found unable to provide the required immobilization of pollutants. Solidified/stabilized and 90-day cured mine tailings specimens made with composite binders containing (10% CKD + 10% FAC), (5% SRC + 15% FAC) and (5% SRC + 5% CKD + 10% FAC) significantly impaired the solubility of all contaminants investigated and proved successful in fixing metals within the matrix, in addition to achieving adequate unconfined compressive strength and hydraulic conductivity values, thus satisfying USEPA regulations. Laboratory investigations revealed that, for polymetallic mining waste, leachate concentrations are the most critical factor in assessing the effectiveness of S/S technology.

  1. Cement technology for borehole plugging: interim report on the effects of fly ash and salt on the physical properties of cementitious solids

    SciTech Connect (OSTI)

    Moore, J.G.; Morgan, M.T.; McDaniel, E.W.; Greene, H.B.; West, W.A.

    1980-03-01T23:59:59.000Z

    Results of initial studies of a systematic investigation to determine the effects of fly ash and salt on the physical properties of pozzolanic concretes and saltcretes are reported. Addition of fly ash to mortars decreased the set time and bleed characteristics and increased the compressive strength and permeability, but it had very little effect on the density or the thermal conductivity of the solid. The magnitude of these effects was only slightly related to the lime content of the fly ash. In the case of saltcretes, low-lime fly ash slightly decreased the set time and the bleed characteristics of the wet mix. However, a high-lime fly ash doubled the set time and decreased the bleed characteristics to essentially zero. The compressive strength of saltcretes was increased by the addition of fly ash and was independent of the lime content. Such additions had little effect on the thermal conductivity or density. The thermal conductivities of cement pastes containing fly ash showed a near-linear relationship with the density of the resulting solids. In the case of mortars, the thermal conductivity decreased with increasing temperature and showed some hysteresis in the initial heating cycle. After the first cycle, the thermal conductivity decreased from about 1.32 W/m.K at 350/sup 0/K to 1.27 W/m.K at 475/sup 0/K.

  2. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01T23:59:59.000Z

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

  3. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    2010. Cement and concrete nanoscience and nanotechnology.of 100 Percent Fly Ash Concrete. 2005 World of Coal Ash (carbon dioxide in precast concrete. TECHNOLOGY REVIEW – A

  4. Edited October 24, 2012 Aspen Grove

    E-Print Network [OSTI]

    Martinez, Tony R.

    Edited October 24, 2012 Aspen Grove Youth Conference Spring/Fall One-Night Youth Conference & Two-Night Youth Conference (May/June) Planning Guide 2013 #12;2 We are very happy you have chosen Aspen Grove. You are responsible for overseeing the planning and conducting of the conference while at Aspen Grove

  5. Edited October 24, 2012 Aspen Grove

    E-Print Network [OSTI]

    Olsen Jr., Dan R.

    Edited October 24, 2012 Aspen Grove Youth Conference Winter Planning Guide 2013 #12;2 We are very happy you have chosen Aspen Grove for your upcoming youth conference! We promise to do all in our power the planning and conducting of the conference while at Aspen Grove. Remember to keep the goals and theme

  6. E-Print Network 3.0 - ash based geopolymer Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization Summary: . CHARACTERIZATION AND APPLICATION OF CLASS F FLY ASH AND CLEAN-COAL ASH FOR CEMENT-BASED MATERIALS 2 The major... large amounts of conventional or...

  7. E-Print Network 3.0 - ash based gepolymer Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization Summary: . CHARACTERIZATION AND APPLICATION OF CLASS F FLY ASH AND CLEAN-COAL ASH FOR CEMENT-BASED MATERIALS 2 The major... large amounts of conventional or...

  8. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14T23:59:59.000Z

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  9. Pioneer Grove | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, search Name: PillarPinnacle WindGrove Jump

  10. Identification of Concrete Incompatibilities Using Cement Paste Rheology

    E-Print Network [OSTI]

    Jang, Se Hoon

    2010-07-14T23:59:59.000Z

    for her encouragement, and to my wife and son for their patience and love. vii NOMENCLATURE DSR Dynamic Shear Rheometer OPC Ordinary Portland Cement RMA Rheology Modifying Admixture MWRA Medium-range Water Reducing Admixture WRRA Water.../II ordinary portland cement C4 Type V low C3A cement F35 Class F fly ash with 35% replacement of cement weight C35 Class C fly ash with 35% replacement of cement weight S50 Granulated Slag with 50% replacement of cement weight X15TD Lignin based Type A...

  11. Influence of Curing Conditions on Water Loss and Hydration in Cement

    E-Print Network [OSTI]

    Bentz, Dale P.

    Influence of Curing Conditions on Water Loss and Hydration in Cement Pastes with and without Fly Loss and Hydration in Cement Pastes with and without Fly Ash Substitution Dale P. Bentz Building at different rates from portland cement, blended cements may require that special attention be paid

  12. ACAA fly ash basics: quick reference card

    SciTech Connect (OSTI)

    NONE

    2006-07-01T23:59:59.000Z

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  13. Forest Grove Light & Power- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Forest Grove Light & Power offers a variety of rebates through Conservation Services Department. Rebates vary based on technology, and are available to residential, commercial, and/or...

  14. Ash pelletization

    SciTech Connect (OSTI)

    Woodall, M.

    1994-12-31T23:59:59.000Z

    Ash pelletization is outlined under the following topics: projects with CSX involvement; US Generating (Cedar Bay), Jacksonville, FL; Hydra-Co (Salt City Project), Solvay, NY; Virginia Power, Yorktown Plant; US Generating; Indiantown, FL; Future Projects; Development of ash disposal site;s Reuse of ash product; and Utility Survey.

  15. Camp Grove Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind II CEC WindCamelot JumpCamilla,Grove

  16. Utilization of pulverized fuel ash in Malta

    SciTech Connect (OSTI)

    Camilleri, Josette [Department of Building and Civil Engineering, Faculty of Architecture and Civil Engineering, University of Malta, Msida (Malta); Sammut, Michael [Department of Pathology, St. Luke's Hospital, G'Mangia (Malta); Montesin, Franco E. [Department of Building and Civil Engineering, Faculty of Architecture and Civil Engineering, University of Malta, Msida (Malta)]. E-mail: franco.montesin@um.edu.mt

    2006-07-01T23:59:59.000Z

    In Malta all of the waste produced is mixed and deposited at various sites around the island. None of these sites were purpose built, and all of the waste is above groundwater level. The landfills are not engineered and do not contain any measures to collect leachate and gases emanating from the disposal sites. Another waste, which is disposed of in landfills, is pulverized fuel ash (PFA), which is a by-product of coal combustion by the power station. This has been disposed of in landfill, because its use has been precluded due to the radioactivity of the ashes. The aim of this study was to analyze the chemical composition of the pulverized fuel ash and to attempt to utilize it as a cement replacement in normal concrete mixes in the construction industry. The levels of radiation emitted from the ashes were measured by gamma spectrometry. The results of this study revealed that although at early ages cement replacement by PFA resulted in a reduction in compressive strength (P = 0), when compared to the reference concrete at later ages the strengths measured on concrete cores were comparable to the reference concrete (P > 0.05). The utilization of PFA up to 20% cement replacement in concrete did not raise the radioactivity of the concrete. In conclusion, utilization of PFA in the construction industry would be a better way of disposing of the ashes rather than controlling the leachate and any radioactivity emitted by the landfilled ashes.

  17. Cement and Concrete Research, Vol. 42 (2), 404-409, 2012. Influence of Particle Size Distributions on Yield Stress and Viscosity of

    E-Print Network [OSTI]

    Bentz, Dale P.

    Cement and Concrete Research, Vol. 42 (2), 404-409, 2012. Influence of Particle Size Distributions on Yield Stress and Viscosity of Cement-Fly Ash Pastes Dale P. Bentz Chiara F. Ferraris Michael A. Galler.galler@nist.gov Phone: (301)975-5865 Andrew S. Hansen John M. Guynn Roman Cement LLC andrew@RomanCement.com Abstract

  18. A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, A.; Price, L.; Lin, E.

    2012-01-01T23:59:59.000Z

    is to increase the amounts of elements other than Portland cement in blended cement products. However, increased use of other elements can result in a final product that is slow to develop compressive strength. One solution that has been researched....4.1. Cement/Concrete Based on Fly Ash and Recycled Materials Fly ash is a byproduct of coal burning that can have cementitious characteristics similar to those of Portland cement. The binding properties of fly ash depend on the type of coal burned...

  19. 2007 world of coal ash conference proceedings

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    The theme of the conference was science, applications and sustainability. Papers are presented under the following topics: aggregates/geotechnology; agriculture; ash facility; management; CCT products; cement and concrete; chemistry and mineralogy; emerging technology; environmental; LOI/beneficiation/handling; mercury; mining and regulations and standards. The poster papers are included as well.

  20. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

    1997-01-01T23:59:59.000Z

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  1. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29T23:59:59.000Z

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  2. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

    1998-01-01T23:59:59.000Z

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  3. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29T23:59:59.000Z

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  4. INTRODUCTION Portland cement concrete (PCC) is the world's most versatile and utilized construction material. Modern concrete consists of six

    E-Print Network [OSTI]

    Harms, Kyle E.

    INTRODUCTION Portland cement concrete (PCC) is the world's most versatile and utilized construction material. Modern concrete consists of six main ingredients: coarse aggregate, sand, portland cement sustainability has risen, engineers have looked to alternative binders such as fly ash, silica fume, slag cement

  5. Approaches to the petrographic characterization of fly ash

    SciTech Connect (OSTI)

    Hower, J.C.; Rathbone, R.F.; Graham, U.M. [Univ. of Kentucky, Lexington, KY (United States)] [and others

    1995-08-01T23:59:59.000Z

    The enhanced understanding of fly ash properties provided by petrographic analysis, a level of detail chemical analysis cannot provide, will be essential in the upgrading and utilization of fly ash produced in boilers retrofitted to meet clean air standards. Howe et al estimated that over 25% of the fly ash produced in Kentucky in 1992 would not have met the Kentucky Department of Transportation limit of 3% loss-on-ignition (LOI) for class F fly ash used as a Portland cement admixture. The conversion of boilers to low-NO{sub x} emission units increases fly ash carbon, hence LOI, by 150-200% rendering the fly ash unsuitable for highway construction use in concrete. The preservation of fly ash`s market share will require increased attention to the removal of excess carbon from the fly ash. In this paper, we will discuss the basic components of fly ash. An example of the petrographic analysis of fly ash from a Kentucky power plant will be used to illustrate the partitioning of fly ash components by size, as well as within the fly ash collection system.

  6. Properties of concrete containing wood/coal fly ash mixtures

    SciTech Connect (OSTI)

    Boylan, D.M.; Larrimore, C.L.; Fouad, F.

    1999-07-01T23:59:59.000Z

    Utilities are increasingly interested in co-firing wood with coal in existing pulverized coal units. The co-firing technology is a means of developing a relatively low-cost renewable energy resource, as well as of supporting customers and community by making energy with biomass that might otherwise have been land-filled. However, recent changes in the ASTM C618 standard for fly ash as cement replacement restrict the definition of fly ash that includes non-coal sources. As a result, wood co-firing could affect the market for the fly ash, reducing ash sales revenue, increasing ash disposal costs, and overall substantially increasing the cost of the co-firing technology. In order to address concerns about the effect of wood ash/coal ash mixtures on concrete properties, a study was conducted by University of Alabama at Birmingham, Southern Company, EPRI, and the State of Alabama. This study compared the effects on properties of concrete made with fly ash from coal and made with fly ash from co-firing up to 30% wood with coal. Fly ashes from three plants were used, with two of the ashes from actual co-firing experience and the third an artificial blend of wood and coal ash. Concrete test cylinders were made of several cement/fly ash mixes, and enough were made to allow testing periodically over a one year time period. Test measurements included workability, setting time, air content, compressive and flexural strength, rapid chloride permeability and freeze thaw. It was concluded on the basis of these tests that the wood ash content had no detrimental effect on the plastic and hardened properties of the concrete.

  7. Zinc electrode with cement additive

    DOE Patents [OSTI]

    Charkey, Allen (Brookfield, CT)

    1982-06-01T23:59:59.000Z

    A zinc electrode having a cement additive, preferably, Portland Cement, distributed in the zinc active material.

  8. E-Print Network 3.0 - ash management regulations Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REGULATOR IN PORTLAND CEMENT 6 Traditionally about 3 to 5% gypsum is inter... of clean-coal ash (CCA) was used to replace gypsum as a setting time regulator and mineral...

  9. High-performance, high-volume fly ash concrete

    SciTech Connect (OSTI)

    NONE

    2008-01-15T23:59:59.000Z

    This booklet offers the construction professional an in-depth description of the use of high-volume fly ash in concrete. Emphasis is placed on the need for increased utilization of coal-fired power plant byproducts in lieu of Portland cement materials to eliminate increased CO{sub 2} emissions during the production of cement. Also addressed is the dramatic increase in concrete performance with the use of 50+ percent fly ash volume. The booklet contains numerous color and black and white photos, charts of test results, mixtures and comparisons, and several HVFA case studies.

  10. CEMENT RELATED RESEARCH HYDROGEOCHEMISTRY GROUP

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    CEMENT RELATED RESEARCH HYDROGEOCHEMISTRY GROUP Josep M. Soler Jordi Cama Carles Ayora Ana Trapote.soler@idaea.csic.es #12;NOMECLATURE cement + water = hardened cement paste cement + water + sand = mortar cement + waterC) clinker + gypsum portland cement PORTLAND CEMENT #12;GTS-HPF Core Infiltration Experiment Experimental

  11. Fant's Grove Water System System No, SC390112

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Fant's Grove Water System System No, SC390112 Clemson, SC 2003 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  12. Fant's Grove Water System System No, SC390112

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Fant's Grove Water System System No, SC390112 Clemson, SC 2004 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  13. Corrosion-resistant Foamed Cements for Carbon Steels

    SciTech Connect (OSTI)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01T23:59:59.000Z

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS surfaces; 2) inhibiting the cathodic reactions at the corrosion site of CS; 3) extending the coverage of cement over CS surfaces; and, 4) improving the adherence of the cement to CS surfaces. Thus, the CS’s corrosion rate of 176 milli inch/per year (mpy) for 1 wt% FA-foamed cement without AP was considerably reduced to 69 mpy by adding only 2 wt% AP. Addition of AP at 10 wt% further reduced this rate to less than 10 mpy.

  14. Alternative Fuel for Portland Cement Processing

    SciTech Connect (OSTI)

    Anton K. Schindler; Steve R. Duke; Thomas E. Burch; Edward W. Davis; Ralph H. Zee; David I. Bransby; Carla Hopkins; Rutherford L. Thompson; Jingran Duan; Vignesh Venkatasubramanian; Stephen Giles.

    2012-06-30T23:59:59.000Z

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted at a full-scale cement plant with alternative fuels to examine their compatibility with the cement production process. Construction and demolition waste, woodchips, and soybean seeds were used as alternative fuels at a full-scale cement production facility. These fuels were co-fired with coal and waste plastics. The alternative fuels used in this trial accounted for 5 to 16 % of the total energy consumed during these burns. The overall performance of the portland cement produced during the various trial burns performed for practical purposes very similar to the cement produced during the control burn. The cement plant was successful in implementing alternative fuels to produce a consistent, high-quality product that increased cement performance while reducing the environmental footprint of the plant. The utilization of construction and demolition waste, woodchips and soybean seeds proved to be viable replacements for traditional fuels. The future use of these fuels depends on local availability, associated costs, and compatibility with a facilityâ??s production process.

  15. Utilizing New Binder Materials for Green Building has Zero Waste by Recycling Slag and Sewage Sludge Ash 

    E-Print Network [OSTI]

    Zeedan, S. R.

    2010-01-01T23:59:59.000Z

    binding material to save energy and to produce new innovative zero materials waste . The current research aims to investigate new binder materials as alternative of Portland cement. Alkali activated slag (AAS) blended with sewage sludge ash (SSA...

  16. Final work plan : environmental site investigation at Sylvan Grove, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2012-07-15T23:59:59.000Z

    In 1998, carbon tetrachloride was found above the maximum contaminant level (MCL) of 5 {micro}g/L in groundwater from one private livestock well at Sylvan Grove, Kansas, by the Kansas Department of Health and Environment (KDHE). The 1998 KDHE sampling was conducted under the U.S. Department of Agriculture (USDA) private well sampling program. The Commodity Credit Corporation (CCC), a USDA agency, operated a grain storage facility in Sylvan Grove from 1954 to1966. Carbon tetrachloride is the contaminant of primary concern at sites associated with former CCC/USDA grain storage operations. Sylvan Grove is located in western Lincoln County, approximately 60 mi west of Salina (Figure 1.1). To determine whether the former CCC/USDA facility at Sylvan Grove is a potential contaminant source and its possible relationship to the contamination in groundwater, the CCC/USDA has agreed to conduct an investigation, in accordance with the Intergovernmental Agreement between the KDHE and the Farm Service Agency (FSA) of the USDA. This Work Plan presents historical data related to previous investigations, grain storage operations, local private wells and public water supply (PWS) wells, and local geologic and hydrogeologic conditions at Sylvan Grove. The findings from a review of all available documents are discussed in Section 2. On the basis of the analyses of historical data, the following specific technical objectives are proposed for the site investigation at Sylvan Grove: (1) Evaluate the potential source of carbon tetrachloride at the former CCC/USDA facility; (2) Determine the relationship of potential contamination (if present) at the former CCC/USDA facility to contamination identified in 1998 in groundwater samples from one private well to the west; and (3) Delineate the extent of potential contamination associated with the former CCC/USDA facility. The detailed scope of work is outlined in Section 3. The results of the proposed work will provide the basis for determining what future CCC/USDA actions may be necessary, with the ultimate goal of achieving classification of the Sylvan Grove site at no further action status. The proposed activities are to be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory, a nonprofit, multidisciplinary research center operated by the UChicago Argonne, LLC, for the U.S. Department of Energy. Argonne provides technical assistance to the CCC/USDA concerning environmental site characterization and remediation at former grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. That document should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Sylvan Grove.

  17. Thermcoat Cement INSTRUCTION

    E-Print Network [OSTI]

    Kleinfeld, David

    CO and COL Thermcoat Cement INSTRUCTION SHEET M0101/0801 OMEGA® Thermcoat CO and COL consists of a powder (CO) and a liquid (COL) which, upon proper mixing, will yield a strong, insoluble cement. It has, which means it generates heat. For this reason, the heat must be dissipated or the cement will set too

  18. Hydrothermal reaction of fly ash. Final report

    SciTech Connect (OSTI)

    Brown, P.W.

    1994-12-31T23:59:59.000Z

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  19. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

    1997-01-01T23:59:59.000Z

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  20. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28T23:59:59.000Z

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  1. Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications

    SciTech Connect (OSTI)

    Lu, X.F.; Amano, R.S. [University of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

    2006-12-15T23:59:59.000Z

    CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

  2. Lake Grove, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois: EnergyFlorida: Energy Resources JumpGrove,

  3. Linn Grove, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting ControlWyoming:RhodeLienHwaLinked8556605°,Grove,

  4. Buffalo Grove, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy Resources JumpLCCBuena,Grove,

  5. Pleasant Grove, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataforma Itaipu deValleyPleak,Grove,

  6. Elk Grove Village, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldoradoElectronVaultStationGrove Village,

  7. Elk Grove, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldoradoElectronVaultStationGrove

  8. Elm Grove, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information Elkhorn HotGrove, Wisconsin: Energy

  9. Morton Grove, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California:Morse, Louisiana: EnergyMorton Grove,

  10. Beech Grove, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County,New York: EnergyGrove, Indiana:

  11. Franklin Grove, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show Map Loading map...Texas:Grove, Illinois:

  12. Garden Grove, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy ResourcesGang Mills, NewIdaho:Grove,

  13. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19T23:59:59.000Z

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  14. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, David R. (New Castle, DE); Velenyi, Louis J. (Lyndhurst, OH); Pepera, Marc A. (Northfield, OH); Dolhyj, Serge R. (Parma, OH)

    1986-01-01T23:59:59.000Z

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  15. History and some potentials of oil shale cement

    SciTech Connect (OSTI)

    Knutson, C.F.; Smith, R.P.; Russell, B.F. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

    1989-01-01T23:59:59.000Z

    The utilization of oil shale as a cement component is discussed. It was investigated in America and Europe during World War I. Additional development occurred in Western Europe, Russia, and China during the 1920s and 1930s. World War II provided further development incentives and a relatively mature technology was in place in Germany, Russia, and China prior to 1980. The utilization of oil shale in cement has taken a number of different paths. One approach has been to utilize the energy in the oil shale as the principal source for the cement plant and to use the combusted shale as a minor constituent of the plant's cement product. A second approach has been to use the combusted shale as a class C or cementitious fly-ash component in portland cement concrete. Other approaches utilizing eastern oil shale have been to use the combusted oil shale with additives as a specialty cement, or to cocombust the oil shale with coal and utilize the sulfur-rich combustion product.

  16. Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use

    SciTech Connect (OSTI)

    Bland, A.E.; Brown, T.H. [Western Research Inst., Laramie, WY (United States)

    1996-12-31T23:59:59.000Z

    Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

  17. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect (OSTI)

    Sugama, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pyatina, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-11-14T23:59:59.000Z

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  18. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect (OSTI)

    Sugama, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pyatina, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-11-01T23:59:59.000Z

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  19. Reuse of Drill Cutting Ash as a Stabilizing Agent for Niger Delta Soils

    E-Print Network [OSTI]

    Alayaki, F. M.; Al-Tabbaa, A.; Ayotamuno, M. J.

    2015-01-01T23:59:59.000Z

    in Onne Oil and Gas Free Zone, Rivers State, Nigeria. B. Niger Delta Soils The peculiar geology of Niger Delta and the derived soils have striking peculiarity that is different from other common laterite soils. Previous studies revealed that the in... to that in use at the North Sea. The binders were Portland cement, hydrated lime, pulverized fuel ash, blast furnace slag, MgO cements, zeolites, silica fume, and cement kiln dust. The study showed that the binders could effectively immobilized the toxic...

  20. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01T23:59:59.000Z

    Investigations on hydraulic cement from spent oil shale,"April 16-18, 1980 HYDRAULIC CEMENT PREPARATION FROM LURGIpressi ve b strength, MPa this cement in moist environments.

  1. Climate VISION: Private Sector Initiatives: Cement: Resources...

    Office of Scientific and Technical Information (OSTI)

    The Cement Sustainability Initiative Coordinated by the World Business Council for Sustainable Development, the Cement Sustainability Initiative (CSI) helps the cement...

  2. Stabilize ash using Clemson`s sintering process (Part 1 -- Phase 1 results): Mixed waste fly ash stabilization. Innovative technology summary report

    SciTech Connect (OSTI)

    Not Available

    1998-12-01T23:59:59.000Z

    Incineration of applicable Department of Energy (DOE) mixed wastes has produced a secondary waste stream of radioactive and Resource Conservation and Recovery Act (RCRA) hazardous fly ash that also requires treatment before land disposal. Unlike bottom ash, fly ash usually contains constituents making efficient stabilization difficult. For example, fly ash from the DOE Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) contains volatile metals, metal salts, high concentrations of zinc, and unburned organic residues. All of these constituents can effect the stabilization process. The Department of Energy, and in particular the Mixed Waste Focus Area (MWFA) of EM-50, has stated the need for improved stabilization methods would accept a higher ash waste loading while meeting waste form disposal criteria. These alternative stabilization technologies should include delivery systems to minimize worker exposure and minimize secondary waste generation, while maximizing operational flexibility and radionuclide containment. Currently, the standard practice for stabilizing ash is mixing with Portland cement at room temperature. This standard practice produces a significant increase of waste material volume or has difficulty in adequately stabilizing the components in the fly ash to ensure regulatory requirements are consistently satisfied. To address these fly ash stabilization shortcomings, the MWFA, a DOE/EM-50 program, invested in the development of several fly ash stabilization alternatives, including the Clemson University sintering method.

  3. Kinetics of fly ash beneficiation by carbon burnout. [Quarterly report], October 1, 1995--January 30, 1996

    SciTech Connect (OSTI)

    Dodoo, J.N.; Okoh, J.M.; Yilmaz, E.

    1996-09-01T23:59:59.000Z

    The objective is to investigate the kinetics of beneficiation of fly ash by carbon burnout. The three year project that was proposed is a joint venture between Delmarva Power, a power generating company on the eastern shore of Maryland, and the University of Maryland Eastern Shore. The studies have focused on the beneficiation of fly ash by carbon burnout. The increasing use of coal fly ash as pozzolanic material in Portland cement concrete means that there is the highest economic potential in marketability of large volumes of fly ash. For the concrete industry to consider large scale use the fly ash must be of the highest quality. This means that the residual carbon content of the fly ash must have an acceptable loss on ignition (LOI) value, usually between 7--2% residual carbon. The economic gains to be had from low-carbon ash is a fact that is generally accepted by the electricity generating companies. However, since the cost of producing low-carbon in large quantities, based on present technology, far outweighs any financial gains, no electrical power company using coal as its fuel at present considers the effort worthwhile. The concrete industry would use fly ash in cement concrete mix if it can be assured of its LOI value. At present no utility company would give such assurance. Hence with several million tons of fly ash produced by a single power plant per year all that can be done is to dump the fly ash in landfills. The kinetics of fly ash beneficiation have been investigated in the zone II kinetic regime, using a Cahn TG 121 microbalance in the temperature 550--750{degrees}C. The P{sub 02} and total surface area dependence of the reaction kinetics were determined using a vacuum accessory attached to the microbalance and a surface area analyzer (ASAP 2010), respectively.

  4. Thermodynamics and cement science

    SciTech Connect (OSTI)

    Damidot, D., E-mail: damidot@ensm-douai.fr [Universite Lille Nord de France (France); EM Douai, LGCgE-MPE-GCE, Douai (France); Lothenbach, B. [Empa, Lab. Concrete and Construction Chemistry, Duebendorf (Switzerland); Herfort, D. [Cementir Holding (Denmark); Glasser, F.P. [Chemistry Department, University of Aberdeen, Aberdeen (United Kingdom)

    2011-07-15T23:59:59.000Z

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  5. Kinetics of fly ash beneficiation by carbon burnout. Quarterly report, January--March 1996

    SciTech Connect (OSTI)

    Dodoo, J.N.; Okoh, J.M.; Yilmaz, E.

    1996-09-01T23:59:59.000Z

    The three year project that was proposed is a joint venture between Delmarva Power, a power generating company on the eastern shore of Maryland, and the University of Maryland Eastern Shore. The studies have focused on the benefication of fly ash by carbon burnout. The increasing use of coal fly ash as pozzolanic material in Portland cement concrete means that there is the highest economic potential in marketability of large volumes of fly ash. For the concrete industry to consider large scale use the fly ash must be of the highest quality. This means that the residual carbon content of the fly ash must have an acceptable loss on ignition (LOI) value, usually between 7-2% residual carbon. The economic gains to be had from low-carbon ash is a fact that is generally accepted by the electricity generating companies. However, since the cost of producing low-carbon in large quantities, based on present technology, far outweighs any financial gains, no electrical power company using coal as its fuel at present considers the effort worthwhile. The concrete industry would use fly ash in cement concrete mix if it can be assured of its LOI value. At present no utility company would give such assurance. Hence with several million tons of fly ash produced by a single power plant per year all that can be done is to dump the fly ash in landfills. The kinetics of fly ash benefication have been investigated in the zone II kinetic regime, using a Cahn TG 121 microbalance in the temperature 550-750{degrees}C. The P{sub O{sub 2}} and total surface area dependence of the reaction kinetics were determined using a vacuum accessory attached to the microbalance and a surface area analyzer (ASAP 2010), respectively. 16 refs., 7 figs., 3 tabs.

  6. New cement additives that eliminate cement body permeability

    SciTech Connect (OSTI)

    Talabani, S.; Hareland, G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1995-10-01T23:59:59.000Z

    An experimental investigation was carried out replacing some currently used cement additives with three new additives. The experiments performed monitored the cement slurry pressure during the setting of the cement. During the setting period of the cement, two time cycles of cement expansion and contraction are observed. This is due to the individual contribution of each component in the cement mixture. To obtain the optimum tightness of the cement, final contraction in the cycle is crucial for blockage of gas migration. In these studies optimum concentrations of the additives were obtained experimentally, where the cyclic pressure behavior of the cement was optimized and the permeability reduced for the best final cement results. The parameters investigated in this study were; change in the applied pressure on the slurry with time, the compressive strength and permeability of the set cement. The major causes of the early microfractures are the in-complete cement-water reaction, low compressive strength of the set cement, and the sudden change in the hydrostatic pressure as the cement changes its phase from liquid to a solid state. The fluid loss and free water content were measured and controlled for each sample. The results of this study is that proper amounts of X-C polymer, Anchorage clay, Ironite Sponge, and Synthetic Rubber can be used to optimize the compressive strength and eliminate both micro-fracture and micro-annulus. There are certain limits to the amount and type of Synthetic Rubber powder which cement will set and the micro-fractures are eliminated. This experimental approach can be used to eliminate gas migration through a cement design that is environmentally safe, inexpensive, and uses recyclable materials.

  7. Cement-Lock for Decontaminating

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    Cement-Lock® Technology for Decontaminating Dredged Estuarine Sediments Topical Report N O L O G Y I N S T I T U T E Cement-Lock Demo Plant Prepared by: Michael C. Mensinger GAS conducted as part of the overall program "Cement-Lock®1 Technology for Decontaminating Dredged Estuarine

  8. Communication Cement-based thermocouples

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Communication Cement-based thermocouples Sihai Wen, D.D.L. Chung* Composite Materials Research Received 31 May 2000; accepted 4 August 2000 Abstract A cement-based thermocouple in the form of a junction between dissimilar cement pastes and exhibiting thermocouple sensitivity 70 7 mV/°C is provided

  9. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  10. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  11. STARDUST INVESTIGATION INTO THE CR CHONDRITE GROVE MOUNTAIN 021710

    SciTech Connect (OSTI)

    Zhao Xuchao; Lin Yangting [Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Beituchengxi Road, Beijing 100029 (China); Floss, Christine [Laboratory for Space Sciences and Physics Department, Washington University, One Brookings Drive, St. Louis, MO 63130 (United States); Bose, Maitrayee, E-mail: linyt@mail.igcas.ac.cn [Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, AZ 85287 (United States)

    2013-05-20T23:59:59.000Z

    We report the presolar grain inventory of the CR chondrite Grove Mountain 021710. A total of 35 C-anomalous grains ({approx}236 ppm) and 112 O-anomalous grains ({approx}189 ppm) were identified in situ using NanoSIMS ion imaging. Of 35 C-anomalous grains, 28 were determined to be SiC grains by Auger spectroscopy. Seven of the SiC grains were subsequently measured for N and Si isotopes, allowing classification as one nova grain, one Y grain, one Z grain, and four mainstream grains. Eighty-nine out of 112 O-anomalous grains belong to Group 1, indicating origins in low-to-intermediate-mass red giant and asymptotic giant branch stars. Twenty-one are Group 4 grains and have origins in supernovae. Auger spectroscopic elemental measurements of 35 O-anomalous grains show that 33 of them are ferromagnesian silicates. They have higher Mg/(Mg+Fe) ratios than those reported in other meteorites, suggesting a lower degree of alteration in the nebula and/or asteroid parent bodies. Only two oxide grains were identified, with stoichiometric compositions of MgAl{sub 2}O{sub 4} and SiO{sub 2}, respectively. The presolar silicate/oxide ratio of GRV 021710 is comparable with those of the CR3 chondrites (QUE 99177 and MET 00426) and primitive interplanetary dust particles. In order to search for presolar sulfides, the meteorite was also mapped for S isotopes. However, no presolar sulfides were found, suggesting a maximum abundance of 2 ppm. The scarcity of presolar sulfides may be due to their much faster sputtering rate by cosmic rays compared to silicates.

  12. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    SciTech Connect (OSTI)

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30T23:59:59.000Z

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per year); (5) the amount of production of cement by type and grade (in tonnes per year); (6) the electricity generated onsite; and, (7) the energy used by fuel type; and, the amount (in RMB per year) spent on energy. The tool offers the user the opportunity to do a quick assessment or a more detailed assessment--this choice will determine the level of detail of the energy input. The detailed assessment will require energy data for each stage of production while the quick assessment will require only total energy used at the entire facility (see Section 6 for more details on quick versus detailed assessments). The benchmarking tool provides two benchmarks--one for Chinese best practices and one for international best practices. Section 2 describes the differences between these two and how each benchmark was calculated. The tool also asks for a target input by the user for the user to set goals for the facility.

  13. Alex Benson Cement Plants

    E-Print Network [OSTI]

    Toohey, Darin W.

    of generating electricity by coal. o From Kiln Combustion CO2 ­ 2nd largest CO2 emitter behind electricity cement company 156,000 kilowatt-hours of electricity per year o "Cemex to pay $2M for pollution controls to produce Kiln Mix -> sent to kilns along with coal ( heating is facilitated by the coal ). Kiln Mix

  14. Impact of admixtures on the hydration kinetics of Portland cement

    SciTech Connect (OSTI)

    Cheung, J., E-mail: Josephine.H.Cheung@grace.com [W.R. Grace, 62 Whittemore Avenue, Cambridge MA 02140 (United States); Jeknavorian, A. [W.R. Grace, 62 Whittemore Avenue, Cambridge MA 02140 (United States); Roberts, L. [Roberts Consulting Group LLC, 44 Windsor Avenue, Acton MA 01720 (United States); Silva, D. [W.R. Grace, 62 Whittemore Avenue, Cambridge MA 02140 (United States)

    2011-12-15T23:59:59.000Z

    Most concrete produced today includes either chemical additions to the cement, chemical admixtures in the concrete, or both. These chemicals alter a number of properties of cementitious systems, including hydration behavior, and it has been long understood by practitioners that these systems can differ widely in response to such chemicals. In this paper the impact on hydration of several classes of chemicals is reviewed with an emphasis on the current understanding of interactions with cement chemistry. These include setting retarders, accelerators, and water reducing dispersants. The ability of the chemicals to alter the aluminate-sulfate balance of cementitious systems is discussed with a focus on the impact on silicate hydration. As a key example of this complex interaction, unusual behavior sometimes observed in systems containing high calcium fly ash is highlighted.

  15. California bearing ratio behavior of soil-stabilized class F fly ash systems

    SciTech Connect (OSTI)

    Leelavathamma, B.; Mini, K.M.; Pandian, N.S. [Indian Institute for Science, Bangalore (India). Dept. for Civil Engineering

    2005-11-01T23:59:59.000Z

    Fly ash is a finely divided mineral residue resulting from the combustion of coal in power plants that occupies large extents of land and also causes environmental problems. Hence, concerted attempts are being made to effectively use fly ash in an environmentally friendly way instead of dumping. Several studies have been carried out for its bulk utilization, such as its addition to improve the California bearing ratio (CBR) of soil in roads and embankments. But a thorough mixing of fly ash with soil may not be possible in the field. Hence a study has been carried out on the CBR behavior of black cotton soil and Raichur fly ash (which is class F) in layers and compared with the same in mixes. The results show that the CBR values of soil-fly ash mixes are better than layers, as expected. To improve the strength of layers, cement is used as an additive to fly ash. The results show that black cotton soil can be improved with stabilized fly ash, solving its strength problem as well as the disposal problem of fly ash.

  16. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.

    2012-05-01T23:59:59.000Z

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus, CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.

  17. Ashing properties of coal blends

    SciTech Connect (OSTI)

    Biggs, D.L.

    1982-03-01T23:59:59.000Z

    The fusion properties of sulfur materials present in coals were investigated. The treatment of the samples of eleven different coals is described. Thermal treatment of low temperature ashing (LTA) concentrates of eight of the coals was performed, and raw and wash ashing curves were examined to determine what quantitative correlations, if any, exist between ashing parameters and rank of coal. The actual form of the function which describes the ashing curve is derived.

  18. Research: Sarah Crawford, Travis Lundrigan, Jennifer Melanson, May 2011 Brandon Groves and Alison Thompson

    E-Print Network [OSTI]

    Dellaire, Graham

    Thompson Thompson Group 1 Dalhousie University Synthesis and Applications of Dipyrrins Dipyrrins, as shown Groves and Alison Thompson Thompson Group 2 Dalhousie University Investigations into the meso sensors, functional materials). ReferencesReferencesReferencesReferences (1) Wood, T. E.; Thompson, A

  19. Hybrid Example-Based SMT: the Best of Both Worlds? Declan Groves

    E-Print Network [OSTI]

    Way, Andy

    Hybrid Example-Based SMT: the Best of Both Worlds? Declan Groves School of Computing Dublin City of their Example-Based Machine Translation (EBMT) system with a Statistical Machine Translation (SMT) system, they demon- strated that their EBMT system outper- formed the SMT system by a factor of two to one

  20. Evaluation of cement production using a pressurized fluidized-bed combustor

    SciTech Connect (OSTI)

    DeLallo, M.; Eshbach, R.

    1994-01-01T23:59:59.000Z

    There are several primary conclusions which can be reached and used to define research required in establishing the feasibility of using PFBC-derived materials as cement feedstock. 1. With appropriate blending almost any material containing the required cement-making materials can be utilized to manufacture cement. However, extensive blending with multiple materials or the use of ash in relatively small quantities would compromise the worth of this concept. 2. The composition of a potential feedstock must be considered not only with respect to the presence of required materials, but just as significantly, with respect to the presence and concentration of known deleterious materials. 3. The processing costs for rendering the feedstock into an acceptable composition and the energy costs associated with both processing and burning must be considered. It should be noted that the cost of energy to produce cement, expressed as a percentage of the price of the product is higher than for any other major industrial product. Energy consumption is, therefore, a major issue. 4. The need for conformance to environmental regulations has a profound effect on the cement industry since waste materials can neither be discharged to the atmosphere or be shipped to a landfill. 5. Fifth, the need for achieving uniformity in the composition of the cement is critical to controlling its quality. Unfortunately, certain materials in very small concentrations have the capability to affect the rate and extent to which the cementitious compound in portland cement are able to form. Particularly critical are variations in the ash, the sulfur content of the coal or the amount and composition of the stack dust returned to the kiln.

  1. Coal ash utilization in India

    SciTech Connect (OSTI)

    Michalski, S.R.; Brendel, G.F.; Gray, R.E. [GAI Consultants, Inc., Pittsburgh, PA (United States)

    1998-12-31T23:59:59.000Z

    This paper describes methods of coal combustion product (CCP) management successfully employed in the US and considers their potential application in India. India produces about 66 million tons per year (mty) of coal ash from the combustion of 220 mty of domestically produced coal, the average ash content being about 30--40 percent as opposed to an average ash content of less than 10 percent in the US In other words, India produces coal ash at about triple the rate of the US. Currently, 95 percent of this ash is sluiced into slurry ponds, many located near urban centers and consuming vast areas of premium land. Indian coal-fired generating capacity is expected to triple in the next ten years, which will dramatically increase ash production. Advanced coal cleaning technology may help reduce this amount, but not significantly. Currently India utilizes two percent of the CCP`s produced with the remainder being disposed of primarily in large impoundments. The US utilizes about 25 percent of its coal ash with the remainder primarily being disposed of in nearly equal amounts between dry landfills and impoundments. There is an urgent need for India to improve its ash management practice and to develop efficient and environmentally sound disposal procedures as well as high volume ash uses in ash haulback to the coalfields. In addition, utilization should include: reclamation, structural fill, flowable backfill and road base.

  2. E-Print Network 3.0 - ash bottom ash Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: of bottom ash, 3 million tons of boiler slag, and 28 million tons of clean-coal ash materials) were produced... CONTAINING CLEAN-COAL ASH AND CLASS F FLY ASH By...

  3. Transport in Cement:Transport in Cement: Relating Permeability and PoreRelating Permeability and Pore

    E-Print Network [OSTI]

    Petta, Jason

    Transport in Cement:Transport in Cement: Relating Permeability and PoreRelating Permeability, 2004 #12;OutlineOutline Cement Manufacturing and StructureCement Manufacturing and Structure ofofCalcinated in rotaryin rotary kiln at 1500 C for 30kiln at 1500 C for 30-- 40 minutes40 minutes Produces Cement

  4. Modeling volcanic ash dispersal

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  5. Ash deposit workshop: Class outline

    SciTech Connect (OSTI)

    Hatt, R. [Commercial Testing & Engineering Co., Lexington, KY (United States)

    1996-12-31T23:59:59.000Z

    Ash deposits formed from the combustion of coal and other fuels have plagued the steam production industry from the start. The ash fusion test has been around for over eighty years. As steam plant size increased, so have the problems associated with ash deposits. This workshop is designed to cover: (1) The basic types of deposits. (2) Causes of deposits. (3) Analytical procedures for resolving, or at least providing information about deposits and fuels, and (4) Deposit removal and reduction techniques.

  6. Permeability of consolidated incinerator facility wastes stabilized with portland cement

    SciTech Connect (OSTI)

    Walker, B.W.

    2000-04-19T23:59:59.000Z

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as a method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and offgas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as wastewater. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete, and will continue to be treated this way for listed waste burns and scrubber solutions that do not meet the ETF Waste Acceptance Criteria (WAC). The disposal plan for Ashcrete and special case blowcrete is to bury these containerized waste forms in shallow unlined trenches in E-Area. The WAC for intimately mixed, cement-based wasteforms intended for direct disposal specifies limits on compressive strength and permeability. Simulated waste and actual CIF ash and scrubber solution were mixed in the laboratory and cast into wasteforms for testing. Test results and related waste disposal consequences are given in this report.

  7. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    E-Print Network [OSTI]

    Galitsky, Christina

    2009-01-01T23:59:59.000Z

    eds. ) 2004. Innovations in Portland Cement Manufacturing.Portland Cement Association. Venkateswaran, S.R. and H.E.Lowitt. 1988. The U.S. Cement Industry, An Energy

  8. Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2013-01-01T23:59:59.000Z

    and a vertical shaft kiln at another cement manufacturingrotary kiln or vertical shaft kiln in a cement plant. Baseda vertical shaft kiln (VSK) at another cement manufacturing

  9. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    E-Print Network [OSTI]

    Galitsky, Christina

    2009-01-01T23:59:59.000Z

    the small cement plants, earthen vertical kiln (and hollowcement plant in North China utilizing vertical shaft kilnsCement Industry Technical Conference: 75- Replacing Vertical Shaft Kilns

  10. SCHEDULING CEMENT PLANTS WITH ENERGY CONSTRAINTS

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    SCHEDULING CEMENT PLANTS WITH ENERGY CONSTRAINTS Pedro M. Castro Ignacio E. Grossmann Iiro K Meeting 4 #12;5 ABB PROJECT #12;INTRODUCTION Cement producers currently under pressure to produce Contracts agreed between electricity supplier and cement plants (planning level) Energy cost [$/k

  11. Economic analysis of the European cement industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Economic analysis of the European cement industry Marcel Boyer1 and JeanPierre Ponssard2 December 2013. The methodology is applied to the European cement industry over the period 20042012 (Part I) and over the next and industry experts. Key words: return on assets, capital intensive industry, business cycle, European cement

  12. Undesired drying of concrete and cement paste

    E-Print Network [OSTI]

    Langendoen, Koen

    Undesired drying of concrete and cement paste is a nightmare for any construction engineer of the concrete or cement paste surface. Inspired by the art of molecular cooking a team of TU Delft scientists for instance sodium alginates. When sprayed on the surface of concrete or cement paste, a rapid chemical

  13. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01T23:59:59.000Z

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further their deterioration was a major impediment in expediting the development of geothermal energy resources.

  14. Long duration ash probe

    DOE Patents [OSTI]

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26T23:59:59.000Z

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  15. Long duration ash probe

    DOE Patents [OSTI]

    Hurley, John P. (Grand Forks, ND); McCollor, Don P. (Grand Forks, ND); Selle, Stanley J. (Grand Forks, MN)

    1994-01-01T23:59:59.000Z

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  16. High temperature synthetic cement retarder

    SciTech Connect (OSTI)

    Eoff, L.S.; Buster, D.

    1995-11-01T23:59:59.000Z

    A synthetic cement retarder which provides excellent retardation and compressive strength development has been synthesized. The response properties and temperature ranges of the synthetic retarder far exceed those of commonly used retarders such as lignosulfonates. The chemical nature of the new retarder is discussed and compared to another synthetic retarder.

  17. Process for cementing geothermal wells

    DOE Patents [OSTI]

    Eilers, Louis H. (Inola, OK)

    1985-01-01T23:59:59.000Z

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  18. 2008 ACEEE Summer Study on Energy Efficiency in Buildings August 1722, 2008 Asilomar Conference Center Pacific Grove, California

    E-Print Network [OSTI]

    Kissock, Kelly

    2008 ACEEE Summer Study on Energy Efficiency in Buildings August 17­22, 2008 · Asilomar Conference Center · Pacific Grove, California 1 Targeting Energy Efficiency in Commercial Buildings Using Advanced-parameter change-point regression model of energy use versus weather for each building and type of energy

  19. ash dispersion utilizing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the USA for all coal ashes was approximately 34% in the year products containing clean coal ash compared to conventional coal ash. Utilization of clean coal ash is much...

  20. New additives for minimizing cement body permeability

    SciTech Connect (OSTI)

    Talabani, S. [Western Atlas International, Abu Dhabi (United Arab Emirates); Hareland, G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Petroleum Engineering; Islam, M.R. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1999-01-01T23:59:59.000Z

    An experimental investigation was carried out with a new array of cement additives, replacing some of the currently used ones. In this study, the cement slurry pressure was monitored during the setting of the element. To obtain the optimum tightness of the cement, final contraction in the cycle is crucial for blockage of gas migration. Concentrations of the additives were obtained experimentally in this study for which the cyclic pressure behavior of the cement was optimized and the permeability reduced for the best final cement results. The parameters investigated in this study were as follows: pressure applied on the slurry with time, compressive strength, and permeability of the set cement. The major causes of the early microfractures are the incomplete cement-water reaction, low compressive strength of the set cement, and the sudden change in the hydrostatic pressure as the cement changes its phase from a liquid to a solid state. This paper reports the appropriate amounts of X-C polymer, Anchorage clay, Ironite Sponge, and synthetic rubber needed to optimize the compressive strength and eliminate both microfracture and microannulus. There are certain limits to the amount and type of synthetic rubber powder for which microfractures are eliminated. The article reports an experimental approach that can be used to eliminate gas migration through a cement design that is environmentally safe and inexpensive, using recyclable materials.

  1. Performance of Concrete Made With Slag Cement and

    E-Print Network [OSTI]

    Performance of Concrete Made With Slag Cement and Portland-Limestone Blended Cement Philadelphia;Today's Discussion ! The materials ! Slag cement ! Portland-limestone cement ! Use in concrete is slag cement? #12;! Non-metallic product of an iron blast furnace ! Granulated ! Ground ! Cementitious

  2. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale 

    E-Print Network [OSTI]

    Skibsted, Joergen; Hall, Christopher

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, ...

  3. Subsurface models of coal occurrence, Oak Grove field, Black Warrior basin, Alabama

    SciTech Connect (OSTI)

    Pashin, J.C. (Geological Survey of Alabama, Tuscaloosa (United States))

    1991-03-01T23:59:59.000Z

    Subsurface investigation of coal occurrence in the Black Creek-Cobb interval of Oak Grove field is based on cross sections and isopach maps made from more than 500 density logs. This study was designed to identify styles of coal occurrence in the Black Warrior basin to aid in coalbed-methane exploration and production. Coal occurrence in parts of the Black Warrior basin may be characterized in terms of end-member fluvial and structural control. Fluvial processes apparently were the major controls on coal occurrence in the Black Creek cycle, where sandstone and coal thickness are inversely related. Additionally, occurrence of thick sandstone sequences above the thickest coal beds suggests that peat compaction provided sites for channel avulsion. In the Mary Lee and Cobb cycles, more coal beds occur in a downthrown fault block than in an upthrown block, and in the Pratt and Cobb cycles, the thickest coal beds occur on the downthrown side of a fault. Only in the Mary Lee cycle, where thick peat accumulated in an abandoned tributary system, is coal thickest on the upthrown block. Most coal beds in Oak Grove field are thickest on the downthrown block because differential subsidence apparently promoted peat accumulation. Clastic influx favors beds splits in the downthrown block, but joining of beds in the Pratt cycle may reflect sheltering by the fault. In the Mary Lee cycle, in contrast, channel incision evidently provided local relief sufficient for thick peat to accumulate in lows on the upthrown block. Although fluvial and structural processes result in varied styles of coal occurrence, models of coal occurrence have resulted in a predictive framework that may aid in strategic well siting and completion.

  4. Primary cementing across massive lost circulation zones

    SciTech Connect (OSTI)

    Turki, W.H.; Mackay, A.S.

    1983-03-01T23:59:59.000Z

    As a result of severe lost circulation problems in some wells in the Ghawar and Abqaiq Fields, Aramco has been unable to cover the Umm Er-Radhuma (Paleocene) and Wasia (Cretaceous) aquifers with cement. This has necessitated setting an extended liner opposite the Wasia aquifer, to ensure that there are two casing strings and a cement sheath across the aquifer, resulting in increased casing cost and reduced well productivity. This paper describes the results of field trial tests performed, along with conclusions and recommendations aimed at solving this problem. Field methods employed include light weight extended cements, ultra-light cement slurries weighing as little as 55 lbm/ft/sup 3/ (pcf), using ceramic hollow spheres, glass bubbles and foam, plus hydrostatic cementing, and mechanical devices. Finally, methods of job evaluation are discussed. These include temperature surveys, bond logs, radioactive tracers, and a new cement volume log.

  5. Advanced Characterisation of Municipal Solid Waste Ashes

    E-Print Network [OSTI]

    Advanced Characterisation of Municipal Solid Waste Ashes Preparatory thesis Randi Skytte Pedersen is to investigate Municipal Solid Waste (MSW) ashes with respect to particle sizes, structures and composition with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant M°abjergværket, Holstebro. MSW

  6. Concentration of carbon types from fly ash by density gradient centrifugation

    SciTech Connect (OSTI)

    Maroto-Valer, M.M.; Taulbee, D.N.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1998-12-31T23:59:59.000Z

    Although the increasing amount of unburned carbon in fly ash is known to preclude the use of ash in the cement industry, very little is known about the characteristics of the unburned carbon. Three types of carbon particles have been identified microscopically: inertinite, isotropic coke and anisotropic coke. This manuscript describes a method to isolate these three types of carbon. A preliminary enrichment, followed by density gradient centrifugation (DGC) with a high-density polytungstate media (2.85 g/cm{sup 3} max), resulted in an enrichment of inertinites from a starting concentration of 3.8% to 61%, isotropic coke from 13.4% to 65%, and anisotropic coke from 19.2% to 74%. Large scale runs (LS) have been conducted to accumulate sufficient sample for subsequent analyses. The recovery weights and petrography composition of the PS and LS fractions are very similar.

  7. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Emissions from the Global Cement Industry, Annual Review ofThe Use of Limestone in Portland Cement: a State- of-the-Review, Skokie, IL: Portland Cement Association. Dolores, R.

  8. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Emissions from the Global Cement Industry, Annual Review ofBösche, A. , 1993. “Variable Speed Drives in Cement Plants,”World Cement 6 24 pp.2- Buzzi, S. 1997. Die Horomill® - Eine

  9. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01T23:59:59.000Z

    CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,CEMENTS FROM SPENT OIL SHALE P, K, Mehta Civil Engineering

  10. Climate VISION: Private Sector Initiatives: Cement: Resources...

    Office of Scientific and Technical Information (OSTI)

    Resources & Links Technical Information Publications Case Studies Publications Energy Efficiency and Carbon Dioxide Emission Reduction Opportunities in the U.S. Cement Industry,...

  11. The art of cross-writing in Grove Hall : two centuries of form and place-making in a Boston neighborhood

    E-Print Network [OSTI]

    Rosenzweig, Gilad J

    2013-01-01T23:59:59.000Z

    The Boston neighborhood of Grove Hall is presently engaged in a period of urban revival. New civic, commercial and residential projects are starting to fill in empty lots and rejuvenate historic yet dilapidated structures. ...

  12. Presented at the 2002 ACEEE Summer Study on Energy Efficiency in Buildings, August 18-23, 2002, Asilomar Conference Center, Pacific Grove, California, and published in the proceedings.

    E-Print Network [OSTI]

    , August 18-23, 2002, Asilomar Conference Center, Pacific Grove, California, and published in the proceedings. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy

  13. Proceedings of the 2004 ACEEE Summer Study on Energy Efficiency in Buildings. August 22 -27, 2004 Asilomar Conference Center Pacific Grove, California.

    E-Print Network [OSTI]

    Proceedings of the 2004 ACEEE Summer Study on Energy Efficiency in Buildings. August 22 - 27, 2004 · Asilomar Conference Center · Pacific Grove, California. Developing a Next-Generation Community College

  14. Presented at the ACEEE 2002 Summer Study on Energy Efficiency in Buildings, August 18-23, 2002, Asilomar Conference Center, Pacific Grove, California, and published in the proceedings.

    E-Print Network [OSTI]

    , August 18-23, 2002, Asilomar Conference Center, Pacific Grove, California, and published in the proceedings. The Integration of Engineering and Architecture: A Perspective on Natural Ventilation for the New

  15. Petrographic characterization of economizer fly ash

    SciTech Connect (OSTI)

    Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A. [University of Porto, Oporto (Portugal). Center of Geology

    2009-11-15T23:59:59.000Z

    Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

  16. Multifunctional Corrosion-resistant Foamed Well Cement Composites...

    Broader source: Energy.gov (indexed) [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well...

  17. aluminous cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 93 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  18. asbestos cement workers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 152 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  19. asbestos cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 123 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  20. antibiotic bone cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 142 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  1. asphalt cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 187 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  2. anhydrous portland cements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    present in hardened cement blends in the long term Sheffield, University of 318 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  3. adhesive resin cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 176 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  4. aluminate cements hydration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 5 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  5. asbestos cement dust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 278 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  6. african portland cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    present in hardened cement blends in the long term Sheffield, University of 337 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  7. air entraining cement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 226 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  8. affect cement penetration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 133 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  9. aluminate cement blended: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 185 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  10. Unique wellhead solves offshore cementing problems

    SciTech Connect (OSTI)

    Not Available

    1985-02-01T23:59:59.000Z

    A special subsea wellhead assembly that allows 2stage cementing (from both top and bottom) in weak, unconsolidated seabed sediments has been used successfully from a semi-submersible rig offshore Malta. Presented here is a description of the system and a discussion of operational considerations used to set and cement 20 and 16-in. surface casing strings.

  11. Fracture model for cemented aggregates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zubelewicz, Aleksander; Thompson, Darla G.; Ostoja-Starzewski, Martin; Ionita, Axinte; Shunk, Devin; Lewis, Matthew W.; Lawson, Joe C.; Kale, Sohan; Koric, Seid

    2013-01-01T23:59:59.000Z

    A mechanisms-based fracture model applicable to a broad class of cemented aggregates and, among them, plastic-bonded explosive (PBX) composites, is presented. The model is calibrated for PBX 9502 using the available experimental data under uniaxial compression and tension gathered at various strain rates and temperatures. We show that the model correctly captures inelastic stress-strain responses prior to the load peak and it predicts the post-critical macro-fracture processes, which result from the growth and coalescence of micro-cracks. In our approach, the fracture zone is embedded into elastic matrix and effectively weakens the material's strength along the plane of the dominant fracture.

  12. Portland Cement Concrete Pavement Shannon Golden, Alabama DOT

    E-Print Network [OSTI]

    Portland Cement Concrete Pavement Shannon Golden, Alabama DOT PORTLAND CEMENT CONCRETE PAVEMENT may be substituted for part of the required Portland cement. Substitution of mineral admixtures shall Cement shall not exceed the percentages shown in the following table: MAXIMUM ALLOWABLE SUBSTITUTION

  13. Scanning electron microscopy imaging of hydraulic cement microstructure

    E-Print Network [OSTI]

    Bentz, Dale P.

    Scanning electron microscopy imaging of hydraulic cement microstructure by Paul Stutzman Building Reprinted from Cement and Concrete Composites, Vol. 26, No. 8, 957-966 pp., November 2004. NOTE: This paper;Available online at www.sciencedirect.com SCIENCE@OIRECT@ Cement & Concrete CompositesELSEVIER Cement

  14. Controlling dust when cutting fibre-cement board

    E-Print Network [OSTI]

    Knowles, David William

    Controlling dust when cutting fibre-cement board Page 1 of 2 Cutting fibre-cement board (e are not typically used when cutting and shaping fibre-cement board. To protect yourself you should: Use one of the methods described above for cutting fibre-· cement board Inspect the dust control equipment before you

  15. Combustion with reduced carbon in the ash

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2005-12-27T23:59:59.000Z

    Combustion of coal in which oxygen is injected into the coal as it emerges from burner produces ash having reduced amounts of carbon.

  16. Phosphate-bonded calcium aluminate cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1993-01-01T23:59:59.000Z

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  17. Phosphate-bonded calcium aluminate cements

    DOE Patents [OSTI]

    Sugama, T.

    1993-09-21T23:59:59.000Z

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  18. ash leachate generation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72 Key To Ash Sources FGD-1 MPU 8 Materials Science Websites Summary: Key To Ash Sources FGD-1 MPU 8 FGD-2 Alliant Energy FGD-3 WPS Pulliam Ash 12;Center for By-Products...

  19. ash quality characterization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    78 Key To Ash Sources FGD-1 MPU 8 Materials Science Websites Summary: Key To Ash Sources FGD-1 MPU 8 FGD-2 Alliant Energy FGD-3 WPS Pulliam Ash 12;Center for By-Products...

  20. Treatment of fly ash for use in concrete

    DOE Patents [OSTI]

    Boxley, Chett (Park City, UT)

    2012-05-15T23:59:59.000Z

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  1. The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans

    SciTech Connect (OSTI)

    Cruz, J.M. [Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera, 46022, Valencia (Spain)] [Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera, 46022, Valencia (Spain); Fita, I.C., E-mail: infifer@fis.upv.es [Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera, 46022, Valencia (Spain); Soriano, L.; Payá, J.; Borrachero, M.V. [ICITECH, Instituto de Ciencia y Tecnología del Hormigón, Universitat Politècnica de València (Spain)] [ICITECH, Instituto de Ciencia y Tecnología del Hormigón, Universitat Politècnica de València (Spain)

    2013-08-15T23:59:59.000Z

    In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration and allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid–solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.

  2. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    E-Print Network [OSTI]

    Olsen, Daniel

    2012-01-01T23:59:59.000Z

    D.  Tamás.  “Burnability of Cement Raw Materials at Rapid Calcination Conditions. ” Cement and Concrete Research and Herman H.  Tseng.  Cement Plant Operations Handbook: 

  3. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    House, Beijing. CCA (China Cement Association), 2009.China Cement Almanac 2008. Jiangsu People'sHouse, Nanjing. CCA (China Cement Association), 2010. China

  4. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    obsolete vertical shaft kiln (VSK) cement plants, with theobsolete vertical shaft kiln (VSK) cement plants, with theobsolete vertical shaft kiln (VSK) cement plants, with the

  5. Development of dredged ash disposal area, Paradise fossil plant

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    Paradise Steam-Electric Plant coal-fired facility in Muhlenberg County, Kentucky. This project is to construct a dredge pond near the Jacobs Creek ash pond capable of storing fly ash dredged from the ash pond. This will provide approximately 10 years of additional fly ash storage in the fly ash pond. Effluent from the dredge pond will be returned to the Jacobs Creek ash pond for discharge to Jacobs Creek. 4 figs., 5 tabs.

  6. Engineering properties of miniature cement - fly ash compacts prepared by high pressure compaction

    E-Print Network [OSTI]

    Bormann, Jeffrey Ray

    1985-01-01T23:59:59.000Z

    (nRa iIRIe1Prt au ( vG(r? TaD uae vGI B(rT vI8GrP8(n 8arvePODvParR GI B(iI vGeaDtGaDv vGI n(Oae(vaeT Pr1IRvPt(vPar (ri uae (n?(TR 9ea1PiPrt ( nPRvIrPrt I(e (ri Bae(n RD99aev iDePrt vGI vaDtG vPBIR? NG(r? TaD (nRa va ?eauIRRae AP8G(ei L(GIe uae rav...?????? ??????? (ri 3?6???? 9RP 9eaiD8vPar 9eIRRDeIR ????? ?5 ?? oaB9eIRRP1I RveIrtvG 1R? 9eaiD8vPar 9eIRRDeI eIn(vParRGP9 uae 3?? 9Ie8Irv 9aevn(ri 8IBIrv 8aB9(8vR (v vGeII? RI1Ir? (ri v?IrvT?IPtGv i(TR au (tI ??????????????????????????????????????????????????? 5...

  7. Device and method for separating minerals, carbon and cement additives from fly ash

    DOE Patents [OSTI]

    Link, Thomas A.; Schoffstall, Micael R.; Soong, Yee

    2004-01-27T23:59:59.000Z

    A process for separating organic and inorganic particles from a dry mixture by sizing the particles into isolated fractions, contacting the sized particles to a charged substrate and subjecting the charged particles to an electric field to separate the particles.

  8. A nanochemomechanical investigation of carbonated cement paste

    E-Print Network [OSTI]

    Vanzo, James (James F.)

    2009-01-01T23:59:59.000Z

    Concrete, and in particular its principal component, cement paste, has an interesting relation with carbon dioxide. Concrete is a carbon dioxide generator-- it is estimated that 5-10% of atmospheric CO? comes from this ...

  9. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01T23:59:59.000Z

    cement from spent oil shale," Vol. 10, No. 4, p. 54S,Colorado's primary oil shale resource for vertical modifiedSimulated effects of oil-shale development on the hydrology

  10. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01T23:59:59.000Z

    hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

  11. Climate VISION: Private Sector Initiatives: Cement

    Office of Scientific and Technical Information (OSTI)

    Association Logo The Portland Cement Association has committed to a 10% reduction in carbon dioxide (CO2) emissions per ton of cementitious product produced or sold from a 1990...

  12. Supply chain management in the cement industry

    E-Print Network [OSTI]

    Agudelo, Isabel

    2009-01-01T23:59:59.000Z

    Traditionally supply chain management has played an operational role within cement and mineral extraction commodity companies. Recently, cost reduction projects have brought supply chain management into the limelight. In ...

  13. ashes oral biotillgaenglighet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ash 1. Halima Hadiahmetovi?; D. D. Sarajevo; M. Sc; Raza Sunulahpai?; Bosnia Herzegovina 97 Leachate Geochemical Results for Ash Samples from the June 2007 Angora...

  14. Development of an Accelerated Ash-Loading Protocol for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Poster presentation at the 2007...

  15. Ashe County - Wind Energy System Ordinance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tribal Government Utility Program Info State North Carolina Program Type SolarWind Permitting Standards Provider Ashe County Planning Department In 2007 Ashe County...

  16. Impact of Biodiesel on Ash Emissions and Lubricant Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and Engine Wear Impact of Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and...

  17. ash intranasal instillation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there is no mixing of insufficiently thermally treated material with bottom ash. Good fire control Columbia University 17 Characteristics and Uses for Ash Environmental...

  18. ash deposition propensities: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environments (>3.5 km), banded iron, volcanic ashes Summary diagrams available Clastic depositional environments Harbor, David 57 Ash Dump Site Manager: EHS&RM Biology and...

  19. Uncovering Fundamental Ash-Formation Mechanisms and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Ash Formation and Transport Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Non-Destructive X-ray Measurement of Soot, Ash,...

  20. Minimizing Lubricant-Ash Requirement and Impact on Emission Aftertreat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minimizing Lubricant-Ash Requirement and Impact on Emission Aftertreatment Systems via an Oil Conditioning Filter Minimizing Lubricant-Ash Requirement and Impact on Emission...

  1. Ash-Based Building Panels Production and Demonstration of Aerock Decking Building Product

    SciTech Connect (OSTI)

    Alan E. Bland; Jesse Newcomer

    2007-06-30T23:59:59.000Z

    Western Research Institute (WRI) of Laramie, Wyoming and AeRock, LLC of Eagar, Arizona (formerly of Bellevue, Washington) partnered, under sponsorship of the U.S. Department of Energy National Energy Technology Laboratory (U.S. DOE-NETL), to support the development of rapid-setting, ash-based, fiber-incorporated ''green'' building products. Green building materials are a rapidly growing trend in the building and construction industry in the US. A two phase project was implemented wherein Phase I assessed, through chemical and physical testing, ash, ash-based cement and fiber composites exhibiting superior structural performance when applied to the AeRock mixing and extrusion process and involved the conduct of pilot-scale production trials of AeRock products, and wherein Phase II involved the design, construction, and operation of a commercial-scale plant to confirm production issues and to produce panels for performance evaluations. Phase I optimized the composite ingredients including ash-based cement, Class F and Class C DFGD ash, and various fiber reinforcements. Additives, such as retardants and accelerators, were also evaluated as related to extruder performance. The optimized composite from the Phase I effort was characterized by a modulus of rupture (MOR) measured between 1,931 and 2,221 psi flexural strength, comparable to other wood and non-wood building materials. Continuous extrusion of the optimum composite in the AeRock pilot-scale facility produced an excellent product that was assembled into a demonstration for exhibit and durability purposes. Finishes, from plain to marbled, from bright reds to muted earth tones and with various textures, could easily be applied during the mixing and extrusion process. The successful pilot-scale demonstration was in turn used to design the production parameters and extruder dies for a commercial scale demonstration at Ultrapanel Pty, Ltd of Ballarat, Australia under Phase II. The initial commercial-scale production trials showed green product sagging, as a result of the die design. After the third die was acquired and fitted to the extruder, satisfactory decking and structural panels were produced. Cured decking was shipped to the US but experienced significant breakage and damage during transport. Subsequent evaluations concluded that an alternative die design was needed that would produce a more robust product resistant to damage. In summary, AeRock Decking can be a commercially-viable non-wood alternative decking product. This project has provided WRI and AeRock the knowledge and understanding to make AeRock Decking a commercial success. However, a commercial demonstration that produces quality product and the subsequent evaluation of its performance is needed before commercial acceptance of the AeRock product.

  2. Wearability of Portland Cement Concrete Pavement Finishes

    E-Print Network [OSTI]

    McKeen, William Rew

    1971-01-01T23:59:59.000Z

    Major Subject: Civil Engineering NEARABILITY OF PORTLAND CENENT CONCRETE PAPFNENT FIVISNFS A Thesis by Nilliam Rem NcKeen Approved as to style and content by: (Chairman of Committ e) (Nember) August 1971 ABSTRACT Hearabil'tv of Portland Cement... portland cement, and an air entrainment admixture. Standard laboratory tests were performed on all aggregates to determine their properties. iv The test specimens were molded in a controlled environmental room and the anpropriate surface finish (burlap...

  3. Ash Chemistry in MSW Incineration Plants

    E-Print Network [OSTI]

    Ash Chemistry in MSW Incineration Plants: Advanced Characterization and Thermodynamic Introduction to Municipal Solid Waste Incineration 2 Chapter 2 Plants Considered and Samples Collected 5 Chapter 3 Mapping of Ash Chemistry in MSWI Plants 8 Chapter 4 Advanced Characterization Methods 12 4

  4. Fly Ash Amendments Catalyze Soil Carbon Sequestration

    SciTech Connect (OSTI)

    Amonette, James E.; Kim, Jungbae; Russell, Colleen K.; Palumbo, A. V.; Daniels, William L.

    2003-09-15T23:59:59.000Z

    We tested the effects of four alkaline fly ashes {Class C (sub-bituminous), Class F (bituminous), Class F [bituminous with flue-gas desulfurization (FGD) products], and Class F (lignitic)} on a reaction that simulates the enzyme-mediated formation of humic materials in soils. The presence of FGD products completely halted the reaction, and the bituminous ash showed no benefit over an ash-free control. The sub-bituminous and lignitic fly ashes, however, increased the amount of polymer formed by several-fold. The strong synergetic effect of these ashes when enzyme is present apparently arises from the combined effects of metal oxide co-oxidation (Fe and Mn oxides), alkaline pH, and physical stabilization of the enzyme (porous silica cenospheres).

  5. Treatment of fly ash for use in concrete

    SciTech Connect (OSTI)

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08T23:59:59.000Z

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  6. Treatment of fly ash for use in concrete

    DOE Patents [OSTI]

    Boxley, Chett (Park City, UT); Akash, Akash (Salt lake City, UT); Zhao, Qiang (Natick, MA)

    2012-05-08T23:59:59.000Z

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  7. SENSITIVITY OF THE BOND STRENGTH TO THE STRUCTURE OF THE INTERFACE BETWEEN REINFORCEMENT AND CEMENT, AND THE

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Ashland Petroleum Co. (Ashland, KY). Cement paste made from Portland cement (Type I) from Lafarge Corp

  8. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-01T23:59:59.000Z

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  9. Fe-containing phases in hydrated cements

    SciTech Connect (OSTI)

    Dilnesa, B.Z., E-mail: belay.dilnesa@gmail.com [Empa, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Wieland, E. [Paul Scherrer Institute, Laboratory for Waste Management, 5232 Villigen PSI (Switzerland); Lothenbach, B. [Empa, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Dähn, R. [Paul Scherrer Institute, Laboratory for Waste Management, 5232 Villigen PSI (Switzerland); Scrivener, K.L. [Ecole Polytechnique Federal de Lausanne (EPFL), Laboratory for Construction Materials, 1015 Lausanne (Switzerland)

    2014-04-01T23:59:59.000Z

    In this study synchrotron X-ray absorption spectroscopy (XAS) has been applied, an element specific technique which allows Fe-containing phases to be identified in the complex mineral mixture of hydrated cements. Several Fe species contributed to the overall Fe K-edge spectra recorded on the cement samples. In the early stage of cement hydration ferrite was the dominant Fe-containing mineral. Ferrihydrite was detected during the first hours of the hydration process. After 1 day the formation of Al- and Fe-siliceous hydrogarnet was observed, while the amount of ferrihydrite decreased. The latter finding agrees with thermodynamic modeling, which predicts the formation of Fe-siliceous hydrogarnet in Portland cement systems. The presence of Al- and Fe-containing siliceous hydrogarnet was further substantiated in the residue of hydrated cement by performing a selective dissolution procedure. - Highlights: • Fe bound to ferrihydrite at early age hydration • Fe found to be stable in siliceous hydrogarnet at longer term age hydration • Fe-containing AFt and AFm phases are less stable than siliceous hydrogarnet. • The study demonstrates EXAFS used to identify amorphous or poorly crystalline phases.

  10. Regional distribution of diagenetic carbonate cement in Palaeocene deepwater

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Regional distribution of diagenetic carbonate cement in Palaeocene deepwater sandstones: North Sea. This study attempts to make a large-scale regional examination of the distribution of carbonate cements

  11. Development of an Improved Cement for Geothermal Wells

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop a novel, zeolite-containing lightweight, high temperature, high pressure geothermal cement, which will provide operators with an easy to use, flexible cementing system that saves time and simplifies logistics.

  12. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01T23:59:59.000Z

    ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P.Cement Manufacture from Oil Shale, U.S. Patent 2,904,445,203 (1974), E. D. York, Amoco Oil Co. , letter to J, P. Fox,

  13. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01T23:59:59.000Z

    20 to 40% of the oil shale, and explosively rubblizing andCEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,

  14. Fluidized bed gasification ash reduction and removal process

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-12-04T23:59:59.000Z

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  15. Fluidized bed gasification ash reduction and removal system

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-02-28T23:59:59.000Z

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  16. High temperature expanding cement composition and use

    DOE Patents [OSTI]

    Nelson, Erik B. (Tulsa County, OK); Eilers, Louis H. (Rogers County, OK)

    1982-01-01T23:59:59.000Z

    A hydratable cement composition useful for preparing a pectolite-containing expanding cement at temperatures above about 150.degree. C. comprising a water soluble sodium salt of a weak acid, a 0.1 molar aqueous solution of which salt has a pH of between about 7.5 and about 11.5, a calcium source, and a silicon source, where the atomic ratio of sodium to calcium to silicon ranges from about 0.3:0.6:1 to about 0.03:1:1; aqueous slurries prepared therefrom and the use of such slurries for plugging subterranean cavities at a temperature of at least about 150.degree. C. The invention composition is useful for preparing a pectolite-containing expansive cement having about 0.2 to about 2 percent expansion, by volume, when cured at at least 150.degree. C.

  17. Fly ash enhanced metal removal process

    SciTech Connect (OSTI)

    Nonavinakere, S. [Plexus Scientific Corp., Annapolis, MD (United States); Reed, B.E. [West Virginia Univ., Morgantown, WV (United States). Dept. of Civil Engineering

    1995-12-31T23:59:59.000Z

    The primary objective of the study was to evaluate the effectiveness of fly ashes from local thermal power plants in the removal of cadmium, nickel, chromium, lead, and copper from aqueous waste streams. Physical and chemical characteristics of fly ashes were determined, batch isotherm studies were conducted. A practical application of using fly ash in treating spent electroless nickel (EN) plating baths by modified conventional precipitation or solid enhanced metal removal process (SEMR) was investigated. In addition to nickel the EN baths also contains completing agents such as ammonium citrate and succinic acid reducing agents such as phosphate and hypophosphite. SEMR experiments were conducted at different pHs, fly ash type and concentrations, and settling times.

  18. Environmental aspects of the Brandywine ash site

    SciTech Connect (OSTI)

    Simek, E.; Potera, G.; Schuller, R.; Herritt, M.; Wagner, R.

    1984-05-01T23:59:59.000Z

    The Brandywine ash site, located in Prince Georges County, Maryland, is owned and operated by the Potomac Electric Power Company (PEPCO). This site was designed specifically for the storage of the large quantities of coal ash produced at PEPCO's nearby Chalk Point Generating Station. Environmental Resources Management, Inc. (ERM), with assistance from the Maryland Department of Natural Resources, Tidewater Administration, conducted a study of this site for the Maryland Power Plant Siting Program (PPSP) to determine if ash constituents are adversely affecting the environment. Section 1 of this report is an introduction to coal ash and its physical/chemical characteristics. Section 2 describes the environment at the site and in adjacent areas. Within this setting, a description of the facility is presented as Section 3. Section 4 relies on the previous sections to point out any likely effects of the facility on the environment and to discount unlikely interactions. Key conclusions are presented in Section 5.

  19. ASCE Journal of Materials in Civil Engineering, 20 (7), 502-508, 2008. Early-Age Properties of Cement-Based Materials: I. Influence of Cement Fineness

    E-Print Network [OSTI]

    Bentz, Dale P.

    of Cement-Based Materials: I. Influence of Cement Fineness Dale P. Bentz1* , Gaurav Sant1 , and Jason Weiss1 Abstract The influence of cement fineness on early-age properties of cement-based materials is investigated deformation. Measurements of these properties for two cements of widely different fineness are supplemented

  20. Microcapsule-Induced Toughening of Bone Cement Gina M. Miller

    E-Print Network [OSTI]

    Sottos, Nancy R.

    27 Microcapsule-Induced Toughening of Bone Cement Gina M. Miller Senior in Aerospace Engineering R. White, and TAM Prof. Nancy R. Sottos Acrylic bone cement is the primary material used cement, it may be possible to extend the lifetime of the implant, thus reducing the occurrence

  1. Characterizing Curing-Cement Slurries by Permeability, Tensile Strength,

    E-Print Network [OSTI]

    Backe, Knut

    Characterizing Curing-Cement Slurries by Permeability, Tensile Strength, and Shrinkage K.R. Backe oilwell cements. The results show that the curing characteristics are a function of temperature and that there is a correlation between shrinkage and cement content. The paper also introduces a new mechanism for gas migration

  2. THE PULTRUSION TECHNOLOGY FOR THE PRODUCTION OF FABRIC-CEMENT

    E-Print Network [OSTI]

    Mobasher, Barzin

    THE PULTRUSION TECHNOLOGY FOR THE PRODUCTION OF FABRIC-CEMENT COMPOSITES Alva Peled Structural Engineering, Arizona State University, USA #12;Advantages of Fabrics in Cement Composites 0 300 600 900 0 2 4 6 8 Deflection, mm FlexuralLoad,N Fabrics Continuous Fibers Cement Matrix #12;Fabrics

  3. Communication Effect of stress on the electric polarization in cement

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Communication Effect of stress on the electric polarization in cement Sihai Wen, D.D.L. Chung the extent of electric polarization in the transverse direction in cement pastes with and without carbon smaller when carbon fibers were present. It was smaller for carbon fiber cement paste containing silica

  4. MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE

    E-Print Network [OSTI]

    Meyer, Christian

    MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE Feng Lin Submitted in partial and Sciences COLUMBIA UNIVERSITY 2006 #12;MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE;ABSTRACT MODELING OF HYDRATION KINETICS AND SHRINKAGE OF PORTLAND CEMENT PASTE Feng Lin A mathematical

  5. Integer linear programming models for a cement delivery problem

    E-Print Network [OSTI]

    Hertz, Alain

    Integer linear programming models for a cement delivery problem Alain Hertz D´epartement de math.uldry@unifr.ch and marino.widmer@unifr.ch April 4, 2011 Abstract We consider a cement delivery problem with an heterogeneous in [14], [15] and [16] and are reviewed in [4]. In this paper, we study a cement delivery problem which

  6. Modeling of Sulfate Resistance of Flyash Blended Cement Concrete Materials

    E-Print Network [OSTI]

    Mobasher, Barzin

    Modeling of Sulfate Resistance of Flyash Blended Cement Concrete Materials Barzin Mobasher1. A simplified model is presented which used cement chemistry, concrete physics, and mechanics to develop of hardened concrete, principally the cement paste, caused by exposure of concrete to sulfates and moisture

  7. Micromechanical Modeling of Filament Wound Cement-Based Composites

    E-Print Network [OSTI]

    Mobasher, Barzin

    Micromechanical Modeling of Filament Wound Cement-Based Composites B. Mobasher, M.ASCE1 Abstract: A theoretical model to predict the response of laminated cement-based composites is developed. The micromechanical model simulates the mechanical response of a multilayer cement-based composite laminate under

  8. Microscale Investigations of Ni Uptake by Cement Using a

    E-Print Network [OSTI]

    Microscale Investigations of Ni Uptake by Cement Using a Combination of Scanning Electron Laboratory, IMX, Ecole Polytechnique Fe´de´ral de Lausanne (EPFL), 1015 Lausanne, Switzerland Cement is used-level radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim

  9. NIST Special Publication 1173 Virtual Cement and Concrete

    E-Print Network [OSTI]

    #12;NIST Special Publication 1173 Virtual Cement and Concrete Testing Laboratory Version 9.5 User;Virtual Cement and Concrete Testing Laboratory Version 9.5 User Guide Jeffrey W. Bullard1 Materials-8615 This document serves as the user's guide for the Virtual Cement and Con- crete Testing Laboratory (VCCTL

  10. Guide to Cement-Based Integrated Pavement Solutions

    E-Print Network [OSTI]

    Guide to Cement-Based Integrated Pavement Solutions August 2011 #12;Cement-Based Integrated Pavement Solutions Heavy Industrial Airports Highways Country Roads Arterials Commercial Commercial Residential Recreation LAND USE CEMENT-BASED INTEGRATED PAVEMENT SOLUTIONS 1 2 3 4 5 6 7 8

  11. Stabilization/solidification of TSCA incinerator ash

    SciTech Connect (OSTI)

    Spence, R.D.; Trotter, D.R.; Francis, C.L.; Morgan, I.L.

    1994-06-01T23:59:59.000Z

    Stabilization/solidification is a well-known waste treatment technique that utilizes different additives and processes. The Phoenix Ash Technology of the Technical Innovation Development Engineering Company is such a technique that uses Cass C fly ash and mechanical pressure to make brick waste forms out of solid wastes, such as the bottom ash from the Toxic Substances Control Act incinerator at the Oak Ridge K-25 Site. One advantage of this technique is that no volume increase over the bulk volume of the bottom ash occurs. This technique should have the same high pH stabilization for Resource Conservation and Recovery Act metals as similar techniques. Also, consolidation of the bottom ash minimizes the potential problems of material dispersion and container corrosion. The bottom ash was spiked with {sup 99}{Tc} to test the effectiveness of the bricks as a physical barrier. The {sup 99}{Tc} leachability index measured for these bricks was 6.8, typical for the pertechnetate anion in cementitious waste forms, indicating that these bricks have accessible porosity as high as that of other cementitious waste forms, despite the mechanical compression, higher waste form density, and water resistant polymer coating.

  12. Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials

    E-Print Network [OSTI]

    Bentz, Dale P.

    Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials Dale P. Bentz* Building and Fire Research Laboratory, National Institute-Jochen Haecker* Wilhelm Dyckerhoff Institut, 65203 Wiesbaden, Germany The influence of cement particle

  13. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    SciTech Connect (OSTI)

    Rui Afonso; R. Hurt; I. Kulaots

    2006-03-01T23:59:59.000Z

    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  14. How to run and cement liners

    SciTech Connect (OSTI)

    Bowman, G.R.; Sherer, B.

    1988-09-01T23:59:59.000Z

    Testing the top of a liner after it has been cemented is necessary to ensure a well's integrity. However, whether done with or without packers there are potential problems attendant with either method that can occur if the tests are not properly engineered. A discussion of these problems and ways to avoid them is presented.

  15. Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Schmelzer, J.R.

    1997-01-01T23:59:59.000Z

    DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

  16. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Economic Output in Chinese Cement Kilns,” Proceedings of thereduction of China’s cement industry. Energy Policy 45 (751. Kong, Xiangzhong (China Cement Association, CCA), 2009.

  17. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

    1984-01-01T23:59:59.000Z

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  18. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15T23:59:59.000Z

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  19. ash utilization symposium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST Report No.CBU-1996-07 July 1996 Presented and Published at the...

  20. Eco-friendly fly ash utilization: potential for land application

    SciTech Connect (OSTI)

    Malik, A.; Thapliyal, A. [Indian Institute of Technology Delhi, New Delhi (India)

    2009-07-01T23:59:59.000Z

    The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants like mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.

  1. ash solvent extraction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alessandro 2013-01-01 27 ASH PNEUMATIC TRANSPORT UNDER ELECTROFILTERS OF UNIT 5 THERMAL POWER PLANT TUZLA CiteSeer Summary: Ash pneumatic transport is basic on fact that at...

  2. New techniques for monitoring cement hydration under simulated well conditions

    SciTech Connect (OSTI)

    Luke, K.; Hall, C.; Jones, T. [Schlumberger Cambridge Research (United Kingdom); Barnes, P.; Turillas, X.; Lewis, A. [Univ. of London (United Kingdom). Birkbeck College

    1995-11-01T23:59:59.000Z

    Fourier transform infrared spectroscopy and synchrotron X-ray powder diffraction methods are described for studying cement hydration chemistry at temperatures up to 200 C, covering the normal temperature range of wellbore cementing. The methods provide complementary information on the transformation of silicate, ferrite and sulfate minerals. The thermal decomposition of the cement mineral ettringite is shown to occur at 114 C in a sealed system in contact with water. The FTIR spectrum of a well cement slurry hydrating at 150 C and 2,000 psi is analyzed. The anomalous thickening time behavior of certain cements around 75--100 C is discussed in the light of new data on the hydration of a Class G cement at 65 and 95 C, with and without retarder.

  3. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01T23:59:59.000Z

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.

  4. Performance and evaluation of gas-engine-driven rooftop air conditioning equipment at the Willow Grove Naval Air Station. Final report (revised October 21, 1996)

    SciTech Connect (OSTI)

    Armstrong, P.R.; Katipamula, S.

    1996-10-01T23:59:59.000Z

    The performance was evaluated of a new US cooling technology that has been installed for the first time at a federal facility. The technology is a 15-ton natural gas-engine-driven rooftop air conditioning unit made by Thermo King. Two units were installed to serve the Navy Exchange at Willow Grove. The savings potential at Willow Grove is described and that in the federal sector estimated. Conditions for implementation are discussed. In summary, the new technology is generally cost-effective at sites where marginal electricity cost (per MBtu at the meter) is more than 4 times the marginal gas cost (per MBtu at the meter) and annual full-load-equivalent cooling hours exceed 2,000.

  5. Preparation of porous apatite granules from calcium phosphate cement

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    Preparation of porous apatite granules from calcium phosphate cement A. C. Tas Received: 30 March and 37 °C. A CaP cement powder, comprising a-Ca3(PO4)2 (61 wt.%), CaH- PO4 (26%), CaCO3 (10 to 1 mm. Cement powder (35 wt.%) and NaCl (65 wt.%) mixture was kneaded with an ethanol­Na2HPO4

  6. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01T23:59:59.000Z

    10 References Anonymous. 1994. Cement Plant Modernization inCentral Europe, World Cement (November): 35-38 Bösche, A.Variable Speed Drives in Cement Plants, World Cement 6 24

  7. Screening technology reduces ash in spiral circuits

    SciTech Connect (OSTI)

    Brodzik, P. [Derrick Corp., Buffalo, NY (United States)

    2007-05-15T23:59:59.000Z

    In 2006, the James River Coal Co. selected the Stack Sizer to remove the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits at the McCoy-Elkhorn Bevins Branch prep plant and at the Blue Diamond Leatherwood prep plant in Kentucky. The Stack Sizer is a multi-deck, high-frequency vibrating screen capable of separations as fine as 75 microns when fitted with Derrick Corp.'s patented high open area urethane screen panels. Full-scale lab tests and more than 10 months of continuous production have confirmed that the Stack Sizer fitted with Derrick 100 micron urethane screen panels consistently produces a clean coal fraction that ranges from 8 to 10% ash. Currently, each five-deck Stack Sizer operating at the Bevins Branch and Leatherwood prep plants is producing approximately 33 tons per hour of clean coal containing about 9% ash. This represents a clean coal yield of about 75% and an ash reduction of about 11% from the feed slurry. 3 figs. 2 tabs.

  8. Analytical simulation of tensile response of fabric reinforced cement based composites

    E-Print Network [OSTI]

    Mobasher, Barzin

    Analytical simulation of tensile response of fabric reinforced cement based composites Barzin March 2005; accepted 2 June 2005 Abstract A model simulating the tensile behavior of fabric­cement composites; Cement composites; Laminated composites; Pultrusion; Fibers; Fabrics; Toughness; Strength; Micro

  9. Analytical simulation of tensile response of fabric reinforced cement based composites

    E-Print Network [OSTI]

    Mobasher, Barzin

    Analytical simulation of tensile response of fabric reinforced cement based composites Barzin the tensile behavior of fabric­cement composites is presented to relate the properties of the matrix, fabric reserved. Keywords: Fabric reinforced composites; Cement composites; Laminated composites; Pultrusion

  10. Promoting Energy Efficiency in Cement Making: The ENERGY STAR(R) for Industry Program

    E-Print Network [OSTI]

    Masanet, Eric; Worrell, Ernst

    2007-01-01T23:59:59.000Z

    information Energy Guide for Cement Making, please contact:Saving Opportunities for the Cement Industry: An ENERGY STARindex.cfm? c=in_focus.bus_cement_manuf_focus Based on data

  11. Effect of high temperature on mechanical and physical properties of lightweight cement

    E-Print Network [OSTI]

    North Texas, University of

    Effect of high temperature on mechanical and physical properties of lightweight cement based are used for fire resistance applications. Concrete with vermiculite can be used as cement based refractory. Keywords: Expanded vermiculite, Lightweight concrete, Cement based refractory Introduction Concrete

  12. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    E-Print Network [OSTI]

    Price, Lynn

    2013-01-01T23:59:59.000Z

    Azure. Alternative Fuel Use in the Cement Sector in ShandongSector Analysis Report: Cement Testing Sectoral ProposalTemplates In China’s Cement Sector. 2009. Bao , Xianfa.

  13. Instantaneous In-Situ Determination of Water-Cement Ratio of Fresh Concrete

    E-Print Network [OSTI]

    Mancio, Mauricio; Moore, Jeffrey R.; Brooks, Zenzile; Monteiro, Paulo J. M.; Glaser, Steve D.

    2010-01-01T23:59:59.000Z

    method for cement content determination of fresh concrete.Cement and Concrete Research, 1980. 10(1): p. 23-34. Hime,the cement content of plastic concrete. ASTM Bulletin, 1955.

  14. Identification of active agents for tetrachloroethylene degradation in Portland cement slurry containing ferrous iron

    E-Print Network [OSTI]

    Ko, Sae Bom

    2006-08-16T23:59:59.000Z

    -EDS) were used to identify minerals in chemical mixtures that have high activities. Results indicate that active agents for PCE degradation in Portland cement slurries and in cement extracts might be one of several AFm phases. However, systems without cement...

  15. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

  16. Innovative cement helps DOE safeguard nuclear facilities | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative cement helps DOE safeguard nuclear facilities By Jared Sagoff * April 25, 2008 Tweet EmailPrint ARGONNE, Ill. - When Argonne materials scientists Arun Wagh and Dileep...

  17. Stabilizing coal-water mixtures with Portland cement

    DOE Patents [OSTI]

    Steinberg, M.; Krishna, C.R.

    1984-10-17T23:59:59.000Z

    Coal-water mixes stabilized by the addition of Portland cement which may additionally contain retarding carbohydrates, or borax are described. 1 tab.

  18. Asymptomatic Chronic Dislocation of a Cemented Total Hip Prosthesis

    E-Print Network [OSTI]

    Salvi, Andrea Emilio; Florschutz, Anthony Vatroslav; Grappiolo, Guido

    2014-01-01T23:59:59.000Z

    Dislocation of Hip Prosthesis dislocation after total hipa Cemented Total Hip Prosthesis * Mellino Mellini HospitalDislocation of a total hip prosthesis is a painful and

  19. Multifunctional Corrosion-resistant Foamed Well Cement Composites

    Broader source: Energy.gov (indexed) [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Project Officer: Dan KingGreg Stillman Total budget: 300 K April 24 , 2013 Principal Investigator: Dr. Toshifumi...

  20. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    the small cement plants, earthen vertical kiln (and hollowcement plant in North China utilizing vertical shaft kilnscement has ordered a vertical roller mill for the new kiln

  1. Optimization Online - The carbon leakage effect on the cement ...

    E-Print Network [OSTI]

    Elisabetta Allevi

    2015-02-08T23:59:59.000Z

    Feb 8, 2015 ... The carbon leakage effect on the cement sector under different climate policies. Elisabetta Allevi(elisabetta.allevi ***at*** unibs.it)

  2. Stabilizing coal-water mixtures with portland cement

    DOE Patents [OSTI]

    Steinberg, Meyer (Melville, NY); Krishna, Coimbatore R. (Mount Sinai, NY)

    1986-01-01T23:59:59.000Z

    Coal-water mixes stabilized by the addition of portland cement which may additionally contain retarding carbohydrates, or borax are described.

  3. Development of an Improved Cement for Geothermal Wells

    Broader source: Energy.gov (indexed) [DOE]

    throughout cement placement without significant changes in viscosity. * Water absorption capacity without retaining free water. * Good bonding to casing and formation. *...

  4. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Modern Vertical Shaft Kiln Technology” World Cement 1 26cement has ordered a vertical roller mill for the new kiln

  5. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    International Energy Agency (IEA). 2007. Tracking IndustrialInternational Energy Agency (IEA). 2009a. Cement TechnologyInternational Energy Agency (IEA). 2009b. Cement roadmap

  6. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    UNFCCC), 2007 b. Energy efficiency measures at cementUNFCCC), 2007 c. Energy efficiency measures at cement2000. “Potentials for Energy Efficiency Improvement in the

  7. Low temperature quartz cementation of the Upper Cretaceous white sandstone of Lochaline, Argyll, Scotland.

    E-Print Network [OSTI]

    Haszeldine, Stuart

    which precipitate from these fluids. Predicting quartz cement distribution requires reconstruction distribution, and the origins of silica for cementation. A major uncertainty in predictive modelling of quartz

  8. antibiotic-loaded cement spacers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    early stage hydration of different classes of oilwell cement Bentz, Dale P. 104 NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration Engineering Websites Summary: NISTIR...

  9. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    and MAIN, 1993. Energy Technology in the Cement Industrialof Demonstrated Energy Technologies (CADDET), Internationaland MAIN. 1993. Energy Technology in the Cement Industrial

  10. CEMENT/CLAY INTERACTIONS A REVIEW: EXPERIMENTS, NATURALANALOGUES, AND MODELING.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 CEMENT/CLAY INTERACTIONS ­ A REVIEW: EXPERIMENTS, NATURALANALOGUES, AND MODELING. Eric C. Gaucher that will be in contact with the clay material of the engineered barriers as well as with the geological formation. France, Switzerland and Belgium are studying the option of clayey geological formations. The clay and cement media

  11. IMPACT BEHAVIOR OF FABRIC-CEMENT BASED COMPOSITES Efrat BUTNARIUa

    E-Print Network [OSTI]

    Mobasher, Barzin

    for the pultruded composites made from PE knitted fabrics. Keywords Impact, fabric, cement composite, textile, fiberIMPACT BEHAVIOR OF FABRIC-CEMENT BASED COMPOSITES Efrat BUTNARIUa , Alva PELEDb , and Barzin Engineering Department, Ben Gurion University, Beer Sheva Israel, c Civil and Environmental Engineering

  12. Cement (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desert SouthwestofDepartmentCellulosicCement (2010

  13. Gujarat Ambuja Cements Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy InformationGettopGuilford, Maine:Ambuja Cements

  14. MECS 2006 - Cement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment1| DepartmentCement MECS 2006 -

  15. Water quality investigation of Kingston Fossil Plant dry ash stacking

    SciTech Connect (OSTI)

    Bohac, C.E.

    1990-04-01T23:59:59.000Z

    Changing to a dry ash disposal systems at Kingston Fossil Plant (KFP) raises several water quality issues. The first is that removing the fly ash from the ash pond could alter the characteristics of the ash pond discharge to the river. The second concerns proper disposal of the runoff and possibly leachate from the dry ash stack. The third is that dry ash stacking might change the potential for groundwater contamination at the KFP. This report addresses each of these issues. The effects on the ash pond and its discharge are described first. The report is intended to provide reference material to TVA staff in preparation of environmental review documents for new ash disposal areas at Kingston. Although the investigation was directed toward analysis of dry stacking, considerations for other disposal options are also discussed. This report was reviewed in draft form under the title Assessment of Kingston Fossil Plant Dry Ash Stacking on the Ash Pond and Groundwater Quality.'' 11 refs., 3 figs., 18 tabs.

  16. Magnesium-phosphate-glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    1982-09-23T23:59:59.000Z

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  17. Magnesium phosphate glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY); Kukacka, Lawrence E. (Port Jefferson, NY)

    1984-03-13T23:59:59.000Z

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  18. Manufacture of ceramic tiles from fly ash

    DOE Patents [OSTI]

    Hnat, James G. (Collegeville, PA); Mathur, Akshay (Tampa, FL); Simpson, James C. (Perkiomenville, PA)

    1999-01-01T23:59:59.000Z

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.

  19. Manufacture of ceramic tiles from fly ash

    DOE Patents [OSTI]

    Hnat, J.G.; Mathur, A.; Simpson, J.C.

    1999-08-10T23:59:59.000Z

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

  20. Ghabezloo et al.: Poromechanical behaviour of hardened cement paste under isotropic loading Poromechanical behaviour of hardened cement paste

    E-Print Network [OSTI]

    Boyer, Edmond

    of this cement in oil-wells conditions, i.e. under high stress and elevated temperature, is essential of the well when CO2 storage and sequestration is planned. Whether the mechanical behaviour of hardened cement and drained bulk modulus are discussed. A phenomenon of degradation of elastic properties is observed

  1. Market assessment of PFBC ash use

    SciTech Connect (OSTI)

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01T23:59:59.000Z

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBC technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).

  2. Coal ash by-product reutilization

    SciTech Connect (OSTI)

    Muncy, J. [Potomac Electric Power Co., Washington, DC (United States); Miller, B. [DYNA Corp., Upper Marlboro, MD (United States)

    1997-09-01T23:59:59.000Z

    Potomac Electric Power Company (PEPCO) has as part of its vision and value statement that, ``We are responsible stewards of environmental and corporate resources.`` With this moral imperative in mind, a project team was charged with initiating the Coal Pile Liner Project--installing a membrane liner under the existing coal storage pile at the Morgantown Generating Station. The existing coal yard facilities were constructed prior to the current environmental regulations, and it became necessary to upgrade the storage facilities to be environmentally friendly. The project team had two objectives in this project: (1) prevent coal pile leachate from entering the groundwater system; (2) test the viability of using coal ash by-products as an aggregate substitute for concrete applications. Both objectives were met, and two additional benefits were achieved as well: (1) the use of coal ash by-products as a coal liner produced significant cost savings to the project directly; (2) the use of coal ash by-products reduced plant operation and maintenance expenses.

  3. SINGLE ELEMENT TEST PREDICTIONS FOR STRESS-STRAIN BEHAVIOR OF PANKI FLY-ASH

    E-Print Network [OSTI]

    Prashant, Amit

    : Fly-ash is a waste product produced by burning of coal at thermal power plants. It is often used. Introduction Fly-ash is a fine powdery material, produced by burning of coal at thermal power plants. Fly-ash need to dispose fly-ash from these ponds. Fly-ash is often used as structural fill in order to dispose

  4. Mercury capture by distinct fly ash carbon forms

    SciTech Connect (OSTI)

    Hower, J.C.; Maroto-Valer, M.M.; Taulbee, D.N.; Sakulpitakphon, T.

    1999-07-01T23:59:59.000Z

    Carbon was separated from the fly ash from a Kentucky power plant using density gradient centrifugation. Using a lithium heterolpolytungstate high-density media, relative concentrations of inertinite (up to 85% vol.), isotropic carbon (up to 79% vol.), and anisotropic carbon (up to 76% vol.) were isolated from the original fly ash. Mercury concentration was lowest in the parent fly ash (which contains non-carbon components); followed by inertinite, isotropic coke, mixed isotropic-anisotropic coke fraction, and, with the highest concentration, the anisotropic coke concentrate. The latter order corresponds to the increase in BET surface area of the fly ash carbons. Previous studies have demonstrated the capture of mercury by fly ash carbon. This study confirms prior work demonstrating the varying role of carbon types in the capture, implying that variability in the carbon content influences the amount of mercury retained on the fly ash.

  5. Correlation of Process Data and Electrocheical Noise to Assess Kraft Digester Corrosion: Second Year at Spring Grove

    SciTech Connect (OSTI)

    Pawel, SJ

    2004-04-27T23:59:59.000Z

    Electrochemical noise (EN) probes were deployed in the carbon steel continuous kraft digester at Spring Grove at four locations and at one location in the bottom cone of the associated flash tank for a second consecutive year of a corrosion study. The probes contained dual electrodes of 309LSi stainless steel overlay--representing a field repair material applied to a portion of the vessel--and dual electrodes of 312 stainless steel overlay. Current and potential noise, the temperature at each probe location, and the value of 23 process parameters (flow rates, liquor chemistry, etc.) were again monitored continuously for a period of almost one year. Historical vessel inspection data and post-test evaluation of the probe components were used to assess/compare EN corrosion activity with physical changes in wall thickness and corrosion patterns on the digester shell. In addition, attempts were made to correlate EN activity from each electrode type with process parameters. The results indicate the corrosion conditions aggressive to mild steel persist within the digester, as post-test inspection of the vessel revealed localized corrosion of mild steel in locations previously free of attack. Further, there was evidence that the depth of localized attack of exposed steel had increased in some locations. Nevertheless, the stainless steel overlay in the digester was essentially immune to corrosion, as evidenced by retained surface relief and heat tint associated with the original deposition process. The 309LSi electrodes also appeared visually pristine, and post-exposure metallographic examination of the 309LSi electrode materials revealed no attack. The 312 electrode materials were similar in appearance, but exhibited very minor interdendritic attack over the exposed surface. The silver electrodes in the probes were consumed (to Ag{sub 2}S) to variable degree over the course of the exposure indicating a useful life of not more than a year in digester service in this vessel. Since the stainless steel overlay electrodes were immune to corrosion during the exposure, the current and potential noise activity on these probes is likely related to redox processes on the electrode surfaces. Analysis of this activity as a function of position (and year) in the vessel suggests that redox chemistry/conditions vary by a significant amount on a consistent basis--even on opposite sides of the vessel at the same elevation--and that these differences are not identified by process parameters tracked at the mill. These variable environmental conditions (flow, temperature, liquor chemistry) appear to have little effect on stainless steel overlays under evaluation, but apparently can be quite corrosive to steel as determined in the initial study in the digester at Spring Grove. With the exception of start-up and shutdown activity, including brief upsets for ''hanging columns'' or brief maintenance periods, no regular correlation was observed between tracked process variables and EN activity on any of the probes. In combination with the variable redox activity, this result suggests that the liquor sampling and flow data compiled at the mill do not represent the corrosion conditions in the vessel particularly well.

  6. Calcium phosphate cement augmentation of cancellous bone screws can compensate for the absence of cortical fixation

    E-Print Network [OSTI]

    Guerraoui, Rachid

    Calcium phosphate cement augmentation of cancellous bone screws can compensate for the absence Keywords: Screw fixation Pullout force Calcium phosphate cement Osteoporotic bone a b s t r a c with cement. Previous studies have shown that bone augmentation with Calcium Phosphate (CaP) cement

  7. SEPTARIAN CONCRETIONS Septarian structures are former cracks, often lled with cement

    E-Print Network [OSTI]

    S SEPTARIAN CONCRETIONS Septarian structures are former cracks, often ®lled with cement may show a component of shear displacement. Crack filling cements Cracks may range from largely un®lled to fully cement ®lled, often with a variety of distinctively colored spar cements. The ®lls may also

  8. The Impact of Mathematical Modeling on the Production of Special Purpose Cement

    E-Print Network [OSTI]

    Vuik, Kees

    The Impact of Mathematical Modeling on the Production of Special Purpose Cement Domenico Lahaye in the production industry? Our partnership with Almatis B.V., a special purpose cement manufacturer, resulted with experts in various engineering disciplines. Production of Special Purpose Cement Commonly used cement

  9. [ ]March 2013 The Louisiana Department ofTransportation and Development (DOTD) has been using cement

    E-Print Network [OSTI]

    Harms, Kyle E.

    using cement stabilized base course (soil cement) in flexible pavement construction for more than 50 on the cement stabilized base shortly after the base construction. The micro-cracks will help relieve the contracting stress of the cement stabilized layer during its drying process, thus preventing it from forming

  10. Guang Ye, Characterization of cement paste at early age, 1 of 11 Fax: +31 15 2785895

    E-Print Network [OSTI]

    Guang Ye, Characterization of cement paste at early age, 1 of 11 Fax: +31 15 2785895 E-mail: ye.guang@ct.tudelft.nl A MICROMECHANIC MODEL FOR CHARACTERIZATION OF CEMENT PASTE AT EARLY AGE VALIDATED WITH EXPERIMENTS Guang Ye Delft of a cement-based material, i.e. the stiffness of cement paste, is the result of the continuous change

  11. CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY Guy in the U.S. Cement Industry. Guy Meunier INRA & Ecole Polytechnique Jean-Pierre Ponssard CNRS & Ecole. This relationship is tested with data on the U.S. cement industry, where, because cement is costly to transport over

  12. Energy, environmental and greenhouse gas effects of using alternative fuels in cement production

    E-Print Network [OSTI]

    Columbia University

    1 Energy, environmental and greenhouse gas effects of using alternative fuels in cement to an increase of AF use from 8.7% to 20.9% of the total energy consumption. 2. One of the alternative fuels used cement industry produces about 3.3 billion tonnes of cement annually. Cement production is energy

  13. Time-dependent behaviour of hardened cement paste under isotropic loading

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of hardened cement paste under isotropic loading, Cement and Concrete Research, doi: 10.1016/j.cemconres.2012.03.002 hal-00689716,version1-19Apr2012 Author manuscript, published in "Cement and Concrete Research (2012 the framework of the classical theory of porous media. The effects of water-to-cement ratio and chemical

  14. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01T23:59:59.000Z

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  15. Determination of Ash in Biomass: Laboratory Analytical Procedure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ash in Biomass Laboratory Analytical Procedure (LAP) Issue Date: 7172005 A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NREL...

  16. Kinetics of beneficiated fly ash by carbon burnout

    SciTech Connect (OSTI)

    Okoh, J.M.; Dodoo, J.N.D.; Diaz, A. [Univ. of Maryland Eastern Shore, Princess Anne, MD (United States). Dept. of Natural Sciences; Ferguson, W.; Udinskey, J.R. Jr.; Christiana, G.A. [Delmarva Power, Wilmington, DE (United States)

    1997-12-31T23:59:59.000Z

    The presence of carbon in fly ash requires an increase in the dosage of the air-entraining admixture for concrete mix, and may cause the admixture to lose efficiency. Specifying authorities for the concrete producers have set maximum allowable levels of residual carbon. These levels are the so called Loss On Ignition (LOI). The concrete producers` day-to-day purchasing decisions sets the LOI at 4%. The objective of the project is to investigate the kinetics of oxidation of residual carbon present in coal fly ash as a possible first step toward producing low-carbon fly ash from high-carbon, low quality fly ash.

  17. ash transportation distance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ash 1. Halima Hadiahmetovi?; D. D. Sarajevo; M. Sc; Raza Sunulahpai?; Bosnia Herzegovina 4 Dimensional contraction via Markov transportation distance Francois...

  18. Data Summary Report for Hanford Site Coal Ash Characterization

    SciTech Connect (OSTI)

    Sulloway, H. M.

    2012-03-06T23:59:59.000Z

    The purpose of this report is to present data and findings from sampling and analysis of five distinct areas of coal ash within the Hanford Site River Corridor

  19. ash aqueous carbonation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon content, specific surface area Aydilek, Ahmet 3 Issues with the Use of Fly Ash for Carbon Sequestration A.V. Palumbo1* Environmental Management and Restoration Websites...

  20. alkaline coal ash: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  1. Detailed Characterization of Lubricant-Derived Ash-Related Species...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Species in the Ring Pack and Ash Emissions and Their Dependence on Crankcase Oil Properties Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy...

  2. The FGM Concept in the Development of Fiber Cement Components

    SciTech Connect (OSTI)

    Dias, C. M. R.; John, V. M. [Department of Construction Engineering, Polytechnic School, University of Sao Paulo, 05508 900 Sao Paulo, SP (Brazil); Savastano, H. Jr. [Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, P.O. Box 23, 13635-900 Pirassununga, SP (Brazil)

    2008-02-15T23:59:59.000Z

    The FGM concept appears promising in improving the mechanical performance and reducing production costs of fiber cement building components. However, it has not yet been broadly applied to fiber cement technology. In this study we analyze the functionally graded fiber cement concept and its potential for industrial application in Hatschek machines. The conventional Hatschek process is summarized as well as the proposed modifications to allow FGM fiber cement production. The feasibility of producing functionally graded fiber cement by grading PVA fiber content was experimentally evaluated. Thermogravimetric (TG) and Scanning Electron Microscope (SEM) analysis were used to evaluate fiber distribution profiles. Four-point bending tests were applied to evaluate the mechanical performance of both conventional and functionally graded composites. The results shows that grading PVA fiber content is an effective way to produce functionally graded fiber cement, allowing the reduction of the total fiber volume without significant reduction on composite MOR. TG tests were found adequate to assess fiber content at different positions in functionally graded fiber cements.

  3. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31T23:59:59.000Z

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this report is based on publicly-available reports, journal articles, and case studies from applications of technologies around the world.

  4. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    E-Print Network [OSTI]

    MATHIEU, JOHANNA L.

    2010-01-01T23:59:59.000Z

    using Iron-oxide Coated Coal Ash. In Arsenic Contaminationwater using  iron?oxide coated coal bottom ash  Johanna L.  using iron-oxide coated coal bottom ash JOHANNA L. MATHIEU

  5. E-Print Network 3.0 - ash related problems Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ash related problems Page: << < 1 2 3 4 5 > >> 1 By-Products Utilization Summary: of clean coal ash will increase. Finding practical solutions to this "ash problem" is essential...

  6. Utilization of Ash Fractions from Alternative Biofuels used in Power Plants

    E-Print Network [OSTI]

    Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

  7. Cell Ashing for Trace Element Analysis: A New Approach Based on Ultraviolet/Ozone

    E-Print Network [OSTI]

    Gilbert, Pupa Gelsomina De Stasio

    : synchrotron spectromicroscopy; micro- chemical analysis; MEPHISTO; ashing; incineration; trace element. Ashing ashing is based on high-temperature incineration or on the exposure to oxygen plasma (1­ 4). We adopted

  8. Use of Finite-element Analysis to Improve Well Cementing in HTHP Conditions

    E-Print Network [OSTI]

    Arias, Henry

    2013-07-30T23:59:59.000Z

    stresses of San Antonio cement (left) and PEEQ of cement San Antonio and Barco formation (right) after hydraulic fracturing ........ 103 Figure 5.1 UCS (top left), Young?s modulus (top right), and Poisson?s ratio (bottom) for Halliburton Portland... cements ............................................... 110 Figure 5.2 Tensile strength for Halliburton Portland cements ................................... 111 Figure 5.3 Stress strain-curve and photo of uniaxial test for Halliburton Portland cement...

  9. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Asia Pacific Partnership Cement Task Force (APP). 2010.07(3) Utilizing Biosolids in Cement Kilns. (November). Asia-Utilising Biosolids in Cement Kilns. Final Report. Available

  10. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    07-07(3) Utilizing Biosolids in Cement Kilns. (November).APP). 2011. Utilising Biosolids in Cement Kilns. FinalFederation. No date. Biosolids in cement production.

  11. E-Print Network 3.0 - ash quarterly technical Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

  12. E-Print Network 3.0 - ash Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

  13. E-Print Network 3.0 - ash penurunan kadar Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

  14. E-Print Network 3.0 - ash paving demonstration Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND DEMONSTRATION... Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

  15. E-Print Network 3.0 - ashes Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

  16. E-Print Network 3.0 - ash ahto lobjakas Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... -Strength Materials (CLSM); 232, Fly Ash and Natural...

  17. Characterization and modeling of the cemented sediment surrounding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cement phase is likely the reaction between the glass and the sea water to from a Mg-silicate, here modeled as sepiolite. Citation: Strachan DM, JV Crum, JV Ryan, and A...

  18. Climate VISION: Private Sector Initiatives: Cement: Work Plans

    Office of Scientific and Technical Information (OSTI)

    Work Plans The Portland Cement Association (PCA) has lead the industry effort to produce a Work Plan in collaboration with the EPA and DOE. The Plan includes an outline of the...

  19. Nanostructure and Nanomechanics of Cement: Polydisperse Colloidal Packing

    E-Print Network [OSTI]

    Masoero, Enrico

    Cement setting and cohesion are governed by the precipitation and growth of calcium-silicate-hydrate, through a complex evolution of microstructure. A colloidal model to describe nucleation, packing, and rigidity of ...

  20. Quantum Mechanical Metric for Internal Cohesion in Cement Crystals

    E-Print Network [OSTI]

    Dharmawardhana, C. C.; Misra, Anil; Ching, Wai-Yim

    2014-12-05T23:59:59.000Z

    Calcium silicate hydrate (CSH) is the main binding phase of Portland cement, the single most important structural material in use worldwide. Due to the complex structure and chemistry of CSH at various length scales, the focus has progressively...

  1. Development of an OCS Cementing Operational Guidelines Database

    E-Print Network [OSTI]

    Bell, Matthew G.

    2014-08-20T23:59:59.000Z

    This paper describes a relational database system developed for the Bureau of Safety and Environmental Enforcement as part of an analysis of current cementing procedures employed in the US outer continental shelf. Initial work included defining...

  2. IN HARM'S WAY: Lack Of Federal Coal Ash

    E-Print Network [OSTI]

    Short, Daniel

    IN HARM'S WAY: Lack Of Federal Coal Ash Regulations Endangers Americans And Their Environment 2010 Thirty-nine New Damage Cases of Contamination from Improperly Disposed Coal Combustion Waste, Editor and Contributing Author #12;IN HARM'S WAY: Lack of Federal Coal Ash Regulations Endangers

  3. Process for the recovery of alumina from fly ash

    DOE Patents [OSTI]

    Murtha, M.J.

    1983-08-09T23:59:59.000Z

    An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

  4. Biological impact studies of the Faulkner ash site

    SciTech Connect (OSTI)

    Klose, P.N.; Potera, G.T.

    1984-08-01T23:59:59.000Z

    The Potomac Electric Power Company (PEPCO) has operated the Faulkner coal ash storage facility in southern Charles County, Maryland since 1970. This site handles all the coal ash produced at the nearby Morgantown Generating Stations. Environmental Resources Management, Inc. (ERM) produced an earlier report (Simek, et al., 1983) for PPSP entitled, Environmental Aspects of the Faulkner Ash Site. That report presented a compilation of existing data and newly-generated field information on the ash site and its influence on the local environment. Several questions remained as a result of the analyses carried out for the above study. These were: (a) Are trees downgradient of the site accumulating metals associated with the ash. (b) Is Zekiah Swamp Run being affected by dissolved or precipitated metals. (c) Are invertebrates in Zekiah Swamp Run accumulating metals from the ash site. The studies described herein present data on each of the three questions. Results indicate that no adverse effects on water quality, invertebrates, or trees are occurring. Elevated levels of aluminum, cadmium, and manganese were found throughout the watershed, both above and below the ash site, but no relationship to the ash site could be established.

  5. Geochemical and geomechanical effects on wellbore cement fractures

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-01-01T23:59:59.000Z

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much lower than that of CO2-saturated brine. The study suggests that in deep geological reservoirs the geochemical and geomechanical processes have coupled effects on the wellbore cement fracture evolution and fluid flow along the fracture surfaces.

  6. Extension and replacement of aspalt cement with sulphur

    E-Print Network [OSTI]

    Pickett, Daniel Ernest

    1977-01-01T23:59:59.000Z

    supply of sulphur, it would be advantageous to reduce the dependence of the paving industry upon asphalt cement while utilizing effectively the readily available sulphur. An investigation was made of the use of elemental sulphur as a partial... purpose: an outlet would be pro- vided for the current oversupply of sulphur, and the dependence of the paving industry upon the use of asphalt cement would be reduced. Another potential benefit is the possibility of improved performance of pavements...

  7. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect (OSTI)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

    2003-05-20T23:59:59.000Z

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  8. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect (OSTI)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

    2002-09-10T23:59:59.000Z

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  9. State Waste Discharge Permit application: 200-E Powerhouse Ash Pit

    SciTech Connect (OSTI)

    Atencio, B.P.

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department and Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-E Powerhouse Ash Pit. The 200-E Powerhouse Ash Waste Water discharges to the 200-E Powerhouse Ash Pit via dedicated pipelines. The 200-E Ash Waste Water is the only discharge to the 200-E Powerhouse Ash Pit. The 200-E Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  10. State Waste Discharge Permit application: 200-W Powerhouse Ash Pit

    SciTech Connect (OSTI)

    Atencio, B.P.

    1994-06-01T23:59:59.000Z

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  11. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01T23:59:59.000Z

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  12. Fluidization characteristics of power-plant fly ashes and fly ash-charcoal mixtures. [MS Thesis; 40 references

    SciTech Connect (OSTI)

    Nguyen, C.T.

    1980-03-01T23:59:59.000Z

    As a part of the continuing research on aluminum recovery from fly ash by HiChlor process, a plexiglass fluidization column system was constructed for measurement of fluidization parameters for power-plant fly ashes and fly ash-charcoal mixtures. Several bituminous and subbituminous coal fly ashes were tested and large differences in fluidization characteristics were observed. Fly ashes which were mechanically collected fluidized uniformly at low gas flow rates. Most fly ashes which were electrostatically precipitated exhibited channeling tendency and did not fluidize uniformly. Fluidization characteristics of electrostatically collected ashes improve when the finely divided charcoal powder is added to the mixture. The fluidization of the mixture was aided initially by a mechanical stirrer. Once the fluidization had succeeded, the beds were ready to fluidize without the assistance of a mechanical action. Smooth fluidization and large bed expansion were usually observed. The effects of charcoal size and aspect ratio on fluidization characteristics of the mixtures were also investigated. Fluidization characteristics of a fly ash-coal mixture were tested. The mixture fluidized only after being oven-dried for a few days.

  13. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect (OSTI)

    Ivan Diaz-Loya, E. [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Allouche, Erez N., E-mail: allouche@latech.edu [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Eklund, Sven; Joshi, Anupam R. [Department of Chemistry, Louisiana Tech University, Ruston, LA 71272 (United States); Kupwade-Patil, Kunal [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)

    2012-08-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.

  14. Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash

    SciTech Connect (OSTI)

    Wigent, W.L.; Luey, J.K.; Scheele, R.D.; Li, H.

    1999-04-08T23:59:59.000Z

    In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash. Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because part of PNNL's work was to characterize the ash prior to calcination and to investigate the effect of calcination on product quality, representative material was obtained from LANL. Ash obtained from LANL was selected based on its similarity to that currently stored at RFETS. The plutonium-bearing ashes obtained from LANL are likely from a RFETS incinerator, but the exact origin was not identified.

  15. Mutagenicity and genotoxicity of coal fly ash water leachate

    SciTech Connect (OSTI)

    Chakraborty, R.; Mukherjee, A. [University of Calcutta, Calcutta (India). Dept. of Botany

    2009-03-15T23:59:59.000Z

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals - sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significantconcentration-dependent increases in DNA damage in whole blood cells, lymphocytes, and in Nicotiana plants. The comet parameters show increases in tail DNA percentage (%), tail length (mu m), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  16. Phenolic acids as bioindicators of fly ash deposit revegetation

    SciTech Connect (OSTI)

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic [Institute for Biological Research 'Sinisa Stankovic,' Belgrade (Serbia and Montenegro). Department of Ecology

    2006-05-15T23:59:59.000Z

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  17. General Groves takes charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    takes charge Colonel James C. Marshall, head of the DSM project (Development of Substitute Materials), did not make much headway, yet he did accomplish some things that lasted....

  18. PALM TREE GROVE COLLEGEAVE.

    E-Print Network [OSTI]

    Fernandez, Eduardo

    53 (GR) BC54 (SD) BC90 (DW) BC91 (CH) 26 36 FAU/BC JOINT USE LIBRARY LIBERAL ARTS CHILLER BUILDING DAVIE WEST CHILLER BUILDING - DAVIE WEST FAU/BC JOINT CHILDCARE CENTER FAU/BC PARKING GARAGE BROWARD

  19. Leslie Groves - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadership Leadership Dr. ErnestAbout

  20. Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation

    E-Print Network [OSTI]

    Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation of pollution being used for coal ash deposits. Pollutants present in the ash can contaminate water resources and soil its research on the thermo-electric plant (TEP) and associated coal ash sites at Tuzla, Bosnia

  1. Close Out Report for the Ash Pit Operable Unit I Area of Concern 2F

    E-Print Network [OSTI]

    I to the early 1950's. The Ash Pits were also used for disposal of coal ash from various buildingsFinal Close Out Report for the Ash Pit Operable Unit I Area of Concern 2F February 5, 2004..................................................................................................2 Figure 1 - Ash Level Verification Borings

  2. Helium Ash Simulation Studies with Divertor Helium Pumping in JET Internal Transport Barrier Discharges

    E-Print Network [OSTI]

    Helium Ash Simulation Studies with Divertor Helium Pumping in JET Internal Transport Barrier Discharges

  3. Dechlorination ability of municipal waste incineration fly ash for polychlorinated phenols

    E-Print Network [OSTI]

    Cirkva, Vladimir

    Dechlorination ability of municipal waste incineration fly ash for polychlorinated phenols Leona incineration fly ash at 200 °C under nitrogen atmosphere. Thermodynamic calculations have been carried out ash produced by municipal waste incineration (MWI) have clearly demonstrated that MWI fly ash can

  4. Respiratory and Reproductive Characteristics of Eastern Mosquitofish (Gambusia holbrooki) Inhabiting a Coal Ash Settling Basin

    E-Print Network [OSTI]

    Hopkins, William A.

    ) Inhabiting a Coal Ash Settling Basin B. P. Staub, W. A. Hopkins, J. Novak, J. D. Congdon Savannah River 2002/Accepted: 29 March 2002 Abstract. Coal fly ash and effluent from coal ash settling basins viable populations in areas contaminated by coal ash. While eastern mosquitofish are present

  5. Expansion-contraction cycles for cement optimized as a function of additives

    SciTech Connect (OSTI)

    Talabani, S.; Hareland, G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1995-12-31T23:59:59.000Z

    An experimental study was carried out to investigate the addition of specific additives to cement in order to eliminate the micro-fractures and micro-annuli that cause gas migration. The experiments performed monitored the change in the cement slurry pressure during the setting of the cement. During the setting period of the cement, two time cycles of cement expansion and contraction were observed. This is due to the individual contributions of each part of the cement mixture. To obtain the optimum tightness of the cement, final optimum concentrations of the additives were obtained experimentally, where the cyclic pressure behavior of the cement was optimized for the best final cement results. By utilizing the correct amount of Anchorage Clay, XC-Polymer, Ironite Scavenger, Ultrafine cement and Synthetic Rubber powder in a class G mixture at a given temperature and confining pressure, an impermeable cement mixture can be obtained. The correct amount of Synthetic Rubber used for cyclic pressure reduction is a function of cement setting temperature and pressure as well as the elastic properties of the rubber. By using laboratory testing at different pressure and temperature with different rubber concentrations and elastic properties, it is estimated that the entire annulus can have an impermeable cement from surface to total depth. The difference in temperature and pressure with depth dictates the concentration and elastic properties of the rubber as the required expansion and contraction changes with depth.

  6. Recovery of iron oxide from coal fly ash

    DOE Patents [OSTI]

    Dobbins, Michael S. (Ames, IA); Murtha, Marlyn J. (Ames, IA)

    1983-05-31T23:59:59.000Z

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  7. The use of scrap tires in rotary cement kilns

    SciTech Connect (OSTI)

    Blumenthal, M. [Scrap Tire Management Council, Washington, DC (United States)

    1996-12-31T23:59:59.000Z

    The use of scrap tires as a supplemental fuel in the United States Portland cement industry has increased significantly in the past six years. In 1990, there were two kilns using tire-derived fuel (TDF), today 30 kilns use TDF. The outlook for continued and expanded use of TDF in the U.S. cement industry should be considered favorable, with 15 kilns conducting tests to determine TDF`s applicability or in the permitting process. The Council`s estimates are that by the end of 1996, the cement industry could be consuming some 75-100 million of the 253 million annually generated scrap tires in the United States. This level of TDF usage will make the cement industry the largest market segments for scrap tires in the United States. While the long-term outlook is at present positive, there are a series of factors that have, and will likely continue to adversely impact the near-term usage of TDF. These issues, as well as the factors that are likely to positively impact the cement kiln TDF market are the subject of this presentation.

  8. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    24 3.5. Emerging Carbon Capture Technologies for the CementGmbH (ECRA), 2007. Carbon Capture Technology - Options andEmerging carbon capture technologies for the cement industry

  9. NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration

    E-Print Network [OSTI]

    Bentz, Dale P.

    NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modeling Package. Version 3.0 Dale P. Bentz #12;NISTIR 7232 CEMHYD3D: A Three-Dimensional Cement Hydration

  10. Dispersion of Short Fibers in Cement D. D. L. Chung1

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    the strain, damage, or temperature , self-heating for de- icing , and electromagnetic reflection microfibers in cement, as assessed by electrical resistivity measurement for the case of electrically; Portland cements; Mortars; Electrical resistivity. Introduction Short fibers are used as admixtures

  11. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    2050 China Energy and CO2 Emissions Report. Science Press,Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cement

  12. Determination of Total Solids and Ash in Algal Biomass: Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solids and Ash in Algal Biomass Laboratory Analytical Procedure (LAP) Issue Date: December 2, 2013 S. Van Wychen and L. M. L. Laurens Technical Report NRELTP-5100-60956 December...

  13. ash impact sorbent: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of aircraft systems 1. Silicate parti- cles in the ash clouds can enter the engines and melt. In the past Oxford, University of First Page Previous Page 1 2 3 4 5 6 7 8...

  14. altered volcanic ash: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    near the volcano. Major eruptions are much rarer. They can eject both ash and gases like sulfur dioxide high into the atmosphere-- 80,000 feet or more. Although much of...

  15. ash upptag av: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Issues with the Use of Fly Ash for Carbon Sequestration A.V. Palumbo1* Environmental Management and Restoration Websites...

  16. ash particle deposition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coal fly ash by reaction with nitrogen oxides can occur in the smokestack, but with the aging Dutta, Prabir K. 5 Particle deposition in ventilation ducts University of California...

  17. Guide to Using Wood Ash as an Agricultural Soil Amendment

    E-Print Network [OSTI]

    New Hampshire, University of

    from larger commercial sources such as wood-burning biomass plants which produce heat or electricity in the soil. Wood ash is more soluble and reactive than ground limestone, and brings about a Benefits Recycles

  18. Optical properties of fly ash. Volume 2, Final report

    SciTech Connect (OSTI)

    Self, S.A.

    1994-12-01T23:59:59.000Z

    Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal and Ebert. Volume 2 contains the dissertation of Ebert which covers the measurements of the optical constants of slags, and calculations of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.

  19. ash cenospheres composites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Composite Material Lab., Central Gupta, Nikhil 3 Journal of Composite Materials, July 2006, Vol. 40 no. 13, 1163-1174 1163 Thermal Expansion of AluminumFly Ash...

  20. Studies of fly ash using thermal analysis techniques

    SciTech Connect (OSTI)

    Li, Hanxu; Shen, Xiang-Zhong; Sisk, B. [Western Kentucky Univ., Bowling Green, KY (United States)

    1996-12-31T23:59:59.000Z

    Improved thermoanalytical methods have been developed that are capable of quantitative identification of various components of fly ash from a laboratory-scale fluidized bed combustion system. The thermogravimetric procedure developed can determine quantities of H{sub 2}O, Ca(OH){sub 2}, CaCO{sub 3}, CaSO{sub 4} and carbonaceous matter in fly ash with accuracy comparable to more time-consuming ASTM methods. This procedure is a modification of the Mikhail-Turcotte methods that can accurately analyze bed ash, with higher accuracy regarding the greater amount of carbonaceous matter in fly ash. In addition, in conjunction with FTIR and SEM/EDS analysis, the reduction mechanism of CaSO{sub 4} as CaSO{sub 4} + 4H{sub 2} = CaS + 4H{sub 2}O has been confirmed in this study. This mechanism is important in analyzing and evaluating sulfur capture in fluidized-bed combustion systems.

  1. ash leaching methods: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in individualpyrite grains in Illinois6 coal at levels up 6 coal. The same trace metals were detected in pyrite and clay grains from Pittsburgh 8 coal. Ash Laughlin,...

  2. ash technical progress: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ash from the four 43 Technical Brief CiteSeer Summary: ii iiiFOREWARD The Depleted Uranium Technical Brief is designed to convey available information and knowledge about...

  3. ash corrosion resistant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    date: 02.2008 Start date of the consortium (including the Commission Services) 12;2 Handbook on treatment of coal ash disposal sites Preface 162 Nitration of Benzoapyrene...

  4. Recoverable immobilization of transuranic elements in sulfate ash

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O. (Richland, WA)

    1985-01-01T23:59:59.000Z

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  5. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    titanium dioxide nanoparticles for self-cleaning concrete surfaces Development of cement-based nanocomposites for various applications Energy/

  6. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    of granulated blast furnace slag and its effect on theblast furnace slag in cement results from the combined effects

  7. Improved cement quality and grinding efficiency by means of closed mill circuit modeling

    E-Print Network [OSTI]

    Mejeoumov, Gleb Gennadievich

    2009-05-15T23:59:59.000Z

    ..............................................................................................................................185 Page x LIST OF FIGURES Figure 1.1. Portland Cement (after Bhatty et al., 2004). ....................................................1 Figure 1.2. A Simplified Schematic of a Dry Cement Manufacturing Process. ................3 Figure 1....................................13 Figure 2.2. Typical Particle Size Distribution of a Type I Portland Cement Sample. .....16 Figure 2.3. Rosin-Rammler Representation of Cement PSD...........................................21 Figure 2.4. Blaine Calculation within the Particle...

  8. Downhole cement test in a very hot hole

    SciTech Connect (OSTI)

    Pettitt, R.A.; Cocks, G.G.; Dreesen, D.N.; Sims, J.R.; Nicholson, R.W.; Boevers, B.

    1982-01-01T23:59:59.000Z

    Completion of the commercial-sized Hot Dry Rock Geothermal Energy Project requires that hydraulic fractures be created between two inclined wellbores at a depth of about 4 km (15,000 ft). Isolation of a section of the open wellbore is necessary for pressurization to achieve the fracture connections. A cemented-in liner/PBR assembly is one of the methods used for zone isolation near the botton of the injection well. A downhole, pumped cement test was first conducted at a wellbore temperature of 275/sup 0/C (525/sup 0/F) to determine if a suitable slurry could be designed, pumped, and later recovered to assure the success of the cemented-in liner operation.

  9. Environmental aspects of the faulkner ash site. Final report

    SciTech Connect (OSTI)

    Simek, E.M.; Hewitt, M.A.; Potera, G.T.

    1983-01-01T23:59:59.000Z

    The Potomac Electric Power Company (PEPCO) has owned and operated the Faulkner coal ash storage facility in southern Charles County, Maryland since 1970. This site was designed and is operated specifically to handle, in an environmentally sound manner, the large quantities of coal ash produced at the nearby Morgantown Generating Station. This report describes the site, its setting, and its interactions with the local environment.

  10. Impact of hydroxypropylguars on the early age hydration1 of portland cement2

    E-Print Network [OSTI]

    Impact of hydroxypropylguars on the early age hydration1 of portland cement2 3 4 Thomas Poinot: govin@emse.fr12 hal-00758284,version1-29Nov2012 Author manuscript, published in "Cement and Concrete on cement hydration was investigated in order to improve17 understanding on the delayed effect induced

  11. Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. I: Formulation

    E-Print Network [OSTI]

    Mobasher, Barzin

    Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. I: Formulation subject headings: Damage; Models; Sulfates; Cements. Introduction A majority of the durability issues. Portland cement-based materials subjected to attack from external sulfates may suffer from two types of dam

  12. DELETERIOUS EXPANSION OF CEMENT PASTE SUBJECTED TO WET-DRY CYCLES

    E-Print Network [OSTI]

    ·I CEMENT PASTE SUBJECTED TO WET-DRY CYCLES John A. Wells*, Emmanuel K with five cements produced in different regions of Canada. Test specimens with nominal diameters of 25 mm program show that cement paste specimens exhibit significant differences in the magnitude of expansion

  13. Alkaline stability of cellulose ethers and impact of their degradation products on cement hydration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Alkaline stability of cellulose ethers and impact of their degradation products on cement-mail address: pourchez@emse.fr emse-00449712,version1-18Sep2010 Author manuscript, published in "Cement the potential role of cellulose ethers degradation on the alteration of the cement hydration kinetics

  14. Influence of Nucleation Seeding on the Compressive Strength of Ordinary Portland Cement and Alkali

    E-Print Network [OSTI]

    Portland Cement and Alkali Activated Blast-Furnace Slag M. Hubler, H. Jennings OF NUCLEATION SEEDING ON THE COMPRESSIVE STRENGTH OF ORDINARY PORTLAND CEMENT AND ALKALI ACTIVATED BLAST on the early hydration kinetics and compressive strength by seeding of Portland cement and alkali

  15. On the initial stages of cement hydration S. J. Preece, J. Billingham and A. C. King

    E-Print Network [OSTI]

    Billingham, John

    On the initial stages of cement hydration S. J. Preece, J. Billingham and A. C. King School the initial mixing of cement, an induction period occurs during which its consistency remains constant- stituent of cement, which is believed to be responsible for the initial development of its strength. Our

  16. Changes in Cement Paste and Mortar Fluidity after mixing induced by PCP

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Changes in Cement Paste and Mortar Fluidity after mixing induced by PCP: A parametric study-type superplasticizer (PCP) and cement hydration is not fully understood and incompatibilities between concrete-fluidification" by slump flow tests on mortar. Next, the time evolution of the rheological behaviour of cement pastes

  17. Cement & Concrete Science Conference: Leeds, 2009 Hydration of alite containing aluminium

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Cement & Concrete Science Conference: Leeds, 2009 Hydration of alite containing aluminium Begarin in cement is tricalcium silicate which leads during its hydration to the nucleation and growth of calcium silicate hydrate (referred to C-S-H (CaO)x-SiO2-(H2O)y). The development of this hydrate around the cement

  18. INFLUENCE OF HYDROXYPROPYLGUARS ON FRESH STATE PROPERTIES OF CEMENT-BASED MORTARS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 INFLUENCE OF HYDROXYPROPYLGUARS ON FRESH STATE PROPERTIES OF CEMENT-BASED MORTARS Thomas Poinot that are the reference for this type of admixtures, these molecules delay the hydration of cement. Moreover, the effect on the water retention capacity of the mortar and the cement hydration kinetics. Keywords: Hydroxy

  19. Sr radionuclide in cement: An atomistic modeling study Mostafa Youssef a

    E-Print Network [OSTI]

    Yildiz, Bilge

    Docking 90 Sr radionuclide in cement: An atomistic modeling study Mostafa Youssef a , Roland J: Available online xxxx Keywords: Molecular simulation Cement Nuclear waste storage Mechanical properties a b crystalline analog, the 9 Å-tobermorite. C­S­H is the major binding phase of cement. Strontium was shown

  20. Shallow-burial dolomite cement: a major component of many ancient sucrosic dolomites

    E-Print Network [OSTI]

    Hiatt, Eric E.

    Shallow-burial dolomite cement: a major component of many ancient sucrosic dolomites PHILIP W 54901, USA (E-mail: hiatt@uwosh.edu) ABSTRACT Dolomite cement is a significant and widespread component of Phanerozoic sucrosic dolomites. Cements in dolomites that were never deeply buried are limpid, have planar

  1. HEC influence on cement hydration measured by conductometry J. Pourchez 1 *

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 HEC influence on cement hydration measured by conductometry J. Pourchez 1 * -- P. Grosseau 1 -- R-mail address: pourchez@emse.fr emse-00449716,version1-18Sep2010 Author manuscript, published in "Cement cellulose (HEMC) and hydroxypropylmethyl cellulose (HPMC) molecular parameters on cement hydration

  2. Effect of gaseous cement industry effluents on four species of Amlie Talec a, b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of gaseous cement industry effluents on four species of microalgae Amélie Talec a, b , Myrvline Philistin a the possibility to grow microalgae with CO2 from gaseous effluent of cement industry. Four microalgal species the composition of a typical Cement Flue Gas (CFG). In a second stage, the culture submitted to the CFG received

  3. Probing Water Phases in Cement Blends using 1 Magnetic Resonance Relaxometry

    E-Print Network [OSTI]

    Sheffield, University of

    Probing Water Phases in Cement Blends using 1 H Nuclear Magnetic Resonance Relaxometry Jean)114 222 5973 Fax: +44 (0)114 222 5943 E-Mail: j.gorce@sheffield.ac.uk Extended Abstract: Cement and Concrete Science, Warwick, 16th + 17th September 2004 Introduction The nuclear industry uses blended cement

  4. Influence of hydroxypropylguars on rheological behaviour of cement-based mortars

    E-Print Network [OSTI]

    Boyer, Edmond

    Influence of hydroxypropylguars on rheological behaviour of cement-based mortars Thomas Poinot-mail address: govin@emse.fr hal-01056877,version1-21Aug2014 Author manuscript, published in "Cement, these molecules can also impact also the rheological behavior of cement-based materials. The influence of HPG

  5. A multiphase model for the early stages of the hydration of retarded oilwell cement

    E-Print Network [OSTI]

    Billingham, John

    A multiphase model for the early stages of the hydration of retarded oilwell cement J. Billingham, Birmingham B15 2TT, UK A.M. Harrisson The Rugby Group, RMC House Rugby CV21 2DT, UK Abstract. Cement is used in the oil industry to line oil wells. The major com- ponents of oilwell cement are tricalcium silicate (C3S

  6. CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY Guy of Imports in the U.S. Cement Industry. Guy Meunier INRA Ecole Polytechnique Jean-Pierre Ponssard CNRS Ecole decisions. This paper examines the nature of this relationship in the U.S. cement industry. Firms

  7. NMR investigations of water retention mechanism by cellulose ethers in cement-based materials

    E-Print Network [OSTI]

    Boyer, Edmond

    1 NMR investigations of water retention mechanism by cellulose ethers in cement-based materials J of freshly-mixed white cement pastes. NMRD is useful to determine the surface diffusion coefficient of water, the specific surface area and the hydration kinetics of the cement-based material. In spite of modifications

  8. CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY. AN EMPIRICAL STUDY OF THE US CEMENT INDUSTRY, 19942006*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY. AN EMPIRICAL STUDY OF THE US CEMENT INDUSTRY Demand Uncertainty. An Empirical Study of the US Cement Industry, 19942006* JeanPierre Ponssard of the theory literature on this topic in an empirical study of the US cement industry between 1994

  9. Impact of hydroxypropylguars on the early age hydration1 of portland cement2

    E-Print Network [OSTI]

    Boyer, Edmond

    Impact of hydroxypropylguars on the early age hydration1 of portland cement2 3 4 Thomas Poinot: govin@emse.fr12 hal-00758284,version2-15Feb2013 Author manuscript, published in "Cement and Concrete on cement hydration was investigated in order to improve17 understanding on the delayed effect induced

  10. Monotonic and cyclic flexural behavior of plain concrete beams strengthened by fabric-cement based composites

    E-Print Network [OSTI]

    Mobasher, Barzin

    Monotonic and cyclic flexural behavior of plain concrete beams strengthened by fabric-cement based: Pultrusion, fabric, cement paste, cyclic, flexural, ductility, strengthening, concrete beam ABSTRACT notch sensitive. Textile fabrics have been recently developed as a new class of cement based materials

  11. Flow of Fiber-Reinforced Cement Slurries at Elevated Temperatures Y. Wang and C. Meyer

    E-Print Network [OSTI]

    Meyer, Christian

    Flow of Fiber-Reinforced Cement Slurries at Elevated Temperatures Y. Wang and C. Meyer Dept. of Civil Eng. and Eng. Mech., Columbia University, New York, NY 10027, USA Abstract Cement slurries for a constant pressure drop of a fiber-reinforced cement slurry through an eccentric annulus at elevated

  12. Virtual Cement and Concrete Testing Laboratory Educational Version 2.0 User Guide

    E-Print Network [OSTI]

    Magee, Joseph W.

    1 Virtual Cement and Concrete Testing Laboratory Educational Version 2.0 User Guide Jeffrey W of the Virtual Cement and Concrete Testing Laboratory (VCCTL) software, version 2.0. Using the VCCTL software, cement hydration, computer modeling, concrete testing, microstructure, simulation, virtual laboratory

  13. Z .Chemical Geology 152 1998 257271 The thermal and cementation histories of a sandstone petroleum

    E-Print Network [OSTI]

    Z .Chemical Geology 152 1998 257­271 The thermal and cementation histories of a sandstone petroleum of the cement formed, the maturation of petroleum in the interbedded shales likely postdates cementation. q 1998 and economic ) Corresponding author. Exxon Production Research Company, P.O 2189, Houston, TX 77252-2189, USA

  14. CHEMICAL AND HYDROLOGIC DATA FROM THE CEMENT CREEK AND UPPER ANIMAS RIVER CONFLUENCE AND

    E-Print Network [OSTI]

    CHEMICAL AND HYDROLOGIC DATA FROM THE CEMENT CREEK AND UPPER ANIMAS RIVER CONFLUENCE AND MIXING.S. Geological Survey #12;CHEMICAL AND HYDROLOGIC DATA FROM THE CEMENT CREEK AND UPPER ANIMAS RIVER CONFLUENCE.H., Schemel, L.E., 2007, Chemical and hydrologic data form the Cement Creek and upper Animas River confluence

  15. The effect of BaCO3 on the hydration of OPC and composite cements

    E-Print Network [OSTI]

    Sheffield, University of

    The effect of BaCO3 on the hydration of OPC and composite cements Claire A. Utton* and Neil B of ordinary Portland cement (OPC) and up to 90% blast furnace slag (BFS), are used to encapsulate Intermediate. The effect of BaCO3 on the hydration properties of composite cements is being studied. This paper reports

  16. Ash level meter for a fixed-bed coal gasifier

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV)

    1984-01-01T23:59:59.000Z

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  17. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect (OSTI)

    Robert Hurt; Eric Suuberg; John Veranth

    2001-12-26T23:59:59.000Z

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; the effect of various low-NOx firing modes on ash properties and adsorptivity; and the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. This first project period, experiments were carried out to better understand the fundamental nature of the ozonation effect on ash. Carbon surfaces were characterized by surfactant adsorption, and by X-ray Photoelectron Spectroscopy before and after oxidation, both by air at 440 C and by ozone at room temperature. The results strongly suggest that the beneficial effect of ozonation is in large part due to chemical modification of the carbon surfaces.

  18. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect (OSTI)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen; Indrek Kulaots

    2004-02-13T23:59:59.000Z

    The overall objective of the present project was to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific issues addressed included: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity based on pilot-plant studies; and (3) the kinetics and mechanism of ash ozonation. This laboratory data has provided scientific and engineering support and underpinning for parallel process development activities. The development work on the ash ozonation process has now transitioned into a scale-up and commercialization project involving a multi-industry team and scheduled to begin in 2004. This report describes and documents the laboratory and pilot-scale work in the above three areas done at Brown University and the University of Utah during this three-year project.

  19. Ash Reduction of Corn Stover by Mild Hydrothermal Preprocessing

    SciTech Connect (OSTI)

    M. Toufiq Reza; Rachel Emerson; M. Helal Uddin; Garold Gresham; Charles J. Coronella

    2014-04-22T23:59:59.000Z

    Lignocellulosic biomass such as corn stover can contain high ash content, which may act as an inhibitor in downstream conversion processes. Most of the structural ash in biomass is located in the cross-linked structure of lignin, which is mildly reactive in basic solutions. Four organic acids (formic, oxalic, tartaric, and citric) were evaluated for effectiveness in ash reduction, with limited success. Because of sodium citrate’s chelating and basic characteristics, it is effective in ash removal. More than 75 % of structural and 85 % of whole ash was removed from the biomass by treatment with 0.1 g of sodium citrate per gram of biomass at 130 °C and 2.7 bar. FTIR, fiber analysis, and chemical analyses show that cellulose and hemicellulose were unaffected by the treatment. ICP–AES showed that all inorganics measured were reduced within the biomass feedstock, except sodium due to the addition of Na through the treatment. Sodium citrate addition to the preconversion process of corn stover is an effective way to reduced physiological ash content of the feedstock without negatively impacting carbohydrate and lignin content.

  20. Determination of age in forensic dentistry from cemental incremental lines

    E-Print Network [OSTI]

    Sousa, Eliane Marques Duarte de

    1987-01-01T23:59:59.000Z

    DETERMINATION OF AGE IN FORENSIC DENTISTRY FROM CEMENTAL INCREMENTAL LINES Thes' s by ELIANE MARJUES DLARTE DF SOUSA Submitted to the Graduate College of Texas A?M Univer ity ' n r. srt' al f"lf' llment of the requirements for the degree... of MASTEP OF S IENCE December 1987 Major Subject: Veterinary Anatomy DETERMINATION OF AGE IN FORENSIC DENTISTRy FROM CEMENTAL INCREMENTAL LINES A Thesis by ELIANE MARQUES DUARTE DE SOUSA Approved as to style and content by: eorge G. Stott (Chairman...

  1. Cementation factor and water saturation exponent in low porosity sandstones

    E-Print Network [OSTI]

    Owen, Stephen Douglas

    1984-01-01T23:59:59.000Z

    and cementation factor when porosity was below 0. 15, and a linear relationship was found between cementa- tion factor and clay content. No relationship was found between porosity and water saturat1on exponent, or cementation factor and water saturat1on... granular formations in the absence of laboratory analysis. In 1977, Bush and Jenkins~~ suggested a simple method for deter- mining clay content, which was used in this study. 103 102 z 0 M 0 10 2 3 4 5678910 2 3 4 5 6 7 8 1p2 POROSITY Fig. I...

  2. Clay formation and metal fixation during weathering of coal fly ash

    SciTech Connect (OSTI)

    Zevenbergen, C.; Bradley, J.P.; Reeuwijk, L.P. Van; Shyam, A.K.; Hjelmar, O.; Comans, R.N.J.

    1999-10-01T23:59:59.000Z

    The enormous and worldwide production of coal fly ash cannot be durably isolated from the weathering cycle, and the weathering characteristics of fly ash must be known to understand the long-term environmental impact. The authors studied the weathering of two coal fly ashes and compared them with published data from weathered volcanic ash, it's closest natural analogue. Both types of ash contain abundant aluminosilicate glass, which alters to noncrystalline clay. However, this study reveals that the kinetics of coal fly ash weathering are more rapid than those of volcanic ash because the higher pH of fresh coal fly ash promotes rapid dissolution of the glass. After about 10 years of weathering, the noncrystalline clay content of coal fly ash is higher than that of 250-year-old volcanic ash. The observed rapid clay formation together with heavy metal fixation imply that the long-term environmental impact of coal fly ash disposal may be less severe and the benefits more pronounced than predicted from previous studies on unweathered ash. Their findings suggest that isolating coal fly ash from the weathering cycle may be counterproductive because, in the long-term under conditions of free drainage, fly ash is converted into fertile soil capable of supporting agriculture.

  3. Modeling of diffusive mass transport in micropores in cement based materials

    SciTech Connect (OSTI)

    Yamaguchi, Tetsuji, E-mail: yamaguchi.tetsuji@jaea.go.j [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan); Negishi, Kumi [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan); Taiheiyo Consultant Company Limited, 2-4-2, Osaku, Sakura, Chiba 285-8655 (Japan); Hoshino, Seiichi; Tanaka, Tadao [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan)

    2009-12-15T23:59:59.000Z

    In order to predict long-term leaching behavior of cement constituents for safety assessments of radioactive waste disposal, we modeled diffusive mass transport in micropores in cement based materials. Based on available knowledge on the pore structure, we developed a transport porosity model that enables us to estimate effective porosity available for diffusion (transport porosity) in cement based materials. We microscopically examined the pore structure of hardened cement pastes to partially verify the model. Effective diffusivities of tritiated water in hardened cement pastes were also obtained experimentally, and were shown to be proportional to the estimated transport porosity.

  4. 'The Overriding Demand for Energy Conservation in the Cement Industry' An Update

    E-Print Network [OSTI]

    Spellman, L. U.

    1981-01-01T23:59:59.000Z

    addi tives. While cement makes up only about 7 to 15 percent of the weight of concrete, it is 1:5y far the greatest contributor of energy content in the mixture. Cement, usually portland cement, is a product derived from pyro-processing calcareous... and argillaceous materials such as limestone and clay or shale into an intermediate fused material called clinker, which is subse quently ground together with a small amount of gypsum. Portland cement is the principal material produced by the U. S. cement...

  5. Cement fatigue and HPHT well integrity with application to life of well prediction

    E-Print Network [OSTI]

    Ugwu, Ignatius Obinna

    2009-05-15T23:59:59.000Z

    to the cyclic loading and few data sets may not be sufficient to give an adequate description of cement behavior under fatigue loading. Studies were conducted by Kim and Kim 2 on the fatigue behavior of high strength concrete using a type I Portland cement....3: Comparison of Max Stress Levels to Number of Cycles for Different Cement Strengths [2] Antrim 3 conducted fatigue studies on hardened ordinary Portland (type I) cement paste using 2 specimens; one with a high-water cement ratio of 0.7 and another...

  6. Metal recovery from fly ash generated from vitrification process for MSW ash

    SciTech Connect (OSTI)

    Izumikawa, Chiaki [Dowa Mining Co. Ltd., Chiyoda, Tokyo (Japan)] [Dowa Mining Co. Ltd., Chiyoda, Tokyo (Japan)

    1996-12-31T23:59:59.000Z

    Metal-bearing wastes have to be carefully treated because heavy metals could be leached out under uncontrolled conditions when disposed of in a landfill. Consequently, heavy metals should be principally recovered and recycled forever. From this standpoint, the author has been trying to develop a technology to recover heavy metals from toxic vitrification fly ash for recycling to smelters. After a number of laboratory-scale experiments, pilot plant tests were successfully carried out and the developed process has been proven to be commercially realized. The main features of the process are that it recovers almost 100% of the heavy metals, simultaneously separating the metals which are recovered in a lead smelter from those in a zinc smelter, and that the output of the process are only metallurgical products recyclable for smelters and the effluent water which can be released into the environment. The process is considered an ideal one for the treatment of toxic fly ash from the viewpoint of not only natural resources but also environmental conservation.

  7. CONSTRUCTION-GRADE CEMENT PRODUCTION FROM CONTAMINATED SEDIMENTS USING

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    developed the Cement-LockTM Technology a versatile, cost-effective, and environmentally friendly-Region 2 and the U.S. Department of Energy. Keywords: Dredging, dredged material, beneficial use dredged from the New York/New Jersey harbor to maintain water depths for shipping channels, berthing areas

  8. Surface effects of cement-based solidified waste forms

    E-Print Network [OSTI]

    Pavlonnis, George

    1998-01-01T23:59:59.000Z

    This study was performed in order to determine-nine if the surface characteristics of cement-based waste forms were different than those of the bulk material. This was done as a prelude to the potential development of an accelerated leach test...

  9. Study of composite cement containing burned oil shale

    E-Print Network [OSTI]

    Dalang, Robert C.

    Study of composite cement containing burned oil shale Julien Ston Supervisors : Prof. Karen properties. SCMs can be by-products from various industries or of natural origin, such as shale. Oil shale correctly, give a material with some cementitious properties known as burned oil shale (BOS). This study

  10. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    SciTech Connect (OSTI)

    Jacobs, Torsten; Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)

    2013-07-01T23:59:59.000Z

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

  11. Contact Mechanics Based Mechanical Characterization of Portland Cement Paste

    E-Print Network [OSTI]

    Jones, Christopher

    2012-02-14T23:59:59.000Z

    that the calcium silicate hydrate (C-S-H) phase of hydrated portland cement has different properties on the nanometric scale than on the micron scale. Packing density of C-S-H particles is proposed as an explanation for the disparity in the measured results...

  12. Contact Mechanics Based Mechanical Characterization of Portland Cement Paste 

    E-Print Network [OSTI]

    Jones, Christopher

    2012-02-14T23:59:59.000Z

    are derived to characterize creep indentation tests performed on hardened cement paste and to extract the time-dependent properties. The effect of approximating C-S-H viscoelastic properties with a time-independent Poisson's ratio is discussed, and arguments...

  13. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    SciTech Connect (OSTI)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10T23:59:59.000Z

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  14. More durable roof coverings such as steel and fiber cement

    E-Print Network [OSTI]

    - heating equipment saves money. Tankless water heaters provide hot water on demand at a preset temperature- cement siding is termite- and water-resistant and warrantied to last 50 years. Increasing the amount natural daylighting. Xeriscaping, or using native plants, significantly reduces the need for watering

  15. Study on the Volatility of Cesium in Dry Ashing Pretreatment and Dissolution of Ash by Microwave Digestion System - 13331

    SciTech Connect (OSTI)

    Choi, Kwang-Soon; Lee, Chang Heon; Ahn, Hong-Joo; Park, Yong Joon; Song, Kyuseok [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)] [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    Based on the regulation of the activity concentration of Cs-137, Co-58, Co-60, Fe-55, Ni-59, Ni-63, Sr-90, Nb-94, and Tc-99, and the total alpha from the radioactive waste acceptance criteria, the measurement of the activity concentration of these nuclides in low and intermediate levels of radioactive waste such as in paper, cotton, vinyl and plastic samples was investigated. A dry ashing method was applied to obtain a concentration effect of the samples. Owing to the temperature dependence of the volatility for cesium, the temperature of 300 to 650 deg. C was examined. It was found that 450 deg. C is the optimum dry ashing temperature. After dry ashing, the produced ash was dissolved with HNO{sub 3}, HCl, and HF by a high-performance microwave digestion system. The ash sample, for the most part, was completely dissolved with 10 mL of HNO{sub 3}, 4 mL of HCl, and 0.25 mL of HF by a high-performance microwave digestion system using a nova high temperature rotor at 250 deg. C for 90 min until reaching 0.2 g. To confirm the reliability of cesium loss after the performance of the dry ashing procedure, a cesium standard solution for AAS and a Cs-137 standard solution for gamma spectrometry were added to a paper towel or a planchet of stainless steel, respectively. Cesium was measured by AAS, ICP-MS, and gamma spectrometry. The volatility of cesium did not occur until 450 deg. C ashing. (authors)

  16. Release of Ammonium and Mercury from NOx Controlled Fly Ash

    SciTech Connect (OSTI)

    Schroeder, K.T.; Cardone, C.R.; Kim, A.G

    2007-07-01T23:59:59.000Z

    One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

  17. Ash bed level control system for a fixed-bed coal gasifier

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV); Rotunda, John R. (Fairmont, WV)

    1984-01-01T23:59:59.000Z

    An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

  18. Non-Destructive X-ray Measurement of Soot, Ash, Washcoat and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    X-ray Measurement of Soot, Ash, Washcoat and Regeneration Damage for DPFs Non-Destructive X-ray Measurement of Soot, Ash, Washcoat and Regeneration Damage for DPFs New commercially...

  19. Geotechnical properties of fly and bottom ash mixtures for use in highway embankments

    SciTech Connect (OSTI)

    Kim, B.; Prezzi, M.; Salgado, R. [Korean Institute for Water & Environment, Taejon (Republic of Korea). Dam Safety Research Center

    2005-07-01T23:59:59.000Z

    Class F fly ash and bottom ash are the solid residue byproducts produced by coal-burning electric utilities. They are usually disposed of together as a waste in utility disposal sites with a typical disposal rate of 80% fly ash and 20% bottom ash. Direct use of these materials in construction projects consuming large volumes of materials, such as highway embankment construction, not only provides a promising solution to the disposal problem, but also an economic alternative to the use of traditional materials. Representative samples of class F fly and bottom ash were collected from two utility power plants in Indiana and tested for their mechanical properties (compaction, permeability, strength, stiffness, and compressibility). Three mixtures of fly and bottom ash with different mixture ratios (i.e., 50, 75, and 100% fly ash content by weight) were prepared for testing. Test results indicated that ash mixtures compare favorably with conventional granular materials.

  20. E-Print Network 3.0 - ashing wet Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology 4 By-Products Utilization Summary: A3, containing 20% clean coal ash and 5% wet collected Class F ash had compressive strengths... 0 Center for...

  1. E-Print Network 3.0 - ashing dry Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shrinkage of Non-Air Entrained HRWRA Concrete -0.05% 0.00% 0.05% 0... NS3, 33% Clean Coal Ash, 5% Class F Fly Ash Fig. 15 - ... Source: Wisconsin-Milwaukee, University of -...

  2. E-Print Network 3.0 - ash material analisis Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was used in this work. An ASTM Class F fly ash... , and N3) were proportioned with clean coal fly ash containing 22% ... Source: Wisconsin-Milwaukee, University of - Department...

  3. E-Print Network 3.0 - alkali-activated fly ash Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering ; Materials Science 12 By-Products Utilization Summary: CONTAINING CLEAN-COAL ASH AND CLASS F FLY ASH By Tarun R. Naik, Rudolph N. Kraus, Rafat Siddique... of...

  4. E-Print Network 3.0 - activated fly ash Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering ; Materials Science 9 By-Products Utilization Summary: CONTAINING CLEAN-COAL ASH AND CLASS F FLY ASH By Tarun R. Naik, Rudolph N. Kraus, Rafat Siddique... of...

  5. E-Print Network 3.0 - ashes total contents Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fly ash content for normal concrete... contained fly ash up to a maximum of 35% of clean-coal ... Source: Wisconsin-Milwaukee, University of - Department of Civil Engineering and...

  6. Tephrochronology and Stratigraphy of Eocene and Oligocene Volcanic Ashes of East and Central Texas

    E-Print Network [OSTI]

    Heintz, Mindi

    2013-12-02T23:59:59.000Z

    using neutron activation analysis (NAA) of bulk ash and glass shards, inductively coupled plasma mass spectrometry (ICPMS) of bulk ash, and electron microprobe analysis of both apatite phenocrysts and glass shards to characterize their geochemistry...

  7. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents

    E-Print Network [OSTI]

    Schafer, William R.

    Erratum In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical neurons highlighted. From the ASH cell body, the dendrite runs anteriorly until the tip of the head ending

  8. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22T23:59:59.000Z

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  9. Soil stabilization using optimum quantity of calcium chloride with Class F fly ash

    E-Print Network [OSTI]

    Choi, Hyung Jun

    2006-10-30T23:59:59.000Z

    Ash at 90days ............... 38 5-13 Stress Strain Curve of 6% CaCl2+10% Fly Ash at 90days ............... 39 5-14 Stress Strain Curve of 4% CaCl2+15% Fly Ash at 90days ............... 39 5-15 Environmental Scanning Electron Microscopy... (E-SEM) of Class F Fly Ash ................................................................................. 40 5-16 Environmental Scanning Electron Microscopy (E-SEM) of Control Soil after 7 Days of Curing...

  10. Ash reduction system using electrically heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16T23:59:59.000Z

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  11. Continuous air agglomeration method for high carbon fly ash beneficiation

    DOE Patents [OSTI]

    Gray, McMahon L. (Pittsburgh, PA); Champagne, Kenneth J. (Monongahela, PA); Finseth, Dennis H. (Pittsburgh, PA)

    2000-01-01T23:59:59.000Z

    The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carboree mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

  12. Coal-ash slag attack and corrosion of refractories

    SciTech Connect (OSTI)

    Bonar, J.A. (Carborundum Co., Niagara Falls, NY); Kennedy, C.R.; Swaroop, R.B.

    1980-04-01T23:59:59.000Z

    The corrosion characteristics of a variety of fused-cast refractories in contact with various coal-ash slags were investigated. A fused-cast chrome-spinel refractory exhibited excellent corrosion resistance to both acidic and basic coal-ash slags at 1500/sup 0/C, even in the absence of water cooling. The slag-refractory interaction was limited to the formation of a stable band of recrystallized hercynitic spinel. Alumina-chromia refractories were superior to alumina and magnesia-chrome refractories when exposed to acidic slags.

  13. Electrical conductivity is a parameter that can be used to monitor the entire hardening process of oilwell cement slurries. The theo-

    E-Print Network [OSTI]

    Backe, Knut

    process of oilwell cement slurries. The theo- retical relationship among conductivity, porosity, cement and that rapid hydration will reduce the risk of gas migration. Introduction The main purposes of oilwell cements hardening process of oilwell cement slurries is important for successful cementing operations. Several

  14. A Coupled Nanoindentation/SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C-S-H/Ca(OH)[subscript 2] Nanocomposites

    E-Print Network [OSTI]

    Chen, Jeffrey J.

    A low water/cement ratio (w/c=0.20) hydrated Portland cement paste was analyzed by grid-indentation coupled with ex situ scanning electron microscope-energy-dispersive X-ray spectra (SEM-EDS) analysis at each indentation ...

  15. RESEARCH NEEDS IN MINERAL BY-PRODUCTS UTILIZATION: FLY ASH, SILICA FUME AND SLAG

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of coal in electric power plants. It is captured by either mechanical separators, electrostatic. 2.0 Research Needs Concerning Fly Ash Utilization 2.1 CLSM Fly Ash Slurry Controlled low strength materials (CLSM), as classified by ACI Committee 229, have been produced using fly ash slurry [9

  16. Correlation relations between mineralogical components in ash from Kaa-Khem coals

    SciTech Connect (OSTI)

    N.N. Yanchat; L.Kh. Tas-ool [Russian Academy of Sciences, Kyzyl (Russia). Tuvinian Institute for Complex Exploration of Natural Resources

    2008-08-15T23:59:59.000Z

    Regression analysis was used to study correlation relations between the mineral components of coals. Regularities in the variability of the concentrations of individual ash-forming elements with changing ash contents of coals and changing seam depth were found. The X-ray diffraction characteristics of coal ashes and the qualitative composition of their mineralogical components are presented.

  17. INCO-WBC-1-509173 Reintegration of coal ash disposal sites and mitigation of

    E-Print Network [OSTI]

    1 INCO-WBC-1-509173 RECOAL Reintegration of coal ash disposal sites and mitigation of pollution of coal ash disposal sites Due date of deliverable: 12.2007 Actual submission date: 02.2008 Start date of the consortium (including the Commission Services) #12;2 Handbook on treatment of coal ash disposal sites Preface

  18. TRACE ELEMENTS LEACHING FROM ORGANIC SOILS STABILIZED WITH HIGH CARBON FLY ASH

    E-Print Network [OSTI]

    Aydilek, Ahmet

    and Se for organic soil-HCFA mixtures. Keywords: organic soil, fly ash, coal combustion products, CCPs INTRODUCTION Fly ash is a silt-size particulate collected by air pollution control systems at coal fly ashes (HCFAs) generally are disposed in landfills (Hodges and Keating 1999). However, many HCFAs

  19. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater

    E-Print Network [OSTI]

    Shawabkeh, Reyad A.

    Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater Reyad; available online 29 October 2003 Abstract A by-product fly ash from oil shale processing was converted shale; Ash; Zeolite; Cadmium and lead removal 1. Introduction Oil shale exists in Jordan with large

  20. Hydration and strength development of binder based on high-calcium oil shale fly ash

    SciTech Connect (OSTI)

    Freidin, C. [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)] [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)

    1998-06-01T23:59:59.000Z

    The properties of high-calcium oil shale fly ash and low-calcium coal fly ash, which are produced in Israeli power stations, were investigated. High-calcium oil shale fly ash was found to contain a great amount of CaO{sub free} and SO{sub 3} in the form of lime and anhydrite. Mixtures of high-calcium oil shale fly ash and low-calcium coal fly ash, termed fly ash binder, were shown to cure and have improved strength. The influence of the composition and curing conditions on the compressive strength of fly ash binders was examined. The microstructure and the composition of fly ash binder after curing and long-term exposure in moist air, water and open air conditions were studied. It was determined that ettringite is the main variable in the strength and durability of cured systems. The positive effect of calcium silicate hydrates, CSH, which are formed by interaction of high-calcium oil shale fly ash and low-calcium coal fly ash components, on the carbonation and dehydration resistance of fly ash binder in open air is pronounced. It was concluded that high-calcium oil shale fly ash with high CaO{sub free} and SO{sub 3} content can be used as a binder for building products.

  1. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect (OSTI)

    S. W. Clark and H. M Sulloway

    2007-10-31T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  2. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect (OSTI)

    S. W. Clark and H. M. Sulloway

    2007-09-26T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  3. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    SciTech Connect (OSTI)

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01T23:59:59.000Z

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total technical fuel efficiency potential equal to 7,949 terajoules (TJ), accounting for 8% of total fuel used in the studied cement plants in 2008. All the fuel efficiency potential is shown to be cost effective. Carbon dioxide (CO{sub 2}) emission reduction potential associated with cost-effective electricity saving is 383 kiloton (kt) CO{sub 2}, while total technical potential for CO{sub 2} emission reduction from electricity-saving is 940 ktCO{sub 2}. The CO{sub 2} emission reduction potentials associated with fuel-saving potentials is 950 ktCO{sub 2}.

  4. Scanning probe microscopy: Sulfate minerals in scales and cements

    SciTech Connect (OSTI)

    Hall, C. [Schlumberger Cambridge Research (United Kingdom)

    1995-11-01T23:59:59.000Z

    The principles of scanning probe microscopy (SPM) are illustrated with examples from oilfield mineralogy, particularly emphasizing sulfate minerals involved in scale formation and cement hydration chemistry. The topography of the (010) cleavage surface of gypsum observed by atomic force microscopy shows atomically flat terraces separated by shallow steps often only one unit cell high. SPM allows direct observation of processes on mineral surfaces while they are in contact with solutions. The dissolution etching and crystal growth of gypsum and barite are discussed and rates of step migration estimated. The orientation of steps is related to the crystallographic axes. The action of phosphonate crystal growth inhibitor on gypsum and of a chelating scale solvent on barite are also shown. The multiphase microstructure of an oilwell cement clinker is described in relation to its hydration chemistry in contact with water and its reaction with sulfate ions.

  5. Liquid-Solid Phase Transition Alloy as Reversible and Rapid Molding Bone Cement

    E-Print Network [OSTI]

    Yi, Liting; Liu, Jing

    2013-01-01T23:59:59.000Z

    Bone cement has been demonstrated as an essential restorative material in the orthopedic surgery. However current materials often imply unavoidable drawbacks, such as tissue-cement reaction induced thermal injuries and troublesome revision procedure. Here we proposed an injectable alloy cement to address such problems through its liquid-solid phase transition mechanism. The cement is made of a unique alloy BiInSnZn with a specifically designed low melting point 57.5{\\deg}C. This property enables its rapid molding into various shapes with high plasticity. Some fundamental characteristics including mechanical strength behaviors and phase transition-induced thermal features have been measured to demonstrate the competence of alloy as unconventional cement with favorable merits. Further biocompatible tests showed that this material could be safely employed in vivo. In addition, experiments also found the alloy cement capability as an excellent contrast agent for radiation imaging. Particularly, the proposed alloy...

  6. Volcanic ash: What it is and how it forms

    SciTech Connect (OSTI)

    Heiken, G.

    1991-09-13T23:59:59.000Z

    There are four basic eruption processes that produce volcanic ash: (1) decompression of rising magma, gas bubble growth, and fragmentation of the foamy magma in the volcanic vent (magmatic), (2) explosive mixing of magma with ground or surface water (hydrovolcanic), (3) fragmentation of country rock during rapid expansion of steam and/or hot water (phreatic), and (4) breakup of lava fragments during rapid transport from the vent. Variations in eruption style and the characteristics of volcanic ashes produced during explosive eruptions depend on many factors, including magmatic temperature, gas content, viscosity and crystal content of the magma before eruption, the ratio of magma to ground or surface water, and physical properties of the rock enclosing the vent. Volcanic ash is composed of rock and mineral fragments, and glass shards, which is less than 2 mm in diameter. Glass shard shapes and sizes depend upon size and shape of gas bubbles present within the magma immediately before eruption and the processes responsible for fragmentation of the magma. Shards range from slightly curved, thin glass plates, which were broken from large, thin-walled spherical bubble walls, to hollow needles broken from pumiceous melts containing gas bubbles stretched by magma flow within the volcanic vent. Pumice fragments make up the coarser-grained portions of the glass fraction. Particle sizes range from meters for large blocks expelled near the volcanic vent to nanometers for fine ash and aerosol droplets within well-dispersed eruption plumes. 18 refs., 6 figs., 1 tab.

  7. Maintaining and Improving Marketability of Coal Fly Ash

    E-Print Network [OSTI]

    is produced when coal is consumed by power plants Fly ash can be used beneficially in numerous applications-fired power plants work to create cleaner skies, they'll likely fill up landfills with millions more tons.05 0.05 #12;6 Challenge: Mercury Controls One approach to reducing mercury emissions from power plants

  8. Cactus, Pixies, 04 Sept 09 Sittin' here wishin' on a cement floor

    E-Print Network [OSTI]

    Reiners, Peter W.

    Cactus, Pixies, 04 Sept 09 Em Sittin' here wishin' on a cement floor G Em just wishin' that I had that dress when you di-yi-yi-yi-yine Em Sittin' here wishin' on a cement floor G Em just wishin' that I had it to me Em Sittin' here wishin' on a cement floor G Em just wishin' that I had something you wore #12;

  9. Quantifying the Co-benefits of Energy-Efficiency Programs: A Case Study of the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    ingredient in cement: vertical shaft kilns and rotary kilns.cement was produced by plants using outdated vertical shaft kilns (Vertical shaft kilns (Mt) Rotary (NSP + other) kilns (Mt) Clinker production (Mt) Clinker-cement

  10. Policy Options for Encouraging Energy Efficiency Best Practices in Shandong Province's Cement Industry

    E-Print Network [OSTI]

    Price, Lynn

    2013-01-01T23:59:59.000Z

    experience reviewing energy consumption data reported bybe noted that energy consumption data are not directlythe cement sector energy consumption data published by the

  11. Microsoft Word - NETL-TRS-003-2012_Cementing Research Needs_20121207...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters would help identify key elements for cement design, which would be utilized by API to develop new standards or update existing best practices to ensure safe wellbore...

  12. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    Sustainable Development waste heat recovery World Wide FundTaishan Cement Works Waste Heat Recovery and Utilisation forPlant’s Low Temperature Waste Heat Power Generation Project.

  13. Cementing operations on Fenton Hill during FY1987, 1 October 1986-September 1987

    SciTech Connect (OSTI)

    Cocks, G.G.; Dreesen, D.S.; Gill, P.J.; Root, R.L.

    1988-01-01T23:59:59.000Z

    As part of repairing and sidetracking EE-2 geothermal well, a number of cementing operations were successfully carried out. These included; plugging back of EE-2 below the proposed side track site, cement behind casing at 10220-24 ft, cement behind casing at 9800-04 ft, whipstock plug, and the cementing through perforations of the 9-5/8 in. casing from 6500 ft to the surface. Specific data on each of these operations is given, and the results discussed. 1 ref., 4 figs.

  14. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    dioxide (CO2) emissions from fossil fuel combustion, as wellCO2 emissions (including cement process and fossil fuel combustion

  15. A case study of ultralightweight cementing practices in the Northeastern United States

    SciTech Connect (OSTI)

    Edmondson, T.D.; Benge, O.G.

    1983-11-01T23:59:59.000Z

    Wells in the northeastern United States are generally drilled to a depth of from 3,000 to 6,000 ft. They are usually air drilled through several incompetent formations among which are the Marcellus and Coffee shales. Completions in this area are hampered by very low fracture gradients of 0.4 to 0.6 psi/ft, with most of the formations containing a large number of natural fractures. During cementing, pressures in excess of 1,100-psi hydrostatic can result in breakdown of the formation leading to incomplete fillup on the cement job. This paper will discuss the existing completion practices in this area, which include the use of multistage cementing, and the incorporation of cementing baskets and other downhole tools. The current cement systems in use and the problems encountered in using them will also be discussed. Several case histories of new cementing techniques, using ultralightweight foam-cementing systems, will be presented along with the job design used on these wells. Bond logging of the foam-cemented wells creates an array of special problems for the logging companies, due to the ultra-low densities and the high porosities of these special cementing systems. Newly developed techniques for logging these wells will be discussed, along with the bond logs from the case histories.

  16. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    of Demonstrated Energy Technologies (CADDET), Internationaland MAIN. 1993. Energy Technology in the Cement IndustrialAugust 19, 2009. Energy Technology Support Unit (ETSU).

  17. Estimation of CO2 Emissions from China's Cement Production: Methodologies and Uncertainties

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    L. , 2006. Discussion of CO2 emission reduction in ChineseFurther discussion of CO2 emission reduction in Chinesecalculation method of CO2 emissions of cement production.

  18. Use of fly ash as an admixture for electromagnetic interference shielding Jingyao Cao, D.D.L. Chung*

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    in the United States generate 80 million tons of fly ash as a by-product each year, primarily from coal combustion [1]. Fly ash is typically disposed in landfills, but it is preferred to convert fly ashUse of fly ash as an admixture for electromagnetic interference shielding Jingyao Cao, D.D.L. Chung

  19. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOE Patents [OSTI]

    Beaufrere, A.H.

    1982-04-30T23:59:59.000Z

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  20. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X?ray Computed Microtomography

    SciTech Connect (OSTI)

    Jung, Hun Bok; Jansik, Danielle P.; Um, Wooyong

    2013-01-01T23:59:59.000Z

    ABSTRACT: X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm3, porosity: 40%) and the carbonated zone (density: 2.27 g/cm3, porosity: 23%) after reaction with CO2- saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm3, porosity: 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO2 attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO2 leakage.

  1. JV Task 6 - Coal Ash Resources Research Consortium Research

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Tera Buckley; Bruce Dockter; Kurt Eylands; David Hassett; Loreal Heebink; Erick Zacher

    2008-04-01T23:59:59.000Z

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of coal combustion by-products (CCBs). CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program (JSRP), which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCB performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 1998 to 2007 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. CARRC topical reports were prepared on several completed tasks. Specific CARRC 1998B2007 accomplishments included: (1) Development of several ASTM International Standard Guides for CCB utilization applications. (2) Organization and presentation of training courses for CCB professionals and teachers. (3) Development of online resources including the Coal Ash Resource Center, Ash from Biomass in Coal (ABC) of cocombustion ash characteristics, and the Buyer's Guide to Coal-Ash Containing Products. In addition, development of expanded information on the environmental performance of CCBs in utilization settings included the following: (1) Development of information on physical properties and engineering performance for concrete, soil-ash blends, and other products. (2) Training of students through participation in CARRC research projects. (3) Participation in a variety of local, national, and international technical meetings, symposia, and conferences by presenting and publishing CCB-related papers.

  2. Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills

    SciTech Connect (OSTI)

    J.G. Groppo; T.L. Robl

    2005-09-30T23:59:59.000Z

    Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal of mercury from simulated flue gas. A business model was generated to summarize anti

  3. Properties of concrete incorporating high volumes of ASTM Class F fly ash

    E-Print Network [OSTI]

    Li, Wei Tung

    1995-01-01T23:59:59.000Z

    to be cost effective. It was shown that about two and half dollars per cubic meter could be saved through savings on portland cement....

  4. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01T23:59:59.000Z

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  5. EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS

    SciTech Connect (OSTI)

    Glenn A. Norton; Hongqun Yang; Robert C. Brown; Dennis L. Laudal; Grant E. Dunham; John Erjavec; Joseph M. Okoh

    2002-01-31T23:59:59.000Z

    Tests were performed in simulated flue gas streams using fly ash from the electrostatic precipitators of two full-scale utility boilers. One fly ash was from a Powder River Basin (PRB) coal, while the other was from Blacksville coal. Elemental Hg was injected upstream from samples of fly ash loaded onto filters housed in an oven at 120 or 180 C. Concentrations of oxidized and elemental Hg downstream from the filters were determined using the Ontario Hydro method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables affecting Hg oxidation. The presence of HCl, NO, NO{sub 2}, and SO{sub 2} were all important with respect to Hg oxidation, with NO{sub 2} and HCl being the most important. The presence of NO suppressed Hg oxidation in these tests. Although the two fly ashes were chemically and mineralogically diverse, there were generally no large differences in catalytic potential (for oxidizing Hg) between them. Similarly, no ash fraction appeared to be highly catalytic relative to other ash fractions. This includes fractions enriched in unburned carbon and fractions enriched in iron oxides. Although some differences of lesser magnitude were observed in the amount of oxidized Hg formed, levels of oxidized Hg generally tracked well with the surface areas of the different ashes and ash fractions. Therefore, although the Blacksville fly ash tended to show slightly more catalytic activity than the PRB fly ash, this could be due to the relatively high surface area of that ash. Similarly, for Blacksville fly ash, using nonmagnetic ash resulted in more Hg oxidation than using magnetic ash, but this again tracked well with the relative surface areas of the two ash fractions. Test results suggest that the gas matrix may be more important in Hg oxidation chemistry than the fly ash composition. Combustion tests were performed in which Blacksville and PRB fly ashes were injected into filtered (via a baghouse with Teflon bags) flue gas obtained while firing PRB coal in a 35 kW combustor. The Ontario Hydro method was used to determine the Hg speciation after fly ash injection. Wall effects in the combustor complicated interpretation of testing data, although a number of observations could still be made. The amount of Hg collected in the Ontario Hydro impingers was lower than anticipated, and is probably due to sorption of Hg by the fly ash. While firing PRB coal without any ash injection, the percent oxidized Hg in the gas stream was fairly high (average of 63%). The high levels of vapor phase oxidized Hg in these base line tests may be due to catalytic effects from the refractory materials in the combustor. When PRB fly ash was injected into a filtered PRB flue gas stream, the percentage of oxidized Hg in the gas stream decreased dramatically. Decreases in the percentage of oxidized Hg were also observed while injecting Blacksville fly ash, but to a lesser extent. Injecting whole Blacksville fly ash into the filtered PRB flue gas appeared to result in greater concentrations of oxidized Hg relative to the tests where whole PRB fly ash was injected. However, because the Blacksville fly ash has a relatively high surface area, this may be only a surface area effect.

  6. EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS

    SciTech Connect (OSTI)

    Unknown

    2000-10-01T23:59:59.000Z

    Tests were performed in simulated flue gas streams using two fly ash samples from the electrostatic precipitators of two full-scale utility boilers. One fly ash was derived from a Powder River Basin (PRB) coal, while the other was derived from Blacksville coal (Pittsburgh No. 8 seam). The tests were performed at temperatures of 120 and 180 C under different gas compositions using whole fly ash samples as well as magnetic and nonmagnetic concentrates from sized fly ash. Only the Blacksville ash contained magnetic phases. The whole and fractionated fly ash samples were analyzed for morphology, chemical composition, mineralogical composition, total organic carbon, porosity, and surface area. Mineralogically, the Blacksville ash was composed predominantly of magnetite, hematite, quartz, and mullite, while the PRB ash contained mostly quartz with lesser amounts of lime, periclase, and calcium aluminum oxide. The iron oxides in the Blacksville ash were concentrated almost entirely in the largest size fraction. As anticipated, there was not a clean separation of magnetic (Fe-rich) and nonmagnetic (aluminosilicate-rich) phases for the Blacksville ash. The Blacksville ash had a significantly higher surface area and a much higher unburned carbon content than the PRB ash. Elemental mercury (Hg) streams were injected into the simulated flue gas and passed over filters (housed in a convection oven) loaded with fly ash. Concentrations of total, oxidized, and elemental Hg downstream from the ash samples were determined by the Ontario Hydro Method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables. Based on the statistical analyses, the presence of HCl, NO, NO{sub 2}, and SO{sub 2} and all two-way gas interactions were significant. In addition, it appears that even four-factor interactions between those gases are significant. The HCl, NO{sub 2}, and SO{sub 2} were critical gases resulting in Hg oxidation, while the presence of NO appeared to suppress oxidation. The Blacksville fly ash tended to show slightly more catalytic activity than the PRB fly ash, but this could be largely due to the higher surface area of the Blacksville ash. Temperature was not a statistically important factor. The magnetic (Fe-rich) phases did not appear to be more catalytically active than the nonmagnetic phases, and unburned carbon did not appear to play a critical role in oxidation chemistry.

  7. For the last decades, cement technologies encountered a very rapid evolution following the will to always built quicker with more efficient materials. The additional young appearance of ecological trends pushed cement industries to an adaption and improve

    E-Print Network [OSTI]

    Dalang, Robert C.

    For the last decades, cement technologies encountered a very rapid evolution following pushed cement industries to an adaption and improvement of their production methods in order to mini of the cement with supplementary cementitious mate- rials (SCMs) being generally waste from other industries

  8. The preservation potential of ash layers in the deep-sea: the example of the 1991-Pinatubo ash in the South China Sea

    E-Print Network [OSTI]

    Wetzel, Andreas

    - burrowing animals re-opened their connection to the sea floor to obtain water for respiration and/or food deposited organic fluff with the underlying ash. Consequently, ash deposits thinner than 1 mm have not often of background sedimentation, the availability of benthic food on and within the sediment and pore water oxygen

  9. Construction of an embankment with a fly and bottom ash mixture: field performance study

    SciTech Connect (OSTI)

    Yoon, S.; Balunaini, U.; Yildirim, I.Z.; Prezzi, M.; Siddiki, N.Z. [Louisiana Transportation Research Center, Baton Rouge, LA (United States)

    2009-06-15T23:59:59.000Z

    Fly ash and bottom ash are coal combustion by-products (CCBPs) that are generated in large quantities throughout the world. It is often economical to dispose ash as mixtures rather than separately; that notwithstanding, only a few studies have been performed to investigate the behavior of fly and bottom ash mixtures, particularly those with high contents of fly ash. Also, there is very limited data available in the literature on the field performance of structures constructed using ash mixtures. This paper describes the construction and the instrumentation of a demonstration embankment built with an ash mixture (60:40 by weight of fly ash:bottom ash) on State Road 641, Terre Haute, Ind. Monitoring of the demonstration embankment was conducted for a period of 1 year from the start of construction of the embankment. The settlement of the embankment stabilized approximately 5 months after the end of its construction. According to horizontal inclinometer readings, the differential settlement at the top of the embankment is about 5 mm. Results from field quality control tests performed during construction of the demonstration embankment and monitoring data from vertical and horizontal inclinometers and settlement plates indicate that the ash mixture investigated can be considered an acceptable embankment construction material.

  10. Utilization of ash from municipal solid waste combustion. Final report, Phase I

    SciTech Connect (OSTI)

    Jones, C.M.; Hartman, R.M.; Kort, D.; Rapues, N.

    1994-09-01T23:59:59.000Z

    This ash study investigates several aspects of Municipal Waste Combustion (MWC) ash utilization to develop an alternative to the present disposal practice of landfilling in a lined monofill. Ash was investigated as a daily or final cover for municipal waste in the landfill to prevent erosion and as a road construction aggregate. Samples of eight mixtures of ash and other materials, and one sample of soil were analyzed for chemical constituents. Biological tests on these mixters were conducted, along with erosion tests and sieve analyses. A chemical analysis of each sieve size was conducted. Geotechnical properties of the most promising materials were made. Findings to this point include: all ash samples take have passed the EPA TCLP testing; chemical analysis of bottom and combined ash samples indicate less than expected variability; selected ash mixtures exhibited very low coefficients of hydraulic conductivity; all but one of the ash mixtures exhibited greater erosion resistance than the currently used landfill cover material; MWC combined analysis indicates this is a viable alternative for landfill cover; MWC ash size reactions and chemical analysis show bottom and combined ash to be a viable alternative for road construction.

  11. Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char

    SciTech Connect (OSTI)

    Jing Gu; Shiyong Wu; Youqing Wu; Ye Li; Jinsheng Gao [East China University of Science and Technology, Shanghai (China). Department of Chemical Engineering for Energy Resources and Key Laboratory of Coal Gasification of Ministry of Education

    2008-11-15T23:59:59.000Z

    In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivity than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.

  12. The Effect of Cement Mechanical Properties and Reservoir Compaction on HPHT Well Integrity

    E-Print Network [OSTI]

    Yuan, Zhaoguang

    2012-11-15T23:59:59.000Z

    Cement high- cycle fatigue failure constant B Cement high -cycle fatigue failure constant C Rock internal strength, psi Cr Volumetric solid...-grain compressibility, psi-1 Cbc Volumetric bulk-volume compressibility, psi-1 E Young?s modulus, psi F Critical force, lbf G...

  13. Using artificial neural networks to predict the quality and performance of oilfield cements

    SciTech Connect (OSTI)

    Coveney, P.V.; Hughes, T.L. [Schlumberger Cambridge Research Ltd., Cambridge (United Kingdom); Fletcher, P. [Schlumberger Dowell, Skene, Aberdeen (United Kingdom)

    1996-12-31T23:59:59.000Z

    Inherent batch to batch variability, ageing and contamination are major factors contributing to variability in oilfield cement slurry performance. Of particular concern are problems encountered when a slurry is formulated with one cement sample and used with a batch having different properties. Such variability imposes a heavy burden on performance testing and is often a major factor in operational failure. We describe methods which allow the identification, characterization and prediction of the variability of oilfield cements. Our approach involves predicting cement compositions, particle size distributions and thickening time curves from the diffuse reflectance infrared Fourier transform spectrum of neat cement powders. Predictions make use of artificial neural networks. Slurry formulation thickening times can be predicted with uncertainties of less than {+-}10%. Composition and particle size distributions can be predicted with uncertainties a little greater than measurement error but general trends and differences between cements can be determined reliably. Our research shows that many key cement properties are captured within the Fourier transform infrared spectra of cement powders and can be predicted from these spectra using suitable neural network techniques. Several case studies are given to emphasize the use of these techniques which provide the basis for a valuable quality control tool now finding commercial use in the oilfield.

  14. The Effect of Cement Mechanical Properties and Reservoir Compaction on HPHT Well Integrity 

    E-Print Network [OSTI]

    Yuan, Zhaoguang

    2012-11-15T23:59:59.000Z

    In the life of a well, the cement sheath not only provides zonal isolation but also supports casing and increases casing-collapse resistance. Due to the high-pressure, high-temperature (HPHT) conditions, the cement sheath plays an important role...

  15. Towards Verified and Validated FE Simulations of a Femur with a Cemented Hip Prosthesis

    E-Print Network [OSTI]

    Yosibash, Zohar

    Towards Verified and Validated FE Simulations of a Femur with a Cemented Hip Prosthesis Zohar at the neck. The head and neck were removed and the femur was implanted with a cemented prosthesis. The fixed femur was CT-scanned and loaded through the prosthesis so that strains and displacements were measured

  16. PORTLAND CEMENT CONCRETE PAVEMENT FOR FLEXIBLE OVER RIGID COMPOSITE PAVEMENTS (Tollway)

    E-Print Network [OSTI]

    PORTLAND CEMENT CONCRETE PAVEMENT FOR FLEXIBLE OVER RIGID COMPOSITE PAVEMENTS (Tollway) Effective portland cement concrete for special applications to composite pavements as shown and described. Developing concrete mix design(s) that meets the performance requirements for the intended pavement; 4

  17. Quartz cementation inhibited by crestal oil charge: Miller deep water sandstone,

    E-Print Network [OSTI]

    Haszeldine, Stuart

    to the structural depth of the reservoir sandstones. Quartz cement volumes increase from the crest of the field porosity. By integrating petrographic observations with results of fluid inclusion measurements and O depths. Quartz cement precipitation condi- tions were constrained by integrating fluid inclusion

  18. USE OF VATERITE AND CALCITE IN FORMING CALCIUM PHOSPHATE CEMENT A. Cuneyt Tas

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    calcium phosphate (CaP+CaCO3) cements have been developed. The common point in these cements was that they all utilized single-phase CaCO3 (calcite or vaterite) in their powder components. The major phase with some varying amounts of unreacted CaCO3. Calcite powders used were needle-like or acicular in shape

  19. Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone

    E-Print Network [OSTI]

    Sheffield, University of

    Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone. However, there may be issues regarding the corrosion of some of the metal components which arise from reprocessing and decommissioning due to the alkaline environment in the cement grouts. The corrosion

  20. Portland cement for SO/sub 2/ control in coal-fired power plants

    DOE Patents [OSTI]

    Steinberg, M.

    1984-10-17T23:59:59.000Z

    A method is described for removing oxides of sulfur from the emissions of fossil fuel combustion by injecting portland cement into the boiler with the fuel, the combustion air, or downstream with the combustion gases. The cement products that result from this method is also described. 1 tab.

  1. Speciation of heavy metals in cement-stabilized waste forms: A micro-spectroscopic study

    E-Print Network [OSTI]

    -ray fluorescence (XRF)) were used to investigate Co and Ni uptake by Hardened Cement Paste (HCP) with the aim. For Ni and Co, XRF mapping revealed a highly heterogeneous element distribution as far Elsevier B.V. All rights reserved. Keywords: Cement; Micro-XAS; Micro-XRF mapping; Ni; Co 1. Introduction

  2. Effect of Elevated Curing Temperature on Early Hydration and Microstructure of Composite Cements

    E-Print Network [OSTI]

    Sheffield, University of

    Effect of Elevated Curing Temperature on Early Hydration and Microstructure of Composite Cements J, Seascale, Cumbria, CA20 1PG, UK Abstract The heat of hydration of a number of composite cement systems has microscopy. Results showed that increasing the hydration temperature increased the rate of heat output

  3. Carbon leakage and competitiveness of cement and steel industries under the EU

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    No 53-2013 Carbon leakage and competitiveness of cement and steel industries under the EU ETS: much2014 #12;Carbon leakage and competitiveness of cement and steel industries under the EU ETS: much ado about nothing Abstract In a world of uneven climate policies, concerns about carbon leakage

  4. Thermal Energy Storage/Waste Heat Recovery Applications in the Cement Industry

    E-Print Network [OSTI]

    Beshore, D. G.; Jaeger, F. A.; Gartner, E. M.

    1979-01-01T23:59:59.000Z

    , and the Portland Cement Association have studied the potential benefits of using waste heat recovery methods and thermal energy storage systems in the cement manufacturing process. This work was performed under DOE Contract No. EC-77-C-01-50S4. The study has been...

  5. Portland cement for SO.sub.2 control in coal-fired power plants

    DOE Patents [OSTI]

    Steinberg, Meyer (Melville, NY)

    1985-01-01T23:59:59.000Z

    There is described a method of removing oxides of sulfur from the emissions of fossil fuel combustion by injecting portland cement into the boiler with the fuel, the combustion air, or downstream with the combustion gases. There is also described the cement products that result from this method.

  6. Z .Chemical Geology 152 1998 227256 The thermal and cementation histories of a sandstone petroleum

    E-Print Network [OSTI]

    Z .Chemical Geology 152 1998 227­256 The thermal and cementation histories of a sandstone petroleum-feldspars recovered at various depths from a deep well drilled through a carbonate-cemented sandstone petroleum of a sandstone petroleum xreservoir, Elk Hills, California. Part 2: In situ oxygen and carbon isotopic results

  7. Coal-ash spills highlight ongoing risk to ecosystems

    SciTech Connect (OSTI)

    Chatterjee, R.

    2009-05-01T23:59:59.000Z

    Two recent large-scale spills of coal combustion waste have highlighted the old problem of handling the enormous quantity of solid waste produced by coal. Both spills happened at power plants run by the Tennessee Valley Authority (TVA). In December 2008 a holding pond for coal ash collapsed at a power plant in Kingstom, Tenn., releasing coal-ash sludge onto farmland and into rivers: in January 2009 a break in a pipe removing water from a holding pond for gypsum caused a spill at Widows Creek Fossil Plant in Stevenson, Ala. The article discusses the toxic outcome of such disasters on ecosystems, quoting work by Willaim Hopkins at Virginia Polytechnic Institute and State University and recommendations and reports of the US EPA. 2 photos.

  8. Ash reduction in clean coal spiral product circuits

    SciTech Connect (OSTI)

    Brodzik, P.

    2007-04-15T23:59:59.000Z

    The article describes the Derrick Corporation's Stack Sizer{trademark} technology for high capacity fine wet cleaning with long-lasting high open-area urethane screen panels. After field trials, a Stack Sizer fitted with a 100-micron urethane panel is currently processing approximately 40 stph of clean coal spiral product having about 20% ash at McCoy-Elkhorn's Bevin Branch coal preparation plant in Kentucky, USA. Product yield is about 32.5 short tons per hour with 10% ash. The material is then fed to screen bowl centrifuges for further processing. At Blue Diamond Coal's Leatherwood preparation plant similar Stacker Sizers are achieving the same results. 2 figs., 3 tabs., 2 photo.

  9. Effects of Sediment Containing Coal Ash from the Kingston Ash Release on Embryo-Larval Development in the Fathead Minnow, Pimephales promelas (Rafinesque, 1820)

    SciTech Connect (OSTI)

    Greeley Jr, Mark Stephen [ORNL] [ORNL; Elmore, Logan R [ORNL] [ORNL; McCracken, Kitty [ORNL] [ORNL; Sherrard, Rick [Tennessee Valley Authority (TVA)] [Tennessee Valley Authority (TVA)

    2014-01-01T23:59:59.000Z

    The largest environmental release of coal ash in U.S. history occurred in December 2008 with the failure of a retention structure at the Tennessee Valley Authority (TVA) Kingston Fossil Plant in East Tennessee. A byproduct of coal-burning power plants, coal ash is enriched in metals and metalloids such as selenium and arsenic with known toxicity to fish including embryonic and larval stages. The effects of contact exposure to sediments containing up to 78 % coal ash from the Kingston spill on the early development of fish embryos and larvae were examined in 7-day laboratory tests with the fathead minnow (Pimephales promelas). No significant effects were observed on hatching success, incidences of gross developmental abnormalities, or embryo-larval survival. Results suggest that direct exposures to sediment containing residual coal ash from the Kingston ash release may not present significant risks to fish eggs and larvae in waterways affected by the spill.

  10. The reactions and ashes of thermonuclear explosions on neutron stars

    E-Print Network [OSTI]

    J. L. Fisker; E. Brown; M. Liebendoerfer; F. -K. Thielemann; M. Wiescher

    2004-08-04T23:59:59.000Z

    This paper reports on the detailed rp-process reaction flow on an accreting neutron star and the resulting ashes of a type I X-ray burst. It is obtained by coupling a 298 isotope reaction network to a self-consistent one-dimensional model calculation with a constant accretion rate of dM/dt=1.0e17g/s (0.09 Eddington).

  11. 618 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 4, APRIL 2001 Robust Stabilization of a Nonlinear Cement Mill Model

    E-Print Network [OSTI]

    Bastin, Georges

    of a Nonlinear Cement Mill Model F. Grognard, F. Jadot, L. Magni, G. Bastin, R. Sepulchre, and V. Wertz Abstract--Plugging is well known to be a major cause of instability in in- dustrial cement mills. A simple nonlinear model- troller can be designed in order to fully prevent the mill from plugging. Index Terms--Cement mill

  12. Effect of the variations of clinker composition on the poroelastic properties of hardened class G cement paste

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    cement paste Siavash Ghabezloo Universit´e Paris-Est, Laboratoire Navier-CERMES, Ecole des Ponts Paris of class G oil-well cement pastes is studied using a multiscale homogenization model. The model has been cements from literature are used in a hydration model to evaluate the volume fractions

  13. 502 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 4, JULY 1999 Multivariable Nonlinear Predictive Control of Cement Mills

    E-Print Network [OSTI]

    Bastin, Georges

    Nonlinear Predictive Control of Cement Mills Lalo Magni, Georges Bastin, and Vincent Wertz Abstract--A new multivariable controller for cement milling circuits is presented, which is based on a nonlinear model: a change of hardness of the raw material. Index Terms--Cement industry, multivariable control systems

  14. Dale P. Bentz' and Paul E. Stutzmanl SEM ANALYSIS AND COMPUTER MODELLING OF HYDRATION OF PORTLAND CEMENT

    E-Print Network [OSTI]

    Bentz, Dale P.

    CEMENT PARTICLES REPERENCE: Bentz, D. P. and Stutzman, P. E., "S)314Anslysisand Computer Modelling of Hydration of Portland Cement Particles,* petrov~ ~* lmMSLuu* Sharon M. DeHayes and David Stark, Eds., American Society for Testing and Materials, Philadelphia, 1994, ASS'J!RACT: Characterization of cement

  15. Disseminated `jigsaw piece' dolomite in Upper Jurassic shelf sandstones, Central North Sea: an example of cement growth

    E-Print Network [OSTI]

    Haszeldine, Stuart

    : an example of cement growth during bioturbation? JAMES P. HENDRY*1 , MARK WILKINSON , ANTHONY E. FALLICKà crystals and consequent cementation of the grain framework. Continued exchange of Mg2+ and Ca2 on calcite cementation in marine sandstones in recent years has greatly improved our understanding

  16. NICOM 4: 4th International Symposium on Nanotechnology in Construction Effect of Nanosilica on Cement Hydration under High Temperature and

    E-Print Network [OSTI]

    Al-Majed, Abdulaziz Abdullah

    ), the silicate polymerization of hydrated cement is investigated. The mi- crostructural compounds in the hardened cement hydration in oil wells is investigated. Cement pastes with water to binder ratio (w/b) of 0- ment pastes was investigated using X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) methods

  17. Effects of aluminosilicate minerals in clay soil fractions on pore water hydroxide ion concentrations in soil/cement matrices 

    E-Print Network [OSTI]

    Cook, Evan Russell

    1998-01-01T23:59:59.000Z

    Ucement/waste matrices. Research described herein was undertaken 1) to ascertain the pH decrement in soil/cement matrices as a function of clay:cement ratio and 2) to develop a methodology to predict hydroxide ion concentrations in soil/cement matrices. To assess...

  18. Apparatus and method for measuring the expansion properties of a cement composition

    DOE Patents [OSTI]

    Spangle, Lloyd B. (Claremore, OK)

    1983-01-01T23:59:59.000Z

    An apparatus is disclosed which is useful for measuring the expansion properties of semi-solid materials which expand to a solid phase, upon curing, such as cement compositions. The apparatus includes a sleeve, preferably cylindrical, which has a vertical slit on one side, to allow the sleeve to expand. Mounted on the outside of the sleeve are several sets of pins, consisting of two pins each. The two pins in each set are located on opposite sides of the slit. In the test procedure, the sleeve is filled with wet cement, which is then cured to a solid. As the cement cures it causes the sleeve to expand. The actual expansion of the sleeve represents an expansion factor for the cement. This factor is calculated by measuring the distance across the pins of each set, when the sleeve is empty, and again after the cured cement expands the sleeve.

  19. Long-term modeling of glass waste in portland cement- and clay-based matrices

    SciTech Connect (OSTI)

    Stockman, H.W.; Nagy, K.L. [Sandia National Labs., Albuquerque, NM (United States); Morris, C.E. [Wollongong Univ., NSW (Australia). Dept. of Civil and Mining Engineering

    1995-12-01T23:59:59.000Z

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.

  20. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU

    SciTech Connect (OSTI)

    Josa, Alejandro [Technical University of Catalonia (UPC), School of Civil Engineering (ETSECCPB), C/Jordi Girona 1-3 Modul D2/C1, Barcelona 08034 (Spain)]. E-mail: alejandro.josa@upc.edu; Aguado, Antonio [Technical University of Catalonia (UPC), School of Civil Engineering (ETSECCPB), C/Jordi Girona 1-3 Modul D2/C1, Barcelona 08034 (Spain); Cardim, Arnaldo [Civil Engineering Department, Polytechnic School of Penambuco University, Rua Benfica, 455-Madalena, CEP 50.750-410 (Brazil); Byars, Ewan [Centre for Cement and Concrete, Department of Civil and Structural Engineering, University of Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2007-05-15T23:59:59.000Z

    Life cycle impact assessment (LCIA) is one of basic steps in life cycle assessment methodology (LCA). This paper presents a comparative study of the LCIA of different life cycle inventories (LCI) for EU cements. The analysis unit used is the manufacture of 1 kg of cement, from 'cradle to gate'. The impact categories considered are those resulting from the manufacture of cement and include greenhouse effects, acidification, eutrophication and summer and winter smog, amongst others. The results of the study highlighted some inconsistencies in existing inventories. As for the LCIA, the main environmental interventions related to cement manufacture were classified and characterised and their effect on different impact categories analysed. Differences observed in evaluation of the impact of cement type were essentially related to their clinker content.

  1. Oil shale ash-layer thickness and char combustion kinetics

    SciTech Connect (OSTI)

    Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

    1992-04-15T23:59:59.000Z

    A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

  2. Modeling the formation and size distribution of fly ash

    SciTech Connect (OSTI)

    Dahlin, R.S.

    1985-01-01T23:59:59.000Z

    A set of mathematical models has been developed to predict the size distribution of fly ash particles formed in pulverized coal combustion. The large particle mode of the size distribution, typically centered about 10 to 20 ..mu..m, is predicted by a simple breakup model that is based on the complete coalescence of molten mineral inclusions within fragments of the devolatilized coal char. The ultrafine particle mode, that is typically centered about 0.1 to 0.2 ..mu..m, is modeled in terms of ash volatilization, nucleation, and coagulation. Silica and alumina are reduced to volatile suboxides through reactions at the char surface. The volatile suboxides are transported from the char surface where they are oxidized back to the stable oxides in the bulk gas, and then nucleated in accordance with homogeneous nucleation theory. The ultrafine nuclei coagulate in accordance with Brownian coagulation theory. The predicted particle size spectra have been compared to measured size distributions from a pilot-scale combustor and a full-scale utility boiler. Considering the disproportionate loss of coarse particles in the pilot-scale unit, the agreement between the predicted and measured size distributions was considered reasonably good. Both the predicted ultrafine and large particle modes agreed reasonably well with the measured particle size distribution for the full scale boiler. The validated computer models were used to study the effect of changes in the coal ash content, coal particle size, and the combustion flame temperature.

  3. Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T.; Strazisar, Brian; Bromhal Grant

    2013-08-01T23:59:59.000Z

    Assessing the possibility of CO{sub 2} leakage is one of the major challenges for geological carbon sequestration. Injected CO{sub 2} can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations to understand and predict the property evolution of cement in direct contact with CO{sub 2}-saturated brine under diffusion-controlled conditions. The model reproduced the observed zones of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times. This work also quantified the role of initial cement properties, in particular the ratio of the initial portlandite content to porosity (defined here as ?), in determining the evolution of cement properties. Portlandite-rich cement with large ? values results in a localized “sharp” reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement–brine interface with large ? values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone. The developed reactive transport model provides a valuable tool to link cement–CO{sub 2} reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO{sub 2} sequestration.

  4. Hydration and leaching characteristics of cement pastes made from electroplating sludge

    SciTech Connect (OSTI)

    Chen, Ying-Liang [Department of Environmental Engineering, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan (China); Ko, Ming-Sheng [Institute of Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chunghsiao E. Rd., Taipei City 10608, Taiwan (China); Lai, Yi-Chieh [Department of Bioenvironmental Engineering, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan (China); Chang, Juu-En, E-mail: juuen@mail.ncku.edu.tw [Department of Environmental Engineering, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan (China)

    2011-06-15T23:59:59.000Z

    The purpose of this study was to investigate the hydration and leaching characteristics of the pastes of belite-rich cements made from electroplating sludge. The compressive strength of the pastes cured for 1, 3, 7, 28, and 90 days was determined, and the condensation of silicate anions in hydrates was examined with the {sup 29}Si nuclear magnetic resonance (NMR) technology. The leachabilities of the electroplating sludge and the hardened pastes were studied with the multiple toxicity characteristic leaching procedure (MTCLP) and the tank leaching test (NEN 7345), respectively. The results showed that the electroplating sludge continued to leach heavy metals, including nickel, copper, and zinc, and posed a serious threat to the environment. The belite-rich cement made from the electroplating sludge was abundant in hydraulic {beta}-dicalcium silicate, and it performed well with regard to compressive-strength development when properly blended with ordinary Portland cements. The blended cement containing up to 40% the belite-rich cement can still satisfy the compressive-strength requirements of ASTM standards, and the pastes cured for 90 days had comparable compressive strength to an ordinary Portland cement paste. It was also found that the later hydration reaction of the blended cements was relatively more active, and high fractions of belite-rich cement increased the chain length of silicate hydrates. In addition, by converting the sludge into belite-rich cements, the heavy metals became stable in the hardened cement pastes. This study thus indicates a viable alternative approach to dealing with heavy metal bearing wastes, and the resulting products show good compressive strength and heavy-metal stability.

  5. Respirable aerosols from fluidized bed coal combustion. 3. Elemental composition of fly ash

    SciTech Connect (OSTI)

    Weissman, S.H.; Carpenter, R.L.; Newton, G.J.

    1983-02-01T23:59:59.000Z

    Fluidized bed coal combustion is a promising technology for using coal in an environmentally acceptable manner. Trace elemental constituents in fly ash from an experimental atmospheric pressure fluidized bed combustor (AFBC) are reported and compared with pulverized-coal combustor (PCC) ash data and those from other fluidized bed combustors. Bulk and size-separated particles were collected and analyzed by using spark source mass spectrometry.Fluidized bed combustor ash was similar to PCC ash in minor and trace element composition. However, AFBC ash showed less size dependence of elemental composition than has been reported for PCC ash. Bulk particle elemental composition varied with sampling position within the effluent stream. Penetration of elements through each cleanup stage and elemental enrichment were a function of the cleanup stage and the element under consideration.

  6. Integrated production/use of ultra low-ash coal, premium liquids and clean char

    SciTech Connect (OSTI)

    Kruse, C.W.

    1991-01-01T23:59:59.000Z

    This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

  7. A review of ash in conventional and advanced coal-based power systems

    SciTech Connect (OSTI)

    Holcombe, N.T.

    1995-12-31T23:59:59.000Z

    Process conditions are briefly described for conventional and advanced power systems. The advanced systems include both combustion and gasification processes. We discuss problems in coal-based power generation systems, including deposition, agglomeration and sintering of bed materials, and ash attack are discussed. We also discuss methods of mitigating ash problems and anticipated changes anticipated in ash use by converting from conventional to advanced systems.

  8. INVESTIGATION OF AMMONIA ADSORPTION ON FLY ASH DUE TO INSTALLATION OF SELECTIVE CATALYTIC REDUCTION SYSTEMS

    SciTech Connect (OSTI)

    G.F. Brendel; J.E. Bonetti; R.F. Rathbone; R.N. Frey Jr.

    2000-11-01T23:59:59.000Z

    This report summarizes an investigation of the potential impacts associated with the utilization of selective catalytic reduction (SCR) systems at coal-fired power plants. The study was sponsored by the U.S. Department of Energy Emission Control By-Products Consortium, Dominion Generation, the University of Kentucky Center for Applied Energy Research and GAI Consultants, Inc. SCR systems are effective in reducing nitrogen oxides (NOx) emissions as required by the Clean Air Act (CAA) Amendments. However, there may be potential consequences associated with ammonia contamination of stack emissions and combustion by-products from these systems. Costs for air quality, landfill and pond environmental compliance may increase significantly and the marketability of ash may be seriously reduced, which, in turn, may also lead to increased disposal costs. The potential impacts to air, surface water, groundwater, ash disposal, ash utilization, health and safety, and environmental compliance can not be easily quantified based on the information presently available. The investigation included: (1) a review of information and data available from published and unpublished sources; (2) baseline ash characterization testing of ash samples produced from several central Appalachian high-volatile bituminous coals from plants that do not currently employ SCR systems in order to characterize the ash prior to ammonia exposure; (3) an investigation of ammonia release from fly ash, including leaching and thermal studies; and (4) an evaluation of the potential impacts on plant equipment, air quality, water quality, ash disposal operations, and ash marketing.

  9. Respirable aerosols from fluidized bed coal combustion. 3. Elemental composition of fly ash

    SciTech Connect (OSTI)

    Weissman, S.H.

    1983-02-01T23:59:59.000Z

    Trace element constituents in fly ash from an experimental atmospheric fluidized bed combustor (AFBC) are reported and compared with pulverized coal combustor (PCC) data and those from other fluidized bed combustors. Bulk and size-separated particles were collected and analyzed using spark source mass spectrometry. Fluidized bed combustion ash was similar to PCC ash in minor and trace element composition, but AFBC ash showed less size dependence of elemental composition. Bulk particle elemental composition varied with sampling position within the effluent stream. Penetration of elements through each cleanup stage and elemental enrichment were a function of the cleanup stage and the element under consideration.

  10. Coal deposit characterization by gamma-gamma density/percent dry ash relationships

    E-Print Network [OSTI]

    Wright, David Scott

    1984-01-01T23:59:59.000Z

    Density/Ash Relationship . APPLICATION OF THE GAMMA-GAMMA DENSITY/PERCENT DRY ASH RELATIONSHIPS The Density/Ash Relationship of a South Texas Lignite Deposit Characterization of a South Texas Lignite Deposit CONCLUSIONS REFERENCES. 52 53 53 53... 58 64 67 6g 80 87 LIST OF TABLES TABLE I Coal Classification by Rank. 2 Common Minerals in Coal. 3 Results of Linear Regression Analyses for a South Texas Lignite Deposit. 4 Variability of Geophysica11y-Derived Percent Dry Ash Values...

  11. Experimental and numerical analysis of metal leaching from fly ash-amended highway bases

    SciTech Connect (OSTI)

    Cetin, Bora [Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742 (United States); Aydilek, Ahmet H., E-mail: aydilek@umd.edu [Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742 (United States); Li, Lin [Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS 17068 (United States)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This study is the evaluation of leaching potential of fly ash-lime mixed soils. Black-Right-Pointing-Pointer This objective is met with experimental and numerical analysis. Black-Right-Pointing-Pointer Zn leaching decreases with increase in fly ash content while Ba, B, Cu increases. Black-Right-Pointing-Pointer Decrease in lime content promoted leaching of Ba, B and Cu while Zn increases. Black-Right-Pointing-Pointer Numerical analysis predicted lower field metal concentrations. - Abstract: A study was conducted to evaluate the leaching potential of unpaved road materials (URM) mixed with lime activated high carbon fly ashes and to evaluate groundwater impacts of barium, boron, copper, and zinc leaching. This objective was met by a combination of batch water leach tests, column leach tests, and computer modeling. The laboratory tests were conducted on soil alone, fly ash alone, and URM-fly ash-lime kiln dust mixtures. The results indicated that an increase in fly ash and lime content has significant effects on leaching behavior of heavy metals from URM-fly ash mixture. An increase in fly ash content and a decrease in lime content promoted leaching of Ba, B and Cu whereas Zn leaching was primarily affected by the fly ash content. Numerically predicted field metal concentrations were significantly lower than the peak metal concentrations obtained in laboratory column leach tests, and field concentrations decreased with time and distance due to dispersion in soil vadose zone.

  12. To appear in International Journal of Advances in Engineering Sciences and Applied Mathematics (2010). Critical Observations for the Evaluation of Cement Hydration Models

    E-Print Network [OSTI]

    Bentz, Dale P.

    2010-01-01T23:59:59.000Z

    (2010). Critical Observations for the Evaluation of Cement Hydration Models Dale P. Bentz Engineering of computer models for cement hydration and microstructure development, with an explicit consideration of experimental observations concerning the influence of water-to-cement ratio, cement particle size distribution

  13. Sponsors of CIEEDAC: Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Petroleum Products Institute, Canadian Portland Cement Association, Canadian Pulp

    E-Print Network [OSTI]

    , Aluminium Industry Association, Canadian Petroleum Products Institute, Canadian Portland Cement Association

  14. Characterization of modified calcium-silicate cements exposed to acidic environment

    SciTech Connect (OSTI)

    Camilleri, Josette, E-mail: josette.camilleri@um.edu.mt

    2011-01-15T23:59:59.000Z

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: {yields} An acidic environment affects modified fast setting calcium silicate-based cements. {yields} No surface changes are observed in acidic environment. {yields} An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. {yields} A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  15. Low-temperature ceramic radioactive waste form characteriztion of supercalcine-based monazite-cement composites

    SciTech Connect (OSTI)

    Roy, D.M.; Wakeley, L.D.; Atkinson, S.D.

    1980-04-18T23:59:59.000Z

    Simulated radioactive waste solidification by a lower temperature ceramic (cement) process is being investigated. The monazite component (simulated by NdPO/sub 4/) of supercalcine-ceramic has been solidified in cement and found to generate a solid form with low leachability. Several types of commercial cements and modifications thereof were used. No detectable release of Nd or P was found through characterizing the products of accelerated hydrothermal leaching at 473/sup 0/K (200/sup 0/C) and 30.4 MPa (300 bars) pressure.

  16. Improved method and composition for immobilization of waste in cement-based material

    DOE Patents [OSTI]

    Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.

    1987-10-01T23:59:59.000Z

    A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.

  17. Characterization and modeling of the cemented sediment surrounding the Iulia Felix glass

    SciTech Connect (OSTI)

    Strachan, Denis M.; Crum, Jarrod V.; Ryan, Joseph V.; Silvestri, Alberta

    2014-02-28T23:59:59.000Z

    About 1800 years ago a Roman Corbita sunk off the coast of Italy carrying a barrel of glass cullet to the floor of the Adriatic Sea. Samples of glass cullet and the cemented surrounding sediment have been characterized and the reaction between the glass and the sea water saturated with respect to calcite and dolomite has been modeled. Results from characterization and modeling show that the cement phase surrounding the sediment grains is a high-Mg calcite. The origin of the cement phase is likely the reaction between the glass and the sea water to from a Mg-silicate, here modeled as sepiolite.

  18. Speciation of Selenium, Arsenic, and Zinc in Class C Fly Ash

    SciTech Connect (OSTI)

    Luo, Yun; Giammar, Daniel E.; Huhmann, Brittany L.; Catalano, Jeffrey G. (WU)

    2011-11-17T23:59:59.000Z

    A major environmental concern associated with coal fly ash is the mobilization of trace elements that may contaminate water. To better evaluate proper use of fly ash, determine appropriate disposal methods, and monitor postdisposal conditions, it is important to understand the speciation of trace elements in fly ash and their possible environmental impact. The speciation of selenium, arsenic, and zinc was determined in five representative Class C fly ash samples from combustion of sub-bituminous Powder River Basin coal using synchrotron-based X-ray absorption spectroscopy to provide an improved understanding of the mechanisms of trace element association with the fly ash. Selenium in all fly ash samples occurs predominantly as Se(IV), with the exception of one sample, in which there was a minor amount of Se(0). Se(0) is likely associated with the high content of unburned coal in the sample. Arsenic exists in the fly ash as a single phase most consistent with calcium pyroarsenate. In contrast, zinc occurs as two distinct species in the silicate glass matrix of the fly ash. This work demonstrates that residual carbon in fly ash may reduce potential Se mobility in the environment by retaining it as less soluble elemental Se instead of Se(IV). Further, this work suggests that As and Zn in Class C fly ash will display substantially different release and mobilization behaviors in aquatic environments. While As release will primarily depend upon the dissolution and hydrolysis of calcium pyroarsenate, Zn release will be controlled by the dissolution of alkaline aluminosilicate glass in the ash.

  19. Cement substitution by a combination of metakaolin and limestone

    SciTech Connect (OSTI)

    Antoni, M., E-mail: mathieu.antoni@epfl.ch [EPFL-STI-IMX-Laboratoires des Materiaux de Construction, Station12, CH-1015 Lausanne (Switzerland); Rossen, J. [EPFL-STI-IMX-Laboratoires des Materiaux de Construction, Station12, CH-1015 Lausanne (Switzerland)] [EPFL-STI-IMX-Laboratoires des Materiaux de Construction, Station12, CH-1015 Lausanne (Switzerland); Martirena, F. [CIDEM-UCLV, Universidad Las Villas, Santa Clara (Cuba)] [CIDEM-UCLV, Universidad Las Villas, Santa Clara (Cuba); Scrivener, K. [EPFL-STI-IMX-Laboratoires des Materiaux de Construction, Station12, CH-1015 Lausanne (Switzerland)] [EPFL-STI-IMX-Laboratoires des Materiaux de Construction, Station12, CH-1015 Lausanne (Switzerland)

    2012-12-15T23:59:59.000Z

    This study investigates the coupled substitution of metakaolin and limestone in Portland cement (PC). The mechanical properties were studied in mortars and the microstructural development in pastes by X-ray diffraction, thermogravimetry analysis, mercury intrusion porosimetry and isothermal calorimetry. We show that 45% of substitution by 30% of metakaolin and 15% of limestone gives better mechanical properties at 7 and 28 days than the 100% PC reference. Our results show that calcium carbonate reacts with alumina from the metakaolin, forming supplementary AFm phases and stabilizing ettringite. Using simple mass balance calculations derived from thermogravimetry results, we also present the thermodynamic simulation for the system, which agrees fairly well with the experimental observations. It is shown that gypsum addition should be carefully balanced when using calcined clays because it considerably influences the early age strength by controlling the very rapid reaction of aluminates.

  20. Carbon dioxide capture from a cement manufacturing process

    DOE Patents [OSTI]

    Blount, Gerald C. (North Augusta, SC); Falta, Ronald W. (Seneca, SC); Siddall, Alvin A. (Aiken, SC)

    2011-07-12T23:59:59.000Z

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.